
i

User Manual for wxCLIPS 1.63

Julian Smart

January 1997

i

Contents

1. Introduction ...1
1.1. The relationship between CLIPS, wxCLIPS and wxWindows..1

1.2. Other products by Julian Smart ..2

1.3. Acknowledgements and disclaimer ..2

2. Installing wxCLIPS ..4

3. Running wxCLIPS ...5

4. Compiling wxCLIPS ..6
4.1. Using wxCLIPS as a library..7

4.2. The wxCLIPS type system...8

4.3. Changes made to CLIPS ...8

5. Using CLIPS for building GUIs...10
5.1. The wxCLIPS development window ...10

5.2. Overview of wxCLIPS GUI functionality..10

5.3. Using wxCLIPS functions...11

5.4. Development and debugging ...16

5.5. Packaging your application ..16

6. wxCOOL class reference ..18
6.1. wxApplication is-a wxObject...18

6.2. wxBitmap is-a wxObject ...18

6.3. wxBrush is-a wxObject...19

6.4. wxButton is-a wxItem...20

6.5. wxCanvas is-a wxWindow..21

6.6. wxCheckBox is-a wxItem ...23

6.7. wxChoice is-a wxItem ..23

6.8. wxClient is-a wxObject...25

6.9. wxCommandEvent is-a wxEvent ..25

6.10. wxConnection is-a wxObject ..26

6.11. wxCursor is-a wxBitmap...29

6.12. wxDatabase is-a wxObject ...31

6.13. wxDate is-a wxObject ..33

6.14. wxDC is-a wxObject...39

6.15. wxDialogBox is-a wxPanel ...44

6.16. wxEvent is-a wxObject ...46

6.17. wxEvtHandler is-a wxObject...47

CONTENTS

ii

6.18. wxFont is-a wxObject...47

6.19. wxFrame is-a wxWindow..48

6.20. wxHelpInstance is-a wxObject..51

6.21. wxGauge is-a wxItem...52

6.22. wxGroupBox is-a wxItem ...53

6.23. wxIcon is-a wxBitmap ..53

6.24. wxKeyEvent is-a wxEvent ..54

6.25. wxListBox is-a wxItem..55

6.26. wxMemoryDC is-a wxCanvasDC..58

6.27. wxMenu is-a wxWindow...58

6.28. wxMenuBar is-a wxWindow..60

6.29. wxMessage is-a wxItem...61

6.30. wxMetaFile is-a wxObject...61

6.31. wxMetaFileDC is-a wxDC...62

6.32. wxMouseEvent is-a wxEvent..63

6.33. wxMultiText is-a wxText ...65

6.34. wxObject..65

6.35. wxPanel is-a wxCanvas ...66

6.36. wxItem is-a wxWindow...68

6.37. wxPen is-a wxObject..69

6.38. wxPostScriptDC is-a wxDC ..69

6.39. wxPrinterDC is-a wxDC..70

6.40. wxRadioBox is-a wxItem ..71

6.41. wxRecordSet is-a wxObject ...72

Specify the name of the table you want to use. 6.42. wxServer is-a wxObject79

6.43. wxSlider is-a wxItem ..80

6.44. wxText is-a wxItem ..81

6.45. wxTextWindow is-a wxWindow...82

6.46. wxTimer is-a wxObject ...84

6.47. wxToolBar is-a wxPanel...84

6.48. wxWindow is-a wxEvtHandler ..88

7. wxCLIPS function groups...92
7.1. How to use this reference ..92

7.2. Application...92

7.3. Bitmap...93

7.4. Brush...95

7.5. Button..95

7.6. Canvas ..96

7.7. Checkbox ..100

CONTENTS

iii

7.8. Choice ...100

7.9. Client...102

7.10. Colour..103

7.11. Command event ..103

7.12. Connection ..104

7.13. Cursor..106

7.14. Database ...107

7.15. Date...109

7.16. Device context ...115

7.17. Dialog box ...121

7.18. Event ...122

7.19. Font...123

7.20. Frame..123

7.21. Help...126

7.22. HWND functions ..127

7.23. Gauge ...128

7.24. Grid ...129

7.25. Groupbox...136

7.26. Html...137

Opens a URL (not yet functioning).7.27. Icon..138

7.28. Instance table ..140

7.29. Key event ..140

7.30. Listbox...141

7.31. Memory device context ..143

7.32. Menu ...144

7.33. Menu bar ...145

7.34. Message..146

7.35. Metafile..147

7.36. Metafile device context...148

7.37. Mouse event ..148

7.38. Multi-line text ...150

7.39. Object..153

7.40. Panel ...154

7.41. Panel item ...155

7.42. Pen..156

7.43. PostScript device context...156

7.44. Printer device context ..157

7.45. Radiobox ...157

7.46. Recordset ..158

7.47. Server..165

CONTENTS

iv

7.48. Slider ...165

7.49. Text ...166

7.50. Text window...167

7.51. Timer ...171

7.52. Toolbar ..172

7.53. Window..175

7.54. Miscellaneous..179

8. wxCLIPS classes by category..190
8.1. Managed windows ...190

8.2. Subwindows ..190

8.3. Panel items..190

8.4. Convenience dialogs..191

8.5. Device contexts ...191

8.6. Graphics device interface...192

8.7. Events ...192

8.8. Interprocess communication ..193

8.9. Database classes...193

8.10. File functions ...193

8.11. Time-related functions..193

8.12. Noisy functions ..194

8.13. Operating system functions..194

8.14. wxCLIPS environment functions...194

8.15. Data functions..194

9. Topic overviews ..196
9.1. Window styles..196

9.2. Interprocess communication overview..199

9.3. Device context overview ..202

9.4. Dialog box overview...202

9.5. Toolbar overview ...203

9.6. Database classes overview..205

9.7. Grid overview...210

9.8. wxCOOL overview ...213

9.9. Resource overview ..215

10. DDE commands that wxCLIPS recognizes ...217

11. Change log...218
11.1. Version 1.63 ..218

11.2. Version 1.62 ..218

CONTENTS

v

11.3. Version 1.61 ..218

11.4. Version 1.60 ..218

11.5. Version 1.59 ..218

11.6. Version 1.58 ..218

11.7. Version 1.57 ..218

11.8. Version 1.56 ..219

11.9. Version 1.55 ..219

11.10. Version 1.55 ..219

11.11. Version 1.54 ..219

11.12. Version 1.53 ..219

11.13. Version 1.52 ..220

11.14. Version 1.51 ..220

11.15. Version 1.50 ..220

11.16. Version 1.49 ..220

11.17. Version 1.48 ..220

11.18. Version 1.47 ..220

11.19. Version 1.46 ..220

11.20. Version 1.45 ..221

11.21. Version 1.44 ..221

11.22. Version 1.43 ..221

11.23. Version 1.42 ..221

11.24. Version 1.41 ..221

11.25. Version 1.40 ..221

11.26. Version 1.38 ..222

11.27. Version 1.36 ..222

11.28. Version 1.35 ..222

11.29. Version 1.34 ..222

11.30. Version 1.33 ..223

11.31. Version 1.32 ..223

11.32. Version 1.30 ..223

11.33. Versions 1.00 to 1.20 ...223

Glossary...225
API ...225

Bit list ...225

Callback ...225

Canvas...225

DDE ...225

Device context..225

Dialog box ..225

CONTENTS

vi

Frame...225

GUI ..225

Menu bar ..226

Metafile ..226

Open Look..226

Panel..226

Resource..226

Status line ..226

XView...226

Index...228

1

1. Introduction

wxCLIPS was developed to enable CLIPS programmers to write portable, graphical programs
which run under X and MS Windows. It is essentially CLIPS modified to work with an event driven
style of programming, and a set of GUI functions. Its name reflects the fact that it is a CLIPS
interface to wxWindows, a C++ GUI library also written by Julian Smart.

wxCLIPS supports CLIPS 6.0, and CLIPS 6.0 with fuzzy extensions, depending on how it is
compiled.

wxCLIPS is really two entities:

1. A library of CLIPS functions to access a subset of wxWindows functionality.

2. A simple stand-alone development environment for developing wxWindows applications
using these extra CLIPS functions.

The library can be used by any C++ program, to give it a tailoring language and interactive
access to GUI functionality. The stand-alone wxCLIPS is a simple development interface making
use of the library.

wxCLIPS is fundamentally a set of functions, rather than COOL objects, since C-based user
extensions are restricted to functions. However, there is now a set of classes called wxCOOL
(page 213) which encapsulates much of the wxCLIPS functionality in a properly object-oriented
manner.

The wxCLIPS extensions to CLIPS were written by Julian Smart of the Artificial Intelligence
Applications Institute, University of Edinburgh. You can get the latest version of the Windows and
Sun Open Look and Motif binaries and source from the AIAI ftp site:

http://www.aiai.ed.ac.uk/~jacs/wxclips.html (WWW)
ftp.aiai.ed.ac.uk:/pub/packages/wxclips (FTP)

1.1. The relationship between CLIPS, wxCLIPS and wxWindows

wxWindows is a C++ class library for multi-platform development, developed at the Artificial
Intelligence Applications Institute by Julian Smart and available free of charge.

CLIPS is NASA's expert system shell, allowing rule-based, functional and object-oriented
programming in the one, portable system. It is written in C and is effectively free of charge.

wxCLIPS is the union of wxWindows and CLIPS -- a set of CLIPS functions to access a large
portion of wxWindows functionality. It is available in three forms: as a library, within other
products, or as an executable with a simple front end.

To fully understand wxCLIPS, it will help to read the wxWindows documentation. This is available
from AIAI's anonymous ftp site in PostScript, wxHelp, and Windows Help format. The ftp site is
ftp.aiai.ed.ac.uk, and wxWindows is in /pub/packages/wxwin.

This document only deals with functions added to standard CLIPS. There are PostScript, Word
for Windows and ASCII files containing NASA's CLIPS documentation, some of which will be
required for serious wxCLIPS development.

CHAPTER 1

2

For further information, please contact Julian Smart at the following address:

Dr Julian Smart
149 Warrender Park Road
Edinburgh
EH9 1DT
julian.smart@ukonline.co.uk
http://web.ukonline.co.uk/Members/julian.smart
Tel: 0131 466 0193

1.2. Other products by Julian Smart

The following are available via the AIAI World Wide Web page or FTP site.

Hardy A superset of wxCLIPS, Hardy is a meta-CASE tool, or hypertext-based
diagramming tool. It's good for rapidly developing applications that are heavily
diagramming-oriented, such as business process modelling, object-oriented analysis
and design, Petri nets, and knowledge acquisition. Hardy is free for academic and
personal use.

Tex2RTF Translates a subset of LaTeX into WinHelp RTF, linear RTF, HTML and wxHelp
format. Primarily a system for creating multi-format, multi-platform documentation,
Tex2RTF can be useful for one-off LaTeX to word processor conversions if the contents
are not too complex. MS Word 6 is supported rather well with contents page, indexing
and simple bibliographic references. Tex2RTF is free.

wxWindows A free cross-platform C++ GUI toolkit with a growing following on the Internet
and elsewhere. Most ftp-able AIAI applications are written in wxWindows.

1.2.1. About AIAI

The Artificial Intelligence Applications Institute was founded in 1985 as an off-shoot of the
University of Edinburgh Department of Intelligence, as a technology transfer organization. AIAI
works with many commercial clients as well as on government-funded projects. Past and present
work includes planning and scheduling, enterprise decision support, egress modelling, toxic
substances expert system, CASE tool development, oil well prospecting decision support, and
intelligent database access.

Julian Smart joined the Decision Support Group at AIAI in 1991 and has been developing Hardy
and wxWindows since 1992, with occasional forays into other areas. Julian left AIAI in 1996 and
is available for freelance GUI and other design and programming. He is keen to promote free,
multiplatform, Internet-based projects and the uptake of AI techniques into mainstream
computing.

1.3. Acknowledgements and disclaimer

We are very grateful to NASA for producing and making available the CLIPS language, which we
have used as an embedded language within wxCLIPS.

The National Research Council of Canada have added fuzzy extensions CLIPS, and Bob
Orchard of NRCC has made wxCLIPS compatible with these.

CHAPTER 1

3

We would also like to thank the AIAI staff and students who have helped find bugs in wxCLIPS.

All trademarks acknowledged.

Copyright (c) 1996 Julian Smart and Artificial Intelligence Applications Institute, The University of
Edinburgh

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice, author statement
and this permission notice appear in all copies of this software and related documentation.

THE SOFTWARE IS PROVIDED "AS-IS'' AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL JULIAN SMART OR THE ARTIFICIAL INTELLIGENCE APPLICATIONS
INSTITUTE OR THE UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY
OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

4

2. Installing wxCLIPS

The Windows versions of wxCLIPS come with an installation program which should be self-
explanatory. However, there are a few issues.

1. Currently, Windows versions require ODBC 2.5. If you have a different version installed,
you may experience problems. To upgrade to ODBC 2.5, please download the ODBC
Desktop Driver Pack 3.0 from:
ftp.aiai.ed.ac.uk/pub/packages/wxwin/tools/odbc25.zip
or, if you have Visual C++ 4.0, you can find it in the redist directory of your VC++ 4.0
CD-ROM.

2. For platforms other than Windows, if there is no binary available you will need to
recompile wxCLIPS. Please see Compiling wxCLIPS (page 6) for details.

5

3. Running wxCLIPS

You can run wxCLIPS with or without command line arguments. The command line arguments
are as follows:

• -clips file: Specifies a CLIPS file to batch on startup.
• -load file: Specifies a CLIPS file to load on startup. The file should contain constructs

only, unlike -clips which can execute constructs. -load is much faster.
• -start Specifies that wxCLIPS should hide the development window and call the function

app-on-init on startup.
• -dir directory: Specifies a directory to change to on startup.
• -h : Returns help on command line arguments (under UNIX only).

In addition, if you supply a CLIPS file as the first argument to wxCLIPS without any switches,
wxCLIPS will batch the file, change to that directory, and call app-on-init. This way you can have
a wxCLIPS association for .clp and simply run the file.

See also Packaging your application (page 16).

6

4. Compiling wxCLIPS

wxCLIPS comes with modified CLIPS source files for CLIPS 6.04, and CLIPS 6.04 with NRCC's
fuzzy extensions.

If the source is not supplied with your version of wxCLIPS, download it from:

ftp.aiai.ed.ac.uk:/pub/packages/wxclips

The source archive should contain both wxclips and wxextend directories, which should be place
below the utils directory of your wxWindows installation (see below). The wxExtend library is a
helper library for interfacing wxWindows to interpreted languages via C.

You need to obtain the full distribution of each version of CLIPS, including any patches provided
by NASA or NRCC. Fuzzy CLIPS is available from:

ai.iit.nrc.ca:pub/fzclips

You also need the latest wxWindows distribution, available from:

ftp.aiai.ed.ac.uk:/pub/packages/wxwin/X.XX

where X.XX is a version number such as 1.66.

Copy the modified files from one of the wxCLIPS directories CLIPS6.0 or FUZZY into the
distribution, and make a library version of CLIPS. Use the makefiles provided in the respective
wxCLIPS directories, specifying the target clips.lib (or clips32v.lib for a MS VC++ 4.0-
compiled library).

Next, compile wxWindows for your platform. Supported platforms are UNIX with Motif 1.2 or
XView 3.1, and MS Windows (using Microsoft or Borland C++). Minor adjustments may be
needed for your compiler and environment.

Now compile wxCLIPS, after editing the makefile in the wxCLIPS src directory to set appropriate
pointers to the CLIPS directory.

Under DOS, a typical command line to make wxCLIPS with CLIPS 6.0 is:

 nmake -f makefile.dos CLIPS6=1 wxclips.exe
or
 nmake -f makefile.dos full

Or for a fuzzy version:

 nmake -f makefile.dos CLIPS6=1 FUZZY=1 wxclips.exe
or
 nmake -f makefile.dos fullfuzz

For a non-debugging version (which gives a smaller executable), delete wxclips.exe and invoke
make with FINAL=1 appened to the make command line.

Under UNIX, use make -f makefile.unx with target xview or motif. Then use 'strip' to remove
debugging information from the executable.

CHAPTER 4

7

4.1. Using wxCLIPS as a library

The library is used by including the header file wx_cmds.h and linking with libcmds.a or
wxcmds.lib. In addition to the set of new CLIPS functions described in the reference section,
there are a few C++ functions to help embed CLIPS.

::ClipsErrorFunction

void ClipsErrorFunction(char *s)

This function must be defined when using the wxCLIPS library. It will be called whenever a
wxCLIPS error occurs to print out a message. The object ClipsError may be used with stream
output operators to output error messages; the operators call the ClipsErrorFunction as
appropriate.

::RouteCommand

void RouteCommand(char *command, intshowResult)

Internal CLIPS command modified to be 're-entrant'. Takes a string containing a CLIPS command
and executes it. This function cannot return a result from CLIPS on its own, but used in
conjunction with the wxCLIPS function return-result and some predefined global variables the
same effect can be achieved. For example,

 wxFrame *main_frame = NULL;
 clipsReturnType = clipsUNKNOWN;
 RouteCommand("(return-result (app-on-init))");
 if (clipsReturnType == clipsLONG)
 {
 main_frame = (wxFrame *)wxGetTypedObject(clipsReturnLong,
wxTYPE_FRAME);
 }

See the entry for return-result for more details.

::wxExecuteClipsFile

void wxExecuteClipsFile(char *filename)

Execute a CLIPS batch file.

::wxCleanWindows

void wxCleanWindows(void)

Deletes wxWindows frames and dialog boxes created with CLIPS functions, allowing an
application to be restarted from the wxCLIPS environment or the user's environment.

::wxInitClips

CHAPTER 4

8

void wxInitClips(void)

Call this instead of the normal CLIPS initilization function, to initialize CLIPS and the wxCLIPS
library.

::wxRouteNoEcho

void wxRouteNoEcho(char *command)

Calls RouteCommand, but ensures that no echoing of returned results will take place during the
call.

::wxUserFunctions

void wxUserFunctions(void)

This function contains the wxCLIPS function definitions. You must call this function from within
the UserFunctions function that the CLIPS manual specifies you must define. This allows you to
define additional CLIPS functions.

4.2. The wxCLIPS type system

To communicate between C++ and CLIPS, wxCLIPS uses long integers to represent objects. For
convenience, they are simply the addresses of the C++ objects. However, when these handles
are passed back to C++, wxCLIPS cannot simply coerce these integers back to objects, since the
object may not exist or the type may be wrong. The program would simply crash without an error
message, which is clearly unacceptable.

Instead, there is an explicit type system which, in conjunction with a hash table for the objects,
allows C++ implementations of CLIPS functions to check that an objects exists and to check that
the type is suitable for the intended operation. The type does not have to be an exact match, as
with C++, so long as the passed type is at least a subtype of the intended type. For example, say
someone passed a wxFrame to the window-centre function. If a wxWindow has a virtual
member function Centre, and wxFrame is a subtype of wxWindow, then it's permissable to
coerce the wxFrame to a wxWindow and call the Centre function.

The helper library wxExtend provides the mapping between C++ wxWindows functionality and C
functions/callbacks which can be used by interpreted languages such as wxCLIPS. Please refer
to the wxExtend documentation for further details.

4.3. Changes made to CLIPS

The following notes describe some of the modifications to CLIPS made for compilation with a
variety of compilers, to be compatible with wxWindows names, and to allow CLIPS to be called in
an event-driven style.

4.3.1. Accessing CLIPS C functions from C++

The file clipscpp.h was created to declare a selection of CLIPS functions as extern "C" so
that C++ code can access them.

CHAPTER 4

9

4.3.2. Code modifications

Please see the file notes.txt in the CLIPS6.0 and FUZZY subdirectories of the wxCLIPS
source archive. Basically, setup.h has to be modified and commline.c replaced.

10

5. Using CLIPS for building GUIs

This chapter is a short introduction to the capabilities of wxCLIPS for general CLIPS program
development and for building GUIs (Graphical User Interfaces).

5.1. The wxCLIPS development window

wxCLIPS has a basic development environment, consisting of a window with menus, a small
input window, an output text window, and a toolbar (Windows only).

Type into the text input window and press return or the Go button to send the input to CLIPS.
Results and error messages are written to the output window. Don't expect to use standard input
in your CLIPS programs, since the text window is read-only, and when your program finally runs it
will probably have its own specialised interface for entering and displaying data.

The menu bar contains menus for loading and saving CLIPS files, and substitutes for various
CLIPS functions, such as clearing and starting the rule interpreter and listing CLIPS constructs.

Under Windows, there is a toolbar to accelerate a few commonly-used commands such as
loading, batching, running the rule system and running a GUI application. Depending on platform,
you may also be able to copy a command from the development window and paste into the
command line; under Windows, select the text with the mouse, then press the Copy tool, click on
the command line, and press shift-insert.

There is no in situ editing of CLIPS files, but see DDE commands that wxCLIPS recognizes (page
217), which shows how some integration with an editor is now possible.

5.2. Overview of wxCLIPS GUI functionality

Using wxCLIPS, you can create frames, each with an optional menu bar comprising a number of
menus. Within a frame, you can create one or more subwindows. Subwindows can be panels,
canvases and text subwindows.

Panels are used to contain panel items, such as buttons, text-entry items and list boxes. You can
place panel items at specific places, or omit the position information in which case a left-to-right,
top-to-bottom layout policy is used.

The dialog box is a special form of panel which has its own frame, so instead of creating a frame
and a panel, you just create a dialog box and populate it with panel items.

Canvases are used for drawing arbitrary graphics. To issue drawing commands, the handle of the
canvas device context must be used, because device contexts can represent other devices also,
such as printers and metafiles. The concepts of pen and brush allow separate setting of outline
and fill attributes, and fonts may be created and assigned to the device context before drawing
text. User input on a canvas is handled by registering OnEvent and OnChar handler functions,
and using event accessor functions to find out about the input event.

Text subwindows are used for displaying text files or writing text programmatically, and in the
case of the X version of wxCLIPS, editing the text directly.

Because your program may have to respond to feedback from the user, such as resizing or
closing of frames, it is often necessary to install event handlers using window-add-callback (page
175) to tell wxCLIPS what function to call when a user event happens. You may wish to handle

CHAPTER 5

11

frame resize events by calculating positions and sizes for subwindows and setting their sizes. If
there is only one subwindow, wxCLIPS handles subwindow resizing automatically if no event
handler is supplied.

Instead of using explicit resizing, you can use the window-fit function to fit a frame or panel
around its contents. For example, you can create a frame, a panel, some items on the panel, and
then fit the panel to the items, and finally fit the frame to the panel.

You don't always have to create a dialog box manually, and handle all the button presses and
other events; there is a small number of convenience functions, such as get-text-from-user,
message-box, get-choice and file-selector. These all block the program flow at the point at which
they were called, until the user dismisses the dialog in some way. Your program can examine the
value returned and carry on.

5.2.1. Restrictions

The CLIPS function interface to the portable GUI library wxWindows is extensive but not yet
complete.

To some extent the development of wxCLIPS is driven by user demand, and what we have time
to do. Suggestions or requests for extensions are welcome.

The major difference with standard CLIPS is that the (read) function does not take input from
standard input, and in fact there is no concept of standard input in wxCLIPS. Such functions must
be replaced with GUI calls such as get-text-from-user.

5.3. Using wxCLIPS functions

wxCLIPS is really an interface to a C++ library, wxWindows. In wxWindows, each GUI entity is an
object, with member functions associated with the object's class.

wxCLIPS has to use functions, so most functions take an integer identifier used as the handle of
the object and returned from its creation function. Function names are comprised of the type of
GUI element followed by the actual function name (corresponding to the C++ member function).
Examples are check-box-set-value and frame-set-menu-bar. In C++, these are defined
as wxCheckBox::SetValue and wxFrame::SetMenuBar respectively.

Creation functions are of the form 'GUI element'-create, and return the ID of the new object.

The following program shows off some of the wxCLIPS GUI capabilities, by create a frame with a
panel and various panel items,

;;; hello.clp
;;; Shows how a frame may be created, with a menu bar and
;;; panel, using low-level windows functions.
;;; Load using -clips <file> on the command line or using the Batch
;;; or Load commands from the CLIPS development window; type
;;; (app-on-init) to start.

(defglobal ?*main-frame* = 0)
(defglobal ?*subframe* = 0)
(defglobal ?*panel* = 0)
(defglobal ?*canvas* = 0)
(defglobal ?*text-win* = 0)

CHAPTER 5

12

(defglobal ?*hand-cursor* = 0)

(defglobal ?*small_font* = 0)
(defglobal ?*green_pen* = 0)
(defglobal ?*black_pen* = 0)
(defglobal ?*red_pen* = 0)
(defglobal ?*cyan_brush* = 0)

(defglobal ?*xpos* = -1.0)
(defglobal ?*ypos* = -1.0)

(defglobal ?*bitmap* = 0)
(defglobal ?*button-bitmap* = 0)
(defglobal ?*icon* = 0)

;;; Sizing callback
(deffunction on-size (?id ?w ?h)
 (if (and (neq ?id 0) (neq ?*panel* 0) (neq ?*text-win* 0)) then
 (bind ?client-width (window-get-client-width ?id))
 (bind ?client-height (window-get-client-height ?id))
 (window-set-size ?*panel* 0 0 ?client-width (* ?client-height 0.666))
 (window-set-size ?*text-win* 0 (* ?client-height 0.666) ?client-width
(/ ?client-height 3))
)
)

;;; Utility function for drawing a bitmap
(deffunction draw-bitmap (?dc ?bitmap ?x ?y)
 (bind ?mem-dc (memory-dc-create))
 (memory-dc-select-object ?mem-dc ?bitmap)
 ; Blit the memory device context onto the destination device context
 (dc-blit ?dc ?x ?y (bitmap-get-width ?bitmap) (bitmap-get-height
?bitmap)
 ?mem-dc 0.0 0.0)
 (dc-delete ?mem-dc)
)

(deffunction draw-graphics (?dc)
 (if (> ?*bitmap* 0) then
 (draw-bitmap ?dc ?*bitmap* 0.0 250.0))

 (dc-set-font ?dc ?*small_font*)
 (dc-set-pen ?dc ?*green_pen*)
 (dc-draw-line ?dc 0.0 0.0 200.0 200.0)
 (dc-draw-line ?dc 200.0 0.0 0.0 200.0)

 (dc-set-pen ?dc ?*red_pen*)
 (dc-set-brush ?dc ?*cyan_brush*)
 (dc-draw-rectangle ?dc 100.0 100.0 100.0 50.0)
 (dc-draw-rounded-rectangle ?dc 150.0 150.0 100.0 50.0)

 (dc-set-clipping-region ?dc 150.0 150.0 100.0 50.0)
 (dc-draw-text ?dc "This text should be clipped within the rectangle"
150.0 170.0)
 (dc-destroy-clipping-region ?dc)

 (dc-draw-ellipse ?dc 250.0 250.0 100.0 50.0)

CHAPTER 5

13

 (dc-draw-spline ?dc (mv-append 50.0 200.0 50.0 100.0 200.0 10.0))
 (dc-draw-line ?dc 50.0 230.0 200.0 230.0)
 (dc-draw-text ?dc "This is a test string" 50.0 230.0)
)

;;; Painting callback
(deffunction on-paint (?id)
 (if (neq ?id 0) then
 (bind ?dc (canvas-get-dc ?id))
 (draw-graphics ?dc)
)
)

(deffunction on-event (?canvas ?event)
 (bind ?dc (canvas-get-dc ?canvas))
 (dc-set-pen ?dc ?*black_pen*)
 (bind ?x (mouse-event-position-x ?event))
 (bind ?y (mouse-event-position-y ?event))
 (bind ?dragging (mouse-event-dragging ?event))
 (if (and (> ?*xpos* -1) (> ?*ypos* -1) (> ?dragging 0)) then
 (dc-draw-line ?dc ?*xpos* ?*ypos* ?x ?y)
)
 (bind ?*xpos* ?x)
 (bind ?*ypos* ?y)
)

(deffunction on-close (?frame)
 (format t "Closing frame.%n")
 (window-delete ?*subframe*)
 (bind ?*panel* 0)
 (bind ?*text-win* 0)
 1)

(deffunction on-menu-command (?frame ?id)
 (switch ?id
 (case 200 then (message-box "CLIPS for wxWindows Demo
by Julian Smart (c) 1993" wxOK 1 0 "About wxWindows CLIPS Demo"))
 (case 3 then (if (on-close ?frame) then (window-delete ?frame)))
 (case 1 then
 (bind ?file (file-selector "Choose a text file to load"))
 (if (neq ?file "") then
 (text-window-load-file ?*text-win* ?file)))
 (case 4 then
 (bind ?dc (postscript-dc-create "" 1))
 (if (and (> ?dc 0) (= (dc-ok ?dc) 1)) then
 (if (= (dc-start-doc ?dc "Printing") 1) then
 (dc-start-page ?dc)
 (draw-graphics ?dc)
 (dc-end-page ?dc)
 (dc-end-doc ?dc)
)
)
 (if (> ?dc 0) then (dc-delete ?dc))
)
)
)

CHAPTER 5

14

;;; Button callback
(deffunction frame-button-proc (?id)
 (bind ?parent (window-get-parent ?id))
 (bind ?grandparent (window-get-parent ?parent))
 (format t "Pressed button %d%n" ?id)
 (message-box "Hello")
)

;;; Text callback
(deffunction text-callback (?id)
 (bind ?event-id (panel-item-get-command-event))
 (if (eq "wxEVENT_TYPE_TEXT_ENTER_COMMAND" (event-get-event-type
?event-id)) then
 (format t "The text was %s%n" (text-get-value ?id))
)
)

;;; Radiobox callback
(deffunction radio-box-callback (?id)
)

;;; Test program to create a frame
(deffunction app-on-init ()
 (unwatch all)
 (if (= ?*small_font* 0) then
 (bind ?*small_font* (font-create 10 wxSWISS wxNORMAL wxNORMAL 0))
 (bind ?*green_pen* (pen-create GREEN 1 wxSOLID))
 (bind ?*black_pen* (pen-create BLACK 1 wxSOLID))
 (bind ?*red_pen* (pen-create RED 3 wxSOLID))
 (bind ?*cyan_brush* (brush-create CYAN wxSOLID))
 (bind ?*hand-cursor* (cursor-create "wxCURSOR_HAND"))
 (if (eq "Windows 3.1" (get-platform)) then
 (bind ?*bitmap* (bitmap-load-from-file "wxwin.bmp"))
 (bind ?*button-bitmap* (bitmap-load-from-file "aiai.bmp"))
 (bind ?*icon* (icon-load-from-file "aiai.ico"
"wxBITMAP_TYPE_ICO"))
)
)

 (bind ?*main-frame* (frame-create 0 "Hello wxCLIPS!" -1 -1 500 460))
 (frame-create-status-line ?*main-frame*)
 (frame-set-status-text ?*main-frame* "Welcome to wxCLIPS")
 (if (> ?*icon* 0) then
 (frame-set-icon ?*main-frame* ?*icon*)
)

 (window-add-callback ?*main-frame* OnSize on-size)
 (window-add-callback ?*main-frame* OnClose on-close)
 (window-add-callback ?*main-frame* OnMenuCommand on-menu-command)

 ;;; Make a menu bar
 (bind ?file-menu (menu-create))
 (menu-append ?file-menu 1 "&Load file")
 (menu-append ?file-menu 4 "&Print to PostScript")

 (bind ?pull-right (menu-create))
 (menu-append ?pull-right 100 "&Twips")

CHAPTER 5

15

 (menu-append ?pull-right 101 "&10th mm")

 (menu-append ?file-menu 2 "&Scale picture" ?pull-right)
 (menu-append-separator ?file-menu)
 (menu-append ?file-menu 3 "&Quit")

 (bind ?help-menu (menu-create))
 (menu-append ?help-menu 200 "&About")

 (bind ?menu-bar (menu-bar-create))
 (menu-bar-append ?menu-bar ?file-menu "&File")
 (menu-bar-append ?menu-bar ?help-menu "&Help")

 (frame-set-menu-bar ?*main-frame* ?menu-bar)

 ;;; Make a panel and panel items
 (bind ?*panel* (panel-create ?*main-frame* 0 0 530 250))
 (panel-set-label-position ?*panel* wxVERTICAL)

 (bind ?*text-win* (text-window-create ?*main-frame* 0 250 500 250))

 (bind ?button (button-create ?*panel* frame-button-proc "A button"))
 (if (> ?*button-bitmap* 0) then
 (bind ?bitmap-button (button-create-from-bitmap ?*panel* frame-
button-proc ?*button-bitmap*))
)
 (bind ?text (text-create ?*panel* "text-callback" "A text item"
"Initial value" -1 -1 200 -1 "wxPROCESS_ENTER"))
 (bind ?check (check-box-create ?*panel* "" "A check box"))

 (panel-new-line ?*panel*)

 (bind ?choice (choice-create ?*panel* "" "A choice item" -1 -1 -1 -1
(mv-append
 "One" "Two" "Three" "Four")))
 (choice-set-selection ?choice 0)

 (message-create ?*panel* "Hello! A simple message")

 (bind ?list (list-box-create ?*panel* "" "A list" 0 -1 -1 100 80))
 (list-box-append ?list "Apple")
 (list-box-append ?list "Pear")
 (list-box-append ?list "Orange")
 (list-box-append ?list "Banana")
 (list-box-append ?list "Fruit")

 (panel-new-line ?*panel*)

 (bind ?slider (slider-create ?*panel* "" "A slider" 40 22 101 200))

 (bind ?multi (multi-text-create ?*panel* "" "Multiline text" "Some
text" -1 -1 200 100))

 (bind ?radiobox (radio-box-create ?*panel* "radio-box-callback"
"Radiobox" -1 -1 200 100
 (mv-append "1" "2" "3" "4" "5" "6") 2 "wxVERTICAL"))
 (printout t "Radiobox id = " ?radiobox crlf)

CHAPTER 5

16

; (window-fit ?*panel*)
; (window-fit ?*main-frame*)

 (text-window-load-file ?*text-win* "hello.clp")
 (bind ?*subframe* (frame-create 0 "Canvas Frame" 300 300 400 400))
 (bind ?*canvas* (canvas-create ?*subframe* 0 0 400 400))
 (window-set-cursor ?*canvas* ?*hand-cursor*)
 (window-add-callback ?*canvas* OnPaint on-paint)
 (window-add-callback ?*canvas* OnEvent on-event)
 (canvas-set-scrollbars ?*canvas* 20 20 50 50 4 4)

 (window-centre ?*main-frame* wxBOTH)

 (window-show ?*main-frame* 1)
 (window-show ?*subframe* 1)

 ?*main-frame*)

5.4. Development and debugging

Normally, you will write CLIPS files, and load (or batch) them into wxCLIPS from the File menu. If
you find a bug, you can change the file in your editor and reload.

Note that there is a difference between batching and loading. The CLIPS load command only
handles definitions, not function calls. However it does more error checking and is faster than
batching. The purpose of batching is to allow function calls to be included in your files, and it is
also the only way to automatically load CLIPS files from the command line (see below).

The best strategy is to have a small batch file which contains load commands to load the bulk of
the application, plus a few function calls, and it is this file which is batched.

If you want to rerun a GUI application, but there are still windows lying around, you can use the
Clean up windows menu option from the Application menu, or call the clean-windows function.

If you define a function called app-on-init (see next section) you can use the Start application
menu item from the Applicationmenu, which calls this function automatically.

Debugging can be made easier by typing (watch all) to get a trace of function calls.

5.5. Packaging your application

It is possible to make wxCLIPS load your application and start it up without the development
window appearing. You need to define a function called app-on-init, which takes no arguments
but must return the identifier of the top-level frame.

Now start your application as follows:

wxclips -clips load.clp -start

The file after the -clips switch is 'batched', which can be slow for a large file. Make the file
small, with one or more calls to load definition files, followed by any function calls necessary (for
example to register event handlers). If the file contains no CLIPS commands which should be
executed immediately, use the -load switch instead.

CHAPTER 5

17

The -start switch tells wxCLIPS to call the function app-on-init, and use the returned frame
identifier as the top level window. The development window will not be displayed.

If you want wxCLIPS to start in a particular directory, you can use the -dir switch to chdir to a
directory. This is useful to avoid the need for specifying absolute pathnames in your CLIPS code.

See also Running wxCLIPS (page 5).

18

6. wxCOOL class reference

See also wxCOOL overview (page 213)

This is the reference for the wxCOOL classes. With these functions, it is possible to create
special-purpose user interfaces independent of platform. Currently these capabilities are
supported under MS Windows, Open Look and Motif, except where stated.

6.1. wxApplication is-a wxObject

Not yet implemented.

One object of this class can be created, and its implementation depends upon the C++
application hosting the wxCLIPS environment.

wxApplication on-char-hook

bool (on-char-hook wxKeyEvent event)

Under Windows only, all key strokes going to a dialog box or frame can be intercepted before
being passed on for normal processing. This function takes the window id and event id, and
should return 1 to override further processing, or 0 to do default processing. If the function returns
0, the on-char-hook message will be sent to the active window. See also Key event (page 140).

6.2. wxBitmap is-a wxObject

A bitmap is a rectangular array of pixels, possibly in colour. A bitmap can be created in memory,
or loaded from an XBM file under X, or BMP file under Windows.

A bitmap can be drawn on a canvas by selecting it into a wxMemoryDC (page 58) object and
using dc-blit (page 115). Bitmaps can also be used to create buttons; see button-create-from-
bitmap (page 96).

wxBitmap bitmap-type

string bitmap-type

Indicates the type of bitmap file the bitmap is being loaded from.

May be one of:

• wxBITMAP_TYPE_BMP: Windows BMP (the default under Windows).
• wxBITMAP_TYPE_XBM: X monochrome bitmap (the default under X).
• wxBITMAP_TYPE_GIF: GIF bitmap (only under X).
• wxBITMAP_TYPE_XPM: XPM colour bitmap (under Windows and X if wxCLIPS has

been compiled to include this option).
• wxBITMAP_TYPE_RESOURCE: Windows resource bitmap; unlikely to be used since

the resources compiled into wxCLIPS cannot be changed from CLIPS.

CHAPTER 6

19

wxBitmap depth

long depth

The depth of the bitmap (number of bits per pixel). Optionally intialize this if creating an in-
memory bitmap; omitting it makes the depth default to the current display depth of the screen.

wxBitmap filename

string filename

If this slot is initialized on creation, the wxBitmap will be created from the given file. The slot
bitmap-type must also be initialized, to indicate the type of bitmap file.

Defaults to the empty string.

wxBitmap height

long height

The height of the bitmap. Intialize this if creating an in-memory bitmap.

wxBitmap width

long width

The width of the bitmap. Intialize this if creating an in-memory bitmap.

wxBitmap create

void (create)

Creates a bitmap in memory, either blank or from an existing bitmap file. The programmer can
draw into the bitmap by selecting it into a memory device context, for later drawing on an output
device context such as a canvas device context.

The method of bitmap construction depends on the slots that are initialized when the instance is
created. Here are some examples:

 ; Load from a BMP file
 (make-instance [my-bitmap] of wxBitmap
 (filename "aiai.bmp") (bitmap-type "wxBITMAP_TYPE_BMP"))

 ; Create a 'blank' bitmap
 (make-instance [my-bitmap] of wxBitmap
 (width 100) (height 100))

6.3. wxBrush is-a wxObject

A brush is a an object that can be set for a device context (page 115) and determines the fill
colour and style for subsequent drawing operations.

CHAPTER 6

20

See also wxPen (page 69).

wxBrush colour

string colour

The colour of the brush. It may be a wxWindows colour string such as "BLACK'', "WHITE'',
"CYAN'' etc.

wxBrush style

symbol style

The style of the brush. It may be one of:

• wxSOLID (the default)
• wxTRANSPARENT
• wxBDIAGONAL_HATCH
• wxCROSSDIAG_HATCH
• wxFDIAGONAL_HATCH
• wxCROSS_HATCH
• wxHORIZONTAL_HATCH
• wxVERTICAL_HATCH

wxBrush create

void (create)

Creates a brush for use in a device context. A brush must be set to fill graphic shapes.

The following slots must be initialized:

• colour is a wxWindows colour string such as "BLACK'', "CYAN'').
• style may be a value such as wxSOLID or wxTRANSPARENT (see style (page 20) for

complete list).

6.4. wxButton is-a wxItem

A wxButton is a rectangular control which can be placed on a wxPanel (page 66) to invoke a
command.

wxButton bitmap

wxBitmap bitmap

The bitmap associated with a wxButton, if being used as a bitmap button.

wxButton create

CHAPTER 6

21

void (create)

Creates a label or bitmap button on the given panel. If the bitmap slot is initialized, the button will
be created from the bitmap. Otherwise, a text button will be created, using label for the label.

The following slots may be used in initializing a wxButton instance:

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this button.
• label: for a text label button, must be a string.
• bitmap: for a bitmap label button, must be a wxBitmap.

When the button is pressed, the on-command message will be sent to the wxButton; if there is no
default handler, it will be passed to the wxButton's parent, and then to the parent's parent. See
wxCommandEvent (page 25) for a list of event types associated with wxCommandEvent.

6.5. wxCanvas is-a wxWindow

A subwindow used for drawing arbitrary graphics. It must be the child of a wxFrame (page 48).

wxCanvas dc

wxCanvasDC dc

The device context handle belonging to the canvas. The device context must be retrieved before
anything can be drawn on the canvas. If your drawing function is parameterized by a device
context, you will be able to pass other types of device context to your drawing routine, such as
PostScript and Windows metafile device contexts.

wxCanvas create

bool (canvas-create)

Creates a canvas for drawing graphics on. The following slots may be initialized.

• parent: should be a wxFrame.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this canvas.
• style: may be absent or a string style: see below.

The value of style can be a bit list of the following values:

wxBORDER Gives the canvas a thin border (Windows 3 and Motif only).
wxRETAINED Gives the canvas a wxWindows-implemented backing store, making repainting

CHAPTER 6

22

much faster but at a potentially costly memory premium (XView and Motif only).
wxBACKINGSTORE Gives the canvas an X-implemented backing store (XView and Motif

only). The X server may choose to ignore this request, whereas wxRETAINED is
always implemented under X.

wxCanvas set-scrollbars

bool (set-scrollbars long x-unit-size long y-unit-size
 long x-length long y-length long x-page-length long y-page-length)

Set the scrollbars for the given canvas. The first argument pair specifies the number of pixels per
logical scroll unit, that is, the number of pixels to scroll when a scroll arrow is clicked. If either is
zero or less, that scrollbar will not appear. The second pair specifies the size of the virtual canvas
in logical scroll units. The third pair of arguments specify the number of scroll units per page, that
is, the amount to scroll by when the scrollbar is page-scrolled (usually by clicking either side of
the scrollbar handle).

wxCanvas scroll

bool (scroll long x-position long y-position)

Scroll the canvas programmatically to the given scroll position. To convert from pixel position to
scroll position, divide the pixel position by the scroll unit size you passed to set-scrollbars (page
22).

wxCanvas on-char

void (on-char wxKeyEvent event)

Allows interception of key events. See also wxKeyEvent (page 54).

wxCanvas on-event

void (on-event wxMouseEventevent)

Allows interception of mouse events. See also wxMouseEvent (page 63).

wxCanvas on-paint

void (on-paint)

Override this handler to respond to paint events (sent when the canvas needs repainting).

wxCanvas on-size

void (on-size long width longheight)

The function is called with the canvas width and height when the canvas is resized.

CHAPTER 6

23

6.6. wxCheckBox is-a wxItem

A wxCheckBox is a small box with a label, and can be in one of two states. It must be the child of
a wxPanel (page 66).

wxCheckBox value

bool value

The value of the checkbox (TRUE or FALSE).

wxCheckBox create

void (create)

Creates a checkbox on the given panel. The following slots may be initialized.

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this item.
• label: may be absent or a string name to label this item.
• style: reserved for future use.
• value: TRUE or FALSE.

6.7. wxChoice is-a wxItem

A wxChoice item is similar to a single-selection wxListBox (page 55) but normally only the current
selection is displayed. It must be the child of a wxPanel (page 66).

wxChoice values

multifield values

List of string values for initializing the wxChoice item.

wxChoice create

bool (wxChoice create)

Creates a choice item on the given panel. A choice consists of a list of strings, one of which may
be selected and displayed at any one time. The following slots may be initialized.

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.

CHAPTER 6

24

• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this item.
• label: may be absent or a string name to label this item.
• style: reserved for future use.
• values: a multifield list of strings.

Note that under Motif, it is recommended that the values are passed in this function, rather than
using append, because of the nature of Motif. Otherwise, things are likely to be messed up.

wxChoice append

bool (append string item)

Appends the string item to the choice.

wxChoice find-string

long (find-string string item)

Searches for the given string and if found, returns the position ID of the string.

wxChoice clear

bool (clear)

Clears all the strings from the choice item.

wxChoice get-selection

long (get-selection)

Get the ID of the string currently selected.

wxChoice get-string-selection

string (get-string-selection)

Get the string currently selected.

wxChoice set-selection

bool (set-selection long item-id)

Sets the choice selection to the given item ID (numbered from zero).

wxChoice set-string-selection

CHAPTER 6

25

bool (set-string-selection string item)

Sets the selection by passing the appropriate item string.

wxChoice get-string

string (get-string long item-id)

Gets the string associated with the given item ID.

6.8. wxClient is-a wxObject

See also Interprocess communication overview (page 199)

Not yet tested.

A client object represents the client side of a DDE conversation.

wxClient create

void (create)

Creates a client object. You should override the on-make-connection handler to return an object
of class derived from wxConnection, since various members of wxConnection must be overridden
to intercept messages.

A connection is not made until make-connection (page 25) is called.

wxClient make-connection

wxConnection (make-connection string host string service string topic)

Makes a connection to a server, returning an object of a user-defined derivative of wxConnection
(page 26)if successful.

host is ignored under Windows, and should contain a valid internet host name under X.

service is a DDE service identifier (under X should contain a socket identifier).

topic is a topic name for this connection.

wxClient on-make-connection

wxConnection (on-make-connection)

Should be overridden to return an object of the appropriate wxConnection class, whenever a
connection is made. The base wxConnection class cannot be used because various members of
wxConnection must be overridden in order to respond to messages from the server.

6.9. wxCommandEvent is-a wxEvent

CHAPTER 6

26

A wxCommandEvent is passed to a message handler when a panel item command is issued
(usually by a user action).

The command event types are as follows:

• wxEVENT_TYPE_BUTTON_COMMAND
• wxEVENT_TYPE_CHECKBOX_COMMAND
• wxEVENT_TYPE_CHOICE_COMMAND
• wxEVENT_TYPE_LISTBOX_COMMAND
• wxEVENT_TYPE_TEXT_COMMAND
• wxEVENT_TYPE_TEXT_ENTER_COMMAND
• wxEVENT_TYPE_MULTITEXT_COMMAND
• wxEVENT_TYPE_MENU_COMMAND
• wxEVENT_TYPE_SLIDER_COMMAND
• wxEVENT_TYPE_RADIOBOX_COMMAND
• wxEVENT_TYPE_SET_FOCUS
• wxEVENT_TYPE_KILL_FOCUS

wxCommandEvent get-selection

long (get-selection)

Returns the identifier selection corresponding to the selected item, for example a listbox or menu
item.

wxCommandEvent is-selection

bool (is-selection)

Returns 1 if the event was a selection event, 0 otherwise.

6.10. wxConnection is-a wxObject

Not yet tested.

See also Connection overview (page 200)

A wxConnection object has no creation function, since it is implicitly created when a connection is
requested (one object at each side of the connection).

A connection object is used for initiating DDE commands and requests using functions such as
execute, and it also has message handlers associated with it to respond to commands from the
other side of the connection.

wxConnection service-name

string service-name

Service name variable.

CHAPTER 6

27

wxConnection advise

bool (advise string item string data)

Called by a server application to pass data to a client (for example, when a spreadsheet cell has
been updated, and the client is interested in this value).

item is the name of the item, and data is a string representing the item's data.

Returns TRUE if successful, FALSE otherwise.

wxConnection execute

bool (wxConnection execute string data)

Called by a client application to execute a command in the server. Note there is no item in this
command.

data is a string representing the item's data.

Returns TRUE if successful, FALSE otherwise.

To get a result from a server, you need to call request explicitly, since execute doesn't return
data.

wxConnection disconnect

bool (disconnect)

Called by a client or server application to terminate this connection. After this call, the connection
object is no longer valid.

Returns TRUE if successful, FALSE otherwise.

wxConnection poke

bool (poke string item string data)

Called by a client application to poke data into the server.

item is the name of the item, and data is a string representing the item's data.

Returns TRUE if successful, FALSE otherwise.

wxConnection request

string (request string item)

Called by a client application to request data from a server.

CHAPTER 6

28

item is the name of the requested data item.

Returns a string representing the data if successful, the empty string otherwise.

wxConnection start-advise

bool (start-advise string item)

Called by a client application to indicate interest in a particular piece of data in a server. The client
connection should then recieve OnAdvise messages when the data is updated in the server.

item is the name of the data item of interest.

Returns TRUE if the advise loop is allowed, FALSE otherwise.

wxConnection stop-advise

bool (stop-advise string item)

Called by a client application to indicate a termination of interest in a particular piece of data in a
server.

item is the name of the data item of interest.

Returns TRUE if successful, FALSE otherwise.

wxConnection on-advise

bool (on-advise string topic string item string data)

Called on the client side of the connection, when the server side sends an advise message. Used
for advising the client of a change in server data. Override this to intercept such messages.

wxConnection on-execute

bool (on-execute string topic string data)

Called on the server side of the connection, when the client side sends an execute message.
Used for implementing commands on the server side. Override this to implement command
execution; you might wish to store the last result(s) to be returned when the client sends a
request message.

wxConnection on-poke

bool (on-poke string topic string item string data)

Called on the server side of the connection, when the client side sends a poke message. Used for
poking data into a server. Override this to intercept such messages.

CHAPTER 6

29

wxConnection on-request

string (on-request string topic string item)

Called on the server side of the connection, when the client side sends a request message. Used
for getting information from a server. Override this to intercept such messages and return data
back to the client.

wxConnection on-start-advise

bool (on-start-advise string topic string item)

Called on the server side of the connection, when the client side wishes to start an advise loop for
the given topic and item. The server should respond with TRUE to accept this advise loop,
FALSE otherwise.

wxConnection on-stop-advise

bool (on-stop-advise string topic string item)

Called on the server side of the connection, when the client side wishes to stop an advise loop for
the given topic and item. The server should respond with TRUE to terminate this advise loop,
FALSE otherwise.

6.11. wxCursor is-a wxBitmap

A cursor is a small bitmap used for representing the mouse pointer. It can be set for a particular
subwindow, using wxWindow set-cursor (page 90), as a cue for what operations are possible in
this window at this point in time.

wxCursor cursor-name

string cursor-name

A stock cursor name, one of the following:

• wxCURSOR_ARROW
• wxCURSOR_BULLSEYE
• wxCURSOR_CHAR
• wxCURSOR_CROSS
• wxCURSOR_HAND
• wxCURSOR_IBEAM
• wxCURSOR_LEFT_BUTTON
• wxCURSOR_MAGNIFIER
• wxCURSOR_MIDDLE_BUTTON
• wxCURSOR_NO_ENTRY
• wxCURSOR_PAINT_BRUSH
• wxCURSOR_PENCIL
• wxCURSOR_POINT_LEFT
• wxCURSOR_POINT_RIGHT
• wxCURSOR_QUESTION_ARROW

CHAPTER 6

30

• wxCURSOR_RIGHT_BUTTON
• wxCURSOR_SIZENESW
• wxCURSOR_SIZENS
• wxCURSOR_SIZENWSE
• wxCURSOR_SIZEWE
• wxCURSOR_SIZING
• wxCURSOR_SPRAYCAN
• wxCURSOR_WAIT
• wxCURSOR_WATCH
• wxCURSOR_BLANK
• wxCURSOR_CROSS_REVERSE (X only)
• wxCURSOR_DOUBLE_ARROW (X only)
• wxCURSOR_BASED_ARROW_UP (X only)
• wxCURSOR_BASED_ARROW_DOWN (X only)

wxCursor x

long x

The cursor hotspot x position (used only when loading a cursor from a file).

wxCursor y

long y

The cursor hotspot y position (used only when loading a cursor from a file).

wxCursor create

void (create)

Creates either a stock cursor (if cursor-name is non-nil) or a cursor loaded from a disk file (if
filename and bitmap-type are non-nil).

Under X, the permitted cursor types in bitmap-type are:

• wxBITMAP_TYPE_XBM Load an X bitmap file

Under Windows, the permitted types are:

• wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).

• wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as specified in the .rc
file).

• wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h). Specify x and y slot
values.

Examples:

 ; Create a stock cursor

CHAPTER 6

31

 (bind ?cursor (make-instance (gensym*)
 of wxCursor (cursor-name "wxCURSOR_PENCIL")))

 ; Create a cursor from a .cur file
 (bind ?cursor (make-instance (gensym*)
 of wxCursor (filename "figure.cur") (bitmap-type
"wxBITMAP_TYPE_CUR")))

 ; Create a cursor from a .ico file
 (bind ?cursor (make-instance (gensym*)
 of wxCursor (filename "figure.icor") (bitmap-type
"wxBITMAP_TYPE_CUR")
 (x 10) (y 10)))

6.12. wxDatabase is-a wxObject

See also Database classes overview (page 205)

Not yet implemented.

Every database object represents an ODBC connection. The connection may be closed and
reopened.

wxDatabase close

bool (close)

Resets the statement handles of any associated recordset objects, and disconnects from the
current data source.

wxDatabase create

long (database-create)

Creates a new ODBC database handle. The constructor of the first wxDatabase instance of an
application initializes the ODBC manager.

wxDatabase delete

bool (delete)

Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

wxDatabase error-occurred

bool (error-occurred)

Returns 1 if the last action caused an error.

CHAPTER 6

32

wxDatabase get-database-name

string (get-database-name)

Returns the name of the database associated with the current connection.

wxDatabase get-data-source

string (get-data-source)

Returns the name of the connected data source.

wxDatabase get-error-code

string (wxDatabase get-error-code)

Returns the error code of the last ODBC function call. This will be a string containing one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained

from the ODBC manager.

wxDatabase get-error-message

string (get-error-message)

Returns the last error message returned by the ODBC manager.

wxDatabase get-error-number

long (get-error-number)

Returns the last native error. A native error is an ODBC driver dependent error number.

wxDatabase is-open

bool (is-open)

Returns 1 if a connection is open.

wxDatabase open

CHAPTER 6

33

bool (open string datasource optional long exclusive = 1 optional string readonly = 1
optional string username = "ODBC" optional string password = "")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readonly are not used.

6.13. wxDate is-a wxObject

A class for manipulating dates.

Not yet implemented.

wxDate add-months

bool (add-months long months)

Adds the given number of months to the date, returning TRUE if successful.

wxDate add-weeks

bool (add-weeks long weeks)

Adds the given number of weeks to the date, returning TRUE if successful.

wxDate add-years

bool (add-years long years)

Adds the given number of months to the date, returning TRUE if successful.

wxDate create

void (create)

Constructs a date object, initialized to zero. You are responsible for deleting this object when you
have finished with it.

void (create long month long day long year)

Constructs a date object with the specified date. You are responsible for deleting this object when
you have finished with it.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

CHAPTER 6

34

wxDate create-julian

bool (create-julian long julian)

Constructor taking an integer representing the Julian date.

wxDate create-string

bool (wxDate create-string string date)

Constructor taking a string representing a date. This must be either the string TODAY, or of the
form MM/DD/YYYY or MM-DD-YYYY. For example:

 (make-instance (gensym*) (date-string "11/26/1966"))

wxDate format

string (format)

Formats the date into a string according to the current display type.

wxDate get-day

long (get-day)

Returns the numeric day (in the range 1 to 365).

wxDate get-day-of-week

long (get-day-of-week)

Returns the integer day of the week (in the range 1 to 7).

wxDate get-day-of-week-name

string (day-of-week-name)

Returns the name of the day of week.

wxDate get-day-of-year

long (get-day-of-year)

Returns the day of the year (from 1 to 365).

wxDate get-days-in-month

CHAPTER 6

35

long (get-days-in-month)

Returns the number of days in the month (in the range 1 to 31).

wxDate get-first-day-of-month

long (get-first-day-of-month)

Returns the day of week that is first in the month (in the range 1 to 7).

wxDate get-julian-date

long (get-julian-date)

Returns the Julian date.

wxDate get-month

long (get-month)

Returns the month number (in the range 1 to 12).

wxDate get-month-end

long (get-month-end)

Returns a new date representing the day that is last in the month. The new date must be deleted
when it is finished with.

wxDate get-month-name

string (get-month-name)

Returns the name of the month.

wxDate get-month-start

wxDate (get-month-start)

Returns a new date representing the first day of the month. The new date must be deleted when
it is finished with.

wxDate get-week-of-month

long (get-week-of-month)

Returns the week of month (in the range 1 to 6).

CHAPTER 6

36

wxDate get-week-of-year

long (get-week-of-year)

Returns the week of year (in the range 1 to 52).

wxDate get-year

long (get-year)

Returns the year as an integer (such as '1995').

wxDate get-year-end

wxDate (get-year-end)

Returns a new date the date representing the last day of the year. Delete the new date when you
have finished with it.

wxDate get-year-start

wxDate (get-year-start)

Returns a new date the date representing the first day of the year. Delete the new date when you
have finished with it.

wxDate is-leap-year

bool (is-leap-year)

Returns TRUE if the year of this date is a leap year.

wxDate set

bool (set)

Sets the date to current system date.

wxDate set-julian

bool (set-julian long julian)

Sets the date to the given Julian date.

wxDate set-date

CHAPTER 6

37

bool (set-date long month long day long year)

Sets the date to the given date.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

wxDate set-format

bool (set-format string format)

Sets the current format type.

format should be one of:

wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style: DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY, MONTH, YEAR.

wxDate set-option

bool (set-option string option long enable=1)

Enables or disables an option for formatting. option may be one of:

wxNO_CENTURY The century is not formatted.
wxDATE_ABBR Month and day names are abbreviated to 3 characters when formatting.

wxDate add-days

wxDate (add-days long days)

Adds an integer number of days to the date, returning a new date object.

wxDate subtract-days

wxDate (subtract-days long days)

Subtracts an integer number of days from the date, returning a new date object.

wxDate subtract

CHAPTER 6

38

long (subtract long date1 long date2)

Subtracts one date from another, return the number of intervening days.

wxDate add-self

bool (add-self long days)

Adds an integer number of days to the date, returning TRUE if successful.

wxDate subtract-self

bool (subtract-self long days)

Subtracts an integer number of days from the date, returning TRUE if successful.

wxDate le

bool (lelong date)

Compare two dates, returning TRUE if the current date object is earlier than date.

wxDate leq

bool (leq long date)

Function to compare two dates, returning TRUE if the current date object is earlier or equal to
date.

wxDate ge

bool (ge long date)

Function to compare two dates, returning TRUE if the current date object is later than date.

wxDate geq

dboollong (geq long date)

Function to compare two dates, returning TRUE if the current date object is later than or equal to
date.

wxDate eq

bool (eq long date)

Function to compare two dates, returning TRUE if the current date object is equal to date.

CHAPTER 6

39

wxDate neq

bool (neq long date)

Function to compare two dates, returning TRUE if the current date object is not equal to date.

6.14. wxDC is-a wxObject

See also Overview (page 202)

A wxDC (device context) is an abstraction of a surface that can be drawn onto.

The following functions can be used with any device context identifier, with the exception of blit
which must not be used with a PostScript device context, and get-text-extent-width, get-text-
extent-height which do not function correctly on PostScript or metafile device contexts.

wxDC begin-drawing

bool (begin-drawing)

Bracket a series of drawing primitives in begin-drawing and end-drawing to optimize drawing
under Windows, and also if drawing to a panel or dialog box context, for which these calls are
mandatory. The calls may be nested.

wxDC blit

bool (blit double dest-x double dest-y double width double height wxDC source-dc double
source-x double source-y string logical-op = "wxCOPY")

Block-copies the given area from a source device context to a destination device context (the
current object). This operation is not available to PostScript and Windows Metafile destination
device contexts.

The argument logical-op sets the current logical function for the canvas. This determines how a
source pixel from the source device context combines with a destination pixel in the current
device context. It will most commonly be "wxCOPY", which simply draws with the current source
pixels.

The possible values and their meaning in terms of source and destination pixel values are as
follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst

CHAPTER 6

40

wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

The most commonly used is wxCOPY. The others combine the current colour and the
background using a logical operation. wxXOR is commonly used for drawing rubber bands or
moving outlines, since drawing twice reverts to the original colour.

wxDC clear

bool (wxDC clear)

Clears the device context using the background colour.

wxDC destroy-clipping-region

bool (destroy-clipping-region)

Destroys the current clipping region.

wxDC draw-ellipse

bool (draw-ellipse double x double y double width double height)

Draws an ellipse. The outline and filling attributes are determined by the pen and brush settings
respectively.

wxDC draw-line

bool (draw-line double x1 double y1 double x2 double y2)

Draws a line between the given points.

wxDC draw-lines

bool (draw-lines multifield list)

Draws lines between the given points. list is a multifield, which can be created by a call to mv-
append and a list of arguments. The list must contain an even number of floating-point values,
interpreted in pairs as the points determining the multiline.

wxDC draw-point

bool (dc-draw-point double x double y)

Draws a point.

CHAPTER 6

41

wxDC draw-polygon

bool (draw-polygon multifield list)

Draws a (possibly filled) polygon. list is a multifield, which can be created by a call to mv-append
and a list of arguments. The list must contain an even number of floating-point values, interpreted
in pairs as the points determining the polygon. The outline and filling attributes are determined by
the pen and brush settings respectively.

wxDC draw-rectangle

bool (draw-rectangle double x double y double width double height)

Draws a rectangle. The outline and filling attributes are determined by the pen and brush settings
respectively.

wxDC draw-rounded-rectangle

bool (draw-rounded-rectangle double x double y double width double height double radius)

Draws a rounded rectangle, with corners with a specified radius (optional). The outline and filling
attributes are determined by the pen and brush settings respectively.

wxDC draw-text

bool (dc-draw-text string text double x double y)

Draw text at the given position, using the font set by set-font (page 44), and using the colours set
by set-text-foreground (page 44) and set-text-background (page 44) respectively.

wxDC draw-spline

bool (draw-spline multifield list)

Draws a spline curve. list is a multifield, which can be created by a call to mv-append and a list of
arguments. The list must contain an even number of floating-point values, interpreted in pairs as
the points determining the spline shape.

wxDC end-doc

bool (end-doc)

Ends a document (such as a PostScript or Windows printer document).

wxDC end-drawing

CHAPTER 6

42

bool (end-drawing)

Bracket a series of drawing primitives in begin-drawing and end-drawing to optimize drawing
under Windows, and also if drawing to a panel or dialog box context, for which these calls are
mandatory. The calls may be nested.

wxDC end-page

bool (end-page)

Ends a page.

wxDC get-min-x

double (get-min-x)

Returns the minimum X value drawn so far on the device context.

wxDC get-min-y

double (get-min-y)

Returns the minimum Y value drawn so far on the device context.

wxDC get-max-x

double (get-max-x)

Returns the maximum X value drawn so far on the device context.

wxDC get-max-y

double (get-max-y)

Returns the maximum Y value drawn so far on the device context.

wxDC get-text-extent-height

double (get-text-extent-height string text)

Returns the height of the text as drawn on this device context, in logical units.

wxDC get-text-extent-width

double (get-text-extent-width string text)

Returns the width of the text as drawn on this device context, in logical units.

CHAPTER 6

43

wxDC ok

bool (ok)

Returns TRUE if the device context is OK (usually meaning, it has been initialised correctly), and
FALSE otherwise.

wxDC start-doc

bool (start-doc string message)

Starts a document (such as a PostScript or Windows printer document) using the given string for
any associated message box (the message is not in fact currently used).

wxDC start-page

bool (start-page)

Starts a page.

wxDC set-background

bool (set-background long brush)

Sets the background brush.

wxDC set-background-mode

bool (set-background-mode string mode)

Sets the mode for drawing text background.

mode may be wxSOLID (use the text background colour) or wxTRANSPARENT (do not fill the
background).

wxDC set-brush

bool (set-brush wxBrush brush)

Sets the current brush for the device context. brush is a wxBrush (page 19) object, or nil t select
any existing brush out of the device context.

wxDC set-colourmap

bool (set-colourmap wxColourMap cmap)

CHAPTER 6

44

Sets the colourmap for the device context. If cmap is nil, the original colourmap is restored so that
it is safe to delete the device context (or colourmap).

wxDC set-clipping-region

bool (set-clipping-region double x1 double y1 double x2 double y2)

Sets a rectangular clipping region, outside which drawing operations have no effect.

wxDC set-font

bool (set-font long font)

Sets the current font for the device context. font is a wxFont (page 47) object, or nil to select any
existing font out of the device context.

wxDC set-logical-function

bool (set-logical-function string logical-function)

Sets the current logical function for the device context. The logical function determines how pixels
are changed by the drawing functions, and may be one of wxCOPY, wxXOR, wxINVERT,
wxOR_REVERSE and wxAND_REVERSE.

wxDC set-pen

bool (set-pen long pen)

Sets the current pen for the device context. pen is a wxPen (page 69) object, or nil to select any
existing pen out of the device context.

wxDC set-text-foreground

bool (set-text-foreground string colour)

Sets the colour for the text foreground, effective when draw-text (page 41) is used. colour is a
capitalized name from the list defined in the wxWindows manual.

wxDC set-text-background

bool (set-text-background string colour)

Sets the colour for the text background, effective when draw-text (page 41) is used. colour is a
capitalized name from the list defined in the wxWindows manual.

6.15. wxDialogBox is-a wxPanel

See also Overview (page 202)

CHAPTER 6

45

A dialog box is essentially a wxPanel (page 66) with its own wxFrame (page 48), and therefore
shares some functions and behaviour with both of these objects.

Any panel item can be created as a child of a dialog box, and also the dialog box can be created
modal, so that the flow of program control halts until the dialog box is dismissed.

The following event handlers are valid for the panel class:

on-command Override this to intercept panel item commands (such as button presses). See
wxCommandEvent (page 25) for a list of event types associated with
wxCommandEvent.

on-event Called with a wxMouseEvent (page 63) identifier. This can only be guaranteed
only when the dialog box is in user edit mode (to be implemented).

on-paint Called with no arguments when the dialog box receives a repaint event from the
window manager.

on-size The function is called with the window width and height.

wxDialogBox modal

bool modal

Initialize to TRUE if the dialog box is to be modal, FALSE otherwise. The default is FALSE.

wxDialogBox create

void (create)

The following slots may be initialized if not loading from a resource.

• parent: should be a wxFrame or wxDialogBox.
• title: a title for the dialog box caption.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this dialog box.
• modal: TRUE if the dialog is to be modal, FALSE otherwise (the default).
• style: may be absent or a string style: see below.

The following slots should be initialized if loading from a resource (see Resource overview (page
215) for further details).

• parent: should be a wxFrame.
• resource: the string name of the resource.

The value of style can be a bit list of the following values:

wxCAPTION Puts a caption on the dialog box (under XView and Motif this is mandatory).
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Display a system menu (manadatory under XView and Motif).
wxTHICK_FRAME Display a thick frame around the window (manadatory under XView and

Motif).

CHAPTER 6

46

wxVSCROLL Give the dialog box a vertical scrollbar (XView only).
wxDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION, wxSYSTEM_MENU

and wxTHICK_FRAME
.

The default value for style is wxDEFAULT_DIALOG_STYLE.

If modal is TRUE, when the show message is sent to the dialog box object, the flow of control will
stop until the show message has been called again with a FALSE parameter. Otherwise, if modal
is FALSE, flow of control will immediately return to the program when the dialog box has been
shown.

wxDialogBox on-char-hook

bool (on-char-hook wxKeyEvent event)

Under Windows only, all key strokes going to a dialog box or frame can be intercepted before
being passed on for normal processing. This handler takes the event object, and should return
TRUE to override further processing, or FALSE to do default processing. See also wxKeyEvent
(page 54).

wxDialogBox on-close

bool (on-close)

The function is called when the user dismisses the dialog box. If the handler returns TRUE, the
window is automatically deleted (possibly terminating the application). A return value of FALSE
forbids automatic deletion.

wxDialogBox on-paint

void (on-paint)

Override this handler to respond to paint events (sent when the dialog box needs repainting).
Normally, a dialog box's items repaint themselves, but for special purposes, you may wish to
draw on the dialog box device context.

wxDialogBox on-size

void (on-size long width longheight)

The function is called with the dialog box width and height when the user resizes the frame.

6.16. wxEvent is-a wxObject

wxEvent is an 'abstract class' from which other event classes, such as mouse, key and command
events, are derived.

wxEvent get-event-type

CHAPTER 6

47

string (get-event-type)

Returns the event type.

6.17. wxEvtHandler is-a wxObject

wxEvtHandler is an 'abstract class' for classes which have event handlers, such as wxCanvas or
wxFrame. This class has yet to be documented.

6.18. wxFont is-a wxObject

A font is an object that can be set for a device context (page 115) to determine the characteristics
of text drawn with draw-text (page 41). It can also be used to set panel item fonts.

wxFont point-size

long point-size

The point size of the font. The default is 10.

wxFont family

symbol family

The family of the font. May be one of wxROMAN, wxSCRIPT, wxDECORATIVE, wxSWISS,
wxMODERN. The default is wxSWISS.

wxFont style

symbol style

The style of the font. May be one of wxNORMAL, wxITALIC, wxSLANT. The default is
wxNORMAL.

wxFont weight

symbol weight

The weight of the font. May be one of wxNORMAL, wxLIGHT, wxBOLD. The default is
wxNORMAL.

wxFont underlined

bool underlined

Whether the font is underlined (Windows only). May be TRUE of FALSE. The default is FALSE.

wxFont create

CHAPTER 6

48

void (create)

Creates a font for use in a device context. The following slots can be used to initialize the font.

• point-size gives the font point size.
• family may be one of wxROMAN, wxSCRIPT, wxDECORATIVE, wxSWISS,

wxMODERN, wxDEFAULT.
• style may be one of wxNORMAL, wxITALIC, wxSLANT.
• weight may be one of wxBOLD, wxLIGHT, wxNORMAL.
• underlined may be 1 or 0.

6.19. wxFrame is-a wxWindow

A wxFrame is a window containing text, canvas or panel subwindows. It normally has decorations
added by the window manager, such as a system menu, a thick frame, and resize handles. When
a wxWindows or wxCLIPS application initializes, a top-level frame must be returned to the system
for successful start-up. When a top-level frame and all its children are deleted, the application
terminates.

Usually an application will need to override the on-close handler in case the window manager
sends the application a close message. If the handler returns TRUE, the frame is deleted by the
system (possibly terminating the application).

See wxWindow (page 88) for message handlers in addition to the ones documented here.

wxFrame create

void (create)

The following slots may be initialized.

• parent: should be a wxFrame.
• title: a title for the dialog box caption.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this dialog box.
• style: may be absent or a string style: see below.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxCAPTION Puts a caption on the frame (under XView and Motif this is mandatory).
wxDEFAULT_FRAME Defined as a combination of wxMINIMIZE_BOX, wxMAXIMIZE_BOX,

wxTHICK_FRAME, wxSYSTEM_MENU and wxCAPTION.
wxMDI_CHILD Specifies a Windows MDI (multiple document interface) child frame.
wxMDI_PARENT Specifies a Windows MDI (multiple document interface) parent frame.
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows only).
wxSDI Specifies a normal SDI (single document interface) frame.

CHAPTER 6

49

wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (manadatory under XView and Motif).
wxTHICK_FRAME Displays a thick frame around the window (manadatory under XView and

Motif).

The function show must be called before a new frame is visible.

wxFrame create-status-line

bool (create-status-line optional long n=1)

Creates a status line at the bottom of the frame. Use set-status-text (page 49) to write to the
status line.

n is a number from 1 to 5 for the number of status areas to create.

wxFrame iconize

bool (iconize optional bool minimize)

Minimizes the frame if the second argument is TRUE or absent, restores the frame otherwise.

wxFrame set-menu-bar

bool (set-menu-bar wxMenuBar menu-bar)

Associates a menu bar with the frame. See wxMenuBar (page 60). You should not call this more
than once for any given frame, and you should also not delete the wxMenuBar object once it has
been assigned to a frame. It will be deleted when the wxFrame object is deleted.

wxFrame set-icon

bool (set-icon wxIcon icon)

Sets the icon of a frame. See wxIcon (page 53).

wxFrame set-status-text

bool (set-status-text string text, optional long i=0)

Sets the text for the status line (previously created with create-status-line (page 49)).

i is a number from 0 to 4 for the number of the status area to write to.

wxFrame set-title

bool (set-title string text)

CHAPTER 6

50

Set the title of a frame.

wxFrame set-tool-bar

bool (set-tool-bar long toolbar)

Tells the MDI frame to manage the subwindow as a toolbar. Use in Windows MDI mode only.

wxFrame on-activate

void (on-activate bool active)

Called the frame is activated or deactivated. Under Windows, you may need to intercept this
message and set the focus for a subwindow, or the subwindow may not receive character events.
By default, wxWindows will set the focus for the first subwindow of a frame.

wxFrame on-char-hook

bool (on-char-hook wxKeyEvent event)

Under Windows only, all key strokes going to a dialog box or frame can be intercepted before
being passed on for normal processing. This handler takes the event object, and should return
TRUE to override further processing, or FALSE to do default processing. See also wxKeyEvent
(page 54).

wxFrame on-close

bool (on-close)

The function is called when the user dismisses the frame. If the handler returns TRUE, the
window is automatically deleted (possibly terminating the application). A return value of FALSE
forbids automatic deletion.

wxFrame on-menu-command

void (on-menu-command long menu-item)

Called with the menu item identifier. Test the menu item identifier and perform an appropriate
action.

wxFrame on-menu-select

void (on-menu-select long menu-item)

Called with a menu item identifier, when the cursor travels over the menu item (but the user does
not click). Test the menu item identifier and perform an appropriate action.

CHAPTER 6

51

wxFrame on-size

void (on-size long width longheight)

The function is called with the frame width and height when the user resizes the frame. The
application should define appropriate subwindow resizing behaviour in this handler, if appropriate.

The default handler performs child window resizing behaviour if there is only one child window.
Otherwise, it gives up.

6.20. wxHelpInstance is-a wxObject

Not yet implemented.

A 'help instance' is created to manage on-line help associated with one or more files. wxCLIPS
supports both Windows Help under MS Windows, and wxHelp under all platforms.

Windows Help (.hlp) files may be created using a number of tools, such as Tex2RTF. wxHelp
(.xlp) files can be created with a text editor or a tool such as Tex2RTF.

wxHelp is very limited in its capabilities and should only be used on platforms with no native help.
Consider using HTML files instead (although you cannot currently access HTML files from your
application).

wxHelpInstance native

bool native

If TRUE, the native help system will be invoked (such as WinHelp under MS Windows). If FALSE,
wxHelp will be invoked.

wxHelpInstance create

void (create)

Creates a help instance. If native is TRUE, the native help system will be invoked (such as
WinHelp under MS Windows). If FALSE, wxHelp will be invoked.

wxHelpInstance display-block

bool (display-block long blockId)

Displays the help file at the given block identifier (system dependent).

wxHelpInstance display-contents

bool (display-contents string filename)

Displays the contents of the help file currently loaded.

CHAPTER 6

52

wxHelpInstance display-section

bool (display-section long section)

Displays the help file at the given section (system dependent).

wxHelpInstance keyword-search

bool (keyword-search string keyword)

Positions the help file at a section matching the given string.

wxHelpInstance load-file

bool (load-file string filename)

Attempts to load the given file into the help instance. Use a function like display-contents to
display the file.

6.21. wxGauge is-a wxItem

A gauge is used for displaying a quantity, for example amount of processing done. It must be a
child of a wxPanel or wxDialogBox.

wxGauge value

long value

The current value of the gauge. The default is 1.

wxGauge range

long range

The range of the gauge. The default is 100.

wxGauge create

void (create)

Creates a gauge item on the given panel. The following slots may be initialized.

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this item.

CHAPTER 6

53

• label: may be absent or a string name to label this item.
• style: a bit list of values (see below).
• value: TRUE or FALSE.
• range: indicates the maximum value of the gauge.

style is a bit list of the following:

wxGA_HORIZONTAL The item will be created as a horizontal gauge.
wxGA_VERTICAL The item will be created as a vertical gauge.
wxGA_PROGRESSBAR Under Windows 95, the item will be created as a horizontal

progress bar.

wxGauge set-bezel-face

bool (set-bezel-face long width)

Set the bezel parameter of the gauge (takes effect under Windows version only).

wxGauge set-shadow-width

bool (set-shadow-width long width)

Set the shadow width of the gauge (takes effect under Windows version only).

6.22. wxGroupBox is-a wxItem

A wxGroupBox is a box drawn around one or more controls. Available under Windows only.

wxGroupBox create

void (create)

Creates a group box. The following slots may be initialized.

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this item.
• label: may be absent or a string name to label this item.
• style: reserved for future use.

6.23. wxIcon is-a wxBitmap

An icon is a small bitmap which can be used to decorate a minimized frame. There are platform-
specific ways of creating an icon.

wxIcon height

CHAPTER 6

54

long height

Height of the icon in pixels.

wxIcon width

long width

Width of the icon in pixels.

wxIcon create

void (create)

Loads an icon from a file or resource. Under X, the argument must be the filename of a valid XBM
(X bitmap) file. Under Windows, the argument must be a icon filename, or the name of an icon
resource compiled into the current executable.

Use wxFrame set-icon (page 49) to set the icon of a frame.

Under X, the permitted icon types in the bitmap-type are:

• wxBITMAP_TYPE_BMP Load a Windows bitmap file (if USE_IMAGE_LOADING_IN_X
is enabled in wx_setup.h).

• wxBITMAP_TYPE_GIF Load a GIF bitmap file (if USE_IMAGE_LOADING_IN_X is
enabled in wx_setup.h).

• wxBITMAP_TYPE_XBM Load an X bitmap file.
• wxBITMAP_TYPE_XPM Load an XPM (colour pixmap) file. Only available if

USE_XPM_IN_X is enabled in wx_setup.h.

Under Windows, the permitted types are:

• wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).

• wxBITMAP_TYPE_ICO_RESOURCE Load a Windows resource (as specified in the .rc
file).

Examples:

 ; Under X
 (bind ?icon (make-instance (gensym*)
 (bitmap-type wxBITMAP_TYPE_XBM)
 (filename "icon.xbm")))

 ; Under Windows
 (bind ?icon (make-instance (gensym*)
 (bitmap-type wxBITMAP_TYPE_ICO)
 (filename "icon.ico")))

6.24. wxKeyEvent is-a wxEvent

A key event identifier is passed to a window's on-char or on-char-hook handler. The key code,

CHAPTER 6

55

position and state of shift/control/alt can be examined by calling the following functions.

wxKeyEvent alt-down

bool (alt-down)

Returns TRUE if alt was pressed.

wxKeyEvent control-down

bool (control-down)

Returns TRUE if control was pressed.

wxKeyEvent get-key-code

string (get-key-code)

Returns a string corresponding to the internal wxWindows key code, such as "WXK_BACK'',
"WXK_F1'' or "WXK_RETURN''.

wxKeyEvent position-x

double (position-x)

Gets the x position of the mouse pointer at the moment the key was pressed.

wxKeyEvent position-y

double (event-position-y)

Gets the y position of the mouse pointer at the moment the key was pressed.

wxKeyEvent shift-down

bool (shift-down)

Returns TRUE if shift was pressed.

6.25. wxListBox is-a wxItem

A wxListBox displays a choice of strings. It must be the child of a panel or dialog box. In a single-
selection listbox, only one choice may be highlighted. In a multiple-selection listbox, several may
be highlighted.

wxListBox values

CHAPTER 6

56

multifield values

List of string values for initializing the wxListBox item.

wxListBox multiple

bool multiple

Initalize to TRUE for a multi-selection listbox, FALSE for a single-selection listbox.

wxListBox create

void (create)

Creates a list box item on the given panel or dialog box. The following slots may be initialized.

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this item.
• label: may be absent or a string name to label this item.
• style: see below.
• values: a multifield list of strings.
• multiple: TRUE for a multiple-selection listbox, FALSE otherwise.

style is a bit list of some of the following:

wxNEEDED_SB Create scrollbars if needed.
wxALWAYS_SB Create scrollbars immediately.
wxHSCROLL Create horizontal scrollbar if contents are two wide (Windows only).

wxListBox append

bool (append string item optional string client-data)

Append a string to the list box, with an optional client data string.

wxListBox find-string

long (find-string string item)

Find the string in the list box and return the integer position if found, -1 if not.

wxListBox clear

bool (clear)

CHAPTER 6

57

Clear all strings from the list box.

wxListBox get-selection

long (get-selection)

Get the position of the selection (for single-selection list boxes only).

wxListBox get-string-selection

string (get-string-selection)

Get the selected string (for single-selection list boxes only).

wxListBox set-selection

bool (set-selection long item-pos bool flag=TRUE)

Set a selection by item position.

If flag is TRUE, the item will be selected, otherwise it will be deselected (multiple-selection
listboxes only).

wxListBox set-string-selection

bool (set-string-selection string item)

Set a selection by string.

wxListBox number

long (number)

Return the number of items in the list box.

wxListBox delete-item

bool (delete-item long item-pos)

Delete an item in the list box.

wxListBox get-string

string (get-string long item-pos)

Return the string at the given position.

CHAPTER 6

58

wxListBox get-first-selection

long (get-first-selection)

Get the first selection position in a multi-selection list box (-1 for no more selections).

wxListBox get-next-selection

long (get-next-selection)

Get the next selection position in a multi-selection list box (-1 for no more selections).

6.26. wxMemoryDC is-a wxCanvasDC

A memory device context is used for drawing into, or copying from, a bitmap. See also the
wxBitmap (page 18) object.

wxMemoryDC create

void (create)

Create a memory device context using the current display depth. No slots need to be initialized.

wxMemoryDC select-object

bool (select-object wxBitmap bitmap)

Makes this device context the drawing surface for the given bitmap (see wxBitmap (page 18)).
Deleting the memory device context disassociates the bitmap, freeing it to be used with another
memory device context. To draw a bitmap on a device context that supports bitmap drawing (i.e.
not a Metafile or PostScript device context), using code like the following:

 ;;; Utility function for drawing a bitmap
 (deffunction draw-bitmap (?dc ?bitmap ?x ?y)
 (bind ?mem-dc (make-instance (gensym*) of wxMemoryDC))
 (send ?mem-dc select-object ?bitmap)
 ; Blit the memory device context onto the destination device context
 (send ?dc blit ?x ?y (send ?bitmap get-width) (send ?bitmap get-
height)
 ?mem-dc 0.0 0.0)
 (send ?mem-dc delete)
)

If bitmap is nil, the existing bitmap (if any) will be selected out of the device context. This might be
necessary if you wish to delete the bitmap before deleting the device context (for example, for
reusing the same device context for different bitmaps).

6.27. wxMenu is-a wxWindow

The menu is used as a component of a wxMenuBar (page 60) or as a popup menu. For a menu

CHAPTER 6

59

bar, create menus, append menu items (strings, separators or further menus), and finally append
the menu to the menu bar.

A menu or menu bar string may contain an ampersand, which is taken to mean 'underline the
next character and use it as the hotkey'. This gives the user the opportunity to use keystrokes to
access menus and items.

wxMenu callback

symbol callback

This slot should be initialized if creating a popup menu. The name represents a function that will
be called with the wxMenu instance and wxCommandEvent instance when the user selects an
item. Use wxCommandEvent get-selection to retrieve the selected menu item id.

wxMenu create

void (create)

Create a menu and returns the menu's ID. The following slots may be initialized.

• callback: should be present if creating a popup menu (i.e. not a menubar menu). It will
be called with the wxMenu instance and wxCommandEvent instance when the user
selects an item. Use wxCommandEvent get-selection to retrieve the selected menu item
id.

wxMenu append

bool (append long item-id
 string item-string optional wxMenu submenu optional string help-string optional bool
checkable)

Append a string or submenu to the menu, passing the integer ID by which the menu item will be
referenced, a string to be displayed, an optional pullright menu, and an optional flag for specifying
whether this menu item can be checked.

A help string can be supplied, in which case the string will be shown on the first field of the status
line (if any) in the frame containing the menu bar, when the mouse pointer moves over the menu
item.

wxMenu append-separator

bool (append-separator)

Append a menu separator.

wxMenu break

bool (break)

CHAPTER 6

60

Inserts a column break into the menu.

wxMenu check

bool (check long item-id bool check)

Check (check = TRUE or uncheck check = FALSE the given menu item. MS Windows only.

wxMenu enable

bool (enable long item-id bool enable)

Enable (enable = TRUE or disable enable = FALSE the given menu item.

6.28. wxMenuBar is-a wxWindow

A menu bar is a standard user interface element which places the main commands of an
application along the top of a wxFrame (page 123).

The menu bar must be assigned to a frame using wxFrame set-menu-bar (page 49). Once this is
done, the menu bar must not be deleted by the application: it will be deleted when the frame is
deleted.

A menu or menu bar string may contain an ampersand, which is taken to mean 'underline the
next character and use it as the hotkey'. This gives the user the opportunity to use keystrokes to
access menus and items.

See also wxMenu (page 58).

wxMenuBar create

void (create)

Creates a menu bar.

wxMenuBar append

bool (append long menu-id string title)

Appends a menu to a menu bar.

wxMenuBar check

bool (check long item-id bool check)

Checks (check = TRUE) or unchecks (check = FALSE) the given menu item. MS Windows only.

wxMenuBar checked

CHAPTER 6

61

bool (checked long item-id)

Returns TRUE if the menu item is checked, FALSE otherwise.

wxMenuBar enable

bool (enable long item-id bool enable)

Enables (enable = TRUE) or disables (enable = FALSE) the given menu item.

6.29. wxMessage is-a wxItem

A wxMessage is a simple piece of text, or a bitmap, on a panel or dialog box.

wxMessage bitmap

wxMessage bitmap

The bitmap associated with a wxMessage, if being used as a bitmap message.

wxMessage create

long (create)

Creates a label or bitmap message item on the given panel.

The following slots may be used in initializing a wxButton instance:

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• window-name: may be absent or a string name to identify this message.
• label: for a text label message, must be a string.
• bitmap: for a bitmap label message, must be a wxBitmap.

6.30. wxMetaFile is-a wxObject

Not yet implemented.

A metafile is the Windows vector format. Currently, the only way of creating a Windows metafile is
to close a metafile device context, and the only valid operations are to delete the metafile and to
place it on the clipboard.

These functions are only available under Windows.

6.30.1. Example

Below is a example of metafle, metafile device context and clipboard use. Note the way the
metafile dimensions are passed to the clipboard, making use of the device context's ability to

CHAPTER 6

62

keep track of the maximum extent of drawing commands.

 (bind ?dc (make-instance (gensym*) of wxMetaFileDC))
 (if (send ?dc ok) then
 (
 ; Do some drawing
 (bind ?mf (send ?dc close))
 (if (neq ?mf nil) then
 ; Pass metafile to the clipboard
 (send ?md set-clipboard (send ?dc get-max-x) (send ?dc get-max-
y))
 (send ?mf delete)
)
)
)
 (send ?dc delete)

wxMetaFile set-clipboard

bool (wxMetaFile set-clipboard long width long height)

Places the metafile on the clipboard, returning TRUE for success and FALSE for failure.

The metafile should be deleted immediately after this operation.

6.31. wxMetaFileDC is-a wxDC

A metafile device context is used for creating a metafile. The programmer should create the
metafile device context, close it to return a metafile, delete the device context, use the metafile
(the only valid thing to do with it currently is to place it on the clipboard, and then delete the
metafile.

These functions are only available under Windows.

See also wxMetaFile (page 61).

wxMetaFileDC filename

string filename

Filename if creating this metafile device context as disk-based.

wxMetafileDC create

void (create)

Creates a metafile device context.

filename is the file to be used if creating a disk-based metafile. Usually this will be zero or
absent, and an in-memory metafile will be created.

CHAPTER 6

63

wxMetaFileDC close

wxMetaFile (close)

Closes the metafile device context and returns a metafile (or nil if the function failed). The device
context should no longer be used after this call is made, and it should be deleted.

See wxMetaFile (page 61).

6.32. wxMouseEvent is-a wxEvent

A mouse event identifier is passed to the canvas on-event handler. The state of the mouse
buttons (and some keys) can be examined by calling the following functions.

wxMouseEvent button

bool (button long button)

Returns TRUE if the given button is changing state. button may be 1, 2 or 3 (left, middle and right
buttons respectively).

wxMouseEvent button-down

bool (button-down)

Returns TRUE if the event is a mouse button down event.

wxMouseEvent control-down

bool (control-down)

Returns TRUE if the control key is down.

wxMouseEvent dragging

bool (dragging)

Returns TRUE if the event is a dragging event (holding a mouse button down and moving).

wxMouseEvent left-down

bool (left-down)

Returns TRUE if the left mouse button is down.

wxMouseEvent left-up

bool (left-up)

CHAPTER 6

64

Returns TRUE if the left mouse button is up.

wxMouseEvent is-button

bool (is-button)

Returns TRUE the event is a button press or release.

wxMouseEvent middle-down

bool (middle-down)

Returns TRUE if the middle mouse button is down.

wxMouseEvent middle-up

bool (middle-up)

Returns TRUE if the middle mouse button is up.

wxMouseEvent position-x

double (position-x)

Returns the mouse x-position.

wxMouseEvent position-y

double (position-y)

Returns the mouse y-position.

wxMouseEvent right-down

bool (right-down)

Returns TRUE if the right mouse button is down.

wxMouseEvent right-up

bool (right-up)

Returns TRUE if the right mouse button is up.

wxMouseEvent shift-down

CHAPTER 6

65

bool (shift-down)

Returns TRUE if the shift key is down.

6.33. wxMultiText is-a wxText

A multi-line text item is able to show several lines of text, unlike the single line wxText (page 81)
item. It must be the child of a panel or dialog box.

wxMultiText create

long (create)

Creates a multi-line text item on the given panel or dialog box. The following slots may be
initialized.

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this item.
• label: may be absent or a string name to label this item.
• style: see below.
• value: a string for initializing the value of the multi-text.

The style parameter can be a bit list of the following:

wxHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical
scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView.

wxREADONLY The text is read-only (not XView).

6.34. wxObject

wxObject is an 'abstract class' from which other wxCOOL classes are derived.

wxObject dont-create

symbol dont-create

Set on creation when it is not desireable for the usual underlying object creation to occur.
Specifically, used when creating objects to wrap wxCLIPS integer identifiers for panel items
created when loading in a dialog or panel resource. See wx_item.clp, wxPanel handler create-
child-objects.

wxObject id

long id

CHAPTER 6

66

The integer identifier of the underlying wxCLIPS object.

wxObject pending-delete

bool pending-delete

TRUE if the object is about to be deleted (an internal setting to avoid double deletion).

wxObject add-event-handlers

void (add-event-handlers)

All classes should override (but still call) this handler in order to add callbacks for this instance.
The wxObject version adds an OnDelete callback that will be called for all instances.

wxObject create

void (create)

For wxObject, this is a no-operation that must be redefined by derived classes to perform per-
instance initialization.

wxObject init after

void (init after)

This handler is implemented to call the create handler after the slot initialization phase is
complete. create is also defined for wxObject, as an no-operation, and must be redefined by each
major subclass to do the construction for the instance.

6.35. wxPanel is-a wxCanvas

A panel is a subwindow for placing panel items, such as the wxButton (page 20) and wxText
(page 81) item. Its parent must be a wxFrame (page 48). A panel inherits most properties from
canvas, except for scrollbar functionality.

Note that a wxDialogBox (page 44) may be used in a similar way to a panel.

The following event handlers are valid for the panel class:

on-default-action Override this to intercept double clicks in listboxes.
on-command Override this to intercept panel item commands (such as button presses). See

wxCommandEvent (page 25) for a list of event types associated with
wxCommandEvent.

on-event Called with a wxMouseEvent (page 63) identifier. This can only be guaranteed
only when the panel is in user edit mode (to be implemented).

on-paint Called with no arguments when the panel receives a repaint event from the window
manager.

on-size The function is called with the window width and height.

CHAPTER 6

67

wxPanel resource

string resource

The name of the resource the panel or dialog is to be loaded from, if any. Initially the empty
string.

wxPanel create

void (create)

Creates a panel.

The following slots may be initialized if not loading from a resource.

• parent: should be a wxFrame.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this pane;.
• style: may be absent or a string style: see below.

The following slots should be initialized if loading from a resource (see Resource overview (page
215) for further details).

• parent: should be a wxFrame.
• resource: the string name of the resource.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxABSOLUTE_POSITIONING A hint to the windowing system not to try native Windowing
system layout (Motif only). This is the recommended style for all Motif panels
and dialog boxes.

wxBORDER Draws a thin border around the panel.
wxVSCROLL Gives the dialog box a vertical scrollbar (XView only).

void (on-default-action wxItem item)

A panel receives this message in response to a double click in a listbox.

wxPanel on-command

void (on-command wxItem item wxCommandEvent command-event)

A panel or dialog box receives this message in response to a command (such as a button press),
if the item has not overriden on-command. See wxCommandEvent (page 25) for a list of event
types associated with wxCommandEvent.

CHAPTER 6

68

wxPanel set-button-font

bool (set-button-font wxFont font)

Sets the font used for panel or dialog box item buttons (or contents). See also set-label-font (page
68).

wxPanel set-label-font

bool (set-label-font wxFont font)

Sets the font used for panel or dialog box item labels. See also set-button-font (page 68).

wxPanel set-label-position

bool (set-label-position string position)

Change the current label orientation for panel items: position may be wxVERTICAL or
wxHORIZONTAL.

wxPanel new-line

bool (new-line)

Insert a new line, that is, make subsequent panel items appear at the start of the next line.

6.36. wxItem is-a wxWindow

A panel item is a control (or widget) that can be placed on a wxPanel (page 66) or wxDialogBox
(page 44) to accept user input, and display information.

The following functions apply to panel items, which include wxButton (page 20), wxCheckbox
(page 23), wxChoice (page 23), wxMessage (page 61), wxText (page 81), wxMultiText (page 65),
wxSlider (page 80).

wxItem get-label

string (get-label)

Get the item's label.

wxItem on-command

void (on-command wxItem item wxCommandEvent command-event)

An item receives this message in response to a command (such as a button press). If this handler
is not overriden, then on-command is sent to the item's parent panel. It is usually more
convenient to override this handler for a panel rather than per panel item.

CHAPTER 6

69

See wxcommandevent (page 25) for a list of event types associated with wxCommandEvent.

wxItem set-default

bool (set-default)

Make this item the default.

wxItem set-label

bool (set-label string label)

Set the item's label.

6.37. wxPen is-a wxObject

A pen is used to control the colour and style of subsequent drawing operations on a device
context (page 115).

wxPen colour

string colour

The colour for initializing the wxPen.

wxPen style

symbol style

The style for initializing the wxPen. May be one of wxSOLID, wxDOT, wxLONG_DASH,
wxSHORT_DASH, wxTRANSPARENT.
wxPen create

void (create)

Creates a pen for use in a device context. A pen is used for the outlines of graphic shapes. A
brush must be set to fill the shapes.

The following slots may be initialized.

• colour is a wxWindows colour string such as "BLACK'', "CYAN''.
• width specifies the width of the pen.
• style may be one of wxSOLID, wxDOT, wxLONG_DASH, wxSHORT_DASH,

wxTRANSPARENT.

6.38. wxPostScriptDC is-a wxDC

A wxPostScriptDC is used for drawing into a postscript file.

CHAPTER 6

70

wxPostScriptDC filename

string filename

The filename associated with the device context.

wxPostScriptDC interactive

bool interactive

TRUE if the creation of the device context should pop up a printer dialog.

wxPostScriptDC window

wxWindow window

Initialize this to the parent window for any dialogs the device context will pop up. Defaults to nil.

wxPostScriptDC create

void (create)

Creates a postscript device context. The following slots may be initialized.

• filename is the file to be used for printing to.
• interactive may be TRUE to popup up a printer dialog, or FALSE otherwise.
• window is a parent window for the printer dialog.

6.39. wxPrinterDC is-a wxDC

A wxPrinterDC is used for drawing onto a Windows printer.

wxPrinterDC device

string device

The device name for this device context. Defaults to the empty string.

wxPrinterDC driver

string driver

The driver name for this device context. Defaults to the empty string.

wxPrinterDC filename

string filename

CHAPTER 6

71

The filename associated with the device context, if printing to a file.

wxPrinterDC interactive

bool interactive

TRUE if the creation of the device context should pop up a printer dialog.

wxPrinterDC window

wxWindow window

Initialize this to the parent window for any dialogs the device context will pop up. Defaults to nil.

wxPrinter create

void (create)

Creates a printer device context. The following slots may be initialized.

• device is the Windows device name (defaults to the empty string).
• driver is the Windows printer driver name (defaults to the empty string).
• filename is the file to be used for printing to.
• interactive may be TRUE to popup up a printer dialog, or FALSE otherwise.

6.40. wxRadioBox is-a wxItem

A radiobox item is a matrix of strings with associated radio buttons. The buttons are mutually
exclusive, so pressing one will deselect the current selection.

wxRadioBox major-dimension

long major-dimension

Specifies the number of rows (if style is wxVERTICAL) or columns (if style is wxHORIZONTAL)
for a two-dimensional radiobox.

wxRadioBox values

multifield values

List of string values for initializing the wxRadioBox labels.

wxRadioBox create

void (create)

Creates a radiobox item on the given panel or dialog box. The following slots may be initialized.

CHAPTER 6

72

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this item.
• label: may be absent or a string name to label this item.
• style: A bit list of values (see below).
• values: a multifield list of strings for the radiobox labels.
• major-dimension: specifies the number of rows (if style is wxVERTICAL) or columns (if

style is wxHORIZONTAL) for a two-dimensional radiobox.

style may be a bit list of:

wxVERTICAL Lays the radiobox out in columns.
wxHORIZONTAL Lays the radiobox out in rows.

wxRadioBox get-selection

long (get-selection)

Get the ID of the button currently selected.

wxRadioBox set-selection

bool (set-selection long item)

Sets the given button to be the current selection.

6.41. wxRecordSet is-a wxObject

See also Database classes overview (page 205)

Not yet implemented.

Each recordset represents an ODBC database query. You can make multiple queries at a time by
using multiple recordsets with a database or you can make your queries in sequential order using
the same recordset.

wxRecordSet database

wxDatabase database

The parent database.

wxRecordSet type

wxRecordSet type

CHAPTER 6

73

The initial type of the recordset. Currently there are two possible values of type:

• "wxOPEN_TYPE_DYNASET": Loads only one record at a time into memory. The other
data of the result set will be loaded dynamically when moving the cursor. This is the
default type.

• "wxOPEN_TYPE_SNAPSHOT": Loads all records of a result set at once. This will need
much more memory, but will result in faster access to the ODBC data.

wxRecordSet create

void (create)

Constructs a recordset object, and appends the recordset object to the parent database's list of
recordset objects, for later destruction when the database is destroyed.

The following slots may be initialized.

• database: the parent wxDatabase.
• type: the type of recordset, see below.
• options: not yet used.

Currently there are two possible values of type:

• "wxOPEN_TYPE_DYNASET": Loads only one record at a time into memory. The other
data of the result set will be loaded dynamically when moving the cursor. This is the
default type.

• "wxOPEN_TYPE_SNAPSHOT": Loads all records of a result set at once. This will need
much more memory, but will result in faster access to the ODBC data.

wxRecordSet delete

bool (delete)

Deletes the recordset. All data except that stored in user-defined variables will be lost. It also
unlinks the recordset object from the parent database's list of recordset objects.

wxRecordSet execute-sql

bool (execute-sql string sql)

Directly executes a SQL statement. The data will be presented as a normal result set. Note that
the recordset must have been created as a snapshot, not dynaset. Dynasets will be implemented
in the near future.

Examples of common SQL statements are given in A selection of SQL commands (page 209).

wxRecordSet get-char-data

string (get-char-data string-or-long col)

CHAPTER 6

74

Returns the character (string) data for the current record at the specified column. The column can
be a name or an integer position (starting from zero).

wxRecordSet get-col-name

string (get-col-name long col)

Gets the name of the coumn at position col. Returns the empty string if col does not exist.

wxRecordSet get-col-type

string (get-col-type string-or-long col)

Gets the name of the coumn at position col or name col. Returns "SQL_TYPE_NULL" if col does
not exist.

See ODBC SQL data types (page 208) for the possible return values from this function.

wxRecordSet get-columns

long (get-columns optional string table = "")

Returns the columns of the table with the specified name. If no name is given, the internal class
member table will be used. If both names are NULL nothing will happen. The data will be
presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER

1 (VARCHAR) TABLE_OWNER

2 (VARCHAR) TABLE_NAME

3 (VARCHAR) COLUMN_NAME

4 (SMALLINT) DATA_TYPE

5 (VARCHAR) TYPE_NAME

6 (INTEGER) PRECISION

7 (INTEGER) LENGTH

8 (SMALLINT) SCALE

9 (SMALLINT) RADIX

10 (SMALLINT) NULLABLE

11 (VARCHAR) REMARKS

CHAPTER 6

75

wxRecordSet get-data-sources

bool (get-data-sources)

Gets the currently-defined data sources via the ODBC manager. The data will be presented as a
normal result set. See the documentation for the ODBC function SQLDataSources for how the
data is organized. The name of the source is at column 0.

wxRecordSet get-error-code

string (get-error-code)

Returns the error code of the last ODBC action. This will be a string containing one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained

from the ODBC manager.

wxRecordSet get-filter

string (get-filter)

Returns the current filter.

wxRecordSet get-float-data

double (get-float-data string-or-long col)

Returns the floating-point data for the current record at the specified column. The column can be
a name or an integer position (starting from zero).

wxRecordSet get-foreign-keys

bool (get-foreign-keys optional string ftable = "" optional string ktable = "")

Returns a list of foreign keys in the specified table (columns in the specified table that refer to
primary keys in other tables), or a list of foreign keys in other tables that refer to the primary key
in the specified table.

If ptable contains a table name, this function returns a result set containing the primary key of the
specified table.

If ftable contains a table name, this functions returns a result set of containing all of the foreign
keys in the specified table and the primary keys (in other tables) to which they refer.

If both ptable and ftable contain table names, this function returns the foreign keys in the table

CHAPTER 6

76

specified in ftable that refer to the primary key of the table specified in ptable. This should be one
key at most.

GetForeignKeys returns results as a standard result set. If the foreign keys associated with a
primary key are requested, the result set is ordered by FKTABLE_QUALIFIER,
FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ. If the primary keys associated with a
foreign key are requested, the result set is ordered by PKTABLE_QUALIFIER,
PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ. The following table lists the columns in
the result set.

0 (VARCHAR) PKTABLE_QUALIFIER
1 (VARCHAR) PKTABLE_OWNER
2 (VARCHAR) PKTABLE_NAME
3 (VARCHAR) PKCOLUMN_NAME
4 (VARCHAR) FKTABLE_QUALIFIER
5 (VARCHAR) FKTABLE_OWNER
6 (VARCHAR) FKTABLE_NAME
7 (VARCHAR) FKCOLUMN_NAME
8 (SMALLINT) KEY_SEQ
9 (SMALLINT) UPDATE_RULE
10 (SMALLINT) DELETE_RULE
11 (VARCHAR) FK_NAME
12 (VARCHAR) PK_NAME

wxRecordSet get-int-data

long (get-int-data string-or-long col)

Returns the integer data for the current record at the specified column. The column can be a
name or an integer position (starting from zero).

wxRecordSet get-number-cols

long (get-number-cols)

Returns the number of columns in the result set.

wxRecordSet get-number-fields

long (get-number-fields)

Not implemented.

wxRecordSet get-number-params

long (get-number-params)

Not implemented.

CHAPTER 6

77

wxRecordSet get-number-records

long (get-number-records)

Returns the number of records in the result set.

wxRecordSet get-primary-keys

long (get-primary-keys optional string table = "")

Returns the column names that comprise the primary key of the table with the specified name. If
no name is given the class member tablename will be used. If both names are NULL nothing will
happen. The data will be presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) COLUMN_NAME
4 (SMALLINT) KEY_SEQ
5 (VARCHAR) PK_NAME

wxRecordSet get-result-set

bool (get-result-set)

Copies the data presented by ODBC into the recordset. Depending on the recordset type all or
only one record(s) will be copied. Usually this function will be called automatically after each
successful database operation.

wxRecordSet get-table-name

string (get-table-name)

Returns the name of the current table.

wxRecordSet get-tables

bool (get-tables)

Gets the tables of a database. The data will be presented as a normal result set, organized as
follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) TABLE_TYPE (TABLE, VIEW, SYSTEM TABLE, GLOBAL TEMPORARY,

LOCAL TEMPORARY, ALIAS, SYNONYM, or database-specific type)
4 (VARCHAR) REMARKS

CHAPTER 6

78

wxRecordSet goto

bool (goto long n)

Moves the cursor to the record with the number n, where the first record has the number 0.

wxRecordSet is-bof

TRUE (is-bof)

Returns TRUE if the user tried to move the cursor before the first record in the set.

wxRecordSet is-field-dirty

bool (is-field-dirty string-or-long field)

Returns TRUE if the given field has been changed but not saved yet.

wxRecordSet is-field-null

bool (is-field-null string-or-long field)

Returns TRUE if the given field has no data.

wxRecordSet is-col-nullable

bool (is-col-nullable string-or-long field)

Returns TRUE if the given column may contain no data.

wxRecordSet is-eof

bool (is-eof)

Returns TRUE if the user tried to move the cursor behind the last record in the set.

wxRecordSet is-open

bool (is-open)

Returns TRUE if the parent database is open.

wxRecordSet move

bool (move long rows)

CHAPTER 6

79

Moves the cursor a given number of rows. Negative values are allowed.

wxRecordSet move-first

bool (move-first)

Moves the cursor to the first record.

wxRecordSet move-last

bool (move-last)

Moves the cursor to the last record.

wxRecordSet move-next

bool (move-next)

Moves the cursor to the next record.
wxRecordSet move-prev

bool (move-prev)

Moves the cursor to the previous record.
wxRecordSet query

bool (query string columns string table optional string filter)

Start a query. An SQL string of the following type will automatically be generated and executed:
"SELECT columns FROM table WHERE filter".

wxRecordSet set-table-name

bool (set-table-name string table)

Specify the name of the table you want to use. 6.42. wxServer is-a wxObject

See also Interprocess communication overview (page 199)

A server object represents the server side of a DDE conversation.

wxServer service-name

string service-name

The name of the service (or server).

wxServer create

CHAPTER 6

80

void (create)

Creates a server object, and returns an integer id if successful.

The service-name slot should be initialized with a string identifying this service to potential clients.
Under UNIX, it should contain a valid port number.

wxServer on-accept-connection

wxConnection (on-accept-connection string topic)

Should be overrident to return an instance of the appropriate wxConnection class, or nil to reject
the connection.

6.43. wxSlider is-a wxItem

A slider is a panel item for denoting a range of values. It must be a child of a panel or dialog box.

wxSlider min

int min

The slider minimum value.

wxSlider max

int max

The slider maximum value.

wxSlider value

int value

The value of the slider (set-value and get-value can be called after initialization).

wxSlider create

long (create)

Creates a horizontal slider item on the given panel or dialog box. The following slots may be
initialized.

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.

CHAPTER 6

81

• window-name: may be absent or a string name to identify this item.
• label: may be absent or a string name to label this item.
• style: a bit list of values (see below).
• value: an integer for initializing the value of the sider.
• min: the minimum value (zero or greater).
• max: the maximum value (1 or greater).

style is a bit list of the following:

wxHORIZONTAL The item will be created as a horizontal slider.
wxVERTICAL The item will be created as a vertical slider.

6.44. wxText is-a wxItem

A text item is used for displaying and editing a single line of text. It must be a child of a panel or
dialog box. See also wxMultiText (page 65) for multiline text items.

wxText value

string value

The initial value. The handlers put-value and get-value are defined for this slot. set-value is a
synonym for put-value.

wxText create

long (create)

Creates a single-line text item on the given panel or dialog box. The following slots may be
initialized.

• parent: should be a wxPanel or wxDialogBox.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this item.
• label: may be absent or a string name to label this item.
• style: see below.
• value: a string for initializing the value of the text item.

The style parameter can be a bit list of the following:

wxTE_PROCESS_ENTER The callback function will receive the event
wxEVENT_TYPE_TEXT_ENTER_COMMAND. Note that this will break tab
traversal for this panel item under Windows. Single-line text only.

wxTE_PASSWORD The text will be echoed as asterisks. Single-line text only.
wxTE_READONLY The text will not be user-editable.
wxHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical

scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView. Multi-line text only.

CHAPTER 6

82

wxText set-value

bool (set-value string value)

Set the text item's string value. A synonym for put-value.

6.45. wxTextWindow is-a wxWindow

To display a lot of text, use this subwindow as the child of a wxFrame (page 48). It is capable of
loading and saving files of ASCII text, and the text can be edited directly.

The following callbacks are valid for the dialog box class:

OnChar (Not XView.) The function is called with the text window identifier, key code, and
key event identifier. If the event is an ASCII keypress, the code will correspond to the
ASCII code; otherwise, the programmer must refer to the constants defined in
common.h, in the wxWindows library.

To invoke default processing, call text-window-on-char (to be implemented).
OnSize The function is called with the text window identifier, width and height.

wxTextWindow clear

bool (clear)

Clears the contents of a text subwindow. Returns TRUE if successful, FALSE otherwise.

wxTextWindow copy

bool (copy)

Copies the selected text to the clipboard.

wxTextWindow cut

bool (cut)

Copies the selected text to the clipboard, then removes the selection.

wxTextWindow create

void (create)

Creates a text subwindow. The following slots may be initialized.

• parent: should be a wxFrame.
• x: may be absent or -1 to denote default layout, or zero/positive integer.

CHAPTER 6

83

• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this canvas.
• style: may be absent or a string style: see below.

style is a bit list of some of the following:

wxBORDER Use this style to draw a thin border in Windows (non-native implementation
only).

wxNATIVE_IMPL Use this style to allow editing under Windows, albeit with a 64K
limitation.

wxTextWindow discard-edits

void (discard-edits)

Discard any edits in the text window.

wxTextWindow get-contents

string (get-contents)

Returns the contents (up to a maximum of 1000 characters).

wxTextWindow load-file

bool (load-file string filename)

Load the file onto the text subwindow, returning TRUE for success, FALSE for failure.

wxTextWindow modified

bool (modified)

Returns TRUE if the text has been modified, FALSE otherwise.

wxTextWindow paste

bool (paste)

Pastes the text (if any) from the clipboard to the text window.

wxTextWindow save-file

bool (save-file string filename)

CHAPTER 6

84

Saves the text in the subwindow to the given file, returning TRUE for success, FALSE for failure.

wxTextWindow set-editable

Bool (set-editable bool editable)

Sets the text window to be editable or read-only.

wxTextWindow write

bool (write string text)

Writes the given string into the text window, at the current cursor point.

6.46. wxTimer is-a wxObject

A timer object can be created to notify the application at regular intervals.

wxTimer create

void (create)

Creates a timer object. Use timer-start to start the timer, and register a Notify callback function to
receive notification.

wxTimer start

bool (start long milliseconds)

Starts the timer, notifying at intervals of duration milliseconds.

wxTimer stop

bool (stop)

Stops the timer.

6.47. wxToolBar is-a wxPanel

See also Overview (page 203)

A toolbar is an array of bitmap buttons, implemented by drawing bitmaps onto a canvas, instead
of using the native button implementation.

Note: under XView, wxToolBar inherits from wxCanvas, not wxPanel, due to limitations in the
XView toolkit.

wxToolBar create-buttons

CHAPTER 6

85

bool create-buttons

Specify TRUE if the enhanced underlying wxButtonBar class is to be used (optimized for
Windows), FALSE for the standard wxToolBar class. The default is TRUE.

wxToolBar orientation

string orientation

Specify wxVERTICAL for vertical layout, or wxHORIZONTAL for horizontal layout. Ignored if
doing manual layout.

wxToolBar rows-or-columns

long rows-or-columns

The maximum number of rows or columns in this toolbar (depends on the value of orientation.
Ignored if doing manual layout.

wxToolBar add-separator

bool (add-separator long id)

Adds a separator between tools: only functional under Windows 95, but harmless under other
platforms.

wxToolBar add-tool

bool (add-tool long id long index wxBitmap bitmap1 optional wxBitmap bitmap2 = nil
optional bool is-toggle = FALSE optional double x = -1.0 optional double x = 1.0 optional
long client-data = 0 optional string short-help-string="" optional string long-help-string="")

Adds a tool to the toolbar. Pass at least one bitmap, the bitmap to be displayed when active and
not depressed; and optionally, the bitmap to be displayed when the tool is depressed or toggled.
Under Windows, only one bitmap is necessary, and under X, the second bitmap will be created
automatically as the inverse of the first button if none is supplied.

You can specify whether the tool is allowed to toggle, and pass a position if you are not going to
automatically layout the toolbar with toolbar-layout. You can associate client data with the tool.

short-help-string is only used by Windows 95 versions of wxCLIPS. The string is used to supply
text for a tooltip, a small yellow window that appears as the mouse pointer hovers over the button.

long-help-string specifies a longer help string that can be used by the application.

wxToolBar clear-tools

bool (clear-tools)

CHAPTER 6

86

Clears all the tools from the toolbar.

wxToolBar create

void (create)

Creates a toolbar. The following slots may be initialized.

• parent: should be a wxFrame.
• x: may be absent or -1 to denote default layout, or zero/positive integer.
• y: may be absent or -1 to denote default layout, or zero/positive integer.
• width: may be absent or -1 to denote default width, or a positive integer.
• height: may be absent or -1 to denote default height, or a positive integer.
• window-name: may be absent or a string name to identify this toolbar.
• style: may be absent or a string style: see below.
• create-buttons: should be 1 (the default) if the toolbar should superimpose the user-

supplied buttons onto a larger 3D button. If 0, the tool will be the same size as the
button, and the toggle state will be represented by inverting the tool (Windows) or adding
a border (X).

• orientation: specify wxVERTICAL for vertical layout, or wxHORIZONTAL for horizontal
layout. Ignored if doing manual layout.

• rows-or-columns: the maximum number of rows or columns in this toolbar (depends on
the value of orientation. Ignored if doing manual layout.

style may be a bit list of:

• wxTB_3DBUTTONS: gives a simple 3D look to the buttons.

Note that absolute tool positioning (or the layout function) does not work for buttonbars under
Windows 95: instead, you can specify the number of rows for the toolbar, and use add-separator
to achieve inter-tool spacing.

wxToolBar create-tools

bool (create-tools)

This should be called when creating Windows 95 buttonbars, after all tools have been added. It
adds the tools to the toolbar. You can also call it for non-Windows 95 toolbars and buttonbars, in
which case it will have no effect.

wxToolBar enable-tool

bool (enable-tool long tool-id bool enable)

Enables the tool (if enable is TRUE) or disables it (if enable is FALSE).

wxToolBar get-max-height

double (get-max-height)

CHAPTER 6

87

Gets the maximum height of the toolbar when it has been automatically laid out.

wxToolBar get-max-width

double (get-max-width)

Gets the maximum width of the toolbar when it has been automatically laid out.

wxToolBar get-tool-client-data

long (get-tool-client-data long tool-id)

Returns the client data associated with the given tool.

wxToolBar get-tool-enabled

bool (get-tool-enabled long tool-id)

Returns TRUE if the tool is enabled, FALSE otherwise.

wxToolBar get-tool-long-help

string (get-tool-long-help long tool-id)

Returns the long help string.

wxToolBar get-tool-short-help

string (get-tool-short-help long tool-id)

Returns the short help string.

wxToolBar get-tool-state

bool (get-tool-state long tool-id)

Returns the tool state (TRUE for toggled on, FALSE for off).

wxToolBar layout

bool (layout)

Lays out all the tools if automatic layout is required.

wxToolBar on-paint

CHAPTER 6

88

void (on-paint)

Calls the default toolbar paint handler. You may wish to call this if you override the default
handler.

wxToolBar set-default-size

bool (set-default-size long width long height)

Sets the width and height of tool buttons (Windows only). The default is 24 by 22.

wxToolBar set-margins

bool (set-margins long x long y)

Sets the width and height of the toolbar margins and spacing, if automatic layout is being used.

wxToolBar set-tool-long-help

bool (set-tool-long-help long tool-id string help-string)

Sets the long help string for this tool.

wxToolBar set-tool-short-help

bool (set-tool-short-help long tool-id string help-string)

Sets the short help string for this tool.

wxToolBar toggle-tool

bool (toggle-tool long tool-id bool toggle)

Toggles the tool on or off.

6.48. wxWindow is-a wxEvtHandler

The wxWindow is an 'abstract' class, used to access the functionality of classes derived from it.
Therefore, please refer to this section when considering other classes.

wxWindow x

long x

The x coordinate of the window.

wxWindow y

CHAPTER 6

89

long y

The window y coordinate.

wxWindow width

long width

The window width.

wxWindow height

long height

The window height.

wxWindow client-width

long client-width

The window client width (space available for contents of this window).

wxWindow client-height

long client-height

The window client height (space available for contents of this window).

wxWindow centre

bool (centre word orientation)

orientation may be wxVERTICAL, wxHORIZONTAL or wxBOTH. Centres the window with
respect to its parent (or desktop).

wxWindow enable

bool (enable bool enable)

If enable is TRUE, enables the window for input. If enable is FALSE, the window is disabled
(greyed out in the case of a panel item).

wxWindow find-window-by-name

wxWindow (find-window-by-name string name)

CHAPTER 6

90

Finds the descendant window for this window.

wxWindow find-window-by-label

wxWindow (find-window-by-label string label)

Finds the descendant window for this window.

wxWindow fit

bool (fit)

Fits the panel, dialog box or frame around its children.

wxWindow get-name

string (get-name)

Gets the window's name (the 'name' parameter passed to a window constructor).

wxWindow get-parent

wxWindow (get-parent)

Gets the window's parent, or nil if there no parent.

wxWindow make-modal

bool (make-modal bool modal)

modal may be TRUE to disable all frames and dialog boxes except this one, or FALSE to enable
all frames and dialogs again.

Has no effect under XView.

wxWindow popup-menu

bool (popup-menu wxMenu menu double x double y)

Pops up a menu on the window, at the given position. The menu will be dismissed (but not
destroyed) when the user makes a selection.

Note that there is a reliability problem with Motif popup menus; they may not pop up after the first
time.

wxWindow set-cursor

CHAPTER 6

91

bool (set-cursor wxCursor cursor)

Sets the cursor for this window.

wxWindow set-focus

bool (set-focus)

Set this window to have the keyboard focus.

wxWindow set-size

bool (set-size long x long y long width long height)

Sets the position and size of the window.

wxWindow set-client-size

bool (set-client-size long width long height)

Sets the client size (available space for child windows) of the window.

wxWindow show

bool (show long show)

If show is TRUE, shows the window. If show is FALSE, the window is hidden. If the window is a
modal dialog box, show = TRUE will start the modal loop, and show = FALSE will terminate the
loop (allowing execution to proceed after the first call to show).

92

7. wxCLIPS function groups

This is the reference for CLIPS windowing and other, miscellaneous functions. With these
functions, it is possible to create special-purpose user interfaces independent of platform.
Currently these capabilities are supported under MS Windows, Open Look and Motif.

7.1. How to use this reference

In the function definitions below, bold words are types, and are not part of CLIPS syntax.
Parameter names are in italics. Types are as follows:

• double is a double-precision floating point number.
• long is a long integer.
• string is a double-quoted ASCII string.
• word is an unquoted string.
• multifield is a CLIPS multi-field value list.

Parameters can be optional, in which case defaults are assumed.

Some parameters can be bit lists of flags. wxCLIPS mimics the compact C++ syntax by parsing
strings, for example:

 (frame-create ... "wxSDI | wxDEFAULT")

Each identifier in such a parameter is translated to an integer value, and all are logical-or'ed
together to produce an integer which is passed to the appropriate wxWindows C++ function.

Note: In Windows NT or WIN32s versions of Hardy, integer identifiers can be negative. So when
validating integer identifiers, test for values of zero or -1, rather than for values less than zero.

Functions are grouped by class: in the underlying C++ library wxWindows, these are actual C++
classes. The functions are used in an object-oriented way, in that long integer identifiers
represent an object, or instance, of a particular class. Some functions operate on several classes
of object; for example, the functions prefixed window operate on classes derived from window,
such as canvas, frame, dialog box, panel item. Similarly, the functions prefixed dc operate on
different kinds of device context.

Most functions either take an integer identifier (checking its type before doing the appropriate
thing) or return a new one.

In C++, the application would derive new classes and override certain member functions, such as
OnClose, to intercept messages or events sent to the window objects. In CLIPS, the same effect
is achieved by registering callback functions for specific events, using window-add-callback (page
175).

7.2. Application

One object of class 'application' is always present, and its implementation depends upon the C++
application hosting the wxCLIPS environment.

If an application defines a function called app-on-init, the wxCLIPS user interface can start up the
application from a standard menu item, or straightaway if the -start flag is used on the command
line. This function is not relevant to embedded versions of wxCLIPS.

CHAPTER 7

93

If app-on-init is defined, it must initialize the main frame and return its integer identifier, or zero if
the application could not be initialized.

The following callbacks are valid for the app class.

OnCharHook Under Windows only, all key strokes going to a dialog box or frame can be
intercepted before being passed on for normal processing. This callback function takes
the window id and event id, and should return 1 to override further processing, or 0 to do
default processing. If the function returns 0, the OnCharHook message will be sent to
the active window. See also Key event (page 140).

app-create

long (app-create)

Returns the identifier of the current application object. If called multiple times, will always return
the same number since there is only one application object, which will have been created before
wxCLIPS is initialized.

app-get-show-frame-on-init

long (app-get-show-frame-on-init long id)

Returns 1 if the application will show the top-level frame automatically on initialization, 0
otherwise.

You can pass 0 or a return value from app-create for the id parameter.

app-on-init

long (app-on-init)

If defined, should initialize the application and return the identifer of the top-level frame, or zero if
there is no main window associated with the CLIPS program. If zero is returned, the wxCLIPS
development window will be created if it does not already exist. Under Windows, you may call
show-ide-window (page 187) from this function.

app-set-show-frame-on-init

void (app-set-show-frame-on-init long id long show)

Called before on-app-init returns, can change the behaviour of wxCLIPS to not force a 'show' of
the main frame. This might be needed if you wish to set the focus for a different window on
initialization. show should be 0 to disable showing, 1 otherwise (the default behaviour).

You can pass 0 or a return value from app-create for the id parameter.

7.3. Bitmap

A bitmap is a rectangular array of pixels, possibly in colour. A bitmap can be created in memory,

CHAPTER 7

94

or loaded from an XBM file under X, or BMP file under Windows.

A bitmap can be drawn on a canvas by selecting it into a memory-dc (page 143) object and using
dc-blit (page 115). Bitmaps can also be used to create buttons; see button-create-from-bitmap
(page 96).

bitmap-create

long (bitmap-create float width float height optional int depth)

Creates a bitmap in memory. The programmer can draw into the bitmap by selecting it into a
memory device context, for later drawing on an output device context such as a canvas device
context.

bitmap-delete

long (bitmap-delete long bitmap-id)

Deletes the given bitmap.

bitmap-get-colourmap

long (bitmap-get-colourmap long id)

Gets the colourmap associated with the bitmap; if none, zero will be returned.

bitmap-get-height

long (bitmap-get-height long id)

Gets the height of the bitmap.

bitmap-get-width

long (bitmap-get-width long id)

Gets the width of the bitmap.

bitmap-load-from-file

long (bitmap-load-from-file string file optional word bitmap-type)

Loads a bitmap from a file, and returns a new bitmap identifier.

bitmap-type specifies the type of bitmap to be loaded, and may be one of:

• wxBITMAP_TYPE_BMP: Windows BMP (the default under Windows).
• wxBITMAP_TYPE_XBM: X monochrome bitmap (the default under X).

CHAPTER 7

95

• wxBITMAP_TYPE_GIF: GIF bitmap (only under X).
• wxBITMAP_TYPE_XPM: XPM colour bitmap (under Windows and X if wxCLIPS has

been compiled to include this option).
• wxBITMAP_TYPE_RESOURCE: Windows resource bitmap; unlikely to be used since

the resources compiled into wxCLIPS cannot be changed from CLIPS.

Note that whether any of these formats are available depends on how wxCLIPS was compiled.

7.4. Brush

A brush is a an object that can be set for a device context (see canvas-get-dc (page 97), device
context (page 115)) and determines the fill colour and style for subsequent drawing operations.

See also pen (page 156).

brush-create

long (brush-create string colour word style)

long (brush-create long colour-value word style)

Creates a brush for use in a device context.

colour is a wxWindows colour string such as "BLACK'', "CYAN''), and style may be one of
wxSOLID, wxTRANSPARENT.

colour-value is a value returned from colour-create (page 103).

A brush must be set to fill graphic shapes.

brush-delete

long (brush-delete long brush-id)

Deletes the given brush.

7.5. Button

A button is a rectangular control which can be placed on a panel (page 154) to invoke a function.

button-create

long (button-create long panel-id string callback string label
 optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a label button on the given panel. The callback may be the empty string ("'') to denote no
callback, or a word or string for the function name. The function will be called when the button is
pressed, with the button ID as argument. If no position is given, the panel item is placed after the
last item. The value -1 may be passed to denote a default, so that the position may be left
unspecified and the size given.

CHAPTER 7

96

The style argument is reserved for future use.

name gives the button a name that can be retrieved with window-get-name (page 176).

button-create-from-bitmap

long (button-create-from-bitmap long panel-id string callback long bitmap-id
 optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a bitmap button on the given panel. The callback may be the empty string ("'') to denote
no callback, or a word or string for the function name. The function will be called when the button
is pressed, with the button ID as argument. If no position is given, the panel item is placed after
the last item. The value -1 may be passed to denote a default, so that the position may be left
unspecified and the size given.

The style argument is reserved for future use.

name gives the button a name that can be retrieved with window-get-name (page 176).

7.6. Canvas

A subwindow used for drawing arbitrary graphics. It must be the child of a frame (page 123).

The following callbacks are valid for the canvas class.

OnChar The function is called with the canvas identifier, key code, and key event identifier. If
the event is an ASCII keypress, the code will correspond to the ASCII code; otherwise,
the programmer must refer to the constants defined in common.h, in the wxWindows
library. See also Key event (page 140).

OnEvent Called with a canvas identifier and a mouse event (page 148) identifier.
OnScroll Called with a canvas identifier and a command event (page 103) identifier.
OnPaint Called with a canvas identifier when the canvas receives a repaint event from the

window manager.
OnSize The function is called with the window identifier, width and height.

See also window-add-callback (page 175).

canvas-create

long (canvas-create long parent-id optional long x optional long y
 optional long width optional long height optional string style="wxRETAINED'' optional
string name)

Creates a canvas for drawing graphics on. parent-id must be a valid frame ID.

The value of style can be a bit list of the following values:

wxBORDER Gives the canvas a thin border (Windows 3 and Motif only).
wxRETAINED Gives the canvas a wxWindows-implemented backing store, making repainting

much faster but at a potentially costly memory premium (XView and Motif only).
wxBACKINGSTORE Gives the canvas an X-implemented backing store (XView and Motif

only). The X server may choose to ignore this request, whereas wxRETAINED is

CHAPTER 7

97

always implemented under X.

name gives the canvas a name that can be retrieved with window-get-name (page 176).

canvas-get-dc

long (canvas-get-dc long canvas-id)

Return the device context handle belonging to the canvas. The device context must be retrieved
before anything can be drawn on the canvas. If your drawing function is parameterized by a
device context, you will be able to pass other types of device context to your drawing routine,
such as PostScript and Windows metafile device contexts.

canvas-get-scroll-page-x

long (canvas-get-scroll-page-x long canvas-id)

Gets the number of lines per horizontal scroll page.

canvas-get-scroll-page-y

long (canvas-get-scroll-page-y long canvas-id)

Gets the number of lines per vertical scroll page.

canvas-get-scroll-pos-x

long (canvas-get-scroll-pos-x long canvas-id)

Gets the horizontal scroll position in scroll units.

canvas-get-scroll-pos-y

long (canvas-get-scroll-pos-y long canvas-id)

Gets the vertical scroll position in scroll units.

canvas-get-scroll-range-x

long (canvas-get-scroll-range-x long canvas-id)

Gets the number of horizontal scroll positions.

canvas-get-scroll-range-y

long (canvas-get-scroll-range-y long canvas-id)

CHAPTER 7

98

Gets the number of vertical scroll positions.

canvas-get-scroll-pixels-per-unit-x

long (canvas-get-scroll-pixels-per-unit-x long canvas-id)

Gets the number of pixels per horizontal scroll unit, as set in canvas-set-scrollbars (page 98).

canvas-get-scroll-pixels-per-unit-x

long (canvas-get-scroll-pixels-per-unit-y long canvas-id)

Gets the number of pixels per vertical scroll unit, as set in canvas-set-scrollbars (page 98).

canvas-on-char

long (canvas-on-char long panel-id long event-id)

The default implementation of the OnChar callback. Call this to pass intercepted characters
through to the canvas.

canvas-on-scroll

long (canvas-on-scroll long panel-id long event-id)

The default implementation of the OnScroll callback.

canvas-set-scrollbars

long (canvas-set-scrollbars long canvas-id long x-unit-size long y-unit-size
 long x-length long y-length long x-page-length long y-page-length)

Set the scrollbars for the given canvas. The first argument pair specifies the number of pixels per
logical scroll unit, that is, the number of pixels to scroll when a scroll arrow is clicked. If either is
zero or less, that scrollbar will not appear. The second pair specifies the size of the virtual canvas
in logical scroll units. The third pair of arguments specify the number of scroll units per page, that
is, the amount to scroll by when the scrollbar is page-scrolled (usually by clicking either side of
the scrollbar handle).

canvas-set-scroll-page-x

void (canvas-set-scroll-page-x long canvas-id long value)

Sets the number of lines per horizontal scroll page.

canvas-set-scroll-page-y

CHAPTER 7

99

void (canvas-set-scroll-page-y long canvas-id long value)

Sets the number of lines per vertical scroll page.

canvas-set-scroll-pos-x

void (canvas-set-scroll-pos-x long canvas-id long value)

Sets the horizontal scroll position.

canvas-set-scroll-pos-y

void (canvas-set-scroll-pos-y long canvas-id long value)

Sets the vertical scroll position.

canvas-set-scroll-range-x

void (canvas-set-scroll-range-x long canvas-id long value)

Sets the number of positions on the horizontal scrollbar.

canvas-set-scroll-range-y

void (canvas-set-scroll-range-y long canvas-id long value)

Sets the number of positions on the vertical scrollbar.

canvas-scroll

long (canvas-scroll long canvas-id long x-position long y-position)

Scroll the canvas programmatically to the given scroll position. To convert from pixel position to
scroll position, divide the pixel position by the scroll unit size you passed to canvas-set-scrollbars
(page 98).

canvas-view-start-x

long (canvas-view-start-x long canvas-id)

Returns the first visible horizontal scroll position. Note this is in scroll units, not pixel, so to convert
to pixel position you need to multiply this value by the result of canvas-get-scroll-pixels-per-unit-x
(page 98).

canvas-view-start-y

CHAPTER 7

100

long (canvas-view-start-y long canvas-id)

Returns the first visible vertical scroll position. Note this is in scroll units, not pixel, so to convert to
pixel position you need to multiply this value by the result of canvas-get-scroll-pixels-per-unit-y
(page 98).

7.7. Checkbox

A checkbox is a small box with a label, and can be in one of two states. It must be the child of a
panel (page 154).

check-box-create

long (check-box-create long panel-id string callback string label
 optional long x optional long y
 optional long width optional long height optional string style
 optional string name)

Creates a checkbox on the given panel. The callback may be the empty string ("'') to denote no
callback, or a word or string for the function name. The function will be called when the checkbox
is turned on or off, with the checkbox ID as argument. If no position is given, the panel item is
placed after the last item. The value -1 may be passed to denote a default, so that the position
may be left unspecified and the size given.

The style parameter is reserved for future use.

name gives the checkbox a name that can be retrieved with window-get-name (page 176).

check-box-set-value

long (check-box-set-value long check-box-id long value)

Set the check box value (0 or 1).

check-box-get-value

long (check-box-get-value long check-box-id)

Gets the check box value (0 or 1).

7.8. Choice

A choice item is similar to a single-selection listbox (page 141) but normally only the current
selection is displayed. It must be the child of a panel (page 154).

choice-create

long (choice-create long panel-id string callback string label
 optional long x optional long y optional long width optional long height
 optional multifield strings optional string style optional string name)

CHAPTER 7

101

Creates a choice item on the given panel. A choice consists of a list of strings, one of which may
be selected and displayed at any one time. The callback may be the empty string ("'') to denote
no callback, or a word or string for the function name. The function will be called when an item in
the choice list is selected, with the choice ID as argument. If no position is given, the panel item is
placed after the last item. The value -1 may be passed to denote a default, so that the position
may be left unspecified and the size given.

strings should be a multifield of strings. Note that under Motif, it is recommended that the values
are passed in this function, rather than using choice-append, because of the nature of Motif (i.e.
horrible). Otherwise, things are likely to be messed up.

The style parameter is reserved for future use.

name gives the choice item a name that can be retrieved with window-get-name (page 176).

choice-append

long (choice-append long choice-id string item)

Append the string item to the choice.

choice-find-string

long (choice-find-string long choice-id string item)

Searches for the given string and if found, returns the position ID of the string.

choice-clear

long (choice-clear long choice-id)

Clears all the strings from the choice item.

choice-get-selection

long (choice-get-selection long choice-id)

Get the ID of the string currently selected.

choice-get-string-selection

string (choice-get-string-selection long choice-id)

Get the string currently selected.

choice-set-selection

long (choice-set-selection long choice-id long item-id)

CHAPTER 7

102

Sets the choice selection to the given item ID (numbered from zero).

choice-set-string-selection

long (choice-set-string-selection long choice-id string item)

Set the selection by passing the appropriate item string.

choice-get-string

string (choice-get-string long choice-id long item-id)

Get the string associated with the given item ID.

choice-number

long (choice-number long choice-id)

Returns the number of strings in the choice item.

7.9. Client

See also Interprocess communication overview (page 199)

A client object represents the client side of a DDE conversation.

To delete a client object, use object-delete.

client-create

long (client-create)

Creates a client object, returning the integer id of the object if successful. No event handlers need
be defined for a client object.

A connection is not made until client-make-connection (page 102) is called.

client-make-connection

long (client-make-connection long id string host string service string topic)

Makes a connection to a server, returning the id of the connection if successful.

id is the client id returned from client-create.

host is ignored under Windows, and should contain a valid internet host name under X.

service is a DDE service identifier (under X should contain a socket identifier).

topic is a topic name for this connection.

CHAPTER 7

103

Any connection event handlers should be defined by the application code after this function is
called, assuming the return result is not zero.

7.10. Colour

A colour value is not in fact a class, but a long integer which contains the values of the red, green
and blue components in a colour. A colour value may be passed to pen and brush creation
functions, and also to some Grid (page 129) member functions.

colour-create

long (colour-create long red long green long blue)

long (colour-create long parent-id string name) A colour value may be created either by
passing red, green and blue values, or by passing a colour name such as RED.

colour-red

long (colour-red long colour)

Returns the red component of the colour, a number between 0 and 255.

colour-green

long (colour-green long colour)

Returns the green component of the colour, a number between 0 and 255.

colour-blue

long (colour-blue long colour)

Returns the blue component of the colour, a number between 0 and 255.

7.11. Command event

A command event is associated with each panel item or menu callback. It is not passed to the
callback, so must be retrieved within a callback using panel-item-get-command-event (page 155).

The command event types are as follows:

• wxEVENT_TYPE_BUTTON_COMMAND
• wxEVENT_TYPE_CHECKBOX_COMMAND
• wxEVENT_TYPE_CHOICE_COMMAND
• wxEVENT_TYPE_LISTBOX_COMMAND
• wxEVENT_TYPE_TEXT_COMMAND
• wxEVENT_TYPE_TEXT_ENTER_COMMAND
• wxEVENT_TYPE_MULTITEXT_COMMAND
• wxEVENT_TYPE_MENU_COMMAND

CHAPTER 7

104

• wxEVENT_TYPE_SLIDER_COMMAND
• wxEVENT_TYPE_RADIOBOX_COMMAND
• wxEVENT_TYPE_SET_FOCUS
• wxEVENT_TYPE_KILL_FOCUS

command-event-get-selection

long (command-event-get-selection long id)

Returns the identifier selection corresponding to the selected item, for example a listbox or menu
item.

command-event-is-selection

long (command-event-is-selection long id)

Returns 1 if the event was a selection event, 0 otherwise.

7.12. Connection

See also Connection overview (page 200)

A connection object id is used for initiating DDE commands and requests using functions such as
connection-execute, and it also has event handlers associated with it to respond to commands
from the other side of the connection.

connection-advise

long (connection-advise long id string item string data)

Called by a server application to pass data to a client (for example, when a spreadsheet cell has
been updated, and the client is interested in this value).

item is the name of the item, and data is a string representing the item's data.

Returns 1 if successful, 0 otherwise.

connection-create

long (connection-create)

Creates a connection object. Note that if you use the server OnAcceptConnection callback, the
object will be created for you. If you use OnAcceptConnectionEx then you must call connection-
create yourself from within that callback.

connection-execute

long (connection-execute long id string data)

CHAPTER 7

105

Called by a client application to execute a command in the server. Note there is no item in this
command.

data is a string representing the item's data.

Returns 1 if successful, 0 otherwise.

To get a result from a server, you need to call connection-request explicitly, since connection-
execute doesn't return data.

connection-disconnect

long (connection-disconnect long id)

Called by a client or server application to terminate this connection. After this call, the connection
id is no longer valid.

Returns 1 if successful, 0 otherwise.

connection-poke

long (connection-poke long id string item string data)

Called by a client application to poke data into the server.

item is the name of the item, and data is a string representing the item's data.

Returns 1 if successful, 0 otherwise.

connection-request

string (connection-request long id string item)

Called by a client application to request data from a server.

item is the name of the requested data item.

Returns a string representing the data if successful, the empty string otherwise.

connection-start-advise

long (connection-start-advise long id string item)

Called by a client application to indicate interest in a particular piece of data in a server. The client
connection should then recieve OnAdvise messages when the data is updated in the server.

item is the name of the data item of interest.

Returns 1 if the advise loop is allowed, 0 otherwise.

CHAPTER 7

106

connection-stop-advise

long (connection-stop-advise long id string item)

Called by a client application to indicate a termination of interest in a particular piece of data in a
server.

item is the name of the data item of interest.

Returns 1 if successful, 0 otherwise.

7.13. Cursor

A cursor is a small bitmap used for representing the mouse pointer. It can be set for a particular
subwindow, using window-set-cursor, as a cue for what operations are possible in this window at
this point in time.

At present, it is only possible to create a cursor in wxCLIPS from a fixed range of cursor types.

cursor-create

long (cursor-create string stock-cursor-name)

Creates a stock cursor. stock-cursor-name must be one of the following:

• wxCURSOR_ARROW
• wxCURSOR_BULLSEYE
• wxCURSOR_CHAR
• wxCURSOR_CROSS
• wxCURSOR_HAND
• wxCURSOR_IBEAM
• wxCURSOR_LEFT_BUTTON
• wxCURSOR_MAGNIFIER
• wxCURSOR_MIDDLE_BUTTON
• wxCURSOR_NO_ENTRY
• wxCURSOR_PAINT_BRUSH
• wxCURSOR_PENCIL
• wxCURSOR_POINT_LEFT
• wxCURSOR_POINT_RIGHT
• wxCURSOR_QUESTION_ARROW
• wxCURSOR_RIGHT_BUTTON
• wxCURSOR_SIZENESW
• wxCURSOR_SIZENS
• wxCURSOR_SIZENWSE
• wxCURSOR_SIZEWE
• wxCURSOR_SIZING
• wxCURSOR_SPRAYCAN
• wxCURSOR_WAIT
• wxCURSOR_WATCH
• wxCURSOR_BLANK
• wxCURSOR_CROSS_REVERSE (X only)
• wxCURSOR_DOUBLE_ARROW (X only)

CHAPTER 7

107

• wxCURSOR_BASED_ARROW_UP (X only)
• wxCURSOR_BASED_ARROW_DOWN (X only)

cursor-delete

long (cursor-delete long cursor-id)

Deletes the given cursor.

cursor-load-from-file

long (cursor-load-from-file string filename word bitmap-type optional long hotspot-x
optional long hotspot-y)

Loads a cursor from a file.

hotspot-x and hotspot-y are currently only used under Windows when loading from an icon file, to
specify the cursor hotspot relative to the top left of the image.

Under X, the permitted cursor types in bitmap-type are:

• wxBITMAP_TYPE_XBM Load an X bitmap file

Under Windows, the permitted types are:

• wxBITMAP_TYPE_CUR Load a cursor from a .cur cursor file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).

• wxBITMAP_TYPE_CUR_RESOURCE Load a Windows resource (as specified in the .rc
file).

• wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h). Specify hotSpotX
and hotSpotY.

7.14. Database

See also Database classes overview (page 205)

Every database object represents an ODBC connection. The connection may be closed and
reopened.

database-close

long (database-close long id)

Resets the statement handles of any associated recordset objects, and disconnects from the
current data source.

database-create

long (database-create)

CHAPTER 7

108

Creates a new ODBC database handle and returns an id. The constructor of the first wxDatabase
instance of an application initializes the ODBC manager.

database-delete

long (database-delete long id)

Destructor. Resets and destroys any associated wxRecordSet instances.

The destructor of the last wxDatabase instance will deinitialize the ODBC manager.

database-error-occurred

long (database-error-occurred long id)

Returns 1 if the last action caused an error.

database-get-database-name

string (database-get-database-name long id)

Returns the name of the database associated with the current connection.

database-get-data-source

string (database-get-data-source long id)

Returns the name of the connected data source.

database-get-error-code

string (database-get-error-code long id)

Returns the error code of the last ODBC function call. This will be a string containing one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained

from the ODBC manager.

database-get-error-message

string (database-get-error-message long id)

CHAPTER 7

109

Returns the last error message returned by the ODBC manager.

database-get-error-number

long (database-get-error-number long id)

Returns the last native error. A native error is an ODBC driver dependent error number.

database-is-open

long (database-is-open long id)

Returns 1 if a connection is open.

database-open

long (database-open long id string datasource optional long exclusive = 1 optional string
readonly = 1 optional string username = "ODBC" optional string password = "")

Connect to a data source. datasource contains the name of the ODBC data source. The
parameters exclusive and readonly are not used.

7.15. Date

A class for manipulating dates.

date-add-months

long (date-add-months long date long months)

Adds the given number of months to the date, returning 1 if successful.

date-add-weeks

long (date-add-weeks long date long weeks)

Adds the given number of weeks to the date, returning 1 if successful.

date-add-years

long (date-add-years long date long years)

Adds the given number of months to the date, returning 1 if successful.

date-create

long (date-create)

CHAPTER 7

110

Constructs a date object, initialized to zero. You are responsible for deleting this object when you
have finished with it.

long (date-create long month long day long year)

Constructs a date object with the specified date. You are responsible for deleting this object when
you have finished with it.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

date-create-julian

long (date-create-julian long julian)

Constructor taking an integer representing the Julian date.

date-create-string

long (date-create-string string date)

Constructor taking a string representing a date. This must be either the string TODAY, or of the
form MM/DD/YYYY or MM-DD-YYYY. For example:

 (bind ?date (date-create-string "11/26/1966"))

date-delete

long (date-delete long date)

Deletes the date object.

date-format

string (date-format long date)

Formats the date into a string according to the current display type.

date-get-day

long (date-get-day long date)

Returns the numeric day (in the range 1 to 365).

date-get-day-of-week

CHAPTER 7

111

long (date-get-day-of-week long date)

Returns the integer day of the week (in the range 1 to 7).

date-get-day-of-week-name

string (get-day-of-week-name long date)

Returns the name of the day of week.

date-get-day-of-year

long (date-get-day-of-year long date)

Returns the day of the year (from 1 to 365).

date-get-days-in-month

long (date-get-days-in-month long date)

Returns the number of days in the month (in the range 1 to 31).

date-get-first-day-of-month

long (date-get-first-day-of-month long date)

Returns the day of week that is first in the month (in the range 1 to 7).

date-get-julian-date

long (date-get-julian-date long date)

Returns the Julian date.

date-get-month

long (date-get-month long date)

Returns the month number (in the range 1 to 12).

date-get-month-end

long (date-get-month-end long date)

Returns a new date representing the day that is last in the month. The new date must be deleted
when it is finished with.

CHAPTER 7

112

date-get-month-name

string (date-get-month-name long date)

Returns the name of the month.

date-get-month-start

long (date-get-month-start long date)

Returns a new date representing the first day of the month. The new date must be deleted when
it is finished with.

date-get-week-of-month

long (date-get-week-of-month long date)

Returns the week of month (in the range 1 to 6).

date-get-week-of-year

long (date-get-week-of-year long date)

Returns the week of year (in the range 1 to 52).

date-get-year

long (date-get-year long date)

Returns the year as an integer (such as '1995').

date-get-year-end

long (date-get-year-end long date)

Returns a new date the date representing the last day of the year. Delete the new date when you
have finished with it.

date-get-year-start

long (date-get-year-start long date)

Returns a new date the date representing the first day of the year. Delete the new date when you
have finished with it.

CHAPTER 7

113

date-is-leap-year

long (date-is-leap-year long date)

Returns 1 if the year of this date is a leap year.

date-set-current-date

long (date-set-current-date long date)

Sets the date to current system date.

date-set-julian

long (date-set-julian long date long julian)

Sets the date to the given Julian date.

date-set-date

long (date-set-date long date long month long day long year)

Sets the date to the given date.

month is a number from 1 to 12.

day is a number from 1 to 31.

year is a year, such as 1995, 2005.

date-set-format

long (date-set-format long date string format)

Sets the current format type.

format should be one of:

wxDAY Format day only.
wxMONTH Format month only.
wxMDY Format MONTH, DAY, YEAR.
wxFULL Format day, month and year in US style: DAYOFWEEK, MONTH, DAY, YEAR.
wxEUROPEAN Format day, month and year in European style: DAY, MONTH, YEAR.

date-set-option

long (date-set-option long date string option long enable=1)

Enables or disables an option for formatting. option may be one of:

CHAPTER 7

114

wxNO_CENTURY The century is not formatted.
wxDATE_ABBR Month and day names are abbreviated to 3 characters when formatting.

date-add-days

long (date-add-days long date long days)

Adds an integer number of days to the date, returning a new date object.

date-subtract-days

long (date-subtract-days long date long days)

Subtracts an integer number of days from the date, returning a new date object.

date-subtract

long (date-subtract long date long date1 long date2)

Subtracts one date from another, return the number of intervening days.

date-add-self

long (date-add-self long date long days)

Adds an integer number of days to the date, returning 1 if successful.

date-subtract-self

long (date-subtract-self long date long days)

Subtracts an integer number of days from the date, returning 1 if successful.

date-le

long (date-le long date1 long date2)

Function to compare two dates, returning 1 if date1 is earlier than date2.

date-leq

long (date-leq long date1 long date2)

Function to compare two dates, returning 1 if date1 is earlier than or equal to date2.

CHAPTER 7

115

date-ge

long (date-ge long date1 long date2)

Function to compare two dates, returning 1 if date1 is later than date2.

date-geq

long (date-geq long date1 long date2)

Function to compare two dates, returning 1 if date1 is later than or equal to date2.

date-eq

long (date-eq long date1 long date2)

Function to compare two dates, returning 1 if date1 is equal to date2.

date-neq

long (date-neq long date1 long date2)

Function to compare two dates, returning 1 if date1 is not equal to date2.

7.16. Device context

See also Overview (page 202)

A device context is an abstraction of a surface that can be drawn onto.

The following functions can be used with any device context identifier, with the exception of dc-blit
which must not be used with a PostScript device context, and dc-get-text-extent-width, dc-get-
text-extent-height which do not function correctly on PostScript or metafile device contexts.

dc-begin-drawing

long (dc-begin-drawing long id)

Bracket a series of drawing primitives in dc-begin-drawing and dc-end-drawing to optimize
drawing under Windows, and also if drawing to a panel or dialog box context, for which these
calls are mandatory. The calls may be nested.

dc-blit

long (dc-blit long dest-dc-id double dest-x double dest-y double width double height long
source-dc-id double source-x double source-y optional string logical-op = "wxCOPY")

Block-copies the given area from a source device context to a destination device context. This

CHAPTER 7

116

operation is not available to PostScript and Windows Metafile destination device contexts.

The argument logical-op sets the current logical function for the canvas. This determines how a
source pixel from the source device context combines with a destination pixel in the current
device context.

The possible values and their meaning in terms of source and destination pixel values are as
follows:

wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

The default is wxCOPY, which simply draws with the current colour. The others combine the
current colour and the background using a logical operation. wxXOR is commonly used for
drawing rubber bands or moving outlines, since drawing twice reverts to the original colour.

dc-clear

long (dc-clear long dc-id)

Clears the device context using the background colour.

dc-delete

long (dc-delete long dc-id)

Deletes a device context that has been explicitly created (so not a canvas DC).

dc-destroy-clipping-region

long (dc-destroy-clipping-region long dc-id)

Destroys the current clipping region.

dc-draw-ellipse

long (dc-draw-ellipse long dc-id

CHAPTER 7

117

 double x double y double width double height)

Draws an ellipse. The outline and filling attributes are determined by the pen and brush settings
respectively.

dc-draw-line

long (dc-draw-line long dc-id
 double x1 double y1 double x2 double y2)

Draws a line between the given points.

dc-draw-lines

long (dc-draw-lines long dc-id multifield list)

Draws lines between the given points. list is a multifield, which can be created by a call to mv-
append and a list of arguments. The list must contain an even number of floating-point values,
interpreted in pairs as the points determining the multiline.

dc-draw-point

long (dc-draw-point long dc-id double x double y)

Draws a point.

dc-draw-polygon

long (dc-draw-polygon long dc-id multifield list)

Draws a (possibly filled) polygon. list is a multifield, which can be created by a call to mv-append
and a list of arguments. The list must contain an even number of floating-point values, interpreted
in pairs as the points determining the polygon. The outline and filling attributes are determined by
the pen and brush settings respectively.

dc-draw-rectangle

long (dc-draw-rectangle long dc-id
 double x double y double width double height)

Draws a rectangle. The outline and filling attributes are determined by the pen and brush settings
respectively.

dc-draw-rounded-rectangle

long (dc-draw-rounded-rectangle long dc-id
 double x double y double width double height double radius)

Draws a rounded rectangle, with corners with a specified radius (optional). The outline and filling

CHAPTER 7

118

attributes are determined by the pen and brush settings respectively.

dc-draw-text

long (dc-draw-text long dc-id
 string text double x double y)

Draw text at the given position, using the font set by dc-set-font (page 120), and using the colours
set by dc-set-text-foreground (page 121) and dc-set-text-background (page 121) respectively.

dc-draw-spline

long (dc-draw-spline long dc-id multifield list)

Draws a spline curve. list is a multifield, which can be created by a call to mv-append and a list of
arguments. The list must contain an even number of floating-point values, interpreted in pairs as
the points determining the spline shape.

dc-end-doc

long (dc-end-doc long dc-id)

Ends a document (such as a PostScript or Windows printer document).

dc-end-drawing

long (dc-end-drawing long id)

Bracket a series of drawing primitives in dc-begin-drawing and dc-end-drawing to optimize
drawing under Windows, and also if drawing to a panel or dialog box context, for which these
calls are mandatory. The calls may be nested.

dc-end-page

long (dc-end-page long dc-id)

Ends a page.

dc-get-min-x

double (dc-get-min-x long dc-id)

Returns the minimum X value drawn so far on the device context.

dc-get-min-y

double (dc-get-min-y long dc-id)

CHAPTER 7

119

Returns the minimum Y value drawn so far on the device context.

dc-get-max-x

double (dc-get-max-x long dc-id)

Returns the maximum X value drawn so far on the device context.

dc-get-max-y

double (dc-get-max-y long dc-id)

Returns the maximum Y value drawn so far on the device context.

dc-get-text-extent-height

double (dc-get-text-extent-height long dc-id string text)

Returns the height of the text as drawn on this device context, in logical units.

dc-get-text-extent-width

double (dc-get-text-extent-width long dc-id string text)

Returns the width of the text as drawn on this device context, in logical units.

dc-ok

long (dc-ok long id)

Returns 1 if the device context is OK (usually meaning, it has been initialised correctly), and 0
otherwise.

dc-start-doc

long (dc-start-doc long dc-id string message)

Starts a document (such as a PostScript or Windows printer document) using the given string for
any associated message box (the message is not in fact currently used).

dc-start-page

long (dc-start-page long dc-id)

Starts a page.

CHAPTER 7

120

dc-set-background

long (dc-set-background long dc-id long brush)

Sets the background brush.

dc-set-background-mode

long (dc-set-background-mode long dc-id string mode)

Sets the mode for drawing text background.

mode may be wxSOLID (use the text background colour) or wxTRANSPARENT (do not fill the
background).

dc-set-brush

long (dc-set-brush long dc-id long brush-id)

Sets the current brush for the device context. brush-id is an ID returned from a call to brush-
create (page 95), or zero to select any existing brush out of the device context.

dc-set-colourmap

long (dc-set-colourmap long dc-id long cmap-id)

Sets the colourmap for the device context. If cmap-id is zero, the original colourmap is restored
so that it is safe to delete the device context (or colourmap).

dc-set-clipping-region

long (dc-set-clipping-region long dc-id
 double x1 double y1 double x2 double y2)

Sets a rectangular clipping region, outside which drawing operations have no effect.

dc-set-font

long (dc-set-font long dc-id long font-id)

Sets the current font for the device context. font-id is an ID returned from a call to font-create
(page 123), or zero to select any existing font out of the device context.

dc-set-logical-function

long (dc-set-logical-function long dc-id string logical-function)

CHAPTER 7

121

Sets the current logical function for the device context. The logical function determines how pixels
are changed by the drawing functions, and may be one of wxCOPY, wxXOR, wxINVERT,
wxOR_REVERSE and wxAND_REVERSE.

dc-set-pen

long (dc-set-pen long dc-id long pen-id)

Sets the current pen for the device context. pen-id is an ID returned from a call to pen-create
(page 156), or zero to select any existing pen out of the device context.

dc-set-text-foreground

long (dc-set-text-foreground long dc-id string colour)

Sets the colour for the text foreground, effective when dc-draw-text (page 118) is used. colour is a
capitalized name from the list defined in the wxWindows manual.

dc-set-text-background

long (dc-set-text-background long dc-id string colour)

Sets the colour for the text background, effective when dc-draw-text (page 118) is used. colour is
a capitalized name from the list defined in the wxWindows manual.

7.17. Dialog box

See also Overview (page 202)

A dialog box is essentially a panel (page 154) with its own frame (page 123), and therefore
shares some functions and behaviour with both of these objects.

Any panel item can be created as a child of a dialog box, and also the dialog box can be created
modal, so that the flow of program control halts until the dialog box is dismissed.

The following callbacks are valid for the dialog box class: see also those listed for panels.

OnCharHook Under Windows only, all key strokes going to a dialog box or frame can be
intercepted before being passed on for normal processing. This callback function takes
the window id and event id, and should return 1 to override further processing, or 0 to do
default processing. See also Key event (page 140).

dialog-box-create

long (dialog-box-create long parent-id string title
 optional long modal optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a dialog box. parent-id can be zero or a valid dialog or frame ID; title should be a string
for the dialog box's title. The value of modal may be 1 (when window-show (page 179) is called
with an argument of 1, the dialog blocks until window-show is called with an argument of 0) or 0

CHAPTER 7

122

(dialog is modeless, and window-show returns immediately).

The window-show (page 179) function must be called with argument 1 to make the dialog visible,
and with argument 0 to undisplay the dialog (and to dimiss a modal dialog).

The style parameter may be a combination of the following, using the bitwise 'or' operator:

wxCAPTION Puts a caption on the dialog box (under XView and Motif this is mandatory).
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Display a system menu (manadatory under XView and Motif).
wxTHICK_FRAME Display a thick frame around the window (manadatory under XView and

Motif).
wxVSCROLL Give the dialog box a vertical scrollbar (XView only).

The default value for style is "wxCAPTION | wxSYSTEM_MENU | wxTHICK_FRAME''.

name gives the dialog box a name that can be retrieved with window-get-name (page 176).

dialog-box-create-from-resource

long (dialog-box-create-from-resource long parent-id string resource-name)

Creates a dialog box from the given wxWindows resource. The resource file containing this
resource must first have been loaded with load-resource-file (page 185).

Panel items on a panel or dialog box that has been created from a resource, do not have
conventional callbacks. Therefore you need to intercept the OnCommand event for the panel or
dialog box and test the name and event of the item passed to this callback.

dialog-box-is-modal

long (dialog-box-is-modal long parent-id)

Returns 1 if the dialog box is modal, 0 otherwise.

dialog-box-set-modal

long (dialog-box-set-modal long parent-id, long modal)

Sets the dialog box to be modal or non-modal, before window-show is issued. Pass 1 or 0 to
modal.

7.18. Event

An event is an 'abstract class' from which other event classes, such as mouse, key and command
events, are derived.

event-get-event-type

string (event-get-event-type long id)

CHAPTER 7

123

Returns the event type.

7.19. Font

A font is an object that can be set for a device context (page 115) to determine the characteristics
of text drawn with dc-draw-text (page 118).

font-create

long (font-create long point-size word family word style word weight long underlined optional
stringfacename)

Creates a font for use in a device context.

point-size gives the font point size.

family may be one of wxROMAN, wxSCRIPT, wxDECORATIVE, wxSWISS, wxMODERN,
wxDEFAULT.

style may be one of wxNORMAL, wxITALIC.

weight may be one of wxBOLD, wxLIGHT, wxNORMAL.

underlined may be 1 or 0.

facename is an optional font facename, for specifying the exact font face required.

font-delete

long (font-delete long font-id)

Deletes the given font.

7.20. Frame

A frame is a window containing text, canvas or panel subwindows. It normally has decorations
added by the window manager, such as a system menu, a thick frame, and resize handles. When
a wxWindows or wxCLIPS application initializes, a top-level frame must be returned to the system
for successful start-up. When a top-level frame and all its children are deleted, the application
terminates.

Usually an application will need to register an OnClose handler in case the window manager
sends the application a close message. If the handler returns 1, the frame is deleted by the
system (possibly terminating the application).

The user can register the following callbacks:

OnActivate Called with a frame identifier and integer flag, when the frame is activated.
Under Windows, you may need to intercept this event and set the focus for a
subwindow, or the subwindow may not receive character events. By default, wxWindows
will set the focus for the first subwindow of a frame.

OnCharHook Under Windows only, all key strokes going to a dialog box or frame can be

CHAPTER 7

124

intercepted before being passed on for normal processing. This callback function takes
the window id and event id, and should return 1 to override further processing, or 0 to do
default processing. See also Key event (page 140).

OnClose The function is called with the window identifier. If the callback returns 1 and the
function was called by the window manager, the window is automatically deleted
(possibly terminating the application). A return value of 0 forbids automatic deletion.

OnMenuCommand Called with a frame identifier and menu item identifier. Test the menu
item identifier and perform an appropriate action.

OnMenuSelect Called with a frame identifier and menu item identifier, when the cursor
travels over the menu item (but the user does not click). Test the menu item identifier
and perform an appropriate action.

OnSize The function is called with the window identifier, width and height.

See also window-add-callback (page 175).

frame-create

long (frame-create long parent-id string title
 optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a frame. parent-id can be zero or a valid frame ID; title should be a string for the frame's
title.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxCAPTION Puts a caption on the frame (under XView and Motif this is mandatory).
wxDEFAULT_FRAME Defined as a combination of wxMINIMIZE_BOX, wxMAXIMIZE_BOX,

wxTHICK_FRAME, wxSYSTEM_MENU, and wxCAPTION.
wxMDI_CHILD Specifies a Windows MDI (multiple document interface) child frame.
wxMDI_PARENT Specifies a Windows MDI (multiple document interface) parent frame.
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows only).
wxSDI Specifies a normal SDI (single document interface) frame.
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (manadatory under XView and Motif).
wxTHICK_FRAME Displays a thick frame around the window (manadatory under XView and

Motif).

name gives the frame a name that can be retrieved with window-get-name (page 176).

The function window-show must be called before a new frame is visible.

frame-create-status-line

long (frame-create-status-line long parent-id, optional long n=1)

Creates a status line at the bottom of the frame. Use frame-set-status-text (page 125) to write to
the status line.

CHAPTER 7

125

n is a number from 1 to 5 for the number of status areas to create.

frame-iconize

long (frame-iconize long frame-id optional long minimize)

Minimize the frame if the second argument is 1 or absent, restore the frame otherwise.

frame-is-iconized

long (frame-is-iconized long frame-id)

Returns 1 if the frame is iconized (minimized), 0 otherwise.

frame-on-size

long (frame-on-size long frame-id long width long height)

Performs default processing for the OnSize event. Can be called from within an OnSize callback.

frame-set-menu-bar

long (frame-set-menu-bar long frame-id long menu-bar-id)

Associate a menu bar with the frame. See menu bar (page 145).

frame-set-tool-bar

long (frame-set-tool-bar long frame-id long tool-bar)

Informs an MDI parent window that a panel or canvas should be treated as a toolbar, and sized
accordingly. Windows only.

frame-set-icon

long (frame-set-icon long frame-id long icon-id)

Set the icon of a frame. See icon (page 138).

frame-set-status-text

long (frame-set-status-text long frame-id string text, optional long i=0)

Sets the text for the status line (previously created with frame-create-status-line (page 124)).

i is a number from 0 to 4 for the number of the status area to write to.

CHAPTER 7

126

frame-set-title

long (frame-set-title long frame-id string text)

Set the title of a frame.

7.21. Help

A 'help instance' is created to manage on-line help associated with one or more files. wxCLIPS
supports both Windows Help under MS Windows, and wxHelp under all platforms.

Windows Help (.hlp) files may be created using a number of tools, such as Tex2RTF. wxHelp
(.xlp) files can be created with a text editor or a tool such as Tex2RTF.

wxHelp is very limited in its capabilities and should only be used on platforms with no native help.
Consider using HTML files instead (although you cannot currently access HTML files from your
application).

help-create

long (help-create optional long native = 1)

Creates a help instance. If native is 1, the native help system will be invoked (such as WinHelp
under MS Windows). If 0, wxHelp will be invoked.

help-delete

long (help-delete long id)

Deletes the help instance.

help-display-block

long (help-display-block long id long blockId)

Displays the help file at the given block identifier (system dependent).

help-display-contents

long (help-display-contents long id string filename)

Displays the contents of the help file currently loaded.

help-display-section

long (help-display-section long id long section)

CHAPTER 7

127

Displays the help file at the given section (system dependent).

help-keyword-search

long (help-keyword-search long id string keyword)

Positions the help file at a section matching the given string.

help-load-file

long (help-load-file long id string filename)

Attempts to load the given file into the help instance. Use a function like help-display-contents to
display the file.

7.22. HWND functions

This group of functions allows MS Windows programs to perform a few operations on another
program's window.

hwnd-find

long (hwnd-find string title)

Searches for a window with the given title, and returns the window handle. Returns zero if none
was found.

hwnd-iconize

long (hwnd-iconize long hwnd optional long iconize=1)

Iconizes or deiconizes the given window.

hwnd-move

long (hwnd-move long hwnd long x long y long width long height optional long repaint=1)

Moves and resizes the given window.

hwnd-refresh

long (hwnd-refresh long hwnd optional long erase-background=1)

Refreshes (invalidates) the given window.

hwnd-send-message

CHAPTER 7

128

long (hwnd-send-message long hwnd long msg long wparam long lparam)

Sends a Windows message to the window.

hwnd-show

long (hwnd-show long hwnd optional long show=1)

Shows or hides the given window.

hwnd-quit

long (hwnd-quit long hwnd)

Sends a WM_CLOSE message to the given window.

7.23. Gauge

A gauge is used for displaying a quantity, for example amount of processing done. It must be a
child of a panel (page 154).

gauge-create

long (gauge-create long panel-id string label
 long range optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a gauge item on the given panel.

range indicates the maximum value of the gauge.

style is a bit list of the following:

wxGA_HORIZONTAL The item will be created as a horizontal gauge
wxGA_VERTICAL The item will be created as a vertical gauge.
wxGA_PROGRESSBAR Under Windows 95, the item will be created as a horizontal

progress bar.

name gives the gauge a name that can be retrieved with window-get-name (page 176).

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

gauge-set-value

long (gauge-set-value long gauge-id long value)

Set the value of a gauge item.

CHAPTER 7

129

gauge-set-bezel-face

long (gauge-set-bezel-face long gauge-id long width)

Set the bezel parameter of the gauge (takes effect under Windows version only).

gauge-set-shadow-width

long (gauge-set-shadow-width long gauge-id long width)

Set the shadow width of the gauge (takes effect under Windows version only).

7.24. Grid

See also Overview (page 210)

A subwindow used for displaying grids (matrices/tables). A grid can contain text or bitmaps.

Note: this functionality is implemented in Windows only, for the time being.

The following callbacks are valid for the grid class.

OnPaint Called with a window identifier when the window receives a repaint event from the
window manager.

OnSize The function is called with the window identifier, width and height.
OnCellLeftClick The function is called with the window identifier, row, column, x, y, control

down flag, shift down flag.
OnCellRightClick The function is called with the window identifier, row, column, x, y, control

down flag, shift down flag.
OnCellChange The function is called with the window identifier, row, column.
OnChangeLabels The function is called with the window identifier.
OnChangeSelectionLabel The function is called with the window identifier.

See also window-add-callback (page 175).

grid-adjust-scrollbars

void (grid-adjust-scrollbars long grid-id)

Adjusts the scrollbars to suit the size of the grid: this may cause one or both to be hidden. You
may wish to call this from code which alters the number of rows or columns (or height/width of
rows or columns), or from an OnSize callback.

grid-append-cols

long (grid-append-cols long grid-id long n optional long update-labels=1) Inserts n columns
at the end of the table, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.
grid-append-rows

long (grid-append-rows long grid-id long n optional long update-labels=1) Inserts n rows at

CHAPTER 7

130

the end of the table, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.
grid-clear-grid

void (grid-clear-grid long grid-id)

Clears the grid (untested).

grid-create

long (grid-create long parent-id optional long x optional long y
 optional long width optional long height optional string style=0 optional string
name="grid")

Creates a grid window. You must also call grid-create-grid after you call this function.

parent-id must be a valid frame ID.

name gives the canvas a name that can be retrieved with window-get-name (page 176).

grid-create-grid

long (grid-create-grid long grid-id long rows long cols
 optional long default-width optional long default-height)

Initializes the size of the grid. Returns 1 if successful, 0 otherwise.

grid-delete-cols

long (grid-delete-cols long grid-id long position long n optional long update-labels=1)
Deletes n columns starting at position, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.

grid-delete-rows

long (grid-delete-rows long grid-id long position long n optional long update-labels=1)
Deletes n rows starting at position, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.

grid-get-cell-alignment

string (grid-get-cell-alignment long grid-id long row long col) Gets the cell text alignment at
row, col. The return value is one of wxLEFT, wxRIGHT, wxCENTRE.

grid-get-cell-background-colour

CHAPTER 7

131

long (grid-set-cell-background-colour long grid-id optional long row=-1 optional long col=-1)
Gets the cell background colour.

The return value is a colour value of the kind created using colour-create.

If row and col are zero or greater, the returned colour is that of an individual cell. If these values
are -1 or absent, the colour is the global, default cell background colour.

grid-get-cell-bitmap

long (grid-get-cell-bitmap long grid-id long row long col) Returns the bitmap associated with
the cell at row, col. If none has been set, 0 will be returned. See also grid-set-cell-bitmap (page
134).

grid-get-cell-text-colour

long (grid-set-cell-text-colour long grid-id optional long row=-1 optional long col=-1) Gets
the cell text colour.

The return value is a colour value of the kind created using colour-create.

If row and col are zero or greater, the returned colour is that of an individual cell. If these values
are -1 or absent, the colour is the global, default cell text colour.

grid-get-cell-value

string (grid-get-cell-value long grid-id long row long col) Gets the cell value at row, col.

grid-get-column-width

long (grid-get-column-width long grid-id long col) Gets the given column width in pixels.

grid-get-cursor-column

long (grid-get-cursor-column long grid-id) Returns the column of the currently selected cell.

grid-get-cursor-row

long (grid-get-cursor-row long grid-id) Returns the row of the currently selected cell.

grid-get-rows

long (grid-get-rows long grid-id)

Returns the number of rows in the grid.

CHAPTER 7

132

grid-get-cols

long (grid-get-cols long grid-id)

Returns the number of columns in the grid.

grid-get-editable

long (grid-get-editable long grid-id)

Returns 1 if the grid is editable (the text field is showing), 0 otherwise.

grid-get-label-alignment

string (grid-get-label-alignment long grid-id string orientation) Gets the column label or row
label alignment.

If orientation is wxVERTICAL, the row label alignment is returned. If orientation is
wxHORIZONTAL, the column label alignment is returned.

The return value is one of wxLEFT, wxRIGHT, wxCENTRE.

grid-get-label-background-colour

long (grid-get-label-background-colour long grid-id) Gets the label background colour.

The return value is a colour value of the kind created using colour-create.

grid-get-label-size

long (grid-get-label-size long grid-id string orientation) Gets the column label height or row
label width in pixels. If orientation is wxVERTICAL, the row label width is returned. If orientation is
wxHORIZONTAL, the column label height is returned.

grid-get-label-text-colour

long (grid-get-label-text-colour long grid-id) Gets the label text colour.

The return value is a colour value of the kind created using colour-create.

grid-get-label-value

string (grid-get-label-value long grid-id string orientation long position) position is the label row
or column position (starting from zero).

Gets a column label or row label value.

CHAPTER 7

133

If orientation is wxVERTICAL, the row label alignment is set. If orientation is wxHORIZONTAL,
the column label alignment is set.

grid-get-row-height

long (grid-get-row-height long grid-id long row) Gets the given row height in pixels.

grid-get-scroll-pos-x

long (grid-get-scroll-pos-x long grid-id)

Returns the current scroll position in the horizontal dimension (in scroll positions, not pixels).

grid-get-scroll-pos-y

long (grid-get-scroll-pos-y long grid-id)

Returns the current scroll position in the vertical dimension (in scroll positions, not pixels).

grid-get-text-item

long (grid-get-text-item long grid-id)

Returns the identifier of the text item which is used for editing cells. Use this to set the label of the
text item, for example, in an OnChangeSelectionLabel callback, which is called when the user
selects a different cell.

grid-insert-cols

long (grid-insert-cols long grid-id long position long n optional long update-labels=1) Inserts
n columns in front of position, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.
grid-insert-rows

long (grid-insert-rows long grid-id long position long n optional long update-labels=1) Inserts
n rows in front of position, updating the grid labels if update-labels is 1.

Returns 1 if successful, 0 otherwise.

grid-on-activate

void (grid-on-activate long grid-id long active)

Call this function from a frame OnActivate callback. This function causes focus to be given to the
text field (if in editable mode).

CHAPTER 7

134

grid-on-paint

void (grid-on-paint long grid-id)

Call this function if you override the on-paint event handler.

grid-on-size

void (grid-on-size long grid-id long w long h)

Call this function if you override the on-size event handler.

grid-set-cell-alignment

void (grid-set-cell-alignment long grid-id string alignment long row long col) Sets the cell text
alignment at row, col to the given value. alignment should be one of wxLEFT, wxRIGHT,
wxCENTRE.

grid-set-cell-background-colour

void (grid-set-cell-background-colour long grid-id long colour optional long row=-1 optional
long col=-1) Sets the cell background colour.

colour should be a colour value created with colour-create.

If row and col are zero or greater, the colour will be associated with an individual cell. If these
values are -1 or absent, the colour will refer to all cells.

grid-set-cell-bitmap

void (grid-set-cell-bitmap long grid-id long bitmap-id long row long col) Associates a bitmap
with the cell at row, col. If this is called, the bitmap will be displayed instead of text. Since
colourmaps are not used in drawing the bitmap, use low-colour bitmaps if possible (16 colours or
less).

grid-set-cell-text-colour

void (grid-set-cell-text-colour long grid-id long colour optional long row=-1 optional long
col=-1) Sets the cell text colour.

colour should be a colour value created with colour-create.

If row and col are zero or greater, the colour will be associated with an individual cell. If these
values are -1 or absent, the colour will refer to all cells.

grid-set-cell-text-font

void (grid-set-cell-text-font long grid-id long font-id optional long row=-1 optional long col=-

CHAPTER 7

135

1) Sets the cell text font.

font should be a valid font identifier.

If row and col are zero or greater, the font will be associated with an individual cell. If these values
are -1 or absent, the font will refer to all cells.

grid-set-cell-value

void (grid-set-cell-value long grid-id string value long row long col) Sets the cell at row, col to
the given value.

grid-set-column-width

void (grid-set-column-width long grid-id long col long width) Sets the given column width in
pixels.

grid-set-divider-pen

void (grid-set-divider-pen long grid-id long pen-id)

Sets the pen for drawing the cell divisions (light grey by default). If pen-id is 0, the divisions are
switched off.

grid-set-editable

void (grid-set-editable long grid-id long editable)

If editable is 1, displays the text field for entering cell values. If editable is 0, hides the text field.

grid-set-grid-cursor

void (grid-set-grid-cursor long grid-id longrow longcolumn) Sets the selection to the given
cell.

grid-set-label-alignment

void (grid-set-label-alignment long grid-id string orientation string alignment) Sets the column
label or row label alignment.

If orientation is wxVERTICAL, the row label alignment is set. If orientation is wxHORIZONTAL,
the column label alignment is set.

alignment should be one of wxLEFT, wxRIGHT, wxCENTRE.

grid-set-label-background-colour

CHAPTER 7

136

void (grid-set-label-background-colour long grid-id long colour) Sets the label background
colour.

colour should be a colour value created with colour-create.

grid-set-label-size

void (grid-set-label-size long grid-id string orientation long size) Sets the column label height
or row label width in pixels. If orientation is wxVERTICAL, the row label width is set. If orientation
is wxHORIZONTAL, the column label height is set.

A value of zero switches off the label in the specified dimension.

grid-set-label-text-colour

void (grid-set-label-text-colour long grid-id long colour) Sets the label text colour.

colour should be a colour value created with colour-create.

grid-set-label-text-font

void (grid-set-label-text-font long grid-id long font-id) Sets the label text font.

grid-set-label-value

void (grid-set-label-value long grid-id string orientation string value long position)

Sets a column label or row label value.

If orientation is wxVERTICAL, the row label alignment is set. If orientation is wxHORIZONTAL,
the column label alignment is set.

position is the label row or column position (starting from zero).

grid-set-row-height

void (grid-set-row-height long grid-id long row long height) Sets the given row height in pixels.

grid-update-dimensions

void (grid-update-dimensions long grid-id)

Recalculates dimensions so drawing is accurate. You may wish to call this if you alter a grid
dimension, such as column width.

7.25. Groupbox

A group box is a box drawn around one or more controls. Available under Windows only.

CHAPTER 7

137

group-box-create

long (group-box-create long panel-id string label
 long x long y long width long height optional string style optional string name)

Creates a group box and returns its id.

name gives the group box a name that can be retrieved with window-get-name (page 176).

7.26. Html

A subwindow used for displaying HTML files, using a class library written by Andrew Davison. At
present only local HTML files should be loaded, and links in HTML files should again be local
files, with non-URL specifications. Later releases will eventually allow Web browsing functionality,
but to simplify wxCLIPS installation, this functionality has been omitted.

There are some bugs in scrolling and presentation, but for simple needs, it may prove handy to
be able to show text and graphics (GIF files).

Note: this functionality is implemented in Windows only for the time being, and even then, not in
all Windows releases of wxCLIPS and Hardy.

The following callbacks are valid for the html class.

OnSize The function is called with the window identifier, width and height.
OnOpenURL The function is called just before a URL is about to be opened, with the

window identifier, and a URL. Return 1 to allow default processing, 0 to veto further
processing. You can use this to program special URLs as buttons, if you test the URL
and return 0 if you will process it yourself.

OnSetStatusText This is called with the window identifier and text, whenever it is
appropriate to notify the user of the URL the mouse is over.

See also window-add-callback (page 175).

html-back

void (html-back long id)

Loads and displays the previously-displayed URL or file.

html-cancel

void (html-cancel long id)

Sets a flag to cancel the current operation.

html-clear-cache

void (html-clear-cache long id)

CHAPTER 7

138

Clears the internal cache.

html-create

long (html-create long parent-id optional long x optional long y
 optional long width optional long height optional string style=0 optional string
name="html")

Creates an HTML window.

parent-id must be a valid frame ID.

name gives the canvas a name that can be retrieved with window-get-name (page 176).

html-get-current-url

string (html-get-current-url long id) Returns the current URL.

html-on-size

void (html-on-size long id long width long height)

Invokes the HTML panel's OnSize member. This may need to be called if you override OnSize.

html-open-file

long (html-open-file long id string file) Opens and displays a file.

html-resize

void (html-resize long id)

Resizes and displays the current file.

html-save-file

long (html-save-file long id string file) Saves the currently displayed file.

html-open-url

long (html-open-url long id string url)

Opens a URL (not yet functioning).7.27. Icon

An icon is a small bitmap which can be used to decorate a minimized frame. There are platform-
specific ways of creating an icon.

CHAPTER 7

139

icon-create

long (icon-create string fileOrResource)

Creates an icon. Under X, the argument must be the filename of a valid XBM (X bitmap) file.
Under Windows, the argument must be the name of an icon resource compiled into the current
executable.

Use frame-set-icon (page 125) to set the icon of a frame.

icon-delete

long (icon-delete long icon-id)

Deletes the given icon.

icon-get-height

long (icon-get-height long icon-id)

Gets the height of the icon.

icon-get-width

long (icon-get-width long icon-id)

Gets the width of the icon.

icon-load-from-file

long (icon-load-from-file string file, string bitmap-type)

Loads an icon from a file. Under X, the argument must be the filename of a valid XBM (X bitmap)
file. Under Windows, the argument must be the filename of a Windows icon file.

Under X, the permitted icon types in the bitmap-type are:

• wxBITMAP_TYPE_BMP Load a Windows bitmap file (if USE_IMAGE_LOADING_IN_X
is enabled in wx_setup.h).

• wxBITMAP_TYPE_GIF Load a GIF bitmap file (if USE_IMAGE_LOADING_IN_X is
enabled in wx_setup.h).

• wxBITMAP_TYPE_XBM Load an X bitmap file.
• wxBITMAP_TYPE_XPM Load an XPM (colour pixmap) file. Only available if

USE_XPM_IN_X is enabled in wx_setup.h.

Under Windows, the permitted types are:

• wxBITMAP_TYPE_ICO Load a cursor from a .ico icon file (only if
USE_RESOURCE_LOADING_IN_MSW is enabled in wx_setup.h).

CHAPTER 7

140

• wxBITMAP_TYPE_ICO_RESOURCE Load a Windows resource (as specified in the .rc
file).

7.28. Instance table

wxCLIPS provides some functions for mapping between the integer identifiers used to represent
objects in wxCLIPS funtions, and COOL instance names. When creating object-oriented
wrappers around wxCLIPS function groups, you can add an instance name entry in the init
handler, and delete it in the delete handler. For each event, you can register a callback which
retrieves the instance name from the identifier passed to the callback, and sends an appropriate
message to that instance.

See also wxclips-object-exists (page 189).

instance-table-add-entry

long (instance-table-add-entry long id instance instance-name)

Adds an entry to the instance table, indexing on the integer id.

instance-table-delete-entry

long (instance-table-delete-entry long id)

Deletes an entry from the instance table.

instance-table-get-instance

instance-name (instance-table-get-instance long id)

Retrieves an instance name for the integer id.

7.29. Key event

A key event identifier is passed to a window's OnChar or OnCharHook callback. The key code,
position and state of shift/control/alt can be examined by calling the following functions.

key-event-alt-down

long (key-event-alt-down long event-id)

Returns 1 if alt was pressed.

key-event-control-down

long (key-event-control-down long event-id)

Returns 1 if control was pressed.

CHAPTER 7

141

key-event-get-key-code

string (key-event-get-key-code long event-id)

Returns a string corresponding to the internal wxWindows key code, such as "WXK_BACK'',
"WXK_F1'' or "WXK_RETURN''.

key-event-position-x

double (key-event-position-x long event-id)

Gets the x position of the mouse pointer at the moment the key was pressed.

key-event-position-y

double (key-event-position-y long event-id)

Gets the y position of the mouse pointer at the moment the key was pressed.

key-event-shift-down

long (key-event-shift-down long event-id)

Returns 1 if shift was pressed.

7.30. Listbox

A listbox displays a choice of strings. It must be the child of a panel (page 154). In a single-
selection listbox, only one choice may be highlighted. In a multiple-selection listbox, several may
be highlighted.

list-box-create

long (list-box-create long panel-id string callback string label
 long multiple, optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a list box item on the given panel. The callback may be the empty string ("'') to denote no
callback, or a word or string for the function name. The function will be called when an item in the
list box is selected or deselected, with the list box ID as argument. The value of multiple should
be 1 if multiple selections are required, or 0 if only a single selection is required.

style is a bit list of some of the following:

wxNEEDED_SB Create scrollbars if needed.
wxALWAYS_SB Create scrollbars immediately.
wxHSCROLL Create horizontal scrollbar if contents are two wide (Windows only).

name gives the group box a name that can be retrieved with window-get-name (page 176).

CHAPTER 7

142

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

list-box-append

long (list-box-append long list-box-id string item
 optional string client-data)

Append a string to the list box, with an optional client data string.

list-box-find-string

long (list-box-find-string long list-box-id string item)

Find the string in the list box and return the integer position if found, -1 if not.

list-box-clear

long (list-box-clear long list-box-id)

Clear all strings from the list box.

list-box-get-selection

long (list-box-get-selection long list-box-id)

Get the position of the selection (for single-selection list boxes only).

list-box-get-string-selection

string (list-box-get-string-selection long list-box-id)

Get the selected string (for single-selection list boxes only).

list-box-is-selected

long (list-box-is-selected long list-box-id long item)

Returns 1 if item is selected, 0 otherwise.

list-box-set-selection

long (list-box-set-selection long list-box-id long item-pos long flag=1)

Set a selection by item position.

CHAPTER 7

143

If flag is 1, the item is selected, otherwise it is deselected.

list-box-set-string-selection

long (list-box-set-string-selection long list-box-id string item)

Set a selection by string.

list-box-number

long (list-box-number long list-box-id)

Return the number of items in the list box.

list-box-delete

long (list-box-delete long list-box-id long item-pos)

Delete an item in the list box.

list-box-get-string

string (list-box-get-string long list-box-id long item-pos)

Return the string at the given position.

list-box-get-first-selection

long (list-box-get-first-selection long list-box-id)

Get the first selection position in a multi-selection list box (-1 for no more selections).

list-box-get-next-selection

long (list-box-get-next-selection)

Get the next selection position in a multi-selection list box (-1 for no more selections).

7.31. Memory device context

A memory device context is used for drawing into, or copying from, a bitmap. See also the Bitmap
(page 93) object.

memory-dc-create

long (memory-dc-create)

CHAPTER 7

144

Create a memory device context and returns its ID.

memory-dc-select-object

long (memory-dc-select-object long id long bitmap-id)

Makes this device context the drawing surface for the given bitmap (see Bitmap (page 93)).
Deleting the memory device context disassociates the bitmap, freeing it to be used with another
memory device context. To draw a bitmap on a device context that supports bitmap drawing (i.e.
not a Metafile or PostScript device context), using code like the following:

 ;;; Utility function for drawing a bitmap
 (deffunction draw-bitmap (?dc ?bitmap ?x ?y)
 (bind ?mem-dc (memory-dc-create))
 (memory-dc-select-object ?mem-dc ?bitmap)
 ; Blit the memory device context onto the destination device context
 (dc-blit ?dc ?x ?y (bitmap-get-width ?bitmap) (bitmap-get-height
?bitmap)
 ?mem-dc 0.0 0.0)
 (memory-dc-delete ?mem-dc)
)

If bitmap-id is zero, the existing bitmap (if any) will be selected out of the device context. This
might be necessary if you wish to delete the bitmap before deleting the device context (for
example, for reusing the same device context for different bitmaps).

7.32. Menu

The menu is used only as a component of a menu bar (page 145). Create menus, append menu
items (strings, separators or further menus), and finally append the menu to the menu bar.

A menu or menu bar string may contain an ampersand, which is taken to mean 'underline the
next character and use it as the hotkey'. This gives the user the opportunity to use keystrokes to
access menus and items.

menu-create

long (menu-create optional string label optional string callback)

Create a menu and returns the menu's ID.

label is unused at present.

callback should be present if creating a popup menu (i.e. not a menubar menu). It will be called
with the menu's id when the user selects an item. From within the callback, use panel-item-get-
command-event (page 155) to retrieve the command event and from that, the menu item
selection.

menu-append

long (menu-append long menu-id long item-id
 string item-string optional long submenu-id optional string help-string optional long

CHAPTER 7

145

checkable)

Append a string or submenu to the menu, passing the integer ID by which the menu item will be
referenced, a string to be displayed, an optional id for a pullright menu, and an optional flag for
specifying whether this menu item can be checked.

A help string can be supplied, in which case the string will be shown on the first field of the status
line (if any) in the frame containing the menu bar, when the mouse pointer moves over the menu
item.

menu-append-separator

long (menu-append-separator long menu-id)

Append a menu separator.

menu-break

long (menu-break long menu-id)

Inserts a column break into the menu.

menu-check

long (menu-check long menu-id long item-id long check)

Check (check = 1 or uncheck check = 0 the given menu item. MS Windows only.

menu-enable

long (menu-enable long menu-id long item-id long enable)

Enable (enable = 1 or disable enable = 0 the given menu item.

7.33. Menu bar

A menu bar is a standard user interface element which places the main commands of an
application along the top of a frame (page 123).

The menu bar must be assigned to a frame using frame-set-menu-bar (page 125). Once this is
done, the menu bar must not be deleted by the application: it will be deleted when the frame is
deleted.

A menu or menu bar string may contain an ampersand, which is taken to mean 'underline the
next character and use it as the hotkey'. This gives the user the opportunity to use keystrokes to
access menus and items.

See also Menu (page 144).

menu-bar-create

CHAPTER 7

146

long (menu-bar-create)

Create a menu bar and return its ID.

menu-bar-create-from-resource

long (menu-bar-create-from-resource string resource-name)

Create a menu bar and return its ID, given a resource name.

The resource file containing this resource must first have been loaded with load-resource-file
(page 185).

menu-bar-append

long (menu-bar-append long menu-bar-id long menu-id string title)

Append a menu to a menu bar.

menu-bar-check

long (menu-bar-check long menu-bar-id long item-id long check)

Check (check = 1) or uncheck (check = 0) the given menu item (MS Windows only).

menu-bar-checked

long (menu-bar-checked long menu-bar-id long item-id)

Returns 1 if the menu item is checked, 0 otherwise.

menu-bar-enable

long (menu-bar-enable long menu-bar-id long item-id long enable)

Enable (enable = 1) or disable (enable = 0) the given menu item.

7.34. Message

A message is a simple piece of text on a panel (page 154).

message-create

long (message-create long panel-id string label
 optional long x optional long y
 optional string style optional string name)

CHAPTER 7

147

Creates a message item on the given panel (a simple, non-selectable, non-editable string). If no
position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

style is reserved for future use.

name gives the message a name that can be retrieved with window-get-name (page 176).

message-create-from-bitmap

long (message-create-from-bitmap long panel-id long bitmap-id
 optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a bitmap message given a valid bitmap identifier.

name gives the message a name that can be retrieved with window-get-name (page 176).

7.35. Metafile

A metafile is the Windows vector format. Currently, the only way of creating a Windows metafile is
to close a metafile device context, and the only valid operations are to delete the metafile and to
place it on the clipboard.

These functions are only available under Windows.

7.35.1. Example

Below is a example of metafle, metafile device context and clipboard use. Note the way the
metafile dimensions are passed to the clipboard, making use of the device context's ability to
keep track of the maximum extent of drawing commands.

 (bind ?dc (metafile-dc-create))
 (if (eq (dc-ok ?dc) 1) then
 (
 ; Do some drawing
 (bind ?mf (metafile-dc-close ?dc))
 (if (neq ?mf 0) then
 ; Pass metafile to the clipboard
 (metafile-set-clipboard ?mf (dc-get-max-x ?dc) (dc-get-max-y
?dc))
 (metafile-delete ?mf)
)
)
)
 (dc-delete ?dc)

metafile-delete

long (metafile-delete long id)

Deletes the metafile.

CHAPTER 7

148

metafile-set-clipboard

long (metafile-set-clipboard long id int width int height)

Places the metafile on the clipboard, returning 1 for success and 0 for failure.

The metafile should be deleted immediately after this operation.

7.36. Metafile device context

A metafile device context is used for creating a metafile. The programmer should create the
metafile device context, close it to return a metafile, delete the device context, use the metafile
(the only valid thing to do with it currently is to place it on the clipboard, and then delete the
metafile.

These functions are only available under Windows.

See also Metafile (page 147).

metafile-dc-create

long (metafile-dc-create optional string filename)

Creates a metafile device context and returns its ID.

filename is the file to be used if creating a disk-based metafile. Usually this will be zero or
absent, and an in-memory metafile will be created.

metafile-dc-close

long (metafile-dc-close long id)

Closes the metafile device context and returns a metafile. The device context should no longer be
used after this call is made, and it should be deleted.

See Metafile (page 147).

7.37. Mouse event

A mouse event identifier is passed to the canvas OnEvent (page 175) callback. The state of the
mouse buttons (and some keys) can be examined by calling the following functions.

mouse-event-button

long (mouse-event-button long event-id long button)

Returns 1 if the given button is changing state. button may be 1, 2 or 3 (left, middle and right
buttons respectively).

CHAPTER 7

149

mouse-event-button-down

long (mouse-event-button-down long event-id)

Returns 1 if the event is a mouse button down event.

mouse-event-control-down

long (mouse-event-control-down long event-id)

Returns 1 if the control key is down.

mouse-event-dragging

long (mouse-event-dragging long event-id)

Returns 1 if the event is a dragging event (holding a mouse button down and moving).

mouse-event-left-down

long (mouse-event-left-down long event-id)

Returns 1 if the left mouse button is down.

mouse-event-left-up

long (mouse-event-left-up long event-id)

Returns 1 if the left mouse button is up.

mouse-event-is-button

long (mouse-event-is-button long event-id)

Returns 1 if the event is a button press or release.

mouse-event-middle-down

long (mouse-event-middle-down long event-id)

Returns 1 if the middle mouse button is down.

mouse-event-middle-up

long (mouse-event-middle-up long event-id)

Returns 1 if the middle mouse button is up.

CHAPTER 7

150

mouse-event-position-x

double (mouse-event-position-x long event-id)

Returns the mouse x-position.

mouse-event-position-y

double (mouse-event-position-y long event-id)

Returns the mouse y-position.

mouse-event-right-down

long (mouse-event-right-down long event-id)

Returns 1 if the right mouse button is down.

mouse-event-right-up

long (mouse-event-right-up long event-id)

Returns 1 if the right mouse button is up.

mouse-event-shift-down

long (mouse-event-shift-down long event-id)

Returns 1 if the shift key is down.

7.38. Multi-line text

A multi-line text item is able to show several lines of text, unlike the single line text (page 166)
item. It must be the child of a panel (page 154).

Under Windows, there is an extended range of functions. Some take character positions - a
single integer which can identify a character position - and others take line and character
numbers. If you want to use a function that takes one form, but you only have the other, you can
convert between them using a function such as multi-text-xy-to-position or multi-text-position-to-
line. Note that line and character numbers start from zero.

multi-text-create

long (multi-text-create long panel-id string callback string label
 optional string value optional long x optional long y
 optional long width optional long height optional string style optional string name)

CHAPTER 7

151

Creates a multi-line text item on the given panel. The callback may be the empty string ("'') to
denote no callback, or a word or string for the function name. The function will be called when
return is pressed in the text item, with the text item ID as argument. The default value is optional.

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

The style parameter can be a bit list of the following:

wxHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical
scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView.

wxREADONLY The text is read-only (not XView).

name gives the multitext a name that can be retrieved with window-get-name (page 176).

multi-text-copy

long (multi-text-copy long window-id)

Copies the selected text to the clipboard. Windows only.

multi-text-cut

long (multi-text-cut long window-id)

Copies the selected text to the clipboard, then removes the selection. Windows only.

multi-text-get-insertion-point

long (multi-text-get-insertion-point long window-id)

Returns the insertion point. Windows only.

multi-text-get-last-position

long (multi-text-get-last-position long window-id)

Returns the final position in the text window. Windows only.

multi-text-get-line-length

long (multi-text-get-line-length long window-id long line-no)

Returns the length of the text at line line-no. Windows only.

multi-text-get-line-length

CHAPTER 7

152

long (multi-text-get-line-text long window-id long line-no)

Returns the text at line-no.

multi-text-get-number-of-lines

long (multi-text-get-number-of-lines long window-id)

Returns the number of lines in the text window. Windows only.

multi-text-get-value

string (multi-text-get-value long multi-text-item)

Get the multi-text item's string value.

multi-text-set-value

long (multi-text-set-value long multi-text-item string value)

Set the multi-text item's string value.

multi-text-paste

long (multi-text-paste long window-id)

Pastes the text (if any) from the clipboard to the text window. Windows only.

multi-text-position-to-char

long (multi-text-position-to-char long window-id long pos)

Returns the character position (starting from zero) for the given index position. Windows only.

multi-text-position-to-line

long (multi-text-position-to-line long window-id long pos)

Returns the line number (starting from zero) for the given index position. Windows only.

multi-text-remove

long (multi-text-remove long window-id long start-pos long end-pos)

Removes the text between the given span selection. Windows only.

CHAPTER 7

153

multi-text-replace

long (multi-text-replace long window-id long start-pos long end-pos string text)

Replaces the text between the given span selection with the given text.

multi-text-set-insertion-point

long (multi-text-set-insertion-point long window-id long pos)

Sets the insertion point to the given index position. Windows only.

multi-text-set-selection

long (multi-text-set-selection long window-id long start-pos long end-pos)

Sets the selection to the given span of text. Windows only.

multi-text-show-position

long (multi-text-show-position long window-id long pos)

Shows the text at the given index position. Windows only.

multi-text-write

long (multi-text-write long window-id string text)

Writes the given string into the multitext, at the current cursor point. Windows only.

multi-text-xy-to-position

long (multi-text-xy-to-position long window-id long char-position long line)

Converts the character and line number (each starting from zero) to a position.

7.39. Object

An object is a general term for any wxCLIPS entity, such as window, brush, pen, listbox, etc.

object-delete

long (object-delete long id)

Deletes an object.

object-get-type

CHAPTER 7

154

char * (object-get-type long id)

Returns the C++ class name for the object.

7.40. Panel

A panel is a subwindow for placing panel items, such as buttons (page 95) and text items (page
166). Its parent must be a frame (page 123). A panel inherits most properties from canvas, except
for scrollbar functionality.

Note that a dialog box (page 121) may be used in a similar way to a panel.

The following callbacks are valid for the panel class:

OnCommand Called with a panel identifier, an item identifier and a command event
identifier when a command event is received by a panel item that does not have an
associated callback. If you have created a panel or dialog box from a resource, you will
need to intercept OnCommand.

OnDefaultAction Called with a panel identifier and an item identifier, when a double click
has been received from a listbox.

OnEvent Called with a panel identifier and a mouse event (page 148) identifier. This can
only be guaranteed only when the panel is in user edit mode (to be implemented).

OnPaint Called with a panel identifier when the panel receives a repaint event from the
window manager.

OnSize The function is called with the window identifier, width and height.

See also window-add-callback (page 175).

panel-create

long (panel-create long parent-id optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a panel. parent-id must be a valid frame ID.

The style parameter may be a combination of the following, using the bitwise 'or' operator.

wxABSOLUTE_POSITIONING A hint to the windowing system not to try native Windowing
system layout (Motif only). This is the recommended style for all Motif panels
and dialog boxes.

wxBORDER Draws a thin border around the panel.
wxVSCROLL Gives the dialog box a vertical scrollbar (XView only).

name gives the panel a name that can be retrieved with window-get-name (page 176).

panel-create-from-resource

long (panel-create-from-resource long parent-id string resource-name)

Creates a panel from the given wxWindows resource. The resource file containing this resource
must first have been loaded with load-resource-file (page 185).

CHAPTER 7

155

Panel items on a panel or dialog box that has been created from a resource, do not have
conventional callbacks. Therefore you need to intercept the OnCommand event for the panel or
dialog box and test the name and event of the item passed to this callback.

panel-set-button-font

long (panel-set-button-font long panel-id long font-id)

Sets the font used for panel or dialog box item buttons (or contents). See also panel-set-label-font
(page 155).

panel-set-label-font

long (panel-set-label-font long panel-id long font-id)

Sets the font used for panel or dialog box item labels. See also panel-set-button-font (page 155).

panel-set-label-position

long (panel-set-label-position long panel-id string position)

Change the current label orientation for panel items: position may be wxVERTICAL or
wxHORIZONTAL.

panel-new-line

long (panel-new-line long panel-id)

Insert a new line, that is, make subsequent panel items appear at the start of the next line.

7.41. Panel item

A panel item is a control (or widget) that can be placed on a panel (page 154) to accept user
input, and display information.

The following functions apply to panel items, which include button (page 95), checkbox (page
100), choice (page 100), message (page 146), text (page 166), multi-line text (page 150), slider
(page 165).

panel-item-get-command-event

long (panel-item-get-command-event)

Returns the identifier of the command event for the current panel item or menu callback, or zero if
not called within a callback.

panel-item-get-label

CHAPTER 7

156

string (panel-item-get-label long panel-id)

Get the item's label.

panel-item-set-default

long (panel-item-set-default long panel-id)

Make this item the default.

panel-item-set-label

long (panel-item-set-label long panel-id string label)

Set the item's label.

7.42. Pen

A pen is used to control the colour and style of subsequent drawing operations on a device
context (page 115).

pen-create

long (pen-create string colour long width word style)

long (pen-create long colour-value long width word style)

Creates a pen for use in a device context. A pen is used for the outlines of graphic shapes. A
brush must be set to fill the shapes.

colour is a wxWindows colour string such as "BLACK'', "CYAN''.

colour-value is a value returned from colour-create (page 103).

width specifies the width of the pen.

style may be one of wxSOLID, wxDOT, wxLONG_DASH, wxSHORT_DASH, wxTRANSPARENT.

pen-delete

long (pen-delete long pen-id)

Deletes the given pen.

7.43. PostScript device context

A PostScript device context is used for drawing into a postscript file.

CHAPTER 7

157

postscript-dc-create

long (postscript-dc-create optional string file
 optional long interactive optional long window-id)

Creates a postscript device context and returns its ID.

file is the file to be used for printing to. interactive may be 1 to popup up a printer dialog, or 0
otherwise. window-id is a parent window for the printer dialog.

7.44. Printer device context

A Printer device context is used for drawing onto a Windows printer.

printer-dc-create

long (printer-dc-create optional string driver optional string device
 optional string filename optional long interactive)

Creates a printer device context and returns its ID.

file is the file to be used for printing to. interactive may be 1 to popup up a printer dialog, or 0
otherwise.

7.45. Radiobox

A radiobox item is a matrix of strings with associated radio buttons. The buttons are mutually
exclusive, so pressing one will deselect the current selection.

radio-box-create

long (radio-box-create long panel-id string callback string label
 long x long y long width long height
 multivalue strings long major-dimension optional string style optional string name)

Creates a radiobox item on the given panel. The callback may be the empty string ("'') to denote
no callback, or a word or string for the function name. The function will be called when an item in
the radiobox is selected, with the radiobox ID as argument. If no position is given, the panel item
is placed after the last item. The value -1 may be passed to denote a default, so that the position
may be left unspecified and the size given.

strings should be a multifield of strings.

major-dimension specifies the number of rows (if style is wxVERTICAL) or columns (if style is
wxHORIZONTAL) for a two-dimensional radiobox.

style specifies a bit list of styles.

wxVERTICAL Lays the radiobox out in columns.
wxHORIZONTAL Lays the radiobox out in rows.

name gives the radiobox a name that can be retrieved with window-get-name (page 176).

CHAPTER 7

158

radio-box-get-selection

long (radio-box-get-selection long radio-box-id)

Get the ID of the button currently selected.

radio-box-set-selection

long (radio-box-set-selection long radio-box-id long item)

Sets the given button to be the current selection.

7.46. Recordset

See also Database classes overview (page 205)

Each recordset represents an ODBC database query. You can make multiple queries at a time by
using multiple recordsets with a database or you can make your queries in sequential order using
the same recordset.

recordset-create

long (recordset-create long db optional string type = "wxOPEN_TYPE_DYNASET" optional
string options = "wxOPTION_DEFAULT")

Constructs a recordset object and returns its id. db is a pointer to the database instance you wish
to use the recordset with. Currently there are two possible values of type:

• "wxOPEN_TYPE_DYNASET": Loads only one record at a time into memory. The other
data of the result set will be loaded dynamically when moving the cursor. This is the
default type.

• "wxOPEN_TYPE_SNAPSHOT": Loads all records of a result set at once. This will need
much more memory, but will result in faster access to the ODBC data.

The options parameter is not used yet.

The function appends the recordset object to the parent database's list of recordset objects, for
later destruction when the database is destroyed.

recordset-delete

long (recordset-delete long id)

Deletes the recordset. All data except that stored in user-defined variables will be lost. It also
unlinks the recordset object from the parent database's list of recordset objects.

recordset-execute-sql

long (recordset-execute-sql long id string sql)

CHAPTER 7

159

Directly executes a SQL statement. The data will be presented as a normal result set. Note that
the recordset must have been created as a snapshot, not dynaset. Dynasets will be implemented
in the near future.

Examples of common SQL statements are given in A selection of SQL commands (page 209).

recordset-get-char-data

string (recordset-get-char-data long id string-or-long col)

Returns the character (string) data for the current record at the specified column. The column can
be a name or an integer position (starting from zero).

recordset-get-col-name

string (recordset-get-col-name long id long col)

Gets the name of the coumn at position col. Returns the empty string if col does not exist.

recordset-get-col-type

string (recordset-get-col-type long id string-or-long col)

Gets the name of the coumn at position col or name col. Returns "SQL_TYPE_NULL" if col does
not exist.

See ODBC SQL data types (page 208) for the possible return values from this function.

recordset-get-columns

long (recordset-get-columns long id optional string table = "")

Returns the columns of the table with the specified name. If no name is given, the internal class
member table will be used. If both names are NULL nothing will happen. The data will be
presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER

1 (VARCHAR) TABLE_OWNER

2 (VARCHAR) TABLE_NAME

3 (VARCHAR) COLUMN_NAME

4 (SMALLINT) DATA_TYPE

5 (VARCHAR) TYPE_NAME

6 (INTEGER) PRECISION

CHAPTER 7

160

7 (INTEGER) LENGTH

8 (SMALLINT) SCALE

9 (SMALLINT) RADIX

10 (SMALLINT) NULLABLE

11 (VARCHAR) REMARKS

recordset-get-database

long (recordset-get-database long id)

Returns the identifier of the parent database.

recordset-get-data-sources

long (recordset-get-data-sources long id)

Gets the currently-defined data sources via the ODBC manager. The data will be presented as a
normal result set. See the documentation for the ODBC function SQLDataSources for how the
data is organized. The name of the source is at column 0.

recordset-get-error-code

string (recordset-get-error-code long id)

Returns the error code of the last ODBC action. This will be a string containing one of:

SQL_ERROR General error.
SQL_INVALID_HANDLE An invalid handle was passed to an ODBC function.
SQL_NEED_DATA ODBC expected some data.
SQL_NO_DATA_FOUND No data was found by this ODBC call.
SQL_SUCCESSThe call was successful.
SQL_SUCCESS_WITH_INFO The call was successful, but further information can be obtained

from the ODBC manager.

recordset-get-filter

string (recordset-get-filter long id)

Returns the current filter.

recordset-get-float-data

double (recordset-get-float-data long id string-or-long col)

CHAPTER 7

161

Returns the floating-point data for the current record at the specified column. The column can be
a name or an integer position (starting from zero).

recordset-get-foreign-keys

long (recordset-get-foreign-keys long id optional string ftable = "" optional string ktable = "")

Returns a list of foreign keys in the specified table (columns in the specified table that refer to
primary keys in other tables), or a list of foreign keys in other tables that refer to the primary key
in the specified table.

If ptable contains a table name, this function returns a result set containing the primary key of the
specified table.

If ftable contains a table name, this functions returns a result set of containing all of the foreign
keys in the specified table and the primary keys (in other tables) to which they refer.

If both ptable and ftable contain table names, this function returns the foreign keys in the table
specified in ftable that refer to the primary key of the table specified in ptable. This should be one
key at most.

GetForeignKeys returns results as a standard result set. If the foreign keys associated with a
primary key are requested, the result set is ordered by FKTABLE_QUALIFIER,
FKTABLE_OWNER, FKTABLE_NAME, and KEY_SEQ. If the primary keys associated with a
foreign key are requested, the result set is ordered by PKTABLE_QUALIFIER,
PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ. The following table lists the columns in
the result set.

0 (VARCHAR) PKTABLE_QUALIFIER
1 (VARCHAR) PKTABLE_OWNER
2 (VARCHAR) PKTABLE_NAME
3 (VARCHAR) PKCOLUMN_NAME
4 (VARCHAR) FKTABLE_QUALIFIER
5 (VARCHAR) FKTABLE_OWNER
6 (VARCHAR) FKTABLE_NAME
7 (VARCHAR) FKCOLUMN_NAME
8 (SMALLINT) KEY_SEQ
9 (SMALLINT) UPDATE_RULE
10 (SMALLINT) DELETE_RULE
11 (VARCHAR) FK_NAME
12 (VARCHAR) PK_NAME

recordset-get-int-data

long (recordset-get-int-data long id string-or-long col)

Returns the integer data for the current record at the specified column. The column can be a
name or an integer position (starting from zero).

recordset-get-number-cols

CHAPTER 7

162

long (recordset-get-number-cols long id)

Returns the number of columns in the result set.

recordset-get-number-fields

long (recordset-get-number-fields long id)

Not implemented.

recordset-get-number-params

long (recordset-get-number-params long id)

Not implemented.

recordset-get-number-records

long (recordset-get-number-records long id)

Returns the number of records in the result set.

recordset-get-primary-keys

long (recordset-get-primary-keys long id optional string table = "")

Returns the column names that comprise the primary key of the table with the specified name. If
no name is given the class member tablename will be used. If both names are NULL nothing will
happen. The data will be presented as a normal result set, organized as follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) COLUMN_NAME
4 (SMALLINT) KEY_SEQ
5 (VARCHAR) PK_NAME

recordset-get-result-set

long (recordset-get-result-set long id)

Copies the data presented by ODBC into the recordset. Depending on the recordset type all or
only one record(s) will be copied. Usually this function will be called automatically after each
successful database operation.

recordset-get-table-name

string (recordset-get-table-name long id)

CHAPTER 7

163

Returns the name of the current table.

recordset-get-tables

long (recordset-get-tables long id)

Gets the tables of a database. The data will be presented as a normal result set, organized as
follows:

0 (VARCHAR) TABLE_QUALIFIER
1 (VARCHAR) TABLE_OWNER
2 (VARCHAR) TABLE_NAME
3 (VARCHAR) TABLE_TYPE (TABLE, VIEW, SYSTEM TABLE, GLOBAL TEMPORARY,

LOCAL TEMPORARY, ALIAS, SYNONYM, or database-specific type)
4 (VARCHAR) REMARKS

recordset-goto

long (recordset-goto long id long n)

Moves the cursor to the record with the number n, where the first record has the number 0.

recordset-is-bof

long (recordset-is-bof long id)

Returns 1 if the user tried to move the cursor before the first record in the set.

recordset-is-field-dirty

long (recordset-is-field-dirty long id string-or-long field)

Returns 1 if the given field has been changed but not saved yet.

recordset-is-field-null

long (recordset-is-field-null long id string-or-long field)

Returns 1 if the given field has no data.

recordset-is-col-nullable

long (recordset-is-col-nullable long id string-or-long field)

Returns 1 if the given column may contain no data.

CHAPTER 7

164

recordset-is-eof

long (recordset-is-eof long id)

Returns 1 if the user tried to move the cursor behind the last record in the set.

recordset-is-open

long (recordset-is-open long id)

Returns 1 if the parent database is open.

recordset-move

long (recordset-move long id long rows)

Moves the cursor a given number of rows. Negative values are allowed.

recordset-move-first

long (recordset-move-first long id)

Moves the cursor to the first record.

recordset-move-last

long (recordset-move-last long id)

Moves the cursor to the last record.

recordset-move-next

long (recordset-move-next long id)

Moves the cursor to the next record.
recordset-move-prev

long (recordset-move-prev long id)

Moves the cursor to the previous record.
recordset-query

long (recordset-query long id string columns string table optional string filter)

Start a query. An SQL string of the following type will automatically be generated and executed:
"SELECT columns FROM table WHERE filter".

recordset-set-table-name

CHAPTER 7

165

long (recordset-set-table-name long id string table)

Specify the name of the table you want to use.

7.47. Server

See also Interprocess communication overview (page 199)

A server object represents the server side of a DDE conversation.

To delete a server object, use object-delete.

server-create

long (server-create string service-name)

Creates a server object, and returns an integer id if successful.

service-name is a string identifying this service to potential clients. Under UNIX, it should contain
a valid port number.

The application should use window-add-callback (page 175) to register the window callback
OnAcceptConnection or OnAcceptConnectionEx, which will be called when a client requests a
connection.

OnAcceptConnection will be called with arguments:

1. server id (long)
2. the name of the topic in which the client is interested (string)
3. tentative connection id (long)

If this function returns zero, the connection is rejected and deleted, otherwise it is confirmed. See
also connection (page 104).

OnAcceptConnectionEx will be called with arguments:

1. server id (long)
2. the name of the topic in which the client is interested (string)

This form assumes that the connection object will be created with connection-create from within
the callback.

7.48. Slider

A slider is a panel item for denoting a range of values. It must be a child of a panel (page 154).

slider-create

long (slider-create long panel-id string callback string label
 long value long min-value long max-value
 long width optional long x optional long y optional string style optional string name)

CHAPTER 7

166

Creates a horizontal slider item on the given panel. The callback may be the empty string ("'') to
denote no callback, or a word or string for the function name. The function will be called when the
slider value is changed, with the slider item ID as argument.

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

style is a bit list of the following:

wxHORIZONTAL The item will be created as a horizontal slider.
wxVERTICAL The item will be created as a vertical slider.

name gives the slider a name that can be retrieved with window-get-name (page 176).

slider-set-value

long (slider-set-value long slider-id long value)

Set the value of the slider.

slider-get-value

long (slider-get-value long slider-id)

Gets the value of the slider.

7.49. Text

A text item is used for displaying and editing a single line of text. It must be a child of a panel
(page 154).

See also multi-line text (page 150).

text-create

long (text-create long panel-id string callback string label
 optional string value optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a single-line text item on the given panel. The callback may be the empty string ("'') to
denote no callback, or a word or string for the function name. The function will be called when
return is pressed in the text item, with the text item ID as argument. The default value is optional.

If no position is given, the panel item is placed after the last item. The value -1 may be passed to
denote a default, so that the position may be left unspecified and the size given.

style may be the empty string, or a bit list of:

wxTE_PROCESS_ENTER The callback function will receive the event
wxEVENT_TYPE_TEXT_ENTER_COMMAND. Note that this will break tab
traversal for this panel item under Windows. Single-line text only.

CHAPTER 7

167

wxTE_PASSWORD The text will be echoed as asterisks. Single-line text only.
wxTE_READONLY The text will not be user-editable.
wxHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical

scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView. Multi-line text only.

name gives the group box a name that can be retrieved with window-get-name (page 176).

text-set-value

long (text-set-value long text-id string value)

Set the string value of a text item.

text-get-value

string (text-get-value long text-id)

Get the string value of a text item.

7.50. Text window

To display a lot of text, use this subwindow as the child of a frame (page 123). It is capable of
loading and saving files of ASCII text, and under Open Look and Motif, the text can be edited
directly.

To allow the user to edit text under Windows as well as the other platforms, either invoke an
external editor or create a multi-line text item (page 150) on a panel.

Under Windows, there is an extended range of functions. Some take character positions - a
single integer which can identify a character position - and others take line and character
numbers. If you want to use a function that takes one form, but you only have the other, you can
convert between them using a function such as text-window-xy-to-position or text-window-
position-to-line. Note that line and character numbers start from zero.

The following callbacks are valid for the dialog box class:

OnChar (Not XView.) The function is called with the text window identifier, key code, and
key event identifier. If the event is an ASCII keypress, the code will correspond to the
ASCII code; otherwise, the programmer must refer to the constants defined in
common.h, in the wxWindows library.

To invoke default processing, call text-window-on-char.
OnSize The function is called with the text window identifier, width and height.

See also window-add-callback (page 175).

text-window-clear

long (text-window-clear long window-id)

CHAPTER 7

168

Clears the contents of a text subwindow. Returns 1 if successful, 0 otherwise.

text-window-copy

long (text-window-copy long window-id)

Copies the selected text to the clipboard.

text-window-cut

long (text-window-cut long window-id)

Copies the selected text to the clipboard, then removes the selection.

text-window-create

long (text-window-create long parent-id optional long x optional long y
 optional long width optional long height optional string style optional string name)

Creates a text subwindow. parent-id must be a valid frame ID.

style is a bit list of some of the following:

wxBORDER Use this style to draw a thin border in Windows 3 (non-native implementation
only).

wxNATIVE_IMPL Use this style to allow editing under MS Windows, albeit with a 64K
limitation.

name gives the text window a name that can be retrieved with window-get-name (page 176).

text-window-discard-edits

void (text-window-discard-edits long window-id)

Discard any edits in the text window.

text-window-get-contents

string (text-window-get-contents long window-id)

Returns the window contents (to a maximum of 1000 characters).

text-window-get-insertion-point

long (text-window-get-insertion-point long window-id)

Returns the insertion point.

CHAPTER 7

169

text-window-get-last-position

long (text-window-get-last-position long window-id)

Returns the final position in the text window.

text-window-get-line-length

long (text-window-get-line-length long window-id long line-no)

Returns the length of the text at line line-no.

text-window-get-line-length

long (text-window-get-line-text long window-id long line-no)

Returns the text at line-no.

text-window-get-number-of-lines

long (text-window-get-number-of-lines long window-id)

Returns the number of lines in the text window.

text-window-load-file

long (text-window-load-file long window-id string filename)

Load the file onto the text subwindow, returning 1 for success, 0 for failure.

text-window-modified

long (text-window-modified long window-id)

Returns 1 if the text has been modified, 0 otherwise.

text-window-on-char

long (text-window-on-char long panel-id long event-id)

The default implementation of the OnChar callback. Call this to pass intercepted characters
through to the text window. Note that under Windows, there seems to be an intermittent GPF bug
when using this and then closing the window.

text-window-paste

CHAPTER 7

170

long (text-window-paste long window-id)

Pastes the text (if any) from the clipboard to the text window.

text-window-position-to-char

long (text-window-position-to-char long window-id long pos)

Returns the character position (starting from zero) for the given index position.

text-window-position-to-line

long (text-window-position-to-line long window-id long pos)

Returns the line number (starting from zero) for the given index position.

text-window-remove

long (text-window-remove long window-id long start-pos long end-pos)

Removes the text between the given span selection.

text-window-replace

long (text-window-replace long window-id long start-pos long end-pos string text)

Replaces the text between the given span selection with the given text.

text-window-show-position

long (text-window-show-position long window-id long pos)

Shows the text at the given index position.

text-window-save-file

long (text-window-save-file long window-id string filename)

Saves the text in the subwindow to the given file, returning 1 for success, 0 for failure.

text-window-set-editable

long (text-window-set-editable long window-id long editable)

Sets the window editable (editable is 1) or read-only (editable is 0).

CHAPTER 7

171

text-window-set-insertion-point

long (text-window-set-insertion-point long window-id long pos)

Sets the insertion point to the given index position.

text-window-set-selection

long (text-window-set-selection long window-id long start-pos long end-pos)

Sets the selection to the given span of text.

text-window-write

long (text-window-write long window-id string text)

Writes the given string into the text window, at the current cursor point.

text-window-xy-to-position

long (text-window-xy-to-position long window-id long char-position long line)

Converts the character and line number (each starting from zero) to a position.

7.51. Timer

A timer object can be created to notify the application at regular intervals.

timer-create

long (timer-create)

Creates a timer object. Use timer-start to start the timer, and register a Notify callback function to
receive notification.

timer-delete

long (timer-delete long id)

Stops and deletes the timer object.

timer-start

long (timer-start long id long milliseconds)

Starts the timer, notifying at intervals of duration milliseconds.

CHAPTER 7

172

timer-stop

long (timer-stop long id)

Stops the timer.

7.52. Toolbar

See also Overview (page 203)

A toolbar is an array of bitmap buttons, implemented by drawing bitmaps onto a canvas, instead
of using the native button implementation.

toolbar-add-separator

long (toolbar-add-separator long id)

Adds a separator between tools.

toolbar-add-tool

long (toolbar-add-tool long id long index long bitmap-id1 optional long bitmap-id2 = 0
optional long is-toggle = 0 optional double x = -1.0 optional double x = 1.0 optional long
client-data = 0 optional string short-help-string="" optional string long-help-string="")

Adds a tool to the toolbar. Pass at least one bitmap, the bitmap to be displayed when active and
not depressed; and optionally, the bitmap to be displayed when the tool is depressed or toggled.
Under Windows, only one bitmap is necessary, and under X, the second bitmap will be created
automatically as the inverse of the first button if none is supplied.

You can specify whether the tool is allowed to toggle, and pass a position if you are not going to
automatically layout the toolbar with toolbar-layout. You can associate client data with the tool.

short-help-string is only used by Windows 95 versions of wxCLIPS. The string is used to supply
text for a tooltip, a small yellow window that appears as the mouse pointer hovers over the button.

long-help-string can be used for longer help strings, such as status line help.

toolbar-clear-tools

long (toolbar-clear-tools long id)

Clears all the tools from the toolbar.

toolbar-create

long (toolbar-create long parent_id optional long x optional long y optional long width
optional long height optional string style optional string orientation = "wxVERTICAL'' optional
long nrows-or-columns optional long create-buttons optional string name)

Creates a toolbar, with a given layout orientation (whether the tools are automatically laid out in

CHAPTER 7

173

rows or columns) and the number of rows or columns. These parameters are arbitrary if the tools
are to be positioned manually and toolbar-layout not called.

style may be a bit list of:

• wxTB_3DBUTTONS: gives a simple 3D look to the buttons.

create-buttons should be 1 (the default) if the toolbar should superimpose the user-supplied
buttons onto a larger 3D button. If 0, the tool will be the same size as the button, and the toggle
state will be represented by inverting the tool (Windows) or adding a border (X).

Returns the toolbar id if successful, zero otherwise.

name gives the toolbar a name that can be retrieved with window-get-name (page 176).

Note that absolute tool positioning (or the toolbar-layout function) does not work for buttonbars
under Windows 95: instead, you can specify the number of rows for the toolbar, and use toolbar-
add-separator to achieve inter-tool spacing.

toolbar-create-tools

long (toolbar-create-tools long id)

This should be called when creating Windows 95 buttonbars, after all tools have been added. It
adds the tools to the toolbar. You can also call it for non-Windows 95 toolbars and buttonbars, in
which case it will have no effect.

toolbar-enable-tool

long (toolbar-enable-tool long id long tool-id long enable)

Enables the tool (if enable is 1) or disables it (if enable is 0).

toolbar-get-max-height

double (toolbar-get-max-height long id)

Gets the maximum height of the toolbar when it has been automatically laid out.

toolbar-get-max-width

double (toolbar-get-max-width long id)

Gets the maximum width of the toolbar when it has been automatically laid out.

toolbar-get-tool-client-data

long (toolbar-get-tool-client-data long id long tool-id)

Returns the client data associated with the given tool.

CHAPTER 7

174

toolbar-get-tool-enabled

long (toolbar-get-tool-enabled long id long tool-id)

Returns 1 if the tool is enabled, 0 otherwise.

toolbar-get-tool-long-help

string (toolbar-get-tool-long-help long id long tool-id)

Returns the long help associated with this tool.

toolbar-get-tool-short-help

string (toolbar-get-tool-short-help long id long tool-id)

Returns the short help associated with this tool.

toolbar-get-tool-state

long (toolbar-get-tool-state long id long tool-id)

Returns the tool state (1 for toggled on, 0 for off).

toolbar-layout

long (toolbar-layout long id)

Lays out all the tools if automatic layout is required.

Note that this function does not work for buttonbars under Windows 95: but you can still specify
the number of rows for the toolbar.

toolbar-on-paint

void (toolbar-on-paint long id)

Calls the default toolbar paint callback. You may wish to call this if you override the default
callback.

toolbar-set-default-size

long (toolbar-set-default-size long id long width long height)

Sets the width and height of tool buttons (Windows only). The default is 24 by 22.

CHAPTER 7

175

toolbar-set-margins

long (toolbar-set-margins long id long x long y)

Sets the width and height of the toolbar margins and spacing, if automatic layout is being used.

toolbar-set-tool-long-help

long (toolbar-set-tool-long-help long id long tool-id string help-string)

Sets the long help associated with this tool.

toolbar-set-tool-short-help

long (toolbar-set-tool-short-help long id long tool-id string help-string)

Sets the short help associated with this tool.

toolbar-toggle-tool

long (toolbar-toggle-tool long id long tool-id long toggle)

Toggles the tool on or off.

7.53. Window

The window is an 'abstract' class which does not exist in its own right, but is used to access the
functionality of classes derived from it. Therefore, please refer to this section when considering
other classes.

window-add-callback

long (window-add-callback long window-id word event word function)

Sets the callback function of a given window (frame, panel, panel item etc.) for the given event, to
be the given CLIPS function. See individual window descriptions for details of valid callbacks.

window-centre

long (window-centre long window-id word orientation)

orientation may be wxVERTICAL, wxHORIZONTAL or wxBOTH. Centres the window with
respect to its parent (or desktop).

window-close

long (window-close long window-id long force-close)

CHAPTER 7

176

Closes the dialog or frame without immediately deleting the object. The object will be cleaned up
in 'idle' processing time. Use of this function instead of deleting the window directly is highly
recommended, especially under Motif which is sensitive to frame and dialog deletion.

This function first calls the window's OnClose handler. If OnClose returns FALSE, the close will
be vetoed unless the force-close argument is 1, in which case the deletion will take place anyway.

window-close should only be used for frames and dialog boxes.

window-delete

long (window-delete long window-id)

Deletes a window. See also window-close (page 175).

window-enable

long (window-enable long window-id long enable)

If enable is 1, enables the window for input. If enable is 0, the window is disabled (greyed out in
the case of a panel item).

window-fit

long (window-fit long window-id)

Fits the panel, dialog box or frame around its children.

window-get-name

string (window-get-name long window-id)

Gets the window's name (the 'name' parameter passed to a window constructor).

window-get-next-child

long (window-get-next-child long window-id long child-id)

If child-id is zero, returns the id of the first child window of window-id.

If child-id is a valid child id, returns the id of the next child window.

Returns -1 if there are no more children.

Example:

 (bind ?child-id (window-get-next-child ?win-id 0))

 (while (neq ?child-id -1)

CHAPTER 7

177

 (bind ?type (object-get-type ?child-id))
 ...
 (bind ?child-id (window-get-next-child ?win-d ?child-id))
)

window-get-parent

long (window-get-parent long window-id)

Gets the id of the window's parent.

window-get-x

long (window-get-x long window-id)

Get the x coordinate of the window.

window-get-y

long (window-get-y long window-id)

Gets the y coordinate of the window.

window-get-width

long (window-get-width long window-id)

Gets the width of the window.

window-get-height

long (window-get-height long window-id)

Gets the height of the window.

window-get-client-width

long (window-get-client-width long window-id)

Gets the client width (space available for child windows) of the window.

window-get-client-height

long (window-get-client-height long window-id)

Gets the client height (space available for child windows) of the window.

CHAPTER 7

178

window-is-shown

long (window-is-shown long window-id)

Returns 1 if the window is shown, 0 otherwise.

window-make-modal

long (window-make-modal long window-id long modal)

modal may be 1 to disable all frames and dialog boxes except this one, or 0 to enable all frames
and dialogs again.

Has no effect in XView.

window-popup-menu

long (window-popup-menu long window-id long menu-id double x double y)

Pops up a menu on the window, at the given position. The menu will be dismissed (but not
destroyed) when the user makes a selection.

Note that there is a reliability problem with Motif popup menus; they may not pop up after the first
time.

window-refresh

long (window-refresh long window-id long erase-background=1 long x=-1 long y=-1 long
width=-1 long height=-1) Refreshes the give window, causing OnPaint to be called. This
function should be called in preference to calling an OnPaint handler directly.

erase-background controls whether the window background is automatically cleared in the
current background colour (1) or not (0). The default is 1.

The last four optional arguments define a rectangle to limit the 'damaged' area. If all arguments
are -1, this is taken to mean that the whole window should be refreshed.

window-remove-callback

long (window-remove-callback long window-id word event)

Removes the callback function associated with this event.

window-set-cursor

long (window-set-cursor long window-id long cursor-id)

Sets the cursor for this window.

CHAPTER 7

179

window-set-focus

long (window-set-focus long window-id)

Set this window to have the keyboard focus.

window-set-size

long (window-set-size long window-id long x long y long width long height)

Sets the position and size of the window.

window-set-size-hints

long (window-set-size-hints long window-id long min-width=-1 long min-height=-1 long max-
width=-1 long max-height=-1 long inc-width=-1 long inc-height=-1) Tells the windowing system
to restrict the resizing of the frame or dialog box.

min-width, min-height determine the minimum size of the window.

max-width, max-height determine the maximum size of the window.

inc-width, inc-height determine the increments by which the window is sized (Motif only).

-1 values indicate where default values should be used instead of application-specified values.

window-set-client-size

long (window-set-client-size long window-id long width long height)

Sets the client size (available space for child windows) of the window.

window-show

long (window-show long window-id long show)

If show is 1, shows the window. If show is 0, the window is hidden. If the window is a modal
dialog box, show = 1 will start the modal loop, and show = 0 will terminate the loop (allowing
execution to proceed after the first call to window-show).

7.54. Miscellaneous

This section contains an assortment of useful GUI and other functions.

batch

void (batch string filename)

Executes the given file of CLIPS commands as if from a terminal. Note that full error checking on

CHAPTER 7

180

construct definitions is not performed; use load when checking is required.

begin-busy-cursor

void (begin-busy-cursor)

Starts a 'busy' section of code, putting up an hourglass cursor. Use end-busy-cursor (page 181)
at the end of the section.

These pairs of calls may be nested for programming convenience.

bell

void (bell)

Rings the system bell.

chdir

long (chdir string directory)

Changes to the given directory and returns 1 if successful, 0 otherwise.

clean-windows

void (clean-windows)

Delete all frames and dialog boxes created through CLIPS calls.

clear-ide-window

void (clear-ide-window)

Clears the wxCLIPS development window.

clear-resources

long (clear-resources)

Clears the wxCLIPS resource table. This table is separate from the default resource table that is
used by wxCLIPS and other host C++ applications.

See also load-resource-file (page 185), panel-create-from-resource (page 154), dialog-box-
create-from-resource (page 122).

copy-file

CHAPTER 7

181

long (copy-file string f1 string f2)

Copies file f1 to f2, returning 1 if successful, 0 otherwise.

debug-msg

void (debug-msg string text)

Outputs text to the debugging stream. Under X, this is the standard error stream. Under
Windows, this outputs to the debugger (if present) or any other program that can intercept debug
messages, such as Microsoft's DBWIN sample application. This can be useful if you don't have a
text window available, and you want the messages to persist after your program has exited,
gracefully or otherwise.

dir-exists

long (dir-exists string directory)

Returns 1 if the directory exists, 0 otherwise.

end-busy-cursor

void (end-busy-cursor)

Ends a 'busy' section of code, resetting the cursor to the original for each window. Use begin-
busy-cursor (page 180) at the start of the section.

These pairs of calls may be nested for programming convenience.

execute

long (execute string command optional long synchronous = 0)

Executes the given system command, either asynchronously (the function returns control
immediately) or synchronously (the function returns control when the command terminates). The
default is asynchronous execution.

This function should be used in preference to the CLIPS system command. Under Windows, it
calls WinExec. You cannot call built-in DOS commands (such erase) with this function: you may
need to write a batch file instead.

fact-string-existp

bool (fact-string-existp string fact)

Allows an application to test a fact from within a function. For example:

 CLIPS> (fact-string-existp "(Example 1)")
 CLIPS> FALSE

CHAPTER 7

182

 CLIPS> (assert (Example 2))
 CLIPS> <Fact-0>
 CLIPS> (fact-string-existp "(Example 2)")
 CLIPS> TRUE
 CLIPS> (retract 0)
 CLIPS> (fact-string-existp "(Example 2)")
 CLIPS> FALSE

file-exists

long (file-exists string filename)

Returns 1 if the file exists, 0 otherwise.

file-selector

string (file-selector optional string message optional string path optional string file
optional string extension optional string wildcard optional long parent-id optional string
flags)

Pops up a file selector with given (optional) arguments, returning a fully qualified filename or the
empty string.

flags can be the empty string or a bit list of the following:

wxSAVE Display the Save button instead of the Open button (Windows only).
wxOVERWRITE_PROMPT Prompts the user when saving if there is already a file of that

name (Windows only).
wxOPEN Display the Open button (Windows only).
wxHIDE_READONLY Hide the "Open as read-only" checkbox (Windows only).

find-window-by-label

long (find-window-by-label string label optional long parent-id)

Finds a window with a label or title corresponding to label. Optionally pass a parent id from where
to start searching.

find-window-by-name

long (find-window-by-name string name optional long parent-id)

Finds a window with a name corresponding to name. Optionally pass a parent id from where to
start searching.

float-to-string

CHAPTER 7

183

string (float-to-string double n)

Convert a floating point number to a string.

get-active-window

long (get-active-window)

Returns the id of the active window, or -1 if either there is no active window in this application, or
the active window has not been created as a wxCLIPS window.

This function only works under MS Windows.

get-choice

string (get-choice string message multifield choices optional long centre-message optional
long parent-id)

Given a message string and a multifield comprising a number of choice strings, pops up a menu
for the user to select one item. Returns one of the supplied strings if the user pressed Ok, or the
null string if the user pressed Cancel.

A multifield can be created with the CLIPS function mv-append, for example:

 (bind ?choice (get-choice "Choose please"
 (mv-append "One" "Two" "Three")))

If centre-message is 1 (the default), the message will be centred on the dialog box. If it is 0, the
message will be left-justified. New lines are allowed in the message.

get-elapsed-time

long (get-elapsed-time optional long reset-timer = 1)

Returns the elapsed time in milliseconds since the last reset, using start-timer (page 188) or by
passing 1 to this function.

get-ide-window

long (get-ide-window)

Gets the id of the wxCLIPS development window (stand-alone wxCLIPS only). If the development
window has not been created, zero is returned.

get-os-version

string (get-os-version)

Returns a string representing the operating system under which the program is currently running.
It is more precise than get-platform (page 184). However, be careful about inferring from a value

CHAPTER 7

184

of wxWIN95 that this version of wxCLIPS is compiled as a Windows 95 application: it may be
compiled as a generic WIN32 application.

This may be one of the following (although only a number of these platforms are currently
supported).

• wxCURSES: Text-only CURSES platform
• wxXVIEW_X: Sun's XView OpenLOOK toolkit
• wxMOTIF_X: OSF Motif 1.x.x
• wxCOSE_X: OSF Common Desktop Environment
• wxNEXTSTEP: NeXTStep
• wxMACINTOSH: Apple System 7
• wxGEOS: GEOS
• wxOS2_PM: OS/2 Workplace
• wxWINDOWS: Windows or WfW
• wxPENWINDOWS: Windows for Pen Computing
• wxWINDOWS_NT: Windows NT
• wxWIN32S: Windows 32S API
• wxWIN95: Windows 95
• wxWIN386: Watcom 32-bit supervisor mode

get-platform

string (get-platform)

Gets a string indicating the current platform the program is running on. Currently one of "XView'',
"Motif'' and "Windows 3.1''.

For a more precise notion of current operating system, see get-os-version (page 183).

get-resource

string (get-resource string section string entry optional string filename)

Gets the value from the resource file (such as WIN.INI or .Xdefaults, depending on platform). If
the filename is omitted, WIN.INI under Windows or .Xdefaults under X will be used.

See also write-resource (page 189)

get-text-from-user

string (get-text-from-user string message optional string default-value
 optional long centre-message optional long parent-id)

Give a message string and a default value, pops up a dialog box prompting the user to enter a
string. Returns the input string if the user pressed Ok, or the null string if the user pressed
Cancel.

If centre-message is 1 (the default), the message will be centred on the dialog box. If it is 0, the
message will be left-justified. New lines are allowed in the message.

CHAPTER 7

185

load-resource-file

long (load-resource-file string filename)

Loads the given .wxr resource file, return 1 if the operation was successful.

See also clear-resources (page 180), panel-create-from-resource (page 154), dialog-box-create-
from-resource (page 122).

long-to-string

string (long-to-string long value)

Convert the integer to a string.

make-metafile-placeable

long (make-metafile-placeable string filename long min-x long min-y long max-x long max-y
optional double scale)

Given a filename for an existing, valid metafile, makes it into a placeable metafile by prepending a
header containing the given bounding box. The bounding box may be obtained from a device
context after drawing into it, using the functions dc-get-min-x, dc-get-min-y, dc-get-max-x, and dc-
get-max-y.

In addition to adding the placeable metafile header, this function adds the equivalent of the
following code to the start of the metafile data:

 SetMapMode(dc, MM_ANISOTROPIC);
 SetWindowOrg(dc, minX, minY);
 SetWindowExt(dc, maxX - minX, maxY - minY);

This simulates the MM_TEXT mapping mode, which wxWindows assumes.

Placeable metafiles may be imported by many Windows applications, and can be used in RTF
(Rich Text Format) files.

scale allows the specification of scale for the metafile.

This function is only available under Windows.

See also metafile-dc (page 148).

mci-send-string

string (mci-send-string string command)

Sends an MCI (Media Control Interface) string to Windows. Returns an error string if there was an
error, or the empty string if there was no error. This allows you to play MIDI and WAV files, for
example, and videos if you have an appropriate device driver.

CHAPTER 7

186

For example:

 (bind ?err (mci-send-string "play bark.wav"))
 (if (neq ?err "") then (printout t "Error: " ?err crlf))

The following describes the basic command syntax.

load device_name {file_name}

pause device_name

play device_name [from position]
 [to position]
 [insert | overwrite]

resume device_name

save device_name [file_name]

seek device_name {to position | to start | to end}

set device_name [audio all off
 | audio all on
 | audio left off
 | audio left on
 | audio right off
 | audio right on
 | video off
 | video on]
 [door closed | door open]
 [time format milliseconds | time format ms]

status device_name {current track
 | length
 | length track track_number
 | mode
 | number of tracks
 | position
 | position track track_number
 | ready
 | start position
 | time format}

stop device name

message-box

word (message-box string message optional word type
 optional long centre-message optional long parent-id optional string title)

Pops up a dialog box with a message, where the buttons on the dialog box depend on the type
parameter. This may be OK, OK-CANCEL, YES-NO or YES-NO-CANCEL. The return value is
OK, CANCEL, YES or NO.

If centre-message is 1 (the default), the message will be centred on the dialog box. If it is 0, the

CHAPTER 7

187

message will be left-justified. New lines are allowed in the message.

The optional title parameter allows the message box title to be changed from the default string
'Message'.

mkdir

long (mkdir string directory)

Creates the given directory and returns 1 if successful, 0 otherwise.

now

string (now)

Returns a string representing the current time and date.

read-string

string (read-string)

Read a string (pops up a dialog box).

return-result

void (return-result any result)

Used by internal C++ functions to get the return value of an arbitrary CLIPS expression.

rmdir

long (rmdir string directory)

Removes the given directory and returns 1 if successful, 0 otherwise.

show-ide-window

void (show-ide-window)

Shows the wxCLIPS development window if it has not already been created (stand-alone
wxCLIPS only). This can be useful if starting a CLIPS program from the command line, and you
want the development window to be shown before app-on-init has finished. Only likely to work
under Windows.

set-work-proc

void (set-work-proc string function)

CHAPTER 7

188

Sets the work function, a function with no parameter and no return result, which will be called
when the application is otherwise idle. If this is the empty string, the work procedure is cancelled.

(Stand-alone version of wxCLIPS only).

Note: this has been found not to work properly on the Windows version, and is not implemented
for XView. So probably this is useful only under Motif.

sleep

long (sleep long no-secs)

Makes the process dormant for the given number of seconds. This might be used in a loop
involving interprocess communication, for example, to allow time for programs to be loaded.
Message processing will take place whilst the process is asleep, so beware of the user interacting
with the system during this period.

start-timer

void (start-timer)

Starts the wxCLIPS stopwatch. You can get elapsed time in milliseconds with get-elapsed-time
(page 183).

string-sort

multifield (string-sort multifield string-list)

Sorts the given multifield list in ascending alphabetical order. A list may be created using the mv-
append CLIPS function.

string-to-float

double (string-to-float string value)

Convert the string to a floating point number.

string-to-long

long (string-to-long string value)

Convert the string to a long integer.

string-to-symbol

word (string-to-symbol string value)

Convert the string to a symbol.

CHAPTER 7

189

symbol-to-string

string (symbol-to-string word value)

Convert the string to a symbol.

write-resource

long (write-resource string section string entry string value optional string filename)

Writes the value into the resource file (such as WIN.INI or .Xdefaults, depending on platform). If
the filename is omitted, WIN.INI under Windows or .Xdefaults under X will be used.

See also get-resource (page 184)

wxclips-object-exists

long (wxclips-object-exists long id)

Returns 1 if the given wxCLIPS object exists, 0 otherwise.

yield

long (yield)

Yields to the windowing system message loop, if appropriate. Normally only of use under
Windows, during periods of intensive processing, particularly following window creation or
modification. It has no effect under XView or Motif.

190

8. wxCLIPS classes by category

A classification of wxCLIPS classes by category.

8.1. Managed windows

There are several types of window that are directly controlled by the window manager (such as
MS Windows, or the Motif Window Manager). Frames may contain subwindows (page 190), and
dialog boxes have their own built-in subwindow similar to a panel.

wxCLIPS function groups

• Frame (page 123)
• Dialog box (page 121)

wxCOOL classes

• wxFrame (page 48)
• wxDialogBox (page 44)

8.2. Subwindows

Subwindows should be created as children of frames. The panel subwindow may contain panel
items (controls or widgets).

wxCLIPS function groups

• Canvas (page 96)
• Grid (page 129)
• Panel (page 154)
• Text window (page 167)
• Toolbar (page 172)

wxCOOL classes

• wxCanvas (page 21)
• wxPanel (page 66)
• wxTextWindow (page 82)
• wxToolBar (page 84)

See also Window (page 175) and wxWindow (page 88).

8.3. Panel items

These are widgets (in Motif terminology) or controls (in MS Windows terminology) that can be
placed on panels and dialog boxes, with the exception of Menu and MenuBar.

wxCLIPS function groups

• Button (page 95)
• CheckBox (page 100)
• Choice (page 100)
• Gauge (page 128)
• GroupBox (page 136)

CHAPTER 7

191

• Item (page 155)
• ListBox (page 141)
• MultiText (page 150)
• Menu (page 144)
• MenuBar (page 145)
• Message (page 146)
• RadioBox (page 157)
• Slider (page 165)
• Text (page 166)

wxCOOL classes

• wxButton (page 20)
• wxCheckBox (page 23)
• wxChoice (page 23)
• wxGauge (page 52)
• wxGroupBox (page 53)
• wxItem (page 68)
• wxListBox (page 55)
• wxMultiText (page 65)
• wxMenu (page 58)
• wxMenuBar (page 60)
• wxMessage (page 61)
• wxRadioBox (page 71)
• wxSlider (page 80)
• wxText (page 81)

See also Window (page 175) and wxWindow (page 88).

8.4. Convenience dialogs

Popup-related special-purpose dialogs, and related functions.

• file-selector (page 182)
• get-choice (page 183)
• get-text-from-user (page 184)
• message-box (page 186)
• begin-busy-cursor (page 180)
• end-busy-cursor (page 181)

8.5. Device contexts

See also Overview (page 202)

Device contexts are surfaces that may be drawn on, and provide an abstraction that allows
parameterisation of your drawing code by passing different device contexts.

wxCLIPS function groups

• wxDC (page 115)
• MemoryDC (page 143)
• MetaFileDC (page 148)
• PostScriptDC (page 156)

CHAPTER 7

192

• PrinterDC (page 157)
• Metafile (page 147)

wxCOOL classes

• DC (page 39)
• wxMemoryDC (page 58)
• wxMetaFileDC (page 62)
• wxPostScriptDC (page 69)
• wxPrinterDC (page 70)
• wxMetafile (page 61)

See also make-metafile-placeable (page 185).

8.6. Graphics device interface

These classes are related to the Graphics Device Interface, in MS Windows terminology.

wxCLIPS function groups

• Bitmap (page 93)
• Brush (page 95)
• Cursor (page 106)
• Font (page 123)
• Icon (page 138)
• Pen (page 156)
• Colour (page 103)

wxCOOL classes

• wxBitmap (page 18)
• wxBrush (page 19)
• wxCursor (page 29)
• wxFont (page 47)
• wxIcon (page 53)
• wxPen (page 69)

8.7. Events

Some member functions that an application overrides are passed event objects containing
information about the event.

wxCLIPS function groups

• CommandEvent (page 103)
• Event (page 122)
• KeyEvent (page 140)
• MouseEvent (page 148)

wxCOOL classes

• wxCommandEvent (page 25)
• wxEvent (page 46)
• wxKeyEvent (page 54)

CHAPTER 7

193

• wxMouseEvent (page 63)

8.8. Interprocess communication

See also Overview (page 199)

wxCLIPS provides a simple interprocess communications facilities based on DDE.

wxCLIPS function groups

• Client (page 102)
• Connection (page 104)
• Help (page 126)
• Server (page 165)

wxCOOL classes

• wxClient (page 25)
• wxConnection (page 26)
• wxHelpInstance (page 51)
• wxServer (page 79)

8.9. Database classes

See also Database classes overview (page 205)

wxCLIPS provides a set of classes for accessing Microsoft's ODBC (Open Database
Connectivity) product.

wxCLIPS function groups

• Database (page 107)
• RecordSet (page 158)

wxCOOL classes

• wxDatabase (page 31)
• wxRecordSet (page 72)

8.10. File functions

• chdir (page 180)
• dir-exists (page 181)
• file-exists (page 182)
• get-resource (page 184)
• write-resource (page 189)

8.11. Time-related functions

Functions

• Date class (page 109)
• Timer class (page 171)
• get-elapsed-time (page 183)

CHAPTER 7

194

• start-timer (page 188)
• now (page 187)

wxCLIPS function groups

• Date class (page 109)
• Timer class (page 171)

wxCOOL classes

• wxDate (page 33)
• wxTimer (page 84)

8.12. Noisy functions

• bell (page 180)
• mci-send-string (page 185)

8.13. Operating system functions

These functions are related to operating system functionality.

• execute (page 181)
• get-platform (page 184)
• get-resource (page 184)
• write-resource (page 189)
• yield (page 189)
• sleep (page 188)

8.14. wxCLIPS environment functions

These functions are related to the wxCLIPS development environment.

• app-on-init (page 93)
• batch (page 179)
• clean-windows (page 180)
• debug-msg (page 181)
• get-ide-window (page 183)
• get-resource (page 184)
• show-ide-window (page 187)

8.15. Data functions

These functions are related to general data manipulation.

• float-to-string (page 182)
• long-to-string (page 185)
• read-string (page 187)
• string-sort (page 188)
• string-to-float (page 188)
• string-to-long (page 188)
• string-to-symbol (page 188)
• symbol-to-string (page 189)

CHAPTER 7

195

196

9. Topic overviews

9.1. Window styles

Window styles are used to specify alternative behaviour and appearances for windows, when
they are created. The symbols are defined in such as way that they can be combined in a 'bit list'
using the bitwise-or operator, as found in C and C++. In CLIPS, you enclose this bit list in a string.
For example:

 "wxCAPTION | wxMINIMIZE_BOX | wxMINIMIZE_BOX | wxTHICK_FRAME"

9.1.1. wxFrame styles

The following styles apply to wxFrame windows.

wxICONIZE Display the frame iconized (minimized) (Windows only).
wxCAPTION Puts a caption on the frame (Windows and XView only).
wxDEFAULT_FRAME Defined as a combination of wxMINIMIZE_BOX, wxMAXIMIZE_BOX,

wxTHICK_FRAME, wxSYSTEM_MENU, and wxCAPTION.
wxMDI_CHILD Specifies a Windows MDI (multiple document interface) child frame.
wxMDI_PARENT Specifies a Windows MDI (multiple document interface) parent frame.
wxMINIMIZE Identical to wxICONIZE.
wxMINIMIZE_BOX Displays a minimize box on the frame (Windows and Motif only).
wxMAXIMIZE Displays the frame maximized (Windows only).
wxMAXIMIZE_BOX Displays a maximize box on the frame (Windows and Motif only).
wxSDI Specifies a normal SDI (single document interface) frame.
wxSTAY_ON_TOP Stay on top of other windows (Windows only).
wxSYSTEM_MENU Displays a system menu (Windows and Motif only).
wxTHICK_FRAME Displays a thick frame around the window (Windows and Motif only).
wxRESIZE_BORDER Displays a resizeable border around the window (Motif only).
wxTINY_CAPTION_HORIZ Under Windows 3.1, displays a small horizontal caption if

USE_ITSY_BITSY is set to 1 in wx_setup.h and the Microsoft ItsyBitsy library
has been compiled. Use instead of wxCAPTION.

wxTINY_CAPTION_VERT Under Windows 3.1, displays a small vertical caption if
USE_ITSY_BITSY is set to 1 in wx_setup.h and the Microsoft ItsyBitsy library
has been compiled. Use instead of wxCAPTION.

9.1.2. wxDialogBox styles

The following styles apply to wxDialogBox windows.

wxCAPTION Puts a caption on the dialog box (Motif only).
wxDEFAULT_DIALOG_STYLE Equivalent to a combination of wxCAPTION, wxSYSTEM_MENU

and wxTHICK_FRAME
wxRESIZE_BORDER Display a resizeable frame around the window (Motif only).
wxSYSTEM_MENU Display a system menu (Motif only).
wxTHICK_FRAME Display a thick frame around the window (Motif only).
wxUSER_COLOURS Under Windows, overrides standard control processing to allow setting of

the dialog box background colour.
wxVSCROLL Give the dialog box a vertical scrollbar (XView only).

CHAPTER 7

197

9.1.3. wxItem styles

The following styles apply to all wxItem (page 68) derived windows.

wxHORIZONTAL_LABEL The item will be created with a horizontal label.
wxVERTICAL_LABEL The item will be created with a vertical label.
wxFIXED_LENGTH Allows the values of a column of items to be left-aligned. Create an item

with this style, and pad out your labels with spaces to the same length. The item
labels will initially created with a string of identical characters, positioning all the
values at the same x-position. Then the real label is restored.

9.1.4. wxButton styles

There are no styles specific to wxButton (page 20).

9.1.5. wxGauge styles

The following styles apply to wxGauge (page 52) items.

wxGA_HORIZONTAL The item will be created as a horizontal gauge.
wxGA_VERTICAL The item will be created as a vertical gauge.
wxGA_PROGRESSBAR Under Windows 95, the item will be created as a horizontal

progress bar.

9.1.6. wxGroupBox styles

There are no styles specific to wxGroupBox (page 53).

9.1.7. wxListBox styles

The following styles apply to wxListBox (page 55) items.

wxNEEDED_SB Create scrollbars if needed.
wxLB_NEEDED_SB Same as wxNEEDED_SB.
wxALWAYS_SB Create scrollbars immediately.
wxLB_ALWAYS_SB Same as wxALWAYS_LB.
wxLB_SINGLE Single-selection list.
wxLB_MULTIPLE Multiple-selection list.
wxLB_EXTENDED Extended-selection list (Motif only).
wxHSCROLL Create horizontal scrollbar if contents are too wide (Windows only).

9.1.8. wxMessage styles

There are no styles specific to wxMessage (page 61).

CHAPTER 7

198

9.1.9. wxRadioBox

The following styles apply to wxRadioBox (page 71) items.

wxVERTICAL Lays the radiobox out in columns.
wxHORIZONTAL Lays the radiobox out in rows.

9.1.10. wxSlider styles

The following styles apply to wxSlider (page 80) items.

wxHORIZONTAL The item will be created as a horizontal slider.
wxVERTICAL The item will be created as a vertical slider.

9.1.11. wxText/wxMultiText styles

The following styles apply to wxText (page 81) and wxMultiText (page 65) items.

wxTE_PROCESS_ENTER The callback function will receive the event
wxEVENT_TYPE_TEXT_ENTER_COMMAND. Note that this will break tab
traversal for this panel item under Windows. Single-line text only.

wxTE_PASSWORD The text will be echoed as asterisks. Single-line text only.
wxTE_READONLY The text will not be user-editable.
wxHSCROLL A horizontal scrollbar will be displayed. If wxHSCROLL is omitted, only a vertical

scrollbar is displayed, and lines will be wrapped. This parameter is ignored
under XView. Multi-line text only.

9.1.12. wxTextWindow styles

The following styles apply to wxTextWindow (page 82) objects.

wxBORDER Use this style to draw a thin border in Windows 3 (non-native implementation
only).

wxNATIVE_IMPL Use this style to allow editing under Windows 3.1, albeit with a 64K
limitation.

wxREADONLY Use this style to disable editing.
wxHSCROLL Use this style to enable a horizontal scrollbar, or leave it out to allow line

wrapping. Windows and Motif only.

9.1.13. wxPanel styles

The following styles apply to wxPanel (page 66) windows.

wxBORDER Draws a thin border around the panel.
wxUSER_COLOURS Under Windows, overrides standard control processing to allow setting of

the panel background colour.
wxVSCROLL Gives the dialog box a vertical scrollbar (XView only).

CHAPTER 7

199

9.1.14. wxCanvas styles

The following styles apply to wxCanvas (page 21) windows.

wxBORDER Gives the canvas a thin border (Windows 3 and Motif only).
wxRETAINED Gives the canvas a wxWindows-implemented backing store, making repainting

much faster but at a potentially costly memory premium (XView and Motif only).

9.1.15. wxToolBar styles

The following styles apply to wxToolBar (page 84) objects.

wxTB_3DBUTTONS Gives a 3D look to the buttons, but not to the same extent as
wxButtonBar.

9.2. Interprocess communication overview

wxCLIP function groups: Server (page 165), Connection (page 104), Client (page 102).

wxCOOL classes: wxServer (page 79), wxConnection (page 26), wxClient (page 25).

The following describes how wxCLIPS implements DDE. The following three classes are central.

1. Client. This represents the client application, and is used only within a client program.
2. Server. This represents the server application, and is used only within a server program.
3. Connection. This represents the connection from the current client or server to the other

application (server or client), and can be used in both server and client programs. Most
DDE transactions operate on this object.

Messages between applications are usually identified by three variables: connection object, topic
name and item name. A data string is a fourth element of some messages. To create a
connection (a conversation in Windows parlance), the client application sends the message
client-make-connection to the client object, with a string service name to identify the server and a
topic name to identify the topic for the duration of the connection. Under UNIX, the service name
must contain an integer port identifier.

The server then responds and either vetos the connection or allows it. If allowed, a connection
object is created which persists until the connection is closed. The connection object is then used
for subsequent messages between client and server.

To create a working server, the programmer must:

1. Create a server object, giving it a service name.
2. Register the callback OnAcceptConnection for accepting or rejecting a connection, on

the basis of the topic argument.
3. Create a Connection object.
4. Provide callbacks for various messages that are sent to the server side of a Connection.

To create a working client, the programmer must:

CHAPTER 7

200

1. Create a client object.
2. Create a connection object using client-make-connection (page 102).
3. Provide callbacks for various messages that are sent to the client side of a Connection.
4. Use the Connection functions to send messages to the server.

9.2.1. Data transfer

These are the ways that data can be transferred from one application to another.

• Execute: the client calls the server with a data string representing a command to be
executed. This succeeds or fails, depending on the server's willingness to answer. If the
client wants to find the result of the Execute command other than success or failure, it
has to explicitly call Request.

• Request: the client asks the server for a particular data string associated with a given
item string. If the server is unwilling to reply, the return value is NULL. Otherwise, the
return value is a string (actually a pointer to the connection buffer, so it should not be
deallocated by the application).

• Poke: The client sends a data string associated with an item string directly to the server.
This succeeds or fails.

• Advise: The client asks to be advised of any change in data associated with a particular
item. If the server agrees, the server will send an OnAdvise message to the client along
with the item and data.

The default data type is wxCF_TEXT (ASCII text), and the default data size is the length of the
null-terminated string. Windows-specific data types could also be used on the PC.

9.2.2. Connection overview

See also Interprocess communication overview (page 199)

A connection object has no creation function, since it is implicitly created when a connection is
requested (one object at each side of the connection).

A connection object id is used for initiating DDE commands and requests using functions such as
connection-execute, and it also has event handlers associated with it to respond to commands
from the other side of the connection.

The callbacks you can define for a connection (using window-add-callback (page 175)) are as
follows.

OnAdvise Called when an OnAdvise message is received by the client in response to a
server-side connection-advise call. The function should take arguments: connection id,
OnAdvise, topic string, item name string, data string. The function should return 1 if
successful, 0 otherwise. The data string is what the server is passing to the client.

OnExecute Called when an OnExecute message is received by the server in response to a
client-side connection-execute call. The function should take arguments: connection id,
OnExecute, topic string, dummy item, data string. The function should return 1 if
successful, 0 otherwise.

OnPoke Called when an OnPoke message is received by the server in response to a client-
side connection-poke call. The function should take arguments: connection id, OnPoke,
topic string, item name, data string. The function should return 1 if successful, 0
otherwise.

CHAPTER 7

201

OnRequest Called when an OnRequest message is received by the server in response to a
client-side connection-request call. The function should take arguments: connection id,
OnRequest, topic string, item name, data string. The function should return the data
being requested, or the empty string if none. otherwise.

OnStartAdvise Called when an OnStartAdvise message is received by the server in
response to a client-side connection-start-advise call. The function should take
arguments: connection id, OnStartAdvise, topic string, item name, dummy data. The
function should return 1 if successful, 0 otherwise.

OnStopAdvise Called when an OnStopAdvise message is received by the server in
response to a client-side connection-start-advise call. The function should take
arguments: connection id, OnStopAdvise, topic string, item name, dummy data. The
function should return 1 if successful, 0 otherwise.

9.2.3. Examples

See the sample programs ddeserv.clp, ddeclien.clp in the examples directory. Run the server,
then the client (you'll have to copy wxclips.exe to wxclips2.exe to run two copies
simulataneously).

The sample ddetest.clp shows a simple example of accessing the Program Manager using DDE
(Windows only).

;;; Demo of DDE functions: chatting to PROGMAN
;;;

(defglobal ?*progman-server* = 0)
(defglobal ?*progman-server-name* = "PROGMAN")
(defglobal ?*progman-host-name* = "none")
(defglobal ?*progman-topic-name* = "PROGMAN")
(defglobal ?*progman-client* = 0)
(defglobal ?*progman-connection* = 0)

;;; Convert a multifield list of strings to one string
(deffunction many-strings-to-one ($?strings)
 (bind ?counter 1)
 (bind ?string "")
 (while (<= ?counter (length $?strings)) do
 (bind ?string (str-cat ?string (nth ?counter $?strings)))
 (bind ?counter (+ ?counter 1))
)
 (return ?string)
)

(deffunction progman-demo ()
 ;; Get a group name from the user
 (bind ?new-group-name (get-text-from-user "New PROGMAN group name"))
 (if (neq ?new-group-name "") then
 ;; Form create group command
 (bind ?command (many-strings-to-one (mv-append "[CreateGroup(" ?new-
group-name ")]")))

 ;; Construct a client object
 (bind ?*progman-client* (client-create))

 ;; Construct a connection object

CHAPTER 7

202

 (bind ?*progman-connection* (client-make-connection
 ?*progman-client* ?*progman-host-name*
 ?*progman-server-name* ?*progman-topic-name*))

 ;; Execute a command to create a group
 (bind ?exe (connection-execute ?*progman-connection* ?command))

 ;; Request a list of groups
 (bind ?req (connection-request ?*progman-connection* "PROGMAN"))
 (format t "%nProgram Manager Groups:%n")
 (format t "%s%n%n" ?req)

 ;; Disconnect
 (connection-disconnect ?*progman-connection*)
)
)

;;; Automatically called when running application from command line
;;; e.g. wxclips -start -clips ddetest.clp
;;; Also runnable from the Application: Run application.
(deffunction app-on-init ()
 (progman-demo)
)

9.3. Device context overview

wxCLIPS function groups: DC (page 115), PostScriptDC (page 156), MetaFileDC (page 148),
MemoryDC (page 143), PrinterDC (page 157)

wxCOOL classes: wxDC (page 39), wxPostScriptDC (page 69), wxMetaFileDC (page 62),
wxMemoryDC (page 58), wxPrinterDC (page 70)

A device context is an abstraction of all the devices that can be drawn onto, such as PostScript
file, canvas, printer, metafile, and bitmap. Instead of drawing directly on one of these devices, the
application programmer can write a function that writes to a device context, and then pass any
device context to that function. The most frequently used device context is probably the canvas
device context. This cannot be created by an application but can be retrieved from a canvas
(page 96) by calling canvas-get-dc (page 97).

At present, wxCLIPS supports the canvas, memory, PostScript, Windows printer and Windows
metafile device contexts.

When writing code to draw into a device context, use a device context variable as a parameter
whenever possible, to allow the most general use of your drawing code. You can then pass a
device context object of any derived type.

9.4. Dialog box overview

Function group/class: DialogBox (page 121)/wxDialogBox (page 44)

A dialog box is similar to a panel, in that it is a window which can be used for placing panel items,
with the following exceptions:

1. A surrounding frame is implicitly created.
2. Extra functionality is automatically given to the dialog box, such as tabbing between

items (currently Windows only).

CHAPTER 7

203

3. If the dialog box is modal, the calling program is blocked until the dialog box is
dismissed.

Under XView, some panel items may display incorrectly in a modal dialog, and two modal dialogs
may not be open simultaneously. This can be corrected using a wxWindows patch.

Under implementations that permit it, Dialog box inherits from Canvas via Panel, and has a Panel
DC that the application can draw on.

The panel device context associated with Dialog box behaves slightly differently than for a panel
or canvas: drawing to it requires enclosing code in dc-begin-drawing, dc-end-drawing calls. This
is because under Windows, dialog box device contexts are not 'retained' and settings would be
lost if the device context were retrieved and released for each drawing operations.

See Miscellaneous (page 179) for convenience dialog functions which avoid the need to create a
dialog box and individual items.

The following callbacks are valid for the dialog box class:

OnCommand Called with a panel identifier, an item identifier and a command event
identifier when a command event is received by a panel item that does not have an
associated callback. If you have created a panel or dialog box from a resource, you will
need to intercept OnCommand.

OnClose The function is called with the window identifier. If the callback returns 1 and the
function was called by the window manager, the window is automatically deleted. A
return value of 0 forbids automatic deletion.

OnEvent Called with a dialog box identifier and a mouse event (page 148) identifier. This
can only be guaranteed only when the dialog box is in user edit mode (to be
implemented).

OnPaint Called with a dialog box identifier when the dialog box receives a repaint event from
the window manager.

OnSize The function is called with the dialog box identifier, width and height.

See also Panel (page 154) and Window (page 175) for inherited member functions.

9.5. Toolbar overview

Function group/class: Toolbar (page 172)/wxToolBar (page 84)

A toolbar is an array of bitmap buttons, implemented by drawing bitmaps onto a canvas, instead
of using the native button implementation. Since the toolbar inherits from canvas, you can use all
canvas functions on a toolbar object.

Each tool can be specified as a normal button, on/off toggle, and disabled or enabled. Tool layout
is automatic or manual. Left click and right click events may be intercepted, using OnLeftClick
and OnRightClick callbacks. The OnMouseEnter callback is used to update the status line (for
example) with help text as the mouse moves over the tools. See window-add-callback (page 175)
for details on these callbacks.

Normal subwindow geometry considerations are applicable (i.e., in a frame with more than one
subwindow, you must resize the subwindows when you receive an OnSize event from the frame).
The exception is for Multiple Document Interface (MDI) frames under Windows, where you must
call frame-set-tool-bar to associate the toolbar with the MDI client window, and after initializing the
toolbar height, further resizing is unnecessary.

Toolbars are often displayed as a horizontal strip under the menubar, or in a floating frame. If you

CHAPTER 7

204

wish to draw a border for the toolbar, you must intercept the toolbar's OnPaint handler. In this
overriden callback, you must first call the toolbar's toolbar-on-paint function to draw all the tools,
and then draw the border onto the toolbar canvas.

Note that under Windows, you must supply bitmaps that are 16 pixels wide and 15 pixels high:
they will be placed on a tool button that is 24 by 22 pixels. If you wish to supply bitmaps of a
different size, you must call toolbar-set-default-size to set the overall tool button size (as opposed
to the bitmap size), or use the toolbar in non-button-creation mode by supplying an extra
argument to toolbar-create to disable this functionality.

Note also that in some circumstances, especially for the WIN32 version of wxCLIPS, there are
problems with the buttonbar (the symptoms are bitmaps scrambled randomly). If this happens,
revert to the normal toolbar by passing 0 in the create-buttons argument to toolbar-create, or
download a Windows 95 version of wxCLIPS.

Under X, tool buttons are the same size as the supplied button and there is no need to call
toolbar-set-default-size.

Tip: in circumstances where you might think of using drag and drop, which is not currently
implemented in wxWindows or wxCLIPS, you can use a toolbar to select 'modes' of operation
which change the cursor in a subwindow. Intercept left-click in the subwindow to place an object
or perform some operation.

Canvas callbacks apply, plus:

OnLeftClick The function is called with the toolbar identifier, tool index, and an integer which
is 1 if the tool is being toggled on, or zero otherwise. If this is a toggle tool, return 1 to
allow the toggle to take place, or 0 otherwise.

OnRightClick The function is called with the toolbar identifier, tool index, and x and y
floating point parameters indicating the position of the click. No value need be returned.

OnMouseEnter The function is called with the tool index, whenever the mouse goes into a
tool, or out of all tools. In the latter case, the tool index is -1. No value need be returned.

9.5.1. Differences in toolbar types

Different toolbar code kicks in according to the platform, and the arguments given to tool-bar-
create.

1. If create-buttons is 0, then the bog-standard wxToolBar class from wxWindows is used:
no 3D effect. This works across all supported wxCLIPS platforms. Layout can either be
automated, or tools must be placed at absolute coordinates.

2. If create-buttons is 1 and the platform is Windows 3.1 or generic WIN32 (not Windows
95), then the buttons will be 3D effect using the wxButtonBar class. On WIN32 toggle
tools will not work. On UNIX, the standard wxToolBar code will be used instead of
wxButtonBar. Again, layout is automatic or absolute.

3. If create-buttons is 1 and the Windows 95 version of wxCLIPS is being used (not just the
WIN32 version running on Windows 95), then the toolbar common control is used,
supporting tooltips. However, layout is different: you must specify wxVERTICAL for
layout orientation, plus the number of rows (usually 1), and you need to use toolbar-add-
separator to get spaces between tools. You cannot place tools at absolute coordinates
or use the toolbar-layout function. You must also call toolbar-create-tools after adding
tools. Device context painting is restricted and no events may be intercepted for the
toolbar except OnLeftClick and OnMouseEnter.

Note: under Windows 95, a wxButtonBar cannot be moved to any position other than the top-left

CHAPTER 7

205

of the frame.

9.6. Database classes overview

wxCLIPS function groups: Database (page 107), Recordset (page 158)

wxCOOL classes: wxDatabase (page 31), wxRecordSet (page 72)

IMPORTANT NOTE: The ODBC classes are a preliminary release and incomplete. Please take
this into account when using them. Feedback and bug fixes are appreciated, as always. The
classes are being developed by Olaf Klein (oklein@smallo.ruhr.de) and Patrick Halke
(patrick@zaphod.ruhr.de).

wxCLIPS provides a set of classes for accessing a subset of Microsoft's ODBC (Open Database
Connectivity) product. Currently, this wrapper is available under MS Windows only, although
ODBC may appear on other platforms, and a generic or product-specific SQL emulator for the
ODBC classes may be provided in wxWindows at a later date.

ODBC presents a unified API (Application Programmer's Interface) to a wide variety of
databases, by interfacing indirectly to each database or file via an ODBC driver. The language for
most of the database operations is SQL, so you need to learn a small amount of SQL as well as
the wxCLIPS ODBC wrapper API. Even though the databases may not be SQL-based, the ODBC
drivers translate SQL into appropriate operations for the database or file: even text files have
rudimentry ODBC support, along with dBASE, Access, Excel and other file formats.

The run-time files for ODBC are bundled with many existing database packages, including MS
Office.

The minimum you need to distribute with your application is odbc.dll, which must go in the
Windows system directory. For the application to function correctly, ODBC drivers must be
installed on the user's machine. If you do not use the database classes, odbc.dll will be loaded
but not called (so ODBC does not need to be setup fully if no ODBC calls will be made).

A sample is distributed with wxCLIPS in examples/odbc.

9.6.1. Procedures for writing an ODBC application

You first need to create a Database object. If you want to get information from the ODBC
manager instead of from a particular database (for example using recordset-get-data-sources
(page 160)), then you do not need to call database-open (page 109). If you do wish to connect to
a datasource, then call database-open. You can reuse your Database object, calling database-
close and database-open multiple times.

Then, create a Recordset object for retrieving or sending information. For ODBC manager
information retrieval, you can create it as a dynaset (retrieve the information as needed) or a
snapshot (get all the data at once). If you are going to call recordset-execute-sql (page 158), you
need to create it as a snapshot. Dynaset mode is not yet implemented for user data.

Having called a function such as recordset-execute-sql or recordset-get-data-sources, you may
have a number of records associated with the recordset, if appropriate to the operation. You can
now retrieve information such as the number of records retrieved and the actual data itself. Use
functions such as recordset-get-int-data (page 161) or recordset-get-char-data (page 159) to get
the data, passing a column index or name. The data returned will be for the current record. To
move around the records, use recordset-move-next (page 164), recordset-move-prev (page 164)

CHAPTER 7

206

and associated functions.

You can use the same recordset for multiple operations, or delete the recordset and create a new
one.

Note that when you delete a Database, any associated recordsets also get deleted, so beware of
holding onto invalid pointers.

9.6.2. Examples

Here's an example of a function that updates a value in a database.

;;; Function for updating a field in a record in the incident.dbf demo
;;; file.
;;; E.g. (demo-update-integer "BD34" "X" 999)
;;; The key is the ASSET column, BD34 in the example. Record(s)
matching
;;; this key will be changed.
;;; "X" is the name of the column to be updated.
;;; 999 is a value to replace the current value.
;;;
;;; You must have previously registered the file incident.dbf
;;; with ODBC (e.g. from the control panel), with the source
;;; name "wxCLIPS demo". You can check if the file has changed
;;; by using Microsoft Query.

(deffunction demo-update-integer (?asset ?col ?value)
 (bind ?database (database-create))

 ;; Open data source
 (if (eq 0 (database-open ?database "wxCLIPS demo")) then
 (bind ?msg (database-get-error-message ?database))
 (printout t ?msg crlf)
 (return 0)
)

 ;; Create a recordset
 (bind ?recordset (recordset-create ?database "wxOPEN_TYPE_SNAPSHOT"))

 ;; Construct an SQL statement
 (bind ?sql (str-cat "UPDATE Incident SET " ?col " = " ?value " WHERE
ASSET = '" ?asset "'"))
 (printout t ?sql crlf)

 ;; Execute the SQL.
 (if (eq 0 (recordset-execute-sql ?recordset ?sql)) then

 (bind ?msg (database-get-error-message ?database))
 (printout t ?msg crlf)
 (return 0)
)

 (recordset-delete ?recordset)
 (database-close ?database)
 (database-delete ?database)

CHAPTER 7

207

 (return 1)
)

The next example gets a value from a particular field of a record.

;;; Function for returning the value of an integer field.
;;; E.g. (demo-get-integer "BD34" "X")
;;; The key is the ASSET column, BD34 in the example. The first record
matching
;;; this key will be returned.
;;; "X" is the name of the column whose value is to be returned.

(deffunction demo-get-integer (?asset ?col)
 (bind ?database (database-create))

 ;; Open data source
 (if (eq 0 (database-open ?database "wxCLIPS demo")) then
 (bind ?msg (database-get-error-message ?database))
 (printout t ?msg crlf)
 (return 0)
)

 ;; Create a recordset
 (bind ?recordset (recordset-create ?database "wxOPEN_TYPE_SNAPSHOT"))

 ;; Construct an SQL statement
 (bind ?sql (str-cat "SELECT * FROM Incident WHERE ASSET = '" ?asset
"'"))
 (printout t ?sql crlf)

 ;; Execute the SQL.
 (if (eq 0 (recordset-execute-sql ?recordset ?sql)) then

 (bind ?msg (database-get-error-message ?database))
 (printout t ?msg crlf)
 (return 0)
)

 ;; Get the relevant field of the first record
 (bind ?data (recordset-get-int-data ?recordset ?col))

 (recordset-delete ?recordset)
 (database-close ?database)
 (database-delete ?database)
 (return ?data)
)

You can find out all the source names available to you with the following code.

 (bind ?*database* (database-create))
 (bind ?*recordset* (recordset-create ?*database*
"wxOPEN_TYPE_SNAPSHOT"))

 ;;; Get the list of currently-defined ODBC sources
 (if (eq 0 (recordset-get-data-sources ?*recordset*)) then

 (show-database-error) else

CHAPTER 7

208

 ;;; Loop through all the source names (one per record)
 (bind ?cont 1)
 (while (eq ?cont 1)
 ;;; The source name is at the first column (0) in the record
 (bind ?data (recordset-get-char-data ?*recordset* 0))
 (list-box-append ?*sources-listbox* ?data)
 (bind ?cont (recordset-move-next ?*recordset*))
)
)

9.6.3. Database overview

See also Database classes overview (page 205)

Function group/class: Database (page 107)/wxDatabase (page 31)

Every database object represents an ODBC connection. To do anything useful with a database
object you need to create a Recordset object. All you can do with Database is opening/closing
connections and getting some info about it (users, passwords, and so on).

9.6.4. Recordset overview

See also Database classes overview (page 205)

Function group/class: Recordset (page 158)/wxRecordSet (page 72)

Each Recordset represents a database query. You can make multiple queries at a time by using
multiple Recordsets with a Database or you can make your queries in sequential order using the
same Recordset.

If Recordset is of the type wxOPEN_TYPE_DYNASET, there will be only one field for each
column, which will be updated every time you call functions like recordset-move or recordset-
goto. If Recordset is of the type wxOPEN_TYPE_SNAPSHOT, all records returned by an ODBC
function will be loaded at once.

9.6.5. ODBC SQL data types

See also Database classes overview (page 205)

These are the data types supported in ODBC SQL. Note that there are other, extended level
conformance types, not currently supported in wxCLIPS.

CHAR(n) A character string of fixed length n.
VARCHAR(n) A varying length character string of maximum length n.
LONG VARCHAR(n) A varying length character string: equivalent to VARCHAR for the

purposes of ODBC.
DECIMAL(p, s) An exact numeric of precision p and scale s.
NUMERIC(p, s) Same as DECIMAL.
SMALLINT A 2 byte integer.
INTEGER A 4 byte integer.
REAL A 4 byte floating point number.

CHAPTER 7

209

FLOAT An 8 byte floating point number.
DOUBLE PRECISION Same as FLOAT.

These data types correspond to the following ODBC identifiers:

SQL_CHAR A character string of fixed length.
SQL_VARCHARA varying length character string.
SQL_DECIMAL An exact numeric.
SQL_NUMERIC Same as SQL_DECIMAL.
SQL_SMALLINTA 2 byte integer.
SQL_INTEGER A 4 byte integer.
SQL_REAL A 4 byte floating point number.
SQL_FLOAT An 8 byte floating point number.
SQL_DOUBLE Same as SQL_FLOAT.

9.6.6. A selection of SQL commands

See also Database classes overview (page 205)

The following is a very brief description of some common SQL commands, with examples.

9.6.6.1. Create

Creates a table.

Example:

CREATE TABLE Book
 (BookNumber INTEGER PRIMARY KEY
 , CategoryCode CHAR(2) DEFAULT 'RO' NOT NULL
 , Title VARCHAR(100) UNIQUE
 , NumberOfPages SMALLINT
 , RetailPriceAmount NUMERIC(5,2)
)

9.6.6.2. Insert

Inserts records into a table.

Example:

INSERT INTO Book
 (BookNumber, CategoryCode, Title)
 VALUES(5, 'HR', 'The Lark Ascending')

9.6.6.3. Select

The Select operation retrieves rows and columns from a table. The criteria for selection and the
columns returned may be specified.

CHAPTER 7

210

Examples:

SELECT * FROM Book

Selects all rows and columns from table Book.

SELECT Title, RetailPriceAmount FROM Book WHERE RetailPriceAmount >
20.0

Selects columns Title and RetailPriceAmount from table Book, returning only the rows that match
the WHERE clause.

SELECT * FROM Book WHERE CatCode = 'LL' OR CatCode = 'RR'

Selects all columns from table Book, returning only the rows that match the WHERE clause.

SELECT * FROM Book WHERE CatCode IS NULL

Selects all columns from table Book, returning only rows where the CatCode column is NULL.

SELECT * FROM Book ORDER BY Title

Selects all columns from table Book, ordering by Title, in ascending order. To specify descending
order, add DESC after the ORDER BY Title clause.

SELECT Title FROM Book WHERE RetailPriceAmount >= 20.0 AND
RetailPriceAmount <= 35.0

Selects records where RetailPriceAmount conforms to the WHERE expression.

9.6.6.4. Update

Updates records in a table.

Example:

UPDATE Incident SET X = 123 WHERE ASSET = 'BD34'

This example sets a field in column 'X' to the number 123, for the record where the column
ASSET has the value 'BD34'.

9.7. Grid overview

Function group/class: Grid (page 129)

The grid class is a window designed for displaying data in tabular format. Possible uses include:

• Displaying database tables;
• building spreadsheet applications;
• displaying files and their attributes;
• use as a more sophisticated listbox where different fonts and colours are required.

This manual currently describes the version of Grid that operates under Windows, implementing

CHAPTER 7

211

using mostly generic wxWindows code. It is intended to provide a similar API for Motif using the
public domain Xbae matrix widget, included in the wxGrid distribution. Work needs to be done to
wrap the Xbae functionality in a similar API.

9.7.1. The appearance and behaviour of a grid

The following screenshot shows the initial appearance of the sample grid application.

The Grid class is a panel that provides a text editing area, and a grid with scrollbars. The grid has
horizontal and vertical label areas whose colours may be changed independently from the cell
area. The text editing area, and the label areas, may be switched off if desired.

The user navigates the grid using the mouse to click on cells and scroll around the virtual grid
area (no keyboard navigation is possible as yet). If the edit control is enabled, it always has the
focus for the currently selected cell and the user can type into it. The text in the edit control will be
reflected in the currently selected cell.

If the row and column label areas are enabled, the user can drag on the label divisions to resize a
row or column.

The sample application allows the user to change various aspects of the grid using the Grid API.
These include:

• Changing the background and foreground colour of labels and cells;
• toggling row and column label areas on and off independently;
• toggling the edit control on and off;
• toggling the light grey cell dividers on and off;
• changing cell alignment.

There are various other aspects that can be controlled via the API, including changing individual
cell font and colour properties.

You need to call grid-create-grid before there are any cells in the grid.

CHAPTER 7

212

All row and column positions start from zero, and dimensions are in pixels.

If you make changes to row or column dimensions, call grid-update-dimensions and then grid-
adjust-scrollbars. If you make changes to the grid appearance (such as a change of cell
background colour or font), call window-refresh for the changes to be shown.

9.7.2. Example

The following is an example of using the grid functionality.

;;; grid.clp
;;; grid test
;;; Load using -clips <file> on the command line or using the Batch
;;; or Load commands from the CLIPS development window; type
;;; (app-on-init) to start.

(defglobal ?*main-frame* = 0)
(defglobal ?*grid* = 0)

(deffunction on-close (?frame)
 (format t "Closing frame.%n")
 (bind ?*grid* 0)
 1)

(deffunction on-activate (?frame ?active)
 (if (> ?*grid* 0) then (grid-on-activate ?*grid* ?active))
)

(deffunction on-menu-command (?frame ?id)
 (switch ?id
 (case 200 then (message-box "CLIPS for wxWindows Demo
by Julian Smart (c) 1993" wxOK 1 0 "About wxWindows CLIPS Demo"))
 (case 3 then (if (on-close ?frame) then (window-delete ?frame)))
)
)

;;; Test program to create a frame
(deffunction app-on-init ()
 (unwatch all)

 (bind ?*main-frame* (frame-create 0 "wxCLIPS Grid Test" -1 -1 400
300))

 (window-add-callback ?*main-frame* OnClose on-close)
 (window-add-callback ?*main-frame* OnMenuCommand on-menu-command)
 (window-add-callback ?*main-frame* OnActivate on-activate)

 ;;; Make a menu bar
 (bind ?file-menu (menu-create))
 (menu-append ?file-menu 3 "&Quit")

 (bind ?menu-bar (menu-bar-create))
 (menu-bar-append ?menu-bar ?file-menu "&File")

CHAPTER 7

213

 (frame-set-menu-bar ?*main-frame* ?menu-bar)

 ;;; Make a grid
 (bind ?*grid* (grid-create ?*main-frame* 0 0 400 300))
 (grid-create-grid ?*grid* 10 8)
 (grid-set-column-width ?*grid* 3 200)
 (grid-set-row-height ?*grid* 4 45)
 (grid-set-cell-value ?*grid* "First cell" 0 0)
 (grid-set-cell-value ?*grid* "Another cell" 1 1)
 (grid-set-cell-value ?*grid* "Yet another cell" 2 2)
 (grid-set-cell-text-font ?*grid* (font-create 12 wxROMAN wxITALIC
wxNORMAL 0) 0 0)
 (bind ?red (colour-create RED))
 (grid-set-cell-text-colour ?*grid* ?red 1 1)
 (bind ?cyan (colour-create CYAN))
 (grid-set-cell-background-colour ?*grid* ?cyan 2 2)
 (grid-update-dimensions ?*grid*)

 (window-centre ?*main-frame* wxBOTH)

 (window-show ?*main-frame* 1)

 ?*main-frame*)

9.8. wxCOOL overview

9.8.1. What is wxCOOL?

Up until July 1995, wxCLIPS functionality was conceptually object-oriented, but solely
implemented using CLIPS functions. Since the only way to couple CLIPS to C or C++ programs is
by defining user functions, the functional route is a prerequisite. wxCOOL is a set of CLIPS
classes built on top of the user functions, encapsulating most of the wxCLIPS functionality for
which it is sensible to do so. At present, it is not quite complete. wxCOOL resides in the wxcool
subdirectory of the wxCLIPS installation directory, and is loaded by batching the file wx.clp.
Before using the classes, you need to call the function wxcool-init.

Because wxCOOL is implemented in terms of the wxCLIPS functions, it does add overhead to a
CLIPS application in terms of loading time, execution speed, and (to a less significant degree)
memory requirements. So you may still wish to code speed-critical parts of your application using
the raw wxCLIPS functions, especially where a lot of GUI elements are to be created.

Saving your application as a binary file will certainly speed up loading time (and help protect your
source code from prying eyes) but there may be a size limit on binary files under MS Windows
(as yet undetermined). Another problem is that you cannot load a binary file and then load non-
binary constructs: it's all-or-nothing.

9.8.2. How to use the wxCOOL class reference

In the message handler definitions (page 18), bold words are types, and are not part of CLIPS
syntax. Parameter names are in italics. Types are as follows:

• double is a double-precision floating point number.
• long is a long integer.

CHAPTER 7

214

• string is a double-quoted ASCII string.
• word is an unquoted string.
• bool is a CLIPS symbol taking values TRUE or FALSE.
• multifield is a CLIPS multi-field value list.
• void means that no value is returned.

Parameters can be optional, in which case defaults are assumed.

Some parameters can be combinations ('bit lists') of flags. wxCLIPS mimics the compact C++
syntax by parsing strings, for example:

 (make-instance (gensym*) of wxFrame (style "wxSDI | wxDEFAULT")
 ...)

Each identifier in such a parameter is translated to an integer value, and all are logical-or'ed
together to produce an integer which is passed to the appropriate wxWindows C++ function.

Slots are listed before the message handlers.

Accessors (put-... and get-... functions) are not documented explicitly, but can be assumed
where appropriate: see the documentation for each class's slots.

Create handlers for each class are documented, but are not explicitly called by the programmer:
they are called by the init handler on instance creation. You can use call-next-handler from within
a Create handler, to ensure all ancestors get a chance to initialise. However, you should not
invoke call-next-handler in a 'delete' handler since CLIPS calls this for each class anyway.

9.8.3. Instance creation

Instance creation is done in the conventional CLIPS way, e.g.

 (make-instance test1 of MyFrame (title "Hello world!") (x 20) (y 20)
(width 200) (height 200))

Slot initializers take the place of function parameters, which makes for more legible code, albeit
for instance creation only, and not normal message passing.

Each class has a message handler called 'create', which constructs the underlying object and
adds callbacks for the instance. The initialization code cannot be put into the standard 'init'
handler for each class, since this is called for every class that an instance inherits from, and
would result in multiple wxCLIPS objects being created for one instance. Instead, there is one init
handler for wxObject which sends a create message to the object, and create is redefined for
each class.

Note that the integer identifier of the underlying wxCLIPS object can be retrieved with the get-id
accessor.

9.8.4. Types

wxCLIPS uses integers for various purposes, including boolean values. This is inconvenient in
CLIPS applications, which normally use the symbolic values TRUE and FALSE. Accordingly, all
wxCOOL boolean values are now symbolic (TRUE or FALSE). wxCOOL will not work correctly if
you attempt to use integers instead of symbolic values.

CHAPTER 7

215

9.8.5. wxCOOL event handling

wxCOOL function callbacks and events work differently from wxCLIPS callbacks and events.
Instead of adding callbacks for events such as on-menu-command, you override the default event
handler. All window objects derive from the class wxEvtHandler, which contains default handlers
for all window callbacks. A window will normally process its own messages, so you would for
example add an on-menu-command handler to your wxFrame-derived class. However, you can
use the put-event-handler message to set the event handler to be a different instance of
wxEvtHandler. So, you could avoid deriving from a window class altogether, and have one class
which accepts the events from a variety of windows.

Panel items no longer require callback functions to be specified on creation. Instead, panel item
events are sent as an on-command message to the panel item. The default wxItem on-command
handler sends the message to its parent wxPanel, so you could derive a new class from wxPanel
to receive on-command events, or set the item's event handler to direct it to a different instance.

The on-command handler takes wxItem instance and wxCommandEvent instance parameters. A
convenient way of distinguishing incoming events is to give an item a name on creation, and test
for that name in the on-command handler, using the get-name accessor.

9.8.6. Implementation details

From version 1.42, wxCLIPS has a few built-in functions to aid in maintaining a parallel set of
classes corresponding to the underlying wxCLIPS classes (and ultimately, C++ classes). The
instance table (page 140) functions help map between integer identifiers and CLIPS instance
names. When an instance is constructed, the underlying wxCLIPS object is created and this id
added to the instance table. On deletion, the entry is removed from the instance table. Callbacks
are defined, such as gui-window-on-close, that are used for all instances of a class (and derived
classes); they use instance-table-get-instance to retrieve the instance corresponding to the
wxCLIPS object.

wxCLIPS sends OnDelete callbacks to the application when a wxCLIPS object is being deleted.
This is exploited in wxCOOL to ensure that wxCOOL instances are cleaned up if wxCLIPS, and
not the CLIPS application, deletes wxCLIPS objects. The twist is that we need to distinguish
between an application-initiated deletion, for which we wish to call a function such as window-
delete, and a wxCLIPS-initiated deletion, for which window-delete is effectively being called
implicitly. To avoid deleting objects twice, wxCOOL sets a pending-delete slot in the object which
is tested before deleting the underlying object.

In some cases, all deletions of a class's objects are initiated by wxCLIPS: for example, wxMenu
instances will be deleted by the parent wxMenuBar, which is deleted implicitly when the wxFrame
is deleted.

9.9. Resource overview

From version 1.49, wxCLIPS can load panels and dialog boxes from wxWindows resource files
(extension .wxr). You may create dialog resources using the wxWindows Dialog Editor, which
can be downloaded from:

ftp.aiai.ed.ac.uk/pub/packages/wxwin/binary/dialoged10.zip

Before creating a panel or dialog, load the resource file using load-resource-file (page 185). Then

CHAPTER 7

216

use panel-create-from-resource (page 154) or dialog-box-create-from-resource (page 122).
Alternatively you can use the wxCOOL panel or dialog box instance creation syntax, supplying
the resource slot value).

To find an arbitrary panel item, you may need to use find-window-by-name (page 182) or find-
window-by-label (page 182).

217

10. DDE commands that wxCLIPS recognizes

Under Windows, wxCLIPS functions as a simple DDE server, responding to server and topic
'WXCLIPS'. This is mainly to allow the possibility of using an external editor to load files into
wxCLIPS and execute commands, offering some of the benefits of an Integrated Development
Environment (IDE). It could also be used to control wxCLIPS applications remotely without having
to set up a DDE server explicitly using CLIPS.

The DDE client must connect to the server using the service name WXCLIPS, and establish a
conversation on the WXCLIPS topic. An example of a program that can do this is wxclipsx.exe,
the source of which is provided with wxCLIPS: an executable is available from the AIAI ftp site.
This may be run with the switch -c and then the DDE command to execute; if run with command
line parameters, the command is executed and wxclipsx.exe exits immediately. If run without
parameters, the program runs interactively and the user can type in commands. Being a
wxWindows program, wxclipsx.exe is large (500K); so there is a native Windows equivalent
called ddesend.exe, which is only 10 K. Ddesend takes only the DDE command, and no other
switches (e.g. no -c).

The file examples/macros.rc is a sample MicroEMACS for Windows macro file, that implements
commnds for loading files into wxCLIPS, and executing CLIPS commands, from within
MicroEMACS, using ddesend.exe.

Here are some examples of wxCLIPS DDE commands. They consist of a letter, a space, and
then some data.

L c:\example.clp
B c:\example.clp
E (app-on-init)
Q
C

Here is a list of commands that wxCLIPS recognizes:

• L: load the given file of constructs into CLIPS
• B: batch the given file of constructs into CLIPS
• E: execute the given command
• C: clear the wxCLIPS development window
• Q: quit wxCLIPS

218

11. Change log

11.1. Version 1.63

August 4th, 1997

• If you supply a CLIPS file as a single argument to wxCLIPS, it will batch the file, change
to that directory, and call app-on-init. This way you can have a wxCLIPS association for
.clp and simply run the file.

• Better installation program provided, which registers the clp extension.

11.2. Version 1.62

January 28th, 1997

• Added facename argument to font-create.

11.3. Version 1.61

December 20th, 1996

• Compiled with CLIPS 6.04 (or Fuzzy CLIPS 6.04), using the latest patches taken from
the CLIPS ftp site on 20th December 1996. It is now much easier to make a wxCLIPS-
enabled CLIPS library - only two files need to be changed from the original CLIPS or
Fuzzy CLIPS distribution.

• Compiled with wxWindows 1.66E (unreleased at this time).
• Added up-to-date Fuzzy CLIPS examples to examples/fuzzy directory.

11.4. Version 1.60

August 1st, 1996

• Added an argument to list-box-set-selection to allow for deselection in a multiple-
selection listbox.

11.5. Version 1.59

July 11th, 1996

• Added OnAcceptConnectionEx server object callback to make implementation of
wxCOOL classes easier.

• Added object-delete.

11.6. Version 1.58

May 22nd, 1996

• Added fact-string-existp.

11.7. Version 1.57

May 22nd, 1996

• Added frame-is-iconized, menu-bar-create-from-resource, list-box-is-selected.

REFERENCES

219

• Added wxCOOL functions wxWindow::find-window-by-name, wxWindow::find-window-
by-name.

• Can create wxMenuBar from resource now; see resource example.

11.8. Version 1.56

May 2nd, 1996

• Added window-close, window-refresh, window-set-size-hints.
• Cured some grid bugs.
• Cured a problem with reading in panels from .wxr resource files.

11.9. Version 1.55

April 10th, 1996

• Cured a popup-menu bug introduced in 1.55.
• Added find-window-by-name, find-window-by-label.
• Cured dc-get-text-extent-width, dc-get-text-extent-height bug.
• Added grid-get-cell-value, corrected grid-get-cols documentation.
• Added grid-on-paint, grid-on-size functions.
• Added window/object-remove-callback.

11.10. Version 1.55

March 26th, 1996

• Removed a Windows-resource-eating bug, showed especially when opening/closing
dialogs or panels with listboxes or choice items.

• Added mkdir, rmdir, copy-file.
• Added a flags argument to file-selector to enable specification of a Save button instead

of Open, for example.
• wxCLIPS save operations display Save instead of Open button.
• Added dc-set-background-mode, documented dc-set-background.

11.11. Version 1.54

March 10th, 1996

• Increased stack size for Windows 3.1 version.
• Fixed problem with type system that broke the Grid and HTML windows.

11.12. Version 1.53

March 4th, 1996

• Added OnCommand callback for panels and dialog boxes (needed when loading
resources).

• Added object-get-type.
• Added window-get-next-child.
• Added resource example.
• Corrected and extended wxCLIPS/wxCOOL to handle dialog resource loading properly:

see resource example.

REFERENCES

220

11.13. Version 1.52

February 21st, 1996

• Cured problem introduced in previous version when MDI child windows are maximized.
• Bitmaps can now be displayed in grid cells (grid-set-cell-bitmap).
• WIN32 version of make-metafile-placeable debugged.
• First Windows 95 version, with Win95 toolbars: see documentation for toolbar API

changes.
• Documented OnDefaultAction panel callback for listbox double-click notification.
• Minor bug fixes to wxCOOL.

11.14. Version 1.51

January 29th, 1996

• Added HTML viewer class (Windows only).

11.15. Version 1.50

January 16th, 1996

• Added various functions related to canvas scrolling, plus OnScroll event.
• Windows dialog and panel default font reduced in size.
• Added grid functionality (Windows only).
• Cured bug in toolbar-add-tool where second bitmap was not recognised.
• Added get-active-window (Windows only).

11.16. Version 1.49

December 21st, 1995

• Cured bug in font-create where style and weight parameters were confused.
• Added load-resource-file, clear-resources, panel-create-from-resource, dialog-box-

create-from-resource.

11.17. Version 1.48

November 21st, 1995

• Added more text window, multitext commands (position manipulation).
• Added app-set/get-show-frame-on-init.
• Added hwnd-send-message.

11.18. Version 1.47

October, 1995.

• Added text-window-set-editable, text-window-get-contents.

11.19. Version 1.46

REFERENCES

221

October 16th, 1995.

• Debugged OnChar callbacks, but wxTextWindow::OnChar still has problems under
Windows.

• Toolbars can now have panel items placed on them under Windows (see toolbar demo).

11.20. Version 1.45

September 5th, 1995.

• Added OnCharHook for app, frame, dialog box (Windows only).
• Added app-create, key-event-... functions.

11.21. Version 1.44

September, 1995.

• Added recordset-get-primary-keys, recordset-get-foreign-keys.
• Added preliminary Windows 95 support (i.e. runs under Windows 95 when compiled for

Win32).
• Added get-os-platform.

11.22. Version 1.43

August, 1995.

• WIN32s version introduced. Doesn't seem to work under NT or Windows 95 yet, but
under WIN32s all seems well. The WIN32s version is small and faster, and bload, bsave
work properly for files over 64K.

• Uses an improved version of wxWindows which tries to optimize GDI objects under MS
Windows, resulting in reduced consumption of resources.

• Cured behaviour where after a CLIPS error, nothing would subsequently work (until a
load, for example).

11.23. Version 1.42

July, 1995.

• Added 'name' parameter to all window creation calls.
• Added window-get-name, frame-on-size.
• wxCLIPS now calls OnDelete callback when each object is being deleted.
• Started wxCOOL: an object-oriented wrapper around wxCLIPS.

11.24. Version 1.41

July 12th, 1995.

• Changed radiobox semantics slightly.
• Added date class.

11.25. Version 1.40

June 17th, 1995.

REFERENCES

222

• Added ODBC subset support and example (Windows only).
• Started to add overviews, separate from the alphabetical reference.
• Added timer documentation.
• Added dc-get-text-extent-width, dc-get-text-extent-height.
• Added radiobox, groupbox.
• Added window-popup-menu and extra argument to menu-create for creating popup

menus.
• Added command-event functions and panel-item-get-command-event for more detailed

event inspection from panel item callbacks.
• Added functions: start-timer, get-elapsed-time, now, mci-send-string, bell, show-ide-

window.
• Added -dir command line switch.

11.26. Version 1.38

April 28th, 1995.

• Cured various bugs in DDE server implementation and this manual. Sorry...
• Added ddeserv.clp, ddeclien.clp examples.

11.27. Version 1.36

March 14th, 1995.

• Rewrite of much of wxCLIPS: generic extension-support library (wxExtend) created for
code-sharing with projects such as wxPython. Please beware of bugs introduced in this
release: hopefully none, but you never know.

• Addition of execute function, with synchronous or asynchronous operation. Please use
instead of system.

• DDE changes: use add-event-handler instead of the previous callback mechanism.
Client DDE code has minimal change, just omit any arguments to client-create. For
server operation, register interest for events OnAdvise, OnExecute, OnRequest etc., one
callback function each.

11.28. Version 1.35

February 26th, 1995.

• Fixed bug in wxWindows where the editable text window didn't respond properly to
some characters, under MS Windows.

• Added CLIPS toolbar creation functions (see examples/toolbar for a Windows demo).
• Added dc-set-background.
• Added get-ide-window.
• Added cursor-create, cursor-delete, window-set-cursor.
• message-box now has a title parameter.
• Added DDE capability under Windows, so it is possible to load files into wxCLIPS from

within an editor.

11.29. Version 1.34

February 12th, 1995.

• Command entry panel now recognises Enter key under Windows (at last).
• Added toolbar to the development window (Windows only).

REFERENCES

223

• Main text window (under Windows) is now a standard EDIT control, with better scrolling
and copy to clipboard functionality.

• Added WinHelp manual logo and new Windows icon.

11.30. Version 1.33

December 11th, 1994.

• Added windows printer and metafile device context support.
• Added metafile support, make-metafile-placeable.
• Added Copy, Cut, Paste to text window.
• Added begin-busy-cursor, end-busy-cursor.
• Added better file loading support to bitmap-load-from-file.
• Added basic colourmap support (bitmap-get-colourmap, dc-set-colourmap).
• Added get-resource, write-resource.

11.31. Version 1.32

November 21st, 1994.

• Added PostScript device context support.
• Replaced memory-dc-delete with the more general dc-delete.
• Added timer and 'work procedure' functions.
• Added some more device context functions, e.g. dc-get-width.
• Added the file wxcitems.cc.
• Moved Clear screen menu item to File menu.

11.32. Version 1.30

August 21st, 1994.

• Added bitmap and icon support (including bitmap buttons).
• Added memory device context support.
• Divided the source up a bit.

11.33. Versions 1.00 to 1.20

• First and subsequent releases.

REFERENCES

224

References

CLIPS 6.0 User Guide, NASA Software Technology Branch

CLIPS 6.0 Reference Manual, NASA Software Technology Branch

wxWindows User Manual, Julian Smart, Artificial Intelligence Applications Institute, University of
Edinburgh, 1996

225

Glossary

API

Application Programmer's Interface - a set of calls and classes defining how a library can be
used.

Bit list

A bit list in wxCLIPS is a way of specifying several window styles. It derives from C and C++
syntax, where by defining identifiers with carefully chosen binary numbers, it is possible to
combine several values in one integer. In wxCLIPS, you use similar syntax to C, but enclose the
list in quotes:

 "wxCAPTION | wxMINIMIZE_BOX | wxMINIMIZE_BOX | wxTHICK_FRAME"

Callback

Callbacks are application-defined functions which receive events from the GUI. You normally add
a callback for a particular window (such as a canvas) and event (such as OnPaint) using window-
add-callback, or pass the callback in a panel item creation function, such as button-create.

Canvas

A canvas is a subwindow on which graphics (but not panel items) can be drawn. It may be
scrollable. A canvas has adevice context overview (page 115) associated with it.

DDE

Dynamic Data Exchange - Microsoft's interprocess communication protocol. wxCLIPS provides a
subset of DDE under both Windows and UNIX.

Device context

A device context is an abstraction away from devices such as windows, printers and files. Code
that draws to a device context is generic since that device context could be associated with a
number of different real device. A canvas has a device context, although duplicate graphics calls
are provided for the canvas, so the beginner doesn't have to think in terms of device contexts
when starting out. See device context overview (page 115).

Dialog box

In wxCLIPS a dialog box is a convenient way of popping up a window with panel items, without
having to explicitly create a frame and a panel. A dialog box may be modal or modeless. A modal
dialog does not return control back to the calling program until the user has dismissed it, and all
other windows in the application are disabled until the dialog is dismissed. A modeless dialog is
just like a normal window in that the user can access other windows while the dialog is displayed.

Frame

A visible window usually consists of a frame which contains zero or more subwindows, such as
text subwindow, canvas, and panel.

GUI

INDEX

226

Graphical User Interface, such as MS Windows or Motif.

Menu bar

A menu bar is a series of labelled menus, usually placed near the top of a window.

Metafile

MS Windows-specific object which may contain a restricted set of GDI primitives. It is device
independent, since it may be scaled without losing precision, unlike a bitmap. A metafile may
exist in a file or in memory. wxCLIPS implements enough metafile functionality to use it to pass
graphics to other applications via the clipboard or files.

Open Look

A specification for a GUI 'look and feel', initiated by Sun Microsystems. XView is one toolkit for
writing Open Look applications under X, and wxCLIPS sits on top of XView (among other
toolkits).

Panel

A panel is a subwindow on which a limited range of panel items (widgets or controls for user
input) can be placed. wxCLIPS allows panel items to be placed explicitly, or laid out from left to
right, top to bottom, which is a more platform independent method since spacing is calculated
automatically at run time. Panel items cannot be placed on a canvas, which is specifically for
drawing graphics. However, you can draw on a panel.

Resource

Resource takes several meanings in wxCLIPS. The functions get-resource, write-resource deal
with MS Windows .ini and X .Xdefaults resource entries. The wxWindows/wxCLIPS
'resource system', on the other hand, is a facility for loading dialog specifications from .wxr files
(which may be created by hand or using the wxWindows Dialog Editor).

Status line

A status line is often found at the base of a window, to keep the user informed (for instance,
giving a line of description to menu items, as in thehello demo).

XView

An X toolkit supplied by Sun Microsystems for implementing the Open Look 'look and feel'. Freely
available, but virtually obsolete.

INDEX

227

228

Index

—:—
::ClipsErrorFunction, 7
::RouteCommand, 7
::wxCleanWindows, 7
::wxExecuteClipsFile, 7
::wxInitClips, 7
::wxRouteNoEcho, 8
::wxUserFunctions, 8

—A—
A selection of SQL commands, 209
About AIAI, 2
Accessing CLIPS C functions from C++, 8
add-days, 37
add-event-handlers, 66
add-months, 33
add-self, 38
add-separator, 85
add-tool, 85
add-weeks, 33
add-years, 33
advise, 27
aligning items, 197
alt-down, 55
app-create, 93
append, 24, 56, 59, 60
append-separator, 59
app-get-show-frame-on-init, 93
app-on-init, 93
app-set-show-frame-on-init, 93

—B—
batch, 179
begin-busy-cursor, 180
begin-drawing, 39
bell, 180
bit list, 196
bitmap, 20, 61
bitmap-create, 94
bitmap-delete, 94
bitmap-get-colourmap, 94
bitmap-get-height, 94
bitmap-get-width, 94
bitmap-load-from-file, 94
bitmap-type, 18
blit, 39
break, 59
brush-create, 95
brush-delete, 95
button, 63
button-create, 95
button-create-from-bitmap, 96
button-down, 63

—C—
callback, 59
canvas-create, 21, 96
canvas-get-dc, 97
canvas-get-scroll-page-x, 97
canvas-get-scroll-page-y, 97
canvas-get-scroll-pixels-per-unit-x, 98
canvas-get-scroll-pixels-per-unit-y, 98
canvas-get-scroll-pos-x, 97
canvas-get-scroll-pos-y, 97
canvas-get-scroll-range-x, 97
canvas-get-scroll-range-y, 97
canvas-on-char, 98
canvas-on-scroll, 98
canvas-scroll, 99
canvas-set-scrollbars, 98
canvas-set-scroll-page-x, 98
canvas-set-scroll-page-y, 98, 99
canvas-set-scroll-pos-x, 99
canvas-set-scroll-pos-y, 99
canvas-set-scroll-range-x, 99
canvas-set-scroll-range-y, 99
canvas-view-start-x, 99
canvas-view-start-y, 99, 100
centre, 89
chdir, 180
check, 60
check-box-create, 100
check-box-get-value, 100
check-box-set-value, 100
checked, 61
choice-append, 101
choice-clear, 101
choice-create, 100
choice-find-string, 101
choice-get-selection, 101
choice-get-string, 102
choice-get-string-selection, 101
choice-number, 102
choice-set-selection, 101
choice-set-string-selection, 102
clean-windows, 180
clear, 24, 56, 82
clear-ide-window, 180
clear-resources, 180
clear-tools, 85
client-create, 102
client-height, 89
client-make-connection, 102
client-width, 89
ClipsErrorFunction, 7
close, 31, 63
Code modifications, 9
colour, 20, 69
colour-blue, 103
colour-create, 103

INDEX

229

colour-green, 103
colour-red, 103
command-event-get-selection, 104
command-event-is-selection, 104
Connection overview, 200
connection-advise, 104
connection-create, 104
connection-disconnect, 105
connection-execute, 104
connection-poke, 105
connection-request, 105
connection-start-advise, 105
connection-stop-advise, 106
control-down, 55, 63
copy, 82
copy-file, 180, 181
create, 19, 20, 21, 23, 25, 30, 33, 45, 48, 51, 52,

53, 54, 56, 58, 59, 60, 61, 62, 65, 66, 67, 69,
70, 71, 73, 80, 81, 82, 84, 86

Create, 209
create-buttons, 85
create-julian, 34
create-status-line, 49
create-tools, 86
cursor-create, 106
cursor-delete, 107
cursor-load-from-file, 107
cursor-name, 29
cut, 82

—D—
Data transfer, 200
database, 72
Database overview, 208
database-close, 107
database-create, 31, 107
database-delete, 108
database-error-occurred, 108
database-get-database-name, 108
database-get-data-source, 108
database-get-error-code, 108
database-get-error-message, 108
database-get-error-number, 109
database-is-open, 109
database-open, 109
date-add-days, 114
date-add-months, 109
date-add-self, 114
date-add-weeks, 109
date-add-years, 109
date-create, 109, 110
date-create-julian, 110
date-create-string, 110
date-delete, 110
date-eq, 115
date-format, 110
date-ge, 115
date-geq, 115
date-get-day, 110
date-get-day-of-week, 110, 111
date-get-day-of-week-name, 111

date-get-day-of-year, 111
date-get-days-in-month, 111
date-get-first-day-of-month, 111
date-get-julian-date, 111
date-get-month, 111
date-get-month-end, 111
date-get-month-name, 112
date-get-month-start, 112
date-get-week-of-month, 112
date-get-week-of-year, 112
date-get-year, 112
date-get-year-end, 112
date-get-year-start, 112
date-is-leap-year, 113
date-le, 114
date-leq, 114
date-neq, 115
date-set-current-date, 113
date-set-date, 113
date-set-format, 113
date-set-julian, 113
date-set-option, 113
date-subtract, 114
date-subtract-days, 114
date-subtract-self, 114
day-of-week-name, 34
dc, 21
dc-begin-drawing, 115
dc-blit, 115
dc-clear, 116
dc-delete, 116
dc-destroy-clipping-region, 116
dc-draw-ellipse, 116, 117
dc-draw-line, 117
dc-draw-lines, 117
dc-draw-point, 40, 117
dc-draw-polygon, 117
dc-draw-rectangle, 117
dc-draw-rounded-rectangle, 117
dc-draw-spline, 118
dc-draw-text, 41, 118
dc-end-doc, 118
dc-end-drawing, 118
dc-end-page, 118
dc-get-max-x, 119
dc-get-max-y, 119
dc-get-min-x, 118
dc-get-min-y, 118
dc-get-text-extent-height, 119
dc-get-text-extent-width, 119
dc-ok, 119
dc-set-background, 120
dc-set-background-mode, 120
dc-set-brush, 120
dc-set-clipping-region, 120
dc-set-colourmap, 120
dc-set-font, 120
dc-set-logical-function, 120
dc-set-pen, 121
dc-set-text-background, 121
dc-set-text-foreground, 121
dc-start-doc, 119

INDEX

230

dc-start-page, 119
debug-msg, 181
delete, 31, 73
delete-item, 57
depth, 19
destroy-clipping-region, 40
device, 70
dialog-box-create, 121
dialog-box-create-from-resource, 122
dialog-box-is-modal, 122
dialog-box-set-modal, 122
Differences in toolbar types, 204
dir-exists, 181
discard-edits, 83
disconnect, 27
display-block, 51
display-contents, 51
display-section, 52
dont-create, 65
dragging, 63
draw-ellipse, 40
draw-line, 40
draw-lines, 40
draw-polygon, 41
draw-rectangle, 41
draw-rounded-rectangle, 41
draw-spline, 41
driver, 70

—E—
enable, 60, 61, 89
enable-tool, 86
end-busy-cursor, 181
end-doc, 41
end-drawing, 42
end-page, 42
eq, 38
error-occurred, 31
event-get-event-type, 122
event-position-y, 55
Example, 61, 147, 212
Examples, 201, 206
execute, 181
execute-sql, 73

—F—
fact-string-existp, 181
family, 47
file-exists, 182
filename, 19, 62, 70
file-selector, 182
find-string, 24, 56
find-window-by-label, 90, 182
find-window-by-name, 89, 182
fit, 90
float-to-string, 182, 183
font-create, 123
font-delete, 123
format, 34
frame-create, 124

frame-create-status-line, 124
frame-iconize, 125
frame-is-iconized, 125
frame-on-size, 125
frame-set-icon, 125
frame-set-menu-bar, 125
frame-set-status-text, 125
frame-set-title, 126
frame-set-tool-bar, 125

—G—
gauge-create, 128
gauge-set-bezel-face, 129
gauge-set-shadow-width, 129
gauge-set-value, 128
ge, 38
geq, 38
get-active-window, 183
get-char-data, 73
get-choice, 183
get-col-name, 74
get-col-type, 74
get-columns, 74
get-contents, 83
get-database-name, 32
get-data-source, 32
get-data-sources, 75
get-day, 34
get-day-of-week, 34
get-day-of-week-name, 111
get-day-of-year, 34
get-days-in-month, 35
get-elapsed-time, 183
get-error-code, 75
get-error-message, 32
get-error-number, 32
get-event-type, 47
get-filter, 75
get-first-day-of-month, 35
get-first-selection, 58
get-float-data, 75
get-foreign-keys, 75
get-ide-window, 183
get-int-data, 76
get-julian-date, 35
get-key-code, 55
get-label, 68
get-max-height, 86
get-max-width, 87
get-max-x, 42
get-max-y, 42
get-min-x, 42
get-min-y, 42
get-month, 35
get-month-end, 35
get-month-name, 35
get-month-start, 35
get-name, 90
get-next-selection, 58
get-number-cols, 76
get-number-fields, 76

INDEX

231

get-number-params, 76
get-number-records, 77
get-os-version, 183
get-parent, 90
get-platform, 184
get-primary-keys, 77
get-resource, 184
get-result-set, 77
get-selection, 24, 26, 57, 72
get-string, 25, 57
get-string-selection, 24, 57
get-table-name, 77
get-tables, 77
get-text-extent-height, 42
get-text-extent-width, 42
get-text-from-user, 184
get-tool-client-data, 87
get-tool-enabled, 87
get-tool-long-help, 87
get-tool-short-help, 87
get-tool-state, 87
get-week-of-month, 35
get-week-of-year, 36
get-year, 36
get-year-end, 36
get-year-start, 36
goto, 78
grid-adjust-scrollbars, 129
grid-append-cols, 129
grid-append-rows, 129
grid-clear-grid, 130
grid-create, 130
grid-create-grid, 130
grid-delete-cols, 130
grid-delete-rows, 130
grid-get-cell-alignment, 130
grid-get-cell-background-colour, 130
grid-get-cell-bitmap, 131
grid-get-cell-text-colour, 131
grid-get-cell-value, 131
grid-get-cols, 132
grid-get-column-width, 131
grid-get-cursor-column, 131
grid-get-cursor-row, 131
grid-get-editable, 132
grid-get-label-alignment, 132
grid-get-label-background-colour, 132
grid-get-label-size, 132
grid-get-label-text-colour, 132
grid-get-label-value, 132
grid-get-row-height, 133
grid-get-rows, 131
grid-get-scroll-pos-x, 133
grid-get-scroll-pos-y, 133
grid-get-text-item, 133
grid-insert-cols, 133
grid-insert-rows, 133
grid-on-activate, 133
grid-on-paint, 134
grid-on-size, 134
grid-set-cell-alignment, 134
grid-set-cell-background-colour, 131, 134

grid-set-cell-bitmap, 134
grid-set-cell-text-colour, 131, 134
grid-set-cell-text-font, 134, 135
grid-set-cell-value, 135
grid-set-column-width, 135
grid-set-divider-pen, 135
grid-set-editable, 135
grid-set-grid-cursor, 135
grid-set-label-alignment, 135
grid-set-label-background-colour, 135, 136
grid-set-label-size, 136
grid-set-label-text-colour, 136
grid-set-label-text-font, 136
grid-set-label-value, 136
grid-set-row-height, 136
grid-update-dimensions, 136
group-box-create, 137

—H—
height, 19, 54, 89
help-create, 126
help-delete, 126
help-display-block, 126
help-display-contents, 126
help-display-section, 126
help-keyword-search, 127
help-load-file, 127
How to use the wxCOOL class reference, 213
html-back, 137
html-cancel, 137
html-clear-cache, 137
html-create, 138
html-get-current-url, 138
html-on-size, 138
html-open-file, 138
html-open-url, 138
html-resize, 138
html-save-file, 138
hwnd-find, 127
hwnd-iconize, 127
hwnd-move, 127
hwnd-quit, 128
hwnd-refresh, 127
hwnd-send-message, 127, 128
hwnd-show, 128

—I—
icon-create, 139
icon-delete, 139
icon-get-height, 139
icon-get-width, 139
iconize, 49
icon-load-from-file, 139
id, 65
Implementation details, 215
init after, 66
Insert, 209
Instance creation, 214
instance-table-add-entry, 140
instance-table-delete-entry, 140

INDEX

232

instance-table-get-instance, 140
interactive, 70, 71
is-bof, 78
is-button, 64
is-col-nullable, 78
is-eof, 78
is-field-dirty, 78
is-field-null, 78
is-leap-year, 36
is-open, 32, 78
is-selection, 26

—K—
key-event-alt-down, 140
key-event-control-down, 140
key-event-get-key-code, 141
key-event-position-x, 141
key-event-position-y, 141
key-event-shift-down, 141
keyword-search, 52

—L—
layout, 87
le, 38
left-down, 63
left-up, 63
leq, 38
list-box-append, 142
list-box-clear, 142
list-box-create, 141
list-box-delete, 143
list-box-find-string, 142
list-box-get-first-selection, 143
list-box-get-next-selection, 143
list-box-get-selection, 142
list-box-get-string, 143
list-box-get-string-selection, 142
list-box-is-selected, 142
list-box-number, 143
list-box-set-selection, 142
list-box-set-string-selection, 143
load-file, 52, 83
load-resource-file, 185
long-to-string, 185

—M—
major-dimension, 71
make-connection, 25
make-metafile-placeable, 185
make-modal, 90
max, 80
mci-send-string, 185
memory-dc-create, 143
memory-dc-select-object, 144
menu-append, 144, 145
menu-append-separator, 145
menu-bar-append, 146
menu-bar-check, 146
menu-bar-checked, 146

menu-bar-create, 145, 146
menu-bar-create-from-resource, 146
menu-bar-enable, 146
menu-break, 145
menu-check, 145
menu-create, 144
menu-enable, 145
message-box, 186
message-create, 146
message-create-from-bitmap, 147
metafile-dc-close, 148
metafile-dc-create, 148
metafile-delete, 147
metafile-set-clipboard, 148
middle-down, 64
middle-up, 64
min, 80
mkdir, 187
modal, 45
modified, 83
mouse-event-button, 148
mouse-event-button-down, 149
mouse-event-control-down, 149
mouse-event-dragging, 149
mouse-event-is-button, 149
mouse-event-left-down, 149
mouse-event-left-up, 149
mouse-event-middle-down, 149
mouse-event-middle-up, 149
mouse-event-position-x, 150
mouse-event-position-y, 150
mouse-event-right-down, 150
mouse-event-right-up, 150
mouse-event-shift-down, 150
move, 78
move-first, 79
move-last, 79
move-next, 79
move-prev, 79
multiple, 56
multi-text-copy, 151
multi-text-create, 150
multi-text-cut, 151
multi-text-get-insertion-point, 151
multi-text-get-last-position, 151
multi-text-get-line-length, 151
multi-text-get-line-text, 152
multi-text-get-number-of-lines, 152
multi-text-get-value, 152
multi-text-paste, 152
multi-text-position-to-char, 152
multi-text-position-to-line, 152
multi-text-remove, 152
multi-text-replace, 153
multi-text-set-insertion-point, 153
multi-text-set-selection, 153
multi-text-set-value, 152
multi-text-show-position, 153
multi-text-write, 153
multi-text-xy-to-position, 153

INDEX

233

—N—
native, 51
neq, 39
new-line, 68
now, 187
number, 57

—O—
object-delete, 153
object-get-type, 153, 154
ODBC SQL data types, 208
ok, 43
on-accept-connection, 80
on-activate, 50
on-advise, 28
on-char, 22
on-char-hook, 18, 46, 50
on-close, 46, 50
on-command, 67, 68
on-default-action, 67
on-event, 22
on-execute, 28
on-make-connection, 25
on-menu-command, 50
on-menu-select, 50
on-paint, 22, 46, 88
on-poke, 28
on-request, 29
on-size, 22, 46, 51
on-start-advise, 29
on-stop-advise, 29
open, 33
orientation, 85

—P—
panel-create, 154
panel-create-from-resource, 154
panel-item-get-command-event, 155
panel-item-get-label, 155, 156
panel-item-set-default, 156
panel-item-set-label, 156
panel-new-line, 155
panel-set-button-font, 155
panel-set-label-font, 155
panel-set-label-position, 155
paste, 83
pen-create, 156
pen-delete, 156
pending-delete, 66
point-size, 47
poke, 27
popup-menu, 90
position-x, 55, 64
position-y, 64
postscript-dc-create, 157
printer-dc-create, 157
Procedures for writing an ODBC application, 205

—Q—
query, 79

—R—
radio-box-create, 157
radio-box-get-selection, 158
radio-box-set-selection, 158
range, 52
read-string, 187
Recordset overview, 208
recordset-create, 158
recordset-delete, 158
recordset-execute-sql, 158
recordset-get-char-data, 159
recordset-get-col-name, 159
recordset-get-col-type, 159
recordset-get-columns, 159
recordset-get-database, 160
recordset-get-data-sources, 160
recordset-get-error-code, 160
recordset-get-filter, 160
recordset-get-float-data, 160
recordset-get-foreign-keys, 161
recordset-get-int-data, 161
recordset-get-number-cols, 161, 162
recordset-get-number-fields, 162
recordset-get-number-params, 162
recordset-get-number-records, 162
recordset-get-primary-keys, 162
recordset-get-result-set, 162
recordset-get-table-name, 162
recordset-get-tables, 163
recordset-goto, 163
recordset-is-bof, 163
recordset-is-col-nullable, 163
recordset-is-eof, 164
recordset-is-field-dirty, 163
recordset-is-field-null, 163
recordset-is-open, 164
recordset-move, 164
recordset-move-first, 164
recordset-move-last, 164
recordset-move-next, 164
recordset-move-prev, 164
recordset-query, 164
recordset-set-table-name, 164, 165
request, 27
resource, 67
Restrictions, 11
return-result, 187
right-down, 64
right-up, 64
rmdir, 187
RouteCommand, 7
rows-or-columns, 85

—S—
save-file, 83
scroll, 22

INDEX

234

Select, 209
select-object, 58
server-create, 165
service-name, 26, 79
set, 36
set-background, 43
set-background-mode, 43
set-bezel-face, 53
set-brush, 43
set-button-font, 68
set-client-size, 91
set-clipping-region, 44
set-colourmap, 43
set-cursor, 91
set-date, 37
set-default, 69
set-default-size, 88
set-editable, 84
set-focus, 91
set-font, 44
set-format, 37
set-icon, 49
set-julian, 36
set-label, 69
set-label-font, 68
set-label-position, 68
set-logical-function, 44
set-margins, 88
set-menu-bar, 49
set-option, 37
set-pen, 44
set-scrollbars, 22
set-selection, 24, 57, 72
set-shadow-width, 53
set-size, 91
set-status-text, 49
set-string-selection, 25, 57
set-table-name, 79
set-text-background, 44
set-text-foreground, 44
set-title, 49
set-tool-bar, 50
set-tool-long-help, 88
set-tool-short-help, 88
set-value, 82
set-work-proc, 187
shift-down, 55, 65
show, 91
show-ide-window, 187
sleep, 188
slider-create, 165
slider-get-value, 166
slider-set-value, 166
start, 84
start-advise, 28
start-doc, 43
start-page, 43
start-timer, 188
stop, 84
stop-advise, 28
string-sort, 188
string-to-float, 188

string-to-long, 188
string-to-symbol, 188
style, 20, 47, 69, 196
subtract, 38
subtract-days, 37
subtract-self, 38
symbol-to-string, 189

—T—
text-create, 166
text-get-value, 167
text-set-value, 167
text-window-clear, 167
text-window-copy, 168
text-window-create, 168
text-window-cut, 168
text-window-discard-edits, 168
text-window-get-contents, 168
text-window-get-insertion-point, 168
text-window-get-last-position, 169
text-window-get-line-length, 169
text-window-get-line-text, 169
text-window-get-number-of-lines, 169
text-window-load-file, 169
text-window-modified, 169
text-window-on-char, 169
text-window-paste, 169, 170
text-window-position-to-char, 170
text-window-position-to-line, 170
text-window-remove, 170
text-window-replace, 170
text-window-save-file, 170
text-window-set-editable, 170
text-window-set-insertion-point, 171
text-window-set-selection, 171
text-window-show-position, 170
text-window-write, 171
text-window-xy-to-position, 171
The appearance and behaviour of a grid, 211
timer-create, 171
timer-delete, 171
timer-start, 171
timer-stop, 172
toggle-tool, 88
toolbar-add-separator, 172
toolbar-add-tool, 172
toolbar-clear-tools, 172
toolbar-create, 172
toolbar-create-tools, 173
toolbar-enable-tool, 173
toolbar-get-max-height, 173
toolbar-get-max-width, 173
toolbar-get-tool-client-data, 173
toolbar-get-tool-enabled, 174
toolbar-get-tool-long-help, 174
toolbar-get-tool-short-help, 174
toolbar-get-tool-state, 174
toolbar-layout, 174
toolbar-on-paint, 174
toolbar-set-default-size, 174
toolbar-set-margins, 175

INDEX

235

toolbar-set-tool-long-help, 175
toolbar-set-tool-short-help, 175
toolbar-toggle-tool, 175
type, 72
Types, 214

—U—
underlined, 47
Update, 210

—V—
value, 23, 52, 80, 81
values, 23, 56, 71

—W—
weight, 47
What is wxCOOL?, 213
width, 19, 54, 89
window, 70, 71
window-add-callback, 175
window-centre, 175
window-close, 175
window-delete, 176
window-enable, 176
window-fit, 176
window-get-client-height, 177
window-get-client-width, 177
window-get-height, 177
window-get-name, 176
window-get-next-child, 176
window-get-parent, 177
window-get-width, 177
window-get-x, 177
window-get-y, 177
window-is-shown, 178
window-make-modal, 178
window-popup-menu, 178
window-refresh, 178
window-remove-callback, 178
window-set-client-size, 179
window-set-cursor, 178
window-set-focus, 179
window-set-size, 179
window-set-size-hints, 179
window-show, 179
write, 84
write-resource, 189
wxALWAYS_SB, 197
wxApplication on-char-hook, 18
wxBitmap bitmap-type, 18
wxBitmap create, 19
wxBitmap depth, 19
wxBitmap filename, 19
wxBitmap height, 19
wxBitmap width, 19
wxBORDER, 198, 199
wxBrush colour, 20
wxBrush create, 20
wxBrush style, 20

wxButton bitmap, 20
wxButton create, 20
wxButton styles, 197
wxCanvas create, 21
wxCanvas dc, 21
wxCanvas on-char, 22
wxCanvas on-event, 22
wxCanvas on-paint, 22
wxCanvas on-size, 22
wxCanvas scroll, 22
wxCanvas set-scrollbars, 22
wxCanvas styles, 199
wxCAPTION, 196
wxCheckBox create, 23
wxCheckBox value, 23
wxChoice append, 24
wxChoice clear, 24
wxChoice create, 23
wxChoice find-string, 24
wxChoice get-selection, 24
wxChoice get-string, 25
wxChoice get-string-selection, 24
wxChoice set-selection, 24
wxChoice set-string-selection, 24
wxChoice values, 23
wxCleanWindows, 7
wxClient create, 25
wxClient make-connection, 25
wxClient on-make-connection, 25
wxclips-object-exists, 189
wxCommandEvent get-selection, 26
wxCommandEvent is-selection, 26
wxConnection advise, 27
wxConnection disconnect, 27
wxConnection execute, 27
wxConnection on-advise, 28
wxConnection on-execute, 28
wxConnection on-poke, 28
wxConnection on-request, 29
wxConnection on-start-advise, 29
wxConnection on-stop-advise, 29
wxConnection poke, 27
wxConnection request, 27
wxConnection service-name, 26
wxConnection start-advise, 28
wxConnection stop-advise, 28
wxCOOL event handling, 215
wxCursor create, 30
wxCursor cursor-name, 29
wxCursor x, 30
wxCursor y, 30
wxDatabase close, 31
wxDatabase create, 31
wxDatabase delete, 31
wxDatabase error-occurred, 31
wxDatabase get-database-name, 32
wxDatabase get-data-source, 32
wxDatabase get-error-code, 32
wxDatabase get-error-message, 32
wxDatabase get-error-number, 32
wxDatabase is-open, 32
wxDatabase open, 32

INDEX

236

wxDate add-days, 37
wxDate add-months, 33
wxDate add-self, 38
wxDate add-weeks, 33
wxDate add-years, 33
wxDate create, 33
wxDate create-julian, 34
wxDate create-string, 34
wxDate eq, 38
wxDate format, 34
wxDate ge, 38
wxDate geq, 38
wxDate get-day, 34
wxDate get-day-of-week, 34
wxDate get-day-of-week-name, 34
wxDate get-day-of-year, 34
wxDate get-days-in-month, 34
wxDate get-first-day-of-month, 35
wxDate get-julian-date, 35
wxDate get-month, 35
wxDate get-month-end, 35
wxDate get-month-name, 35
wxDate get-month-start, 35
wxDate get-week-of-month, 35
wxDate get-week-of-year, 36
wxDate get-year, 36
wxDate get-year-end, 36
wxDate get-year-start, 36
wxDate is-leap-year, 36
wxDate le, 38
wxDate leq, 38
wxDate neq, 39
wxDate set, 36
wxDate set-date, 36
wxDate set-format, 37
wxDate set-julian, 36
wxDate set-option, 37
wxDate subtract, 37
wxDate subtract-days, 37
wxDate subtract-self, 38
wxDC begin-drawing, 39
wxDC blit, 39
wxDC clear, 40
wxDC destroy-clipping-region, 40
wxDC draw-ellipse, 40
wxDC draw-line, 40
wxDC draw-lines, 40
wxDC draw-point, 40
wxDC draw-polygon, 41
wxDC draw-rectangle, 41
wxDC draw-rounded-rectangle, 41
wxDC draw-spline, 41
wxDC draw-text, 41
wxDC end-doc, 41
wxDC end-drawing, 41
wxDC end-page, 42
wxDC get-max-x, 42
wxDC get-max-y, 42
wxDC get-min-x, 42
wxDC get-min-y, 42
wxDC get-text-extent-height, 42
wxDC get-text-extent-width, 42

wxDC ok, 43
wxDC set-background, 43
wxDC set-background-mode, 43
wxDC set-brush, 43
wxDC set-clipping-region, 44
wxDC set-colourmap, 43
wxDC set-font, 44
wxDC set-logical-function, 44
wxDC set-pen, 44
wxDC set-text-background, 44
wxDC set-text-foreground, 44
wxDC start-doc, 43
wxDC start-page, 43
wxDEFAULT_DIALOG_STYLE, 196
wxDEFAULT_FRAME, 196
wxDialogBox create, 45
wxDialogBox modal, 45
wxDialogBox on-char-hook, 46
wxDialogBox on-close, 46
wxDialogBox on-paint, 46
wxDialogBox on-size, 46
wxDialogBox styles, 196
wxEvent get-event-type, 46
wxExecuteClipsFile, 7
wxFIXED_LENGTH, 197
wxFont create, 47
wxFont family, 47
wxFont point-size, 47
wxFont style, 47
wxFont underlined, 47
wxFont weight, 47
wxFrame create, 48
wxFrame create-status-line, 49
wxFrame iconize, 49
wxFrame on-activate, 50
wxFrame on-char-hook, 50
wxFrame on-close, 50
wxFrame on-menu-command, 50
wxFrame on-menu-select, 50
wxFrame on-size, 51
wxFrame set-icon, 49
wxFrame set-menu-bar, 49
wxFrame set-status-text, 49
wxFrame set-title, 49
wxFrame set-tool-bar, 50
wxFrame styles, 196
wxGA_HORIZONTAL, 197
wxGA_PROGRESSBAR, 197
wxGA_VERTICAL, 197
wxGauge create, 52
wxGauge range, 52
wxGauge set-bezel-face, 53
wxGauge set-shadow-width, 53
wxGauge styles, 197
wxGauge value, 52
wxGroupBox create, 53
wxGroupBox styles, 197
wxHelpInstance create, 51
wxHelpInstance display-block, 51
wxHelpInstance display-contents, 51
wxHelpInstance display-section, 52
wxHelpInstance keyword-search, 52

INDEX

237

wxHelpInstance load-file, 52
wxHelpInstance native, 51
wxHORIZONTAL, 198
wxHORIZONTAL_LABEL, 197
wxHSCROLL, 197, 198
wxIcon create, 54
wxIcon height, 53
wxIcon width, 54
wxICONIZE, 196
wxInitClips, 8
wxItem get-label, 68
wxItem on-command, 68
wxItem set-default, 69
wxItem set-label, 69
wxItem styles, 197
wxKeyEvent alt-down, 55
wxKeyEvent control-down, 55
wxKeyEvent get-key-code, 55
wxKeyEvent position-x, 55
wxKeyEvent position-y, 55
wxKeyEvent shift-down, 55
wxLB_ALWAYS_SB, 197
wxLB_EXTENDED, 197
wxLB_MULTIPLE, 197
wxLB_NEEDED_SB, 197
wxLB_SINGLE, 197
wxListBox append, 56
wxListBox clear, 56
wxListBox create, 56
wxListBox delete-item, 57
wxListBox find-string, 56
wxListBox get-first-selection, 58
wxListBox get-next-selection, 58
wxListBox get-selection, 57
wxListBox get-string, 57
wxListBox get-string-selection, 57
wxListBox multiple, 56
wxListBox number, 57
wxListBox set-selection, 57
wxListBox set-string-selection, 57
wxListBox styles, 197
wxListBox values, 55
wxMAXIMIZE, 196
wxMAXIMIZE_BOX, 196
wxMDI_CHILD, 196
wxMDI_PARENT, 196
wxMemoryDC create, 58
wxMemoryDC select-object, 58
wxMenu append, 59
wxMenu append-separator, 59
wxMenu break, 59
wxMenu callback, 59
wxMenu check, 60
wxMenu create, 59
wxMenu enable, 60
wxMenuBar append, 60
wxMenuBar check, 60
wxMenuBar checked, 60
wxMenuBar create, 60
wxMenuBar enable, 61
wxMessage bitmap, 61
wxMessage create, 61

wxMessage styles, 197
wxMetaFile set-clipboard, 62
wxMetaFileDC close, 63
wxMetafileDC create, 62
wxMetaFileDC filename, 62
wxMINIMIZE, 196
wxMINIMIZE_BOX, 196
wxMouseEvent button, 63
wxMouseEvent button-down, 63
wxMouseEvent control-down, 63
wxMouseEvent dragging, 63
wxMouseEvent is-button, 64
wxMouseEvent left-down, 63
wxMouseEvent left-up, 63
wxMouseEvent middle-down, 64
wxMouseEvent middle-up, 64
wxMouseEvent position-x, 64
wxMouseEvent position-y, 64
wxMouseEvent right-down, 64
wxMouseEvent right-up, 64
wxMouseEvent shift-down, 64
wxMultiText create, 65
wxNATIVE_IMPL, 198
wxNEEDED_SB, 197
wxObject add-event-handlers, 66
wxObject create, 66
wxObject dont-create, 65
wxObject id, 65
wxObject init after, 66
wxObject pending-delete, 66
wxPanel create, 67
wxPanel new-line, 68
wxPanel on-command, 67
wxPanel resource, 67
wxPanel set-button-font, 68
wxPanel set-label-font, 68
wxPanel set-label-position, 68
wxPanel styles, 198
wxPen colour, 69
wxPen create, 69
wxPen style, 69
wxPostScriptDC create, 70
wxPostScriptDC filename, 70
wxPostScriptDC interactive, 70
wxPostScriptDC window, 70
wxPrinter create, 71
wxPrinterDC device, 70
wxPrinterDC driver, 70
wxPrinterDC filename, 70
wxPrinterDC interactive, 71
wxPrinterDC window, 71
wxRadioBox, 198
wxRadioBox create, 71
wxRadioBox get-selection, 72
wxRadioBox major-dimension, 71
wxRadioBox set-selection, 72
wxRadioBox values, 71
wxREADONLY, 198
wxRecordSet create, 73
wxRecordSet database, 72
wxRecordSet delete, 73
wxRecordSet execute-sql, 73

INDEX

238

wxRecordSet get-char-data, 73
wxRecordSet get-col-name, 74
wxRecordSet get-col-type, 74
wxRecordSet get-columns, 74
wxRecordSet get-data-sources, 75
wxRecordSet get-error-code, 75
wxRecordSet get-filter, 75
wxRecordSet get-float-data, 75
wxRecordSet get-foreign-keys, 75
wxRecordSet get-int-data, 76
wxRecordSet get-number-cols, 76
wxRecordSet get-number-fields, 76
wxRecordSet get-number-params, 76
wxRecordSet get-number-records, 77
wxRecordSet get-primary-keys, 77
wxRecordSet get-result-set, 77
wxRecordSet get-table-name, 77
wxRecordSet get-tables, 77
wxRecordSet goto, 78
wxRecordSet is-bof, 78
wxRecordSet is-col-nullable, 78
wxRecordSet is-eof, 78
wxRecordSet is-field-dirty, 78
wxRecordSet is-field-null, 78
wxRecordSet is-open, 78
wxRecordSet move, 78
wxRecordSet move-first, 79
wxRecordSet move-last, 79
wxRecordSet move-next, 79
wxRecordSet move-prev, 79
wxRecordSet query, 79
wxRecordSet set-table-name, 79
wxRecordSet type, 72
wxRESIZE_BORDER, 196
wxRETAINED, 199
wxRouteNoEcho, 8
wxSDI, 196
wxServer create, 79
wxServer on-accept-connection, 80
wxServer service-name, 79
wxSlider create, 80
wxSlider max, 80
wxSlider min, 80
wxSlider styles, 198
wxSlider value, 80
wxSTAY_ON_TOP, 196
wxSYSTEM_MENU, 196
wxTB_3DBUTTONS, 199
wxTE_PASSWORD, 198
wxTE_PROCESS_ENTER, 198
wxTE_READONLY, 198
wxText create, 81
wxText set-value, 82
wxText value, 81
wxText/wxMultiText styles, 198
wxTextWindow clear, 82
wxTextWindow copy, 82
wxTextWindow create, 82
wxTextWindow cut, 82
wxTextWindow discard-edits, 83
wxTextWindow get-contents, 83
wxTextWindow load-file, 83

wxTextWindow modified, 83
wxTextWindow paste, 83
wxTextWindow save-file, 83
wxTextWindow set-editable, 84
wxTextWindow styles, 198
wxTextWindow write, 84
wxTHICK_FRAME, 196
wxTimer create, 84
wxTimer start, 84
wxTimer stop, 84
wxTINY_CAPTION_HORIZ, 196
wxTINY_CAPTION_VERT, 196
wxToolBar add-separator, 85
wxToolBar add-tool, 85
wxToolBar clear-tools, 85
wxToolBar create, 86
wxToolBar create-buttons, 84
wxToolBar create-tools, 86
wxToolBar enable-tool, 86
wxToolBar get-max-height, 86
wxToolBar get-max-width, 87
wxToolBar get-tool-client-data, 87
wxToolBar get-tool-enabled, 87
wxToolBar get-tool-long-help, 87
wxToolBar get-tool-short-help, 87
wxToolBar get-tool-state, 87
wxToolBar layout, 87
wxToolBar on-paint, 87
wxToolBar orientation, 85
wxToolBar rows-or-columns, 85
wxToolBar set-default-size, 88
wxToolBar set-margins, 88
wxToolBar set-tool-long-help, 88
wxToolBar set-tool-short-help, 88
wxToolBar styles, 199
wxToolBar toggle-tool, 88
wxUSER_COLOURS, 196, 198
wxUserFunctions, 8
wxVERTICAL, 198
wxVERTICAL_LABEL, 197
wxVSCROLL, 196, 198
wxWindow centre, 89
wxWindow client-height, 89
wxWindow client-width, 89
wxWindow enable, 89
wxWindow find-window-by-label, 90
wxWindow find-window-by-name, 89
wxWindow fit, 90
wxWindow get-name, 90
wxWindow get-parent, 90
wxWindow height, 89
wxWindow make-modal, 90
wxWindow popup-menu, 90
wxWindow set-client-size, 91
wxWindow set-cursor, 90
wxWindow set-focus, 91
wxWindow set-size, 91
wxWindow show, 91
wxWindow width, 89
wxWindow x, 88
wxWindow y, 88

INDEX

239

—X—
x, 30, 88

—Y—
y, 30, 89
yield, 189

