Appendix D - Utility Programs

This chapter describes the utility programs that come with CIDLib. These utilities are either raw C programs (only when absolutely necessary) or written in CIDLib itself. So some of them serve as real world demo programs as well as utilities.

The project system is set up so that any utilities that are used in the build itself are built before any other projects that use them. So there is no build bootstrapping problems that you have to worry about.

�
DispRGB

This program is a very simple, raw Win32 program that is used to display the output from the ray tracer and fractal demo programs.

This one is just a temporary place holder. The GUI and graphics parts of CIDLib are not ported over yet, so I just did this simple program to allow you to view the output from the demos. Eventually, this program will be replaced with a pure CIDLib based program. It is kind of gratifying to see how fast simple, raw programs respond though. It practically leaps up onto the screen on my machine.

Given this program’s temporary status, I did not kill myself making it really full featured. It just has a File menu that lets you select the image you want to display. It displays the .Dis files, which is a very simple, uncompressed, 24 bit graphics format that the demo programs use. This format has been historically used by some other public domain ray tracers, so I chose it for the demo programs. Its so simple that writing a conversion program to change them to another format is trivial. Another reason for using this format is that the bitmap file manipulation code is part of the GUI stuff that is not ported fully yet.

Look at the code for this program for documentation of the Dis format.

�
MakeDocs

MakeDocs is a pretty real world application. The online class and member documentation is not written directly in HTML. Instead its written in a very simple and limited intermediary format that is digested and converted into the HTML that you see. Theoretically, though I haven’t done it, it could be converted to other formats. The program is written to support this and uses a ‘translator’ framework from which new translator derivatives can be created and plugged in.

This program is just an ad hoc program that serves my direct needs, so its not any kind of general purpose mechanism. However, my needs are pretty reasonable and you might be able to use it for your own needs.

MakeDocs does its own ‘make utility’ style file timestamp checking, so it only recompiles files that are out of date with their targets. This very much speeds up the process, since there are currently almost 2000 output files for the CIDLib online docs.

This program will be much improved in the next release. It was written rather recently and I wanted to just get it basically in place for this release. Now that I’ve got a good feel for where I want to go with it, I will rewrite it to be much slicker. Still, its a very useful and real world program so I don’t feel too bad about you looking at it as the biggest of the demo programs.

The program’s command line syntax is like this:

	MakeDocs sourcedir targetdir [/FORCE]

The sourcedir parameter is the directory of the source files. The files are in a hierarchical arrangement with a main directory (which contains an overview file for each subsystem) and subdirectories under it for each subsystem. The program understands this layout and knows how to traverse the directories.

The targetdir parameter is the output directory for the HTML code. It puts everything into one single directory. This makes it easier to upload the whole thing via FTP in one operation. Of course this means that all files must be unique, but the way that the files are automatically named pretty much insures this. All files use their subsystem name as a prefix, followed by an underscore and then the name of the file.

The /FORCE parameter forces the program to ignore timestamp information and do a full rebuild of the entire tree. This is mainly for me when I make a change to the program itself. Just running the program again won’t do anything because changing the program does not invalidate any files. So I use this to force everything to be recompiled.

If the target directory does not exist, you will be queried as to whether you really want to output there. If you say yes, the target directory will be created and the files compiled to it.

�
MakeMsgs

CIDLib does not use the compiler environment’s resource system for external text strings, which are loaded by programs at runtime. Instead it uses its own message compiler that is much more appropriate for the CIDLib system (or any C++ program for that matter.) The compiler resource environment must support regular C programs so it creates #define’d values for all ids. These are tacky and counter productive in a C++ system.

MakeMsgs creates namespace based const values that are much more appropriate for C++ programs. Here is a simple input file, assume that this is for the Foo.Dll facility.

//

// The Foo.MsgText file. Each facility that wants loadable text

// has a MsgText file like this.

//

[E] errcFailed 1 The program failed miserably

[E] errcWorked 2 The program solved world hunger

[M] midTest1 8192 This is test string 1

[M] midTest2 8193 This is test string 2

[M] midTest3 8194 “ This is %(1) string %(2)”

The MsgText file defines text for errors and for messages. Error texts are preceeded by an [E] and message texts are preceeded by an [M] prefix. These tell the compiler what type of text each line represents, which is important for reasons that will be obvious soon.

Input File Fields

After the M/E prefix comes an indentifier for the text. By convention CIDLib uses errc as the prefix for errors and mid for message ids. This is something you do also because the output files will use the types TErrCode for error ids and TMsgId for the messages. So using these prefixes makes your ids correctly follow the hungarian prefix notation used by CIDLib.

Next comes the id. Each facility can use all of the available ids that will fit in a 32 bit unsigned value. However, the errors and messages share this common range, so CIDLib uses the convention that errors start with 1 and messages start at 8192. But you can use any convention you want to do this range division, because its kind of transparent to the user of these ids anyway.

