
Utility name:

CTCLIENT.EXE version 1.3.0

CTSERVER.EXE version 1.3.0

Purpose:

Establishes an encrypted point to point tunnel between a server and one or more clients using a

proprietary 256-bit symmetric stream cipher. TCP traffic is encrypted as it is bidirectionally marshaled

through the tunnel between CTCLIENT and CTSERVER and is converted back to the original

unencrypted traffic, which is then delivered to the destination hosts. For proper operation, the client

and server executables must be matched versions.

Author:

Bill Chaison, BC.Soft@yahoo.com, http://chaison.freewebpage.org

Development environment:

MS Visual C++ 6.0, console application, Winsock 2, multithreaded, 1163 lines of code per utility.

License and terms of use:

This program is provided as freeware. It may be used by any individual or organization for any lawful

purpose free of charge. This program may not be resold, nor may it be bundled or repackaged with

any application or compilation that will be exchanged for profit. This program does not contain

malicious code or surreptitious features. This program is made available as-is and users of it are not

entitled to product support. The author will not be held liable for any damages resulting from the use

of this program.

Example applications:

Point to multi-point tunneling, host-based secure channel, secure network traffic path exception, etc.

Figure 1

The scenario in figure 1 illustrates how hosts (C) and (D), which do not have direct access to host (B),

can access the web server on host (B) through an encrypted tunnel with host (A). All traffic between

(C) and (A) and between (D) and (A) that passes through the tunnel is encrypted using per-session

read-write keying. Host (A) then sends the normal unencrypted traffic to host (B). The parameters

used with ctserver.exe in this example indicate that host (A) will listen on TCP port 7000 for encrypted

sessions then decrypt and relay all of the received data to host (B) over destination TCP port 80. The

ACL used by ctserver.exe in this example restricts access to just hosts (C) and (D). The example

application in figure 1 also indicates that incomplete TCP connection attempts to host (B) will be

dropped after 1 second, completed TCP sessions to host (B) that have been idle for more than 45

seconds will also be dropped, and all instances of ctserver.exe and ctclient.exe will terminate after 1

hour from the time they were launched. Some additional considerations – if host (B) must be called by

name as “http://www.mysite.net” then hosts (C) and (D) may need a “hosts” file entry or some other

name resolution provision to ensure that “www.mysite.net” resolves to the loopback address,

127.0.0.1, instead of the address for host (B). All traffic being processed through the tunnel must be

initiated by hosts (C) and (D). This pair of utilities does not provide transparent forwarding. All

traffic marshaled by host (A) will use the IP address of host (A). For instance, the HTTP logs of host

(B) will show the IP address of host (A) for web requests made by hosts (C) and (D).

To get additional help with the command line arguments, open a shell and execute each program

without parameters.