Lastly comes the message text. The rest of the line is considered the text, so don't try to put any comments at the end of the line or anything of that nature. However, C++ style comments are legal on their own lines.

By default all leading and trailing white space is stripped from the message text. But, if you need to force a particular format with leading or trailing white space, use double quites around the text. For instance, look at the midTest3 value in the example above. The leading spaces will be retained in this string, however the quotes will be tossed. Quotes are only tossed if they are the first and last non-whitespace characters of the text.

The values \r, \n, and \t escape characters are understood and are translated to their binary equivilents in the output text.

Note that the input file can be in either ASCII text or UNICode text. For english and other Latin based languages, its often more convenient to write them in ASCII, though the message text will be converted to UNICode in the output binary file. For other languages that cannot be represented in ASCII of course they can be written in UNICode. The utility used to written must follow the convention of using the UNICode marker character as the first character of the text, so that the utility can figure out that its UNICode.

Output Files

The program creates three output files, two of which are input files to your program and generated into your project directory and one of which is binary and generated into your project’s output directory.

The output binary file is the CIDMsg file that contains the compiled text strings and which must be distributed along with the Exe or DLL files of that project. For our example project, the output file would be Foo.CIDMsg. The CIDMsg file for a project must be in the same directory as its Exe or DLL file in order to be found by the CIDLib runtime code.

The other two files are source files for your project. They will contain the C++ source code for the namespace and the ids that you defined in the MsgText file. One of the files is for message ids and one is for error ids and would be named (in our example project) Foo_ErrorIds.Hpp and Foo_MessageIds.Hpp.

Here is what they would look like:

//

// This file was generated by the MakeMsgs.Exe utility

//

namespace kFooMsgs

{

 const tCIDLib::TMsgId midTest1 = 8192;

 const tCIDLib::TMsgId midTest2 = 8193;

 const tCIDLib::TMsgId midTest3 = 8194;

};

�//

// This file was generated by the MakeMsgs.Exe utility

//

namespace kFooErrs

{

 const tCIDLib::TErrCode errcFailed = 1;

 const tCIDLib::TErrCode errcWorked = 2;

};

As you can see, this is a much more C++’ish way of doing things. The ids are const values that have real types and which are protected in a namespace that indicates the facility that they belong to.

Note that the names of the namespaces are not hard coded and are provided by you on the command line, however this example uses the CIDLib conventions correctly. any namespace that contains constants starts with a ‘k’. Then its followed by the facility name, and the Msgs for a message id namespace or ‘Errs’ for an error id namespace.

Command Line

The MakeMsgs program needs to know the name of the facility (which is used in the file and namespace names), the names of the namespaces you want to use, and the output directory for the binary file.

So the command looks like this:

	MakeMsgs facname errspace msgspace outdir

Assuming that our example project is a standard CIDLib project (within the VC++ environment) the command line parameters for the output we got above would look like this:

	$(OutDir)\MakeMsgs Foo kFooErrs kFooMsgs $(OutDir)

The $(OutDir) is a special symbol provided by the VC++ project system and it represents the main project output directory, which is where we want the output to go. Also, for our development work, its where we want to find the MakeMsgs.Exe program. This way, if we are doing debug builds we run the debug version of the program. If we are doing a production build, we run the release version of the program.

Setting up the Project

When you need to have a message file for your project you will have do a little work in the project settings for that project. VC++ allows you to specific a custom build step for a particular file, which you will need to do for the MsgText file.

So, in the workspace window, expand the project and find the MsgText file (which you previously added to the project and edited to hold the content you want.) Right click on this file and select Settings. This will take you to the ‘Custom Build’ tab of the settings for that file. Change the Description field to say something like “Compiling messages”. This text is output in the build output window when the file is compiled.

In the “Build Commands” window add another entry and enter a command line like discussed above. This tells the compiler what you want to do for this particular file.

In the “Output Files” window you need to add the three output files, which were discussed above. For our example Foo project, you would add these three entries:

$(OutDir)\Foo.CIDMsg

Foo_ErrorIds.Hpp

Foo_MessageIds.Hpp

This tells the compiler about the files that the step will create. This lets it do dependency analysis on the input and output files and know when to rebuild. As discussed the $(OutDir) token is a special value (one of many) understood by the VC++ project system. It will insure that the file goes to where the other main output files of the project go, and that it goes to the correct debug/release output directory according to what kind of build you are doing. The other two files get generated into the project directory, which is the current directory when a project is being built so there is no need to give any path for them.

Keep in mind that, if you add new ids to the MsgText file, then go do a single file compile on a Cpp file that uses these ids, the compile will fail because you have not compiled the MsgText file again to recreate the Hpp files. If you do a full compile then the message compile will happen first and you’ll be ok. But, if you are compiling single files, you need to do a single file compile on the MsgText file first so that it will regenerate the Hpp files, and therefore the new ids you just added.

If you want examples of these kinds of settings, open the settings for the MsgText file of one of the CIDLib projects. Be sure not to screw them up though while you are in there!

�

