
Java 3D™ API
Specification

Version 1.1 Alpha 01, February 27, 1998

901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business
JavaSoft

 1997, 1998 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, for-
eign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN’s intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean-room implementa-
tions of this specification that (i) are complete implementations of this specification, (ii)
pass all test suites relating to this specification that are available from SUN, (iii) do not
derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java, JavaScript, and Java 3D are trademarks of Sun Microsystems, Inc. Sun, Sun Micro-
systems, the Sun logo, Java and HotJava are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIX® is a registered trademark in the United States and other coun-
tries, exclusively licensed through X/Open Company, Ltd. All other product names men-
tioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

. xv

1
. . .1
 . .2
 .2
. .2
.3
 . .4
 .4
 .4
 .5
. .5
. .5
. .6
 . .7
 .7
. .8
 .9

15
. .15
.15
.16
.17
. .17
.19
.23
. .24
4
24
 .25
.25
.25
25
26
26
Contents

Preface .

1 Introduction to Java 3D .
1.1 Goals .
1.2 Programming Paradigm. .

1.2.1 The Scene Graph Programming Model
1.2.2 Rendering Modes .
1.2.3 Extensibility .

1.3 High Performance .
1.3.1 Layered Implementation. .
1.3.2 Target Hardware Platforms .

1.4 Support for Building Applications and Applets
1.4.1 Browsers .
1.4.2 Games .

1.5 Overview of Java 3D Object Hierarchy.
1.6 Structuring the Java 3D Program. .

1.6.1 Java 3D Application Scene Graph
1.6.2 Recipe for a Java 3D Program .
1.6.3 HelloUniverse: A Sample Java 3D Program

2 Scene Graph Basics. .
2.1 Scene Graph Structure .

2.1.1 Spatial Separation.
2.1.2 State Inheritance .
2.1.3 Rendering .

2.2 Scene Graph Objects .
2.2.1 Node Objects .
2.2.2 NodeComponent Objects .

2.3 Scene Graph Superstructure Objects .
2.3.1 VirtualUniverse Object. .2
2.3.2 Locale Object .

2.4 Scene Graph Viewing Objects. .
2.4.1 Canvas3D Object .
2.4.2 Screen3D Object.
2.4.3 View Object .
2.4.4 PhysicalBody Object .
2.4.5 PhysicalEnvironment Object .
iiiVersion 1.1 Alpha 01, February 27, 1998

CONTENTS

iv

27
27

 . 28
29

 . 29
29

29
0
0
32
2

32
33

37
. 37
. 40
. 42
. 44
. 44
. 45
 . 47

49
. 49
 . 51

53
. 54
. 56
. 57
59
60
62
4
4

65
66
. 68
74
75
79

 . 86
88

. 89

. 89
. 91
3 Scene Graph Superstructure .
3.1 The Virtual Universe .
3.2 Establishing a Scene. .
3.3 Loading a Virtual Universe .
3.4 Coordinate Systems .
3.5 High-resolution Coordinates .

3.5.1 Java 3D High-resolution Coordinates
3.5.2 Java 3D Virtual World Coordinates 3
3.5.3 Details of High-resolution Coordinates. 3

3.6 API for Superstructure Objects .
3.6.1 VirtualUniverse Object . 3
3.6.2 Locale Object .
3.6.3 HiResCoord Object .

4 Group Node Objects .
4.1 Group Node .
4.2 BranchGroup Node.
4.3 TransformGroup Node .
4.4 OrderedGroup Node .
4.5 DecalGroup Node.
4.6 Switch Node .
4.7 SharedGroup Node .

5 Leaf Node Objects .
5.1 Leaf Node .
5.2 Shape3D Node .
5.3 BoundingLeaf Node .
5.4 Background Node.
5.5 Clip Node .
5.6 Fog Node .

5.6.1 ExponentialFog Node .
5.6.2 LinearFog Node. .

5.7 Light Node .
5.7.1 AmbientLight Node. 6
5.7.2 DirectionalLight Node. 6
5.7.3 PointLight Node .
5.7.4 SpotLight Node .

5.8 Sound Node .
5.8.1 BackgroundSound Node .
5.8.2 PointSound Node. .
5.8.3 ConeSound Node. .

5.9 Soundscape Node .
5.10 ViewPlatform Node .
5.11 Behavior Node .
5.12 Morph Node .
5.13 Link Node.
Java 3D API Specification

93
. .93
.93
95
 .96
.97
 .98
01

102
03
03

07
107
07
1
2

14
15
17
19
20
22
24
28
28
29
32
3
39
41
42
43
43
44
44
45
46
48
50
52
164
64
71
71
72
72
2

6 Reusing Scene Graphs .
6.1 Sharing Subgraphs.

6.1.1 SharedGroup Node .
6.1.2 Link Leaf Node. .

6.2 Cloning Subgraphs. .
6.2.1 References to Node Component Objects
6.2.2 References to Other Scene Graph Nodes
6.2.3 Dangling References. .1
6.2.4 Subclassing Nodes .
6.2.5 NodeReferenceTable Object. .1
6.2.6 Example User Behavior Node .1

7 Node Component Objects. 1
7.1 Node Component Objects: Attributes .

7.1.1 Appearance Object .1
7.1.2 ColoringAttributes Object .11
7.1.3 LineAttributes Object .11
7.1.4 PointAttributes Object .1
7.1.5 PolygonAttributes Object .1
7.1.6 RenderingAttributes Object .1
7.1.7 TextureAttributes Object .1
7.1.8 TransparencyAttributes Object.1
7.1.9 Material Object .1
7.1.10 Texture Object .1
7.1.11 Texture2D Object .1
7.1.12 Texture3D Object .1
7.1.13 TexCoordGeneration Object. .1
7.1.14 MediaContainer Object. .1
7.1.15 AuralAttributes Object .13
7.1.16 ImageComponent Object .1
7.1.17 ImageComponent2D Object .1
7.1.18 ImageComponent3D Object .1
7.1.19 DepthComponent Object .1
7.1.20 DepthComponentFloat Object .1
7.1.21 DepthComponentInt Object .1
7.1.22 DepthComponentNative Object1
7.1.23 Bounds Object .1
7.1.24 BoundingBox Object .1
7.1.25 BoundingSphere Object .1
7.1.26 BoundingPolytope Object. .1
7.1.27 Transform3D Object. .1

7.2 Node Component Objects: Geometry .
7.2.1 GeometryArray Object .1
7.2.2 PointArray Object. .1
7.2.3 LineArray Object .1
7.2.4 TriangleArray Object .1
7.2.5 QuadArray Object. .1
7.2.6 GeometryStripArray Object .17
vVersion 1.1 Alpha 01, February 27, 1998

CONTENTS

vi

3
3

74
74
77
77
78
78
9
9
0

81
81

182
84
87
88
89
192
92
93

95
196
6

197
7

97
98
9

0
01
2
3
203
3

05
06
206
08
10
11
12
13
13
14
214
215
7.2.7 LineStripArray Object. 17
7.2.8 TriangleStripArray Object. 17
7.2.9 TriangleFanArray Object . 1
7.2.10 IndexedGeometryArray Object 1
7.2.11 IndexedPointArray Object. 1
7.2.12 IndexedLineArray Object . 1
7.2.13 IndexedTriangleArray Object . 1
7.2.14 IndexedQuadArray Object . 1
7.2.15 IndexedGeometryStripArray Object 17
7.2.16 IndexedLineStripArray Object 17
7.2.17 IndexedTriangleStripArray Object 18
7.2.18 IndexedTriangleFanArray Object 1
7.2.19 CompressedGeometry Object . 1
7.2.20 CompressedGeometryHeader Object
7.2.21 Raster Object . 1
7.2.22 Font3D Object . 1
7.2.23 FontExtrusion Object . 1
7.2.24 Text3D Geometry Object . 1

7.3 Math Component Objects. .
7.3.1 Tuple Objects . 1
7.3.2 Matrix Objects. 1

8 View Model. 1
8.1 Why a New Model? .

8.1.1 The Physical Environment Influences the View 19
8.2 Separation of Physical and Virtual .

8.2.1 The Virtual World . 19
8.2.2 The Physical World . 1

8.3 The Objects That Define the View. 1
8.4 ViewPlatform: A Place in the Virtual World 19

8.4.1 Moving Through the Virtual World 20
8.4.2 Dropping In on a Favorite Place 2
8.4.3 View Attach Policy . 20
8.4.4 Associating Geometry with a ViewPlatform. 20

8.5 Generating a View .
8.5.1 Composing Model and Viewing Transformations 20
8.5.2 Multiple Locales . 2

8.6 A Minimal Environment. 2
8.7 The View Object. .

8.7.1 Projection Policy . 2
8.7.2 Clip Policies . 2
8.7.3 Projection and Clip Parameters 2
8.7.4 Frame Start Time, Duration, and Number. 2
8.7.5 View Traversal and Behavior Scheduling. 2
8.7.6 Scene Antialiasing. 2
8.7.7 Depth Buffer . 2

8.8 The Screen3D Object .
8.9 The Canvas3D Object. .
Java 3D API Specification

15
216
216
217

9
219
20

21
21
22
222
222
23

224
24
26
26
236
7

41
42
46

47
48
50
51
2
53
54
56
57
59
60

60
61
62

65
265
66
67
.267
68

268
68

271
272
8.9.1 Window System–Provided Parameters 2
8.9.2 Other Canvas3D Parameters. .

8.10 The PhysicalBody Object .
8.11 The PhysicalEnvironment Object .

9 Behaviors and Interpolators . 21
9.1 Behavior Object .

9.1.1 Code Structure .2
9.1.2 WakeupCondition Object .2
9.1.3 WakeupCriterion Object. .2
9.1.4 Composing WakeupCriterion Objects2

9.2 Composing Behaviors .
9.3 Scheduling .
9.4 How Java 3D Performs Execution Culling .2
9.5 The Behavior API .

9.5.1 The Behavior Node. .2
9.5.2 WakeupCondition Object .2
9.5.3 The WakeupCriterion Objects .2

9.6 Interpolator Behaviors .
9.6.1 Mapping Time to Alpha .23
9.6.2 Acceleration of Alpha. .2
9.6.3 The Alpha Class .2
9.6.4 The Interpolator Base Class .2
9.6.5 PositionInterpolator Object. .2
9.6.6 RotationInterpolator Object .2
9.6.7 ColorInterpolator Object. .2
9.6.8 ScaleInterpolator Object .2
9.6.9 SwitchValueInterpolator Object25
9.6.10 TransparencyInterpolator Object2
9.6.11 PositionPathInterpolator Object2
9.6.12 RotPosPathInterpolator Object .2
9.6.13 RotPosScalePathInterpolator Object 2
9.6.14 RotationPathInterpolator Object.2

9.7 Level-of-Detail Behaviors .2
9.7.1 LOD Object .2
9.7.2 DistanceLOD Object .2

9.8 Billboard Behavior. .2

10 Input Devices and Picking . 2
10.1 InputDevice Interface .

10.1.1 The Abstract Interface .2
10.1.2 Instantiating and Registering a New Device 2

10.2 Sensors.
10.2.1 Using and Assigning Sensors .2
10.2.2 Behind the (Sensor) Scenes .
10.2.3 The Sensor Object .2
10.2.4 The SensorRead Object .

10.3 Picking .
viiVersion 1.1 Alpha 01, February 27, 1998

CONTENTS

viii

273
75
75
76
76
77

279
279
80
80
2

282
83

5
285
85
86
86
287
7
87

9
89
89
91
292
94
94

99
299
99
05
08
13
19
22
29
38
0
42
45
6

53
10.3.1 SceneGraphPath Object. .
10.3.2 BranchGroup Node and Locale Node Pick Methods . . 2
10.3.3 PickShape Object . 2
10.3.4 PickPoint Object . 2
10.3.5 PickRay Object . 2
10.3.6 PickSegment Object . 2

11 Audio Devices. .
11.1 AudioDevice Interface .

11.1.1 Initialization. 2
11.1.2 Audio Playback . 2
11.1.3 Device-Driver-Specific Data. 28

11.2 Instantiating and Registering a New Device
11.3 AudioMixerDevice Interface . 2

12 Execution and Rendering Model . 28
12.1 Three Major Rendering Modes .

12.1.1 Immediate Mode . 2
12.1.2 Retained Mode . 2
12.1.3 Compiled-retained Mode. 2

12.2 Instantiating the Render Loop .
12.2.1 An Application-level Perspective 28
12.2.2 Retained and Compiled-retained Rendering Modes . . . 2

13 Immediate-Mode Rendering. 28
13.1 Two Styles of Immediate-Mode Rendering . 2

13.1.1 Pure Immediate-Mode Rendering 2
13.1.2 Mixed-Mode Rendering . 2

13.2 Canvas3D Methods .
13.3 API for Immediate Mode . 2

13.3.1 GraphicsContext3D. 2

A Math Objects . 2
A.1 Tuple Objects .

A.1.1 Tuple2f Class. 2
A.1.2 Tuple3b Class . 3
A.1.3 Tuple3d Class . 3
A.1.4 Tuple3f Class. 3
A.1.5 Tuple4b Class . 3
A.1.6 Tuple4d Class . 3
A.1.7 Tuple4f Class. 3
A.1.8 AxisAngle4d Class . 3
A.1.9 AxisAngle4f Class. 34
A.1.10 GVector Class . 3

A.2 Matrix Objects . 3
A.2.1 Matrix3f Class . 34
A.2.2 Matrix3d Class . 3
Java 3D API Specification

59
67
76

81
381
382
82

382
383
386
387
388
89
90
92
.393
95

395
95
395
97
98
99
99
00
02
03
03

.403
04
05
05
06
06
6
407
07
08
9
410
10
10
10
11
12
12
12
A.2.3 Matrix4f Class .3
A.2.4 Matrix4d Class .3
A.2.5 GMatrix Class. .3

B 3D Geometry Compression . 3
B.1 Compression .
B.2 Decompression .
B.3 Appendix Organization .3
B.4 Generalized Triangle Strip. .
B.5 Generalized Triangle Mesh .
B.6 Position Representation and Quantization. .
B.7 Color Representation and Quantization. .
B.8 Normal Representation and Quantization .

B.8.1 Normals as Indices .3
B.8.2 Normal Encoding Parameterization3

B.9 Modified Huffman Encoding. .3
B.10 Geometry Compression Commands .
B.11 Bit Layout of Geometry Decompression Commands3
B.12 Geometry Decompression Command Bit Details

B.12.1 NOP .3
B.12.2 setState .
B.12.3 setTable. .3
B.12.4 meshBufferReference .3
B.12.5 Position Subcommand .3
B.12.6 Color Subcommand .3
B.12.7 Normal Subcommand. .4
B.12.8 vertex .4
B.12.9 normal. .4
B.12.10 color .4

B.13 Semantics of Geometry Decompression Commands
B.13.1 Header and Body to Variable-Length Command.4
B.13.2 Variable-Length Command to Command 4
B.13.3 Delta Position to Position .4
B.13.4 Delta Color to Color .4
B.13.5 Encoded Delta Normal to Encoded Normal4
B.13.6 Encoded Normal to Rectilinear Normal40

B.14 Semantics of Vertices .
B.14.1 Command to Vertex .4
B.14.2 Vertex to Intermediate Triangle4
B.14.3 Intermediate Triangle to Final Triangle40

B.15 Outline of Geometry Process. .
B.15.1 Compressing Geometry Data .4
B.15.2 Convert to Generalized Mesh Format 4
B.15.3 Position .4
B.15.4 Normals .4
B.15.5 Colors .4
B.15.6 Collect Delta Code Statistics .4
B.15.7 Position Delta Code Statistics. .4
ixVersion 1.1 Alpha 01, February 27, 1998

CONTENTS

x

12
12
13
14

15
15
416
16
16

16
417
17
19
20

420
1
22
2
3
4
424
26
27
427
28

28
29
429
431
33
3
4
34

35
36

441
441
42

442
443
43

444
44
444
B.15.8 Color Delta Code Statistics . 4
B.15.9 Normal Delta Code Statistics . 4
B.15.10 Assign Huffman Tags . 4
B.15.11 Assemble the Pieces into a Bit Stream 4

C View Model Details . 4
C.1 An Overview of the Java 3D View Model . 4
C.2 Physical Environments and Their Effects .

C.2.1 A Head-mounted Example . 4
C.2.2 A Room-mounted Example. 4
C.2.3 Impact of Head Position and Orientation on the

Camera. 4
C.3 The Coordinate Systems. .

C.3.1 Room-mounted Coordinate Systems. 4
C.3.2 Head-mounted Coordinate Systems 4

C.4 The ViewPlatform Object. 4
C.5 The View Object. .

C.5.1 View Policy . 42
C.5.2 Screen Scale Policy . 4
C.5.3 Window Eyepoint Policy. 42
C.5.4 Monoscopic View Policy . 42
C.5.5 Sensors and Their Location in the Virtual World 42

C.6 The Screen3D Object .
C.6.1 Screen3D Calibration Parameters 4
C.6.2 Accessing and Changing Head Tracker Coordinates . . 4

C.7 The Canvas3D Object. .
C.7.1 Scene Antialiasing. 4
C.7.2 Accessing and Modifying an Eye’s Image Plate

Position . 4
C.7.3 Canvas Width and Height . 4

C.8 The PhysicalBody Object .
C.9 The PhysicalEnvironment Object. .
C.10 Viewing in Head-tracked Environments . 4

C.10.1 A Room-mounted Display with Head Tracking 43
C.10.2 A Head-mounted Display with Head Tracking. 43

C.11 Compatibility Mode . 4
C.11.1 Overview of the Camera-based View Model 4
C.11.2 Using the Camera-based View Model. 4

D Exceptions .
D.1 BadTransformException. .
D.2 CapabilityNotSetException . 4
D.3 DanglingReferenceException. .
D.4 IllegalRenderingStateException .
D.5 IllegalSharingException . 4
D.6 MismatchedSizeException .
D.7 MultipleParentException . 4
D.8 RestrictedAccessException .
Java 3D API Specification

445
45
446

47
447

448
.450
50

458
459
59
62

5
65
6

6
66

67
67
68
9

471

475
D.9 SceneGraphCycleException .
D.10 SingularMatrixException. .4
D.11 SoundException. .

E Equations . 4
E.1 Fog Equations .
E.2 Lighting Equations. .
E.3 Sound Equations .

E.3.1 Headphone Playback Equations4
E.3.2 Speaker Playback Equations. .

E.4 Texture Mapping Equations .
E.4.1 Texture Lookup .4
E.4.2 Texture Application .4

F VRML Support . 46
F.1 VRML 1.0 .4

F.1.1 Mapping VRML 1.0 Files onto Java 3D Objects46
F.1.2 A VRML 1.0 Browsing Environment 46

F.2 VRML 2.0 .4
F.2.1 VRML Support Requires a VRML Runtime

Environment .4
F.2.2 An Approach. .4
F.2.3 A Browser. .4
F.2.4 Optimizing for Viewing versus Editing46

Glossary .

Index. .
xiVersion 1.1 Alpha 01, February 27, 1998

. . .6

. . .7

.16

. .26
 .28
. .37
. .41
. .50
. .77
 . .80
 .83
.84
 .86
 . .94
 . .98
. . .99

101
108
. .134
.165
.191
198
200
201
205
37

39
Figures

Figure 1-1 Java 3D Object Hierarchy .
Figure 1-2 Application Scene Graph .
Figure 2-1 A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph)
Figure 2-2 Viewing a Scene Graph .
Figure 3-1 The Virtual Universe .
Figure 4-1 Group Node Hierarchy .
Figure 4-2 Altering the Scene Graph at Run Time .
Figure 5-1 Leaf Node Hierarchy .
Figure 5-2 PointSound Distance Gain Attenuation .
Figure 5-3 ConeSound .
Figure 5-4 ConeSound with a Single Distance Gain Attenuation Array
Figure 5-5 ConeSound with Two Distance Gain Attenuation Arrays
Figure 5-6 Multiple Soundscape Application Regions .
Figure 6-1 Sharing a Subgraph. .
Figure 6-2 Referenced and Duplicated NodeComponent Objects
Figure 6-3 References to Other Scene Graph Nodes .
Figure 6-4 Updated Subgraph afterupdateNodeReferences Call 100
Figure 6-5 Dangling Reference: Bold Nodes Are Being Cloned.
Figure 7-1 Attribute Component Object Hierarchy .
Figure 7-2 Sound Reverberation Parameters .
Figure 7-3 Geometry Component Object Hierarchy .
Figure 7-4 Various Text Alignments and Paths .
Figure 8-1 View Object, Its Component Objects, and Their Interconnection
Figure 8-2 A Portion of a Scene Graph Containing a ViewPlatform Object
Figure 8-3 A Simple Scene Graph with View Control .
Figure 8-4 Object and ViewPlatform Transformations .
Figure 9-1 An Interpolator’s Generic Time-to-Alpha Mapping Sequence 2
Figure 9-2 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable

Only theα-Increasing andα-at-1 Portion of the Waveform238
Figure 9-3 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable

Only theα-Decreasing andα-at-0 Portion of the Waveform239
Figure 9-4 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to

Enable All Portions of the Waveform .2
xiiiVersion 1.1 Alpha 01, February 27, 1998

FIGURES

xiv

40

242
290
300
384
385
391

396
417
420
425
425
426
426
436
438
438
439
451
452
454
454
Figure 9-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable
Only theα-Increasing andα-at-1 Portion of the Waveform 240

Figure 9-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable
Only theα-Decreasing andα-at-0 Portion of the Waveform. 240

Figure 9-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to
Enable All Portions of the Waveform. 2

Figure 9-8 How anα-Increasing Waveform Changes with Various Values of
increasingAlphaRampDuration. .

Figure 13-1 Minimal Immediate-Mode Structure. .
Figure A-1 Math Object Hierarchy .
Figure B-1 A Generalized Triangle Strip .
Figure B-2 A Generalized Triangle Mesh .
Figure B-3 Encoding of the Six Sextants of Each Octant of a Sphere
Figure B-4 Bit Layout of Geometry Compression Commands
Figure C-1 Display Rigidly Attached to the Tracker Base .
Figure C-2 Display Rigidly Attached to the Head Tracker (Sensor).
Figure C-3 A Portion of a Scene Graph Containing a Single Screen3D Object
Figure C-4 A Single-Screen Display Environment .
Figure C-5 A Portion of a Scene Graph Containing Three Screen3D Objects
Figure C-6 A Three-Screen Display Environment .
Figure C-7 The Camera-based View Model .
Figure C-8 A Perspective Viewing Frustum .
Figure C-9 Perspective View Model Arguments. .
Figure C-10 Orthographic View Model .
Figure E-1 Signal to Only One Ear Is Direct .
Figure E-2 Signals to Both Ears Are Indirect .
Figure E-3 ConeSound with a Single Distance Gain Attenuation Array
Figure E-4 ConeSound with Two Distance Attenuation Arrays
Java 3D API Specification

n the
er’s
een

We
puter

lgo-
rmi-

efer-
.

 and
Preface

THIS document describes the Java 3D™ API and presents some details o
implementation of the API. This specification is not intended as a programm
guide. The programmer’s guide will be written after the specification has b
finalized.

This specification is written for 3D graphics application programmers.
assume that the reader has at least a rudimentary understanding of com
graphics. This includes familiarity with the essentials of computer graphics a
rithms as well as familiarity with basic graphics hardware and associated te
nology.

Related Documentation

This specification is intended to be used in conjunction with the Java 3D r
ence guide, an online, browser-accessible, javadoc-generated API reference

Style Conventions

The following style conventions are used in this specification:

• Lucida type is used to represent computer code and the names of files
directories.

• Bold Lucida type is used for Java 3D API declarations.

• Bold type is used to represent variables.

• Italic type is used for emphasis and for equations.

Programming Conventions

Java 3D uses the following programming conventions:
xvVersion 1.1 Alpha 01, February 27, 1998

PREFACE

xvi

 of
n of

mat-

The
tion,

 sug-
• The default coordinate system is right-handed, with +Y being up, +X
horizontal to the right, and +Z directed toward the viewer.

• All angles or rotational representations are in radians.

• All distances are expressed in units or fractions of meters.

Acknowledgments

We gratefully acknowledge Warren Dale for writing the Sound API portion
this specification, Daniel Petersen for writing the scene graph sharing portio
the specification, and Bruce Bartlett for his assistance with the editing, for
ting, and indexing of the specification.

We thank the Java 3D partners for their help in defining the Java 3D API.
Java 3D partner companies include Silicon Graphics, Inc., Intel Corpora
Apple Computer, Inc., and Sun Microsystems, Inc.

We also thank the many individuals and companies for their comments and
gestions on the successive drafts of this specification.

Henry Sowizral
Kevin Rushforth
Michael Deering
Sun Microsystems
November 1997
Java 3D API Specification

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 1
ing
high-
ting

 can
a 3D

f 3D
ng it
rnet
ess to

ech-
found
i-

scene
onsid-
sound

 per-
ations
ular,
 was
Introduction to Java 3D

THE Java 3D API is an application programming interface used for writ
three-dimensional graphics applications and applets. It gives developers
level constructs for creating and manipulating 3D geometry and for construc
the structures used in rendering that geometry. Application developers
describe very large virtual worlds using these constructs, which provide Jav
with enough information to render these worlds efficiently.

Java 3D delivers Java’s “write once, run anywhere” benefit to developers o
graphics applications. Java 3D is part of the JavaMedia suite of APIs, maki
available on a wide range of platforms. It also integrates well with the Inte
because applications and applets written using the Java 3D API have acc
the entire set of Java classes.

The Java 3D API draws its ideas from existing graphics APIs and from new t
nologies. Java 3D’s low-level graphics constructs synthesize the best ideas
in low-level APIs such as Direct3D, OpenGL, QuickDraw3D, and XGL. Sim
larly, its higher-level constructs synthesize the best ideas found in several
graph–based systems. Java 3D introduces some concepts not commonly c
ered part of the graphics environment, such as 3D spatial sound. Java 3D’s
capabilities help to provide a more immersive experience for the user.

1.1 Goals

Java 3D was designed with several goals in mind. Chief among them is high
formance. Several design decisions were made so that Java 3D implement
can deliver the highest level of performance to application users. In partic
when trade-offs were made, the alternative that benefited runtime execution
chosen.

Other important Java 3D goals are to
1

1.2 Programming Paradigm INTRODUCTION TO JAVA 3D

2

ered
 could

bles

date
ter-

ics
ructure
re-

exible
tains a
 the
d to
raph
ming

y of
a 3D

trian-
e ren-

ined
ering
opti-
ake
d and
• Provide a rich set of features for creating interesting 3D worlds, temp
by the need to avoid nonessential or obscure features. Features that
be layered on top of Java 3D were not included.

• Provide a high-level object-oriented programming paradigm that ena
developers to deploy sophisticated applications and applets rapidly.

• Provide support for runtime loaders. This allows Java 3D to accommo
a wide variety of file formats, such as vendor-specific CAD formats, in
change formats, VRML 1.0, and VRML 2.0.

1.2 Programming Paradigm

Java 3D is an object-oriented API. Applications construct individual graph
elements as separate objects and connect them together into a treelike st
called ascene graph. The application manipulates these objects using their p
defined accessor, mutator, and node-linking methods.

1.2.1 The Scene Graph Programming Model

Java 3D’s scene graph–based programming model provides a simple and fl
mechanism for representing and rendering scenes. The scene graph con
complete description of the entire scene, or virtual universe. This includes
geometric data, the attribute information, and the viewing information neede
render the scene from a particular point of view. Chapter 2, “Scene G
Basics,” provides more information on the Java 3D scene graph program
model.

The Java 3D API improves on previous graphics APIs by eliminating man
the bookkeeping and programming chores that those APIs impose. Jav
allows the programmer to think about geometric objects rather than about
gles—about the scene and its composition rather than about how to write th
dering code for efficiently displaying the scene.

1.2.2 Rendering Modes

Java 3D includes three different rendering modes: immediate mode, reta
mode, and compiled-retained mode (see Chapter 12, “Execution and Rend
Model”). Each successive rendering mode allows Java 3D more freedom in
mizing an application’s execution. Most Java 3D applications will want to t
advantage of the convenience and performance benefits that the retaine
compiled-retained modes provide.
Java 3D API Specification

INTRODUCTION TO JAVA 3D Extensibility 1.2.3

raph
imme-
e a

h are
n can

pecify
scene
those

con-
hange
the
graphs
 bear
ow-

hest

ethods
lica-

ever,
se the
derer

er-
ructs
ion
(see
1.2.2.1 Immediate Mode

Immediate mode leaves little room for global optimization at the scene g
level. Even so, Java 3D has raised the level of abstraction and accelerates
diate mode rendering on a per-object basis. An application must provid
Java 3D draw method with a complete set of points, lines, or triangles, whic
then rendered by the high-speed Java 3D renderer. Of course, the applicatio
build these lists of points, lines, or triangles in any manner it chooses.

1.2.2.2 Retained Mode

Retained mode requires an application to construct a scene graph and s
which elements of that scene graph may change during rendering. The
graph describes the objects in the virtual universe, the arrangement of
objects, and how the application animates those objects.

1.2.2.3 Compiled-Retained Mode

Compiled-retained mode, like retained mode, requires the application to
struct a scene graph and specify which elements of the scene graph may c
during rendering. Additionally, the application can compile some or all of
subgraphs that make up a complete scene graph. Java 3D compiles these
into an internal format. The compiled representation of the scene graph may
little resemblance to the original tree structure provided by the application, h
ever, it is functionally equivalent. Compiled-retained mode provides the hig
performance.

1.2.3 Extensibility

Most Java 3D classes expose only accessor and mutator methods. Those m
operate only on that object’s internal state, making it meaningless for an app
tion to override them. Therefore, Java 3D declares most methods as final.

Applications can extend Java 3D’s classes and add their own methods. How
they may not override Java 3D’s scene graph traversal semantics becau
nodes do not contain explicit traversal and draw methods. Java 3D’s ren
retains those semantics internally.

Java 3Ddoes provide hooks for mixing Java 3D–controlled scene graph rend
ing and user-controlled rendering using Java 3D’s immediate mode const
(see Section 13.1.2, “Mixed-Mode Rendering”). Alternatively, the applicat
can stop Java 3D’s renderer and do all its drawing in immediate mode
Section 13.1.1, “Pure Immediate-Mode Rendering”).
3Version 1.1 Alpha 01, February 27, 1998

1.3 High Performance INTRODUCTION TO JAVA 3D

4

e its
in ref-
time.
el.

asks,
 forth,
ing
eate
D’s

, also
 the
llow-
PIs.

ren-
ring
der-

time
eom-

ctors
e vis-
f the
tici-
and
l be
y these

 plat-
 end,
cial-
Behaviors require applications to extend the Behavior object and to overrid
methods with user-written Java code. These extended objects should conta
erences to those scene graph objects that they will manipulate at run
Chapter 9, “Behaviors and Interpolators,” describes Java 3D’s behavior mod

1.3 High Performance

Java 3D’s programming model allows the Java 3D API to do the mundane t
such as scene graph traversal, managing attribute state changes, and so
thereby simplifying the application’s job. Java 3D does this without sacrific
performance. At first glance, it might appear that this approach would cr
more work for the API, however, it actually has the opposite effect. Java 3
higher level of abstraction not only changes the amount but, more important
the kind of work the API must perform. Java 3D does not need to impose
same type of constraints as do APIs with a lower level of abstraction, thus a
ing Java 3D to introduce optimizations not possible with these lower-level A

Additionally, leaving the details of rendering to Java 3D allows it to tune the
dering to the underlying hardware. For example, relaxing the strict rende
order imposed by other APIs allows parallel traversal as well as parallel ren
ing. Knowing which portions of the scene graph cannot be modified at run
allows Java 3D to flatten the tree, pretransform geometry, or represent the g
etry in a native hardware format without the need to keep the original data.

1.3.1 Layered Implementation

Besides optimizations at the scene graph level, one of the more important fa
that determines the performance of Java 3D is the time it takes to render th
ible geometry. Java 3D implementations are layered to take advantage o
native, low-level API that is available on a given system. In particular, we an
pate that Java 3D implementations that use Direct3D, OpenGL,
QuickDraw3D will become available. This means that Java 3D rendering wil
accelerated across the same wide range of systems that are supported b
lower-level APIs.

1.3.2 Target Hardware Platforms

Java 3D is aimed at a wide range of 3D-capable hardware and software
forms, from low-cost PC game cards and software renderers at the low
through midrange workstations, all the way up to very high-performance spe
ized 3D image generators.
Java 3D API Specification

INTRODUCTION TO JAVA 3D Games 1.4.2

 most
range
eed

orms
pport
go.

stead

ation
eling
export
t geo-
and

the
s con-

in 3D
 the
. In
 3D

 last
will-
rfor-
ogram
nd in
Java 3D implementations are expected to provide useful rendering rates on
modern PCs, especially those with 3D graphics accelerator cards. On mid
workstations, Java 3D is expected to provide applications with nearly full-sp
hardware performance.

Finally, Java 3D is designed to scale as the underlying hardware platf
increase in speed over time. Tomorrow’s 3D PC game accelerators will su
more complex virtual worlds than high-priced workstations of a few years a
Java 3D is prepared to meet this increase in hardware performance.

1.4 Support for Building Applications and Applets

Java 3D neither anticipates nor directly supports every possible 3D need. In
it provides support for adding those features through Java code.

Objects defined using a computer-aided design (CAD) system or an anim
system may be included in a Java 3D-based application. Most such mod
packages have an external format (sometimes proprietary). Designers can
geometry designed using an external modeler to a file. Java 3D can use tha
metric information, but only if an application provides a means for reading
translating the modeler’s file format into Java 3D primitives.

Similarly, VRML loaders will parse and translate VRML files and generate
appropriate Java 3D objects and Java code necessary to support the file’
tents. For more information, see Appendix F, “VRML Support.”

1.4.1 Browsers

Today’s Internet browsers support 3D content by passing such data to plug-
viewers that render into their own window. It is anticipated that, over time,
display of 3D content will become integrated into the main browser display
fact, some of today’s 3D browsers display 2D content as 2D objects within a
world.

1.4.2 Games

Developers of 3D game software have typically attempted to wring out every
ounce of performance from the hardware. Historically they have been quite
ing to use hardware-specific, nonportable optimizations to get the best pe
mance possible. As such, in the past, game developers have tended to pr
below the level of easy-to-use software such as Java 3D. However, the tre
5Version 1.1 Alpha 01, February 27, 1998

1.5 Overview of Java 3D Object Hierarchy INTRODUCTION TO JAVA 3D

6

and to

per’s
ould

. One
have
tech-
elop-

ulate a
verall
ail for
3D games today is to leverage general-purpose 3D hardware accelerators
use fewer “tricks” in rendering.

So, while Java 3D was not explicitly designed to match the game develo
every expectation, Java 3D’s sophisticated implementation techniques sh
provide more than enough performance to support many game applications
might argue that applications written using a general API like Java 3D may
a slight performance penalty over those employing special, nonportable
niques. However, other factors such as portability, time to market, and dev
ment cost must be weighed against absolute peak performance.

1.5 Overview of Java 3D Object Hierarchy

Java 3D defines several basic classes that are used to construct and manip
scene graph and to control viewing and rendering. Figure 1-1 shows the o
object hierarchy used by Java 3D. Subsequent chapters provide more det
specific portions of the hierarchy.

Figure 1-1 Java 3D Object Hierarchy

javax.media.j3d
VirtualUniverse
Locale
View
PhysicalBody
PhysicalEnvironment
Screen3D
Canvas3D (extends awt.Canvas)
SceneGraphObject

Node
Group
Leaf

NodeComponent
Various component objects

Transform3D

javax.vecmath
Matrix classes
Tuple classes
Java 3D API Specification

INTRODUCTION TO JAVA 3D Java 3D Application Scene Graph1.6.1

tion.
object

verse
h is a
rstruc-

ation
 just
 All
ayed.

nes
rtual
1.6 Structuring the Java 3D Program

This section illustrates how a developer might structure a Java 3D applica
The simple application in this example creates a scene graph that draws an
in the middle of a window and rotates the object about its center point.

1.6.1 Java 3D Application Scene Graph

The scene graph for the sample application is shown in Figure 1-2.

Figure 1-2 Application Scene Graph

The scene graph consists of superstructure components—a VirtualUni
object and a Locale object—and a set of branch graphs. Each branch grap
subgraph that is rooted by a BranchGroup node that is attached to the supe
ture. For more information, see Chapter 2, “Scene Graph Basics.”

A VirtualUniverse object defines a named universe. Java 3D permits the cre
of more than one universe, though the vast majority of applications will use
one. The VirtualUniverse object provides a grounding for scene graphs.
Java 3D scene graphs must connect to a VirtualUniverse object to be displ
For more information, see Chapter 3, “Scene Graph Superstructure.”

Below the VirtualUniverse object is a Locale object. The Locale object defi
the origin, in high-resolution coordinates, of its attached branch graphs. A vi

BG

VirtualUniverse Object

Locale Object

BranchGroup Nodes

BBehavior Node TT TransformGroup Nodes

S
Shape3D Node

Appearance Geometry

ViewPlatform Object

VP
User Code
 and Data

BG

View

Other Objects
7Version 1.1 Alpha 01, February 27, 1998

1.6.2 Recipe for a Java 3D Program INTRODUCTION TO JAVA 3D

8

single

n 4.2,
led a
 to

odes.
s of a
e for
y.

 that
geo-

efers
. The
n our
eome-

roup
ition
ns-
ni-

 the
 the
tain
creen

graph
h and
universe may contain as many Locales as needed. In this example, a
Locale object is defined with its origin at (0.0, 0.0, 0.0).

The scene graph itself starts with the BranchGroup nodes (see Sectio
“BranchGroup Node”). A BranchGroup serves as the root of a subgraph, cal
branch graph, of the scene graph. Only BranchGroup objects can attach
Locale objects.

In this example there are two branch graphs and, thus, two BranchGroup n
Attached to the left BranchGroup are two subgraphs. One subgraph consist
user-extended Behavior leaf node. The Behavior node contains Java cod
manipulating the transformation matrix associated with the object’s geometr

The other subgraph in this BranchGroup consists of a TransformGroup node
specifies the position (relative to the Locale), orientation, and scale of the
metric objects in the virtual universe. A single child, a Shape3D leaf node, r
to two component objects: a Geometry object and an Appearance object
Geometry object describes the geometric shape of a 3D object (a cube i
simple example). The Appearance object describes the appearance of the g
try (color, texture, material reflection characteristics, and so forth).

The right BranchGroup has a single subgraph that consists of a TransformG
node and a ViewPlatform leaf node. The TransformGroup specifies the pos
(relative to the Locale), orientation, and scale of the ViewPlatform. This tra
formed ViewPlatform object defines the end user’s view within the virtual u
verse.

Finally, the ViewPlatform is referenced by a View object that specifies all of
parameters needed to render the scene from the point of view of
ViewPlatform. Also referenced by the View object are other objects that con
information, such as the drawing canvas into which Java 3D renders, the s
that contains the canvas, and information about the physical environment.

1.6.2 Recipe for a Java 3D Program

The following steps are taken by the example program to create the scene
elements and link them together. Java 3D will then render the scene grap
display the graphics in a window on the screen:

1. Create a Canvas3D object and add it to the Applet panel.

2. Create a BranchGroup as the root of the scene branch graph.

3. Construct a Shape3D node with a TransformGroup node above it.

4. Attach a RotationInterpolator behavior to the TransformGroup.
Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Program1.6.3

see

lat-

ph.

 con-

e at a

cludes
ph to
5. Call the universe builder utility function to do the following:

a. Establish a virtual universe with a single high-resolution Locale (
Chapter 2, “Scene Graph Basics”).

b. Create the PhysicalBody, PhysicalEnvironment, View, and ViewP
form objects.

c. Create a BranchGroup as the root of the view platform branch gra

d. Insert the view platform branch graph into the Locale.

6. Insert the scene branch graph into the universe builder’s Locale.

The Java 3D renderer then starts running in an infinite loop. The renderer
ceptually performs the following operations:

while(true) {
Process input
If (request to exit) break
Perform Behaviors
Traverse the scene graph and render visible objects

}
Cleanup and exit

1.6.3 HelloUniverse: A Sample Java 3D Program

Here are code fragments from a simple program,HelloUniverse.java, that cre-
ates a cube and a RotationInterpolator behavior object that rotates the cub
constant rate ofπ/2 radians per second.

1.6.3.1 HelloUniverse Class

The HelloUniverse class, on the next page, creates the branch graph that in
the cube and the RotationInterpolator behavior. It then adds this branch gra
the Locale object generated by the UniverseBuilder utility.
9Version 1.1 Alpha 01, February 27, 1998

1.6.3 HelloUniverse: A Sample Java 3D Program INTRODUCTION TO JAVA 3D

10
public class HelloUniverse extends Applet {
public BranchGroup createSceneGraph() {

// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();

// Create the TransformGroup node and initialize it to the
// identity. Enable the TRANSFORM_WRITE capability so that
// our behavior code can modify it at run time. Add it to
// the root of the subgraph.
TransformGroup objTrans = new TransformGroup();
objTrans.setCapability(

TransformGroup.ALLOW_TRANSFORM_WRITE);
objRoot.addChild(objTrans);
// Create a simple Shape3D node; add it to the scene graph.
objTrans.addChild(new ColorCube().getShape());

// Create a new Behavior object that will perform the
// desired operation on the specified transform and add
// it into the scene graph.
Transform3D yAxis = new Transform3D();
Alpha rotationAlpha = new Alpha(

-1, Alpha.INCREASING_ENABLE,
0, 0, 4000, 0, 0, 0, 0, 0);

RotationInterpolator rotator = new RotationInterpolator(
rotationAlpha, objTrans, yAxis,
0.0f, (float) Math.PI*2.0f);

BoundingSphere bounds =
new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

rotator.setSchedulingBounds(bounds);
objTrans.addChild(rotator);

return objRoot;
}

public HelloUniverse() {
setLayout(new BorderLayout());
Canvas3D c = new Canvas3D(graphicsConfig);
add("Center", c);
// Create a simple scene and attach it to the virtual
// universe
BranchGroup scene = createSceneGraph();
UniverseBuilder u = new UniverseBuilder(c);
u.addBranchGraph(scene);

}
}

Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Program1.6.3

erse,
. The
that
1.6.3.2 UniverseBuilder Class

The UniverseBuilder class establishes and initializes Java 3D’s virtual univ
Locale, and viewing objects, and constructs the view platform branch graph
example code shown below is a simplified version of the UniverseBuilder
will be supplied as part of the Java 3D utility package.

public class UniverseBuilder extends Object {
// User-specified canvas
Canvas3D canvas;

// Scene graph elements to which the user may want access
VirtualUniverse universe;
Locale locale;
TransformGroup vpTrans;
View view;

public UniverseBuilder(Canvas3D c) {
this.canvas = c;

// Establish a virtual universe that has a single
// hi-res Locale
universe = new VirtualUniverse();
locale = new Locale(universe);

// Create a PhysicalBody and PhysicalEnvironment object
PhysicalBody body = new PhysicalBody();
PhysicalEnvironment environment =

new PhysicalEnvironment();

// Create a View and attach the Canvas3D and the physical
// body and environment to the view.
view = new View();
view.addCanvas3D(c);
view.setPhysicalBody(body);
view.setPhysicalEnvironment(environment);

// Create a BranchGroup node for the view platform
BranchGroup vpRoot = new BranchGroup();

// Create a ViewPlatform object, and its associated
// TransformGroup object, and attach it to the root of the
// subgraph. Attach the view to the view platform.
Transform3D t = new Transform3D();
t.set(new Vector3f(0.0f, 0.0f, 2.0f));
ViewPlatform vp = new ViewPlatform();
vpTrans = new TransformGroup(t);
11Version 1.1 Alpha 01, February 27, 1998

1.6.3 HelloUniverse: A Sample Java 3D Program INTRODUCTION TO JAVA 3D

12

 for an
vpTrans.addChild(vp);
vpRoot.addChild(vpTrans);

view.attachViewPlatform(vp);

// Attach the branch graph to the universe, via the
// Locale. The scene graph is now live!
locale.addBranchGraph(vpRoot);

}

public void addBranchGraph(BranchGroup bg) {
locale.addBranchGraph(bg);

}
}

1.6.3.3 ColorCube Class

The ColorCube Class creates a Shape3D node that contains the geometry
unlit, colored cube.

public class ColorCube extends Object {
private static final float[] verts = {
// front face

 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f,

// back face
-1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f,
 1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f,

// right face
 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f,
 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f,

// left face
-1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f,

// top face
 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f,
-1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f,

// bottom face
-1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f,
 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f,

};
private static final float[] colors = {
// front face (red)

1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,

// back face (green)
0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Program1.6.3
0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
// right face (blue)

0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,

// left face (yellow)
1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f,

// top face (magenta)
1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,

// bottom face (cyan)
0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,

};

private Shape3D shape;

public ColorCube() {
QuadArray cube = new QuadArray(24,

QuadArray.COORDINATES | QuadArray.COLOR_3);

cube.setCoordinates(0, verts);
cube.setColors(0, colors);

shape = new Shape3D(cube, new Appearance());
}

public Shape3D getShape() {
return shape;

}
}

13Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 2

s

em to a
 rep-
hs in
scene

f node
roup

 The
rtions
f node
nds,

ics of

. The
ncur-
jects.
rticular

n the
group
tains
Scene Graph Basic

A scene graph consists of Java 3D objects, callednodes, arranged in a tree
structure. The user creates one or more scene subgraphs and attaches th
virtual universe. The individual connections between Java 3D nodes always
resent a directed relationship: parent to child. Java 3D restricts scene grap
one major way: Scene graphs may not contain cycles. Thus, a Java 3D
graph is a directed acyclic graph (DAG). See Figure 2-1.

Java 3D refines the Node object class into two subclasses: Group and Lea
objects. Group node objects group together one or more child nodes. A g
node can point to zero or more children but can have only one parent.
SharedGroup node cannot have any parents (although it allows sharing po
of a scene graph, as described in Chapter 6, “Reusing Scene Graphs”). Lea
objects contain the actual definitions of shapes (geometry), lights, fog, sou
and so forth. A leaf node has no children and only one parent. The semant
the various group and leaf nodes are described in subsequent chapters.

2.1 Scene Graph Structure

A scene graph organizes and controls the rendering of its constituent objects
Java 3D renderer draws a scene graph in a consistent way that allows for co
rence. The Java 3D renderer can draw one object independently of other ob
Java 3D can allow such independence because its scene graphs have a pa
form and cannot share state among branches of a tree.

2.1.1 Spatial Separation

The hierarchy of the scene graph encourages a natural spatial grouping o
geometric objects found at the leaves of the graph. Internal nodes act to
their children together. A group node also defines a spatial bound that con
15

2.1.2 State Inheritance SCENE GRAPH BASICS

16

cient
ion,

scene
linear
averse
h from
ral-
lights

 APIs
of a
l nodes
all the geometry defined by its descendants. Spatial grouping allows for effi
implementation of operations such as proximity detection, collision detect
view frustum culling, and occlusion culling.

Figure 2-1 A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph)

2.1.2 State Inheritance

A leaf node’s state is defined by the nodes in a direct path between the
graph’s root and the leaf. Because a leaf’s graphics context only relies on a
path between the root and that node, the Java 3D renderer can decide to tr
the scene graph in whatever order it wishes. It can traverse the scene grap
left to right and top to bottom, in level order from right to left, or even in pa
lel. The only exceptions to this rule are spatially bounded attributes such as
and fog.

This characteristic is in marked contrast to many older scene graph–based
(including PHIGS and SGI’s Inventor), where if a node above or to the left
node changes the graphics state, the change affects the graphics state of al
below it or to its right.

BG BG BG

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Leaf Nodes
Java 3D API Specification

SCENE GRAPH BASICS Scene Graph Objects 2.2

 that
roup

t.

onstit-
node
rmits

terial

 direct
ject.

des.

 con-
objects
are
t class
d com-

esired

objects
—via

tire
2,

y be
xplic-
a
cene
en-
ertain
its
-

The most common node object, along the path from the root to the leaf,
changes the graphics state is the TransformGroup object. The TransformG
object can change the position, orientation, and scale of the objects below i

Most graphics state attributes are set by a Shape3D leaf node through its c
uent Appearance object, thus allowing parallel rendering. The Shape3D
also has a constituent Geometry object that specifies its geometry—this pe
different shape objects to share common geometry without sharing ma
attributes (or vice versa).

2.1.3 Rendering

The Java 3D renderer incorporates all graphics state changes made in a
path from a scene graph root to a leaf object in the drawing of that leaf ob
Java 3D provides this semantic for both retained and compiled-retained mo

2.2 Scene Graph Objects

A Java 3D scene graph consists of a collection of Java 3D node objects
nected in a tree structure. These node objects reference other scene graph
callednode component objects. All scene graph node and component objects
subclasses of a common SceneGraphObject class. The SceneGraphObjec
is an abstract class that defines methods that are common among nodes an
ponent objects.

Scene graph objects are constructed by creating a new instance of the d
class and are accessed and manipulated using the object’sset andget methods.
Once a scene graph object is created and connected to other scene graph
to form a subgraph, the entire subgraph can be attached to a virtual universe
a high-resolution Locale object—making the objectlive (see Section 3.6.2,
“Locale Object”). Prior to attaching a subgraph to a virtual universe, the en
subgraph can becompiled into an optimized, internal format (see Section 4.
“BranchGroup Node”).

An important characteristic of all scene graph objects is that they can onl
accessed or modified during the creation of a scene graph, except where e
itly allowed. Access to mostset andget methods of objects that are part of
live or compiled scene graph is restricted. Such restrictions provide the s
graph compiler with usage information it can use in optimally compiling or r
dering a scene graph. Each object has a set of capability bits that enable c
functionality when the object is live or compiled. By default, all capability b
are disabled (cleared). Only thoseset andget methods corresponding to capa
17Version 1.1 Alpha 01, February 27, 1998

2.2 Scene Graph Objects SCENE GRAPH BASICS

18

 or
 are

scene
d by
 that
d to a

 mod-
abil-
very

xam-

t or

scene
ay be
bility bits that are explicitly enabled (set) prior to the object being compiled
made live are legal. The methods for setting and getting capability bits
described next.

Constructors

The SceneGraphObject specifies one constructor.

public SceneGraphObject()

Constructs a new SceneGraphObject.

Methods

The following methods are available on all scene graph objects.

public final boolean isCompiled()
public final boolean isLive()

The first method returns a flag that indicates whether the node is part of a
graph that has been compiled. If so, only those capabilities explicitly allowe
the object’s capability bits are allowed. The second method returns a flag
indicates whether the node is part of a scene graph that has been attache
virtual universe via a high-resolution Locale object.

public final boolean getCapability(int bit)
public final void setCapability(int bit)
public final void clearCapability(int bit)

These three methods provide applications with the means for accessing and
ifying the capability bits of a scene graph object. The bit positions of the cap
ity bits are defined as public static final constants on a per-object basis. E
instance of every scene graph object has its own set of capability bits. An e
ple of a capability bit is theALLOW_BOUNDS_WRITE bit in node objects. Only those
methods corresponding to capabilities that are enabledbefore the object is first
compiled or made live are subsequently allowed for that object. ARestricte-

dAccessException is thrown if an application callssetCapability or clearCa-
pability on live or compiled objects. Note that only a single bit may be se
cleared per method invocation—bits maynot be ORed together.

public void setUserData(Object userData)
public Object getUserData()

These methods access or modify the userData field associated with this
graph object. The userData field is a reference to an arbitrary object and m
Java 3D API Specification

SCENE GRAPH BASICS Node Objects2.2.1

t—it is
pied

odes
ode’s
ering;
 are
ode

apa-
e or

l

th

l

ble

hod(s)
used to store any user-specific data associated with this scene graph objec
not used by the Java 3D API. If this object is cloned, the userData field is co
to the newly cloned object.

2.2.1 Node Objects

Node objects divide into group node objects and leaf node objects. Group n
serve to group their child node objects together according to the group n
semantics. Leaf nodes specify the actual elements that Java 3D uses in rend
specifically, geometric objects, lights, and sounds. These node objects
described in Chapter 4, “Group Node Objects” and Chapter 5, “Leaf N
Objects.”

Constants

Node object constants allow an application to individually enable runtime c
bilities. These capability bits are enforced only when the node is part of a liv
compiled scene graph.

public static final int ALLOW_PICK

This is a deprecated method. UsesetPickable(boolean) instead.

public static final int ALLOW_BOUNDS_READ
public static final int ALLOW_BOUNDS_WRITE

These bits, when set using thesetCapability method, specify that the node wil
permit an application to invoke thegetBounds andsetBounds methods, respec-
tively. An application can choose to enable a particularset method but not the
associatedget method, or vice versa. The application can choose to enable bo
methods or, by default, leave the method(s) disabled.

public static final int ALLOW_AUTO_COMPUTE_BOUNDS_READ
public static final int ALLOW_AUTO_COMPUTE_BOUNDS_WRITE

These bits, when set using thesetCapability method, specify that the node wil
permit an application to invoke thegetBoundsAutoCompute and set-

BoundsAutoCompute methods, respectively. An application can choose to ena
a particularset method but not the associatedget method, or vice versa. The
application can choose to enable both methods or, by default, leave the met
disabled.
19Version 1.1 Alpha 01, February 27, 1998

2.2.1 Node Objects SCENE GRAPH BASICS

20

. By

aph-
s; it
des
set to

bility

s-to-

 pro-
rame-
s.

ilities
public static final int ENABLE_PICK_REPORTING

This flag specifies that this node will be reported in a SceneGraphPath
default, this is disabled.

public static final int ALLOW_PICKABLE_READ
public static final int ALLOW_PICKABLE_WRITE

These flags specify that this Node can have its pickability read or changed.

public static final int ENABLE_COLLISION_REPORTING

This flag specifies that this Node will be reported in the collision SceneGr
Path if a collision occurs. This capability is only specifiable for Group node
is ignored for Leaf nodes. The default for Group nodes is false. All interior no
not needed for uniqueness in a SceneGraphPath that don’t have this flag
true will not be reported in the SceneGraphPath.

public static final int ALLOW_COLLIDABLE_READ
public static final int ALLOW_COLLIDABLE_WRITE

These flags specify that this Node allows read or write access to its collida
state.

public static final int ALLOW_LOCAL_TO_VWORLD_READ

This flag specifies that this node allows read access to its local-coordinate
virtual-world-(Vworld)-coordinates transform.

Constructors

The Node object specifies the following constructor.

public Node()

This constructor constructs and initializes a Node object. The Node class
vides an abstract class for all group and leaf nodes. It provides a common f
work for constructing a Java 3D scene graph, specifically, bounding volume

Methods

The following methods are available on Node objects, subject to the capab
that are enabled for live or compiled nodes.
Java 3D API Specification

SCENE GRAPH BASICS Node Objects2.2.1

d
of a

rans-
ent.

nd
es-
ene
sec-

xcep-
the
p-

eomet-
ead-

n be
k-

dable
ode,
public final Node getParent()

Retrieves the parent of this node, ornull if this node has no parent. This metho
is only valid during the construction of the scene graph. If this object is part
live or compiled scene graph, aRestrictedAccessException will be thrown.

public final Bounds getBounds()
public final void setBounds(Bounds bounds)

These methods access or modify this node’s geometric bounds.

public final void getLocalToVworld(Transform3D t)
public final void getLocalToVworld(SceneGraphPath path,

Transform3D t)

These methods access the local-coordinates-to-virtual-world-coordinates t
form for this node and place the result into the specified Transform3D argum
The first form is used for nodes that arenot part of a shared subgraph, the seco
form is used for nodes thatare part of a shared subgraph. The local-coordinat
to-Vworld-coordinates transform is the composite of all transforms in the sc
graph from the root down to this node (via the specified Link nodes, in the
ond case). It is only valid for nodes that are part of a live scene graph. An e
tion will be thrown if the node is not part of a live scene graph or if
appropriate capability is not set. Additionally, the first form will throw an exce
tion if the node is part of a shared subgraph.

public final void setBoundsAutoCompute(boolean autoCompute)
public final boolean getBoundsAutoCompute()

These methods set and get the value that determines whether the node’s g
ric bounds are computed automatically, in which case the bounds will be r
only, or are set manually, in which case the value specified bysetBounds will be
used. The default is automatic.

public void setPickable(boolean pickable)
public boolean getPickable()

These methods set and retrieve the flag indicating whether this node ca
picked. A setting offalse means that this node and its children are all unpic
able.

public void setCollidable(boolean collidable)
public boolean getCollidable()

The set method sets the collidable value. The get method returns the colli
value. This value determines whether this node and its children, if a group n
21Version 1.1 Alpha 01, February 27, 1998

2.2.1 Node Objects SCENE GRAPH BASICS

22

node
alue
sion

, the
r

rence
idden

nodes

 made

ss
can be considered for collision purposes. If the value is false, neither this
nor any children nodes will be traversed for collision purposes. The default v
is true. The collidable setting is the way that an application can perform colli
culling.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclon-

eTree to duplicate the current node.cloneNode should be overridden by any
user-subclassed objects. All subclasses must have theircloneNode method con-
sist of the following lines:

public Node cloneNode(boolean forceDuplicate) {
UserSubClass usc = new UserSubClass();
usc.duplicateNode(this, forceDuplicate);
return usc;

}

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refe
to the current node should be placed in the new node. This flag can be overr
by setting theforceDuplicate parameter in thecloneTree method totrue.

public Node cloneTree()
public Node cloneTree(boolean forceDuplicate)
public Node cloneTree(boolean forceDuplicate,

boolean allowDanglingReference)

These methods duplicate all the nodes of the specified subgraph. Group
are duplicated via a call tocloneNode, and thencloneTree is called for each
child node. For leaf nodes, component data can either be duplicated or be
a reference to the original data. Leaf nodecloneTree behavior is determined by
theduplicateOnCloneTree flag found in every leaf node’s component data cla
and by theforceDuplicate parameter. TheforceDuplicate parameter, when
set totrue, causes theduplicateOnCloneTree flag to be ignored. Theallow-
DanglingReferences flag, when set totrue, allows thecloneTree method to
Java 3D API Specification

SCENE GRAPH BASICS NodeComponent Objects2.2.2

ter is

ibutes
ed in

ode-

t ref-

hod is

nent
complete even when a dangling reference is discovered. When this parame
false, a DanglingReferenceException is generated as soon ascloneTree
detects this situation.

2.2.2 NodeComponent Objects

Node component objects include the actual geometry and appearance attr
used to render the geometry. These component objects are describ
Chapter 7, “Node Component Objects.”

Constructors

The NodeComponent object specifies the following constructor.

public NodeComponent()

This constructor constructs and initializes a NodeComponent object. The N
Component class provides an abstract class for all component objects.

Methods

The following methods are available on NodeComponent objects.

public void setDuplicateOnCloneTree(boolean duplicate)
public boolean getGetDuplicateOnCloneTree()

These methods access or modify theduplicateOnCloneTree value of the Node-
Component object. TheduplicateOnCloneTree value is used by thecloneTree
method to determine if NodeComponent objects should be duplicated or jus
erenced in the cloned leaf object.

public NodeComponent cloneNodeComponent()

This method creates a new instance of a NodeComponent object. This met
called by thecloneNode method to duplicate the current node. ThecloneNode-

Component should be overridden by any user-subclassed NodeCompo
objects. All subclasses must have theircloneNodeComponent method consist of
the following lines:

public NodeComponent cloneNodeComponent() {
UserNodeComponent unc = new UserNodeComponent();
unc.duplicateNodeComponent(this);
return unc;

}

23Version 1.1 Alpha 01, February 27, 1998

2.3 Scene Graph Superstructure Objects SCENE GRAPH BASICS

24

 and
 the

Scene

llec-
 will
tions
ithin
on.

scene
ation

) to
raph

irtual
er of

of the
g or
 sub-
public void duplicateNodeComponent(NodeComponent
originalNodeComponent)

This method copies all node information fromoriginalNodeComponent into the
current node. This method is called from thecloneNodeComponent method,
which is in turn called by thecloneNode method.

2.3 Scene Graph Superstructure Objects

Java 3D defines two scene graph superstructure objects, VirtualUniverse
Locale, which are used to contain collections of subgraphs that comprise
scene graph. These objects are described in more detail in Chapter 3, “
Graph Superstructure.”

2.3.1 VirtualUniverse Object

A VirtualUniverse object consists of a list of Locale objects that contain a co
tion of scene graph nodes that exist in the universe. Typically, an application
need only one VirtualUniverse, even for very large virtual databases. Opera
on a VirtualUniverse include enumerating the Locale objects contained w
the universe. See Section 3.6.1, “VirtualUniverse Object,” for more informati

2.3.2 Locale Object

The Locale object acts as a container for a collection of subgraphs of the
graph that are rooted by a BranchGroup node. A Locale also defines a loc
within the virtual universe using high-resolution coordinates (HiResCoord
specify its position. The HiResCoord serves as the origin for all scene g
objects contained within the Locale.

A Locale has no parent in the scene graph, but is implicitly attached to a v
universe when it is constructed. A Locale may reference an arbitrary numb
BranchGroup nodes, but has no explicit children.

The coordinates of all scene graph objects are relative to the HiResCoord
Locale in which they are contained. Operations on a Locale include settin
getting the HiResCoord of the Locale, adding a subgraph, and removing a
graph (see Section 3.6.2, “Locale Object,” for more information).
Java 3D API Specification

SCENE GRAPH BASICS View Object2.4.3

scene
s into
ody,
iew

e win-
en a
rs the
same

 phys-
en in

ation

raph.
g the

s of
in
cts
tive
2.4 Scene Graph Viewing Objects

Java 3D defines five scene graph viewing objects that are not part of the
graph per se but serve to define the viewing parameters and to provide hook
the physical world. These objects are Canvas3D, Screen3D, View, PhysicalB
and PhysicalEnvironment. They are described in more detail in Chapter 8, “V
Model,” and Appendix C, “View Model Details.”

2.4.1 Canvas3D Object

The Canvas3D object encapsulates all of the parameters associated with th
dow being rendered into (see Section 8.9, “The Canvas3D Object”). Wh
Canvas3D object is attached to a View object, the Java 3D traverser rende
specified view onto the canvas. Multiple Canvas3D objects can point to the
View object.

2.4.2 Screen3D Object

The Screen3D object encapsulates all of the parameters associated with the
ical screen containing the canvas, such as the width and height of the scre
pixels, the physical dimensions of the screen, and various physical calibr
values (see Section 8.8, “The Screen3D Object”).

2.4.3 View Object

The View object specifies information needed to render the scene g
Figure 2-2 shows a View object attached to a simple scene graph for viewin
scene.

The View object is the central Java 3D object for coordinating all aspect
viewing (see Section 8.7, “The View Object”). All viewing parameters
Java 3D are either directly contained within the View object or within obje
pointed to by a View object. Java 3D supports multiple simultaneously ac
View objects, each of which can render to one or more canvases.
25Version 1.1 Alpha 01, February 27, 1998

2.4.4 PhysicalBody Object SCENE GRAPH BASICS

26

th the
forth.

ciated
ker
ment
Figure 2-2 Viewing a Scene Graph

2.4.4 PhysicalBody Object

The PhysicalBody object encapsulates all of the parameters associated wi
physical body, such as head position, right and left eye position, and so
(see Section 8.10, “The PhysicalBody Object”).

2.4.5 PhysicalEnvironment Object

The PhysicalEnvironment object encapsulates all of the parameters asso
with the physical environment, such as calibration information for the trac
base for the head or hand tracker (see Section 8.11, “The PhysicalEnviron
Object”).

BG

VP
View

Platform

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment
Java 3D API Specification

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 3

re

ach
The
cene

e
nit of
al uni-
ed, in

more
rtual
tual

s that
-
using
e of

 level
one
ed to
only
rticu-
Scene Graph Superstructu

JAVA 3D’s superstructure consists of one or more VirtualUniverse objects, e
of which contains a set of one or more high-resolution Locale objects.
Locale objects, in turn, contain collections of subgraphs that comprise the s
graph (see Figure 3-1).

3.1 The Virtual Universe

Java 3D defines the concept of avirtual universe as a three-dimensional spac
with an associated set of objects. Virtual universes serve as the largest u
aggregate representation, and can also be thought of as databases. Virtu
verses can be very large, both in physical space units and in content. Inde
most cases a single virtual universe will serve an application’s entire needs.

Virtual universes are separate entities in that no node object may exist in
than one virtual universe at any one time. Likewise, the objects in one vi
universe are not visible in, nor do they interact with objects in, any other vir
universe.

To support large virtual universes, Java 3D introduces the concept of Locale
havehigh-resolution coordinates as an origin. Think of high-resolution coordi
nates as “tie-downs” that precisely anchor the locations of objects specified
less precise floating-point coordinates that are within the range of influenc
the high-resolution coordinates.

A Locale, with its associated high-resolution coordinates, serves as the next
of representation down from a virtual universe. All virtual universes contain
or more high-resolution-coordinate Locales, and all other objects are attach
a Locale. High-resolution coordinates act as an upper-level translation-
transform node. For example, the coordinates of all objects attached to a pa
27

3.2 Establishing a Scene SCENE GRAPH SUPERSTRUCTURE

28

rdi-

t of
better
inate

va 3D
 and
, start-
ject,
nces

m”).
irtu-

ar on
lar Locale are all relative to the location of that Locale’s high-resolution coo
nates.

Figure 3-1 The Virtual Universe

While a virtual universe is similar to the traditional computer graphics concep
a scene graph, a given virtual universe can become so large that it is often
to think of a scene graph as the descendent of a high-resolution-coord
Locale.

3.2 Establishing a Scene

To construct a three-dimensional scene, the programmer must execute a Ja
program. The Java 3D application must first create a VirtualUniverse object
attach at least one Locale to it. Then the desired scene graph is constructed
ing with a BranchGroup node and including at least one ViewPlatform ob
and is attached to the Locale. Finally, a View object is constructed that refere
the ViewPlatform object (see Section 1.6, “Structuring the Java 3D Progra
As soon as a scene graph containing a ViewPlatform is attached to the V
alUniverse, Java 3D’s rendering loop is engaged, and the scene will appe
the drawing canvas(es) associated with the View object.

BG BG BG

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Leaf Nodes

Group Nodes
Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Java 3D High-resolution Coordinates3.5.1

at.
rtual
 pro-

to or

ation
the

ed-
esent
 uni-
rigin
ints

more

near

-res-
ents

bers,
fined
verse
jects
how
ge of
3.3 Loading a Virtual Universe

Java 3D is a runtime application programming interface (API), not a file form
As an API, Java 3D provides no direct mechanism for loading or storing a vi
universe. Constructing a scene graph involves the execution of a Java 3D
gram. However, loaders to convert a number of standard 3D file formats
from Java 3D virtual universes are expected to be generally available.

3.4 Coordinate Systems

By default, Java 3D coordinate systems are right-handed, with the orient
semantics being that +Y is the local gravitational up, +X is horizontal to
right, and +Z is directly toward the viewer. The default units are meters.

3.5 High-resolution Coordinates

Double-precision floating-point, single-precision floating-point, or even fix
point representations of three-dimensional coordinates are sufficient to repr
and display rich 3D scenes. Unfortunately, scenes are not worlds, let alone
verses. If one ventures even a hundred miles away from the (0.0, 0.0, 0.0) o
using only single-precision floating-point coordinates, representable po
become quite quantized, to at very best a third of an inch (and much
coarsely than that in practice).

To “shrink” down to a small size (say the size of an IC transistor), even very
(0.0, 0.0, 0.0), the same problem arises.

If a large contiguous virtual universe is to be supported, some form of higher
olution addressing is required. Thus the choice of 256-bit positional compon
for “high-resolution” positions.

3.5.1 Java 3D High-resolution Coordinates

Java 3D high-resolution coordinates consist of three 256-bit fixed-point num
one each for x, y, and z. The fixed point is at bit 128, and the value 1.0 is de
to be exactly 1 meter. This coordinate system is sufficient to describe a uni
in excess of several hundred billion light years across, yet still define ob
smaller than a proton (down to below the planck length). Table 3-1 shows
many bits are needed above or below the fixed point to represent the ran
interesting physical dimensions.
29Version 1.1 Alpha 01, February 27, 1998

3.5.2 Java 3D Virtual World Coordinates SCENE GRAPH SUPERSTRUCTURE

30

ectly

ional
e. In
e can

hree
 this

fixed-
epre-
inates
 0 as
 the

ated
tion
A 256-bit fixed-point number also has the advantage of being able to dir
represent nearly any reasonable single-precision floating-point valueexactly.

High-resolution coordinates in Java 3D are only used to embed more tradit
floating point coordinate systems within a much higher-resolution substrat
this way a visually seamless virtual universe of any conceivable size or scal
be created, without worry about numerical accuracy.

3.5.2 Java 3D Virtual World Coordinates

Within a given virtual world coordinate system, positions are expressed by t
floating point numbers. The virtual world coordinate scale is in meters, but
can be affected by scale changes in the object hierarchy.

3.5.3 Details of High-resolution Coordinates

High-resolution coordinates are represented as signed, two’s-complement,
point numbers consisting of 256 bits. Although Java 3D keeps the internal r
sentation of high-resolution coordinates opaque, users specify such coord
using 8-element integer arrays. Java 3D treats the integer found at index
containing the most significant bits and that found at index 7 as containing
least significant bits of the high-resolution coordinate. The binary point is loc
at bit position 128, or between the integers at index 3 and 4. A high-resolu
coordinate of 1.0 is 1 meter.

Table 3-1 Java 3D High-Resolution Coordinates

2n Meters Units

87.29 Universe (20 billion light years)

69.68 Galaxy (100,000 light years)

53.07 Light year

43.43 Solar system diameter

23.60 Earth diameter

10.65 Mile

9.97 Kilometer

0.00 Meter

–19.93 Micron

–33.22 Angstrom

–115.57 Planck length
Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Details of High-resolution Coordinates3.5.3

p to
ing
ice is

rela-
tion
t; a
d the
on in

puter
ter-
rence
s the

eing
 new
raph
) by
o the
ents
ficial
esolu-

3D

eate
suffi-
di-

y
es in
riate
pli-

 its
lly
 dis-
ce
The semantics of how file loaders deal with high-resolution coordinates is u
the individual file loader, as Java 3D does not directly define any file-load
semantics. However, some general advice can be given (note that this adv
not officially part of the Java 3D specification).

For “small” virtual universes (on the order of hundreds of meters across in
tive scale), a single Locale with high-resolution coordinates at loca
(0.0, 0.0, 0.0) as the root node (below the VirtualUniverse object) is sufficien
loader can automatically construct this node during the loading process, an
point in high-resolution coordinates does not need any direct representati
the external file.

Larger virtual universes are expected to be usually constructed like com
directory hierarchies, that is, as a “root” virtual universe containing mostly ex
nal file references to embedded virtual universes. In this case, the file refe
object (user-specific data hung off a Java 3D group or hi-res node) define
location for the data to be read into the current virtual universe.

The data file’s contents should be parented to the file object node while b
read, thus inheriting the high-resolution coordinates of the file object as the
relative virtual universe origin of the embedded scene graph. If this scene g
itself contains high-resolution coordinates, it will need to be offset (translated
the amount in the file object’s high-resolution coordinates, and then added t
larger virtual universe as new high-resolution coordinates, with their cont
hung off below them. Once again, the above procedure is not part of the of
Java 3D specification, but some more details on the care and use of high-r
tion coordinates in external file formats will probably be available as a Java
application note.

Authoring tools that directly support high-resolution coordinates should cr
additional high-resolution coordinates as a user creates new geometry “
ciently” far away (or of different scale) from existing high-resolution coor
nates.

Semantics of widely moving objects. Most fixed and nearly-fixed objects sta
attached to the same high-resolution Locale. Objects that make wide chang
position or scale may need to be periodically reparented to more approp
high-resolution Locale. If no appropriate high-resolution Locale exists, the ap
cation may need to create a new one.

Semantics of viewing. The ViewPlatform object and the associated nodes in
hierarchy are very often widely moving objects. Applications will typica
attach the view platform to the most appropriate high-resolution Locale. For
play, all objects will first have their positions translated by the differen
31Version 1.1 Alpha 01, February 27, 1998

3.6 API for Superstructure Objects SCENE GRAPH SUPERSTRUCTURE

32

m's
e, no

oord

 be

uni-

rdi-
between the location of their high-resolution Locale, and the view platfor
high-resolution Locale. (In the common case of the Locales being the sam
translation is necessary.)

3.6 API for Superstructure Objects

This section describes the API for the VirtualUniverse, Locale, and HiResC
objects.

3.6.1 VirtualUniverse Object

The VirtualUniverse object consists of a set of Locale objects.

Constructors

The VirtualUniverse object has the following constructors.

public VirtualUniverse()

This constructs a new VirtualUniverse object. This VirtualUniverse can then
used to create Locale objects.

Methods

The VirtualUniverse object has the following methods.

public final Enumeration getAllLocales()
public final int numLocales()

The first method returns the Enumeration object of all Locales in this virtual
verse. ThenumLocales method returns the number of Locales.

3.6.2 Locale Object

The Locale object consists of a point, specified using high-resolution coo
nates, and a set of subgraphs, rooted by BranchGroup node objects.

Constructors

The Locale object has the following constructors.
Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE HiResCoord Object3.6.3

speci-
 at
ified

ordi-

ods,

on-

ocale.
The
 last

ordi-
bers.
t bit
 256-
public Locale(VirtualUniverse universe)
public Locale(VirtualUniverse universe, int x[], int y[], int z[])
public Locale(VirtualUniverse universe, HiResCoord hiRes)

These three constructors create a new high-resolution Locale object in the
fied VirtualUniverse. The first form constructs a Locale object located
(0.0, 0.0, 0.0). The other two forms construct a Locale object using the spec
high-resolution coordinates. In the second form, the parametersx, y, andz are
arrays of eight 32-bit integers that specify the respective high-resolution co
nate.

Methods

The Locale object has the following methods. For the Locale picking meth
see Section 10.3.2, “BranchGroup Node and Locale Node Pick Methods.”

public VirtualUniverse getVirtualUniverse()

This method retrieves the virtual universe within which this Locale object is c
tained.

public void setHiRes(int x[], int y[], int z[])
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods set or get the high-resolution coordinates of this Locale.

public void addBranchGraph(BranchGroup branchGroup)
public void removeBranchGraph(BranchGroup branchGroup)
public void replaceBranchGraph(BranchGroup oldGroup,

BranchGroup newGroup)
public int numBranchGraphs()
public Enumeration getAllBranchGraphs()

The first three methods add, remove, and replace a branch graph in this L
Adding a branch graph has the effect of making the branch graph “live.”
fourth method retrieves the number of branch graphs in this Locale. The
method retrieves an Enumeration object of all branch graphs.

3.6.3 HiResCoord Object

A HiResCoord object defines a point using a set of three high-resolution co
nates, each of which consists of three two’s-complement fixed-point num
Each high-resolution number consists of 256 total bits with a binary point a
128. Java 3D uses integer arrays of length eight to define or extract a single
33Version 1.1 Alpha 01, February 27, 1998

3.6.3 HiResCoord Object SCENE GRAPH SUPERSTRUCTURE

34

t sig-

hree
alues
-reso-

).

y the

e-

laces
 have
 of the

 and
bit coordinate value. Java 3D interprets the integer at index 0 as the 32 mos
nificant bits and the integer at index 7 as the 32 least significant bits.

Constructors

The HiResCoord object has the following constructors.

public HiResCoord(int x[], int y[], int z[])
public HiResCoord(HiResCoord hc)
public HiResCoord()

The first constructor generates the high-resolution coordinate point from t
integer arrays of length eight. The integer arrays specify the coordinate v
corresponding with their name. The second constructor creates a new high
lution coordinate point by cloning the high-resolution coordinateshc. The third
constructor creates new high-resolution coordinates with value (0.0, 0.0, 0.0

Methods

public void setHiResCoord(int x[], int y[], int z[])
public void setHiResCoord(HiResCoord hiRes)
public void setHiResCoordX(int x[])
public void setHiResCoordY(int y[])
public void setHiResCoordZ(int z[])

These five methods modify the value of high-resolution coordinatesthis. The
first method resets all three coordinate values with the values specified b
three integer arrays. The second method sets the value ofthis to that of high-
resolution coordinateshiRes. The third, fourth, and fifth methods reset the corr
sponding coordinate ofthis.

public void getHiResCoord(int x[], int y[], int z[])
public void getHiResCoord(HiResCoord hc)
public void getHiResCoordX(int x[])
public void getHiResCoordY(int y[])
public void getHiResCoordZ(int z[])

These five methods retrieve the value of the high-resolution coordinatesthis.
The first method retrieves the high-resolution coordinates’ values and p
those values into the three integer arrays specified. All three arrays must
length greater than or equal to eight. The second method updates the value
high-resolution coordinateshc to match the value ofthis. The third, fourth, and
fifth methods retrieve the coordinate value that corresponds to their name
update the integer array specified, which must be of length eight or greater.
Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE HiResCoord Object3.6.3

rdi-

cales

-

thod

in
l
uble-

rns

inate
that
nted
public void add(HiResCoord h1, HiResCoord h2)
public void sub(HiResCoord h1, HiResCoord h2)

These two methods perform arithmetic operations on high-resolution coo
nates. The first method addsh1 to h2 and stores the result inthis. The second
method subtractsh2 from h1 and stores the result inthis.

public void scale(int scale, HiResCoord h1)
public void scale(int scale)

These methods scale a high-resolution coordinate point. The first method s
h1 by the scalar valuescale and places the scaled coordinates intothis. The
second method scalesthis by the scalar valuescale and places the scaled coor
dinates back intothis.

public void negate(HiResCoord h1)
public void negate()

These two methods negate a high-resolution coordinate point. The first me
negatesh1 and stores the result inthis. The second method negatesthis and
stores its negated value back intothis.

public void difference(HiResCoord h1, Vector3d v)

This method subtractsh1 from this and stores the resulting difference vector
the double-precision floating-point vectorv. Note that although the individua
high-resolution coordinate points cannot be represented accurately by do
precision numbers, this difference vector between themcan be accurately repre-
sented by doubles for many practical purposes, such as viewing.

public boolean equals(HiResCoord h1)

This method performs an arithmetic comparison betweenthis andh1. It returns
true if the two high-resolution coordinate points are equal; otherwise, it retu
false.

public double distance(HiResCoord h1)

This method computes the linear distance between high-resolution coord
points this and h1, and returns this value expressed as a double. Note
although the individual high-resolution coordinate points cannot be represe
accurately by double precision numbers, this distance between themcan be accu-
rately represented by a double for many practical purposes.
35Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 4

s

h. The
 defi-
ts—
 asso-
less

choose
der-

 have
in an
 add-
asses
Group Node Object

GROUP nodes are the glue elements used in constructing a scene grap
following subsections list the seven group nodes (see Figure 4-1) and their
nitions. All group nodes can have a variable number of child node objec
including other group nodes as well as leaf nodes. These children have an
ciated index that allows operations to specify a particular child. However, un
one of the special ordered group nodes is used, the Java 3D renderer can
to render a group node’s children in whatever order it wishes (including ren
ing the children in parallel).

Figure 4-1 Group Node Hierarchy

4.1 Group Node

The Group node object is a general-purpose grouping node. Group nodes
exactly one parent and an arbitrary number of children that are rendered
unspecified order (or in parallel). Operations on Group node objects include
ing, removing, and enumerating the children of the Group node. The subcl
of Group node add additional semantics.

SceneGraphObject
Node

Group
BranchGroup
OrderedGroup

DecalGroup
SharedGroup
Switch
TransformGroup
37

4.1 Group Node GROUP NODE OBJECTS

38

om-

thod

 The
. The
oup
Constants

public static final int ALLOW_CHILDREN_READ
public static final int ALLOW_CHILDREN_WRITE
public static final int ALLOW_CHILDREN_EXTEND

These flags, when enabled using thesetCapability method, specify that this
Group node will allow the following methods, respectively:

• numChildren, getChild, getAllChildren

• setChild, insertChild, removeChild

• addChild, moveTo

These capability bits are enforced only when the node is part of a live or c
piled scene graph.

public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

These flags, when enabled using thesetCapability method, specify that this
Group node will allow reading and writing of its collision bounds.

Constructors

public Group()

Constructs and initializes a Group node object.

Methods

The Group node class defines the following methods.

public final int numChildren()
public final Node getChild(int index)

The first method returns a count of the number of children. The second me
returns the child at the specified index.

public final void setChild(Node child, int index)
public final void insertChild(Node child, int index)
public final void removeChild(int index)

The first method replaces the child at the specified index with a new child.
second method inserts a new child before the child at the specified index
third method removes the child at the specified index. Note that if this Gr
Java 3D API Specification

GROUP NODE OBJECTS Group Node 4.1

ay be
set.

 this
odes

, the
e
ce to
idden

 the
 this

iled
es.
node is part of a live or compiled scene graph, only BranchGroup nodes m
added to or removed from it—and only if the appropriate capability bits are

public final Enumeration getAllChildren()

This method returns an Enumeration object of all children.

public final void addChild(Node child)

This method adds a new child as the last child in the group. Note that if
Group node is part of a live or compiled scene graph, only BranchGroup n
may be added to it—and only if the appropriate capability bits are set.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclon-

eTree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree flag is used to determine whether th
NodeComponent should be duplicated in the new node or if just a referen
the current node should be placed in the new node. This flag can be overr
by setting theforceDuplicate parameter in thecloneTree method totrue.

public final void moveTo(BranchGroup branchGroup)

This method moves the specified BranchGroup node from its old location in
scene graph to the end of this group, in an atomic manner. Functionally,
method is equivalent to the following lines:

branchGroup.detach();
this.addChild(branchGroup);

If either this Group or the specified BranchGroup is part of a live or comp
scene graph, the appropriate capability bits must be set in the affected nod
39Version 1.1 Alpha 01, February 27, 1998

4.2 BranchGroup Node GROUP NODE OBJECTS

40

target
ion.
bit
r-

he
ith

oup
s the

 as a
e in
ght of

s are
heir

to a

 be
 set.

ome
public final Bounds setCollisionBounds(Bounds bounds)
public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object for a node.

public final void setAlternateCollisionTarget(boolean target)
public final boolean getAlternateCollisionTarget()

The set method causes this Group node to be reported as the collision
when collision is being used and this node or any of its children is in a collis
The default is false. This method tries to set the capability
Node.ENABLE_COLLISION_REPORTING. The get method returns the collision ta
get state.

For collision with USE_GEOMETRY set, the collision traverser will check t
geometry of all the Group node’s leaf descendants. For collision w
USE_BOUNDS set, the collision traverser will check the bounds at this Gr
node. In both cases, if there is a collision, this Group node will be reported a
colliding object in the SceneGraphPath.

4.2 BranchGroup Node

A BranchGroup is the root of a subgraph of a scene that may be compiled
unit, attached to a virtual universe, or included as a child of a group nod
another subgraph. A subgraph, rooted by a BranchGroup node, can be thou
as a compile unit. The following things may be done with BranchGroup.

• A BranchGroup may be compiled by calling itscompile method. This
causes the entire subgraph to be compiled. If any BranchGroup node
contained within the subgraph, they are compiled as well (along with t
descendants).

• A BranchGroup may be inserted into a virtual universe by attaching it
Locale. The entire subgraph is then said to belive.

• A BranchGroup that is contained within another subgraph may
reparented or detached at run time if the appropriate capabilities are
See Figure 4-2.

Note that if a BranchGroup is included in another subgraph, as a child of s
other group node, it may not be attached to a Locale.
Java 3D API Specification

GROUP NODE OBJECTS BranchGroup Node 4.2

ag is

reates
Figure 4-2 Altering the Scene Graph at Run Time

Constants

The BranchGroup class adds the following new constant.

public static final int ALLOW_DETACH

This flag, when enabled using thesetCapability method, allows this Branch-
Group node to be detached from its parent group node. This capability fl
enforced only when the node is part of a live or compiled scene graph.

Methods

The BranchGroup class defines the following methods.

public final void compile()

This method compiles the scene graph rooted at this BranchGroup and c
and caches a newly compiled scene graph.

BG

Virtual Universe

Hi-Res Locale

BG
Can be reparented or
removed at run time

BranchGroup Node
41Version 1.1 Alpha 01, February 27, 1998

4.3 TransformGroup Node GROUP NODE OBJECTS

42

, the
r

rence
idden

ia a
osi-

node
 trans-
ales

n

tter
t—

tena-
 the
that
public final void detach()

This method detaches the BranchGroup node from its parent.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refe
to the current node should be placed in the new node. This flag can be overr
by setting theforceDuplicate parameter in thecloneTree method totrue.

4.3 TransformGroup Node

The TransformGroup node specifies a single spatial transformation—v
Transform3D object (see Section 7.1.27, “Transform3D Object”)—that can p
tion, orient, and scale all of its children.

The specified transformation must be affine. Further, if the TransformGroup
is used as an ancestor of a ViewPlatform node in the scene graph, then the
formation must be congruent—only rotations, translations, and uniform sc
are allowed in a direct path from a Locale to a ViewPlatform node. ABadTrans-

formException (see Section D.1, “BadTransformException”) is thrown if a
attempt is made to specify an illegal transform.

Note: Even though arbitrary affine transformations are allowed, be
performance will result if all matrices within a branch graph are congruen
containing only rotations, translation, anduniform scale.

The effects of transformations in the scene graph are cumulative. The conca
tion of the transformations of each TransformGroup in a direct path from
Locale to a Leaf node defines a composite model transformation (CMT)
Java 3D API Specification

GROUP NODE OBJECTS TransformGroup Node 4.3

 Vir-
ans-
are

se of
 of a
value
nding
bjects

rt of

izes
tial-

copy-

d by
node
takes points in that Leaf node’s local coordinates and transforms them into
tual World (Vworld) coordinates. This composite transformation is used to tr
form points, normals, and distances into Vworld coordinates. Points
transformed by the CMT. Normals are transformed by the inverse-transpo
the CMT. Distances are transformed by the scale of the CMT. In the case
transformation containing a nonuniform scale or shear, the maximum scale
in any direction is used. This ensures, for example, that a transformed bou
sphere, which is specified as a point and a radius, continues to enclose all o
that are also transformed using a nonuniform scale.

Constants

The TransformGroup class adds the following new flags.

public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

These flags, when enabled using thesetCapability method, allow this node’s
Transform3D to be read or written. They are only used when the node is pa
a live or compiled scene graph.

Constructors

public TransformGroup()
public TransformGroup(Transform3D t1)

These construct and initialize a new TransformGroup. The first form initial
the node’s Transform3D to the identity transformation; the second form ini
izes the node’s Transform3D to a copy of the specified transform.

Methods

The TransformGroup class defines the following methods.

public final void setTransform(Transform3D t1)
public final void getTransform(Transform3D t1)

These methods retrieve or set this node’s attached Transform3D object by
ing the transform to or from the specified object.

public Node cloneNode(boolean forceDuplicate)
public void duplicateNode(Node originalNode,

boolean forceDuplicate)

The first method creates a new instance of the node. This method is calle
cloneTree to duplicate the current node. The second method copies all the
43Version 1.1 Alpha 01, February 27, 1998

4.4 OrderedGroup Node GROUP NODE OBJECTS

44

d

, the
e
e cur-
y set-

 their
 of the

, the
r

rence
idden

roup
other

red in
clude
able.
information from theoriginalNode into the current node. This method is calle
from thecloneNode method, which is in turn called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree flag is used to determine whether th
NodeComponent should be duplicated in the new node or a reference to th
rent node should be placed in the new node. This flag can be overridden b
ting theforceDuplicate parameter in thecloneTree method totrue.

4.4 OrderedGroup Node

The OrderedGroup node guarantees that Java 3D will render its children in
index order. Only the OrderedGroup node and its subclasses make any use
order of their children during rendering.

Methods

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refe
to the current node should be placed in the new node. This flag can be overr
by setting theforceDuplicate parameter in thecloneTree method totrue.

4.5 DecalGroup Node

The DecalGroup node is a subclass of the OrderedGroup node. The DecalG
node is an ordered group node used for defining decal geometry on top of
geometry. The DecalGroup node specifies that its children should be rende
index order and that they generate coplanar objects. Examples of this in
painted decals or text on surfaces and a checkerboard layered on top of a t
Java 3D API Specification

GROUP NODE OBJECTS Switch Node 4.6

ren
; oth-
h of
 first
ase,
copla-
-
ques
aces
s dis-

roup

, the
r

rence
idden

cally
f chil-
dren
lect-
The first child, at index 0, defines the surface on top of which all other child
are rendered. The geometry of this child must encompass all other children
erwise, incorrect rendering may result. The polygons contained within eac
the children must be facing the same way. If the polygons defined by the
child are front facing, then all other surfaces should be front facing. In this c
the polygons are rendered in order. The renderer can use knowledge of the
nar nature of the surfaces to avoidZ-buffer collisions (for example, if the under
lying implementation supports stenciling or polygon offset, then these techni
may be employed). If the main surface is back facing, then all other surf
should be back facing and need not be rendered (even if back-face culling i
abled).

Note that using the DecalGroup node does not guarantee thatZ-buffer collisions
are avoided. An implementation of Java 3D may fall back to treating DecalG
node as an ordinary OrderedGroup node.

Methods

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refe
to the current node should be placed in the new node. This flag can be overr
by setting theforceDuplicate parameter in thecloneTree method totrue.

4.6 Switch Node

The Switch group node allows a Java 3D application to choose dynami
among a number of subgraphs. The Switch node contains an ordered list o
dren and a switch value. The switch value determines which child or chil
Java 3D will render. Note that the index order of children is only used for se
ing the appropriate child or children—it does not specify rendering order.
45Version 1.1 Alpha 01, February 27, 1998

4.6 Switch Node GROUP NODE OBJECTS

46

sed

dicate
 of

erate

eters.

t will
or it
Constants

public static final int ALLOW_SWITCH_READ
public static final int ALLOW_SWITCH_WRITE

These flags, when enabled using thesetCapability method, allow reading and
writing of the values that specify the child-selection criteria. They are only u
when the node is part of a live or compiled scene graph.

public static final int CHILD_NONE
public static final int CHILD_ALL
public static final int CHILD_MASK

These values, when used in place of a non-negative integer index value, in
which children of the Switch node are selected for rendering. A value
CHILD_NONE indicates that no children are rendered. A value ofCHILD_ALL indi-
cates that all children are rendered, effectively making this Switch node op
as an ordinary Group node. A value ofCHILD_MASK indicates that thechildMask
BitSet is used to select the children that are rendered.

Constructors

public Switch()
public Switch(int whichChild)
public Switch(int whichChild, BitSet childMask)

These constructors initialize a new Switch node using the specified param
The default values for those parameters not specified are as follows:

whichChild : CHILD_NONE
childMask: empty

Methods

The Switch node class defines the following methods.

public final void setWhichChild(int whichChild)
public final int getWhichChild()

These methods access or modify the index of the child that the Switch objec
draw. The value may be a non-negative integer, indicating a specific child,
may be one of the following constants:CHILD_NONE, CHILD_ALL, or CHILD_MASK.
If the specified value is out of range, then no children are drawn.
Java 3D API Specification

GROUP NODE OBJECTS SharedGroup Node 4.7

at the

, the
r

rence
idden

ph in
roup
public final void setChildMask(BitSet childMask)
public final BitSet getChildMask()

These methods access or modify the mask used to select the children th
Switch object will draw when thewhichChild parameter isCHILD_MASK. This
parameter is ignored during rendering if thewhichChild parameter is a value
other thanCHILD_MASK.

public final Node currentChild()

This method returns the currently selected child. IfwhichChild is out of range,
or is set toCHILD_MASK, CHILD_ALL, or CHILD_NONE, thennull is returned.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refe
to the current node should be placed in the new node. This flag can be overr
by setting theforceDuplicate parameter in thecloneTree method totrue.

4.7 SharedGroup Node

A SharedGroup node provides a mechanism for sharing the same subgra
different parts of the tree via a Link node. See Section 6.1.1, “SharedG
Node,” for a description of this node.
47Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 5
. The

o chil-
king
tform
the

-
ry the

refer-

va 3D
 order

e

Leaf Node Objects

L EAF nodes define atomic entities such as geometry, lights, and sounds
leaf nodes and their associated meanings follow.

5.1 Leaf Node

The Leaf node is an abstract class for all scene graph nodes that have n
dren. Leaf nodes specify lights, geometry, and sounds; provide special lin
and instancing capabilities for sharing scene graphs; and provide a view pla
for positioning and orienting a view in the virtual world. Figure 5-1 shows
Leaf node object hierarchy.

Constructors

public Leaf()

Constructs and initializes a new Leaf object.

Methods

The Leaf node object defines the following methods.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This method is called by thecloneTree method (see Section 6.2, “Cloning Sub
graphs”) after all nodes in the subgraph have been cloned. The user can que
NodeReferenceTable object to determine if any nodes that the Leaf node
ences have been duplicated by thecloneTree call and, if so, what the corre-
sponding Node is in the new subgraph. If a user extends a predefined Ja
object and adds a reference to another node, this method must be defined in
to ensure proper operation of thecloneTree method. The first statement in th
49

5.1 Leaf Node LEAF NODE OBJECTS

50

be

es in
more

s, the

 or be

t

user’s updateNodeReferences method must besuper.updateNodeRefer-
ences(referenceTable). For predefined Java 3D nodes, this method will
implemented automatically.

The NodeReferenceTable object is passed to theupdateNodeReferences method
and allows references from the old subgraph to be translated into referenc
the cloned subgraph. See Section 6.2.5, “NodeReferenceTable Object,” for
details.

public Node cloneTree(boolean forceDuplicate)

This method duplicates all nodes of the specified subgraph. For group node
node is first duplicated via a call tocloneNode and thencloneTree is called for
each child node. For leaf nodes, component data can either be duplicated
made a reference to the original data. Leaf nodecloneTree behavior is deter-
mined by theduplicateOnCloneTree flag found in every leaf node’s componen
data class and by theforceDuplicate parameter.

Figure 5-1 Leaf Node Hierarchy

SceneGraphObject
Node

Leaf
Background
Behavior

Predefined behaviors
BoundingLeaf
Clip
Fog

ExponentialFog
LinearFog

Light
AmbientLight
DirectionalLight
PointLight

SpotLight
Link
Morph
Shape3D
Sound

BackgroundSound
PointSound

ConeSound
Soundscape
ViewPlatform
Java 3D API Specification

LEAF NODE OBJECTS Shape3D Node 5.2

 two
onent.
object
ture,
ome-

ision
de is

ified
ecified

o-
5.2 Shape3D Node

The Shape3D leaf node object specifies all geometric objects. It contains
components: a reference to the shape’s geometry and its appearance comp
The Geometry object defines the shape’s geometric data. The Appearance
specifies that object’s appearance attributes, including color, material, tex
and so on. See Chapter 7, “Node Component Objects” for details of the Ge
try and Appearance objects.

Constants

The Shape3D node object defines the following flags.

public static final int ALLOW_GEOMETRY_READ
public static final int ALLOW_GEOMETRY_WRITE
public static final int ALLOW_APPEARANCE_READ
public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_COLLISION_BOUNDS_WRITE
public static final int ALLOW_COLLISION_BOUNDS_READ

These flags, when enabled using thesetCapability method, allow reading and
writing of the Geometry and Appearance component objects and the coll
bounds, respectively. These capability flags are enforced only when the no
part of a live or compiled scene graph.

Constructors

The Shape3D node object defines the following constructors.

public Shape3D(Geometry geometry, Appearance appearance)
public Shape3D(Geometry geometry)
public Shape3D()

The first form constructs and initializes a new Shape3D object with the spec
geometry and appearance components. The second form uses the sp
geometry and anull appearance component. The third form uses both anull

geometry component and anull appearance component. If the geometry comp
nent isnull, then no geometry is drawn. If the appearance component isnull,
then default values are used for all appearance attributes.

Methods

The Shape3D node object defines the following methods.
51Version 1.1 Alpha 01, February 27, 1998

5.2 Shape3D Node LEAF NODE OBJECTS

52

d with

ciated

r-

, the
e
ce to
idden
public final void setGeometry(Geometry geometry)
public final Geometry getGeometry()

These methods access or modify the Geometry component object associate
this Shape3D node.

public final void setAppearance(Appearance appearance)
public final Appearance getAppearance()

These methods access or modify the Appearance component object asso
with this Shape3D node. Setting it tonull results in default attribute use.

public final void setCollisionBounds(Bounds bounds)
public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounds for this node.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.cloneNode should be overridden by any use
subclassed objects. All subclasses must have theircloneNode method consist of
the following lines:

public Node cloneNode(boolean forceDuplicate) {
UserSubClass usc = new UserSubClass();
usc.duplicateNode(this, forceDuplicate);
return usc;

}

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree flag is used to determine whether th
NodeComponent should be duplicated in the new node or if just a referen
the current node should be placed in the new node. This flag can be overr
by setting theforceDuplicate parameter in thecloneTree method totrue.
Java 3D API Specification

LEAF NODE OBJECTS BoundingLeaf Node 5.3

-
ry the

refer-

va 3D
 order

e

be

es in
more

nced
 acti-
egion
ordi-
e can
oned

stem
local
of how
Each
 local
n the
am-
local
 of a
public void updateNodeReferences(NodeReferenceTable
referenceTable)

This method is called by thecloneTree method (see Section 6.2, “Cloning Sub
graphs”) after all nodes in the subgraph have been cloned. The user can que
NodeReferenceTable object to determine if any nodes that the leaf node
ences have been duplicated by thecloneTree call and, if so, what the corre-
sponding node is in the new subgraph. If a user extends a predefined Ja
object and adds a reference to another node, this method must be defined in
to ensure proper operation of thecloneTree method. The first statement in th
user’s updateNodeReferences method must besuper.updateNodeRefer-
ences(referenceTable). For predefined Java 3D nodes, this method will
implemented automatically.

The NodeReferenceTable object is passed to theupdateNodeReferences method
and allows references from the old subgraph to be translated into referenc
the cloned subgraph. See Section 6.2.5, “NodeReferenceTable Object,” for
details.

5.3 BoundingLeaf Node

The BoundingLeaf node defines a bounding region object that can be refere
by other leaf nodes to define a region of influence (Fog and Light nodes), an
vation region (Background, Clip, and Soundscape nodes), or a scheduling r
(Sound and Behavior nodes). The bounding region is defined in the local co
nate system of the BoundingLeaf node. A reference to a BoundingLeaf nod
be used in place of a locally defined bounds object for any of the aforementi
regions.

This allows an application to specify a bounding region in one coordinate sy
(the local coordinate system of the BoundingLeaf node) other than the
coordinate system of the node that references the bounds. For an example
this might be used, consider a closed room with a number of track lights.
light can move independent of the other lights and, as such, needs its own
coordinate system. However, the bounding volume is used by all the lights i
boundary of the room, which doesn’t move when the lights move. In this ex
ple, the BoundingLeaf node allows the bounding region to be defined in the
coordinate system of the room, rather than in the local coordinate system
particular light. All lights can then share this single bounding volume.

Constants

The BoundingLeaf node object defines the following flags.
53Version 1.1 Alpha 01, February 27, 1998

5.4 Background Node LEAF NODE OBJECTS

54

gion

ject.
ding

ack-
me.

e. A
the
the
und
public static final int ALLOW_REGION_READ
public static final int ALLOW_REGION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the bounding re
object.

Constructors

The BoundingLeaf node object defines the following constructors.

public BoundingLeaf()
Public BoundingLeaf(Bounds region)

The first form constructs a BoundingLeaf node with a unit sphere region ob
The second form constructs a BoundingLeaf node with the specified boun
region.

Methods

public final void setRegion(Bounds region)
public final Bounds getRegion()

These methods set and retrieve the BoundingLeaf node’s bounding region.

5.4 Background Node

The Background leaf node defines either a solid background color or a b
ground image that is used to fill the window at the beginning of each new fra
It also specifies an application region in which this Background node is activ
Background node is active when its application region intersects
ViewPlatform’s activation volume. If multiple Background nodes are active,
Background node that is “closest” to the eye will be used. If no Backgro
nodes are active, then the window is cleared to black.

Constants

The Background node object defines the following flags.

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_IMAGE_WRITE
public static final int ALLOW_COLOR_READ
Java 3D API Specification

LEAF NODE OBJECTS Background Node 5.4

, the
 are

lack
 the
pec-

is not

de. If
r or
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_GEOMETRY_READ
public static final int ALLOW_GEOMETRY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
image, the color, and the background geometry. These capability flags
enforced only when the node is part of a live or compiled scene graph.

Constructors

The Background node object defines the following constructors.

public Background()
public Background(Color3f color)
public Background(float r, float g, float b)
public Background(ImageComponent2D image)

The first form constructs a Background leaf node with a default color of b
(0.0, 0.0, 0.0). The next two forms construct a Background leaf node with
specified color. The final form constructs a Background leaf node with the s
ified 2D image.

Methods

The Background node object defines the following methods.

public final void getColor(Color3f color)
public final void setColor(Color3f color)
public final void setColor(float r, float g, float b)

These three methods access or modify the background color.

public final ImageComponent2D getImage()
public final void setImage(ImageComponent2D image)

These two methods access or modify the background image. If the image
null then it is used in place of the color.

public final void setGeometry(BranchGroup branch)
public final BranchGroup getGeometry()

These two methods access or modify the Background geometry. ThesetGeome-

try method sets the background geometry to the specified BranchGroup no
non-null, this background geometry is drawn on top of the background colo
55Version 1.1 Alpha 01, February 27, 1998

5.5 Clip Node LEAF NODE OBJECTS

56

 The

unds.
g leaf
i-

und-

 vir-
e is
the
lip
cified
lip

 and
is part
image using a projection matrix that essentially puts the geometry at infinity.
geometry should be pretessellated onto a unit sphere.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Background node’s application bo
This bounds is used as the application region when the application boundin
is set tonull. ThegetApplicationBounds method returns a copy of the assoc
ated bounds.

public final void setApplicationBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Background node’s application bo
ing leaf. When set to a value other thannull, this bounding leaf overrides the
application bounds object and is used as the application region.

5.5 Clip Node

The Clip leaf node defines the far clipping plane used to clip objects in the
tual universe. It also specifies an application region in which this Clip nod
active. A Clip node is active when its application region intersects
ViewPlatform’s activation volume. If multiple Clip nodes are active, the C
node that is “closest” to the eye will be used. The back distance value spe
by this Clip node overrides the value specified in the View object. If no C
nodes are active, then the back clip distance is used from the View object.

Constants

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_BACK_DISTANCE_READ
public static final int ALLOW_BACK_DISTANCE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
the back distance. These capability flags are enforced only when the node
of a live or compiled scene graph.

Constructors

The Clip node object defines the following constructors.
Java 3D API Specification

LEAF NODE OBJECTS Fog Node 5.6

t the
 con-

node.
m of

 This
af is

ed

 leaf.
n

es that
meter
influ-

ence
 The
scope
public Clip(double backDistance)
public Clip()

The first constructor constructs a Clip leaf node with the rear clip plane a
specified distance, in the local coordinate system, from the eye. The second
structor constructs a Clip leaf node with a default back clipping distance.

Methods

The Clip node object defines the following methods.

public final void setBackDistance(double backDistance)
public final double getBackDistance()

These methods access or modify the back clipping distances in the Clip
This distance specifies the back clipping plane in the local coordinate syste
the node.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Clip node’s application bounds.
bounds is used as the application region when the application bounding le
set tonull. ThegetApplicationBounds method returns a copy of the associat
bounds.

public final void setApplicationBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Clip node’s application bounding
When set to a value other thannull, this bounding leaf overrides the applicatio
bounds object and is used as the application region.

5.6 Fog Node

The Fog leaf node is an abstract class that defines a common set of attribut
control fog, or depth cueing, in the scene. The Fog node includes a para
that specifies the fog color and a Bounds object that specifies the region of
ence for the Fog node.

Objects whose bounding volumes intersect the Fog node’s region of influ
have fog applied to their color after lighting and texturing have been applied.
Fog node also contains a list of Group nodes that indicates the hierarchical
of this fog. If the list of scoping nodes is empty, the fog hasuniverse scope and
57Version 1.1 Alpha 01, February 27, 1998

5.6 Fog Node LEAF NODE OBJECTS

58

e’s

tem
nter-
l, the

 the
are

r uses
cified
es are
will apply to all nodes in the virtual universe that are within the Fog nod
region of influence.

If the regions of influence of multiple Fog nodes overlap, the Java 3D sys
will choose a single set of fog parameters for those objects that lie in the i
section. This is done in an implementation-dependent manner, but in genera
Fog node that is “closest” to the object is chosen.

Constants

The Fog node object defines the following flags.

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read the region of influence, write
region of influence, read color, and write color. These capability flags
enforced only when the node is part of a live or compiled scene graph.

Constructors

The Fog node object defines the following constructors.

public Fog()
public Fog(float r, float g, float b)
public Fog(Color3f color)

These constructors each construct a new Fog node. The first constructo
default values for all parameters. The remaining constructors use the spe
parameters and use defaults for those parameters not specified. Default valu
as follows:

color: black (0,0,0)
list of scoping nodes: empty
influencingRegion: empty

Methods

The Fog node object defines the following methods.
Java 3D API Specification

LEAF NODE OBJECTS ExponentialFog Node5.6.1

 will

ounds
et to
nce.

.

leaf.
ct

fault,
allow
hical
 a live

nsity
e fog

ctual
public final void setColor(float r, float g, float b)
public final void setColor(Color3f color)
public final void getColor(Color3f color)

These three methods access or modify the Fog node’s color. An application
typically set this to the same value as the background color.

public final void setInfluencingBounds(Bounds region)
public final Bounds getInfluencingBounds()

These methods access or modify the Fog node’s influencing bounds. This b
is used as the region of influence when the influencing bounding leaf is s
null. The Fog node operates on all objects that intersect its region of influe
ThegetInfluencingBounds method returns a copy of the associated bounds

public final void setInfluencingBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getInfluencingBoundingLeaf()

These methods access or modify the Fog node’s influencing bounding
When set to a value other thannull, this overrides the influencing bounds obje
and is used as the region of influence.

public final void setScope(Group scope, int index)
public final Group getScope(int index)
public final void addScope(Group scope)
public final void insertScope(Group scope, int index)
public final void removeScope(int index)
public final int numScopes()
public final Enumeration getAllScopes()

These methods access or modify the Fog node’s hierarchical scope. By de
Fog nodes are scoped only by their regions of influence. These methods
them to be further scoped by a Group node in the hierarchy. The hierarc
scoping of a Fog node cannot be accessed or modified if the node is part of
or compiled scene graph.

5.6.1 ExponentialFog Node

The ExponentialFog leaf node extends the Fog leaf node by adding a fog de
that is used as the exponent of the fog equation. For more information on th
equation, see Appendix E, “Equations.”

The density is defined in the local coordinate system of the node, but the a
fog equation will ideally take place in eye coordinates.
59Version 1.1 Alpha 01, February 27, 1998

5.6.2 LinearFog Node LEAF NODE OBJECTS

60

hese
iled

t con-
s use
cified.

ect.

tance
mally
Constants

The ExponentialFog node object defines the following flags.

public static final int ALLOW_DENSITY_READ
public static final int ALLOW_DENSITY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the density values. T
capability flags are enforced only when the node is part of a live or comp
scene graph.

Constructors

The ExponentialFog node object defines the following constructors.

public ExponentialFog()
public ExponentialFog(float r, float g, float b)
public ExponentialFog(Color3f color)
public ExponentialFog(float r, float g, float b, float density)
public ExponentialFog(Color3f color, float density)

Each of these constructors creates a new ExponentialFog node. The firs
structor uses default values for all parameters. The remaining constructor
the specified parameters and use defaults for those parameters not spe
Default values are as follows:

density: 1.0

Methods

The ExponentialFog node object defines the following methods.

public final void setDensity(float density)
public final float getDensity()

These two methods access or modify the density in the ExponentialFog obj

5.6.2 LinearFog Node

The LinearFog leaf node extends the Fog leaf node by adding a pair of dis
values, in Z, at which fog should start obscuring the scene and should maxi
obscure the scene.
Java 3D API Specification

LEAF NODE OBJECTS LinearFog Node 5.6.2

of the
. For

hese
iled

ructor
speci-
lt val-

inear-
uring
The front and back fog distances are defined in the local coordinate system
node, but the actual fog equation will ideally take place in eye coordinates
more information on the fog equation, see Appendix E, “Equations.”

Constants

The LinearFog node object defines the following flags.

public static final int ALLOW_DISTANCE_READ
public static final int ALLOW_DISTANCE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the distance values. T
capability flags are enforced only when the node is part of a live or comp
scene graph.

Constructors

The LinearFog node object defines the following constructors.

public LinearFog()
public LinearFog(float r, float g, float b)
public LinearFog(Color3f color)
public LinearFog(float r, float g, float b, double frontDistance,

double backDistance)
public LinearFog(Color3f color, double frontDistance,

double backDistance)

These constructors each construct a new LinearFog node. The first const
uses default values for all parameters. The remaining constructors use the
fied parameters and use defaults for those parameters not specified. Defau
ues are as follows:

front distance: 0.1
back distance: 1.0

Methods

The LinearFog node object defines the following methods.

public final void setFrontDistance(float frontDistance)
public final float getFrontDistance()
public final void setBackDistance(float backDistance)
public final float getBackDistance()

These four methods access or modify the front and back distances in the L
Fog object. The front distance is the distance at which the fog starts obsc
61Version 1.1 Alpha 01, February 27, 1998

5.7 Light Node LEAF NODE OBJECTS

62

jects.
jects

 to all
n or
ight.
ence
s the
t has
the

del.

ese
iled
objects. The back distance is the distance at which the fog fully obscures ob
Objects drawn closer than the front fog distance are not affected by fog. Ob
drawn farther than the back fog distance are drawn entirely in the fog color.

5.7 Light Node

The Light leaf node is an abstract class that defines the properties common
Light nodes. A light has associated with it a color, a state (whether it is o
off), and a Bounds object that specifies the region of influence for the l
Objects whose bounding volumes intersect the Light node’s region of influ
are lit by this light. The Light node also contains a Group node that indicate
hierarchical scope of this light. If no scoping node is specified, then the ligh
universe scope and applies to all nodes in the virtual universe that are within
light’s region of influence.

The Java 3D lighting model is based on a subset of the OpenGL lighting mo

Constants

The Light node object defines the following flags.

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_STATE_READ
public static final int ALLOW_STATE_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE

These flags, when enabled using thesetCapability method, allow reading and
writing of the region of influence, the state, and the color, respectively. Th
capability flags are enforced only when the node is part of a live or comp
scene graph.

Constructors

The Light node object defines the following constructors.

public Light()
public Light(Color3f color)
public Light(boolean lightOn, Color3f color)

These three constructors construct and initialize a light.
Java 3D API Specification

LEAF NODE OBJECTS Light Node 5.7

 light

This
af is
 of

ed

leaf.
ct

fault,
thods
Methods

The Light node object defines the following methods.

public final void setEnable(boolean state)
public final boolean getEnable()

These methods access or modify the state of this light (that is, whether the
is enabled).

public final void setColor(Color3f color)
public final void getColor(Color3f color)

These methods access or modify the current color of this light.

public final setInfluencingBounds(Bounds region)
public final Bounds getInfluencingBounds()

These methods access or modify the Light node’s influencing bounds.
bounds is used as the region of influence when the influencing bounding le
set tonull. The Light node operates on all objects that intersect its region
influence. ThegetInfluencingBounds method returns a copy of the associat
bounds.

public final setInfluencingBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getInfluencingBoundingLeaf()

These methods access or modify the Light node’s influencing bounding
When set to a value other thannull, this overrides the influencing bounds obje
and is used as the region of influence.

public final void setScope(Group scope, int index)
public final Group getScope(int index)
public final void addScope(Group scope)
public final void insertScope(Group scope, int index)
public final void removeScope(int index)
public final int numScopes()
public final Enumeration getAllScopes()

These methods access or modify the Light node’s hierarchical scope. By de
Light nodes are scoped only by their regions of influence bounds. These me
allow them to be further scoped by a node in the hierarchy.
63Version 1.1 Alpha 01, February 27, 1998

5.7.1 AmbientLight Node LEAF NODE OBJECTS

64

utes

sing
new

r

as
r to

tion.
com-

tem
5.7.1 AmbientLight Node

An AmbientLight node defines an ambient light source. It has the same attrib
as the abstract Light node.

Constructors

The AmbientLight node defines the following constructors.

public AmbientLight()
public AmbientLight(Color3f color)
public AmbientLight(boolean lightOn, Color3f color)

The first constructor constructs and initializes a new AmbientLight node u
default parameters. The next two constructors construct and initialize a
AmbientLight node using the specified parameters. Thecolor parameter is the
color of the light source. ThelightOn flag indicates whether this light is on o
off.

5.7.2 DirectionalLight Node

A DirectionalLight node defines an oriented light with an origin at infinity. It h
the same attributes as a Light node, with the addition of a direction vecto
specify the direction in which it shines.

Constants

The DirectionalLight node object defines the following flags.

public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read or write the associated direc
These capability flags are enforced only when the node is part of a live or
piled scene graph.

The DirectionalLight’s direction vector is defined in the local coordinate sys
of the node.

Constructors

The DirectionalLight node object defines the following constructors.
Java 3D API Specification

LEAF NODE OBJECTS PointLight Node 5.7.3

t is

eters

 and

ame-

de.

tten-
s are
public DirectionalLight()

Constructs and initializes a directional light. The default direction of the ligh
toward the screen, along the negativez axis.

public DirectionalLight(Color3f color, Vector3f direction)
public DirectionalLight(boolean LightOn, Color3f color,

Vector3f direction)

These constructors construct and initialize a directional light with the param
provided.

Methods

The DirectionalLight node object defines the following methods.

public final void setDirection(Vector3f direction)
public final void setDirection(float x, float y, float z)
public final void getDirection(Vector3f direction)

These methods access or modify the light’s current direction.

5.7.3 PointLight Node

A PointLight node defines a point light source located at some point in space
radiating light in all directions (also known as apositional light). It has the same
attributes as a Light node, with the addition of location and attenuation par
ters.

The PointLight’s position is defined in the local coordinate system of the no

Constants

The PointLight node object defines the following flags.

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_ATTENUATION_READ
public static final int ALLOW_ATTENUATION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read position, write position, read a
uation parameters, and write attenuation parameters. These capability flag
enforced only when the node is part of a live or compiled scene graph.
65Version 1.1 Alpha 01, February 27, 1998

5.7.4 SpotLight Node LEAF NODE OBJECTS

66

 at

ram-

alues
mial,

e and
ode,
its,
ates

adia-
Constructors

The PointLight Node defines the following constructors.

public PointLight()

Constructs and initializes a point light source with the default position
0.0, 0.0, 0.0.

public PointLight(Color3f color, Point3f position,
Point3f attenuation)

public PointLight(boolean lightOn, Color3f color,
Point3f position, Point3f attenuation)

These constructors construct and initialize a point light with the specified pa
eters.

Methods

The PointLight node object defines the following methods.

public final void setPosition(Point3f position)
public final void setPosition(float x, float y, float z)
public final void getPosition(Point3f position)

These methods access or modify the point light’s current position.

public final void setAttenuation(Point3f attenuation)
public final void setAttenuation(float constant, float linear,

float quadratic)
public final void getAttenuation(Point3f attenuation)

These methods access or modify the point light’s current attenuation. The v
presented to the methods specify the coefficients of the attenuation polyno
with constant providing the constant term,linear providing the linear coeffi-
cient, andquadratic providing the quadratic coefficient.

5.7.4 SpotLight Node

A SpotLight node defines a point light source located at some point in spac
radiating in a specific direction. It has the same attributes as a PointLight n
with the addition of a direction of radiation, a spread angle to specify its lim
and a concentration factor that specifies how quickly the light intensity attenu
as a function of the angle of radiation as measured from the direction of r
tion.
Java 3D API Specification

LEAF NODE OBJECTS SpotLight Node 5.7.4

ntra-
e is

ordi-

.

ght.
Constants

The SpotLight node object defines the following flags.

public static final int ALLOW_SPREAD_ANGLE_READ
public static final int ALLOW_SPREAD_ANGLE_WRITE
public static final int ALLOW_CONCENTRATION_READ
public static final int ALLOW_CONCENTRATION_WRITE
public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write spread angle, conce
tion, and direction. These capability flags are enforced only when the nod
part of a live or compiled scene graph.

The SpotLight’s direction vector and spread angle are defined in the local co
nate system of the node.

Constructors

The SpotLight node object defines the following constructors.

public SpotLight()

Constructs and initializes a new spotlight with the default values.

public SpotLight(Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,
float concentration)

public SpotLight(boolean lightOn, Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,
float concentration)

These construct and initialize a new spotlight with the parameters specified

Methods

The SpotLight node object defines the following methods.

public final void setSpreadAngle(float spreadAngle)
public final float getSpreadAngle()

These methods access or modify the spread angle, in radians, of this spotli
67Version 1.1 Alpha 01, February 27, 1998

5.8 Sound Node LEAF NODE OBJECTS

68

n to all
e con-
e flag
n the
 state
enot-
n-

nd is
public final void setConcentration(float concentration)
public final float getConcentration()

These methods access or modify the concentration of this spotlight.

public final void setDirection(float x, float y, float z)
public final void setDirection(Vector3f direction)
public final void getDirection(Vector3f direction)

These methods access or modify the direction of this spotlight.

5.8 Sound Node

The Sound leaf node is an abstract class that defines the properties commo
Sound nodes. A scene graph can contain multiple sounds. Each Sound nod
tains a reference to the sound data, an amplitude scale factor, a releas
denoting that the sound associated with this node is to play to the end whe
sound is disabled, the number of times the sound is to be repeated, a
(whether the sound is on or off), a scheduling region, a priority, and a flag d
ing if the sound is to continue playing “silently” even while it is inactive. Whe
ever the listener is within the Sound node’s scheduling bounds, the sou
potentially audible.

Constants

The Sound object contains the following flags.

public static final int ALLOW_SOUND_DATA_READ
public static final int ALLOW_SOUND_DATA_WRITE
public static final int ALLOW_INITIAL_GAIN_READ
public static final int ALLOW_INITIAL_GAIN_WRITE
public static final int ALLOW_LOOP_READ
public static final int ALLOW_LOOP_WRITE
public static final int ALLOW_RELEASE_READ
public static final int ALLOW_RELEASE_WRITE
public static final int ALLOW_CONT_PLAY_READ
public static final int ALLOW_CONT_PLAY_WRITE
public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_SCHEDULING_BOUNDS_READ
public static final int ALLOW_SCHEDULING_BOUNDS_WRITE
public static final int ALLOW_PRIORITY_READ
public static final int ALLOW_PRIORITY_WRITE
Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

initial
flag,
ura-
 are

s set.

 fall-

wing

a and
plic-
uses
public static final int ALLOW_DURATION_READ
public static final int ALLOW_CHANNELS_USED_READ
public static final int ALLOW_IS_PLAYING_READ
public static final int ALLOW_IS_READY_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the sound data, the
gain information, the loop information, the release flag, the continuous play
the sound on/off switch, the scheduling region, the prioritization value, the d
tion information, and the sound playing information. These capability flags
enforced only when the node is part of a live or compiled scene graph.

public static final float NO_FILTER

This constant defines a floating point value that denotes that no filter value i
Filters are described in Section 5.8.3, “ConeSound Node.”

public static final int DURATION_UNKNOWN

This constant denotes that the sound’s duration could not be calculated. A
back forgetDuration of a non-cached sound.

Constructors

The Sound node object defines the following constructors.

public Sound()

Constructs and initializes a new Sound node object that includes the follo
defaults for its fields:

sound data: null
initial gain : 1.0
loop: 0
release flag: false
continuous flag: false
on switch: false
scheduling region: null (cannot be scheduled)
priority : 1.0

public Sound(MediaContainer soundData, float initialGain)

Constructs and initializes a new Sound node object using the provided dat
gain parameter values, and defaults for all other fields. This constructor im
itly loads the sound data associated with this node if the implementation
sound caching.
69Version 1.1 Alpha 01, February 27, 1998

5.8 Sound Node LEAF NODE OBJECTS

70

meter

ith a
ed or
ent,
t be
 dis-
imple-
 fully

h this

 loop
er of

nd
ints
o not
f the
 case,

in and
 por-

 and
mes
public Sound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority)

Constructs and initializes a new Sound node object using the provided para
values.

Methods

The Sound node object defines the following methods.

public final void setSoundData(MediaContainer soundData)
public final MediaContainer getSoundData()

These methods provide a way to associate different types of audio data w
Sound node. This data can be cached (buffered) or noncached (unbuffer
streaming). If the AudioDevice has been attached to the PhysicalEnvironm
the sound data is made ready to begin playing. Certain functionality canno
applied to true sreaming sound data: sound duration is unknown, looping is
abled, and the sound cannot be restarted. Furthermore, depending on the
mentation of the AudioDevice used, streaming, non-cached data may not be
spatialized.

public final void setInitialGain(float amplitude)
public final float getInitialGain()

This gain is a scale factor that is applied to the sound data associated wit
sound source to increase or decrease its overall amplitude.

public final void setLoop(int loopCount)
public final int getLoop()

Data for nonstreaming sound (such as a sound sample) can contain two
points marking a section of the data that is to be looped a specific numb
times. Thus, sound data can be divided into three segments: theattack (before
the begin loop point), thesustain (between the begin and end loop points), a
the release (after the end loop point). If there are no loop begin and end po
defined as part of the sound data (say for Java Media Player types that d
contain sound samples), then the begin loop point is set at the beginning o
sound data, and the end loop point at the end of the sound data. If this is the
looping the sound means repeating the whole sound. However, these beg
end loop points can be placed anywhere within the sound data, allowing a
tion in the middle of the sound to be looped.

A sound can be looped a specified number of times after it is activated
before it is completed. The loop count value explicitly sets the number of ti
Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

of 0
 value

ill not
new

 no
 the
 is
data
ing.

nue
cks
und

play-

. This
 is set
ter-

 leaf.
g

the sound is looped. Any non-negative number is a valid value. A value
denotes that the looped section is not repeated, but is played only once. A
of –1 denotes that the loop is repeated indefinitely.

Changing the loop count of a sound after the sound has been started w
dynamically affect the loop count currently used by the sound playing. The
loop count will be used the next time the sound is enabled.

public final void setReleaseEnable(boolean state)
public final boolean getReleaseEnable()

When a sound is disabled, its playback would normally stop immediately
matter what part of the sound data was currently being played. By setting
Release flag totrue for nodes with nonstreaming sound data, the sound
allowed to play from its current position in the sound data to the end of the
(without repeats), thus playing the release portion of the sound before stopp

public final void setContinuousEnable(boolean state)
public final boolean getContinuousEnable()

For some applications, it’s useful to turn a sound source “off” but to conti
“silently” playing the sound so that when it is turned back “on” the sound pi
up playing in the same location (over time) as it would have been if the so
had never been disabled (turned off). Setting the continuous flag totrue causes
the sound renderer to keep track of where (over time) the sound would be
ing even when the sound is disabled.

public final setSchedulingBounds(Bounds region)
public final Bounds getSchedulingBounds()

These two methods access or modify the Sound node’s scheduling bounds
bounds is used as the scheduling region when the scheduling bounding leaf
to null. A sound is scheduled for activation when its scheduling region in
sects the ViewPlatform’s activation volume. ThegetSchedulingBounds method
returns a copy of the associated bounds.

public final void setSchedulingBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getSchedulingBoundingLeaf()

These two methods access or modify the Sound node’s scheduling bounding
When set to a value other thannull, this bounding leaf overrides the schedulin
bounds object and is used as the scheduling region.
71Version 1.1 Alpha 01, February 27, 1998

5.8 Sound Node LEAF NODE OBJECTS

72

 rank
ore

th the
ound
en
iority
hange

ck of
ilable
der,
ually
 three

 needs
d sec-
ailable
 three
 play-
one
come

nts a

k of a
lable

at is,
d and
ntrol
uous

ound
ally)
e can
rting
public final void setPriority(float ranking)
public final float getPriority()

These methods access or modify the Sound node’s priority, which is used to
concurrently playing sounds in order of importance during playback. When m
sounds are started than the AudioDevice can handle, the Sound node wi
lowest priority ranking is deactivated. If a sound is deactivated (due to a s
with a higher priority being started), it is automatically reactivated wh
resources become available (for example, when a sound with a higher pr
finishes playing) or when the ordering of sound nodes is changed due to a c
in a Sound node’s priority.

Sounds with a lower priority than a sound that cannot be played due to a la
channels will be played. For example, assume we have eight channels ava
for playing sounds. After ordering four sounds, we begin playing them in or
checking if the number of channels required to play a given sound are act
available before the sound is played. Furthermore, say the first sound needs
channels to play, the second sound needs four channels, the third sound
three channels and the fourth sound needs only one channel. The first an
onds sounds can be started because they require seven of the eight av
channels. The third sound cannot be audibly started because it requires
channels and only one is still available. Consequently, the third sound starts
ing “silently.” The fourth sound can and will be started since it only requires
channel. The third sound will be made audible when three channels be
available (i.e., when the first or second sound is finished playing).

Sounds given the same priority are ordered randomly. If the application wa
specific ordering it must assign unique priorities to each sound.

Methods to determine what audio output resources are required for playbac
Sound node on a particular AudioDevice and to determine the currently avai
audio output resources are described in Chapter 11, “Audio Devices.”

public final void setEnable(boolean state)
public final boolean getEnable()

These two methods access or modify the playing state of this sound (th
whether the sound is enabled). When enabled, the sound source is starte
thus can potentially be heard, depending on its activation state, gain co
parameters, continuation state, and spatialization parameters. If the contin
state istrue and the sound is not active, enabling the sound starts the s
silently “playing” so that when the sound is activated, the sound is (potenti
heard from somewhere in the middle of the sound data. The activation stat
change from active to inactive any number of times without stopping or sta
Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

nd by

rt
edi-

 for a

 fully
iated
r is

:

on-

ple-
st of
data.

 acti-
 and

lic-

 it is
hile
the sound. To restart a sound at the beginning of its data, re-enable the sou
calling setEnable with a value oftrue.

Setting the enable flag totrue during construction will act as a request to sta
the sound playing “as soon as it can” be started. This could be close to imm
ately in limited cases, but several conditions, detailed below, must be meet
sound to be ready to be played.

public final boolean isReady()

This method retrieves the sound’s “ready” status denoting that the sound is
prepared for playing (either audibly or silently) to begin. Sound data assoc
with a Sound node, either during construction (when the MediaContaine
passed into the constructor as a parameter) or by callingsetSoundData(), it can
be prepared to begin playing only after the following conditions are satisfied

• The Sound node has non-null sound data associated with it

• The Sound node is live

• There is an active View in the Universe

• There is an initialized AudioDevice associated with the PhysicalEnvir
ment.

Depending on the type of MediaContainer the sound data is and on the im
mentation of the AudioDevice used, sound data preparation could consi
opening, attaching, loading, or copying into memory the associated sound
The query method,isReady()) returnstrue when the sound is fully prepro-
cessed so that it is playable (audibly if active, silently if not active).

public final boolean isPlaying()

A sound source will not be heard unless it is both enabled (turned on) and
vated. While these two conditions are meet, the sound is potentially audible
the methodisPlaying() will return a status oftrue.

When the sound finishes playing its sound data (including all loops), it is imp
itly disabled.

public final boolean isPlayingSilently()

This method returns the sound’s silent status. If a sound is enabled before
activated it is begun playing silently. If a sound is enabled then deactivated w
playing it continues playing silently. In both of these casesisPlaying() returns
false but the methodisPlayingSilently() returnstrue.
73Version 1.1 Alpha 01, February 27, 1998

5.8.1 BackgroundSound Node LEAF NODE OBJECTS

74

edia
s its
e is
ing

lected
nels
rns 0

source
. This
use-
like
n be

rs for

y the
 con-
, the
ta is
 dis-
public final long getDuration()

This method returns the length of time (in milliseconds) that the sound m
associated with the sound source could run (including the number of time
loop section is repeated) if it plays to completion. If the sound media typ
streaming, or if the sound is looped indefinitely, then a value of –1 (imply
infinite length) is returned.

public final int getNumberOfChannelsUsed()

When a sound is started it could use more than one channel on the se
AudioDevice it is to be played on. This method returns the number of chan
(on the executing audio device) being used by this sound. The method retu
if sound is not playing.

5.8.1 BackgroundSound Node

A BackgroundSound node defines an unattenuated, nonspatialized sound
that has no position or direction. It has the same attributes as a Sound node
type of sound is simply added to the sound mix without modification and is
ful for playing a mono or stereo music track, or an ambient sound effect. Un
a Background (visual) node, more than one BackgroundSound node ca
simultaneously enabled and active.

Constructors

The BackgroundSound node specifies the following constructor.

public BackgroundSound()

Constructs a BackgroundSound node object using the default paramete
Sound nodes.

public BackgroundSound(MediaContainer soundData,
float initialGain)

public BackgroundSound(MediaContainer soundData,
float initialGain, int loopCount, boolean release,
boolean continuous, boolean enable, Bounds region,
float priority)

The first constructor constructs a new BackgroundSound node using onl
provided parameter values for the sound data and initial gain. The second
structor uses the provided parameter values for the sound data, initial gain
number of times the loop is looped, a flag denoting whether the sound da
played to the end, a flag denoting whether the sound plays silently when
Java 3D API Specification

LEAF NODE OBJECTS PointSound Node5.8.2

nd a

te uni-
 as a
nce-

istener
s of
le fac-

local

 dis-
s part

ound
abled, whether sound is switched on or off, the sound activation region, a
priority value denoting the playback priority ranking.

5.8.2 PointSound Node

The PointSound node defines a spatially located sound whose waves radia
formly in all directions from some point in space. It has the same attributes
Sound object, with the addition of a location and the specification of dista
based gain attenuation for listener positions between an array of distances.

The sound’s amplitude is attenuated based on the distance between the l
and the sound source position. A piecewise linear curve (defined in term
pairs consisting of a distance and a gain scale factor) specifies the gain sca
tor slope.

The PointSound’s location and attenuation distances are defined in the
coordinate system of the node.

Constants

The PointSound object contains the following flags.

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_DISTANCE_GAIN_READ
public static final int ALLOW_DISTANCE_GAIN_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the position and the
tance gain array. These capability flags are enforced only when the node i
of a live or compiled scene graph.

Constructors

The PointSound node object defines the following constructors.

public PointSound()

Constructs a PointSound node object that includes the defaults for a S
object plus the following defaults for its own fields:

Position vector: (0.0, 0.0, 0.0)
Distance gain attenuation: null (no attenuation performed)
75Version 1.1 Alpha 01, February 27, 1998

5.8.2 PointSound Node LEAF NODE OBJECTS

76

y the
 The
 uses
eters

vided
ition.
ts of
 dis-
 and a
 com-
s. See
e

public PointSound(MediaContainer soundData, float initialGain,
Point3f position)

public PointSound(MediaContainer soundData, float initialGain,
float posX, float posY, float posZ)

Both of these constructors construct a PointSound node object using onl
provided parameter values for sound data, sample gain, and position.
remaining fields are set to the default values specified earlier. The first form
vectors as input for its position. The second form uses individual float param
for the elements of the position vector.

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f distanceGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, Point2f distanceGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, float attenuationDistance[],
float attenuationGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float attenuationDistance[],
float attenuationGain[])

These four constructors construct a PointSound node object using the pro
parameter values. The first and third forms use points as input for the pos
The second and fourth forms use individual float parameters for the elemen
the position. The first and second forms accept an array of Point2f for the
tance attenuation values where each pair in the array contains a distance
gain scale factor. The third and fourth forms accept separate arrays for the
ponents of distance attenuation, namely, the distance and gain scale factor
the description for thesetDistanceGain method, below, for details on how th
separate arrays are interpreted.

Methods

The PointSound node object defines the following methods.
Java 3D API Specification

LEAF NODE OBJECTS PointSound Node5.8.2

ound

ot set,
factor
 with

d gain
mined

erpo-
public final void setPosition(Point3f position)
public final void setPosition(float x, float y, float z)
public final void getPosition(Point3f position)

These methods set and retrieve the position in 3D space from which the s
radiates.

public final void setDistanceGain(Point2f attenuation[])
public final void setDistanceGain(float distance[], float gain[])
public final int getDistanceGainLength()
public final void getDistanceGain(Point2f attenuation[])
public final void getDistanceGain(float distance[], float gain[])

These methods set and retrieve the sound’s distance attenuation. If this is n
no distance gain attenuation is performed (equivalent to using a gain scale
of 1.0 for all distances). See Figure 5-2. Gain scale factors are associated
distances from the listener to the sound source via an array of distance an
scale factor pairs. The gain scale factor applied to the sound source is deter
by finding the range of valuesdistance[i] anddistance[i+1] that includes
the current distance from the listener to the sound source, then linearly int
lating the corresponding valuesgain[i] andgain[i+1] by the same amount.

Figure 5-2 PointSound Distance Gain Attenuation

1.0

0.5

0.0

10 20 300
Distance (from listener
to sound source)

Scale Factor
77Version 1.1 Alpha 01, February 27, 1998

5.8.2 PointSound Node LEAF NODE OBJECTS

78

tance
reates
mly

t dis-

 of

,

et of
Gain
um-
 be

n list.

its, a
 dis-
 factor
 the

would

in
If the distance from the listener to the sound source is less than the first dis
in the array, the first gain scale factor is applied to the sound source. This c
a spherical region around the listener within which all sound gain is unifor
scaled by the first gain in the array.

If the distance from the listener to the sound source is greater than the las
tance in the array, the last gain scale factor is applied to the sound source.

The first form ofsetDistanceGain takes these pairs of values as an array
Point2f. The second form accepts two separate arrays for these values. Thedis-

tance and gainScale arrays should be of the same length. If thegainScale

array length is greater than thedistance array length, thegainScale array ele-
ments beyond the length of thedistance array are ignored. If thegainScale
array is shorter than thedistance array, the lastgainScale array value is
repeated to fill an array of length equal todistance array.

There are two methods forgetDistanceGain, one returning an array of points
the other returning separate arrays for each attenuation component.

Distance elements in this array of Point2f are a monotonically increasing s
floating-point numbers measured from the location of the sound source.
scale factor elements in this list of pairs can be any positive floating-point n
bers. While for most applications this list of gain scale factors will usually
monotonically decreasing, they do not have to be.

Figure 5-2 shows a graphical representation of a distance gain attenuatio
The values given for distance/gain pairs would be

((10.0, 1.0), (12.0, 0.9), (16.0, 0.5), (17.0, 0.3),
 (20.0, 0.16), (24.0, 0.12), (28.0, 0.05), (30.0, 0.0))

Thus if the current distance from the listener to the sound source is 22 un
scale factor of 0.14 would be applied to the sound amplitude. If the current
tance from the listener to the sound source is less than 10 units, the scale
of 1.0 would be applied to the sound amplitude. If the current distance from
listener to the sound source is greater than 30 units, the scale factor of 0.0
be applied to the sound amplitude.

The getDistanceGainLength method returns the length of the distance ga
attenuation arrays. Arrays passed intogetDistanceGain methods should all be
at least this size.
Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

urce is
ed by
m the
ion is
ound
tten-
lter

n of a
e (in
s fil-
for

 axis)

tance

 the
 node
5.8.3 ConeSound Node

The ConeSound node object defines a PointSound node whose sound so
directed along a specific vector in space. A ConeSound source is attenuat
gain scale factors and filters based on the angle between the vector fro
source to the listener, and the ConeSound’s direction vector. This attenuat
either a single spherical distance gain attenuation (as for a general PointS
source) or dual front and back distance gain attenuations defining elliptical a
uation volumes. The angular filter and the active AuralAttribute component fi
define what filtering is applied to the sound source.

This node has the same attributes as a PointSound node, with the additio
direction vector and an array of points that each contain an angular distanc
radians), a gain scale factor, and a filter (which for now consists of a lowpas
ter cutoff frequency). Similar to the definition of the distance gain array
PointSounds, a piecewise linear curve (defined in terms of radians from the
specifies the slope of these additional attenuation values.

Figure 5-3 shows an approximation of angular attenuation (disregarding dis
attenuation).

Constants

The ConeSound object contains the following flags.

public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE
public static final int ALLOW_ANGULAR_ATTENUATION_READ
public static final int ALLOW_ANGULAR_ATTENUATION_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the direction and
angular attenuation array. These capability flags are enforced only when the
is part of a live or compiled scene graph.
79Version 1.1 Alpha 01, February 27, 1998

5.8.3 ConeSound Node LEAF NODE OBJECTS

80

ound

ly the
tion.
form
ivid-
Figure 5-3 ConeSound

Constructors

The ConeSound node object defines the following constructors.

public ConeSound()

Constructs a ConeSound node object that includes the defaults for a PointS
object plus the following defaults for its own fields:

Direction vector: (0.0, 0.0, 1.0)
Back attenuation: null
Angular attenuation: ((0.0, 1.0), NO_FILTER,(π/2, 0.0, NO_FILTER))

public ConeSound(MediaContainer soundData, float initialGain,
Point3f position, Vector3f direction)

public ConeSound(MediaContainer soundData, float initialGain,
float posX, float posY, float posZ, float dirX, float dirY,
float dirZ)

Both of these constructors construct a ConeSound node object using on
provided parameter values for sound, overall initial gain, position, and direc
The remaining fields are set to the default values listed earlier. The first
uses points as input for its position and direction. The second form uses ind
ual float parameters for the elements of the position and direction vectors.

DistanceGain[1]

angularAttenuation[3]

angularAttenuation[0]

Sound Direction (axis)

Attenuated Values

DistanceGain[0]
Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

vided
ition,
 indi-
 dis-

efine
terpo-
s that

in the

vided
array.
ngle

ition,
public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f frontDistanceAttenuation[],
Point2f backDistanceAttenuation[], Vector3f direction)

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float frontDistance[],
float frontDistanceGain[], float backDistance[],
float backDistanceGain[], float dirX, float dirY,
float dirZ)

These constructors construct a ConeSound node object using the pro
parameter values. The first form uses points or vectors as input for its pos
direction, and front/back distance attenuation arrays. The second form uses
vidual float parameters for the elements of the position, direction, and two
tance attenuation arrays.

Unlike the single distance gain attenuation array for PointSounds, which d
spherical areas about the sound source between which gains are linearly in
lated, this directed ConeSound can have two distance gain attenuation array
define ellipsoidal attenuation areas. See thesetDistanceGain PointSound
method for details on how the separatedistance anddistanceGain arrays are
interpreted.

The ConeSound’s direction vector and angular measurements are defined
local coordinate system of the node.

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f distanceAttenuation[],
Vector3f direction, Point3f angularAttenuation[])

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float distance[],
float distanceGain[], float dirX, float dirY, float dirZ,
float angle[], float angularGain[],
float frequencyCutoff[])

These constructors construct a ConeSound node object using the pro
parameter values, which include a single spherical distance attenuation
The first form uses points and vectors as input for its position, direction, si
spherical distanceAttenuation array, andangularAttenuation array. The
second form uses individual float parameters for the elements of the pos
direction,distanceAttenuation array, andangularAttenuation array.
81Version 1.1 Alpha 01, February 27, 1998

5.8.3 ConeSound Node LEAF NODE OBJECTS

82

gular
d

ntly

 factor
tance,

vided
llipti-
 input
ivid-

def-
 the
The first form accepts arrays of points for the distance attenuation and an
values. Each Point2f in thedistanceAttenuation array contains a distance an
a gain scale factor. Each Point3f in theangularAttenuation array contains an
angular distance, a gain scale factor, and a filtering value (which is curre
defined as a simple cutoff frequency).

The second form accepts separate arrays for the distance and gain scale
components of distance attenuation, and separate arrays for the angular dis
angular gain, and filtering components of angular attenuation. See thesetDis-

tanceGain PointSound method for details on how the separatedistance and
distanceGain arrays are interpreted. See thesetAngularAttenuation Cone-
Sound method for details on how the separateangularDistance, angularGain,
andfilter arrays are interpreted.

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f frontDistanceAttenuation[],
Point2f backDistanceAttenuation[], Vector3f direction,
Point3f angularAttenuation[])

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, float priority,
boolean continuous, boolean enable, Bounds region,
float posX, float posY, float posZ, float frontDistance[],
float frontDistanceGain[], float backDistance[],
float backDistanceGain[], float dirX, float dirY,
float dirZ, float angle[], float angularGain[],
float frequencyCutoff[])

These constructors construct a ConeSound node object using the pro
parameter values, which include two distance attenuation arrays defining e
cal distance attenuation regions. The first form uses points and vectors as
for its position, direction, and attenuation arrays. The second form uses ind
ual float parameters for these same elements.

These two constructors differ from the previous two constructors only in the
inition of the two distinct front and back distance attenuation arrays. See
setDistanceGain ConeSound method for details on how the separatedistance

and distanceGain arrays are interpreted. See thesetAngularAttenuation
ConeSound method for details on how the separateangularDistance, angular-
Gain, andfilter arrays are interpreted.

Methods

The ConeSound node object defines the following methods.
Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

arrays.
 using
ay is
 back
(see

.

nces
ance
 the
st be
al
public final void setDistanceGain(Point2f frontAttenuation[],
Point2f backAttenuation[])

public final void setDistanceGain(float frontDistance[],
float frontGain[], float backDistance[], float backGain[])

public final void setBackDistanceGain(Point2f attenuation[])
public final void setBackDistanceGain(float distance[],

float gain[])
public final void getDistanceGain(Point2f frontAttenuation[],

Point2f backAttenuation[])
public final void getDistanceGain(float frontDistance[],

float frontGain[], float backDistance[], float backGain[])

These methods set and retrieve the ConeSound’s two distance attenuation
If these are not set, no distance gain attenuation is performed (equivalent to
a distance gain of 1.0 for all distances). If only one distance attenuation arr
set, spherical attenuation is assumed (see Figure 5-4). If both a front and
distance attenuation are set, elliptical attenuation regions are defined
Figure 5-5). Use the PointSoundsetDistanceGain method to set the front dis-
tance attenuation array separately from the back distance attenuation array

Figure 5-4 ConeSound with a Single Distance Gain Attenuation Array

A front distance attenuation array defines monotonically increasing dista
from the sound source origin along the position direction vector. A back dist
attenuation array (if given) defines monotonically increasing distances from
sound source origin along the negative direction vector. The two arrays mu
of the same length. ThebackDistance[i] gain values must be less than or equ
to frontDistance[i] gain values.

Listener

Distances
Sound
Source

Angular Distances
83Version 1.1 Alpha 01, February 27, 1998

5.8.3 ConeSound Node LEAF NODE OBJECTS

84

sound
). The
value
e lis-

th
rays.
 size.

ngu-

uation
rmed
er of
ular
s the

 from
Figure 5-5 ConeSound with Two Distance Gain Attenuation Arrays

Gain scale factors are associated with distances from the listener to the
source via an array of distance and gain scale factor pairs (see Figure 5-2
gain scale factor applied to the sound source is the linear interpolated gain
within the distance value range that includes the current distance from th
tener to the sound source.

ThegetDistanceGainLength method (defined in PointSound) returns the leng
of all distance gain attenuation arrays, including the back distance gain ar
Arrays passed into getBackDistanceGain methods should all be at least this

public final void setDirection(Vector3f direction)
public final void setDirection(float x, float y, float z)
public final void getDirection(Vector3f direction)

This value is the sound source’s direction vector. It is the axis from which a
lar distance is measured.

public final void setAngularAttenuation(Point2f attenuation[])
public final void setAngularAttenuation(Point3f attenuation[])
public final void setAngularAttenuation(float angle[],

float angularGain[], float frequencyCutoff[])
public final int getAngularAttenuationLength()
public final void getAngularAttenuation(Point3f attenuation[])
public final void getAngularAttenuation(float angle[],

float angularGain[], float frequencyCutoff[])

These methods set and retrieve the sound’s angular gain and filter atten
arrays. If these are not set, no angular gain attenuation or filtering is perfo
(equivalent to using an angular gain scale factor of 1.0 and an angular filt
NO_FILTER for all distances). This attenuation is defined as a triple of ang
distance, gain scale factor, and filter values. The distance is measured a
angle in radians between the ConeSound’s direction vector and the vector

Listener

Back Distances Front Distances
Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

filter
 dis-
 axis.

nd’s
 fac-

egion
first

ction
r and

et of
ts
ost
as-

 cut-

s are

or
gth. If

y of

ts of
the sound source position to the listener. Both the gain scale factor and
applied to the sound source are the linear interpolation of values within the
tance value range that includes the angular distance from the sound source

If the angular distance from the listener-sound-position vector and the sou
direction vector is less than the first distance in the array, the first gain scale
tor and first filter are applied to the sound source. This creates a conical r
around the listener within which the sound is uniformly attenuated by the
gain and the first filter in the array.

If the distance from the listener-sound-position vector and the sound’s dire
vector is greater than the last distance in the array, the last gain scale facto
last filter are applied to the sound source.

Distance elements in this array of points are a monotonically increasing s
floating point numbers measured from 0 toπ radians. Gain scale factor elemen
in this list of points can be any positive floating-point numbers. While for m
applications this list of gain scale factors will usually be monotonically decre
ing, they do not have to be. The filter (for now) is a single simple frequency
off value.

In the first form ofsetAngularAttenuation, only the angular distance and
angular gain scale factor pairs are given. The filter values for these tuple
implicitly set toNO_FILTER. In the second form ofsetAngularAttenuation, an
array of all three values is supplied.

The third form ofsetAngularAttenuation accepts three separate arrays f
these angular attenuation values. These arrays should be of the same len
the angularGain or filtering array length is greater than theangularDistance

array length, the array elements beyond the length of theangularDistance array
are ignored. If theangularGain or filtering array is shorter than theangu-
larDistance array, the last value of the short array is repeated to fill an arra
length equal to theangularDistance array.

The getAngularAttenuationArrayLength method returns the length of the
angular attenuation arrays. Arrays passed intogetAngularAttenuation methods
should all be at least this size.

There are two methods forgetAngularAttenuation, one returning an array of
points, the other returning separate arrays for each attenuation component.

Figure 5-3 shows an example of an angular attenuation defining four poin
the form (radiant distance, gain scale factor, cutoff filter frequency):

((0.12, 0.8, NO_FILTER), (0.26, 0.6, 18000.0), (0.32, 0.4, 15000.0),
85Version 1.1 Alpha 01, February 27, 1998

5.9 Soundscape Node LEAF NODE OBJECTS

86

tener’s
ciated
heric
ed in
 be

uling
bject)
 posi-

n a
des: a
, less

t their
ng on
(0.40, 0.2, 11000.0))

5.9 Soundscape Node

The Soundscape leaf node defines the attributes that characterize the lis
aural environment. This node defines an application region and an asso
aural attribute component object that controls reverberation and atmosp
properties that affect sound source rendering. (Aural attributes are describ
Section 7.1.15, “AuralAttributes Object.”) Multiple Soundscape nodes can
included in a single scene graph.

The Soundscape application region, different from a Sound node’s sched
region, is used to select which Soundscape (and thus which aural attribute o
is to be applied to the sounds being rendered. This selection is based on the
tion of the ViewPlatform (the “listener”), not the position of the sound.

It will be common for multiple Soundscape regions to be contained withi
scene graph. Figure 5-6 shows application regions for two Soundscape no
region with a large open area on the right, and a smaller, more constricted
reverberant area on the left.

Figure 5-6 Multiple Soundscape Application Regions

The reverberation attributes for these two regions could be set to represen
physical differences so that active sounds are rendered differently dependi
which region the listener is in.

 Application Region 2Application Region 1
Java 3D API Specification

LEAF NODE OBJECTS Soundscape Node 5.9

 and
de is

or its

cation

unds.
g leaf
ed to

the
Constants

The Soundscape node object defines the following flags.

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_ATTRIBUTES_READ
public static final int ALLOW_ATTRIBUTES_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the application region
the aural attributes. These capability flags are enforced only when the no
part of a live or compiled scene graph.

Constructors

The Soundscape node object defines the following constructors.

public Soundscape()

Constructs a Soundscape node object that includes the following defaults f
elements:

application region: null (no active region)
aural attributes: null (uses default aural attributes)

public Soundscape(Bounds region, AuralAttributes attributes)

This method constructs a Soundscape node object using the specified appli
region and aural attributes.

Methods

The Soundscape node object defines the following methods.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Soundscape node’s application bo
This bounds is used as the application region when the application boundin
is set tonull. The aural attributes associated with this Soundscape are us
render the active sounds when this application region intersects
ViewPlatform’s activation volume. ThegetApplicationBounds method returns
a copy of the associated bounds.
87Version 1.1 Alpha 01, February 27, 1998

5.10 ViewPlatform Node LEAF NODE OBJECTS

88

ound-

. Set-

by a
s in

int is
vir-
e the

licy.
com-

f the
and
jects
public final void setApplicationBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundingLeaf()

These two methods access or modify the Soundscape node’s application b
ing leaf. When set to a value other thannull, this bounding leaf overrides the
application bounds object and is used as the application region.

public final void setAuralAttributes(AuralAttributes attributes)
public final AuralAttributes getAuralAttributes()

These two methods access or modify the aural attributes of this Soundscape
ting it to null results in default attribute use.

5.10 ViewPlatform Node

The ViewPlatform node object defines a viewing platform that is referenced
View object. The location, orientation, and scale of the composite transform
the scene graph from the root to the ViewPlatform specify where the viewpo
located and in which direction it is pointing. A viewer navigates through the
tual universe by changing the transform in the scene graph hierarchy abov
ViewPlatform.

Constants

The ViewPlatform node object defines the following flags.

public static final int ALLOW_POLICY_READ
public static final int ALLOW_POLICY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the view attach po
These capability flags are enforced only when the node is part of a live or
piled scene graph.

Methods

The ViewPlatform node object defines the following methods:

public final void setActivationRadius(float activationRadius)
public final float getActivationRadius()

The activation radius defines an activation volume surrounding the center o
ViewPlatform. This activation volume intersects with the scheduling regions
application regions of other leaf node objects to determine which of those ob
may affect rendering.
Java 3D API Specification

LEAF NODE OBJECTS Morph Node 5.12

r-
set of
more
ts the

uling
 be

dul-
ates
an
r 9,

 eye
 for

t run
ehav-
lasses

user.

me-
y of
node
eome-
e

Different leaf objects interact with the ViewPlatform’s activation volume diffe
ently. The Background, Clip, and Soundscape leaf objects each define a
attributes and an application region in which those attributes are applied. If
than one node of a given type (Background, Clip, or Soundscape) intersec
ViewPlatform’s activation volume, the “most appropriate” node is selected.

Sound leaf objects begin playing their associated sounds when their sched
region intersects a ViewPlatform’s activation volume. Multiple sounds may
active at the same time.

Behavior objects act somewhat differently. Those Behavior objects with sche
ing regions that intersect a ViewPlatform’s activation volume become candid
for scheduling. Effectively, a ViewPlatform’s activation volume becomes
additional qualifier on the scheduling of all Behavior objects. See Chapte
“Behaviors and Interpolators,” for more details.

public final void setViewAttachPolicy(int policy)
public final int getViewAttachPolicy()

The view attach policy determines how Java 3D places the user’s virtual
point as a function of head position. See Section 8.4.3, “View Attach Policy,”
details.

5.11 Behavior Node

The Behavior leaf node allows an application to manipulate a scene graph a
time. Behavior is an abstract class that defines properties common to all B
ior objects in Java 3D. There are several predefined behaviors that are subc
of Behavior. Additionally, a Behavior leaf node may be subclassed by the
Behaviors are described in Chapter 9, “Behaviors and Interpolators.”

5.12 Morph Node

The Morph leaf node permits an application to morph between multiple Geo
tryArrays. The Morph node contains a single Appearance node, an arra
GeometryArray objects, and an array of corresponding weights. The Morph
combines these GeometryArrays into an aggregate shape based on each G
tryArray’s corresponding weight. Typically, Behavior nodes will modify th
weights to achieve various morphing effects.
89Version 1.1 Alpha 01, February 27, 1998

ays,

eci-
d
ified

e

is

Each
ates.
he
Constants

The Morph node specifies the following flags.

public static final int ALLOW_GEOMETRY_ARRAY_READ
public static final int ALLOW_GEOMETRY_ARRAY_WRITE
public static final int ALLOW_APPEARANCE_READ
public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_WEIGHTS_READ
public static final int ALLOW_WEIGHTS_WRITE
public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the GeometryArr
appearance, weights, and collision Bounds components.

Constructors

The Morph node specifies the following constructors.

public Morph(GeometryArray geometryArrays[])
public Morph(GeometryArray geometryArrays[],

Appearance appearance)

The first form constructs and initializes a new Morph leaf node with the sp
fied array of GeometryArray objects and anull Appearance object. The secon
form uses the specified array of GeometryArray objects and the spec
Appearance object. The length of thegeometryArrays parameter determines th
number of weighted geometry arrays in this Morph node. IfgeometryArrays is
null, then aNullPointerException is thrown. If the Appearance component
null, then default values are used for all appearance attributes.

Methods

The Morph node specifies the following methods.

public final void setGeometryArrays(GeometryArray
geometryArrays[])

This method sets the array of GeometryArray objects in the Morph node.
GeometryArray component specifies colors, normals, and texture coordin
The length of thegeometryArrays parameter must be equal to the length of t
array with which this Morph node was created; otherwise, anIllegal-

ArgumentException is thrown.

LEAF NODE OBJECTS Link Node 5.13

node.
ent,

f this
 by
e

ooted
er of
“Link
public final GeometryArray getGeometryArray(int index)

This method retrieves a single geometry array from the Morph node. Theindex

parameter specifies which array is returned.

public final void setAppearance(Appearance appearance)
public final Appearance getAppearance()

These methods set and retrieve the Appearance component of this Morph
The Appearance component specifies material, texture, texture environm
transparency, or other rendering parameters. Setting it tonull results in default
attribute use.

public void setWeights(double weights[])
public double[] getWeights()

These methods set and retrieve the morph weight vector component o
Morph node. The Morph node “weights” the corresponding GeometryArray
the amount specified. The length of theweights parameter must be equal to th
length of the array with which this Morph node was created; otherwise, anIlle-

galArgumentException is thrown.

public final void setCollisionBounds(Bounds bounds)
public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object of this node.

5.13 Link Node

The Link leaf node allows an application to reference a shared subgroup, r
by a SharedGroup node, from within a branch of the scene graph. Any numb
Link nodes can refer to the same SharedGroup node. See Section 6.1.2,
Leaf Node,” for a description of this node.
91Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 6

s

us-
graph.
 still
e first

 to the
 in one

cene
iated
d sub-

orpo-

 (see

Any
raph

roup
Reusing Scene Graph

JAVA 3D provides application programmers with two different means for re
ing scene graphs. First, multiple scene graphs can share a common sub
Second, the node hierarchy of a common subgraph can be cloned, while
sharing large component objects such as geometry and texture objects. In th
case, changes in the shared subgraph affect all scene graphs that refer
shared subgraph. In the second case, each instance is unique—a change
instance does not affect any other instance.

6.1 Sharing Subgraphs

An application that wishes to share a subgraph from multiple places in a s
graph must do so through the use of the Link leaf node and an assoc
SharedGroup node. The SharedGroup node serves as the root of the share
graph. The Link leaf node refers to the SharedGroup node. It does not inc
rate the shared scene graph directly into its scene graph.

6.1.1 SharedGroup Node

A SharedGroup node allows multiple Link leaf nodes to share its subgraph
Figure 6-1) according to the following semantics:

• A SharedGroup may be referenced by one or more Link leaf nodes.
runtime changes to a node or component object in this shared subg
affect all graphs that refer to this subgraph.

• A SharedGroup may be compiled by calling itscompile method prior to
being referenced by any Link leaf nodes.

• Only Link leaf nodes may refer to SharedGroup nodes. A SharedG
node cannot have parents or be attached to a Locale.
93

6.1.1 SharedGroup Node REUSING SCENE GRAPHS

94

dded
nly the
Figure 6-1 Sharing a Subgraph

A shared subgraph may contain any group node, except an embe
SharedGroup node (SharedGroup nodes cannot have parents). However, o
following leaf nodes may appear in a shared subgraph:

• Light

• Link

• Morph

• Shape

• Sound

An IllegalSharingException is thrown if any of the following leaf nodes
appear in a shared subgraph:

BG

Virtual Universe

Hi-Res Locale

BG

L

SG

Link Nodes

SharedGroup Node

BranchGroup Nodes

L

Java 3D API Specification

REUSING SCENE GRAPHS Link Leaf Node6.1.2

t and

, the
r

rence
idden

d by
. See
ode.
• Background

• BoundingLeaf

• Behavior

• Clip

• Fog

• Soundscape

• ViewPlatform

Methods

The SharedGroup node defines the following methods.

public final void compile()

This method compiles the source SharedGroup associated with this objec
creates and caches a newly compiled scene graph.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is called byclone-

Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from theoriginalNode into the
current node. This method is called from thecloneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated
NodeComponent’sduplicateOnCloneTree value is used to determine whethe
the NodeComponent should be duplicated in the new node or if just a refe
to the current node should be placed in the new node. This flag can be overr
by setting theforceDuplicate parameter in thecloneTree method totrue.

6.1.2 Link Leaf Node

The Link leaf node allows an application to reference a shared graph, roote
a SharedGroup node, from within a branch graph or another shared graph
Figure 6-1. Any number of Link nodes can refer to the same SharedGroup n
95Version 1.1 Alpha 01, February 27, 1998

6.2 Cloning Subgraphs REUSING SCENE GRAPHS

96

node
 the

o a
nts to

th this

om-
ate a
The
, and
 type
rious
, each
stance
Constants

The Link node object defines two flags.

public static final int ALLOW_SHARED_GROUP_READ
public static final int ALLOW_SHARED_GROUP_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write the SharedGroup
pointed to by this Link node. These capability flags are enforced only when
node is part of a live or compiled scene graph.

Constructors

The Link node object defines two constructors.

public Link()
public Link(SharedGroup sharedGroup)

The first form constructs a Link node object that does not yet point t
SharedGroup node. The second form constructs a Link node object that poi
the specified SharedGroup node.

Methods

The Link node object defines two methods.

public final void setSharedGroup(SharedGroup sharedGroup)
public final SharedGroup getSharedGroup()

These methods access and modify the SharedGroup node associated wi
Link leaf node.

6.2 Cloning Subgraphs

An application developer may wish to reuse a common subgraph without c
pletely sharing that subgraph. For example, the developer may wish to cre
parking lot scene consisting of multiple cars, each with a different color.
developer might define three basic types of cars, such as convertible, truck
sedan. To create the parking lot scene, the application will instantiate each
of car several times. Then the application can change the color of the va
instances to create more variety in the scene. Unlike shared subgraphs
instance is a separate copy of the scene graph definition: Changes to one in
do not affect any other instance.
Java 3D API Specification

REUSING SCENE GRAPHS References to Node Component Objects6.2.1

nent
f the

eir
.1,

 a
. Set-

o-
ed on

ong

ling
orth).
onent
 leaf
g the
ode

 the
 ref-
tion
Java 3D provides thecloneTree method for this purpose. ThecloneTree
method allows the programmer to change some attributes (NodeCompo
objects) in a scene graph, while at the same time sharing the majority o
scene graph data—the geometry.

Methods

public Node cloneTree()
public Node cloneTree(boolean forceDuplicate)
public Node cloneTree(boolean forceDuplicate,

boolean allowDanglingReferences)

These methods start the cloning of the subgraph. The optionalforceDuplicate

parameter, when set totrue, causes leaf NodeComponent objects to ignore th
duplicateOnCloneTree value and always be duplicated (see Section 6.2
“References to Node Component Objects”). TheallowDanglingReferences

parameter, when set totrue, will permit the cloning of a subgraph even when
dangling reference is generated (see Section 6.2.3, “Dangling References”)
ting forceDuplicate andallowDanglingReferences to false is the equivalent
of calling cloneTree without any parameters. This will result in NodeComp
nent objects being either duplicated or referenced in the cloned node, bas
their duplicateOnCloneTree value. A DanglingReferenceException will be
thrown if a dangling reference is encountered.

When thecloneTree method is called on a node, that node is duplicated al
with its entire internal state. If the node is a Group node,cloneTree is then
called on each of the node’s children.

ThecloneTree method cannot be called on a live or compiled scene graph.

6.2.1 References to Node Component Objects

WhencloneTree reaches a leaf node, there are two possible actions for hand
the leaf node’s NodeComponent objects (such as Material, Texture, and so f
First, the cloned leaf node can reference the original leaf node’s NodeComp
object—the NodeComponent object itself is not duplicated. Since the cloned
node shares the NodeComponent object with the original leaf node, changin
data in the NodeComponent object will effect a change in both nodes. This m
would also be used for objects that are read-only at run time.

Alternatively, the NodeComponent object can be duplicated, in which case
new leaf node would reference the duplicated object. This mode allows data
erenced by the newly created leaf node to be modified without that modifica
affecting the original leaf node.
97Version 1.1 Alpha 01, February 27, 1998

6.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

98

d and

dupli-

 to
ent

 is

s ref-

still
Figure 6-2 shows two instances of NodeComponent objects that are share
one NodeComponent element that is duplicated for the cloned subgraph.

Figure 6-2 Referenced and Duplicated NodeComponent Objects

Methods

public final void setDuplicateOnCloneTree(boolean)
public final void getDuplicateOnCloneTree()

These methods set a flag that controls whether a NodeComponent object is
cated or referenced on a call tocloneTree. By default this flag isfalse, mean-
ing that the NodeComponent object will not be duplicated on a call
cloneTree—newly created leaf nodes will refer to the original NodeCompon
object instead.

If the cloneTree method is called with theforceDuplicate parameter set to
true, the duplicateOnCloneTree flag is ignored and the entire scene graph
duplicated.

6.2.2 References to Other Scene Graph Nodes

Leaf nodes that contain references to other nodes (for example, Light node
erence a Group node) can create a problem for thecloneTree method. After the
cloneTree operation is performed, the reference in the cloned leaf node will

G

Leaf Nodes

Group Nodes

LfLfLf

NodeComponents

cloneTree

G

LfLfLf
Java 3D API Specification

REUSING SCENE GRAPHS References to Other Scene Graph Nodes6.2.2

cor-

 by a

ed by
 their

 the

 the

ned

eed to
refer to the node in the original subgraph—a situation that is most likely in
rect (see Figure 6-3).

Figure 6-3 References to Other Scene Graph Nodes

To handle these ambiguities, a callback mechanism is provided.

A leaf node that needs to update referenced nodes upon being duplicated
call to cloneTree must implement theupdateNodeReferences method. By
using this method, the cloned leaf node can determine if any nodes referenc
it have been duplicated and, if so, update the appropriate references to
cloned counterparts.

Suppose, for instance, that the leaf node Lf1 in Figure 6-3 implemented
updateNodeReferences method. Once all nodes had been duplicated, theclon-

eTree method would then call each cloned leaf’s nodeupdateNodeReferences

method. When cloned leaf node Lf2’s method was called, Lf2 could ask if
node N1 had been duplicated during thecloneTree operation. If the node had
been duplicated, leaf Lf2 could then update its internal state with the clo
node, N2 (see Figure 6-4).

All predefined Java 3D nodes will automatically have theirupdateNodeRefer-

ences method defined. Only subclassed nodes that reference other nodes n
have this method overridden by the user.

G

Lf1LfLf

G

Lf2LfLf

cloneTreeN1 N2
99Version 1.1 Alpha 01, February 27, 1998

6.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

100

 object
 that

 pre-
 must

es in
Figure 6-4 Updated Subgraph afterupdateNodeReferences Call

Methods

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This Leaf node method is called by thecloneTree method after all nodes in the
subgraph have been cloned. The user can query the NodeReferenceTable
(see Section 6.2.5, “NodeReferenceTable Object”) to determine if any nodes
the leaf node references have been duplicated by thecloneTree call and, if so,
what the corresponding node is in the new subgraph. If a user extends a
defined Java 3D object and adds a reference to another node, this method
be defined in order to ensure proper operation of thecloneTree method. The
first statement in the user’supdateNodeReferences method must be
super.updateNodeReferences(referenceTable). For predefined Java 3D
nodes, this method will be implemented automatically.

The NodeReferenceTable object is passed to theupdateNodeReferences method
and allows references from the old subgraph to be translated into refer-enc
the cloned subgraph. The translation is performed by thegetNew-

NodeReference method.

public final Node getNewNodeReference(Node oldReference)

Deprecated method. See thegetNewObjectReference method.

G

Lf1LfLf

G

Lf2LfLf

cloneTreeN1 N2
Java 3D API Specification

REUSING SCENE GRAPHS Dangling References6.2.3

 input
d sub-
er an
(see

e is
y
cloned.
here

 refer-

n a

into
public final SceneGraphObject
getNewObjectReference(SceneGraphObject oldReference)

This method takes a reference to the node in the original subgraph as an
parameter and returns a reference to the equivalent node in the just-clone
graph. If the equivalent node in the cloned subgraph does not exist, eith
exception is thrown or a reference to the original node is returned
Section 6.2.3, “Dangling References”).

6.2.3 Dangling References

BecausecloneTree is able to start the cloning operation from any node, ther
a potential for creatingdangling references. A dangling reference can occur onl
when a leaf node that contains a reference to another scene graph node is
If the referenced node is not cloned, a dangling reference situation exists: T
are now two leaf nodes that access the same node (Figure 6-5). A dangling
ence is discovered when a leaf node’supdateNodeReferences method calls the
getNewNodeReference method and the cloned subgraph does not contai
counterpart to the node being looked up.

Figure 6-5 Dangling Reference: Bold Nodes Are Being Cloned

When a dangling reference is discovered,cloneTree can handle it in one of two
ways. If cloneTree is called without theallowDanglingReferences parameter
set totrue, a dangling reference will result in aDanglingReferenceException
being thrown. The user can catch this exception if desired. IfcloneTree is called
with the allowDanglingReferences parameter set totrue, the update-

NodeReferences method will return a reference to the same object passed

G

Lf

cloneTree
101Version 1.1 Alpha 01, February 27, 1998

6.2.4 Subclassing Nodes REUSING SCENE GRAPHS

102

uto-
r sub-
st be

e-spe-

 define

s nec-
the getNewNodeReference method. This will result in thecloneTree operation
completing with dangling references, as in Figure 6-5.

6.2.4 Subclassing Nodes

All Java 3D predefined nodes (for example, Interpolators and LOD nodes) a
matically handle all node reference and duplication operations. When a use
classes a Leaf object or a NodeComponent object, certain methods mu
provided in order to ensure the proper operation ofcloneTree.

Leaf node subclasses (for example, Behaviors) that contain any user nod
cific data that needs to be duplicated during acloneTree operation must define
the following two methods:

Node cloneNode(boolean forceDuplicate);
void duplicateNode(Node n, boolean forceDuplicate)

ThecloneNode method consists of three lines:

UserLeafNode un = new UserLeafNode();
un.duplicateNode(this, forceDuplicate);
return un;

TheduplicateNode method must first callsuper.duplicateNode before dupli-
cating any necessary user-specific data or setting any user-specific state.

NodeComponent subclasses that contain any user node-specific data must
the following two methods:

NodeComponent cloneNodeComponent();
void duplicateNodeComponent(NodeComponent nc);

ThecloneNodeComponent method consists of three lines:

UserNodeComponent un = new UserNodeComponent();
un.duplicateNodeComponent(this);
return un;

The duplicateNodeComponent must first callsuper.duplicateNodeComponent
and then can duplicate any user-specific data or set any user-specific state a
essary.
Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Node6.2.6

ps
. This
 refer-
a 3D.

 input
d sub-
er an
(see

w to
6.2.5 NodeReferenceTable Object

The NodeReferenceTable object is used by a leaf node’supdateNodeReferences

method called by thecloneTree operation. The NodeReferenceTable ma
nodes from the original subgraph to the new nodes in the cloned subgraph
information can than be used to update any cloned leaf node references to
ence nodes in the cloned subgraph. This object can only be created by Jav

Methods

public final Node getNewNodeReference(Node oldReference)

Deprecated method. See thegetNewObjectReference method.

public final SceneGraphObject
getNewObjectReference(SceneGraphObject oldReference)

This method takes a reference to the node in the original subgraph as an
parameter and returns a reference to the equivalent node in the just-clone
graph. If the equivalent node in the cloned subgraph does not exist, eith
exception is thrown or a reference to the original node is returned
Section 6.2.3, “Dangling References”).

6.2.6 Example User Behavior Node

The following is an example of a user-defined Behavior object to show ho
properly define a node to be compatible with thecloneTree operation.

class RotationBehavior extends Behavior {
TransformGroup objectTransform;
WakeupOnElapsedFrames w;

Matrix4d rotMat = new Matrix4d();
Matrix4d objectMat = new Matrix4d();
Transform3D t = new Transform();

// Override Behavior's initialize method to set up wakeup
// criteria
public void initialize() {

// Establish initial wakeup criteria
wakeupOn(w);

 }

// Override Behavior's stimulus method to handle the event
public void processStimulus(Enumeration criteria) {

// Rotate by another PI/120.0 radians
103Version 1.1 Alpha 01, February 27, 1998

6.2.6 Example User Behavior Node REUSING SCENE GRAPHS

104
objectMat.mul(objectMat, rotMat);
t.set(objectMat);
objectTransform.setTransform(t);

// Set wakeup criteria for next time
wakeupOn(w);

}

// Constructor for rotation behavior.
public RotationBehavior(TransformGroup tg, int numFrames) {

w = new WakeupOnElapsedFrames(numFrames);
objectTransform = tg;
objectMat.setIdentity();

// Create a rotation matrix that rotates PI/120.0
// radians per frame
rotMat.rotX(Math.PI/120.0);

// Note: When this object is duplicated via cloneTree,
// the cloned RotationBehavior node needs to point to
// the TransformGroup in the just-cloned tree.

}

// Sets a new TransformGroup.
public void setTransformGroup(TransformGroup tg) {

objectTransform = tg;
}

// The next two methods are needed for cloneTree to operate
// correctly.
// cloneNode is needed to provide a new instance of the user
// derived subclass.
public Node cloneNode(boolean forceDuplicate) {

// Get all data from current node needed for
// the constructor
int numFrames = w.getElapsedFrameCount();

RotationBehavior r =
new RotationBehavior(objectTransform, w);

r.duplicateNode(this, forceDuplicate);
return r;

}
// duplicateNode is needed to duplicate all super class
// data as well as all user data.
public void duplicateNode(Node n, boolean forceDuplicate) {

super.duplicateNode(n, forceDuplicate);
// Nothing to do here - all unique data was handled
// in the constructor in the cloneNode routine.

}

Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Node6.2.6
// Callback for when this leaf is cloned. For this object
// we want to find the cloned TransformGroup node that this
// clone Leaf node should reference.
public void updateNodeReferences(NodeReferenceTable t) {

super.updateNodeReferences(t);

// Update node's TransformGroup to proper reference
TransformGroup newTg =
 (TransformGroup)t.getNewNodeReference(objectTransform);
setTransformGroup(newTg);

}
}

105Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 7

ts

ance

 con-
ma-
alue.
plex

te

es all
 in a
te
Node Component Objec

NODE component objects include the actual geometry and appear
attributes used to render the geometry.

7.1 Node Component Objects: Attributes

Node objects by themselves do not fully specify their exact semantics. They
tain information that further refines their exact meaning. Some of that infor
tion is specified as an attribute and an associated floating-point or integer v
In many cases, however, the information consists of references to more com
entities callednode component objects. Node component objects encapsula
related state information in a single entity. See Figure 7-1.

7.1.1 Appearance Object

The Appearance object is a component object of a Shape3D node that defin
rendering state attributes for that shape node. If the Appearance object
Shape3D node isnull, default values will be used for all rendering sta
attributes.

Constants

The Appearance component object defines the following flags.

public static final int ALLOW_MATERIAL_READ
public static final int ALLOW_MATERIAL_WRITE
public static final int ALLOW_TEXTURE_READ
public static final int ALLOW_TEXTURE_WRITE
public static final int ALLOW_TEXGEN_READ
public static final int ALLOW_TEXGEN_WRITE
107

7.1.1 Appearance Object NODE COMPONENT OBJECTS

108
Figure 7-1 Attribute Component Object Hierarchy

public static final int ALLOW_TEXTURE_ATTRIBUTES_READ
public static final int ALLOW_TEXTURE_ATTRIBUTES_WRITE
public static final int ALLOW_COLORING_ATTRIBUTES_READ
public static final int ALLOW_COLORING_ATTRIBUTES_WRITE
public static final int ALLOW_TRANSPARENCY_ATTRIBUTES_READ
public static final int ALLOW_TRANSPARENCY_ATTRIBUTES_WRITE
public static final int ALLOW_RENDERING_ATTRIBUTES_READ
public static final int ALLOW_RENDERING_ATTRIBUTES_WRITE
public static final int ALLOW_POLYGON_ATTRIBUTES_READ
public static final int ALLOW_POLYGON_ATTRIBUTES_WRITE
public static final int ALLOW_LINE_ATTRIBUTES_READ
public static final int ALLOW_LINE_ATTRIBUTES_WRITE

SceneGraphObject
NodeComponent

Appearance
AuralAttributes
ColoringAttributes
LineAttributes
PointAttributes
PolygonAttributes
RenderingAttributes
TextureAttributes
TransparencyAttributes
Material
MediaContainer
TexCoordGeneration
Texture

Texture2D
Texture3D

ImageComponent
ImageComponent2D
ImageComponent3D

DepthComponent
DepthComponentFloat
DepthComponentInt
DepthComponentNative

Bounds
BoundingBox
BoundingPolytope
BoundingSphere

Transform3D
Java 3D API Specification

NODE COMPONENT OBJECTS Appearance Object7.1.1

refer-
hese
iled

nces

ting.
public static final int ALLOW_POINT_ATTRIBUTES_READ
public static final int ALLOW_POINT_ATTRIBUTES_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write the specified component object
ence (material, texture, texture coordinate generation, and so forth). T
capability flags are enforced only when the object is part of a live or comp
scene graph.

Constructors

The Appearance object has the following constructor.

public Appearance()

Constructs and initializes an Appearance object. All component object refere
are initialized tonull.

The default values, for those objects withnull references, are as follows:

color: white (1,1,1)
texture environment mode: TEXENV_REPLACE
texture environment color: white (1,1,1,1)
depth test enable: true
shade model: SHADE_SMOOTH
polygon mode: POLYGON_FILL
transparency enable: false
transparency mode: FASTEST
cull face: CULL_BACK
point size: 1.0
line width: 1.0
line pattern: PATTERN_SOLID
point antialiasing enable: false
line antialiasing enable: false

Methods

The Appearance object has the following methods.

public final void setMaterial(Material material)
public final Material getMaterial()

The Material object specifies the desired material properties used for ligh
Setting it tonull disables lighting.
109Version 1.1 Alpha 01, February 27, 1998

7.1.1 Appearance Object NODE COMPONENT OBJECTS

110

s. Set-

 it to
public final void setTexture(Texture texture)
public final Texture getTexture()

The Texture object specifies the desired texture map and texture parameter
ting it to null disables texture mapping.

public final void setTextureAttributes(TextureAttributes
textureAttributes)

public final TextureAttributes getTextureAttributes()

These methods set and retrieve the TextureAttributes object. Setting it tonull

results in default attribute use.

public final void setColoringAttributes(ColoringAttributes
coloringAttributes)

public final ColoringAttributes getColoringAttributes()

These methods set and retrieve the ColoringAttributes object. Setting it tonull

results in default attribute use.

public final void setTransparencyAttributes(
TransparencyAttributes transparencyAttributes)

public final TransparencyAttributes getTransparencyAttributes()

These methods set and retrieve the TransparencyAttributes object. Setting
null results in default attribute use.

public final void setRenderingAttributes(RenderingAttributes
renderingAttributes)

public final RenderingAttributes getRenderingAttributes()

These methods set and retrieve the RenderingAttributes object. Setting it tonull

results in default attribute use.

public final void setPolygonAttributes(PolygonAttributes
polygonAttributes)

public final PolygonAttributes getPolygonAttributes()

These methods set and retrieve the PolygonAttributes object. Setting it tonull

results in default attribute use.

public final void setLineAttributes(LineAttributes lineAttributes)
public final LineAttributes getLineAttributes()

These methods set and retrieve the LineAttributes object. Setting it tonull

results in default attribute use.
Java 3D API Specification

NODE COMPONENT OBJECTS ColoringAttributes Object7.1.2

a leaf

 and

es.
public final void setPointAttributes(PointAttributes
pointAttributes)

public final PointAttributes getPointAttributes()

These methods set and retrieve the PointAttributes object. Setting it tonull

results in default attribute use.

public final void setTexCoordGeneration(TexCoordGeneration
texCoordGeneration)

public final TexCoordGeneration getTexCoordGeneration()

These methods set and retrieve the TexCoordGeneration object. Setting it tonull

disables texture coordinate generation.

public NodeComponent cloneNodeComponent()

This method creates a new Appearance object. The method is called from
node’sduplicateNode method.

public void duplicateNodeComponent(NodeComponent originalNode)

This method copies the information found inoriginalNode to the current node.
This routine is called as part of thecloneTree operation.

7.1.2 ColoringAttributes Object

The ColoringAttributes object defines attributes that apply to color mapping.

Constants

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SHADE_MODEL_READ
public static final int ALLOW_SHADE_MODEL_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its color component
shade model component information.

Constructors

public ColoringAttributes()
public ColoringAttributes(Color3f color, int shadeModel)
public ColoringAttributes(float red, float green, float blue,

int shadeModel)

These constructors create a ColoringAttributes object with the specified valu
111Version 1.1 Alpha 01, February 27, 1998

7.1.3 LineAttributes Object NODE COMPONENT OBJECTS

112

om-
erial

com-

g.

tex

from
Methods

public final void setColor(Color3f color)
public final void setColor(float r, float g, float b)
public final void getColor(Color3f color)

These methods set and retrieve the intrinsic color of this ColoringAttributes c
ponent object. This color is used when lighting is disabled or when the Mat
is null.

public final void setShadeModel(int shadeModel)
public final int getShadeModel()

These methods set and retrieve the shade model for this ColoringAttributes
ponent object. The shade model is one of the following:

• FASTEST: Uses the fastest available method for shading.

• NICEST: Uses the nicest (highest quality) available method for shadin

• SHADE_FLAT: Does not interpolate color across the primitive.

• SHADE_GOURAUD: Smoothly interpolates the color at each ver
across the primitive.

public NodeComponent cloneNodeComponent()

This method creates a new ColoringAttributes object. This method is called
a leaf node’sduplicateNode method.

public void duplicateNodeComponent(NodeComponent originalNode)

This method copies the information found inoriginalNode to the current node.
This method is called as part of thecloneTree operation.

7.1.3 LineAttributes Object

The LineAttributes object defines attributes that apply to line primitives.

Constants

The LineAttributes object specifies the following variables.
Java 3D API Specification

NODE COMPONENT OBJECTS LineAttributes Object7.1.3

for-

ight

one

ttern

 sec-
line

 Lin-
public static final int ALLOW_WIDTH_READ
public static final int ALLOW_WIDTH_WRITE
public static final int ALLOW_PATTERN_READ
public static final int ALLOW_PATTERN_WRITE
public static final int ALLOW_ANTIALIASING_READ
public static final int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field in
mation.

public static final int PATTERN_SOLID

Draws a solid line with no pattern.

public static final int PATTERN_DASH

Draws a dashed line. Ideally, this will be drawn with a repeating pattern of e
pixels on and eight pixels off.

public static final int PATTERN_DOT

Draws a dotted line. Ideally, this will be drawn with a repeating pattern of
pixel on and seven pixels off.

public static final int PATTERN_DASH_DOT

Draws a dashed-dotted line. Ideally, this will be drawn with a repeating pa
of seven pixels on, four pixels off, one pixel on, and four pixels off.

Constructors

public LineAttributes()
public LineAttributes(float lineWidth, int linePattern,

boolean lineAntialiasing)

The first constructor creates a LineAttributes object with default values. The
ond constructor creates a LineAttributes object with specified values of
width, pattern, and whether antialiasing is enabled or disabled.

Methods

public final void setLineWidth(float lineWidth)
public final float getLineWidth()

These methods respectively set and retrieve the line width, in pixels, for this
eAttributes component object.
113Version 1.1 Alpha 01, February 27, 1998

7.1.4 PointAttributes Object NODE COMPONENT OBJECTS

114

eAt-
o

om-
g.

from
ion
the

for-
public final void setLinePattern(int linePattern)
public final int getLinePattern()

These methods respectively set and retrieve the line pattern for this Lin
tributes component object. ThelinePattern value describes the line pattern t
be used, which is one of the following:PATTERN_SOLID, PATTERN_DASH,
PATTERN_DOT, or PATTERN_DASH_DOT.

public final void setLineAntialiasingEnable(boolean state)
public final boolean getLineAntialiasingEnable()

Theset method enables or disables line antialiasing for this LineAttributes c
ponent object. Theget method retrieves the state of the line antialiasing fla
The flag istrue if line antialiasing is enabled,false if line antialiasing is dis-
abled.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new LineAttributes object; this method is called
a leaf node’sduplicateNode method. The second method copies the informat
found inoriginalNode to the current node; this method is called as part of
cloneTree operation.

7.1.4 PointAttributes Object

The PointAttributes object defines attributes that apply to point primitives.

Constants

The PointAttributes object specifies the following variables.

public final static int ALLOW_SIZE_READ
public final static int ALLOW_SIZE_WRITE
public final static int ALLOW_ANTIALIASING_READ
public final static int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field in
mation.
Java 3D API Specification

NODE COMPONENT OBJECTS PolygonAttributes Object7.1.5

 com-

tes
ng

from
ion
the

es.
Constructors

public PointAttributes()
public PointAttributes(float pointSize,

boolean pointAntialiasing)

These constructors create a new PointAttributes object.

Methods

public final void setPointSize(float pointSize)
public final float getPointSize()

These methods set and retrieve the point size, in pixels, for this Appearance
ponent object.

public final void setPointAntialiasingEnable(boolean state)
public final boolean getPointAntialiasingEnable()

The set method enables or disables point antialiasing for this PointAttribu
component object. Theget method retrieves the state of the point antialiasi
flag. The flag istrue if point antialiasing is enabled,false if point antialiasing
is disabled.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new PointAttributes object; this method is called
a leaf node’sduplicateNode method. The second method copies the informat
found inoriginalNode to the current node; this method is called as part of
cloneTree operation.

7.1.5 PolygonAttributes Object

The PolygonAttributes object defines attributes that apply to polygon primitiv

Constants

The PolygonAttributes object specifies the following variables.
115Version 1.1 Alpha 01, February 27, 1998

7.1.5 PolygonAttributes Object NODE COMPONENT OBJECTS

116

for-

utes

pear-
ing:

the

en

f

public final static int ALLOW_CULL_FACE_READ
public final static int ALLOW_CULL_FACE_WRITE
public final static int ALLOW_MODE_READ
public final static int ALLOW_MODE_WRITE
public final static int ALLOW_OFFSET_READ
public final static int ALLOW_OFFSET_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read and write its individual component field in
mation.

Constructors

public PolygonAttributes()
public PolygonAttributes(int polygonMode, int cullFace,

float polygonOffset)

These constructors create a new PolygonAttributes object.

Methods

public final void setCullFace(int cullFace)
public final int getCullFace()

These methods set and retrieve the face culling flag for this PolygonAttrib
component object. The face culling flag is one of the following:

• CULL_NONE: Performs no face culling.

• CULL_FRONT: Culls all front-facing polygons.

• CULL_BACK: Culls all back-facing polygons.

public final void setPolygonMode(int polygonMode)
public final int getPolygonMode()

These methods set and retrieve the polygon rasterization mode for this Ap
ance component object. The polygon rasterization mode is one of the follow

• POLYGON_POINT: Renders polygonal primitives as points drawn at
vertices of the polygon.

• POLYGON_LINE: Renders polygonal primitives as lines drawn betwe
consecutive vertices of the polygon.

• POLYGON_FILL: Renders polygonal primitives by filling the interior o
the polygon.
Java 3D API Specification

NODE COMPONENT OBJECTS RenderingAttributes Object7.1.6

fset is

alled
r-

art

com-

alue
public final void setPolygonOffset(float polygonOffset)
public final float getPolygonOffset()

These methods set and retrieve the polygon offset. This screen-space of
added to the final, device-coordinate Z value of polygon primitives.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new PolygonAttributes object; this method is c
from a leaf node’sduplicateNode method. The second method copies the info
mation found inoriginalNode to the current node; this method is called as p
of thecloneTree operation.

7.1.6 RenderingAttributes Object

The RenderingAttributes object defines per-pixel rendering state attributes
mon to all primitive types.

Constants

public static final int ALLOW_ALPHA_TEST_VALUE_READ
public static final int ALLOW_ALPHA_TEST_VALUE_WRITE
public static final int ALLOW_ALPHA_TEST_FUNCTION_READ
public static final int ALLOW_ALPHA_TEST_FUNCTION_WRITE
public static final int ALLOW_DEPTH_ENABLE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual test v
and function information.

Constructors

public RenderingAttributes()
public RenderingAttributes(boolean depthBufferEnable,

boolean depthBufferWriteEnable, float alphaTestValue,
int alphaTestFunction)

These constructors create a new RenderingAttributes object.
117Version 1.1 Alpha 01, February 27, 1998

7.1.6 RenderingAttributes Object NODE COMPONENT OBJECTS

118

ngAt-
,

nder-

t func-

tion is

ha

lue.

 the

ot

 the

 is

ater

ha
Methods

public final void setDepthBufferEnable(boolean state)
public final boolean getDepthBufferEnable()

These methods set and retrieve the depth buffer enable flag for this Renderi
tributes component object. The flag istrue if the depth buffer mode is enabled
false if disabled.

public final void setDepthBufferWriteEnable(boolean state)
public final boolean getDepthBufferWriteEnable()

These methods set and retrieve the depth buffer write enable flag for this Re
Attributes component object. The flag istrue if the depth buffer mode is writ-
able,false if the depth buffer is read-only.

public final void setAlphaTestValue(float value)
public final float getAlphaTestValue()

These methods set and retrieve the alpha test value used by the alpha tes
tion. This value is compared to the alpha value of each rendered pixel.

public final void setAlphaTestFunction(int function)
public final int getAlphaTestFunction()

These methods set and retrieve the alpha test function. The alpha test func
one of the following:

• ALWAYS: Indicates pixels are always drawn irrespective of the alp
value. This effectively disables alpha testing.

• NEVER: Indicates pixels are never drawn irrespective of the alpha va

• EQUAL: Indicates pixels are drawn if the pixel alpha value is equal to
alpha test value.

• NOT_EQUAL: Indicates pixels are drawn if the pixel alpha value is n
equal to the alpha test value.

• LESS: Indicates pixels are drawn if the pixel alpha value is less than
alpha test value.

• LESS_OR_EQUAL: Indicates pixels are drawn if the pixel alpha value
less than or equal to the alpha test value.

• GREATER: Indicates pixels are drawn if the pixel alpha value is gre
than the alpha test value.

• GREATER_OR_EQUAL: Indicates pixels are drawn if the pixel alp
value is greater than or equal to the alpha test value.
Java 3D API Specification

NODE COMPONENT OBJECTS TextureAttributes Object7.1.7

alled
r-

art

.

nent

xture-
public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new RenderingAttributes object; this method is c
from a leaf node’sduplicateNode method. The second method copies the info
mation found inoriginalNode to the current node; this method is called as p
of thecloneTree operation.

7.1.7 TextureAttributes Object

The TextureAttributes object defines attributes that apply to texture mapping

Constants

public static final int ALLOW_MODE_READ
public static final int ALLOW_MODE_WRITE
public static final int ALLOW_BLEND_COLOR_READ
public static final int ALLOW_BLEND_COLOR_WRITE
public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compo
field information.

Constructors

public TextureAttributes()
public TextureAttributes(int textureMode, Transform3D transform,

Color4f textureBlendColor, int perspCorrectionMode)

These constructors create a new TextureAttributes object.

Methods

public final void setTextureMode(int textureMode)
public final int getTextureMode()

These methods set and retrieve the texture mode parameter for this Te
Attributes component object. The texture mode is one of the following:

• MODULATE: Modulates the object color with the texture color.

• DECAL: Applies the texture color to the object as a decal.

• BLEND: Blends the texture blend color with the object color.

• REPLACE: Replaces the object color with the texture color.
119Version 1.1 Alpha 01, February 27, 1998

7.1.8 TransparencyAttributes Object NODE COMPONENT OBJECTS

120

utes
aram-

sform
 this

ed for
e is

ture

ing

alled
r-

art

par-
public final void setTextureBlendColor(Color4f textureBlendColor)
public final void setTextureBlendColor(float r, float g, float b,

float a)
public final void getTextureBlendColor(Color4f textureBlendColor)

These methods set and retrieve the texture blend color for this TextureAttrib
component object. The texture blend color is used when the texture mode p
eter isBLEND.

public final void setTextureTransform(Transform3D transform)
public final void getTextureTransform(Transform3D transform)

These methods set and retrieve the texture transform object used to tran
texture coordinates. A copy of the specified Transform3D object is stored in
TextureAttributes object.

public final void setPerspectiveCorrectionMode(int mode)
public final int getPerspectiveCorrectionMode()

These methods set and retrieve the perspective correction mode to be us
color and texture coordinate interpolation. The perspective correction mod
one of the following:

• NICEST: Uses the nicest (highest quality) available method for tex
mapping perspective correction.

• FASTEST: Uses the fastest available method for texture mapp
perspective correction.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TextureAttributes object; this method is c
from a leaf node’sduplicateNode method. The second method copies the info
mation found inoriginalNode to the current node; this method is called as p
of thecloneTree operation.

7.1.8 TransparencyAttributes Object

The TransparencyAttributes object defines all attributes affecting the trans
ency of the object.
Java 3D API Specification

NODE COMPONENT OBJECTS TransparencyAttributes Object7.1.8

nent

 com-

g an
s is
eter.

 of
y).

e. The
 1.0
Constants

public static final int ALLOW_MODE_READ
public static final int ALLOW_MODE_WRITE
public static final int ALLOW_VALUE_READ
public static final int ALLOW_VALUE_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compo
field information.

Constructors

public TransparencyAttributes()
public TransparencyAttributes(int tMode, float tVal)

These constructors create a new TransparencyAttributes object.

Methods

public final void setTransparencyMode(int transparencyMode)
public final int getTransparencyMode()

These methods set and retrieve the transparency mode for this Appearance
ponent object. The transparency mode is one of the following:

• FASTEST: Uses the fastest available method for transparency.

• NICEST: Uses the nicest available method for transparency.

• SCREEN_DOOR: Uses screen-door transparency. This is done usin
on/off stipple pattern in which the percentage of transparent pixel
approximately equal to the value specified by the transparency param

• BLENDED: Uses alpha blended transparency. A blend equation
(alpha*src + (1 – alpha)*dst) is used, where alpha is (1 – transparenc

• NONE: No transparency; opaque object.

public final void setTransparency(float transparency)
public final float getTransparency()

These methods set and retrieve this Appearance object’s transparency valu
transparency value is in the range [0.0, 1.0], with 0.0 being fully opaque and
being fully transparent.
121Version 1.1 Alpha 01, February 27, 1998

7.1.9 Material Object NODE COMPONENT OBJECTS

122

od is
he
as

fines
n an
at

nent

tes.
public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TransparencyAttributes object; this meth
called from a leaf node’sduplicateNode method. The second method copies t
information found inoriginalNode to the current node; this method is called
part of thecloneTree operation.

7.1.9 Material Object

The Material object is a component object of an Appearance object that de
the material properties used when lighting is enabled. If the Material object i
Appearance object isnull, lighting is disabled for all nodes that use th
Appearance object.

Constants

The Material object defines two flags.

public static final int ALLOW_COMPONENT_READ
public static final int ALLOW_COMPONENT_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual compo
field information.

Constructors

The Material object has the following constructors.

public Material()

Constructs and initializes a Material object using default values for all attribu
The default values are as follows:

ambient color: 0.2, 0.2, 0.2
emissive color: black (0.0, 0.0, 0.0)
diffuse color: white (1.0, 1.0, 1.0)
specular color: white (1.0, 1.0, 1.0)
shininess: 64.0
Java 3D API Specification

NODE COMPONENT OBJECTS Material Object 7.1.9

ters.
ness

bient

This

light
ue is
public Material(Color3f ambientColor, Color3f emmissiveColor,
Color3f diffuseColor, Color3f specularColor,
float shininess)

Constructs and initializes a new Material object using the specified parame
The ambient color, emissive color, diffuse color, specular color, and shini
parameters are specified.

Methods

The Material object has the following methods.

public final void setAmbientColor(Color3f color)
public final void setAmbientColor(float r, float g, float b)
public final void getAmbientColor(Color3f color)

This parameter specifies this material’s ambient color, that is, how much am
light is reflected by the material’s surface.

public final void setEmissiveColor(Color3f color)
public final void setEmissiveColor(float r, float g, float b)
public final void getEmissiveColor(Color3f color)

This parameter specifies the color of light, if any, that the material emits.
color is added to the color produced by applying the lighting equation.

public final void setDiffuseColor(Color3f color)
public final void setDiffuseColor(float r, float g, float b)
public final void setDiffuseColor(float r, float g, float b,

float a)
public final void getDiffuseColor(Color3f color)

This parameter specifies the color of the material when illuminated by a
source. In addition to the diffuse color (red, green, and blue), the alpha val
used to specify transparency such that transparency = (1 – alpha).

public final void setSpecularColor(Color3f color)
public final void setSpecularColor(float r, float g, float b)
public final void getSpecularColor(Color3f color)

This parameter specifies the specular highlight color of the material.
123Version 1.1 Alpha 01, February 27, 1998

7.1.10 Texture Object NODE COMPONENT OBJECTS

124

ess. It
hiny

(

 leaf
ion
the

cene

fines
xture
ll
ss. As

 or a
public final void setShininess(float shininess)
public final float getShininess()

This parameter specifies a material specular scattering exponent, or shinin
takes a floating-point number in the range [1.0, 128.0], with 1.0 being not s
and 128.0 being very shiny.

public final void setLightingEnable(boolean state)
public final boolean getLightingEnable()

These methods set and retrieve the current state of the lighting enable flag true

or false) for this Appearance component object.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Material object; this method is called from a
node’s duplicateNode method. The second method copies the informat
found inoriginalNode to the current node; this method is called as part of
cloneTree operation.

public String toString()

This method returns a string representation of this Material’s values. If the s
graph is live, only those values with their capability bit set will be displayed.

7.1.10 Texture Object

The Texture object is a component object of an Appearance object that de
the texture properties used when texture mapping is enabled. If the Te
object in an Appearance object isnull, then texture mapping is disabled for a
nodes that use that Appearance object. The Texture object is an abstract cla
such, all texture objects must be created as either a Texture2D object
Texture3D object.

Constants

The Texture object defines the following flags:
Java 3D API Specification

NODE COMPONENT OBJECTS Texture Object7.1.10

mpo-

 The

vel

s

public static final int ALLOW_ENABLE_READ
public static final int ALLOW_ENABLE_WRITE
public static final int ALLOW_BOUNDARY_MODE_READ
public static final int ALLOW_FILTER_READ
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_MIPMAP_MODE_READ
public static final int ALLOW_BOUNDARY_COLOR_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual co
nent field information.

Constructors

The Texture object has the following constructor.

public Texture()

This constructor is not very useful as the default width and height are 0.
other default values are as follows:

boundaryModeS: WRAP
boundaryModeT: WRAP
minification filter : BASE_LEVEL_POINT
magnification filter : BASE_LEVEL_POINT
boundary color: black (0,0,0,0)
texture image: null

public Texture(int mipmapMode, int format, int width, int height)

Constructs an empty Texture object with specifiedmipmapMode format, width,
and height. Image at level 0 must be set by the application using thesetImage

method. ThemipmapMode can be one of the following:

• BASE_LEVEL: Indicates that this Texture object only has a base-le
image. If multiple levels are needed, they will be implicitly computed.

• MULTI_LEVEL_MIPMAP: Indicates that this Texture object ha
multiple images—one for each mipmap level (that is, log2(max(W,H)) + 1
separate images). IfmipmapMode is set toMULTI_LEVEL_MIPMAP, images
for all levels must be set.

Theformat is the data of textures saved in this object. Theformat can be one of
the following:

• INTENSITY: Specifies Texture contains only intensity values.

• LUMINANCE: Specifies Texture contains only luminance values.
125Version 1.1 Alpha 01, February 27, 1998

7.1.10 Texture Object NODE COMPONENT OBJECTS

126

ha

 and

in this

tant

 are
re

sed
 mini-

y.

ure

r

ap.
• ALPHA: Specifies Texture contains only alpha values.

• LUMINANCE_ALPHA: Specifies Texture contains luminance and alp
values.

• RGB: Specifies Texture contains red, green, and blue color values.

• RGBA: Specifies Texture contains red, green, and blue color values,
an alpha value.

Methods

The Texture object has the following methods.

public final void setBoundaryModeS(int boundaryModeS)
public final int getBoundaryModeS()
public final void setBoundaryModeT(int boundaryModeT)
public final int getBoundaryModeT()

These parameters specify the boundary mode for the S and T coordinates
Texture object. The boundary mode is as follows:

• CLAMP: Clamps texture coordinates to be in the range [0, 1]. A cons
boundary color is used for U,V values that fall outside this range.

• WRAP: Repeats the texture by wrapping texture coordinates that
outside the range [0, 1]. Only the fractional portion of the textu
coordinates is used; the integer portion is discarded.

public final void setMinFilter(int minFilter)
public final int getMinFilter()

This parameter specifies the minification filter function. This function is u
when the pixel being rendered maps to an area greater than one texel. The
fication filter is one of the following:

• FASTEST: Uses the fastest available method for processing geometr

• NICEST: Uses the nicest available method for processing geometry.

• BASE_LEVEL_POINT: Selects the nearest texel in the level 0 text
map.

• BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the fou
nearest texels in the level 0 texture map.

• MULTI_LEVEL_POINT: Selects the nearest texel in the nearest mipm

• MULTI_LEVEL_LINEAR: Performs trilinear interpolation of texels
between four texels each from the two nearest mipmap levels.
Java 3D API Specification

NODE COMPONENT OBJECTS Texture Object7.1.10

sed
 texel.

y.

ure

r

 base

 The

xture

r this
public final void setMagFilter(int magFilter)
public final int getMagFilter()

This parameter specifies the magnification filter function. This function is u
when the pixel being rendered maps to an area less than or equal to one
The value is one of the following:

• FASTEST: Uses the fastest available method for processing geometr

• NICEST: Uses the nicest available method for processing geometry.

• BASE_LEVEL_POINT: Selects the nearest texel in the level 0 text
map.

• BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the fou
nearest texels in the level 0 texture map.

public final void setImage(int level, ImageComponent image)
public final ImageComponent getImage(int level)

These methods set and retrieve a specified mipmap level. Level 0 is the
level.

public final void setBoundaryColor(Color4f boundaryColor)
public final void setBoundaryColor(float r, float g, float b,

float a)
public final void getBoundaryColor(Color4f boundaryColor)

This parameter specifies the texture boundary color for this Texture object.
texture boundary color is used whenboundaryModeS or boundaryModeT is set to
CLAMP.

public final void setEnable(boolean state)
public final boolean getEnable()

These methods set and retrieve the state of texture mapping for this Te
object. A value oftrue means that texture mapping is enabled,false means that
texture mapping is disabled.

public final void setMipMapMode(int mipmapMode)
public final int getMipMapMode()

These methods set and retrieve the mipmap mode for texture mapping fo
Texture object. The mipmap mode is eitherBASE_LEVEL or MULTI_LEVEL_MIP_
MAP.
127Version 1.1 Alpha 01, February 27, 1998

7.1.11 Texture2D Object NODE COMPONENT OBJECTS

128

xture

The

m a
ion
the

xture
etting

e 0.
7.1.11 Texture2D Object

The Texture2D object is a subclass of the Texture class. It extends the Te
class by adding a constructor for setting a 2D texture image.

Constructors

The Texture2D object has the following constructors.

public Texture2D()

This constructor is not very useful as the default width and height are 0.

public Texture2D(int mipmapMode, int format, int width, int height)

Constructs and initializes a Texture2D object with the specified attributes.
mipmapMode parameter is eitherBASE_LEVEL or MULTI_LEVEL_MIPMAP. Thefor-
mat parameter is one of the following:INTENSITY, LUMINANCE, ALPHA,
LUMINANCE_ALPHA, RGB, or RGBA.

Methods

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Texture2D object; this method is called fro
leaf node’sduplicateNode method. The second method copies the informat
found inoriginalNode to the current node; this method is called as part of
cloneTree operation.

7.1.12 Texture3D Object

The Texture3D object is a subclass of the Texture class. It extends the Te
class by adding a third texture coordinate and by adding a constructor for s
a 3D texture image.

Constructors

The Texture3D object has the following constructors.

public Texture3D()

This constructor is not very useful as the default width, height, and depth ar
Java 3D API Specification

NODE COMPONENT OBJECTS TexCoordGeneration Object7.1.13

 The

xture

tant

 are
re

m a
ion
the

bject
bled. If
public Texture3D(int mipmapMode, int format, int width, int height,
int depth)

Constructs and initializes a Texture3D object using the specified attributes.
mipmapMode parameter is eitherBASE_LEVEL or MULTI_LEVEL_MIPMAP. Thefor-
mat parameter is one ofINTENSITY, LUMINANCE, ALPHA, LUMINANCE_ALPHA, RGB,
or RGBA. The default value for a Texture3D object is as follows:

• boundaryModeR: WRAP

Methods

The Texture3D object has the following methods.

public final void setBoundaryModeR(int boundaryModeR)
public final int getBoundaryModeR()

This parameter specifies the boundary mode for the R coordinate in this Te
object. The boundary mode is as follows:

• CLAMP: Clamps texture coordinates to be in the range [0, 1]. A cons
boundary color is used for R values that fall outside this range.

• WRAP: Repeats the texture by wrapping texture coordinates that
outside the range [0, 1]. Only the fractional portion of the textu
coordinates is used; the integer portion is discarded.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Texture3D object; this method is called fro
leaf node’sduplicateNode method. The second method copies the informat
found inoriginalNode to the current node; this method is called as part of
cloneTree operation.

7.1.13 TexCoordGeneration Object

The TexCoordGeneration object is a component object of an Appearance o
that defines the parameters used when texture coordinate generation is ena
the TexCoordGeneration object in an Appearance object isnull, texture coordi-
nate generation is disabled for all nodes that use that Appearance object.

Constants

The TexCoordGeneration object specifies the following variables.
129Version 1.1 Alpha 01, February 27, 1998

7.1.13 TexCoordGeneration Object NODE COMPONENT OBJECTS

130

mpo-

oordi-

vari-
ified
 con-
public final static int ALLOW_ENABLE_READ
public final static int ALLOW_ENABLE_WRITE
public final static int ALLOW_FORMAT_READ
public final static int ALLOW_MODE_READ
public final static int ALLOW_PLANE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual co
nent field information.

public final static int OBJECT_LINEAR

Generates texture coordinates as a linear function in object coordinates.

public final static int EYE_LINEAR

Generates texture coordinates as a linear function in eye coordinates.

public final static int SPHERE_MAP

Generates texture coordinates using a spherical reflection mapping in eye c
nates.

public final static int TEXTURE_COORDINATE_2

Generates 2D texture coordinates (S and T).

public final static int TEXTURE_COORDINATE_3

Generates 3D texture coordinates (S, T, and R).

Constructors

The TexGen object has the following constructors.

public TexCoordGeneration()
public TexCoordGeneration(int genMode, int format)
public TexCoordGeneration(int genMode, int format,

Vector4f planeS)
public TexCoordGeneration(int genMode, int format,

Vector4f planeS, Vector4f planeT)
public TexCoordGeneration(int genMode, int format,

Vector4f planeS, Vector4f planeT, Vector4f planeR)

The first form constructs a TexGen object using default values for all state
ables. The other forms construct a TexGen object by initializing the spec
fields. Default values are used for those state variables not specified in the
structor. The parameters are as follows:
Java 3D API Specification

NODE COMPONENT OBJECTS TexCoordGeneration Object7.1.13

pear-

 coor-

lue is
• genMode: Texture generation mode. One ofOBJECT_LINEAR, EYE_LINEAR,
or SPHERE_MAP.

• format: Texture format (2D or 3D). EitherTEXTURE_COORDINATE_2 or
TEXTURE_COORDINATE_3.

• planeS: Plane equation for the S coordinate.

• planeT: Plane equation for the T coordinate.

• planeR: Plane equation for the R coordinate.

Default values for parameters that are not specified are as follows:

genMode: OBJECT_LINEAR
format : TEXTURE_COORDINATE_2
planeS: (1, 0, 0, 0)
planeT: (0, 1, 0, 0)
planeR: (0, 0, 0, 0)

Methods

The TexGen object has the following methods.

public final void setEnable(boolean state)
public final boolean getEnable()

This parameter enables or disables texture coordinate generation for this Ap
ance component object. The value istrue if texture coordinate generation is
enabled,false if texture coordinate generation is disabled.

public final void setFormat(int format)
public final int getFormat()

This parameter specifies the format, or dimension, of the generated texture
dinates. The format value is eitherTEXTURE_COORDINATE_2 or TEXTURE_

COORDINATE_3.

public final void setGenMode(int genMode)
public final int getGenMode()

This parameter specifies the texture coordinate generation mode. The va
one ofOBJECT_LINEAR, EYE_LINEAR, or SPHERE_MAP.
131Version 1.1 Alpha 01, February 27, 1998

7.1.14 MediaContainer Object NODE COMPONENT OBJECTS

132

tion is

tion is

tion is

alled
r-

art

fines
s ref-

 Java
de a
posed
hen

 meth-
 data

on-
public final void setPlaneS(Vector4f planeS)
public final void getPlaneS(Vector4f planeS)

This parameter specifies the S coordinate plane equation. This plane equa
used to generate the S coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.

public final void setPlaneT(Vector4f planeT)
public final void getPlaneT(Vector4f planeT)

This parameter specifies the T coordinate plane equation. This plane equa
used to generate the T coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.

public final void setPlaneR(Vector4f planeR)
public final void getPlaneR(Vector4f planeR)

This parameter specifies the R coordinate plane equation. This plane equa
used to generate the R coordinate inOBJECT_LINEAR and EYE_LINEAR texture
generation modes.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TexCoordGeneration object; this method is c
from a leaf node’sduplicateNode method. The second method copies the info
mation found inoriginalNode to the current node; this method is called as p
of thecloneTree operation.

7.1.14 MediaContainer Object

The MediaContainer object is a component object of a Sound node that de
the sound data associated with a Sound node. This component object’s field
erence a Java Media Framework Player (which contains audio data), a
Media Sound data container, or explicit sound sample data. Its fields inclu
cache flag and a URL path to sound data recognized by JavaSound (a pro
Java Media API) as a valid container that includes audio data. Eventually, w
the JavaSound API is completed, the application can use JavaSound query
ods to determine the format, precision, encoding and compression type,
length, and number of channels required for playback for a particular MediaC
tainer at the given URL path.

Constants

The MediaContainer object has the following flags.
Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object7.1.15

ing

path

erence

 with

 that
hese
public static final int ALLOW_CACHE_READ
public static final int ALLOW_CACHE_WRITE
public static final int ALLOW_URL_READ
public static final int ALLOW_URL_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read or write its cached flag and its URL string.

Constructors

The MediaContainer object has the following constructors.

public MediaContainer()

Constructs and initializes a new MediaContainer object using the follow
default values.

cache data: false
URL : null

public MediaContainer(String path)
public MediaContainer(URL url)

Constructs and initializes a new MediaContainer object using the specified
and forcing the cache data flag totrue.

Methods

The Sound object has the following methods.

public final void setCacheEnable(boolean flag)
public final boolean getCacheEnable()

This parameter specifies whether this component contains a noncached ref
to the sound data or explicit cached sound data.

public final void setURL(String path)
public final void setURL(URL url)
public final String getURL()

This parameter specifies the string path (URL) of the sound data associated
this component.

7.1.15 AuralAttributes Object

The AuralAttributes object is a component object of a Soundscape node
defines environmental audio parameters that affect sound rendering. T
133Version 1.1 Alpha 01, February 27, 1998

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

134

trol-
pler

ts to

 it
.

or

is

s the

prox-
ever-
 the

sents
s full

lic-
lcu-

 as the

 iter-
oeffi-
rally)
attributes include gain scale factor, atmospheric rolloff, and parameters con
ling reverberation, distance frequency filtering, and velocity-activated Dop
effect.

7.1.15.1 Reverberation

Within Java 3D’s simple model for auralization, there are three componen
sound reverberation for a particular listening space:

• Delay time: Approximates the time from the start of a sound until
reaches the listener after reflecting once off the surfaces in the region

• Reflection coefficient: Attenuates the reverberated sound uniformly (f
all frequencies) as it bounces off surfaces.

• Feedback loop: Controls the maximum number of times a sound
reflected off the surfaces.

None of these parameters are affected by sound position. Figure 7-2 show
interaction of these parameters.

Figure 7-2 Sound Reverberation Parameters

The reflection coefficient for reverberation is a single scale factor used to ap
imate the overall reflective or absorptive characteristics of the surfaces in a r
beration region in which the listener is located. This scale factor is applied to
sound’s amplitude regardless of the sound’s position. A value of 1.0 repre
complete (unattenuated) sound reflection, while a value of 0.0 represent
absorption (reverberation is disabled).

The reverberation delay time is set either explicitly (in milliseconds), or imp
itly by supplying an additional bounds volume (so the delay time can be ca
lated). The bounds of the reverberation space do not have to be the same
application region of the Soundscape node using this object.

The reverberation order defines the number of reverberation (feedback) loop
ations to be executed while a sound is played. As long as the reflection c
cient is small enough, the reverberated sound decreases (as it would natu

SoundSource Delay
Reflection

Feedback Loop

Coefficient
Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object7.1.15

reates

s the

sound
ency
 of the

of fre-
pler
tem

) must
not.
each successive iteration. A value of 0 disables reverberation, a value of 1 c
a single echo (given that the reverb delay is long enough), and a value of−1 sig-
nifies that reverberation is to loop until it reaches an amplitude ofeffective zero
(>60 dB or 1/1000 of sound amplitude). All other positive values are used a
number of loop iterations.

7.1.15.2 Doppler Effect

Doppler effect can be used to create a greater sense of movement of
sources, and can help unambiguate front-back localization errors. The frequ
of sound waves emanating from the source are lowered based on the speed
source in relation to the listener, and the sound’s wavelength.

The Doppler scale factor can be used to increase or reduce the change
quency associated with normal Doppler calculation. To create this Dop
effect, the relative velocity (change in distance in the local coordinate sys
between the sound source and the listener over time, in meters per second
be specified. This is nonzero even if the listener is moving but the sound is

Constants

The AuralAttributes object has the following flags.

public static final int ALLOW_ATTRIBUTE_GAIN_READ
public static final int ALLOW_ATTRIBUTE_GAIN_WRITE
public static final int ALLOW_ROLLOFF_READ
public static final int ALLOW_ROLLOFF_WRITE
public static final int ALLOW_REFLECTION_COEFFICIENT_READ
public static final int ALLOW_REFLECTION_COEFFICIENT_WRITE
public static final int ALLOW_REVERB_DELAY_READ
public static final int ALLOW_REVERB_DELAY_WRITE
public static final int ALLOW_REVERB_ORDER_READ
public static final int ALLOW_REVERB_ORDER_WRITE
public static final int ALLOW_DISTANCE_FILTER_READ
public static final int ALLOW_DISTANCE_FILTER_WRITE
public static final int ALLOW_DOPPLER_SCALE_FACTOR_READ
public static final int ALLOW_DOPPLER_SCALE_FACTOR_WRITE
public static final int ALLOW_DOPPLER_VELOCITY_READ
public static final int ALLOW_DOPPLER_VELOCITY_WRITE

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read or write the associated parameters.
135Version 1.1 Alpha 01, February 27, 1998

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

136

ing

me-

Valid

t the
fter it

olloff
es are
Constructors

The AuralAttributes object has the following constructors.

public AuralAttributes()

Constructs and initializes a new AuralAttributes object using the follow
default values:

attribute gain: 1.0
rolloff : 1.0
reflection coefficient: 0.0
reverb delay: 0.0
reverb order: 0
distance filtering: null (no filtering performed)
Doppler scale factor: 1.0
Doppler velocity: 0.0

public AuralAttributes(float gain, float rolloff,
float reflectionCoefficient, float reverbDelay,
int reverbOrder, Point2f distanceFilter[],
float dopplerScaleFactor, float dopplerVelocity)

public AuralAttributes(float gain, float rolloff,
float reflectionCoefficient, float reverbDelay,
int reverbOrder, float distance[], float frequencyCutoff,
float dopplerScaleFactor, float dopplerVelocity)

Construct and initialize a new AuralAttributes object using the specified para
ters.

Methods

The AuralAttributes object has the following methods.

public final void setAttributeGain(float gain)
public final float getAttributeGain()

This parameter specifies an amplitude scale factor applied to the sound.
values are≥ 0.0.

public final void setRolloff(float rolloff)
public final float getRolloff()

This scale factor is used to model simple atmospheric conditions that affec
speed of sound. This affects the time a sound takes to reach the listener a
has begun playing. The normal speed of sound is scaled by this single r
scale factor, thus increasing or decreasing the usual attenuation. Valid valu
Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Object7.1.15

se its

aves
acti-
d to
e of
ound

face

while

unds
 new

dded

sound

s not
r of
e-
≥ 0.0. Values > 1.0 increase the speed of sound, while values < 1.0 decrea
speed.

public final void setReflectionCoefficient(float reflectionCoeff)
public final float getReflectionCoefficient()

This parameter specifies an average amplitude scale factor for all sound w
(independent of their frequencies) as they reflect off all surfaces within the
vation region in which the listener is located. There is currently no metho
assign different reflective audio properties to individual surfaces. The rang
values is 0.0 to 1.0. A value of 0.0 represents a fully absorptive surface (no s
waves reflect off), while a value of 1.0 represents a fully reflective sur
(amplitudes of sound waves reflecting off surfaces are not decreased).

public final void setReverbDelay(float reverbDelay)
public final void setReverbDelay(Bounds reverbVolume)
public final float getReverbDelay()

This parameter specifies the delay time between each order of reflection
reverberation is being rendered. In the first form ofsetReverbDelay, an explicit
delay time is given in milliseconds. In the second form, a reverberation bo
volume is specified, and then the delay time is calculated, becoming the
reverb time delay. A value of 0.0 for delay time disables reverberation.

public final void setReverbOrder(int reverbOrder)
public final int getReverbOrder()

This parameter specifies the maximum number of times reflections will be a
to the reverberation being calculated. When the amplitude of then-th reflection
reaches effective zero, no further reverberations need be added to the
image. A value of 0 disables reverberation. A value of−1 specifies that the rever-
beration calculations will loop indefinitely, until then-th reflection term reaches
effective zero.

public final void setDistanceFilter(Point2f attenuation[])
public final void setDistanceFilter(float distance[],

float frequencyCutoff[])
public final int getDistanceFilterLength()
public final void getDistanceFilter(Point2f attenuation[])
public final void getDistanceFilter(float distance[],

float frequencyCutoff[])

This parameter specifies a (distance, filter) attenuation pairs array. If this i
set, no distance filtering is performed (equivalent to using a distance filte
Sound.NO_FILTER for all distances). Currently, this filter is a low-pass cutoff fr
137Version 1.1 Alpha 01, February 27, 1998

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

138

lues.

 list.
plied
m in

tance
erical
 the
e is
ound

 of

 to

er
t

,

et of
Fre-

 for
ing,

change
der-
ency
quency. This array of pairs defines a piecewise linear slope for a range of va
This attenuation array is similar to the PointSound node’sdistanceAttenuation

pair array, except that frequency values are paired with distances in this
Using these pairs, distance-based low-pass frequency filtering can be ap
during sound rendering. Distances, specified in the local coordinate syste
meters, must be > 0. Frequencies (in Hz) must be > 0.

If the distance from the listener to the sound source is less than the first dis
in the array, the first filter is applied to the sound source. This creates a sph
region around the listener within which a sound is uniformly attenuated by
first filter in the array. If the distance from the listener to the sound sourc
greater than the last distance in the array, the last filter is applied to the s
source.

The first form ofsetDistanceFilter takes these pairs of values as an array
Point2f. The second form accepts two separate arrays for these values. Thedis-

tance andfrequencyCutoff arrays should be of the same length. If thefre-

quencyCutoff array length is greater than thedistance array length, the
frequencyCutoff array elements beyond the length of thedistance array are
ignored. If thefrequencyCutoff array is shorter than thedistance array, the
last frequencyCutoff array value is repeated to fill an array of length equal
thedistance array.

The getDistanceFilterLength method returns the length of the distance filt
arrays. Arrays passed intogetDistanceFilter methods should all be at leas
this size.

There are two methods forgetDistanceFilter, one returning an array of points
the other returning separate arrays for each attenuation component.

Distance elements in this array of pairs are a monotonically increasing s
floating-point numbers measured from the location of the sound source.
quency cutoff elements in this list of pairs can be any positive float. While
most applications this list of values will usually be monotonically decreas
they do not have to be.

public final void setDopplerScaleFactor(float
frequencyScaleFactor)

public final float getDopplerScaleFactor()

This parameter specifies a scale factor is used to increase or decrease the
of frequency resulting from the Doppler effect calculated during sound ren
ing. This allows the application to exaggerate or reduce the change in frequ
Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent Object7.1.16

und.

istener
ren-
ocity

s. The
r 3D

e 2D
 pixel

r red,

reen,
normally resulting from applying the standard Doppler equation to the so
Valid values are≥ 0.0. A value of 0.0 disables any Doppler calculation.

public final void setDopplerVelocity(float velocityScaleFactor)
public final float getDopplerVelocity()

This parameter specifies a scale factor applied to therelative velocity(change in
distance in the local coordinate system between the sound source and the l
over time) automatically calculated by the Doppler equation during sound
dering. This allows the application to exaggerate or reduce the relative vel
calculated by the standard Doppler equation. Valid values are≥ 0.0. A value of
0.0 disables any Doppler calculation.

7.1.16 ImageComponent Object

The ImageComponent classes are used for texture and background image
ImageComponent object is an abstract class that is used to define 2D o
ImageComponent classes.

Constants

The ImageComponent object has the following flags:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_FORMAT_READ
public static final int ALLOW_IMAGE_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read the associated parameters.

The ImageComponent object specifies the following variables, used to defin
or 3D ImageComponent classes. These variables specify the format of the
data.

public final static int FORMAT_RGB

Specifies that each pixel contains three eight-bit channels, one each fo
green, and blue. This is the same asFORMAT_RGB8.

public final static int FORMAT_RGBA

Specifies that each pixel contains four eight-bit channels, one each for red, g
blue, and alpha. This is the same asFORMAT_RGBA8.
139Version 1.1 Alpha 01, February 27, 1998

7.1.16 ImageComponent Object NODE COMPONENT OBJECTS

140

r red,

reen,

green,

green,

green,

reen,

ance

ance

d and
public final static int FORMAT_RGB8

Specifies that each pixel contains three eight-bit channels, one each fo
green, and blue. This is the same asFORMAT_RGB.

public final static int FORMAT_RGBA8

Specifies that each pixel contains four eight-bit channels, one each for red, g
blue, and alpha. This is the same asFORMAT_RGBA.

public final static int FORMAT_RGB5

Specifies that each pixel contains three five-bit channels, one each for red,
and blue.

public final static int FORMAT_RGB5_A1

Specifies that each pixel contains three five-bit channels, one each for red,
and blue, and a one-bit channel for alpha.

public final static int FORMAT_RGB4

Specifies that each pixel contains three four-bit channels, one each for red,
and blue.

public final static int FORMAT_RGBA4

Specifies that each pixel contains four four-bit channels, one each for red, g
blue, and alpha.

public final static int FORMAT_LUM4_ALPHA4

Specifies that each pixel contains two four-bit channels, one each for lumin
and alpha.

public final static int FORMAT_LUM8_ALPHA8

Specifies that each pixel contains two eight-bit channels, one each for lumin
and alpha.

public static final int FORMAT_R3_G3_B2

Specifies that each pixel contains two three-bit channels, one each for re
green, and a two-bit channel for blue.
Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent2D Object7.1.17

 used

nent

e and

bject
tructs
buff-
public static final int FORMAT_CHANNEL8

Specifies that each pixel contains one eight-bit channel. The channel can be
for only luminance, alpha, or intensity.

Constructors

The ImageComponent object defines the following constructor.

public ImageComponent(int format, int width, int height)

This constructor constructs and initializes a new ImageComponent object.

Methods

The ImageComponent object defines the following methods.

public final int getWidth()
public final int getHeight()
public final int getFormat()

These methods retrieve the width, height, and format of this image compo
object.

7.1.17 ImageComponent2D Object

The ImageComponent2D class defines a 2D array of pixels, used for textur
background images.

Constructors

The ImageComponent2D object defines the following constructors.

public ImageComponent2D(int format, int width, int height)
public ImageComponent2D(int format, BufferedImage image)

The first constructor constructs and initializes a 2D image component o
using the specified format, width, and height. The second constructor cons
and initializes a 2D image component object using the specified format and
ered image. A copy of the image is made.

Methods

The ImageComponent2D object defines the following methods.
141Version 1.1 Alpha 01, February 27, 1998

7.1.18 ImageComponent3D Object NODE COMPONENT OBJECTS

142

nent

ct.

xture

bject
 con-
rmat

bject.
public void set(BufferedImage image)

This method copies the specified buffered image to this 2D image compo
object.

Note: The image must be completely loaded before calling this function.

public final BufferedImage getImage()

This method retrieves a copy of the image in this ImageComponent2D obje

7.1.18 ImageComponent3D Object

The ImageComponent3D class defines a 3D array of pixels, used for te
images.

Constructors

The ImageComponent3D object defines the following constructors.

public ImageComponent3D(int format, int width, int height,
int depth)

public ImageComponent3D(int format, BufferedImage image[])

The first constructor constructs and initializes a 3D image component o
using the specified format, width, height, and depth. The second constructor
structs and initializes a 3D image component object using the specified fo
and the buffered image array.

Methods

The ImageComponent3D object defines the following methods.

public final int getDepth()

This method retrieves the depth of this 3D image component object.

public final BufferedImage[] getImage()
public final BufferedImage getImage(int index)

These methods retrieve a copy of the images in this ImageComponent3D o
Java 3D API Specification

NODE COMPONENT OBJECTS DepthComponentFloat Object7.1.20

s 3D
Image

rray of

 and
].
i-

-

public final void set(BufferedImage images[])
public final void set(int index, BufferedImage image)

The first method copies the specified array of BufferedImage objects to thi
image component object. The second method copies the specified Buffered
object to this 3D image component object at the specified index.

7.1.19 DepthComponent Object

The DepthComponent object is an abstract base class that defines a 2D a
depth (Z) values.

Constants

The DepthComponent object has the following flags:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_DATA_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read the associated parameters.

Methods

public int getWidth()
public int getHeight()

These methods get the width and height of this object.

7.1.20 DepthComponentFloat Object

The DepthComponentFloat object extends the DepthComponent object
defines a 2D array of depth (Z) values in floating-point format in the range [0, 1
A value of 0.0 indicates the closestZ value to the user, while a value of 1.0 ind
cates the farthestZ value.

Constructors

The DepthComponentFloat object defines the following constructors.

public DepthComponentFloat(int width, int height)

Constructs a new floating-point depth (Z-buffer) component object with the spec
ified width and height.
143Version 1.1 Alpha 01, February 27, 1998

7.1.21 DepthComponentInt Object NODE COMPONENT OBJECTS

144

efines

d

 and
a

sed to

d

Methods

public void setDepthData(float depthData[])
public void getDepthData(float depthData[])

These methods set and retrieve the specified depth data for this object.

7.1.21 DepthComponentInt Object

The DepthComponentInt object extends the DepthComponent object and d
a 2D array of depth (Z) values in integer format. Values are in the range [0, (2n) –
1], wheren is theZ-buffer pixel depth.

Constructors

The DepthComponentInt object defines the following constructor.

public DepthComponentInt(int width, int height)

Constructs a new integer depth (Z-buffer) component object with the specifie
width and height.

Methods

public void setDepthData(int depthData[])
public void getDepthData(int depthData[])

These methods set and retrieve the specified depth data for this object.

7.1.22 DepthComponentNative Object

The DepthComponentNative object extends the DepthComponent object
defines a 2D array of depth (Z) values stored in the most efficient format for
particular device. Values are not accessible by the user and may only be u
read theZ values and subsequently write them back.

Constructors

The DepthComponentNative object defines the following constructor.

public DepthComponentNative(int width, int height)

Constructs a new native depth (Z-buffer) component object with the specifie
width and height.
Java 3D API Specification

NODE COMPONENT OBJECTS Bounds Object7.1.23

 these
unds
oly-

ound-

oint,

ding

ay of
7.1.23 Bounds Object

Bounds objects define three varieties of containing volumes. Java 3D uses
containing volumes to support various culling operations. The types of bo
include an axis-aligned-box volume, a spherical volume, and a bounding p
tope.

Methods

The Bounds object defines the following methods.

public abstract Object clone()

Clone this object.

public abstract void set(Bounds boundsObject)

This method sets the value of this Bounds object to enclose the specified b
ing object.

public abstract boolean intersect(Point3d origin,
Point3d direction)

public abstract boolean intersect(Point3d point)
public abstract boolean intersect(Bounds boundsObject)
public abstract boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this Bounds object with a ray, a p
another Bounds object, or an array of Bounds objects, respectively.

public abstract Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this boun
object.

public abstract void combine(Bounds boundsObject)
public abstract void combine(Bounds boundsObjects[])
public abstract void combine(Point3d point)
public abstract void combine(Point3d points[])

These methods combine this Bounds object with a bounding object, an arr
bounding objects, a point, or an array of points, respectively.
145Version 1.1 Alpha 01, February 27, 1998

7.1.24 BoundingBox Object NODE COMPONENT OBJECTS

146

is the
 sec-

e is

 the
 the

d
on-
public abstract void transform(Bounds bounds, Transform3D trans)
public abstract void transform(Transform3D trans)

The first method tranforms a Bounds object so that it bounds a volume that
result of transforming the given bounding object by the given transform. The
ond method transforms the Bounds object by the given transform.

public abstract boolean isEmpty()

This method tests whether the bounds is empty. A bounds is empty if it isnull

(either by construction or as the result of a null intersection) or if its volum
negative. A bounds with a volume of zero isnot empty.

7.1.24 BoundingBox Object

BoundingBox objects are axis-aligned bounding box volumes.

Constructors

The BoundingBox object defines the following constructors.

public BoundingBox()
public BoundingBox(Point3d lower, Point3d upper)
public BoundingBox(Bounds boundsObject)
public BoundingBox(Bounds bounds[])

The first constructor constructs and initializes a 2X unity BoundingBox about
origin. The second constructor constructs and initializes a BoundingBox from
given minimum and maximum inx, y, andz. The third constructor constructs an
initializes a BoundingBox from a bounding object. The fourth constructor c
structs and initializes a BoundingBox from an array of bounding objects.

Methods

The BoundingBox object defines the following methods.

public void getLower(Point3d p1)
public void setLower(Point3d p1)
public void setLower(double xmin, double ymin, double zmin)

This parameter specifies the lower corner of this bounding box.
Java 3D API Specification

NODE COMPONENT OBJECTS BoundingBox Object7.1.24

ject.

ay of

is the
 sec-

oint,

ed by
 of
public void getUpper(Point3d p1)
public void setUpper(Point3d p1)
public void setUpper(double xmax, double ymax, double zmax)

This parameter specifies the upper corner of this bounding box.

public void set(Bounds boundsObject)

Sets the value of this bounding region to enclose the specified bounding ob

public Object clone()

Creates a copy of this bounding box.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this bounding box with a bounding object, an arr
bounding objects, a point, or an array of points, respectively.

public void transform(Bounds boundsObject, Transform3D matrix)
public void transform(Transform3D matrix)

The first method transforms a bounding box so that it bounds a volume that
result of transforming the given bounding object by the given transform. The
ond method transforms the bounding box by the given transform.

public boolean intersect(Point3d origin, Vector3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this bounding box with a ray, a p
another Bounds object, and an array of Bounds objects, respectively.

public boolean intersect(Bounds boundsObject,
BoundingBox newBoundBox)

public boolean intersect(Bounds boundsObjects[],
BoundingBox newBoundBox)

These methods compute a new BoundingBox that bounds the volume creat
the intersection of this BoundingBox with another Bounds object or array
Bounds objects.
147Version 1.1 Alpha 01, February 27, 1998

7.1.25 BoundingSphere Object NODE COMPONENT OBJECTS

148

box.

mpty
 its

 two

dius
nitial-
tructs
ctor
cts.
public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding

public boolean isEmpty()

This method tests whether the bounding box is empty. A bounding box is e
if it is null (either by construction or as the result of a null intersection) or if
volume is negative. A bounding box with a volume of zero isnot empty.

7.1.25 BoundingSphere Object

The BoundingSphere object defines a spherical bounding volume. It has
associated values: the center point and the radius of the sphere.

Constructors

The BoundingSphere object defines the following constructors.

public BoundingSphere()
public BoundingSphere(Point3D center, double radius)
public BoundingSphere(Bounds boundsObject)
public BoundingSphere(Bounds boundsObjects[])

The first constructor constructs and initializes a BoundingSphere to unity (ra
= 1.0 and center at 0.0, 0.0, 0.0). The second constructor constructs and i
izes a BoundingSphere from a center and radius. The third constructor cons
and initializes a BoundingSphere from a bounding object. The fourth constru
constructs and initializes a BoundingSphere from an array of bounding obje

Methods

The BoundingSphere object defines the following methods.

public double getRadius()
public void setRadius(double r)

This parameter specifies the bounding sphere radius.

public void getCenter(Point3d center)
public void setCenter(Point3d center)

This parameter defines the position of the bounding sphere.
Java 3D API Specification

NODE COMPONENT OBJECTS BoundingSphere Object7.1.25

y the

array

given

reated
rray

ding

hat is
 The
e that
ng a
equal
public void set(Bounds boundsObject)

Sets the value of this bounding sphere to enclose the volume specified b
Bounds object.

public Object clone()

Creates a copy of the bounding sphere.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this bounding sphere with a bounding object, an
of bounding objects, a point, or an array of points, respectively.

public boolean intersect(Point3d origin, Point3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this bounding sphere with the
ray, point, another Bounds object, or an array of Bounds objects.

public boolean intersect(Bounds boundsObject,
BoundingSphere newBoundSphere)

public boolean intersect(Bounds boundsObjects[],
BoundingSphere newBoundSphere)

These methods compute a new BoundingSphere that bounds the volume c
by the intersection of this BoundingSphere with another Bounds object or a
of Bounds objects.

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this boun
sphere.

public void transform(Bounds boundsObject, Transform3D matrix)
public void transform(Transform3D matrix)

The first method transforms a bounding sphere so that it bounds a volume t
the result of transforming the given bounding object by the given transform.
second method transforms the bounding sphere by the given transform. Not
when transforming a bounding sphere by a transformation matrix containi
nonuniform scale or a shear, the result is a bounding sphere with a radius
149Version 1.1 Alpha 01, February 27, 1998

7.1.26 BoundingPolytope Object NODE COMPONENT OBJECTS

150

form

ere is
n)

nvex,

es it
es
ctor
final
 of

ytope
to the maximal scale in any direction—the bounding sphere does not trans
into an ellipsoid.

public String toString()

This method returns a string representation of this class.

public boolean isEmpty()

This method tests whether the bounding sphere is empty. A bounding sph
empty if it isnull (either by construction or as the result of a null intersectio
or if its volume is negative. A bounding sphere with a volume of zero isnot
empty.

7.1.26 BoundingPolytope Object

A BoundingPolytope object defines a set of planes that prescribe a co
closed polygonal bounding region.

Constructors

The BoundingPolytope object defines the following constructors.

public BoundingPolytope()
public BoundingPolytope(Vector4d planes[])
public BoundingPolytope(Bounds boundsObject)
public BoundingPolytope(Bounds boundsObjects[])

The first constructor constructs a new BoundingPolytope object and initializ
to a cube where –1 =x,y,z ≤ 1. The second constructor constructs and initializ
a BoundingPolytope from an array of bounding planes. The third constru
constructs and initializes a BoundingPolytope from a Bounds object. The
constructor constructs and initializes a BoundingPolytope from an array
Bounds objects.

Methods

The BoundingPolytope object defines the following methods.

public void setPlanes(Vector4d planes[])
public void getPlanes(Vector4d planes[])

These methods set and retrieve the bounding planes for this BoundingPol
object.
Java 3D API Specification

NODE COMPONENT OBJECTS BoundingPolytope Object7.1.26

pe.

rrent
s to

array

 that
rm.

m.

iven

 cre-
ct or
public int getNumPlanes()

This method returns the number of bounding planes for this bounding polyto

public void set(Bounds boundsObject)

This method sets the planes for this BoundingPolytope by keeping its cu
number and direction of the planes and computing new plane position
enclose the given Bounds object.

public Object clone()

This method creates a copy of the BoundingPolytope object.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)
public void combine(Point3d points[])

These methods combine this BoundingPolytope with a bounding object, an
of bounding objects, a point, or an array of points, respectively.

public void transform(Bounds bounds, Transform3D matrix)
public void transform(Transform3D matrix)

The first method tranforms a bounding polytope so that it bounds a volume
is the result of transforming the given bounding object by the given transfo
The second method transforms the bounding polytope by the given transfor

public boolean intersect(Point3d origin, Vector3d direction)
public boolean intersect(Point3d point)
public boolean intersect(Bounds boundsObject)
public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this BoundingPolytope with the g
ray, point, another Bounds object, or array of Bounds objects, respectively.

public boolean intersect(Bounds boundsObject,
BoundingPolytope newBoundPolytope)

public boolean intersect(Bounds boundsObjects[],
BoundingPolytope newBoundPolytope)

These methods compute a new BoundingPolytope that bounds the volume
ated by the intersection of this BoundingPolytope with another Bounds obje
array of Bounds objects.
151Version 1.1 Alpha 01, February 27, 1998

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

152

poly-

tope
n)

per-
pre-

ics.

 the
atrix
en-

type
atrix

l or
public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding
tope.

public boolean isEmpty()

This method tests whether the bounding polytope is empty. A bounding poly
is empty if it isnull (either by construction or as the result of a null intersectio
or if its volume is negative. A bounding polytope with a volume of zero isnot
empty.

7.1.27 Transform3D Object

Transformations are represented by matrix multiplication and include such o
ations as rotation, scaling, and translation. The Transform3D object is re
sented internally as a 4× 4 double-precision floating point matrix. The
mathematical representation is row major, as in traditional matrix mathemat

Constants

public static final int ZERO
public static final int IDENTITY
public static final int SCALE
public static final int TRANSLATION
public static final int ORTHOGONAL
public static final int RIGID
public static final int CONGRUENT
public static final int AFFINE
public static final int NEGATIVE_DETERMINANT

A Transform3D has an associated type that is internally computed when
transform object is constructed and updated any time it is modified. A m
will typically have multiple types. For example, the type associated with an id
tity matrix is the result of ORing all of the types, except forZERO andNEGATIVE_
DETERMINANT, together. There are public methods available to get the ORed
of the transformation, the sign of the determinant, and the least general m
type. The matrix type flags are defined as follows:

• ZERO: Zero matrix.

• IDENTITY: Identity matrix.

• SCALE: This matrix is a uniform scale matrix—there are no rotationa
translation components.
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

ale

trix
unity

a

ing
y an
 the
two

le
ain

t.
An
tion
• TRANSLATION: This matrix has translation components only. The sc
is unity and there are no rotational components.

• ORTHOGONAL: The four row vectors that make up an orthogonal ma
form a basis, meaning that they are mutually orthogonal. The scale is
and there are no translation components.

• RIGID: The upper 3× 3 of the matrix is orthogonal, and there is
translation component—the scale is unity.

• CONGRUENT: This is an angle- and length-preserving matrix, mean
that it can translate, rotate, and reflect about an axis, and scale b
amount that is uniform in all directions. These operations preserve
distance between any two points, and the angle between any
intersecting lines.

• AFFINE: An affine matrix can translate, rotate, reflect, sca
anisotropically, and shear. Lines remain straight, and parallel lines rem
parallel, but the angle between intersecting lines can change.

A matrix is also classified by the sign of its determinant:

• NEGATIVE_DETERMINANT: This matrix has a negative determinan
An orthogonal matrix with a positive determinant is a rotation matrix.
orthogonal matrix with a negative determinant is a reflection and rota
matrix.

The Java 3D model for 4× 4 transformations is

Note: When transforming a Point3f or a Point3d, the inputw is set to 1. When
transforming a Vector3f or Vector3d, the inputw is set to 0.

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

x

y

z

w

⋅

x ′
y ′
z ′
w′

=

x ′ m00 x m01 y m02+ z m03 w⋅+⋅ ⋅+⋅=
y ′ m10 x m11 y m12+ z m13 w⋅+⋅ ⋅+⋅=
z ′ m20 x m21 y m22+ z m23 w⋅+⋅ ⋅+⋅=
w′ m30 x m31 y m32+ z m33 w⋅+⋅ ⋅+⋅=
153Version 1.1 Alpha 01, February 27, 1998

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

154

for-

ified

tion
ional
of

ngth
ray,

al
-

Constructors

The Transform3D object defines the following constructors.

public Transform3D()

This constructs and initializes a new Transform3D object to the identity trans
mation.

public Transform3D(Transform3D t1)

This constructs and initializes a new Transform3D object from the spec
transform.

public Transform3D(Matrix3f m1, Vector3d t1, double s)
public Transform3D(Matrix3d m1, Vector3d t1, double s)
public Transform3D(Matrix3f m1, Vector3f t1, float s)

These construct and initialize a new Transform3D object from the rota
matrix, translation, and scale values. The scale is applied only to the rotat
component of the matrix (upper 3× 3) and not to the translational components
the matrix.

public Transform3D(Matrix4f m1)
public Transform3D(Matrix4d m1)

These construct and initialize a new Transform3D object from the 4× 4 matrix.
The type of the constructed transform is classified automatically.

public Transform3D(float matrix[])
public Transform3D(double matrix[])

These construct and initialize a new Transform3D object from the array of le
16. The top row of the matrix is initialized to the first four elements of the ar
and so on. The type of the constructed transform is classified automatically.

public Transform3D(Quat4d q1, Vector3d t1, double s)
public Transform3D(Quat4f q1, Vector3d t1, double s)
public Transform3D(Quat4f q1, Vector3f t1, float s)

These construct and initialize a new Transform3D object from the quaternionq1,
the translationt1, and the scales. The scale is applied only to the rotation
components of the matrix (the upper 3× 3) and not to the translational compo
nents of the matrix.
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

 the
an
ero.

f all

eral-

ation
 the
ix

e of

nt is
both
public Transform3D(GMatrix m1)

This constructs and initializes a new Transform3D object and initializes it to
upper 4× 4 of the specified GMatrix. If the specified matrix is smaller th
4 × 4, the remaining elements in the transformation matrix are assigned to z

Methods

The Transform3D object defines the following methods.

public final int getType()

This method retrieves the type of this matrix. The type is an ORed bitmask o
of the type classifications to which it belongs.

public final int getBestType()

This method retrieves the least general type of this matrix. The order of gen
ity from least to most is as follows:ZERO, IDENTITY, SCALE, TRANSLATION,
ORTHOGONAL, RIGID, CONGRUENT, andAFFINE. If the matrix isORTHOGONAL, call-
ing the methodgetDeterminantSign will yield more information.

public final void setAutoNormalize(boolean autoNormalize)
public final boolean getAutoNormalize()

These methods set and retrieve the state of autonormalization. Autonormaliz
performs an automatic singular value decomposition (SVD) normalization of
rotational components (upper 3× 3) of this matrix after every subsequent matr
operation on this object, unless the boolean is subsequently set tofalse. The
default value for this parameter isfalse.

public final boolean getDeterminantSign()

This method returns the sign of the determinant of this matrix. A return valu
true indicates a positive determinant. A return value offalse indicates a nega-
tive determinant. In general, an orthogonal matrix with a positive determina
a pure rotation matrix; an orthogonal matrix with a negative determinant is
a rotation and a reflection matrix.

public final void setIdentity()

This method sets this transform to the identity matrix.

public final void setZero()

This method sets this transform to all zeros.
155Version 1.1 Alpha 01, February 27, 1998

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

156

are
pper

ale is

ts of
d on
er

nion,

ts of
d on
er

ngle,

t the
cale.
ate
public final void setEuler(Vector3d euler)

This method sets the rotational component (upper 3× 3) of this transform to the
rotation matrix converted from the Euler angles provided. Theeuler parameter
is a Vector3d consisting of roll, pitch, and yaw.

public final void setRotation(Matrix3d m1)
public final void setRotation(Matrix3f m1)

These methods set the rotational component (upper 3× 3) of this transform to the
values in the specified matrix; the other elements of this transform
unchanged. A singular value decomposition is performed on this object’s u
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the input rotational components, and finally the sc
reapplied to the rotational components.

public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)

These methods set the rotational component (upper 3× 3) of this transform to the
appropriate values derived from the specified quaternion; the other elemen
this transform are unchanged. A singular value decomposition is performe
this object’s upper 3× 3 matrix to factor out the scale, then this object’s upp
3 × 3 matrix components are replaced by the matrix equivalent of the quater
and finally the scale is reapplied to the rotational components.

public final void setRotation(AxisAngle4d a1)
public final void setRotation(AxisAngle4f a1)

These methods set the rotational component (upper 3× 3) of this transform to the
appropriate values derived from the specified axis-angle; the other elemen
this transform are unchanged. A singular value decomposition is performe
this object’s upper 3× 3 matrix to factor out the scale, then this object's upp
3 × 3 matrix components are replaced by the matrix equivalent of the axis-a
and finally the scale is reapplied to the rotational components.

public final void setScale(double scale)
public final double getScale()

The set method sets the scale component of this transform by factoring ou
current scale from the rotational component and multiplying by the new s
The get method performs an SVD normalization of this transform to calcul
and return the scale factor; this transform is not modified.
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

rrent
fore
le

r
is
public final void setScale(Vector3d scale)
public final void getScale(Vector3d scale)

The set method sets the possibly non-uniform scale component to the cu
transform. Any existing scale is first factored out of the existing transform be
the new scale is applied. Theget method returns the possibly non-uniform sca
components of the current transform and places them into the scale vector.

public final void setNonUniformScale(double xScale, double yScale,
double zScale)

This is a deprecated method. Use thesetScale(Vector3d) method instead.

public final void scaleAdd(double s, Transform3D t1,
Transform3D t2)

public final void scaleAdd(double s, Transform3D t1)

The first method scales transformt1 by a uniform scale matrix with scale facto
s, then adds transformt2 (this = S * t1 + t2). The second method scales th
transform by a uniform scale matrix with scale factors, then adds transform t1
(this = S * this + t1).

public final void setRotationScale(Matrix3f m1)
public final void setRotationScale(Matrix3d m1)
public final void getRotationScale(Matrix3f m1)
public final void getRotationScale(Matrix3d m1)

Theset methods replace the upper 3× 3 matrix values of this transform with the
values in the matrixm1. Theget methods retrieve the upper 3× 3 matrix values
of this transform and place them in the matrixm1.

public String toString()

This method returns the matrix elements of this transform as a string.

public final void add(Transform3D t1)
public final void add(Transform3D t1, Transform3D t2)
public final void sub(Transform3D t1)
public final void sub(Transform3D t1, Transform3D t2)

The firstadd method adds this transform to the transformt1 and places the result
back into this. The secondadd method adds the transformst1 and t2 and
places the result intothis. The firstsub method subtracts transformt1 from this
transform and places the result back intothis. The secondsub method subtracts
transformt2 from t1 and places the result intothis.
157Version 1.1 Alpha 01, February 27, 1998

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

158

econd

poses
not

t the

 val-

f the

y the

ector
sform
public final void add(double scalar)
public final void add(double scalar, Transform3D t1)

The first method adds a scalar to each component of this transform. The s
method adds a scalar to each component of the transformt1 and places the result
into this. Transformt1 is not modified.

public final void transpose()
public final void transpose(Transform3D t1)

The first method transposes this matrix in place. The second method trans
transformt1 and places the value into this transform. The transform t1 is
modified.

public void rotX(double angle)
public void rotY(double angle)
public void rotZ(double angle)

These three methods set the value of this matrix to a rotation matrix abou
specified axis. The angle to rotate is specified in radians.

public final void setTranslation(Vector3f trans)
public final void setTranslation(Vector3d trans)

This method modifies the translational components of this transform to the
ues of the argument. The other values of this transform are not modified.

public final void set(Quat4f q1)
public final void set(Quat4d q1)

These methods set the value of this transform to the matrix conversion o
quaternion argument.

public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3f t1, float s)

These methods set the value of this matrix from the rotation expressed b
quaternionq1, the translationt1, and the scales.

public final void set(Vector3d trans)
public final void set(Vector3f trans)

These methods set the translational value of this matrix to the specified v
parameter values and set the other components of the matrix as if this tran
were an identity matrix.
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

atrix;
mod-

type,

x val-

 the
form
nd all

n the

val-

y the

l

public final void set(Vector3d v1, double scale)
public final void set(Vector3f v1, float scale)

These methods set the value of this transform to a scale and translation m
the translation is scaled by the scale factor and all of the matrix values are
ified.

public final void set(Transform3D t1)

This method sets the matrix, type, and state of this transform to the matrix,
and state of the transformt1.

public final void set(double matrix[])
public final void set(float matrix[])

These methods set the matrix values of this transform to the specified matri
ues.

public final void set(double scale)
public final void set(double scale, Vector3d v1)
public final void set(float scale, Vector3f v1)

The first method sets the value of this transform to a uniform scale; all of
matrix values are modified. The next two methods set the value of this trans
to a scale and translation matrix; the scale is not applied to the translation a
of the matrix values are modified.

public final void set(Matrix4d m1)
public final void set(Matrix4f m1)

These methods set the matrix values of this transform to the matrix values i
specified matrix.

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational and scale components (upper 3× 3) of this
transform to the matrix values in the specified matrix. The remaining matrix
ues are set to the identity matrix. All values of the matrix are modified.

public final void set(Matrix3f m1, Vector3f t1, float s)
public final void set(Matrix3f m1, Vector3d t1, double s)
public final void set(Matrix3d m1, Vector3d t1, double s)

These methods set the value of this matrix from the rotation expressed b
rotation matrixm1, the translationt1, and the scales. The scale is only applied to
the rotational component of the matrix (upper 3× 3) and not to the translationa
component of the matrix.
159Version 1.1 Alpha 01, February 27, 1998

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

160

n the

atrix

ix of
the

 into

 into

nor-
n

public final void set(GMatrix matrix)

These methods set the matrix values of this transform to the matrix values i
specified matrix. The GMatrix object must specify a 4× 4, 3× 4, or 3× 3 matrix.

public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)

These methods set the rotational component (upper 3× 3) of this transform to the
matrix conversion of the specified axis-angle argument. The remaining m
values are set to the identity matrix. All values of the matrix are modified.

public final void get(double matrix[])
public final void get(float matrix[])

These methods place the values of this transform into the specified matr
length 16. The first four elements of the array will contain the top row of
transform matrix, and so on.

public final void get(Matrix4d matrix)
public final void get(Matrix4f matrix)

These methods place the values of this transform into thematrix argument.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)

These methods place the normalized rotational component of this transform
the 3× 3 matrix argument.

public final double get(Matrix3d m1, Vector3d t1)
public final float get(Matrix3f m1, Vector3f t1)
public final double get(Matrix3f m1, Vector3d t1)

These methods place the normalized rotational component of this transform
them1 parameter and the translational component into thet1 parameter.

public final void get(Quat4d q1)
public final void get(Quat4f q1)

These methods perform an SVD normalization of this matrix to acquire the
malized rotational component. The values are placed into the quaternioq1

parameter.
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

 the
alues

s the

ans-

self
his

cond
 into
public final double get(Quat4d q1, Vector3d t1)
public final float get(Quat4f q1, Vector3f t1)
public final double get(Quat4f q1, Vector3d t1)

These methods perform an SVD normalization of this transform to calculate
rotation as a quaternion, the translation, and the scale. None of the matrix v
are modified.

public final void get(Vector3d trans)
public final void get(Vector3f trans)

These methods retrieve the translational components of this transform.

public final void invert()
public final void invert(Transform3D t1)

The first method inverts this transform in place. The second method set
value of this transform to the inverse of the transformt1. Both of these methods
use the transform type to determine the optimal algorithm for inverting the tr
form.

public final double determinant()

This method calculates and returns the determinant ofthis transform.

public final void mul(Transform3D t1)
public final void mul(Transform3D t1, Transform3D t2)

The first method sets the value of this transform to the result of multiplying it
with transformt1 (this = this * t1). The second method sets the value of t
transform to the result of multiplying transformt1 by transform t2

(this = t1 * t2).

public final void mul(double scalar)
public final void mul(double scalar, Transform3D t1)

The first method multiplies this transform by the scalar constant. The se
method multiplies transform t1 by the scalar constant and places the value
this transform.

public final void mulInverse(Transform3D t1)
public final void mulInverse(Transform3D t1, Transform3D t2)

The first method multiplies this transform by the inverse of transformt1 and
places the result intothis transform (this = this * t1–1). The second method mul-
tiplies transformt1 by the inverse of transformt2 and places the result intothis
transform (this = t1 * t2–1).
161Version 1.1 Alpha 01, February 27, 1998

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

162

cond

es

-

s-
urns

t. Two

o

public final void mulTransposeRight(Transform3D t1,Transform3D t2)
public final void mulTransposeLeft(Transform3D t1, Transform3D t2)
public final void mulTransposeBoth(Transform3D t1, Transform3D t2)

The first method multiplies the transformt1 by the transpose of transformt2
and places the result into this transform (this = t1 * transpose(t2)). The se
method multiplies the transpose of transformt1 by transformt2 and places the
result intothis transform (this = transpose(t1) * t2). The third method multipli
the transpose of transformt1 by the transpose oft2 and places the result into
this transform (this = transpose(t1) * transpose(t2)).

public final void normalize()
public final void normalize(Transform3D t1)

Both of these methods use an SVD normalization. The firstnormalize method
normalizes the rotational components (upper 3× 3) of matrix this and places
the results back intothis. The secondnormalize method normalizes the rota
tional components (upper 3× 3) of transformt1 and places the result inthis.

public final void normalizeCP()
public final void normalizeCP(Transform3D t1)

Both of these methods use a cross-product (CP) normalization. The firstnormal-

izeCP method normalizes the rotational components (upper 3× 3) of this trans-
form and places the result into this transform. The secondnormalizeCP method
normalizes the rotational components (upper 3× 3 of transformt1 and places the
result intothis transform.

public boolean equals(Transform3D t1)

This method returnstrue if all of the data members of transformt1 are equal to
the corresponding data members inthis transform.

public boolean epsilonEquals(Transform3D t1, double epsilon)

This method returnstrue if the L∞ distance between this transform and tran
form m1 is less than or equal to the epsilon parameter; otherwise, it ret
false. The L∞ distance is equal to:

MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs[(this.m(i,j) – m1.m(i,j)]

public int hashCode()

This method returns a hash number based on the data values in this objec
different Transform3D objects with identical data values (that is,true is returned
for trans.equals(Transform3D)) will return the same hash number. Tw
Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object7.1.27

hash

e

d

ing
he
thin
iew’s
in
Transform3D objects with different data members may return the same
value, although this is not likely.

public final void transform(Vector4d vec, vector4d vecOut)
public final void transform(Vector4f vec, Vector4f vecOut)
public final void transform(Vector4d vec)
public final void transform(Vector4f vec)

The first two methods transform the vectorvec by this transform and place the
result intovecOut. The last two methods transform the vectorvec by this trans-
form and place the result back intovec.

public final void transform(Point3d point, Point3d pointOut)
public final void transform(Point3f point, point3f pointOut)
public final void transform(Point3d point)
public final void transform(Point3f point)

The first two methods transform thepoint parameter by this transform and plac
the result intopointOut. The last two methods transform thepoint parameter
by this transform and place the result back intopoint. In both cases, the fourth
element of thepoint input parameter is assumed to be 1.

public final void transform(Vector3d normal, Vector3d normalOut)
public final void transform(Vector3f normal, Vector3f normalOut)
public final void transform(Vector3d normal)
public final void transform(Vector3f normal)

The first two methods transforms thenormal parameter by this transform an
place the value intonormalOut. The third and fourth methods transform thenor-

mal parameter by this transform and place the value back intonormal.

7.1.27.1 View Model Compatibility Mode Methods: Viewing Matrix

public void lookAt(Point3d eye, Point3d center, Vector3d up)

This is a utility method that specifies the position and orientation of a view
transformation. It works very much like the similar function in OpenGL. T
inverse of this transform can be used to control the ViewPlatform object wi
the scene graph. Alternatively, this transform can be passed directly to the V
VpcToEc transform via the compatibility mode viewing functions defined
Section C.11.2, “Using the Camera-based View Model.”
163Version 1.1 Alpha 01, February 27, 1998

7.2 Node Component Objects: Geometry NODE COMPONENT OBJECTS

164

aral-
like
d to
lity
tails.

onent
h the
metry
metr-
ypes
mpo-

 are
sep-

als,
ts are

ma-
and

or-
other
ates;
7.1.27.2 View Model Compatibility Mode Methods: Projection Matrix

public void frustum(double left, double right, double bottom,
double top, double near, double far)

public void perspective(double fovx, double aspect, double zNear,
double zFar)

public void ortho(double left, double right, double bottom,
double top, double near, double far)

These three utility methods allow an application to create a perspective or p
lel (orthographic) projection matrix. These three methods work very much
the similar functions in OpenGL. The resulting Transform3D can be use
directly set the View’s left and right projection transforms when in compatibi
mode. See Section C.11.2, “Using the Camera-based View Model,” for de
Thefovx parameter specifies the field of view in thex direction in radians.

7.2 Node Component Objects: Geometry

A Geometry object is an abstract class that specifies the geometry comp
information required by a Shape3D node. Geometry objects describe bot
geometry and topology of the Shape3D nodes that reference them. Geo
objects consist of four generic geometric types: CompressedGeometry, Geo
yArray, Raster, and Text3D (see Figure 7-3). Each of these geometric t
defines a visible object or set of objects. A Geometry object is used as a co
nent object of a Shape3D leaf node.

7.2.1 GeometryArray Object

A GeometryArray object is an abstract class from which several classes
derived to specify a set of geometric primitives. A GeometryArray contains
arate arrays of the following vertex components: coordinates, colors, norm
and texture coordinates, and a bitmask indicating which of these componen
present.

A single GeometryArray contains a predefined collection of per-vertex infor
tion; all of the vertices in a GeometryArray object have the same format
primitive type. Different GeometryArrays can contain different per-vertex inf
mation. One GeometryArray might contain only three-space coordinates; an
might contain per-vertex coordinates, normals, colors, and texture coordin
yet another might contain any subset of the previous example.
Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object7.2.1

g of

g of

g of
Constants

The GeometryArray object defines the following flags.

Figure 7-3 Geometry Component Object Hierarchy

public static final int ALLOW_COORDINATE_READ
public static final int ALLOW_COORDINATE_WRITE

These flags specify that the GeometryArray object allows reading or writin
the array of coordinates.

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE

These flags specify that the GeometryArray object allows reading or writin
the array of colors.

public static final int ALLOW_NORMAL_READ
public static final int ALLOW_NORMAL_WRITE

These flags specify that the GeometryArray object allows reading or writin
the array of normals.

SceneGraphObject
NodeComponent

Geometry
CompressedGeometry
Raster
Text3D
GeometryArray

GeometryStripArray
LineStripArray
TriangleStripArray
TriangleFanArray

LineArray
PointArray
QuadArray
TriangleArray
IndexedGeometryArray

IndexedGeometryStripArray
IndexedLineStripArray
IndexedTriangleStripArray
IndexedTriangleFanArray

IndexedLineArray
IndexedPointArray
IndexedQuadArray
IndexedTriangleArray
165Version 1.1 Alpha 01, February 27, 1998

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

166

g of

 data

 and
ex
h
d as a
. The

tes.

ha.

ha.
This

ins

ins

r as
public static final int ALLOW_TEXCOORD_READ
public final static int ALLOW_TEXCOORD_WRITE

These flags specify that the GeometryArray object allows reading or writin
the array of texture coordinates.

public final static int ALLOW_COUNT_READ

This flag specifies that the GeometryArray object allows reading any count
(such as the vertex count) associated with the GeometryArray.

Constructors

The GeometryArray object has the following constructor.

public GeometryArray(int vertexCount, int vertexFormat)

Constructs an empty GeometryArray object with the specified vertex format
number of vertices. ThevertexCount parameter specifies the number of vert
elements in this array. ThevertexFormat parameter is a mask indicating whic
vertex components are present in each vertex. The vertex format is specifie
set of flags that are bitwise ORed together to describe the per-vertex data
following vertex formats are supported.

• COORDINATES: Specifies that this vertex array contains coordina
This bit must be set.

• NORMALS: Specifies that this vertex array contains normals.

• COLOR_3: Specifies that this vertex array contains colors without alp
Colors are specified as floating-point values in the range [0.0, 1.0].

• COLOR_4: Specifies that this vertex array contains colors with alp
Colors are specified as floating-point values in the range [0.0, 1.0].
takes precedence overCOLOR_3.

• TEXTURE_COORDINATE_2: Specifies that this vertex array conta
2D texture coordinates (S and T).

• TEXTURE_COORDINATE_3: Specifies that this vertex array conta
3D texture coordinates (S, T, and R). This takes precedence overTEXTURE_

COORDINATE_2.

Methods

GeometryArray methods provide access (get and set methods) to individual
vertex component arrays in two different modes: as individual elements o
arrays of multiple elements.
Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object7.2.1

index.
rdi-

index.

 spec-

 spec-
w

public final int getVertexCount()

Retrieves the number of vertices in the GeometryArray.

public final int getVertexFormat()

Retrieves the vertex format of the GeometryArray.

public final void setCoordinate(int index, float coordinate[])
public final void getCoordinate(int index, float coordinate[])
public final void setCoordinate(int index, double coordinate[])
public final void getCoordinate(int index, double coordinate[])

Sets or retrieves the coordinate associated with the vertex at the specified
Thecoordinate parameter is an array of three values containing the new coo
nate.

public final void setCoordinate(int index, Point3f coordinate)
public final void getCoordinate(int index, Point3f coordinate)
public final void setCoordinate(int index, Point3d coordinate)
public final void getCoordinate(int index, Point3d coordinate)

Sets or retrieves the coordinate associated with the vertex at the specified
Thecoordinate parameter is a point containing the new coordinate.

public final void setCoordinates(int index, float coordinates[])
public final void getCoordinates(int index, float coordinates[])
public final void setCoordinates(int index, double coordinates[])
public final void getCoordinates(int index, double coordinates[])

Sets or retrieves the coordinates associated with the vertices starting at the
ified index. Thecoordinates parameter is an array of 3*n values containingn
new coordinates.

public final void setCoordinates(int index, Point3f coordinates[])
public final void getCoordinates(int index, Point3f coordinates[])
public final void setCoordinates(int index, Point3d coordinates[])
public final void getCoordinates(int index, Point3d coordinates[])

Sets or retrieves the coordinates associated with the vertices starting at the
ified index. Thecoordinates parameter is an array of points containing ne
coordinates.

public final void setCoordinates(int index, Point3d coordinates[],
int start, int length)

public final void setCoordinates(int index, Point3f coordinates[],
int start, int length)
167Version 1.1 Alpha 01, February 27, 1998

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

168

at the
dex

. The

.

. The

cified
public final void setCoordinates(int index, float coordinates[],
int start, int length)

public final void setCoordinates(int index, double coordinates[],
int start, int length)

These methods set the coordinates associated with the vertices starting
specified index for this object, using coordinate data starting from vertex in
start for length vertices.

public final void setColor(int index, float color[])
public final void getColor(int index, float color[])
public final void setColor(int index, byte color[])
public final void getColor(int index, byte color[])

Sets or retrieves the color associated with the vertex at the specified index
color parameter is an array of three or four values containing the new color

public final void setColor(int index, Color3f color)
public final void getColor(int index, Color3f color)
public final void setColor(int index, Color4f color)
public final void getColor(int index, Color4f color)
public final void setColor(int index, Color3b color)
public final void getColor(int index, Color3b color)
public final void setColor(int index, Color4b color)
public final void getColor(int index, Color4b color)

Sets or retrieves the color associated with the vertex at the specified index
color parameter is an array containing the new color.

public final void setColors(int index, float colors[])
public final void getColors(int index, float colors[])
public final void setColors(int index, byte colors[])
public final void getColors(int index, byte colors[])

Sets or retrieves the colors associated with the vertices starting at the spe
index. Thecolors parameter is an array of 3*n or 4*n values containingn new
colors.

public final void setColors(int index, Color3f colors[])
public final void getColors(int index, Color3f colors[])
public final void setColors(int index, Color4f colors[])
public final void getColors(int index, Color4f colors[])
public final void setColors(int index, Color3b colors[])
public final void getColors(int index, Color3b colors[])
Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Object7.2.1

cified

ecified

. The

. The

cified

cified
.

public final void setColors(int index, Color4b colors[])
public final void getColors(int index, Color4b colors[])

Sets or retrieves the colors associated with the vertices starting at the spe
index. Thecolors parameter is an array containing the new colors.

public final void setColors(int index, float colors[], int start,
int length)

public final void setColors(int index, byte colors[], int start,
int length)

public final void setColors(int index, Color3f colors[], int start,
int length)

public final void setColors(int index, Color4f colors[], int start,
int length)

public final void setColors(int index, Color3b colors[], int start,
int length)

public final void setColors(int index, Color4b colors[], int start,
int length)

These methods set the colors associated with the vertices starting at the sp
index for this object, using data incolors starting at indexstart for length

colors.

public final void setNormal(int index, float normal[])
public final void getNormal(int index, float normal[])

Sets or retrieves the normal associated with the vertex at the specified index
normal parameter is an array of three values containing the new normal.

public final void setNormal(int index, Vector3f normal)
public final void getNormal(int index, Vector3f normal)

Sets or retrieves the normal associated with the vertex at the specified index
normal parameter is a vector containing the new normal.

public final void setNormals(int index, float normals[])
public final void getNormals(int index, float normals[])

Sets or retrieves the normals associated with the vertices starting at the spe
index. Thenormals parameter is an array of 3*n values containingn new nor-
mals.

public final void setNormals(int index, Vector3f normals[])
public final void getNormals(int index, Vector3f normals[])

Sets or retrieves the normals associated with the vertices starting at the spe
index. Thenormals parameter is an array of vectors containing new normals
169Version 1.1 Alpha 01, February 27, 1998

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

170

 speci-

cified
the

cified
te.

ing at
public final void setNormals(int index, float normals[], int start,
int length)

public final void setNormals(int index, Vector3f normals[],
int start, int length)

These methods set the normals associated with the vertices starting at the
fied index for this object, using data innormals starting at indexstart and end-
ing at indexstart+length.

public final void setTextureCoordinate(int index,
float texCoord[])

public final void getTextureCoordinate(int index,
float texCoord[])

Sets or retrieves the texture coordinate associated with the vertex at the spe
index. ThetexCoord parameter is an array of two or three values containing
new texture coordinate.

public final void setTextureCoordinate(int index,
Point2f texCoord)

public final void getTextureCoordinate(int index,
Point2f texCoord)

public final void setTextureCoordinate(int index,
Point3f texCoord)

public final void getTextureCoordinate(int index,
Point3f texCoord)

Sets or retrieves the texture coordinate associated with the vertex at the spe
index. ThetexCoord parameter is a point containing the new texture coordina

public final void setTextureCoordinates(int index,
float texCoords[])

public final void getTextureCoordinates(int index,
float texCoords[])

Sets or retrieves the texture coordinates associated with the vertices start
the specified index. ThetexCoords parameter is an array of 2*n or 3*n values
containingn new texture coordinates.

public final void setTextureCoordinates(int index,
Point2f texCoords[])

public final void getTextureCoordinates(int index,
Point2f texCoords[])

public final void setTextureCoordinates(int index,
Point3f texCoords[])
Java 3D API Specification

NODE COMPONENT OBJECTS LineArray Object7.2.3

ing at
g

ting at

eth-

and

eth-
ents.

um-
public final void getTextureCoordinates(int index,
Point3f texCoords[])

Sets or retrieves the texture coordinates associated with the vertices start
the specified index. ThetexCoords parameter is an array of points containin
the new texture coordinate.

public final void setTextureCoordinates(int index,
float texCoords[], int start, int length)

public final void setTextureCoordinates(int index,
Point2f texCoords[], int start, int length)

public final void setTextureCoordinates(int index,
Point3f texCoords[], int start, int length)

These methods set the texture coordinates associated with the vertices star
the specified index for this object, using data intexCoords starting at index
start and ending at indexstart+length.

7.2.2 PointArray Object

The PointArray object extends GeometryArray and provides no additional m
ods. Objects of this class draw the array of vertices as individual points.

Constructors

public PointArray(int vertexCount, int vertexFormat)

Constructs an empty PointArray object with the specified vertex format
number of vertices.

7.2.3 LineArray Object

The LineArray object extends GeometryArray and provides no additional m
ods. Objects of this class draw the array of vertices as individual line segm
Each pair of vertices defines a line segment to be drawn.

Constructors

public LineArray(int vertexCount, int vertexFormat)

Constructs an empty LineArray object with the specified vertex format and n
ber of vertices.
171Version 1.1 Alpha 01, February 27, 1998

7.2.4 TriangleArray Object NODE COMPONENT OBJECTS

172

nal
gles.

and

eth-
rals.
teral
 ren-

t the

and

ine
the
me-
ifies
7.2.4 TriangleArray Object

The TriangleArray object extends GeometryArray and provides no additio
methods. Objects of this class draw the array of vertices as individual trian
Each group of three vertices defines a triangle to be drawn.

Constructors

public TriangleArray(int vertexCount, int vertexFormat)

Constructs an empty TriangleArray object with the specified vertex format
number of vertices.

7.2.5 QuadArray Object

The QuadArray object extends GeometryArray and provides no additional m
ods. Objects of this class draw the array of vertices as individual quadrilate
Each group of four vertices defines a quadrilateral to be drawn. A quadrila
must be planar and convex or results are undefined. A quadrilateral may be
dered as a pair of triangles with either diagonal line arbitrarily chosen to spli
quad.

Constructors

public QuadArray(int vertexCount, int vertexFormat)

Constructs an empty QuadArray object with the specified vertex format
number of vertices.

7.2.6 GeometryStripArray Object

GeometryStripArray is an abstract class from which all strip primitives (l
strip, triangle strip, and triangle fan) are derived. In addition to specifying
array of vertex elements, which is inherited from GeometryArray, the Geo
tryStripArray class specifies an array of per-strip vertex counts that spec
where the separate strips appear in the vertex array.

Constructors

The GeometryStripArray object has the following constructor.
Java 3D API Specification

NODE COMPONENT OBJECTS TriangleStripArray Object7.2.8

r of

the
s the
cified
as

nal
d line

strips
 with
previ-

ces,

nal
ed tri-
public GeometryStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty GeometryStripArray object with the specified numbe
vertices, vertex format, and an array of vertex counts per strip. ThevertexCount

parameter specifies the number of vertex elements in this array.

The stripVertexCounts parameter is an array that specifies the count of
number of vertices for each separate strip. The length of this array specifie
number of separate strips. The sum of the vertex counts for all strips, as spe
by the stripVertexCounts array, must equal the total count of all vertices
specified by thevertexCount parameter.

Methods

The GeometryStripArray object has the following methods.

public final int getNumStrips()

This method returns the number of strips in the GeometryStripArray.

public final void getStripVertexCounts(int stripVertexCounts[])

This method gets an array containing a list of vertex counts for each strip.

7.2.7 LineStripArray Object

The LineStripArray extends GeometryStripArray and provides no additio
methods. Objects of this class draw an array of vertices as a set of connecte
strips. An array of per-strip vertex counts specifies where the separate
appear in the vertex array. For every strip in the set, each vertex, beginning
the second vertex in the array, defines a line segment to be drawn from the
ous vertex to the current vertex.

Constructors

public LineStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty LineStripArray object with the specified number of verti
vertex format, and array of vertex counts per strip.

7.2.8 TriangleStripArray Object

The TriangleStripArray extends GeometryStripArray and provides no additio
methods. Objects of this class draw an array of vertices as a set of connect
173Version 1.1 Alpha 01, February 27, 1998

7.2.9 TriangleFanArray Object NODE COMPONENT OBJECTS

174

arate
nning
rrent

ver-

onal
ed tri-
 strips
nning
rrent
 col-

erti-

metr-
ition
tes—
rre-
xture
angle strips. An array of per-strip vertex counts specifies where the sep
strips appear in the vertex array. For every strip in the set, each vertex, begi
with the third vertex in the array, defines a triangle to be drawn using the cu
vertex and the two previous vertices.

Constructors

public TriangleStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty TriangleStripArray object with the specified number of
tices, vertex format, and array of vertex counts per strip.

7.2.9 TriangleFanArray Object

The TriangleFanArray extends GeometryStripArray and provides no additi
methods. Objects of this class draw an array of vertices as a set of connect
angle fans. An array of per-strip vertex counts specifies where the separate
(fans) appear in the vertex array. For every strip in the set, each vertex, begi
with the third vertex in the array, defines a triangle to be drawn using the cu
vertex, the previous vertex, and the first vertex. This can be thought of as a
lection of convex polygons.

Constructors

public TriangleFanArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty TriangleFanArray object with the specified number of v
ces, vertex format, and array of vertex counts per strip.

7.2.10 IndexedGeometryArray Object

An IndexedGeometryArray object is an abstract class that extends Geo
yArray to allow vertex data to be accessed via a level of indirection. In add
to the separate arrays of coordinates, colors, normals, and texture coordina
inherited from GeometryArray—an IndexedGeometryArray object adds co
sponding arrays of coordinate indices, color indices, normal indices, and te
coordinate indices.

Constants

The IndexedGeometryArray object defines the following flags.
Java 3D API Specification

NODE COMPONENT OBJECTS IndexedGeometryArray Object7.2.10

g or

g or

g or

g or

same

er of

 the
 ele-
public final static int ALLOW_COORDINATE_INDEX_READ
public final static int ALLOW_COORDINATE_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows readin
writing of the array of coordinate indices.

public static final int ALLOW_COLOR_INDEX_READ
public static final int ALLOW_COLOR_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows readin
writing of the array of color indices.

public static final int ALLOW_NORMAL_INDEX_READ
public static final int ALLOW_NORMAL_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows readin
writing of the array of normal indices.

public static final int ALLOW_TEXCOORD_INDEX_READ
public static final int ALLOW_TEXCOORD_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows readin
writing of the array of texture coordinate indices.

Constructors

The IndexedGeometryArray object has one constructor that accepts the
parameters as GeometryArray.

public IndexedGeometryArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedGeometryArray object with the specified numb
vertices, vertex format, and indices.

Methods

IndexedGeometryArray methods provide access (get and set methods) to the
individual vertex component index arrays that are used when rendering
geometry. This access is allowed in two different modes: as individual index
ments or as arrays of multiple index elements.
175Version 1.1 Alpha 01, February 27, 1998

7.2.10 IndexedGeometryArray Object NODE COMPONENT OBJECTS

176

cified

 at the

index.

 spec-

cified

at the

at the
public final void setCoordinateIndex(int index,
int coordinateIndex)

public final int getCoordinateIndex(int index)

Sets or retrieves the coordinate index associated with the vertex at the spe
index.

public final void setCoordinateIndices(int index,
int coordinateIndices[])

public final void getCoordinateIndices(int index,
int coordinateIndices[])

Sets or retrieves the coordinate indices associated with the vertices starting
specified index.

public final void setColorIndex(int index, int colorIndex)
public final int getColorIndex(int index)

Sets or retrieves the color index associated with the vertex at the specified

public final void setColorIndices(int index, int colorIndices[])
public final void getColorIndices(int index, int colorIndices[])

Sets or retrieves the color indices associated with the vertices starting at the
ified index.

public final void setNormalIndex(int index, int normalIndex)
public final int getNormalIndex(int index)

Sets or retrieves the normal index associated with the vertex at the spe
index.

public final void setnormalIndices(int index, int normalIndices[])
public final void getNormalIndices(int index, int normalIndices[])

Sets or retrieves the normal indices associated with the vertices starting
specified index.

public final void setTextureCoordinateIndex(int index,
int texCoordIndex)

public final int getTextureCoordinateIndex(int index)

Sets or retrieves the texture coordinate index associated with the vertex
specified index.
Java 3D API Specification

NODE COMPONENT OBJECTS IndexedLineArray Object7.2.12

 start-

s no
idual

 ver-
rip-

y.

s no
idual

ver-

(see
public final void setTextureCoordinateIndices(int index,
int texCoordIndices[])

public final void getTextureCoordinateIndices(int index,
int texCoordIndices[])

Sets or retrieves the texture coordinate indices associated with the vertices
ing at the specified index.

public final int getIndexCount()

Retrieves the number of indices for this IndexedGeometryArray.

7.2.11 IndexedPointArray Object

The IndexedPointArray object extends IndexedGeometryArray and provide
additional methods. Objects of this class draw the array of vertices as indiv
points.

Constructors

The IndexedPointArray object has the following constructor.

public IndexedPointArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedPointArray object with the specified number of
tices, vertex format (see Section 7.2.1, “GeometryArray Object,” for a desc
tion of the supported vertex formats), and the number of indices in this arra

7.2.12 IndexedLineArray Object

The IndexedLineArray object extends IndexedGeometryArray and provide
additional methods. Objects of this class draw the array of vertices as indiv
line segments. Each pair of vertices defines a line segment to be drawn.

Constructors

The IndexedLineArray object has the following constructor.

public IndexedLineArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedLineArray object with the specified number of
tices, vertex format, and the number of indices in this array. ThevertexFormat

is a mask indicating which components are present in each vertex
177Version 1.1 Alpha 01, February 27, 1998

7.2.13 IndexedTriangleArray Object NODE COMPONENT OBJECTS

178

rtex

ides
ivid-

r of

(see
rtex

s no
idual
n. A

ateral
osen

 ver-
rip-

y.
Section 7.2.1, “GeometryArray Object,” for a description of the supported ve
formats).

7.2.13 IndexedTriangleArray Object

The IndexedTriangleArray object extends IndexedGeometryArray and prov
no additional methods. Objects of this class draw the array of vertices as ind
ual triangles. Each group of three vertices defines a triangle to be drawn.

Constructors

The IndexedTriangleArray object has the following constructor.

public IndexedTriangleArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedTriangleArray object with the specified numbe
vertices, vertex format, and the number of indices in this array. ThevertexFor-

mat is a mask indicating which components are present in each vertex
Section 7.2.1, “GeometryArray Object” for a description of the supported ve
formats).

7.2.14 IndexedQuadArray Object

The IndexedQuadArray object extends IndexedGeometryArray and provide
additional methods. Objects of this class draw the array of vertices as indiv
quadrilaterals. Each group of four vertices defines a quadrilateral to be draw
quadrilateral must be planar and convex or results are undefined. A quadril
may be rendered as a pair of triangles with either diagonal line arbitrarily ch
to split the quad.

Constructors

The IndexedQuadArray object has the following constructor.

public IndexedQuadArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedQuadArray object with the specified number of
tices, vertex format (see Section 7.2.1, “GeometryArray Object,” for a desc
tion of the supported vertex formats), and the number of indices in this arra
Java 3D API Specification

NODE COMPONENT OBJECTS IndexedLineStripArray Object7.2.16

ves
ing

, the
unts

um-
y of
r-

arate
um of

ides
set of
 sep-
h ver-
7.2.15 IndexedGeometryStripArray Object

IndexedGeometryStripArray is an abstract class from which all strip primiti
(line strip, triangle strip, and triangle fan) are derived. In addition to specify
the array of vertex elements, which is inherited from IndexedGeometryArray
IndexedGeometryArrayStrip class specifies an array of per-strip index co
that specifies where the separate strips appear in the indexed vertex array.

Constructors

The IndexedGeometryStripArray object has the following constructor.

public IndexedGeometryStripArray(int vertexCount,
int vertexFormat, int indexCount, int stripIndexCounts[])

Constructs an empty IndexedGeometryStripArray object with the specified n
ber of vertices, vertex format, number of indices in the array, and an arra
index counts per strip. ThevertexCount parameter specifies the number of ve
tex elements in this array. ThevertexFormat parameter is a mask indicating
which vertex components are present in each vertex. TheindexCount parameter
specifies the number of indices in this array. ThestripIndexCounts parameter
is an array that specifies the count of the number of indices for each sep
strip. The length of this array specifies the number of separate strips. The s
the index counts for all strips, as specified by thestripIndexCounts array, must
equal the total count of all indices as specified by theindexCount parameter.

Methods

The IndexedGeometryArrayStrip object has the following methods.

public final int getNumStrips()

Gets the number of strips in the IndexedGeometryStripArray.

public final void getStripIndexCounts(int stripIndexCounts[])

Gets a list of theindexCounts for each strip.

7.2.16 IndexedLineStripArray Object

The IndexedLineStripArray extends IndexedGeometryStripArray and prov
no additional methods. Objects of this class draw an array of vertices as a
connected line strips. An array of per-strip index counts specifies where the
arate strips appear in the indexed vertex array. For every strip in the set, eac
179Version 1.1 Alpha 01, February 27, 1998

7.2.17 IndexedTriangleStripArray Object NODE COMPONENT OBJECTS

180

to be

erti-
cifies
-
ne or
ertex
sup-

pro-
 as a
ifies

 in the
le to

ber
dex
-

vidual
(see

rtex
tex, beginning with the second vertex in the array, defines a line segment
drawn from the previous vertex to the current vertex.

Constructors

The IndexedLineStripArray object has the following constructor.

public IndexedLineStripArray(int vertexCount, int vertexFormat,
int indexCount, int stripIndexCounts[])

Constructs an empty IndexedLineStrip object with the specified number of v
ces, vertex format, number of indices in this array, and an array that spe
number of indices for each strip. ThevertexFormat parameter is a mask indicat
ing which components are present in each vertex. This is specified as o
more individual flags that are bitwise ORed together to describe the per-v
data (see Section 7.2.1, “GeometryArray Object,” for a description of the
ported vertex formats).

7.2.17 IndexedTriangleStripArray Object

The IndexedTriangleStripArray extends IndexedGeometryStripArray and
vides no additional methods. Objects of this class draw an array of vertices
set of connected triangle strips. An array of per-strip index counts spec
where the separate strips appear in the indexed vertex array. For every strip
set, each vertex, beginning with the third vertex in the array, defines a triang
be drawn using the current vertex and the two previous vertices.

Constructors

The IndexedTriangleStripArray object has the following constructor.

public IndexedTriangleStripArray(int vertexCount,
int vertexFormat, int indexCount, int stripIndexCounts[])

Constructs an empty IndexedTriangleStripArray object with the specified num
of vertices, vertex format, number of indices in this array, and an array of in
counts per strip. ThevertexFormat parameter is a mask indicating which com
ponents are present in each vertex. This is specified as one or more indi
flags that are bitwise ORed together to describe the per-vertex data
Section 7.2.1, “GeometryArray Object,” for a description of the supported ve
formats).
Java 3D API Specification

NODE COMPONENT OBJECTS CompressedGeometry Object7.2.19

ides
set of
 the
e set,
o be
s can

ber
dex
-
idual
(see

rtex

d for-
omet-
ough
l be
ple, a
7.2.18 IndexedTriangleFanArray Object

The IndexedTriangleFanArray extends IndexedGeometryStripArray and prov
no additional methods. Objects of this class draw an array of vertices as a
connected triangle fans. An array of per-strip index counts specifies where
separate strips (fans) appear in the indexed vertex array. For every strip in th
each vertex, beginning with the third vertex in the array, defines a triangle t
drawn using the current vertex, the previous vertex, and the first vertex. Thi
be thought of as a collection of convex polygons.

Constructors

The IndexedTriangleFanArray object has the following constructor.

public IndexedTriangleFanArray(int vertexCount, int vertexFormat,
int indexCount, int stripIndexCounts[])

Constructs an empty IndexedTriangleFanArray object with the specified num
of vertices, vertex format, number of indices in this array, and an array of in
counts per strip. ThevertexFormat parameter is a mask indicating which com
ponents are present in each vertex. This is specified as one or more indiv
flags that are bitwise ORed together to describe the per-vertex data
Section 7.2.1, “GeometryArray Object,” for a description of the supported ve
formats).

7.2.19 CompressedGeometry Object

The CompressedGeometry object is used to store geometry in a compresse
mat. CompressedGeometry objects use a special format for representing ge
ric information in one order of magnitude less space. The representation, th
lossy, preserves significant object quality during compression. There wil
parameters to allow the user to specify the degree of lossy-ness (for exam
space versus quality knob).

For more information, see Appendix B, “3D Geometry Compression.”

Constants

The CompressedGeometry object specifies the following variables.
181Version 1.1 Alpha 01, February 27, 1998

7.2.20 CompressedGeometryHeader Object NODE COMPONENT OBJECTS

182

om-

opied

metry
object

es con-

om-
 infor-
the

in the
public final static int ALLOW_COUNT_READ
public final static int ALLOW_HEADER_READ
public final static int ALLOW_GEOMETRY_READ

These flags, when enabled using thesetCapability method, allow an applica-
tion to invoke methods that read its individual component field information.

Constructors

public CompressedGeometry(CompressedGeometryHeader hdr,
byte geometry[])

Constructs a CompressedGeometry node component. Thehdr field is copied into
the CompressedGeometry object. Thegeometry parameter must conform to the
compressed geometry format as described in Appendix B, “3D Geometry C
pression.”

Methods

public final int getByteCount()

Retrieves the size, in bytes, of the compressed geometry buffer.

public final void getCompressedGeometryHeader
(CompressedGeometryHeader hdr)

Retrieves the header for this CompressedGeometry object. The header is c
into the CompressedGeometryHeader object provided.

public final void getCompressedGeometry(byte compGeom[])

Retrieves the compressed geometry associated with the CompressedGeo
object. Copies the compressed geometry from the CompressedGeometry
into the given array.

public final Shape3D[] decompress()

Decompresses the compressed geometry. Returns an array of Shape nod
taining the decompressed geometry objects.

7.2.20 CompressedGeometryHeader Object

The CompressedGeometryHeader object is used in conjunction with the C
pressedGeometry object. The CompressedGeometryHeader object contains
mation specific to the compressed geometry data stored in
CompressedGeometry NodeComponent object. This header is used to aid
Java 3D API Specification

NODE COMPONENT OBJECTS CompressedGeometryHeader Object7.2.20

bers

nd all

idual

 the

om-

y one

r) is
. If a
 the
processing of the compressed geometry by decompression routines. All mem
in the CompressedGeometryHeader node are public, so noget or set routines
are provided. The CompressedGeometryHeader object should be created, a
values set, by the geometry compression utility.

Constants

public static final int POINT_BUFFER
public static final int LINE_BUFFER
public static final int TRIANGLE_BUFFER

These flags indicate whether the compressed geometry is made up of indiv
points, line segments, or triangles.

public static final int COLOR_IN_BUFFER
public static final int COLOR_ALPHA_IN_BUFFER

These flags indicate whether RGB or alpha color information is initialized in
compressed geometry buffer.

public int majorVersionNumber
public int minorVersionNumber
public int minorMinorVersionNumber

These indicate the major, minor, and minor-minor version numbers for the c
pressed geometry format that was used to compress the geometry.

public int bufferType

This flag describes the type of data in the compressed geometry buffer. Onl
type may be present in any given compressed geometry buffer.

public int bufferDataPresent

This flag indicates whether a particular data component (for example, colo
present in the compressed geometry buffer, preceding any geometric data
particular data type is not present then this information will be inherited from
Appearance object.
183Version 1.1 Alpha 01, February 27, 1998

7.2.21 Raster Object NODE COMPONENT OBJECTS

184

d
to its

tion of

at is
point
 that
erence
teger
the
ing, a

 the
public double scale
public int size
public double xOffset
public double yOffset
public double zOffset

These flags indicate the scale, size, andx, y, andz offsets that need to be applie
to every point in the compressed geometry buffer to restore the geometry
original (uncompressed) position.

Constructors

public CompressedGeometryHeader()

Creates a new CompressedGeometryHeader object to be used for the crea
a CompressedGeometry NodeComponent object.

7.2.21 Raster Object

The Raster object extends Geometry to allow drawing a raster image th
attached to a 3D location in the virtual world. The Raster object contains a
that is defined in the local object coordinate system of the Shape3D node
references the Raster. The Raster object also contains a type specifier, a ref
to an ImageComponent2D object or a DepthComponent object, and an in
x,y offset and a size (width, height) to allow reading or writing of a portion of
referenced image. In addition to being used as a type of geometry for draw
Raster object may be used to read back pixel data (color and Z-buffer) from
frame buffer in immediate mode.

Constants

The Raster object defines the following flags.
Java 3D API Specification

NODE COMPONENT OBJECTS Raster Object7.2.21

posi-

t ref-

com-

ode,
bject,
nent

lues.
public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_OFFSET_READ
public static final int ALLOW_OFFSET_WRITE
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_IMAGE_WRITE
public static final int ALLOW_DEPTH_COMPONENT_READ
public static final int ALLOW_DEPTH_COMPONENT_WRITE
public static final int ALLOW_SIZE_READ
public static final int ALLOW_SIZE_WRITE
public static final int ALLOW_TYPE_READ

These flags specify that the Raster object allows reading or writing of the
tion, offset, image, depth component, size, or type.

public static final int RASTER_COLOR

Specifies a Raster object with color data. In this mode, the ImageComponen
erence must point to a valid ImageComponent object.

public static final int RASTER_DEPTH

Specifies a Raster object with depth (Z-buffer) data. In this mode, the depth
ponent reference must point to a valid DepthComponent object.

public static final int RASTER_COLOR_DEPTH

Specifies a Raster object with both color and depth (Z-buffer) data. In this m
the image component reference must point to a valid ImageComponent o
and the depth component reference must point to a valid DepthCompo
object.

Constructors

public Raster()
public Raster(Point3f pos, int type, int xOffset, int yOffset,

int width, int height, ImageComponent2D image,
DepthComponent depthComponent)

public Raster(Point3f pos, int type, Point offset, Dimension size,
ImageComponent2D image, DepthComponent depthComponent)

Constructs and initializes a new Raster object. The first form uses default va
The next two forms construct a new raster image with the specified values.
185Version 1.1 Alpha 01, February 27, 1998

7.2.21 Raster Object NODE COMPONENT OBJECTS

186

aster.
er-left

ch to

 pixel

om a
R_

 to or
Methods

public void setPosition(Point3f pos)
public void getPosition(Point3f pos)

These methods set and retrieve the position, in object coordinates, of this r
This position is transformed into device coordinates and is used as the upp
corner of the raster.

public void setType(int type)
public int getType()

These methods set and retrieve the type of this Raster object. Thetype is one of
the following:RASTER_COLOR, RASTER_DEPTH, or RASTER_COLOR_DEPTH.

public void setOffset(int xOffset, int yOffset)
public void setOffset(Point offset)
public void getOffset(Point offset)

These methods set and retrieve the offset within the array of pixels at whi
start copying.

public void setSize(int width, int height)
public void setSize(Dimension size)
public void getSize(Dimension size)

These methods set and retrieve the number of pixels to be copied from the
array.

public void setImage(ImageComponent2D image)
public ImageComponent2D getImage()

These methods set and retrieve the pixel array used to copy pixels to or fr
Canvas3D. This is used when the type is RASTER_COLOR or RASTE
COLOR_DEPTH.

public void setDepthComponent(DepthComponent depthComponent)
public DepthComponent getDepthComponent()

These methods set and retrieve the DepthComponent used to copy pixels
from a Canvas3D. This is used when thetype is RASTER_DEPTH or RASTER_

COLOR_DEPTH.
Java 3D API Specification

NODE COMPONENT OBJECTS Font3D Object7.2.22

hese
bject
, the
f the
when
 tes-

sion
path
 cre-
d as
ll, in
ssing

ssed

lyph.
reate
 the

f the

imum
7.2.22 Font3D Object

The Font3D object is used to contain 3D glyphs used in rendering 3D text. T
3D glyphs are constructed from a Java 2D font object and a FontExtrusion o
(see Section 7.2.23, “FontExtrusion Object”). To ensure correct rendering
2D font object should be created with the default transform. The point size o
2D font will be used as a rough measure of how fine a tessellation to use
creating the Font3D object: the larger the point size, in general, the finer the
sellation.

Constructors

public Font3D(Font font, FontExtrusion extrusionPath)

Creates a Font3D object from the specified Font object. The FontExtru
object (see Section 7.2.23, “FontExtrusion Object”) contains the extrusion
to use on the 2D font glyphs. To ensure correct rendering, the font must be
ated with the default AffineTransform. The point size of a Font object is use
a rough measure of how finely to tessellate the glyphs. A larger point size wi
general, have finer detail than the same font with a smaller point size. Pa
null for theFontExtrusion parameter results in no extrusion being done.

Custom 3D fonts as well as methods to save 3D fonts to disk will be addre
after the 1.0 release of this specification.

Methods

public GeometryStripArray[] getAsTriangles(int glyphCode)

This method returns an array of GeometryStripArrays representing the 3D g
The amount of tessellation is roughly determined by the point size used to c
the 2D Font object. A larger point size will, in general, have finer detail than
same font with a smaller point size.

A 3D glyph is always defined in a normalized space in which the base o
glyph is 0.0 on they-axis and the left side of the glyph is at 0.0 on thex-axis.
Because of descenders, the glyph’s coordinates can be negative. The max
value of this space is the maximum glyph width and height (obtained fromFont-

DesignMetrics.getBounds()).

public Bounds getBounds(int glyphCode)

This method returns the 3D bounding box of the specified glyph code.
187Version 1.1 Alpha 01, February 27, 1998

7.2.23 FontExtrusion Object NODE COMPONENT OBJECTS

188

bject,
xtru-

nt3D
con-
f 3D
 ori-

uctor
traight
xtru-

ith an

ontEx-
e a 3D
he
ion
public Font getFont()

This method returns the Java 2D font used to create this Font3D object.

public void getFontExtrusion(FontExtrusion extrudePath)

This method retrieves the FontExtrusion object used to create this Font3D o
and copies it into the specified parameter. For information about the FontE
sion object, see Section 7.2.23, “FontExtrusion Object.”

7.2.23 FontExtrusion Object

The FontExtrusion object is used to describe the extrusion path for a Fo
object (see Section 7.2.22, “Font3D Object”). The extrusion path is used in
junction with a Font2D object. The extrusion path defines the edge contour o
text. This contour is perpendicular to the face of the text. The contour has its
gin at the edge of the glyph, with 1.0 being the height of the tallest glyph.

Constructors

public FontExtrusion()
public FontExtrusion(Shape extrusionShape)

Both of these constructors create a FontExtrusion object. The first constr
creates the object with the default extrusion shape. The default shape is a s
line from 0.0 to 0.2 (straight bevel). The second constructor creates a FontE
sion object with the specified extrusion shape. TheextrusionShape parameter is
used to construct the edge contour of a Font3D object. Each shape begins w
implicit point at 0.0.

Methods

public final void setExtrusionShape(Shape extrusionShape)
public final void getExtrusionShape(Shape extrusionShape)

These methods set and retrieve the 2D Shape object associated with this F
trusion object. The Shape object describes the extrusion path used to creat
glyph from a 2D glyph. Theget method copies the shape from this object to t
given parameter. Theset method copies the given shape into this FontExtrus
object.
Java 3D API Specification

NODE COMPONENT OBJECTS Text3D Geometry Object7.2.24

 The
rance
on—
laced

tion
lue,

 with
i-

ers.
7.2.24 Text3D Geometry Object

A Text3D object is a text string that has been converted to 3D geometry.
Font3D object (see Section 7.2.22, “Font3D Object”) determines the appea
of the Text3D NodeComponent object. Each Text3D object has a text positi
a point in 3D space where the text should be placed. The 3D text can be p
around this position using different alignments and paths.

Constants

The Text3D object defines the following flags.

public static final int ALLOW_FONT3D_READ
public static final int ALLOW_FONT3D_WRITE
public static final int ALLOW_STRING_READ
public static final int ALLOW_STRING_WRITE
public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_ALIGNMENT_READ
public static final int ALLOW_ALIGNMENT_WRITE
public static final int ALLOW_PATH_READ
public static final int ALLOW_PATH_WRITE
public static final int ALLOW_CHARACTER_SPACING_READ
public static final int ALLOW_CHARACTER_SPACING_WRITE
public static final int ALLOW_BOUNDING_BOX_READ

These flags control reading and writing of the Font3D component informa
for Font3D, the String object, the text position value, the text alignment va
the text path value, the character spacing, and the bounding box.

Constructors

public Text3D()
public Text3D(Font3D font3D)
public Text3D(Font3D font3D, String string)
public Text3D(Font3D font3D, String string, Point3f position)
public Text3D(Font3D font3D, String string, Point3f position,

int alignment, int path)

Create a new Text3D object. The first constructor creates the Text3D object
no Font3D object associated with it, anull string, and all default values: a pos
tion of (0.0, 0.0, 0.0), an alignment ofALIGN_FIRST, and a path ofPATH_RIGHT.
The other constructors set the appropriate values to the passed-in paramet
189Version 1.1 Alpha 01, February 27, 1998

7.2.24 Text3D Geometry Object NODE COMPONENT OBJECTS

190

bject.

ext3D

unc-
ed in

om-

.

ion

int.

y how
 (see
t3D
s”) is
Methods

public final Font3D getFont3D()
public final void setFont3D(Font3D font3d)

These methods get and set the Font3D object associated with this Text3D o

public final String getString()
public final void setString(String string)

These methods get and set the character string associated with this T
object.

public final void getPosition(Point3f position)
public final void setPosition(Point3f position)

These methods get and set the text position. Theposition parameter is used to
determine the initial placement of the string. The text position is used in conj
tion with the alignment and path to determine how the glyphs are to be plac
the scene. The default value is (0.0, 0.0, 0.0).

public final void setAlignment(int alignment)
public final int getAlignment()

These methods set and get the text alignment policy for this Text3D NodeC
ponent object (see Figure 7-4). Thealignment parameter is used to specify how
glyphs in the string are placed in relation to theposition field. Valid values for
the alignment field are:

• ALIGN_CENTER: places the center of the string on the position point

• ALIGN_FIRST: places the first character of the string on the posit
point.

• ALIGN_LAST: places the last character of the string on the position po

The default value of this field isALIGN_FIRST.

public final void setPath(int path)
public final int getPath()

These methods set and get the node’s path field. This field is used to specif
succeeding glyphs in the string are placed in relation to the previous glyph
Figure 7-4). The path is relative to the local coordinate system of the Tex
node. The default coordinate system (see Section 3.4, “Coordinate System
right-handed with +Y being up, +X horizontal to the right, and +Z directed
toward the viewer. Valid values for this field are as follows:
Java 3D API Specification

NODE COMPONENT OBJECTS Text3D Geometry Object7.2.24

t.

ext3D
s as
width
Figure 7-4 Various Text Alignments and Paths

• PATH_LEFT: places succeeding glyphs to the left (the –X direction) of the
current glyph.

• PATH_RIGHT: places succeeding glyphs to the right (the +X direction) of
the current glyph.

• PATH_UP: places succeeding glyphs above (the +Y direction) the current
glyph.

• PATH_DOWN: places succeeding glyphs below (the –Y direction) the
current glyph.

The default value of this field isPATH_RIGHT.

public final void getBoundingBox(BoundingBox bounds)

This method retrieves the 3D bounding box that encloses this Text3D objec

public final void setCharacterSpacing(float characterSpacing)
public final float getCharacterSpacing()

These methods set and get the character spacing used to construct the T
string. This spacing is in addition to the regular spacing between glyph
defined in the Font object. A value of 1.0 in this space is measured as the
of the largest glyph in the 2D font. The default value is 0.0.

TFEL HTAP.

.PATH_RIGHT

= Text Position Point

ALIGN_FIRST

P
U

D
O
W
N

.
.

ALIGN_CENTER

TFEL HTAP

PATH_RIGHT

P
U

D
O
W
N

.

.

.

ALIGN_LAST

PATH_RIGHT.

.TFEL HTAP

P
U

.

D
O
W
N.
191Version 1.1 Alpha 01, February 27, 1998

7.3 Math Component Objects NODE COMPONENT OBJECTS

192

ction
stor-
nting
and

y are
 these
hese

four.
, nor-

ector,
dou-
ple

 class

t

7.3 Math Component Objects

Java 3D defines a number of additional objects that are used in the constru
and manipulation of other Java 3D objects. These objects provide low-level
age and manipulation control for users. They provide methods for represe
vertex components (for example, color and position), volumes, vectors,
matrices.

The tuple and matrix math classes are not part of Java 3D per se, but the
needed by Java 3D and are defined here for convenience. Java 3D uses
classes internally and also makes them available for use by applications. T
classes will be delivered in a separatejavax.vecmath package. The tuple and
matrix math classes are described in detail in Appendix A, “Math Objects.”

7.3.1 Tuple Objects

The tuple objects, listed in Table 7-1, store tuples of length two, three, and
Java 3D tuples are used to store various kinds of information such as colors
mals, texture coordinates, vertices, and so forth.

The tuple classes are further subdivided by storage type, such as point, v
color, and so forth, and by class—whether the vector consists of single- or
ble-precision floating-point numbers or bytes. Only the floating-point tu
classes support math operations.

Table 7-1 Tuple Objects

Class Description

Tuple2f Used to represent two-component coordinates in single-precision floating-point
format. This class is further divided into the following:

Point2f: Representsx,y point coordinates.
TexCoord2f: Representsx,y texture coordinates.
Vector2f: Representsx,y vector coordinates.

Tuple3b Used to represent three-component color information stored as three bytes. This
is further divided into the following:

Color3b: Represents RGB color values.

Tuple3d Used to represent point and vector coordinates in double-precision floating-poin
format. This class is further divided into the following:

Point3d: Representsx,y,z point coordinates.
Vector3d: Representsx,y,z vector coordinates.
Java 3D API Specification

NODE COMPONENT OBJECTS Matrix Objects7.3.2

 one

s, and
the

ass is

tored

ions,
nto

ision

ision

ass.
These are described in more detail in Appendix A, “Math Objects.”

7.3.2 Matrix Objects

The matrix objects, listed in Table 7-2, define a complete 3× 3 or 4× 4 floating-
point transformation matrix. All the vector subclasses operate using this
matrix type.

Tuple3f Used to represent three-component colors, point coordinates, texture coordinate
vectors in single-precision floating-point format. This class is further divided into
following:

Color3f: Represents RGB color values.
Point3f: Representsx,y,z point coordinates.
TexCoord3f: Representsx,y,z texture coordinates.
Vector3f: Representsx,y,z vector coordinates.

Tuple4b Used to represent four-component color information stored as four bytes. This cl
further divided into the following:

Color4b: Represents RGBα color values.

Tuple4d Used to represent four-component color information, quaternions, and vectors s
in double-precision floating-point format. This class is further divided into the
following:

Point4d: Representsx,y,z,w point coordinates.
Quat4d: Representsx,y,z,w quaternion coordinates.
Vector4d: Representsx,y,z,w vector coordinates.

Tuple4f Used to represent four-component color information, point coordinates, quatern
and vectors in single-precision floating-point format. This class is further divided i
the following:

Color4f: Represents RGBα color values.
Point4f: Representsx,y,z,w point coordinates.
Quat4f: Representsx,y,z,w quaternion coordinates.
Vector4f: Representsx,y,z,w vector coordinates.

AxisAngle4d Used to represent four-component axis-angle rotations consisting of double-prec
floating-pointx, y, andz coordinates and a rotation angle in radians.

AxisAngle4f Used to represent four-component axis-angle rotations consisting of single-prec
floating pointx, y, andz coordinates and a rotation angle in radians.

GVector Used to represent a general, dynamically resizeable, one-dimensional vector cl

Table 7-2 Matrix Objects

Class Description

Matrix3d Used to represent a double-precision floating-point 3× 3 matrix.

Matrix3f Used to represent a single-precision floating-point 3× 3 matrix.

Table 7-1 Tuple Objects (Continued)

Class Description
193Version 1.1 Alpha 01, February 27, 1998

7.3.2 Matrix Objects NODE COMPONENT OBJECTS

194
These are described in more detail in Appendix A, “Math Objects.”

Matrix4d Used to represent a double-precision floating-point 4× 4 matrix.

Matrix4f Used to represent a single-precision floating-point 4× 4 matrix.

GMatrix A double-precision, general, dynamically resizeableN × M matrix class.

Table 7-2 Matrix Objects (Continued)

Class Description
Java 3D API Specification

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 8
ce,
and
once,
n or
range
tion
cene
tion,
 head

tual
tion

 vir-
that

m’s
 this
ent,

ome
rates
—the
m a
the
tor’s
View Model

JAVA 3D introduces a new view model that takes Java’s vision of “write on
run anywhere” and generalizes it to include display devices
six-degrees-of-freedom input peripherals such as head trackers. This “write
view everywhere” nature of the new view model means that an applicatio
applet written using the Java 3D view model can render images to a broad
of display devices, including standard computer displays, multiple-projec
display rooms, and head-mounted displays, without modification of the s
graph. It also means that the same application, once again without modifica
can render stereoscopic views and can take advantage of the input from a
tracker to control the rendered view.

Java 3D’s view model achieves this versatility by cleanly separating the vir
and the physical world. This model distinguishes between how an applica
positions, orients, and scales a ViewPlatform object (a viewpoint) within the
tual world and how the Java 3D renderer constructs the final view from
viewpoint’s position and orientation. The application controls the ViewPlatfor
position and orientation; the renderer computes what view to render using
position and orientation, a description of the end-user’s physical environm
and the user’s position and orientation within the physical environment.

This chapter first explains why Java 3D chose a different view model and s
of the philosophy behind that choice. It next describes how that model ope
in the simple case of a standard computer screen without head tracking
most common case. Finally, it presents the relevant parts of the API fro
developer’s perspective. Appendix C, “View Model Details,” describes
Java 3D view model from an advanced developer and Java 3D implemen
perspective.
195

8.1 Why a New Model? VIEW MODEL

196

ntrol
appli-
plica-

ds as
 even

uman
late

 no
ion

t and
am-

ently

sys-
rs.

f the
tion
 for
 vary

 as a
nd a
ser’s
ven
ent

ors,

es of
will
ces
8.1 Why a New Model?

Camera-based view models as found in low-level APIs give developers co
over all rendering parameters. This makes sense when dealing with custom
cations, less sense when dealing with systems that wish to have broader ap
bility: systems such as viewers or browsers that load and display whole worl
a single unit or systems where the end users view, navigate, display, and
interact with the virtual world.

Camera-based view models emulate a camera in the virtual world, not a h
in a virtual world. Developers must continuously reposition a camera to emu
“a human in the virtual world.”

The Java 3D view model incorporates head tracking directly, if present, with
additional effort from the developer, thus providing end users with the illus
that they actually exist inside a virtual world.

The Java 3D view model, when operating in a non-head-tracked environmen
rendering to a single, standard display, acts very much like a traditional c
era-based view model, with the added functionality of being able to transpar
generate stereo views.

8.1.1 The Physical Environment Influences the View

Letting the application control all viewing parameters is not reasonable in
tems in which the physical environment dictates some of the view paramete

One example of this is a head-mounted display (HMD), where the optics o
head-mounted display directly determine the field of view that the applica
should use. Different HMDs have different optics, making it unreasonable
application developers to hard-wire such parameters or allow end users to
that parameter at will.

Another example is a system that automatically computes view parameters
function of the user’s current head position. The specification of a world a
predefined flight path through that world may not exactly specify an end-u
view. HMD users would expect to look and thus see to their left or right e
when following a fixed path through the environment—imagine an amusem
park ride with vehicles that follow fixed paths to present content to their visit
but visitors can continue to move their heads while on those rides.

Depending on the physical details of the end-user’s environment, the valu
the viewing parameters, particularly the viewing and projection matrices,
vary widely. The factors that influence the viewing and projection matri
Java 3D API Specification

VIEW MODEL The Physical World 8.2.2

ser’s
 three
 and
del

ation
 envi-
 input

hysical
ir-
re an

here

tual
cale
cts
tive
ren-
graph

e in
 head
local

bed.

iffer-
 dif-

ere is
rdi-
ker (if
include the size of the physical display, how the display is mounted (on the u
head or on a table), whether the computer knows the user’s head location in
space, the head mount’s actual field of view, the display’s pixels per inch,
other such parameters. For more information, see Appendix C, “View Mo
Details.”

8.2 Separation of Physical and Virtual

The Java 3D view model separates the virtual environment, where the applic
programmer has placed objects in relation to one another, from the physical
ronment, where the user exists, sees computer displays, and manipulates
devices.

Java 3D also defines a fundamental correspondence between the user’s p
world and the virtual world of the graphic application. This physical-to-v
tual-world correspondence defines a single common space, a space whe
action taken by an end user affects objects within the virtual world and w
any activity by objects in the virtual world affects the end-user’s view.

8.2.1 The Virtual World

The virtual world is a common space in which virtual objects exist. The vir
world coordinate system exists relative to a high-resolution Locale—each Lo
object defines the origin of virtual world coordinates for all of the obje
attached to that Locale. The Locale that contains the currently ac
ViewPlatform object defines the virtual world coordinates that are used for
dering. Java3D eventually transforms all coordinates associated with scene
elements into this common virtual world space.

8.2.2 The Physical World

The physical world is just that—the real, physical world. This is the spac
which the physical user exists, and within which he or she moves his or her
and hands. This is the space in which any physical trackers define their
coordinates, and in which several calibration coordinate systems are descri

The physical world is a space, not a common coordinate system between d
ent execution instances of Java 3D. So while two different computers at two
ferent physical locations on the globe may be running at the same time, th
no mechanism directly within Java 3D to relate their local physical world coo
nate systems with each other. Because of calibration issues, the local trac
197Version 1.1 Alpha 01, February 27, 1998

8.3 The Objects That Define the View VIEW MODEL

198

ular

cally,
bject,
bject.
sid-

. For
rtual
dard
tails

he
hin
any) defines the local physical world coordinate system known to a partic
instance of Java 3D.

8.3 The Objects That Define the View

Java 3D distributes its view model parameters across several objects, specifi
the View object and its associated component objects, the PhysicalBody o
the PhysicalEnvironment object, the Canvas3D object, and the Screen3D o
Figure 8-1 shows graphically the central role of the View object and the sub
iary role of its component objects.

Figure 8-1 View Object, Its Component Objects, and Their Interconnection

The view-related objects shown in Figure 8-1 and their roles are as follows
each of these objects, the portion of the API that relates to modifying the vi
world and the portion of the API that is relevant to non-head-tracked stan
display configurations are derived in this chapter. The remainder of the de
are described in Appendix C, “View Model Details.”

• ViewPlatform: A leaf node that locates a view within a scene graph. T
ViewPlatform’s parents specify its location, orientation, and scale wit

BG

VP
View

Platform

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment
Java 3D API Specification

VIEW MODEL ViewPlatform: A Place in the Virtual World 8.4

nd
r-

See

)
ges.
g the
ject.

ay
on in
ithin
n 8.8,

g
ct,”

-
on-
See
.

licitly
for-
geo-
ing

ence
he
e for

ode.
m is
e

ectly
the virtual universe. See Section 5.10, “ViewPlatform Node,” a
Section 8.4, “ViewPlatform: A Place in the Virtual World,” for more info
mation.

• View: The main view object. It contains many pieces of view state.
Section 8.7, “The View Object,” for more information.

• Canvas3D: The 3D version of the Abstract Windowing Toolkit (AWT
Canvas object. It represents a window in which Java 3D will draw ima
It contains a reference to a Screen3D object and information describin
Canvas3D’s size, its shape, and its location within the Screen3D ob
See Section 8.9, “The Canvas3D Object,” for more information.

• Screen3D: An object that contains information describing the displ
screen’s physical properties. Java 3D places display-screen informati
a separate object to prevent the duplication of screen information w
every Canvas3D object that shares a common screen. See Sectio
“The Screen3D Object,” for more information.

• PhysicalBody: An object that contains calibration information describin
the user’s physical body. See Section 8.10, “The PhysicalBody Obje
for more information.

• PhysicalEnvironment: An object that contains calibration information de
scribing the physical world, mainly information that describes the envir
ment’s six-degrees-of freedom tracking hardware, if present.
Section 8.11, “The PhysicalEnvironment Object,” for more information

Together, these objects describe the geometry of viewing rather than exp
providing a viewing or projection matrix. The Java 3D renderer uses this in
mation to construct the appropriate viewing and projection matrices. The
metric focus of these view objects provides more flexibility in generat
views—a flexibility needed to support alternative display configurations.

8.4 ViewPlatform: A Place in the Virtual World

A ViewPlatform leaf node defines a coordinate system, and thus a refer
frame with its associated origin or reference point, within the virtual world. T
ViewPlatform serves as a point of attachment for View objects and as a bas
determining a renderer’s view.

Figure 8-2 shows a portion of a scene graph containing a ViewPlatform n
The nodes directly above a ViewPlatform determine where that ViewPlatfor
located and how it is oriented within the virtual world. By modifying th
Transform3D object associated with a TransformGroup node anywhere dir
199Version 1.1 Alpha 01, February 27, 1998

8.4.1 Moving Through the Virtual World VIEW MODEL

200

orm
ns-

ew
onto

’s
m’s
iga-
ven

eful
h for a
 that
above a ViewPlatform, an application or behavior can move that ViewPlatf
anywhere within the virtual world. A simple application might define one Tra
formGroup node directly above a ViewPlatform, as shown in Figure 8-2.

A VirtualUniverse may have many different ViewPlatforms, but a particular Vi
object can only attach itself to a single ViewPlatform. Thus, each rendering
a Canvas3D is done from the point of view of a single ViewPlatform.

Figure 8-2 A Portion of a Scene Graph Containing a ViewPlatform Object

8.4.1 Moving Through the Virtual World

An application navigates within the virtual world by modifying a ViewPlatform
parent TransformGroup. Examples of applications that modify a ViewPlatfor
location and orientation include browsers, object viewers that provide nav
tional controls, applications that do architectural walkthroughs, and e
search-and-destroy games.

Controlling the ViewPlatform object can produce very interesting and us
results. Our first simple scene graph (see Figure 1-2) defines a scene grap
simple application that draws an object in the center of a window and rotates

BG

VP

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment

TG

BranchGroup

TransformGroup

ViewPlatform
Java 3D API Specification

VIEW MODEL Dropping In on a Favorite Place 8.4.2

 the

ntral
node
ar to

llow

cess
llow
ject.

es a
ent
t of
he
object about its center point. In that figure, the Behavior object modifies
TransformGroup directly above the Shape3D node.

An alternative application scene graph, shown in Figure 8-3, leaves the ce
object alone and moves the ViewPlatform around the world. If the shape
contains a model of the earth, this application could generate a view simil
that seen by astronauts as they orbit the earth.

Had we populated this world with more objects, this scene graph would a
navigation through the world via the Behavior node.

Figure 8-3 A Simple Scene Graph with View Control

Applications and behaviors manipulate a TransformGroup through its ac
methods. These methods (defined in Section 4.3, “TransformGroup Node”) a
an application to retrieve and set the Group node’s Transform3D ob
Transform3D Node methods includegetTransform andsetTransform.

8.4.2 Dropping In on a Favorite Place

A scene graph may contain multiple ViewPlatform objects. If a user detach
View object from a ViewPlatform and then reattaches that View to a differ
ViewPlatform, the image on the display will now be rendered from the poin
view of the new ViewPlatform. For more information, see Section 8.7, “T
View Object.”

BG

Virtual Universe

Locale Object

BranchGroup Nodes

BBehavior Node
TT TransformGroup Nodes

S
Shape3D Node

Appearance Geometry

ViewPlatform Object

VP

User Code
and Data

BG

View

Other Objects
201Version 1.1 Alpha 01, February 27, 1998

8.4.3 View Attach Policy VIEW MODEL

202

policy
nes

cy. A
al
al-

 in
n in
lls
gin
om-
nd
 de-

ch
si-

aint.
n by

.10,

al
This
on-
irtual
 the
-

t-
tical
8.4.3 View Attach Policy

The actual view that Java 3D’s renderer draws depends on the view attach
specified within the currently attached ViewPlatform. The ViewPlatform defi
the following methods for setting and retrieving the view attach policy.

Methods

public final void setViewAttachPolicy(int policy)
public final int getViewAttachPolicy()

These methods set and retrieve the coexistence center in virtual world poli
ViewPlatform’s view attach policy determines how Java 3D places the virtu
eyepoint within the ViewPlatform. The policy can have one of the following v
ues:

• NOMINAL_HEAD: Ensures that the end-user’s nominal eye position
the physical world corresponds to the virtual eye’s nominal eye positio
the virtual world (the ViewPlatform’s origin). In essence, this policy te
Java 3D to position the virtual eyepoint relative to the ViewPlatform ori
in the same way as the physical eyepoint is positioned relative to its n
inal physical-world origin. Deviations in the physical eye’s position a
orientation from nominal in the physical world generate corresponding
viations of the virtual eye’s position and orientation in the virtual world.

• NOMINAL_FEET: Ensures that the end-user’s virtual feet always tou
the virtual ground. This policy tells Java 3D to compute the phy
cal-to-virtual-world correspondence in a way that enforces this constr
Java 3D does so by appropriately offsetting the physical eye’s positio
the end-user’s physical height. Java 3D uses thenominalEyeHeightFrom-

Ground parameter found in the PhysicalBody object (see Section 8
“The PhysicalBody Object”) to perform this computation.

• NOMINAL_SCREEN: Allows an application to always have the virtu
eyepoint appear at some “viewable” distance from a point of interest.
policy tells Java 3D to compute the physical-to-virtual-world corresp
dence in a way that ensures that the renderer moves the nominal v
eyepoint away from the point of interest by the amount specified by
nominalEyeOffsetFromNominalScreen parameter found in the Physical
Body object (see Section 8.10, “The PhysicalBody Object”).

• NOMINAL_SCREEN_SCALED: This value is deprecated. All view a
tach policies are now affected by the screen scale so this policy is iden
to NOMINAL_SCREEN, which should be used instead.
Java 3D API Specification

VIEW MODEL Composing Model and Viewing Transformations8.5.1

esta-

ructs.

roup
r the

node
ould
in a
l
now

 sys-

g on
viron-
s the
com-
del

tual
tion
derer
ction

ing

a 3D
tion
om-
t and
y—
 the
8.4.4 Associating Geometry with a ViewPlatform

Java 3D does not have any built-in semantics for displaying a visible manif
tion of a ViewPlatform within the virtual world (anavatar). However, a devel-
oper can construct and manipulate an avatar using standard Java 3D const

A developer can construct a small scene graph consisting of a TransformG
node, a behavior leaf node, and a shape node and insert it directly unde
BranchGroup node associated with the ViewPlatform object. The shape
would contain a geometric model of the avatar’s head. The behavior node w
change the TransformGroup’s transform periodically to the value stored
View object’s UserHeadToVworld parameter, (see Appendix C, “View Mode
Details”). The avatar’s virtual head, represented by the shape node, will
move around in lock-step with the ViewPlatform’s TransformGroup andany rel-
ative position and orientation changes of the user’s actual physical head (if a
tem has a head tracker).

8.5 Generating a View

Java 3D generates viewing matrices in one of a few different ways, dependin
whether the end user has a head-mounted or a room-mounted display en
ment and whether or not head tracking is enabled. This section describe
computation for a non-head-tracked, room-mounted display—a standard
puter display. Other environments are described in Appendix C, “View Mo
Details.”

In the absence of head tracking, the ViewPlatform’s origin specifies the vir
eye’s location and orientation within the virtual world. However, the eye loca
provides only part of the information needed to render an image. The ren
also needs a projection matrix. In the default mode, Java 3D uses the proje
policy, the specified field-of-view information, and the front and back clipp
distances to construct a viewing frustum.

8.5.1 Composing Model and Viewing Transformations

Figure 8-4 shows a simple scene graph. To draw the object labeled “S,” Jav
internally constructs the appropriate model, view platform, eye, and projec
matrices. Conceptually, the model transformation for a particular object is c
puted by concatenating all the matrices in a direct path between the objec
the VirtualUniverse. The view matrix is then computed—again, conceptuall
by concatenating all the matrices between the VirtualUniverse object and
203Version 1.1 Alpha 01, February 27, 1998

8.5.1 Composing Model and Viewing Transformations VIEW MODEL

204

atri-
ects.

tion

 the
iew

hich

odel

laces
tion
tually
eral
rdi-

view

 eye
s
rices
ViewPlatform attached to the current View object. The eye and projection m
ces are constructed from the View object and its associated component obj

In our scene graph, what we would normally consider the model transforma
would consist of the following three transformations:LT 1T2. By multiplying
LT 1T2 by a vertex in the shape object, we would transform that vertex into
virtual universe’s coordinate system. What we would normally consider the v
platform transformation would be (LT v1)–1 or Tv1

–1L –1. This presents a problem
since coordinates in the virtual universe are 256-bit fixed-point values, w
cannot be used to efficiently represent transformed points.

Fortunately, however, there is a solution to this problem. Composing the m
and view platform transformations gives us

Tv1
–1L –1LT 1T2 = Tv1

–1IT 1T2 = Tv1
–1T1T2,

the matrix that takes vertices in an object’s local coordinate system and p
them in the ViewPlatform’s coordinate system. Note that the high-resolu
Locale transformations cancel each other out, which removes the need to ac
transform points into high-resolution VirtualUniverse coordinates. The gen
formula of the matrix that transforms object coordinates to ViewPlatform coo
nates isTvn

–1…Tv2
–1Tv1

–1T1T2…Tm.

As was mentioned above, the View object contains the remainder of the
information, specifically, the eye matrix,E, that takes points in the
ViewPlatform’s local coordinate system and translates them into the user’s
coordinate system, and the projection matrix,P, that projects objects in the eye’
coordinate system into clipping coordinates. The final concatenation of mat
for rendering our shape object “S” on the specified Canvas3D isPETv1

–1T1T2. In
general this isPETvn

–1…Tv2
–1Tv1

–1T1T2…Tm.

The details of how Java 3D constructs the matricesE andP in different end-user
configurations are described in Appendix C, “View Model Details.”
Java 3D API Specification

VIEW MODEL Multiple Locales 8.5.2

cales
g that
as the
dles
am-
o the
es in

ns-
irtu-

by
Figure 8-4 Object and ViewPlatform Transformations

8.5.2 Multiple Locales

Java 3D supports multiple high-resolution Locales. In some cases, these Lo
are close enough to each other that they can “see” each other, meanin
objects can be rendered even though they are not in the same Locale
ViewPlatform object that is attached to the View. Java 3D automatically han
this case without the application having to do anything. As in the previous ex
ple, where the ViewPlatform and the object being rendered are attached t
same Locale, Java 3D internally constructs the appropriate matrices for cas
which the ViewPlatform and the object being rendered arenot attached to the
same Locale.

Let’s take two Locales, L1 and L2, with the View attached to a ViewPlatform in
L1. According to our general formula, the modeling transformation—the tra
formation that takes points in object coordinates and transforms them into V
alUniverse coordinates—isLT 1T2…Tm. In our specific example, a point in
Locale L2 would be transformed into VirtualUniverse coordinates
L 2T1T2…Tm. The view platform transformation would be (L 1Tv1Tv1…Tvn)–1 or
Tvn

–1…Tv2
–1Tv1

–1L 1
–1. Composing these two matrices gives us

Tvn
–1…Tv2

–1Tv1
–1L 1

–1L 2T1T2…Tm.

BG

VP

Virtual Universe

Hi-Res Locale

View Canvas3D Screen3D

Physical
Body

Physical
Environment

T1

T2

S

Tv1

L

205Version 1.1 Alpha 01, February 27, 1998

8.6 A Minimal Environment VIEW MODEL

206

iven
, the

di-

solu-
e are
iques

 can
must
ment

tion

s all
ermine
ts. It
iew.

iew
View
Thus, to render objects in another Locale, it is sufficient to computeL 1
–1L 2 and

use that as the starting matrix when composing the model transformations. G
that a Locale is represented by a single high-resolution coordinate position
transformationL 1

–1L 2 is a simple translation byL 2 – L 1. Again, it is not neces-
sary to actually transform points into high-resolution VirtualUniverse coor
nates.

In general, Locales that are close enough that the difference in their high-re
tion coordinates can be represented in double precision by a noninfinite valu
close enough to be rendered. In practice, more sophisticated culling techn
can be used to only render those Locales that really are “close enough.”

8.6 A Minimal Environment

An application must create a minimal set of Java 3D objects before Java 3D
render to a display device. In addition to a Canvas3D object, the application
create a View object, with its associated PhysicalBody and PhysicalEnviron
objects, and the following scene graph elements:

• A VirtualUniverse object

• A high-resolution Locale object

• A BranchGroup node object

• A TransformGroup node object with associated transform

• A ViewPlatform leaf node object that defines the position and orienta
within the virtual universe for generating views

8.7 The View Object

The View object coordinates all aspects of the rendering process. It contain
the parameters or references to objects containing the parameters that det
how to render images to the windows represented by its Canvas3D objec
also contains the set of canvases that represent various “windows” onto a v

Java 3D allows applications to specify multiple simultaneously active V
objects, each controlling its own set of canvases. For more details on a
object’s internals, see Section C.5, “The View Object.”

Constructors

The View object specifies the following constructor.
Java 3D API Specification

VIEW MODEL The View Object 8.7

See
cal-

 See
the

xist-
se-
View
g a

ulta-
t was
 live
a-
public View()

Constructs and initializes a new View object.

Methods

The View object specifies the following methods.

public final void setPhysicalBody(PhysicalBody physicalBody)
public final PhysicalBody getPhysicalBody()

These methods set and retrieve the View’s PhysicalBody object.
Section 8.10, “The PhysicalBody Object,” for more information on the Physi
Body object.

public final void setPhysicalEnvironment(PhysicalEnvironment
physicalEnvironment)

public final PhysicalEnvironment getPhysicalEnvironment()

These methods set and retrieve the View’s PhysicalEnvironment object.
Section 8.11, “The PhysicalEnvironment Object,” for more information on
PhysicalEnvironment object.

public final void attachViewPlatform(ViewPlatform vp)

This method attaches a ViewPlatform leaf node to this View, replacing the e
ing ViewPlatform. If the ViewPlatform is part of a live scene graph, or is sub
quently made live, the scene graph is rendered into all canvases in this
object’s list of Canvas3D objects. To remove a ViewPlatform without attachin
new one—causing the View to no longer be rendered—anull reference may be
passed to this method. In this case, the behavior is as if rendering were sim
neously stopped on all canvases attached to the View—the last frame tha
rendered in each remains visible until the View is again attached to a
ViewPlatform object. See Section 5.10, “ViewPlatform Node,” for more inform
tion on ViewPlatform objects.

public final ViewPlatform getViewPlatform()

This method retrieves the currently attached ViewPlatform object.

public final Canvas3D getCanvas3D(int index)
public final void setCanvas3D(Canvas3D canvas3D, int index)
public final void addCanvas3D(Canvas3D canvas3D)
public final void insertCanvas3D(Canvas3D canvas3D, int index)
207Version 1.1 Alpha 01, February 27, 1998

8.7.1 Projection Policy VIEW MODEL

208

object
ithin
tion

envi-
nvi-
on

envi-
3D

ion

pro-
iew

iew.
public final void removeCanvas3D(int index)
public final void removeCanvas3D(Canvas3D canvas3D)

These methods set, retrieve, add to, insert after, and remove a Canvas3D
from this View. The index specifies the reference to the Canvas3D object w
the View object. See Section 8.9, “The Canvas3D Object” for more informa
on Canvas3D objects.

public final Enumeration getAllCanvas3Ds()

This method gets the Enumeration object of all the Canvas3Ds.

public final void addInputDevice(InputDevice device)
public final Enumeration allInputDevices()

These methods allow the introduction of new input devices into a Java 3D
ronment and the retrieval of all the input devices available within a Java 3D e
ronment. See Section 10.1, “InputDevice Interface” for more information
input devices.

public final void addAudioDevice(AudioDevice device)
public final Enumeration allAudioDevices()

These methods allow the introduction of new audio devices into a Java 3D
ronment and the retrieval of all the audio devices available within a Java
environment. See Section 11.1, “AudioDevice Interface,” for more informat
on audio devices.

public final void setAudioDevice(AudioDevice device)

This method adds an AudioDevice to the list of audio devices.

8.7.1 Projection Policy

The projection policy informs Java 3D whether it should generate a parallel
jection or a perspective projection. This policy is attached to the Java 3D V
object.

Methods

public final void setProjectionPolicy(int policy)
public final int getProjectionPolicy()

These two methods set and retrieve the current projection policy for this v
The projection policies are as follows:
Java 3D API Specification

VIEW MODEL Projection Policy 8.7.1

 a

te a

ates
jec-
on

rus-
,

ndow

le
s.

licy

orld.

irtual

 win-
g
ed
• PARALLEL_PROJECTION: Specifies that Java 3D should compute
parallel projection.

• PERSPECTIVE_PROJECTION: Specifies that Java 3D should compu
perspective projection. This is the default setting.

public final void setLocalEyeLightingEnable(boolean flag)
public final boolean getLocalEyeLightingEnable()

These methods set and retrieve the local eye lighting flag, which indic
whether the local eyepoint is used in lighting calculations for perspective pro
tions. If this flag is set totrue, the view vector is calculated per vertex based
the direction from the actual eyepoint to the vertex. If this flag is set tofalse, a
single view vector is computed from the eyepoint to the center of the view f
tum. This is calledinfinite eye lighting. Local eye lighting is disabled by default
and is ignored for parallel projections.

8.7.1.1 Window Sizing and Movement

When users resize or move windows, Java 3D can choose to think of the wi
as attached either to the physical world or to the virtual world. Thewindow
resize policy allows an application to specify how the view model will hand
resizing requests. The window resize policies are specified by two constant

Constants

public static final int PHYSICAL_WORLD

This variable specifies the policy for resizing and moving windows. This po
is used in specifyingwindowResizePolicy and windowMovementPolicy. This
variable specifies that the specified action takes place only in the physical w

public static final int VIRTUAL_WORLD

This variable specifies that Java 3D applies the associated policy in the v
world.

Methods

public final void setWindowResizePolicy(int policy)
public final int getWindowResizePolicy()

This variable specifies how Java 3D modifies the view when a user resizes a
dow. A value ofPHYSICAL_WORLD states that Java 3D will treat window resizin
operations asonly happening in the physical world. This implies that render
209Version 1.1 Alpha 01, February 27, 1998

8.7.2 Clip Policies VIEW MODEL

210

sing
dow

t
er a

ain
omes
fault

nc-

r
nges
. A

the
win-
anges

 in

 the
fying
e vir-
lative

ne.
objects continue to fill the same percentage of the newly sized window, u
more or less pixels to draw those objects, depending on whether the win
grew or shrank in size. A value ofVIRTUAL_WORLD states that Java 3D will trea
window resizing operations as also happening in the virtual world whenev
resizing occurs in the physical world. This implies that rendered objects rem
the same size (use the same number of pixels), but since the window bec
larger or smaller, the user sees more or less of the virtual world. The de
value isPHYSICAL_WORLD.

public final void setWindowMovementPolicy(int policy)
public final int getWindowMovementPolicy()

This variable specifies what part of the virtual world Java 3D will draw as a fu
tion of the window location on the display screen. A value ofPHYSICAL_WORLD

states that the window acts as if it movesonly on the physical screen. As the use
moves the window on the screen, the window’s position on the screen cha
but Java 3D continues to draw exactly the same image within that window
value ofVIRTUAL_WORLD states that the window acts as if it also moves within
virtual world. As the user moves the window on the physical screen, the
dow’s position on the screen changes and the image that Java 3D draws ch
as well to match what would be visible in the virtual world from a window
that new position. The default value isPHYSICAL_WORLD.

8.7.2 Clip Policies

The clip policies determine how Java 3D interprets clipping distances to both
near and far clip planes. The policies can contain one of four values speci
whether a distance measurement should be interpreted in the physical or th
tual world and whether that distance measurement should be interpreted re
to the physical eyepoint or the physical screen.

Methods

public final void setFrontClipPolicy(int policy)
public final int getFrontClipPolicy()
public final void setBackClipPolicy(int policy)
public final int getBackClipPolicy()

The front clip policy determines where Java 3D places the front clipping pla
The value is one of the following:PHYSICAL_EYE, PHYSICAL_SCREEN, VIRTUAL_
EYE, or VIRTUAL_SCREEN. The default value isPHYSICAL_EYE.
Java 3D API Specification

VIEW MODEL Projection and Clip Parameters 8.7.3

ne.

e’s

the
ters).

al

the
tes.

 and

hori-
l is
 pol-

front
ring.
e are
spec-

back
ring.
The back clip policy determines where Java 3D places the back clipping pla
The value is one of the following:PHYSICAL_EYE, PHYSICAL_SCREEN, VIRTUAL_
EYE, or VIRTUAL_SCREEN. The default value isPHYSICAL_EYE.

These policies are defined as follows.

• PHYSICAL_EYE: Specifies that the plane is located relative to the ey
position as measured in the physical space (in meters).

• PHYSICAL_SCREEN: Specifies that the plane is located relative to
screen (that is, the image plate) as measured in physical space (in me

• VIRTUAL_EYE: Specifies that the plane is located relative to the virtu
eyepoint as measured in virtual world coordinates.

• VIRTUAL_SCREEN: Specifies that the plane is located relative to
screen (that is, the image plate) as measured in virtual world coordina

8.7.3 Projection and Clip Parameters

The projection and clip parameters determine the view model’s field of view
the front and back clipping distances.

public final void setFieldOfView(double fieldOfView)
public final double getFieldOfView()

In the default non-head-tracked mode, this value specifies the view model’s
zontal field of view in radians. This value is ignored when the view mode
operating in head-tracked mode, or when the Canvas3D’s window eyepoint
icy is set to a value other than the default setting ofRELATIVE_TO_FIELD_OF_

VIEW (see Section C.5.3, “Window Eyepoint Policy”).

public void setFrontClipDistance(double distance)
public double getFrontClipDistance()

This value specifies the distance away from the clip origin, specified by the
clip policy variable, in the direction of gaze where objects stop disappea
Objects closer than the clip origin (eye or screen) plus the front clip distanc
not drawn. Measurements are done in the space (physical or virtual) that is
ified by the associated front clip policy parameter.

public void setBackClipDistance(double distance)
public double getBackClipDistance()

This value specifies the distance away from the clip origin (specified by the
clip policy variable) in the direction of gaze where objects begin disappea
211Version 1.1 Alpha 01, February 27, 1998

8.7.4 Frame Start Time, Duration, and Number VIEW MODEL

212

 dis-
irtual)
ject’s
node

 and

ed. It
MT.
e is

leted
ew is
of the
can-
 point
ame

rts at
.

r of
aran-

ay.
next
n. If
Objects farther away from the clip origin (eye or screen) plus the back clip
tance are not drawn. Measurements are done in the space (physical or v
that is specified by the associated back clip policy parameter. The View ob
back clip distance is ignored if the scene graph contains an active Clip leaf
(see Section 5.5, “Clip Node”).

8.7.4 Frame Start Time, Duration, and Number

The following methods are used to get information about system execution
performance.

public long getCurrentFrameStartTime()

This method returns the time at which the most recent rendering frame start
is defined as the number of milliseconds since January 1, 1970 00:00:00 G
Since multiple canvases might be attached to this View, the start of a fram
defined as the point just prior to clearing any canvas attached to this View.

public long getLastFrameDuration()

This method returns the duration, in milliseconds, of the most recently comp
rendering frame. The time taken to render all canvases attached to this Vi
measured. This duration is computed as the difference between the start
most recently completed frame and the end of that frame. Since multiple
vases might be attached to this View, the start of a frame is defined as the
just prior to clearing any canvas attached to this View, while the end of a fr
is defined as the point just after swapping the buffer for all canvases.

public long getFrameNumber()

This method returns the frame number for this view. The frame number sta
0 and is incremented prior to clearing all the canvases attached to this view

public static int getMaxFrameStartTimes()

This method retrieves the implementation-dependent maximum numbe
frames whose start times will be recorded by the system. This value is gu
teed to be at least 10 for all implementations of the Java 3D API.

public long getFrameStartTimes(long times[])

This method copies the lastk frame start time values into the user-specified arr
The most recent frame start time is copied to location 0 of the array, the
most-recent frame start time is copied into location 1 of the array, and so o
times.length is smaller thatmaxFrameStartTimes, only the lasttimes.length
Java 3D API Specification

VIEW MODEL Scene Antialiasing 8.7.6

n of

uled
on the
er is
 end-
vior
unning
ether

cene
ciated

ng this
 view.

 run-

tion
trol.

sing is
l be
values are copied. Iftimes.length is greater thanmaxFrameStartTimes, all
array elements after indexmaxFrameStartTimes – 1 are set to 0.

8.7.5 View Traversal and Behavior Scheduling

The following methods control the traversal, the rendering, and the executio
the behavior scheduler for this view.

public final long[] stopBehaviorScheduler()
public final void startBehaviorScheduler()
public final boolean isBehaviorSchedulerRunning()

The first method stops the behavior scheduler after all currently-sched
behaviors are executed. Any frame-based behaviors scheduled to wake up
next frame will be executed at least once before the behavior schedul
stopped. The method returns a pair if integers that specify the beginning and
ing time (in milliseconds since January 1, 1970 00:00:00 GMT) of the beha
scheduler’s last pass. The second method starts the behavior scheduler r
after it has been stopped. The third method retrieves a flag that indicates wh
the behavior scheduler is currently running.

public final void stopView()
public final void startView()
public final boolean isViewRunning()

The first method stops traversing this view after the current state of the s
graph is reflected on all canvases attached to this view. The renderers asso
with these canvases are also stopped. The second method starts traversi
view and starts the renderers associated with all canvases attached to this
The third method returns a flag indicating whether the traverser is currently
ning on this view.

Note: The above six methods are heavy-weight methods intended for verifica
and image capture (recording). They are not intended to be used for flow con

8.7.6 Scene Antialiasing

public final void setSceneAntialiasingEnable(boolean flag)
public final boolean getSceneAntialiasingEnable()

These methods set and retrieve the scene antialiasing flag. Scene antialia
either enabled or disabled for this view. If enabled, the entire scene wil
213Version 1.1 Alpha 01, February 27, 1998

8.7.7 Depth Buffer VIEW MODEL

214

antial-

r for
dered

bled
 the
ular

con-
tive
ltiple
tput
f the

ysi-
tem.

 the x
ical

libra-

object
as by
e-

ying
rs.
antialiased on each canvas in which scene antialiasing is available. Scene
iasing is disabled by default.

8.7.7 Depth Buffer

public final void setDepthBufferFreezeTransparent(boolean flag)
public final boolean getDepthBufferFreezeTransparent()

The set method enables or disables automatic freezing of the depth buffe
objects rendered during the transparent rendering pass (that is, objects ren
using alpha blending) for this view. If enabled, depth buffer writes are disa
during the transparent rendering pass regardless of the value of
depth-buffer-write-enable flag in the RenderingAttributes object for a partic
node. This flag is enabled by default. Theget method retrieves this flag.

8.8 The Screen3D Object

The Screen3D object provides a 3D version of the AWT screen object. It
tains the screen’s physical properties. Java 3D will support multiple ac
Screen3D objects as soon as AWT support is available. Of course, mu
screens are only available if the machine configuration has multiple ou
screens. Java 3D primarily needs to know the physical size (in meters) o
Screen3D’s visible, addressable raster (theimage plate) and, in head-tracking
mode, the position and orientation of this raster relative to a well-defined ph
cal world coordinate system, specifically, the tracker base coordinate sys
Java 3D also needs to know how many pixels the raster can display in both
and y dimensions. This information allows Java 3D to calculate a pixel’s phys
dimension.

Calibration utilities can change a Screen3D’s physical characteristics or ca
tion transforms. See Section C.6, “The Screen3D Object.”

The Screen3D object has no public constructors. Instead, the Screen3D
associated with a particular Canvas3D object can be obtained from the canv
calling thegetScreen3D method. See Section 8.9.2, “Other Canvas3D Param
ters.”

Methods

These methods provide applications with information concerning the underl
display hardware, such as the screen’s width and height in pixels or in mete
Java 3D API Specification

VIEW MODEL Window System–Provided Parameters8.9.1

.

ht in

lated
tion,

stereo
 object
units,
eters.
sical

alid
ct.

spec-

ation
 to

s3D’s
public Dimension getSize()

This method retrieves the screen’s (image plate’s) width and height in pixels

public final double getPhysicalScreenWidth()
public final double getPhysicalScreenHeight()

These methods retrieve the screen’s (image plate’s) physical width and heig
meters.

8.9 The Canvas3D Object

The Canvas3D object extends the AWT Canvas object to include 3D-re
information such as the size of the canvas in pixels, the Canvas3D’s loca
also in pixels, within a Screen3D object, and whether or not the canvas has
enabled. Because all Canvas3D objects contain a reference to a Screen3D
and because Screen3D objects define the size of a pixel in physical
Java 3D can convert a Canvas3D size in pixels to a physical world size in m
It can also determine the Canvas3D’s position and orientation in the phy
world.

Constructors

The Canvas3D object specifies one constructor.

public Canvas3D(GraphicsConfiguration graphicsConfiguration)

This constructs and initializes a new Canvas3D object given a v
Graphics-Configuration object. Java 3D can render into this Canvas3D obje

For more information on the GraphicsConfiguration object see the Java 2D
ification, which will be part of the AWT in JDK 1.2.

8.9.1 Window System–Provided Parameters

Java 3D specifies the size of a Canvas3D in pixels. It extracts this inform
directly from the AWT’s window system. Java 3D only allows applications
access these values, not change them.

public Dimension getLocationOnScreen()
public Dimension getSize()

These methods, inherited from the parent Canvas class, retrieve the Canva
screen position and size in pixels.
215Version 1.1 Alpha 01, February 27, 1998

8.9.2 Other Canvas3D Parameters VIEW MODEL

216

ential

s ste-
If the

uffer-

 dou-
ffer
va 3D

-level

g the
 spec-
8.9.2 Other Canvas3D Parameters

public final boolean getStereoAvailable()

This method specifies whether the underlying hardware supports field-sequ
stereo on this canvas.

public final boolean getStereoEnable()
public final void setStereoEnable(boolean flag)

These methods set or retrieve the flag indicating whether this Canvas3D ha
reo enabled. If enabled, Java 3D generates left and right eye images.
Canvas3D’sStereoAvailable flag isfalse, Java 3D displays only theleft eye’s
view even if an application setsStereoEnable to true. This parameter allows
applications to enable or disable stereo on a canvas-by-canvas basis.

public final void getDoubleBufferAvailable()

This method specifies whether the underlying hardware supports double b
ing on this canvas.

public final boolean getDoubleBufferEnable()
public final void setDoubleBufferEnable(boolean flag)

These methods set or retrieve the flag indicating whether this Canvas3D has
ble buffering enabled. If disabled, all drawing is to the front buffer and no bu
swap will be done between frames. It should be stressed that running Ja
with double buffering disabled is not recommended.

public final boolean getSceneAntialiasingAvailable()

This method specifies whether the underlying hardware supports scene
antialiasing.

public final View getView()

Retrieves the View object that points to this Canvas3D.

public final Screen3D getScreen3D()

Retrieves the Screen3D object to which this Canvas3D is attached.

8.10 The PhysicalBody Object

Java 3D defines a PhysicalBody object that contains information concernin
end user’s physical characteristics. The head parameters allow end users to
Java 3D API Specification

VIEW MODEL The PhysicalEnvironment Object 8.11

 inter-
The
 a

ed in
ient
in a
ify their own head’s characteristics, such as the location of the eyes and the
pupilary distance. See Section C.8, “The PhysicalBody Object,” for details.
default values are sufficient for applications that are running in
non-head-tracked environment and that do not manually set the eyepoint.

Constructors

public PhysicalBody()

This constructor constructs and initializes a default PhysicalBody object.

8.11 The PhysicalEnvironment Object

The PhysicalEnvironment object defines several methods that are describ
Section C.9, “The PhysicalEnvironment Object.” The default values are suffic
for applications that do not use continuous input devices that are run
non-head-tracked display environment.

Constructors

public PhysicalEnvironment()

Constructs and initializes a default PhysicalEnvironment object.
217Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 9

s

key-
g pick
node’s
va 3D
 com-

. For
tively

ate.
 and

s: an

vior
by its

hed-

ct’s

te
tial-
e vir-
Behaviors and Interpolator

BEHAVIOR nodes provide the means for animating objects, processing
board and mouse inputs, reacting to movement, and enabling and processin
events. Behavior nodes contain Java code and state variables. A Behavior
Java code can interact with Java objects, change node values within a Ja
scene graph, change the behavior’s internal state—in general, perform any
putation it wishes.

Simple behaviors can add surprisingly interesting effects to a scene graph
example, one can animate a rigid object by using a Behavior node to repeti
modify the TransformGroup node that points to the object one wishes to anim
Alternatively, a Behavior node can track the current position of a mouse
modify portions of the scene graph in response.

9.1 Behavior Object

A Behavior leaf node object contains a scheduling region and two method
initialize method called once when the behavior becomes “live” and apro-

cessStimulus method called whenever appropriate by the Java 3D beha
scheduler. The Behavior object also contains the state information needed
initialize andprocessStimulus methods.

The scheduling region defines a spatial volume that serves to enable the sc
uling of Behavior nodes. A Behavior node isactive (can receive stimuli) when-
ever a ViewPlatform’s activation volume intersects a Behavior obje
scheduling region. Only active behaviors can receive stimuli.

The initialize method allows a Behavior object to initialize its internal sta
and specify its initial wakeup condition(s). Java 3D invokes a behavior’s ini
ize code when the behavior’s containing BranchGroup node is added to th
tual universe. Java 3D does not invoke theinitialize method in a new thread.
219

9.1.1 Code Structure BEHAVIORS AND INTERPOLATORS

220

n
 else

es-

vior
fied.
bly
D to

nally

y, it
oba-
 can
bilities
estrict

cene
pro-
reates
s to

lways
basic

mer-

ition

uler)
Thus, for Java 3D to regain control, theinitialize method must not execute a
infinite loop: It must return. Furthermore, a wakeup condition must be set or
the behavior’sprocessStimulus method is never executed.

TheprocessStimulus method receives and processes a behavior’s ongoing m
sages. The Java 3D behavior scheduler invokes a Behavior node’sprocessStim-

ulus method when a ViewPlatform’s activation volume intersects a Beha
object’s scheduling region and all of that behavior’s wakeup criteria are satis
The processStimulus method performs its computations and actions (possi
including the registration of state change information that could cause Java 3
wake other Behavior objects), establishes its next wakeup condition, and fi
exits.

9.1.1 Code Structure

When the Java 3D behavior scheduler invokes a Behavior object’sprocessStim-

ulus method, that method may perform any computation it wishes. Usuall
will change its internal state and specify its new wakeup conditions. Most pr
bly, it will manipulate scene graph elements. However, the behavior code
only change those aspects of a scene graph element permitted by the capa
associated with that scene graph element. A scene graph’s capabilities r
behavioral manipulation to those manipulations explicitly allowed.

The application must provide the Behavior object with references to those s
graph elements that the Behavior object will manipulate. The application
vides those references as arguments to the behavior’s constructor when it c
the Behavior object. Alternatively, the Behavior object itself can obtain acces
the relevant scene graph elements either when Java 3D invokes itsinitialize

method or each time Java 3D invokes itsprocessStimulus method.

Behavior methods have a very rigid structure. Java 3D assumes that they a
run to completion (if needed, they can spawn threads). Each method’s
structure consists of the following:

• Code to decode and extract references from the WakeupCondition enu
ation that caused the object’s awakening

• Code to perform the manipulations associated with the WakeupCond

• Code to establish this behavior’s new WakeupCondition

• A path to Exit (so that execution returns to the Java 3D behavior sched
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS WakeupCriterion Object9.1.3

rent
iple

ondi-
avior
 enu-

se in
ause

bject

bject

any

riate
ents
inter-
9.1.2 WakeupCondition Object

A WakeupCondition object is an abstract class specialized to fourteen diffe
WakeupCriterion objects and to four combining objects containing mult
WakeupCriterion objects.

A Behavior node provides the Java 3D behavior scheduler with a WakeupC
tion object. When that object’s WakeupCondition has been satisfied, the beh
scheduler hands that same WakeupCondition back to the Behavior via an
meration.

9.1.3 WakeupCriterion Object

Java 3D provides a rich set of wakeup criteria that Behavior objects can u
specifying a complex WakeupCondition. These wakeup criteria can c
Java 3D’s behavior scheduler to invoke a behavior’sprocessStimulus method
whenever

• The center of a ViewPlatform enters a specified region

• The center of a ViewPlatform exits a specified region

• A behavior is activated

• A behavior is deactivated

• A specified TransformGroup node’s transform changes

• Collision is detected between a specified Shape3D node’s Geometry o
and any other object

• Movement occurs between a specified Shape3D node’s Geometry o
and any other object with which it collides

• A specified Shape3D node’s Geometry object no longer collides with
other object

• A specified Behavior object posts a specific event

• A specified AWT event occurs

• A specified time interval elapses

• A specified number of frames have been drawn

• The center of a specified Sensor enters a specified region

• The center of a specified Sensor exits a specified region

A Behavior object constructs a WakeupCriterion by constructing the approp
criterion object. The Behavior object must provide the appropriate argum
(usually a reference to some scene graph object and possibly a region of
221Version 1.1 Alpha 01, February 27, 1998

9.1.4 Composing WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

222

cify
.

ore
osite

hat

cts

d by
es as
ments
ific

their
 door
nd the

urces
00 or
 con-
iated
est). Thus, to specify a WakeupOnViewPlatformEntry, a behavior would spe
the region that will cause the behavior to execute if a ViewPlatform enters it

9.1.4 Composing WakeupCriterion Objects

A Behavior object can combine multiple WakeupCriterion objects into a m
powerful, composite WakeupCondition. Java 3D behaviors construct a comp
WakeupCondition in one of the following ways:

• WakeupAnd: An array of WakeupCriterion objects ANDed together.

WakeupCriterion && WakeupCriterion && ...

• WakeupOr: An array of WakeupCriterion objects ORed together.

WakeupCriterion || WakeupCriterion || ...

• WakeupAndOfOrs: An array of WakeupOr WakeupCondition objects t
are then ANDed together.

WakeupOr && WakeupOr && ...

• WakeupOrOfAnds: An array of WakeupAnd WakeupCondition obje
that are then ORed together.

WakeupAnd || WakeupAnd || ...

9.2 Composing Behaviors

Behavior objects can condition themselves to awaken only when signale
another Behavior node. The WakeupOnBehaviorPost WakeupCriterion tak
arguments a reference to a Behavior node and an integer. These two argu
allow a behavior to limit its wakeup criterion to a specific post by a spec
behavior.

The WakeupOnBehaviorPost WakeupCriterion permits behaviors to chain
computations, allowing parenthetical computations—one behavior opens a
and the second closes the same door, or one behavior highlights an object a
second unhighlights the same object.

9.3 Scheduling

As a virtual universe grows large, Java 3D must carefully husband its reso
to ensure adequate performance. In a 10,000-object virtual universe with 4
so Behavior nodes, a naive implementation of Java 3D could easily end up
suming the majority of its compute cycles in executing the behaviors assoc
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS How Java 3D Performs Execution Culling9.4

, the

 uni-
,000-
ould
sso-
 few

high-
ke

pro-
lec-

utely

 con-
g all
main
rform

rm
ling
h a
keup

the

, if
t

with the 400 Behavior objects before it draws a frame. In such a situation
frame rate could easily drop to unacceptable levels.

Behavior objects are usually associated with geometric objects in the virtual
verse. In our example of 400 Behavior objects scattered throughout a 10
object virtual universe, only a few of these associated geometric objects w
be visible at a given time. A sizable fraction of the Behavior nodes—those a
ciated with nonvisible objects—need not be executed. Only those relatively
Behavior objects that are associated with visible objects must be executed.

Java 3D mitigates the problem of a large number of Behavior nodes in a
population virtual universe through execution culling—choosing only to invo
those behaviors that have high relevance.

Java 3D requires each behavior to have ascheduling region and to post a wakeup
condition. Together a behavior’s scheduling region and wakeup condition
vide Java 3D’s behavior scheduler with sufficient domain knowledge to se
tively prune behavior invocations and only invoke those behaviors that absol
need to be executed.

9.4 How Java 3D Performs Execution Culling

Java 3D finds all scheduling regions associated with Behavior nodes and
structs a scheduling/volume tree. It also creates an AND/OR tree containin
the Behavior node wakeup criteria. These two data structures provide the do
knowledge Java 3D needs to prune unneeded behavior execution (to pe
“execution triage”).

Java 3D must track a behavior’s wakeup conditions only if a ViewPlatfo
object’s activation volume intersects with that Behavior object’s schedu
region. If the ViewPlatform object’s activation volume does not intersect wit
behavior’s scheduling region, Java 3D can safely ignore that behavior’s wa
criteria.

In essence, the Java 3D scheduler performs the following checks:

• Find all Behavior objects with scheduling regions that intersect
ViewPlatform object’s activation volume.

• For each Behavior object within the ViewPlatform’s activation volume
that behavior’s WakeupCondition istrue, schedule that Behavior objec
for execution.
223Version 1.1 Alpha 01, February 27, 1998

9.5 The Behavior API BEHAVIORS AND INTERPOLATORS

224

 been

: the
d the

r all

 the
s that

duler
tend

unds.
g leaf
ion
een
ed
Java 3D’s behavior scheduler executes those Behavior objects that have
scheduled by calling the behavior’sprocessStimulus method.

9.5 The Behavior API

The Java 3D behavior API spreads its functionality across three objects
Behavior leaf node, the WakeupCondition object and its subclasses, an
WakeupCriterion objects.

9.5.1 The Behavior Node

The Behavior object is an abstract class that contains the framework fo
behavioral components in Java 3D.

Methods

The Behavior leaf node class defines the following methods.

public abstract void initialize()

This method, invoked by Java 3D’s behavior scheduler, is used to initialize
behavior’s state variables and to establishes its WakeupConditions. Classe
extend Behavior must provide their owninitialize method.

public abstract void processStimulus(Enumeration criteria)

This method processes stimuli destined for this behavior. The behavior sche
invokes this method if its WakeupCondition is satisfied. Classes that ex
Behavior must provide their ownprocessStimulus method.

public final void setSchedulingBounds(Bounds region)
public final Bounds getSchedulingBounds()

These two methods access or modify the Behavior node’s scheduling bo
This bounds is used as the scheduling region when the scheduling boundin
is set tonull. A behavior is scheduled for activation when its scheduling reg
intersects the ViewPlatform’s activation volume (if its wakeup criteria have b
satisfied). ThegetSchedulingBounds method returns a copy of the associat
bounds.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Behavior Node9.5.1

nding
-

y be

.

f the
have

nced

ted.
k up

nding
ce is

thod
y on
(the
ary”
 is
public final void setSchedulingBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getSchedulingBoundingLeaf()

These two methods access or modify the Behavior node’s scheduling bou
leaf. When set to a value other thannull, this bounding leaf overrides the sched
uling bounds object and is used as the scheduling region.

public void wakeupOn(WakeupCondition criteria)

This method defines this behavior’s wakeup criteria. This method may onl
called from a Behavior object’sinitialize or processStimulus methods to
(re)arm the next wakeup. It should be the last thing done by those methods

public void postId(int postId)

This method, when invoked by a behavior, informs the Java 3D scheduler o
identified event. The scheduler will schedule other Behavior objects that
registered interest in this posting.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information fromoriginalNode into the current
node. This method is called from thecloneTree method.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This is a callback method used to allow a node to check if any nodes refere
by that node have been duplicated via a call tocloneTree. This method is called
by thecloneTree method after all nodes in the subgraph have been duplica
The cloned leaf node’s method will be called and the leaf node can then loo
any node references by using thegetNewNodeReference method found in the
NodeReferenceTable object. If a match is found, a reference to the correspo
node in the newly cloned subgraph is returned. If no corresponding referen
found, either aDanglingReferenceException is thrown or a reference to the
original node is returned, depending on the value of theallowDanglingRefer-

ences parameter passed in thecloneTree call.

protected View getView()

This method returns the primary view associated with this behavior. This me
is useful with certain types of behaviors, such as Billboard and LOD, that rel
per-View information and with behaviors in general in regards to scheduling
distance from the view platform determines the active behaviors). The “prim
view is defined to be the first View attached to a live ViewPlatform, if there
225Version 1.1 Alpha 01, February 27, 1998

9.5.2 WakeupCondition Object BEHAVIORS AND INTERPOLATORS

226

 ori-
ame

rion,
. A

r and
n.

enu-

pCon-
tially
ition.
 those

 Each
iated
sed a
that

-

avior
more than one active View. So, for instance, Billboard behaviors would be
ented toward this primary view, in the case of multiple active views into the s
scene graph.

9.5.2 WakeupCondition Object

WakeupCondition is an abstract class that is extended by the WakeupCrite
WakeupOr, WakeupAnd, WakeupOrOfAnds, and WakeupAndOfOr classes
Behavior node hands a WakeupCondition object to the behavior schedule
the behavior scheduler hands back an enumeration of that WakeupConditio

Methods

The Java 3D API provides two methods for constructing WakeupCondition
merations.

public Enumeration allElements()
public Enumeration triggeredElements()

These two methods create enumerators that sequentially access this Wakeu
dition’s wakeup criteria. The first method creates an enumerator that sequen
presents all wakeup criteria that were used to construct this WakeupCond
The second method creates an enumerator that sequentially presents only
wakeup criteria that have been satisfied.

9.5.3 The WakeupCriterion Objects

WakeupCriterion is an abstract class that consists of several subclasses.
subclass specifies one particular wakeup criterion, that criterion’s assoc
arguments (if any), and either a flag that indicates whether this criterion cau
Behavior object to awaken or a return field containing the information
caused the Behavior object to awaken.

Methods

public boolean hasTriggered()

This predicate method returnstrue if this WakeupCriterion contributed to wak
ing a Behavior object.

9.5.3.1 WakeupOnAWTEvent

This WakeupCriterion object specifies that Java 3D should awaken a beh
when the specified AWT event occurs.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

AWT
ke-
he

 this
can

the
ion.
ated.

avior

ehav-
d

Constructors

public WakeupOnAWTEvent(int AWTId)
public WakeupOnAWTEvent(long eventMask)

The first constructor creates a WakeupOnAWTEvent object that informs the
Java 3D scheduler to wake up the specified Behavior object whenever the
event specified byAWTId occurs. The second constructor creates a Wa
upOnAWTEvent object that informs the Java 3D scheduler to wake up t
specified Behavior object whenever any of the specified AWTEVENT_MASK

events occur. TheeventMask consists of an ORed collection ofEVENT_MASK val-
ues.

Methods

public AWTEvent[] getAWTEvent()

This method returns the array of consecutive AWT events that triggered
WakeupCriterion to awaken the Behavior object. The Behavior object
retrieve theAWTEvent array and process it in any way it wishes.

9.5.3.2 WakeupOnActivation

The WakeupOnActivation object specifies a wakeup the first time
ViewPlatform’s activation region intersects with this object’s scheduling reg
This gives the behavior an explicit means of executing code when it is activ

Constructors

public WakeupOnActivation()

This constructor creates a WakeupOnActivation criterion.

9.5.3.3 WakeupOnBehaviorPost

This WakeupCriterion object specifies that Java 3D should awaken this beh
when the specified behavior posts the specified ID.

Constructors

public WakeupOnBehaviorPost(Behavior behavior, int postId)

This constructor creates a WakeupOnBehaviorPost object that informs the
Java 3D scheduler to wake up this Behavior object whenever the specified b
ior posts the specifiedpostId. A postId of 0 specifies that this behavior shoul
227Version 1.1 Alpha 01, February 27, 1998

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

228

peci-

ostid
 will

hav-
 the

 of a
ed-
en it
awaken on any post from the specified behavior. Specifying anull behavior
implies that this behavior should awaken whenever any behavior posts the s
fied postId.

Methods

public int getPostId()

This method returns thepostId used in creating this WakeupCriterion.

public Behavior getBehavior()

This method returns the behavior specified in this object’s constructor.

public int getTriggeringPostId()

This method returns the postid that caused the behavior to wake up. If the p
used to construct this wakeup criterion was not zero, the triggering postid
always be equal to the postid used in the constructor.

public Behavior getTriggeringBehavior()

This method returns the behavior that triggered this wakeup. If the arming be
ior used to construct this object was not null, the triggering behavior will be
same as the arming behavior.

9.5.3.4 WakeupOnDeactivation

The WakeupOnDeactivation object specifies a wakeup on the first detection
ViewPlatform’s activation region no longer intersecting with this object’s sch
uling region. This gives the behavior an explicit means of executing code wh
is deactivated.

Constructors

public WakeupOnDeactivation()

This constructor creates a new WakeupOnDeactivation criterion.

public WakeupOnDeactivation(Bounds region)

Deprecated constructor. Use the empty constructor instead.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

avior
 that

rawn
e.

avior

cified

ber
tually

ds.
9.5.3.5 WakeupOnElapsedFrames

This WakeupCriterion object specifies that Java 3D should awaken this beh
after it has rendered the specified number of frames. A value of 0 implies
Java 3D will awaken this behavior at the next frame.

Constructors

public WakeupOnElapsedFrames(int frameCount)

This constructor creates a WakeupOnElapsedFrames object that informs the
Java 3D scheduler to wake up the specified Behavior object after it has d
frameCount frames. AframeCount value of 0 means wake up at the next fram

Methods

public int getElapsedFrameCount()

This method returns the frame count used in creating this WakeupCriterion.

9.5.3.6 WakeupOnElapsedTime

This WakeupCriterion object specifies that Java 3D should awaken this beh
after an elapsed number of milliseconds.

Constructors

public WakeupOnElapsedTime(long milliseconds)

This constructor creates a WakeupOnElapsedTime object that informs the
Java 3D scheduler to wake up the specified Behavior object after the spe
number of milliseconds.

Note: The Java 3D scheduler will schedule the object after the specified num
of milliseconds have elapsed, not before. However, the elapsed time may ac
be slightly greater than the time specified.

Methods

public long getElapsedFrameTime()

This method returns the WakeupCriterion’s elapsed time value in millisecon
229Version 1.1 Alpha 01, February 27, 1998

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

230

avior

it an
.

ects a

n.

avior
gion.

rre-

e it
9.5.3.7 WakeupOnSensorEntry

This WakeupCriterion object specifies that Java 3D should awaken this beh
when any sensor enters the specified region.

Note: There can be situations in which a sensor may enter and then ex
armed region so rapidly that neither the Entry nor Exit condition is engaged

Constructors

public WakeupOnSensorEntry(Bounds region)

This constructor creates a WakeupOnSensorEntry object that informs the
Java 3D scheduler to wake up the specified Behavior object whenever it det
sensor within the specifiedregion for the first time.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

9.5.3.8 WakeupOnSensorExit

This WakeupCriterion object specifies that Java 3D should awaken this beh
when any sensor, already marked as within the region, is no longer in that re

Note: This semantic guarantees that an Exit condition is engaged if its co
sponding Entry condition was engaged.

Constructors

public WakeupOnSensorExit(Bounds region)

This constructor creates a WakeupOnSensorExit object that informs the
Java 3D scheduler to wake up the specified Behavior object the first tim
detects that a sensor has left the specifiedregion.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

n.

ake-
ther

orph
s are

ified
any

fying
Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

9.5.3.9 WakeupOnCollisionEntry

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionEntry behavior when the specified object collides with any o
object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionEntry(SceneGraphPath armingPath)
public WakeupOnCollisionEntry(SceneGraphPath armingPath,

int speedHint)
public WakeupOnCollisionEntry(Node armingNode)
public WakeupOnCollisionEntry(Node armingNode, int speedHint)
public WakeupOnCollisionEntry(Bounds armingBounds)

These constructors create a WakeupOnCollisionEntry object that informs the
Java 3D scheduler to wake up the specified Behavior object if the spec
“armed” node’s geometry or the specified “armed” bounds collides with
other object in the scene graph. ThespeedHint flag is eitherUSE_GEOMETRY or
USE_BOUNDS.

Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in speci
the collision detection.
231Version 1.1 Alpha 01, February 27, 1998

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

232

ake-
ith

orph
s are

ified
ides

fying
public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

9.5.3.10 WakeupOnCollisionExit

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionExit behavior when the specified object no longer collides w
any other object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionExit(SceneGraphPath armingPath)
public WakeupOnCollisionExit(SceneGraphPath armingPath,

int speedHint)
public WakeupOnCollisionExit(Node armingNode)
public WakeupOnCollisionExit(Node armingNode, int speedHint)
public WakeupOnCollisionExit(Bounds armingBounds)

These constructors create a WakeupOnCollisionExit object that informs the
Java 3D scheduler to wake up the specified Behavior object if the spec
“armed” node’s geometry or the specified “armed” bounds no longer coll
with any other object in the scene graph. ThespeedHint flag is eitherUSE_
GEOMETRY or USE_BOUNDS.

Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in speci
the collision detection.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

ake-
in a

orph
s are

cified
 the

fying
public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

9.5.3.11 WakeupOnCollisionMovement

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnCollisionMovement behavior when the specified object moves while
state of collision with any other object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or M
node is done using the actual geometry or whether the geometric bound
used as an approximation.

Constructors

public WakeupOnCollisionMovement(SceneGraphPath armingPath)
public WakeupOnCollisionMovement(SceneGraphPath armingPath,

int speedHint)
public WakeupOnCollisionMovement(Node armingNode)
public WakeupOnCollisionMovement(Node armingNode, int speedHint)
public WakeupOnCollisionMovement(Bounds armingBounds)

These constructors create a WakeupOnCollisionMovement object that informs
the Java 3D scheduler to wake up the specified Behavior object if the spe
node’s geometry or the specified bounds collides with any other object in
scene graph. ThespeedHint flag is eitherUSE_GEOMETRY or USE_BOUNDS.

Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in speci
the collision detection.

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.
233Version 1.1 Alpha 01, February 27, 1998

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

234

ake-
fied

 exit
ed.

er it

n.

ake-
 as

orre-

e it
9.5.3.12 WakeupOnViewPlatformEntry

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnViewPlatformEntry behavior when any ViewPlatform enters the speci
region.

Note: There can be situations in which a ViewPlatform may enter and then
an armed region so rapidly that neither the Entry nor Exit condition is engag

Constructors

public WakeupOnViewPlatformEntry(Bounds region)

This constructor creates a WakeupOnViewPlatformEntry object that informs
the Java 3D scheduler to wake up the specified Behavior object whenev
detects a ViewPlatform center within the specifiedregion for the first time.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

9.5.3.13 WakeupOnViewPlatformExit

This WakeupCriterion object specifies that Java 3D should awaken the W
upOnViewPlatformExit behavior when any ViewPlatform, already marked
within the region, is no longer in that region.

Note: This semantic guarantees that an Exit condition gets engaged if its c
sponding Entry condition was engaged.

Constructors

public WakeupOnViewPlatformExit(Bounds region)

This constructor creates a WakeupOnViewPlatformExit object that informs the
Java 3D scheduler to wake up the specified Behavior object the first tim
detects that a ViewPlatform has left the specifiedregion.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objects9.5.3

n.

sform

pCri-

Ded
n this
ome

-
 the

ether.
hav-

mes
Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterio

9.5.3.14 WakeupOnTransformChange

The WakeupOnTransformChange object specifies a wakeup when the tran
within a specified TransformGroup changes.

Constructors

public WakeupOnTransformChange(TransformGroup node)

This constructor creates a new WakeupOnTransformChange criterion.

Methods

public TransformGroup getTransformGroup()

This method returns the TransformGroup node used in creating this Wakeu
terion.

9.5.3.15 WakeupAnd

The WakeupAnd class specifies any number of wakeup conditions AN
together. This WakeupCondition object specifies that Java 3D should awake
Behavior when all of the WakeupCondition’s constituent wakeup criteria bec
valid.

Constructors

public WakeupAnd(WakeupCriterion conditions[])

This constructor creates a WakeupAnd object that informs the Java 3D sched
uler to wake up this Behavior object when all the conditions specified in
array of WakeupCriterion objects have become valid.

9.5.3.16 WakeupOr

The WakeupOr class specifies any number of wakeup conditions ORed tog
This WakeupCondition object specifies that Java 3D should awaken this Be
ior when any of the WakeupCondition’s constituent wakeup criteria beco
valid.
235Version 1.1 Alpha 01, February 27, 1998

9.6 Interpolator Behaviors BEHAVIORS AND INTERPOLATORS

236

r
y of

tions
ould
pOr

ions

ions
ould
keu-

ndi-

 are
me
ioral
Constructors

public WakeupOr(WakeupCriterion conditions[])

This constructor creates a WakeupOr object that informs the Java 3D schedule
to wake up this Behavior object when any condition specified in the arra
WakeupCriterion objects becomes valid.

9.5.3.17 WakeupAndOfOrs

The WakeupAndOfOrs class specifies any number of OR wakeup condi
ANDed together. This WakeupCondition object specifies that Java 3D sh
awaken this Behavior when all of the WakeupCondition’s constituent Wakeu
conditions become valid.

Constructors

public WakeupAndOfOrs(WakeupOr conditions[])

This constructor creates a WakeupAndOfOrs object that informs the Java 3D
scheduler to wake up this Behavior object when all of the WakeupOr condit
specified in the array of WakeupOr objects become valid.

9.5.3.18 WakeupOrOfAnds

The WakeupOrOfAnds class specifies any number of AND wakeup condit
ORed together. This WakeupCondition object specifies that Java 3D sh
awaken this Behavior when any of the WakeupCondition’s constituent Wa
pAnd conditions becomes valid.

Constructors

public WakeupOrOfAnds(WakeupAnd conditions[])

This constructor creates a WakeupOrOfAnds object that informs the Java 3D
scheduler to wake up this Behavior object when any of the WakeupAnd co
tions specified in the array of WakeupAnd objects becomes valid.

9.6 Interpolator Behaviors

This section describes Java 3D’s predefined Interpolator behaviors. They
called interpolators because they smoothly interpolate among the two extre
values that an interpolator can produce. Interpolators perform simple behav
acts, yet they provide broad functionality.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Mapping Time to Alpha9.6.1

ting
de,

ecify-
tors
d a

nge
 the
ge of
, an

alpha
n the

map-
erent
 given
icate
ent
sistent

ing.
rtical
e to
The Java 3D API provides interpolators for a number of functions: manipula
transforms within a TransformGroup, modifying the values of a Switch no
and modifying Material attributes such as color and transparency.

These predefined Interpolator behaviors share the same mechanism for sp
ing and later for converting a temporal value into an alpha value. Interpola
consist of two portions: a generic portion that all interpolators share an
domain-specific portion.

The generic portion maps time in milliseconds onto a value in the ra
[0.0, 1.0] inclusive. The domain-specific portion maps an alpha value in
range [0.0, 1.0] onto a value appropriate to the predefined behavior’s ran
outputs. An alpha value of 0.0 generates an interpolator’s minimum value
alpha value of 1.0 generates an interpolator’s maximum value, and an
value somewhere in between generates a value proportionally in betwee
minimum and maximum values.

9.6.1 Mapping Time to Alpha

Several parameters control the mapping of time onto an alpha value. That
ping is deterministic as long as its parameters do not change. Thus, two diff
interpolators with the same parameters will generate the same alpha value
the same time value. This means that two interpolators that do not commun
can still precisely coordinate their activities, even if they reside in differ
threads or even different processors—as long as those processors have con
clocks.

Figure 9-1 shows the components of an interpolator’s time-to-alpha mapp
Time is represented on the horizontal axis. Alpha is represented on the ve
axis. As we move from left to right, we see the alpha value start at 0.0, ris
1.0, and then decline back to 0.0 on the right-hand side.

Figure 9-1 An Interpolator’s Generic Time-to-Alpha Mapping Sequence

Trigger

Phase
delay

α
increasing

α
at 1

α
decreasing

α
at 0

α

237Version 1.1 Alpha 01, February 27, 1998

9.6.1 Mapping Time to Alpha BEHAVIORS AND INTERPOLATORS

238

form
e,
ange.

es.
tors

rame-

t the
-
 both,

erate
 flag
e

 the
 inter-
ram-

pen-

 the
m

On the left-hand side, the trigger time defines when this interpolator’s wave
begins in milliseconds. The region directly to the right of the trigger tim
labeled Phase Delay, defines a time period where the waveform does not ch
During phase delaysα is either 0 or 1, depending on which region it preced
Phase delays provide an important means for offsetting multiple interpola
from one another, especially where the interpolators have all the same pa
ters. The next four regions, labeledα increasing,α at 1,α decreasing, andα at
0, all specify durations for the corresponding values of alpha.

Interpolators have a loop count that determines how many times to repea
sequence ofα increasing,α at 1,α decreasing, andα at 0; they also have associ
ated mode flags that enable either the increasing or decreasing portions, or
of the waveform.

Developers can use the loop count in conjunction with the mode flags to gen
various kinds of actions. Specifying a loop count of 1 and enabling the mode
for only theα-increasing andα-at-1 portion of the waveform, we would get th
waveform shown in Figure 9-2.

Figure 9-2 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only
the α-Increasing andα-at-1 Portion of the Waveform

In Figure 9-2, the alpha value is 0 before the combination of trigger time plus
phase delay duration. The alpha value changes from 0 to 1 over a specified
val of time, and thereafter the alpha value remains 1 (subject to the reprog
ming of the interpolator’s parameters). A possible use of a singleα-increasing
value might be to combine it with a rotation interpolator to program a door o
ing.

Similarly, by specifying a loop count of 1 and a mode flag that enables only
α-decreasing andα-at-0 portion of the waveform, we would get the wavefor
shown in Figure 9-3.

0

1

Time
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Mapping Time to Alpha9.6.1

 the
 inter-
ng of

.

of 1

 the
cified
nges
alue
). A

then

door
ecify
Figure 9-3 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only
the α-Decreasing andα-at-0 Portion of the Waveform

In Figure 9-3, the alpha value is 1 before the combination of trigger time plus
phase delay duration. The alpha value changes from 1 to 0 over a specified
val, and thereafter the alpha value remains 0 (subject to the reprogrammi
the interpolator’s parameters). A possible use of a singleα-decreasing value
might be to combine it with a rotation interpolator to program a door closing

We can combine both of the above waveforms by specifying a loop count
and setting the mode flag to enable both theα-increasing andα-at-1 portion of
the waveform as well as theα-decreasing andα-at-0 portion of the waveform.
This combination would result in the waveform shown in Figure 9-4.

Figure 9-4 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable All Por-
tions of the Waveform

In Figure 9-4, the alpha value is 0 before the combination of trigger time plus
phase delay duration. The alpha value changes from 0 to 1 over a spe
period of time, remains at 1 for another specified period of time, then cha
from 1 to 0 over a third specified period of time, and thereafter the alpha v
remains 0 (subject to the reprogramming of the interpolator’s parameters
possible use of anα-increasing followed by anα-decreasing value might be to
combine it with a rotation interpolator to program a door swinging open and
closing.

By increasing the loop count, we can get repetitive behavior, such as a
swinging open and closed some number of times. At the extreme, we can sp
a loop count of−1 (representing infinity).

1

0

Time

0 0

1

Time
239Version 1.1 Alpha 01, February 27, 1998

9.6.1 Mapping Time to Alpha BEHAVIORS AND INTERPOLATORS

240

9-2,
ode

1 for

able

and

com-
We can construct looped versions of the waveforms shown in Figure
Figure 9-3, and Figure 9-4. Figure 9-5 shows a looping interpolator with m
flags set to enable only theα-increasing andα-at-1 portion of the waveform.

Figure 9-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only theα-
Increasing andα-at-1 Portion of the Waveform

In Figure 9-5, alpha goes from 0 to 1 over a fixed duration of time, stays at
another fixed duration of time, and then repeats.

Similarly, Figure 9-6 shows a looping interpolator with mode flags set to en
only theα-decreasing andα-at-0 portion of the waveform.

Figure 9-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only theα-
Decreasing andα-at-0 Portion of the Waveform

Finally, Figure 9-7 shows a looping interpolator with both the increasing
decreasing portions of the waveform enabled.

Figure 9-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable All Por-
tions of the Waveform

In all three cases shown by Figure 9-5, Figure 9-6, and Figure 9-7, we can
pute the exact value of alpha at any point in time.

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Time

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Time

1

0 0

1

0

1

0

1

0

Time
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Acceleration of Alpha9.6.2

their
tch the

 until
cceler-
the

 two

asing
til it
eler-

 of
t
sing
f
 value
Java 3D’s preprogrammed behaviors permit other behaviors to change
parameters. When such a change occurs, the alpha value changes to ma
state of the newly parameterized interpolator.

9.6.2 Acceleration of Alpha

Commonly, developers want alpha to change slowly at first and to speed up
the change in alpha reaches some appropriate rate. This is analogous to a
ating your car up to the speed limit—it does not start off immediately at
speed limit. Developers specify this “ease-in, ease-out” behavior through
additional parameters, theincreasingAlphaRampDuration and thedecreasin-
gAlphaRampDuration.

Each of these parameters specifies a period within the increasing or decre
alpha duration region during which the “change in alpha” is accelerated (un
reaches its maximum per-unit-of-time step size) and then symmetrically dec
ated. Figure 9-8 shows three general examples of how theincreasingAl-

phaRampDuration method can be used to modify the alpha waveform. A value
0 for the increasing ramp duration implies thatα is not accelerated; it changes a
a constant rate. A value of 0.5 or greater (clamped to 0.5) for this increa
ramp duration implies that the change inα is accelerated during the first half o
the period and then decelerated during the second half of the period. For a
of n that is less than 0.5, alpha is accelerated for durationn, held constant for
duration (1.0− 2n), then decelerated for durationn of the period.
241Version 1.1 Alpha 01, February 27, 1998

9.6.3 The Alpha Class BEHAVIORS AND INTERPOLATORS

242

o an
ly a
pled:
er-

f –

tart

ystem.

er

r
_
low.
Figure 9-8 How anα-Increasing Waveform Changes with Various Values ofincreasin-
gAlphaRampDuration

9.6.3 The Alpha Class

The Alpha class provides common methods for converting a time value int
alpha value (a value in the range 0.0 to 1.0). The Alpha object is effective
function of time that generates alpha values in the range [0,1] when sam
ft = [0,1]. The functionft and the characteristics of the Alpha object are det
mined by the following user-definable parameters:

• loopCount: Specifies the number of times to run this Alpha. A value o
1 specifies that the Alpha loops indefinitely.

• triggerTime: Specifies the time in milliseconds since the system s
time that this object first triggers. IfsystemStartTime – currentTime is
less than zero, the Alpha object is started as soon as possible by the s

• phaseDelayDuration: Specifies the number of milliseconds to wait aft
triggerTime before actually starting this Alpha.

• mode: The mode can be set to INCREASING_ENABLE o
DECREASING_ENABLE, or the ORed value of the two. INCREASING
ENABLE activates the increasing Alpha parameters described be

α Acceleration

α Velocity

α Value
0

1

Ramp = 0 Ramp ≥ 1/2 Duration Ramp < 1/2 Duration

Alpha Ramp Examples

0 0

1 1

α Increasing α Increasing α Increasing

•

•

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Class9.6.3

list-

-

f
ts
n at
nd of
lue
lpha

.

-

f
ts
n at
nd of
lue
lpha

ro.

asing
DECREASING_ENABLE activates the decreasing Alpha parameters
ed below.

The increasing Alpha parameters are:

• increasingAlphaDuration: Specifies the time period during which Al
pha goes from zero to one.

• increasingAlphaRampDuration: Specifies the time period during which
the Alpha step size increases at the beginning of theincreasingAlphaDu-

ration and, correspondingly, decreases at the end of theincreasingAl-

phaDuration. This parameter is clamped to half o
increasingAlphaDuration. When this parameter is non-zero, one ge
constant acceleration while it is in effect; constant positive acceleratio
the beginning of the ramp and constant negative acceleration at the e
the ramp. If this parameter is zero, the effective velocity of the Alpha va
is constant and the acceleration is zero (i.e., linearly increasing a
ramp).

• alphaAtOneDuration: Specifies the time period that Alpha stays at one

The decreasing Alpha parameters are:

• decreasingAlphaDuration: Specifies the time period during which Al
pha goes from one to zero.

• decreasingAlphaRampDuration: Specifies the time period during which
the Alpha step size increases at the beginning of thedecreasingAlphaDu-

ration and, correspondingly, decreases at the end of thedecreasingAl-

phaDuration. This parameter is clamped to half o
decreasingAlphaDuration. When this parameter is non-zero, one ge
constant acceleration while it is in effect; constant positive acceleratio
the beginning of the ramp and constant negative acceleration at the e
the ramp. If this parameter is zero, the effective velocity of the Alpha va
is constant and the acceleration is zero (i.e., a linearly-decreasing a
ramp).

• alphaAtZeroDuration: Specifies the time period that Alpha stays at ze

Constants

public static final int INCREASING_ENABLE
public static final int DECREASING_ENABLE

These flags specify that this alpha’s mode is to use the increasing or decre
component of the alpha, respectively.
243Version 1.1 Alpha 01, February 27, 1998

9.6.3 The Alpha Class BEHAVIORS AND INTERPOLATORS

244

ining
e the
cified

ed on
thod
for an
value
ue is

lative
Constructors

public Alpha()
public Alpha(int loopCount, long increasingAlphaDuration)
public Alpha(int loopCount, long triggerTime,

long phaseDelayDuration, long increasingAlphaDuration,
long increasingAlphaRampDuration, long alphaAtOneDuration)

public Alpha(int loopCount, int mode, long triggerTime,
long phaseDelayDuration, long increasingAlphaDuration,
long increasingAlphaRampDuration,
long alphaAtOneDuration, long decreasingAlphaDuration,
long decreasingAlphaRampDuration,
long alphaAtZeroDuration)

The first form constructs a new Alpha object using default values. The rema
forms construct a new Alpha object using the specified parameters to defin
alpha phases for the object. The default values for the parameters not spe
by the constructors are as follows:

loopCount: –1
mode: INCREASING_ENABLE
triggerTime : 0
phaseDelayDuration: 0
increasingAlphaDuration: 1000
increasingAlphaRampDuration: 0
alphaAtOneDuration: 0
decreasingAlphaDuration: 0
decreasingAlphaRampDuration: 0
alphaAtZeroDuration : 0

Methods

public float value()
public float value(long atTime)

These methods return the alpha value (between 0.0 and 1.0 inclusive) bas
the time-to-alpha parameters established for this interpolator. The first me
returns the alpha for the current time. The second method returns the alpha
arbitrary given time. If the alpha mapping has not started, the starting alpha
is returned. If the alpha mapping has completed, the ending alpha val
returned.

public void setStartTime(long startTime)
public long getStartTime()

These methods set and retrieve this alpha’s start time, the base for all re
time specifications.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Class9.6.3

f the

ed

ts
delay
public void setLoopCount(int loopCount)
public int getLoopCount()

These methods set and retrieve this alpha’s loop count.

public void setMode(int mode)
public int getMode()

These methods set and retrieve this alpha’s mode, which defines which o
alpha regions are active. The mode is one of the following values:INCREASING_

ENABLE, DECREASING_ENABLE, or both (when both of these modes are OR
together).

If the mode isINCREASING_ENABLE, theincreasingAlphaDuration, increas-
ingAlphaRampDuration, and alphaAtOneDuration are active. If the mode is
DECREASING_ENABLE, the decreasingAlphaDuration, decreasingAlphaRamp-

Duration, andalphaAtZeroDuration are active. If the mode is both constan
ORed, all regions are active. Active regions are all preceded by the phase
region.

public void setTriggerTime(long triggerTime)
public long getTriggerTime()

These methods set and retrieve this alpha’s trigger time.

public void setPhaseDelayDuration(long phaseDelayDuration)
public long getPhaseDelayDuration()

These methods set and retrieve this alpha’s phase delay duration.

public void setIncreasingAlphaDuration(long
increasingAlphaDuration)

public long getIncreasingAlphaDuration()

These methods set and retrieve this alpha’sincreasingAlphaDuration.

public void setIncreasingAlphaRampDuration(long
increasingAlphaRampDuration)

public long getIncreasingAlphaRampDuration()

These methods set and retrieve this alpha’sincreasingAlphaRampDuration.

public void setAlphAtOneDuration(long alphaAtOneDuration)
public long getAlphaAtOneDuration()

These methods set and retrieve this alpha’salphaAtOneDuration.
245Version 1.1 Alpha 01, February 27, 1998

9.6.4 The Interpolator Base Class BEHAVIORS AND INTERPOLATORS

246

,

s are
s the
 the
-spe-

need
-

public void setDecreasingAlphaDuration(long
decreasingAlphaDuration)

public long getDecreasingAlphaDuration()

These methods set and retrieve this alpha’sdecreasingAlphaDuration.

public void setDecreasingAlphaRampDuration(long
decreasingAlphaRampDuration)

public long getDecreasingAlphaRampDuration()

These methods set and retrieve this alpha’sdecreasingAlphaRampDuration.

public void setAlphAtZeroDuration(long alphaAtZeroDuration)
public long getAlphaAtZeroDuration()

These methods set and retrieve this alpha’salphaAtZeroDuration.

public boolean finished()

This method returnstrue if this Alpha object is past its activity window, that is
if it has finished all its looping activity. This method returnsfalse if this Alpha
object is still active.

9.6.4 The Interpolator Base Class

Interpolator is an abstract behavior class from which several subclasse
derived. The base Interpolator class contains an Alpha object that provide
means for converting a time value (in milliseconds) into an alpha value in
range [0.0, 1.0] inclusive. Its subclasses map this alpha value into domain
cific values in their range.

Constants

protected WakeupCriterion defaultWakeupCriterion

This is the default WakeupCondition for all interpolators. ThewakeupOn method
of Behavior, which takes a WakeupCondition as the method parameter, will
to be called at the end of theprocessStimulus method of any class that sub
classes Interpolator. This is done with the following method call:

wakeupOn(defaultWakeupCriterion);

Constructors

The Interpolator behavior class has the following constructors.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS PositionInterpolator Object9.6.5

es.
ions

ult is

at the

ional
pair
ject).
g the
public Interpolator()
public Interpolator(Alpha alpha)

The first form constructs and initializes a new Interpolator with default valu
The second form provides the common initialization code for all specializat
of Interpolator.

Methods

public void setAlpha(Alpha alpha)
public Alpha getAlpha()

These methods set and retrieve this interpolator’s Alpha object. Setting it tonull

causes the Interpolator to stop running.

public void setEnable(boolean state)
public boolean getEnable()

These methods set and retrieve this Interpolator’s enabled state—the defa
enabled.

public void initialize()

This is the generic predefined interpolatorinitialize method. It sets the inter-
polator start time to the current time and schedules the behavior to awaken
next frame.

9.6.5 PositionInterpolator Object

The PositionInterpolator class extends Interpolator. It modifies the translat
component of its target TransformGroup by linearly interpolating between a
of specified positions (using the value generated by the specified Alpha ob
The interpolated position is used to generate a translation transform alon
local X-axis of this interpolator.

Constructors

The PositionInterpolator object specifies the following constructors.

public PositionInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial position interpolator with a specified target, anaxisOf-

Translation set to the identity transformation, astartPosition of 0.0, and an
endPosition of 1.0 along theX-axis.
247Version 1.1 Alpha 01, February 27, 1998

9.6.6 RotationInterpolator Object BEHAVIORS AND INTERPOLATORS

248

rans-

cal
done

de.

alpha
tes a
 node

onal
 pair
). The
public PositionInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfTranslation, float startPosition,
float endPosition)

Constructs and initializes a new PositionInterpolator that varies the target T
formGroup node’s translational component (startPosition andendPosition).
TheaxisOfTranslation parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. The translation is
along theX-axis of this local coordinate system.

Methods

The PositionInterpolator object specifies the following methods.

public void setStartPosition(float position)
public float getStartPosition()

These two methods set and get the Interpolator’s start position.

public void setEndPosition(float position)
public float getEndPosition()

These two methods set and get the Interpolator’s end position.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the Interpolator’s target TransformGroup no

public void setAxisOfTranslation(Transform3D axis)
public Transform3D getAxisOfTranslation()

These two methods set and get the Interpolator’s axis of translation.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into a translation value, compu
transform based on this value, and updates the specified TransformGroup
with this new transform.

9.6.6 RotationInterpolator Object

The RotationInterpolator class extends Interpolator. It modifies the rotati
component of its target TransformGroup by linearly interpolating between a
of specified angles (using the value generated by the specified Alpha object
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotationInterpolator Object9.6.6

e of

roup
,

m in

e, in

e, in

de.
interpolated angle is used to generate a rotation transform about the localY-axis
of this interpolator.

Constructors

public RotationInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial rotation interpolator with a specifiedtarget, an axisOf-

Rotation set to identity, a minimum angle of 0 radians, and a maximum angl
2π radians.

public RotationInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfRotation, float minimumAngle,
float maximumAngle)

Constructs a new rotation interpolator that varies the target TransformG
node’s rotational component. TheminimumAngle parameter is the starting angle
in radians;maximumAngle is the ending angle, in radians. TheaxisOfRotation

parameter specifies the transform that defines the local coordinate syste
which this interpolator operates. The rotation is done about theY-axis of this
local coordinate system.

Methods

public void setMinimumAngle(float angle)
public float getMinimumAngle()

These two methods set and get the interpolator’s minimum rotation angl
radians.

public void setMaximumAngle(float angle)
public float getMaximumAngle()

These two methods set and get the interpolator’s maximum rotation angl
radians.

public void setAxisOfRotation(Transform3D axis)
public Transform3D getAxisOfRotation()

These two methods set and get the interpolator’s axis of rotation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup no
249Version 1.1 Alpha 01, February 27, 1998

9.6.7 ColorInterpolator Object BEHAVIORS AND INTERPOLATORS

250

alpha
trans-
 with

rget
sing

r of

ween

nent
public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into a rotation angle, computes a
form based on this angle, and updates the specified TransformGroup node
this new transform.

9.6.7 ColorInterpolator Object

The ColorInterpolator class extends Interpolator. It modifies the color of its ta
material object by linearly interpolating between a pair of specified colors (u
the value generated by the specified Alpha object).

Constructors

public ColorInterpolator(Alpha alpha, Material target)

Constructs a trivial color interpolator with a specified target, a start colo
black, and an end color of white.

public ColorInterpolator(Alpha alpha, Material target,
Color3f startColor, color3f endColor)

Constructs a new ColorInterpolator object that varies the target material bet
two color values (startColor andendColor).

Methods

public void setStartColor(Color3f color)
public void getStartColor(Color3f color)

These two methods set and get the interpolator’s start color.

public void setEndColor(Color3f color)
public void getEndColor(Color3f color)

These two methods set and get the interpolator’s end color.

public void setTarget(Material target)
public Material getTarget()

These two methods set and get the interpolator’s target Material compo
object.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS ScaleInterpolator Object9.6.8

alpha
s the

cale
pair
lpha

 in the

node
rix, a

roup

cal
ut the
public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into a color value and update
specified Material object with this new color value.

9.6.8 ScaleInterpolator Object

The ScaleInterpolator class extends Interpolator. It modifies the uniform s
component of its target TransformGroup by linearly interpolating between a
of specified scale values (using the value generated by the specified A
object). The interpolated scale value is used to generate a scale transform
local coordinate system of this interpolator.

Constructors

public ScaleInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial scale interpolator that varies its target TransformGroup
between the two scale values, using the specified alpha, an identity mat
minimum scale of 0.1, and a maximum scale of 1.0.

public ScaleInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfScale, float minimumScale,
float maximumScale)

Constructs a new ScaleInterpolator object that varies the target TransformG
node’s scale component between two scale values (minimumScale andmaximum-
Scale). TheaxisOfScale parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. The scale is done abo
origin of this local coordinate system.

Methods

public void setMinimumScale(float scale)
public float getMinimumScale()

These two methods set and get the interpolator’s minimum scale.

public void setMaximumScale(float scale)
public float getMaximumScale()

These two methods set and get the interpolator’s maximum scale.
251Version 1.1 Alpha 01, February 27, 1998

9.6.9 SwitchValueInterpolator Object BEHAVIORS AND INTERPOLATORS

252

de.

alpha
trans-
 with

nced

ted.
k up

nding
ce is

cted
eci-
ject).

itch
public void setAxisOfScale(Transform3D axis)
public Transform3D getAxisOfScale()

These two methods set and get the interpolator’s axis of scale.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup no

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into a scale value, computes a
form based on this value, and updates the specified TransformGroup node
this new transform.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This is a callback method used to allow a node to check if any nodes refere
by that node have been duplicated via a call tocloneTree. This method is called
by thecloneTree method after all nodes in the subgraph have been duplica
The cloned leaf node’s method will be called and the leaf node can then loo
any node references by using thegetNewNodeReference method found in the
NodeReferenceTable object. If a match is found, a reference to the correspo
node in the newly cloned subgraph is returned. If no corresponding referen
found, either aDanglingReferenceException is thrown or a reference to the
original node is returned, depending on the value of theallowDanglingRefer-

ences parameter passed in thecloneTree call.

9.6.9 SwitchValueInterpolator Object

The SwitchValueInterpolator class extends Interpolator. It modifies the sele
child of the target Switch node by linearly interpolating between a pair of sp
fied child index values (using the value generated by the specified Alpha ob

Constructors

public SwitchValueInterpolator(Alpha alpha, Switch target)
public SwitchValueInterpolator(Alpha alpha, Switch target,

int firstChildIndex, int lastChildIndex)

Constructs a new SwitchValueInterpolator object that varies the target Sw
node’s child index between the two values provided (firstChildIndex, the
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS TransparencyInterpolator Object9.6.10

alpha
dates

spar-
een

ecified

um
index of the first children in the Switch node to select, andlastChildIndex, the
index of the last children in the Switch node to select).

Methods

public void setFirstChildIndex(int firstIndex)
public int getFirstChildIndex()

These two methods set and get the interpolator’s first child index.

public void setLastChildIndex(int lastIndex)
public int getLastChildIndex()

These two methods set and get the interpolator’s last child index.

public void setTarget(Switch target)
public Switch getTarget()

These two methods set and get the interpolator’s target Switch node.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into a child index value and up
the specified Switch node with this new child index value.

9.6.10 TransparencyInterpolator Object

The TransparencyInterpolator class extends Interpolator. It modifies the tran
ency of its target TransparencyAttributes object by linearly interpolating betw
a pair of specified transparency values (using the value generated by the sp
Alpha object).

Constructors

public TransparencyInterpolator(Alpha alpha,
TransparencyAttributes target)

Constructs a trivial transparency interpolator with a specified target, a minim
transparency of 0.0, and a maximum transparency of 1.0.
253Version 1.1 Alpha 01, February 27, 1998

9.6.11 PositionPathInterpolator Object BEHAVIORS AND INTERPOLATORS

254

erial’s

butes

alpha
dates

e.

nsla-
g a
peci-

ation

f 1.0.
ny
public TransparencyInterpolator(Alpha alpha,
TransparencyAttributes target, float minimumTransparency,
float maximumTransparency)

Constructs a new TransparencyInterpolator object that varies the target mat
transparency between the two transparency values (minimumTransparency, the
starting transparency, andmaximumTransparency, the ending transparency).

Methods

public void setMinimumTransparency(float transparency)
public float getMinimumTransparency()

These two methods set and get the interpolator’s minimum transparency.

public void setMaximumTransparency(float transparency)
public float getMaximumTransparency()

These two methods set and get the interpolator’s maximum transparency.

public void setTarget(TransparencyAttributes target)
public TransparencyAttributes getTarget()

These two methods set and get the interpolator’s target TransparencyAttri
component object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into a transparency value and up
the specified TransparencyAttributes object with this new transparency valu

9.6.11 PositionPathInterpolator Object

The PositionPathInterpolator class extends Interpolator. It modifies the tra
tional component of its target TransformGroup by linearly interpolating amon
series of predefined knot/position pairs (using the value generated by the s
fied Alpha object). The interpolated position is used to generate a transl
transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value o
An intermediate knot with indexk must have a value strictly greater than a
knot with index less thank.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS PositionPathInterpolator Object9.6.11

target

per-
s a
the

rays.

ject.

alpha
tes a
 node
Constructors

public PositionPathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfTranslation, float
knots[], Point3f positions[])

Constructs a new PositionPathInterpolator that varies the translation of the
TransformGroup’s transform. TheaxisOfTranslation parameter specifies the
transform that defines the local coordinate system in which this interpolator o
ates. Theknots parameter specifies an array of knot values that specifie
spline. Thepositions parameter specifies an array of position values at
knots.

Methods

public int getArrayLengths()

This method retrieves the lengths of the interpolator’s knots and positions ar

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void setKnot(int index, float knot)
public float getKnot(int index)

These two methods set and get the interpolator’s indexed knot value.

public void setAxisOfTranslation(Transform3D axis)
public Transform3D getAxisOfTranslation()

These two methods set and get the interpolator’s axis of translation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup ob

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into a translation value, compu
transform based on this value, and updates the specified TransformGroup
with this new transform.
255Version 1.1 Alpha 01, February 27, 1998

9.6.12 RotPosPathInterpolator Object BEHAVIORS AND INTERPOLATORS

256

ional
olat-
sing
 and
f this

f 1.0.
ny

tation

m in
t
r-
n

quats
9.6.12 RotPosPathInterpolator Object

The RotPosPathInterpolator class extends Interpolator. It modifies the rotat
and translational components of its target TransformGroup by linearly interp
ing among a series of predefined knot/position and knot/orientation pairs (u
the value generated by the specified Alpha object). The interpolated position
orientation are used to generate a transform in the local coordinate system o
interpolator.

The first knot must have a value of 0.0. The last knot must have a value o
An intermediate knot with indexk must have a value strictly greater than a
knot with index less thank.

Constructors

public RotPosPathInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfRotPos, float knots[], Quat4f quats[],
Point3f positions[])

This constructor constructs a new RotPosPathInterpolator that varies the ro
and translation of the target TransformGroup’s transform. TheaxisOfRotPos

parameter specifies the transform that defines the local coordinate syste
which this interpolator operates. Theknots parameter specifies an array of kno
values that specifies a spline. Thequats parameter specifies an array of quate
nion values at the knots. Thepositions parameter specifies an array of positio
values at the knots.

Methods

public int getArrayLengths()

This method retrieves the lengths of the interpolator’s knots, positions, and
arrays.

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotPosScalePathInterpolator Object9.6.13

ation.

ject.

alpha
lues,
Trans-

 rota-
 lin-
tion,
ject).
sform

f 1.0.
y

s the
The
cal
public void setKnot(int index, float knot)
public float getKnot(int index)

These two methods set and get the interpolator’s indexed knot value.

public void setAxisOfRotPos(Transform3D axisOfRotPos)
public Transform3D getAxisOfRotPos()

These two methods set and get the interpolator’s axis of rotation and transl

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup ob

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into translation and rotation va
computes a transform based on these values, and updates the specified
formGroup node with this new transform.

9.6.13 RotPosScalePathInterpolator Object

The RotPosScalePathInterpolator class extends Interpolator. It varies the
tional, translational, and scale components of its target TransformGroup by
early interpolating among a series of predefined knot/position, knot/orienta
and knot/scale pairs (using the value generated by the specified Alpha ob
The interpolated position, orientation, and scale are used to generate a tran
in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value o
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public RotPosScalePathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfRotPosScale,
float knots[], Quat4f quats[], Point3f positions[],
float scales[])

This constructor constructs a new RotPosScalePathInterpolator that varie
rotation, translation, and scale of the target TransformGroup’s transform.
axisOfRotPosScale parameter specifies the transform that defines the lo
coordinate system in which this interpolator operates. Theknots parameter spec-
257Version 1.1 Alpha 01, February 27, 1998

9.6.13 RotPosScalePathInterpolator Object BEHAVIORS AND INTERPOLATORS

258

e

rays.

, and

ject.

alpha
e val-
ifies an array of knot values that specifies a spline. Thequats parameter specifies
an array of quaternion values at the knots. Thepositions parameter specifies an
array of position values at the knots. Thescale parameter specifies the scal
component value.

Methods

public int getArrayLengths()

This method retrieves the lengths of the interpolator’s knots and positions ar

public void setScale(int index, float scale)
public float getScale(int index)

These two methods set and get the interpolator’s indexed scale value.

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void setKnot(int index, float knot)
public float getKnot(int index)

These two methods set and get the interpolator’s indexed knot value.

public void setAxisOfRotPosScale(Transform3D axisOfRotPosScale)
public Transform3D getAxisOfRotPosScale()

These two methods set and get the interpolator’s axis of rotation, translation
scale.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup ob

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into translation, rotation, and scal
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotationPathInterpolator Object9.6.14

ecified

s the
ing
ed by
ate a

f 1.0.
y

s the

rpo-
at

s at

rays.
ues, computes a transform based on these values, and updates the sp
TransformGroup node with this new transform.

9.6.14 RotationPathInterpolator Object

The RotationPathInterpolator class extends the Interpolator class. It varie
rotational component of its target TransformGroup by linearly interpolat
among a series of predefined knot/orientation pairs (using the value generat
the specified Alpha object). The interpolated orientation is used to gener
rotation transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value o
An intermediate knot with indexk must have a value strictly greater than an
knot with index less thank.

Constructors

public RotationPathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfRotation,
float knots[], Quat4f quats[])

This constructor constructs a new RotationPathInterpolator object that varie
target TransformGroup node’s transform. TheaxisOfRotation parameter speci-
fies the transform that defines the local coordinate system in which this inte
lator operates. Theknots parameter specifies an array of knot values th
specifies a spline. Thequats parameter specifies an array of quaternion value
the knots.

Methods

public int getArrayLengths()

This method retrieves the lengths of the interpolator’s knots and positions ar

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

public void setKnot(int index, float knot)
public float getKnot(int index)

These two methods set and get the interpolator’s indexed knot value.
259Version 1.1 Alpha 01, February 27, 1998

9.7 Level-of-Detail Behaviors BEHAVIORS AND INTERPOLATORS

260

ject.

alpha
trans-
 with

rates
des.
l-of-
public void setAxisOfRotation(Transform3D axisOfRotation)
public Transform3D getAxisOfRotation()

These two methods set and get the interpolator’s axis of rotation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup ob

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the
value that corresponds to the current time into a rotation angle, computes a
form based on this angle, and updates the specified TransformGroup node
this new transform.

9.7 Level-of-Detail Behaviors

The LOD (Level of Detail) leaf node is an abstract behavior class that ope
on a list of Switch group nodes to select one of the children of the Switch no
Specializations of the LOD abstract behavior node implement various leve
detail policies.

9.7.1 LOD Object

The DistanceLOD behavior node implements a distance-based LOD policy.

Constructors

public LOD()

Constructs and initializes a new LOD node.

Methods

The LOD node class defines the following methods.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS DistanceLOD Object9.7.2

t of
he
h
e
d
.

 The
 dis-
t

-
m of

toff
e.
public final void addSwitch(Switch switchNode)
public final void setSwitch(Switch switchNode, int index)
public final void insertSwitch(Switch switchNode, int index)
public final void removeSwitch(int index)
public final Switch getSwitch(int index)
public final int numSwitches()

The addSwitch method appends the specified Switch node to this LOD’s lis
switches. ThesetSwitch method replaces the specified Switch node with t
Switch node provided. TheinsertSwitch method inserts the specified Switc
node at the specified index. TheremoveSwitch method removes the Switch nod
at the specified index. ThegetSwitch method returns the Switch node specifie
by the index. ThenumSwitches method returns a count of this LOD’s switches

public final Enumeration getAllSwitches()

This method returns the Enumeration object of all switches.

9.7.2 DistanceLOD Object

The DistanceLOD behavior node implements a distance-based LOD policy.
DistanceLOD behavior selects one of the Switch node’s children based on
tance from the viewer. For distances 0 throughn—where distance[0] is the mos
detail, and n is least—the DistanceLOD selects childn when the viewer
is > distance[n+1] and≤ distance[n] from the center of the bounds of the Distan
ceLOD node. The LOD distances are defined in the local coordinate syste
this node.

Constructors

public DistanceLOD()
public DistanceLOD(float distances[])

Construct and initialize a new DistanceLOD node. Thedistances parameter
specifies a vector of doubles representing LOD cutoff distances.

Methods

public final int numDistances()
public final double getDistance(int whichLOD)
public final void setDistance(int whichLOD, double distance)

ThenumDistances method returns a count of the number of LOD distance cu
parameters. ThegetDistance method returns a particular LOD cutoff distanc
ThesetDistance method sets a particular LOD cutoff distance.
261Version 1.1 Alpha 01, February 27, 1998

9.8 Billboard Behavior BEHAVIORS AND INTERPOLATORS

262

ify a
nate
bove

tric
 map

ren’s
public void initialize()

This method sets up the initial wakeup criteria.

public void processStimulus(Enumeration criteria)

This method computes the appropriate level of detail.

9.8 Billboard Behavior

The Billboard behavior node operates on a TransformGroup node to spec
transform that always aligns itself perpendicular to a specified world-coordi
axis or to a viewer’s view vector—regardless, in either case, of transforms a
the specified transform node in the scene graph.

Billboard nodes provide the most benefit for complex, roughly symme
objects. A typical use might consist of a quadrilateral that contains a texture
of a tree.

Constants

The Billboard class adds the following new constants.

public static final int ROTATE_ABOUT_AXIS

Specifies that rotation should be about the specified axis.

public static final int ROTATE_ABOUT_POINT

Specifies that rotation should be about the specified point and that the child
Y-axis should match the ViewPlatform’sY-axis.

Constructors

The Billboard class specifies the following constructors.

public Billboard()

Constructs a Billboard behavior node withROTATE_ABOUT_AXIS rotation with an
axis pointing along theY-axis.
Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Billboard Behavior 9.8

me-

 and

either

set or

oard

ation
public Billboard(TransformGroup tg)
public Billboard(TransformGroup tg, int mode, Vector3f axis)
public Billboard(TransformGroup tg, int mode, Point3f point)

The first constructor constructs a Billboard behavior node with default para
ters that operates on the specified targetTransformGroup node. The default
alignment mode isROTATE_ABOUT_AXIS, with the axis along theY-axis. The next
two constructors construct a Billboard behavior node with the specified axis
mode that operates on the specified TransformGroup node. Theaxis parameter
specifies the ray about which the billboard rotates. Thepoint parameter specifies
the position about which the billboard rotates. Themode parameter is the align-
ment mode and is eitherROTATE_ABOUT_AXIS or ROTATE_ABOUT_POINT.

Methods

The Billboard class defines the following methods.

public final void setAlignmentMode(int mode)
public final int getAlignmentMode()

These methods, if enabled by the appropriate flag, permit an application to
retrieve or set the Billboard node’s alignment mode, one ofROTATE_ABOUT_AXIS

or ROTATE_ABOUT_POINT.

public final void setAlignmentAxis(Vector3f axis)
public final void setAlignmentAxis(float x, float y, float z)
public final void getAlignmentAxis(Vector3f axis)

These methods, if enabled by the appropriate flag, permit an application to
retrieve the Billboard node’s alignment axis.

public final void setTarget(TransformGroup tg)
public final TransformGroup getTarget()

These methods set or retrieve the target TransformGroup node for this Billb
object.

public final void setRotationPoint(float x, float y, float z)
public final void setRotationPoint(Point3f point)
public final void getRotationPoint(Point3f point)

The first two methods set the rotation point. The third method gets the rot
point and sets the parameter to this value.
263Version 1.1 Alpha 01, February 27, 1998

9.8 Billboard Behavior BEHAVIORS AND INTERPOLATORS

264
public void initialize()

This method sets up the initial wakeup criteria.

public void processStimulus(Enumeration criteria)

This method computes the appropriate transform.
Java 3D API Specification

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 10

g

 API
 vari-
ckers

ned
a 3D
uous
ation
 the

nsis-
er of
nstant

r can
ons
put
incor-
ust

pe-
oper

e-to-
 dou-
Input Devices and Pickin

JAVA 3D provides access to keyboards and mice using the standard Java
for keyboard and mouse support. Additionally, Java 3D provides access to a
ety of continuous-input devices such as six-degrees-of-freedom (6DOF) tra
and joysticks.

Continuous-input devices like 6DOF trackers and joysticks have well defi
continuous inputs. Trackers produce a position and orientation that Jav
stores internally as a transformation matrix. Joysticks produce two contin
values in the range [–1.0, 1.0] that Java 3D stores internally as a transform
matrix with an identity rotation (no rotation) and one of the joystick values as
X translation and the other as the Y translation component.

Unfortunately, continuous-input devices do not have the same level of co
tency when it comes to their associated switches or buttons. Still, the numb
buttons or switches attached to a particular sensing element remains co
across all sensing elements associated with a single device.

10.1 InputDevice Interface

The InputDevice interface specifies an abstract input device that a develope
use in implementing a device driver for a particular device. All implementati
of an InputDevice interface must implement all of its methods. Java 3D’s in
device scheduler uses these methods to interact with specific devices and
porate their input. In addition to the generic methods that all InputDevices m
provide, implementations of an InputDevice will contain whatever device-s
cific information and methods are necessary to maintain that device’s pr
functioning.

All input devices consist of a number of Sensor objects that have a direct on
one relationship with that device’s physical detectors. Sensor objects serve
265

10.1.1 The Abstract Interface INPUT DEVICES AND PICKING

266

rve as
n can
 Sen-

ion,
iver
cific

e or

ice.

ice’s
lative
ng a
ble duty. They not only represent actual physical detectors but they also se
abstract six-degrees-of-freedom transformations that a Java 3D applicatio
access. The Sensor class is described in more detail in Section 10.2.3, “The
sor Object.”

10.1.1 The Abstract Interface

All input devices implement a consistent interface that allows the initializat
processing of input, and finalization of a particular input device. A device-dr
programmer would implement the following methods in whatever device-spe
manner is necessary to perform the specified operations.

Constants

public static final int POLLED
public static final int STREAMING

These flags specify whether the associated device works in polled mod
streaming mode.

Methods

public abstract boolean initialize()

This method initializes the device. It returnstrue if initialization succeeded,
false otherwise.

public abstract void setProcessingMode(int mode)
public abstract int getProcessingMode()

These methods set and retrieve this device’s processing mode.

public int getSensorCount()

This method returns the number of Sensor objects associated with this dev

public Sensor getSensor(int sensorIndex)

This method returns the specified Sensor associated with this device.

public abstract void setNominalPositionAndOrientation()

This method sets the device’s current position and orientation as the dev
nominal position and orientation (that is, establishes its reference frame re
to the “tracker base” reference frame). This method is most useful in defini
nominal pose in immersive head-tracked situations.
Java 3D API Specification

INPUT DEVICES AND PICKING Sensors 10.2

alues

ecific
ilable-
 or
user.

ject
vice

 the
d in

a 3D

than
ept of
nd the
ue. A
inate

ents,
y from
 6DOF
public abstract void pollAndProcessInput()

This method first polls the device for data values and then processes the v
received from the device.

public abstract void processStreamInput()

This method processes the device’s streaming input.

public abstract void close()

This method closes the device.

10.1.2 Instantiating and Registering a New Device

A browser or applications developer must instantiate whatever system-sp
input devices that he or she needs and that exist on the system. This ava
device information typically exists in a site configuration file. The browser
application will instantiate the viewing environment as requested by the end

The API for instantiating devices is site-specific, but it consists of a device ob
with a constructor and at least all of the methods specified in the Input-De
interface.

Once instantiated, the browser or application must register the device with
Java 3D input device scheduler. The API for registering devices is specifie
Section 8.7, “The View Object.” TheaddInputDevice method introduces new
devices to the Java 3D environment and theallInputDevices method produces
an enumeration that allows examination of all available devices within a Jav
environment.

10.2 Sensors

The Java 3D API provides only an abstract concept of a device. Rather
focusing on issues of devices and device models, it instead defines the conc
a sensor. A sensor consists of a timestamped sequence of input values a
state of the buttons or switches at the time that Java 3D sampled the val
sensor also contains a hotspot offset specified in that sensor’s local coord
system. If not specified, the hotspot is (0.0, 0.0, 0.0).

Since a typical hardware environment contains multiple sensing elem
Java 3D maintains an array of sensors. Users can access a sensor directl
their Java code or they can assign a sensor to one of Java 3D’s predefined
entities such as UserHead.
267Version 1.1 Alpha 01, February 27, 1998

10.2.1 Using and Assigning Sensors INPUT DEVICES AND PICKING

268

 writes
s. The
ph or

hese
tion
d enti-
isibly
asy

. At a
ation
may
ation

r be
 on a

ensor
ciated
s.

redic-
 next
10.2.1 Using and Assigning Sensors

Using a sensor is as easy as accessing an object. The application developer
Java code to extract the associated sensor value from the array of sensor
developer can then directly apply that value to an element in a scene gra
process the sensor values in whatever way necessary.

Java 3D includes three special six-degrees-of-freedom (6DOF) entities. T
include UserHead, DominantHand, and NondominantHand. An applica
developer can assign or change which sensor drives one of these predefine
ties. Java 3D uses the specified sensor to drive the 6DOF entity—most v
the View. Application developers should use this facility carefully. It is quite e
to get the effect of a WristCam—and very disconcerting as well.

10.2.2 Behind the (Sensor) Scenes

Java 3D does not provide raw tracker or joystick-generated data in a sensor
minimum, Java 3D normalizes the raw data using the registration and calibr
parameters either provided by or provided for the end user. It additionally
filter and process the data to remove noise and improve latency. The applic
programmer can suppress this latter effect on a sensor-by-sensor basis.

Unfortunately, tracker or sensor hardware may not always be available o
operational. Thus, Java 3D provides both an available and an enable flag
per-sensor basis.

10.2.3 The Sensor Object

Java 3D stores its sensor array in the PhysicalEnvironment object. Each S
in the array consists of a fixed number of SensorRead objects. Also asso
with each SensorRead is its timestamp and the state of that sensor’s button

Constants

The Sensor object specifies the following constants.

public static final int PREDICT_NONE
public static final int PREDICT_NEXT_FRAME_TIME

These flags define the Sensor’s predictor type. The first flag defines no p
tion. The second flag specifies to generate the value to correspond with the
frame time.
Java 3D API Specification

INPUT DEVICES AND PICKING The Sensor Object10.2.3

se no
edict-
ensor

ructed

cified

in the

cified
a
 in the

ociated
th the
public static final int NO_PREDICTOR
public static final int HEAD_PREDICTOR
public static final int HAND_PREDICTOR

These flags define the Sensor’s predictor policy. The first flag specifies to u
prediction policy. The second flag specifies to assume that the sensor is pr
ing head position or orientation. The third flag specifies to assume that the s
is predicting hand position or orientation.

public static final int DEFAULT_SENSOR_READ_COUNT

This constant specifies the default number of SensorRead objects const
when no SensorRead count is specified.

Constructors

The Sensor object specifies the following constructors.

public Sensor(InputDevice device)
public Sensor(InputDevice device, int sensorReadCount)
public Sensor(InputDevice device, int sensorReadCount,

int sensorButtonCount)

These methods construct a new Sensor object associated with the spe
device and consisting of either a default number of SensorReads orsensorRead-

Count number of SensorReads and a hot spot at (0.0, 0.0, 0.0) specified
sensor’s local coordinate system. The default forsensorButtonCount is zero.

public Sensor(InputDevice device, Point3d hotspot)
public Sensor(InputDevice device, int sensorReadCount,

Point3d hotspot)
public Sensor(InputDevice device, int sensorReadCount,

int sensorButtonCount, Point3d hotspot)

These methods construct a new Sensor object associated with the spe
device and consisting of eithersensorReadCount number of SensorReads or
default number of SensorReads and an offset defining the sensor’s hot spot
sensor’s local coordinate system. The default forsensorButtonCount is zero.

Methods

public void setSensorReadCount(int count)
public final int getSensorReadCount()
public final int getSensorButtonCount()

These methods set and retrieve the number of SensorRead objects ass
with this sensor and the number of buttons associated with this sensor. Bo
269Version 1.1 Alpha 01, February 27, 1998

10.2.3 The Sensor Object INPUT DEVICES AND PICKING

270

t Sen-

 speci-

e sen-

 pol-
e

e

ading

recent

ype is

olicy
number of SensorRead objects and the number of buttons are determined a
sor construction time.

public void getHotspot(Point3d hotspot)
public void setHotspot(Point3d hotspot)

These methods set and retrieve the sensor’s hotspot offset. The hotspot is
fied in the sensor’s local coordinate system.

public void lastRead(Transform3D read)
public void lastRead(Transform3D read, int kth)

These methods extract the most recent sensor reading and thekth most recent
sensor reading from the Sensor object. In both cases, the methods copy th
sor value into the specified argument.

public void getRead(Transform3D read)
public void getRead(Transform3D read, long deltaT)

The first method computes the sensor reading consistent with the prediction
icy and copies that value into theread matrix. The second method computes th
sensor reading consistent as of timedeltaT in the future and copies that valu
into theread matrix. All times are in milliseconds.

public long lastTime()
public long lastTime(int k)

These methods return the time associated with the most recent sensor re
and with thekth most recent sensor reading, respectively.

public int lastButtons()
public int lastButtons(int k)

These methods return the state of the buttons associated with the most
sensor reading and thekth most recent sensor reading, respectively.

public void setPredictor(int predictor)
public int getPredictor()

These methods set and retrieve the sensor’s predictor type. The predictor t
one of the following:NO_PREDICTOR, HEAD_PREDICTOR, or HAND_PREDICTOR.

public void setPredictionPolicy(int policy)
public int getPredictionPolicy()

These methods set and retrieve the sensor’s predictor policy. The predictor p
is eitherPREDICT_NONE or PREDICT_NEXT_FRAME_TIME.
Java 3D API Specification

INPUT DEVICES AND PICKING The SensorRead Object10.2.4

luding
ay.

ingle

ed on

llow a
bject,
public void setDevice(InputDevice device)
public InputDevice getDevice()

These methods set and retrieve the sensor’s input device.

public SensorRead getCurrentSensorRead()

This method returns the current number of SensorRead objects per sensor.

public void setNextSensorRead(long time, Transform3D transform,
int buttons)

This method sets the next SensorRead object to the specified values, inc
the next SensorRead’s associated time, transformation, and button state arr

10.2.4 The SensorRead Object

A SensorRead object encapsulates all the information associated with a s
reading of a sensor.

Constants

public final static int MAXIMUM_SENSOR_BUTTON_COUNT

This flag determines the maximum number of sensor-attached buttons track
a per-sensor basis.

Constructors

The SensorRead object specifies the following constructor.

public SensorRead()

Creates a new SensorRead object.

Methods

public final void set(Transform3D t1)
public final void get(Transform3D result)

These methods set and retrieve the SensorRead object’s transform. They a
device to store a new rotation and orientation value into the SensorRead o
and a consumer of that value to access it.
271Version 1.1 Alpha 01, February 27, 1998

10.3 Picking INPUT DEVICES AND PICKING

272

llow a
 con-

 They
ensor-
tons.

ing
using
rs”).
oot a

ong
ton. A

ken

ter of

 the

ts.

n the

ts.

n the
public final void setTime(long time)
public final long getTime()

These methods set and retrieve the SensorRead object’s timestamp. They a
device to store a new timestamp value into the SensorRead object, and a
sumer of that value to access it.

public final void setButtons(int values)
public final int getButtons()

These methods set and retrieve the SensorRead object’s button values.
allow a device to store an integer that encodes the button values into the S
Read object, and a consumer of those values to access the state of the but

10.3 Picking

Behavior nodes provide the means for building developer-specific pick
semantics. An application developer can define custom picking semantics
Java 3D’s behavior mechanism (see Chapter 9, “Behaviors and Interpolato
The developer might wish to define pick semantics that use a mouse to sh
ray into the virtual universe from the current viewpoint, find the first object al
that ray, and highlight that object when the end user releases the mouse but
typical scenario follows:

1. The application constructs a Behavior node that arms itself to awa
when AWT detects a left-mouse-button-down event.

2. Upon awakening from a left-mouse-button-down event, the behavior

a. Updates a Switch node to draw a ray that emanates from the cen
the screen.

b. Changes that ray’s TransformGroup node so that the ray points in
direction of the current mouse position.

c. Declares its interest in mouse-move or left-mouse-button-up even

3. Upon awakening from a mouse-move event, the behavior

a. Changes that ray’s TransformGroup node so that the ray points i
direction of the current mouse position.

b. Declares its interest in mouse-move or left-mouse-button-up even

4. Upon awakening from a left-mouse-button-up event, the behavior

a. Changes that ray’s TransformGroup node so that the ray points i
direction of the current mouse position.
Java 3D API Specification

INPUT DEVICES AND PICKING SceneGraphPath Object10.3.1

 the

de to

etric

hat
jects
 dis-

nc-

.

Group
 sub-
ale is

h that
e
 for

 uses
bject
 the

, or
b. Intersects the ray with all the objects in the virtual universe to find
first object that the ray intersects.

c. Changes the appearance component of that object’s shape no
highlight the selected object.

d. Declares its interest in left-mouse-button-down events.

Java 3D includes helping functions that aid in intersecting various geom
objects with objects in the virtual universe by

• Intersecting an oriented ray with all the objects in the virtual universe. T
function can return the first object intersected along that ray, all the ob
that intersect that ray, or a list of all the objects along that ray sorted by
tance from the ray’s origin.

• Intersecting a volume with all the objects in the virtual universe. That fu
tion returns a list of all the objects contained in that volume.

• Discovering which vertex within an object is closest to a specified ray

10.3.1 SceneGraphPath Object

The SceneGraphPath object represents a path from an object to a Branch
or Locale object. During picking and intersection tests, the user specifies the
tree of the scene graph that should be tested. The whole tree for a Loc
searched by providing the Locale to the picking or intersection tests.

The SceneGraphPath object represents all the components in the subgrap
have the capabilityENABLE_PICK_REPORTING set between the root of the subtre
and the picked or intersected object. All Link nodes are implicitly enabled
picking.

Constructors

public SceneGraphPath()
public SceneGraphPath(Locale root, Node object)
public SceneGraphPath(Locale root, Node nodes[], Node object)

These construct and initialize a new SceneGraphPath object. The first form
default values. The second form specifies the path’s Locale object and the o
in question. The third form includes an array of nodes that fall in between
Locale and the object in question, and which nodes have theirENABLE_PICK_

REPORTING capability bit set. The object parameter may be a Group, Shape3D
Morph node. If any other type of leaf node is specified, anIllegalArgument-

Exception is thrown.
273Version 1.1 Alpha 01, February 27, 1998

10.3.1 SceneGraphPath Object INPUT DEVICES AND PICKING

274

r val-
 third

ape3D
 with
ll of

path’s

 sec-

raph-
this
, the

t the

 same
ernal
ared.
Methods

public final void set(SceneGraphPath newPath)
public final void setLocale(Locale newLocale)
public final void setObject(Node object)
public final void setNode(int index, Node newNode)
public final void setNodes(Node nodes[])

These methods set the path’s values. The first method sets the path’s interio
ues. The second method sets the path’s Locale to the specified Locale. The
method sets the path’s object to the specified object (a Group node, or a Sh
or Morph leaf node). The fourth method replaces the link node associated
the specified index with the specified newLink. The last method replaces a
the link nodes with the new list of link nodes.

public final Locale getLocale()
public final Node getObject()

The first method returns the path’s Locale. The second method returns the
object.

public final int nodeCount()
public final Node getNode(int index)

The first method returns the number of intermediate nodes in this path. The
ond method returns the node associated with the specified index.

public final Transform3D getTransform()

This method returns a copy of the transform associated with this SceneG
Path. The method returns null if there is no transform associated. If
SceneGraphPath was returned by a Java 3D picking and collision method
local-coordinate-to-virtual-coordinate transform for this scene graph object a
time of the pick or collision is recorded.

public final boolean isSamePath(SceneGraphPath testPath)

This method determines whether two SceneGraphPath objects represent the
path in the scene graph. Either object might include a different subset of int
nodes; only the internal link nodes, the Locale, and the Node itself are comp
The paths are not validated for correctness or uniqueness.

public boolean equals(SceneGraphPath testPath)

This method returnstrue if all of the data members of pathtestPath are equal
to the corresponding data members in this SceneGraphPath.
Java 3D API Specification

INPUT DEVICES AND PICKING PickShape Object10.3.3

t. Two
is,

-
alue,

s the

cale

single
h from
0.3.3,

 the
jects
oint.
t that
latter
sting

e used
t is
public int hashCode()

This method returns a hash number based on the data values in this objec
different SceneGraphPath objects with identical data values (that
trans.equals(SceneGraphPath) returnstrue) will return the same hash num
ber. Two paths with different data members may return the same hash v
although this is not likely.

public String toString()

This method returns a string representation of this object. The string contain
class names of all nodes in the SceneGraphPath.

10.3.2 BranchGroup Node and Locale Node Pick Methods

The following methods are in both the BranchGroup node class and the Lo
node class.

public final SceneGraphPath[] pickAll(PickShape pickShape)
public final SceneGraphPath[] pickAllSorted(PickShape pickShape)
public final SceneGraphPath pickClosest(PickShape pickShape)
public final SceneGraphPath pickAny(PickShape pickShape)

These methods return either an array of SceneGraphPath objects or a
SceneGraphPath object. A SceneGraphPath object describes the entire pat
a Locale to an object that intersects the specified PickShape (see Section 1
“PickShape Object”). The methods that return an array either return all
picked objects or all the picked objects in sorted order starting with the ob
“closest” to the eyepoint and ending with the objects farthest from the eyep
Methods that return a single SceneGraphPath return a single path objec
specifies either the object closest to the eyepoint or any picked object (this
method also implements the fastest pick operation possible). All ties in te
for closest objects intersected result in an indeterminate order.

10.3.3 PickShape Object

The PickShape object is an abstract class for describing a shape that can b
with the BranchGroup and Locale pick methods. The PickShape objec
extended by PickPoint, PickRay, and PickSegment objects.
275Version 1.1 Alpha 01, February 27, 1998

10.3.4 PickPoint Object INPUT DEVICES AND PICKING

276

cale
Node

con-

meth-
Node

n of
10.3.4 PickPoint Object

The PickPoint object provides a point to supply to the BranchGroup and Lo
pick methods. See also Section 10.3.2, “BranchGroup Node and Locale
Pick Methods.”

Constructors

public PickPoint()
public PickPoint(Point3d location)

The first constructor creates a PickPoint initialized to (0,0,0). The second
structor creates a PickPoint at the specified location.

Methods

public void set(Point3d location)
public void get(Point3d location)

These methods set and retrieve the position of this PickPoint.

10.3.5 PickRay Object

The PickRay object is an encapsulation of a ray that is passed to the pick
ods in BranchGroup and Locale. See also Section 10.3.2, “BranchGroup
and Locale Node Pick Methods.”

Constructors

public PickRay()
public PickRay(Point3d origin, Vector3d direction)

The first constructor creates a PickRay initialized with an origin and directio
(0,0,0). The second constructor creates a PickRay cast from the specifiedorigin

anddirection.

Methods

public void set(Point3d origin, Vector3d direction)
public void get(Point3d origin, Vector3d direction)

These methods set and retrieve the ray to point from the specifiedorigin in the
specifieddirection.
Java 3D API Specification

INPUT DEVICES AND PICKING PickSegment Object10.3.6

to the
nch-

of the
ment
10.3.6 PickSegment Object

The PickSegment object is an encapsulation of a segment that is passed
pick methods in BranchGroup and Locale. See also Section 10.3.2, “Bra
Group Node and Locale Node Pick Methods.”

Constructors

public PickSegment()
public PickSegment(Point3d start, Point3d end)

The first constructor creates a PickSegment object with the start and end
segment initialized to (0,0,0). The second constructor creates a PickSeg
object from the specifiedstart andend points.

Methods

public void set(Point3d start, Point3d end)
public void get(Point3d start, Point3d end)

These methods set and return the line segment from thestart point to theend
point.
277Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 11
 sev-
 ren-
n one
 other
re are
ch of
udio
e the
 ren-
n can
ered
r(s)) is
.

nvi-
ppli-
 user

stics.
 for a
nt’s
.

ators
uses
ple-

tializ-
Audio Devices

A Java 3D application running on a particular machine could have one of
eral options available to it for playing the audio image created by the sound
derer. Perhaps the machine on which Java 3D is executing has more tha
sound card (for example, one that is a wave table synthesis card and the
with accelerated sound spatialization hardware). Furthermore, suppose the
Java 3D audio device drivers that execute Java 3D audio methods on ea
these specific cards. The application would therefore have at least two a
device drivers through which the audio could be produced. For such a cas
Java 3D application must choose the audio device driver with which sound
dering is to be performed. Once this audio device is chosen, the applicatio
additionally select the type of audio playback on which device the rend
sound image is to be output. The playback device (headphones or speake
physically connected to the port to which the selected device driver outputs

11.1 AudioDevice Interface

The selection of this device driver is done through methods in the PhysicalE
ronment object (see Section C.9, “The PhysicalEnvironment Object”). The a
cation queries how many audio devices are available. For each device, the
can get the AudioDevice object that describes it and query its characteri
Once a decision is made about which of the available audio devices to use
PhysicalEnvironment, the particular device is set into this PhysicalEnvironme
fields. Each PhysicalEnvironment object may use only a single audio device

The AudioDevice object interface specifies an abstract audio device that cre
of Java 3D class libraries would implement for a particular device. Java 3D
several methods to interact with specific devices. Since all audio devices im
ment this consistent interface, the user could have a portable means of ini
279

11.1.1 Initialization AUDIO DEVICES

280

cter-

tance

tance

ld be
imple-
pen-

le-
over

f the
will
ing, setting particular audio device elements, and querying generic chara
istics for any audio device.

Constants

public final static int HEADPHONES

Specifies that audio playback will be through stereo headphones.

public final static int MONO_SPEAKER

Specifies that audio playback will be through a single speaker some dis
away from the listener.

public final static int STEREO_SPEAKERS

Specifies that audio playback will be through stereo speakers some dis
away from, and at some angle to, the listener.

11.1.1 Initialization

Each audio device driver must be initialized. The chosen device driver shou
initialized before any Java 3D Sound methods are executed because the
mentation of the Sound methods, in general, is potentially device-driver de
dent.

Methods

public abstract boolean initialize()

Initialize the audio device. Exactly what occurs during initialization is imp
mentation dependent. This method provides explicit control by the user
when this initialization occurs.

public abstract boolean close()

Closes the audio device, releasing resources associated with this device.

11.1.2 Audio Playback

Methods to set and retrieve the audio playback parameters are part o
AudioDevice object. The audio playback information specifies that playback
be through one of the following:

• Stereo headphones.
Java 3D API Specification

AUDIO DEVICES Audio Playback11.1.2

ngle
re

k can-
rs is

a 3D

n-

r (the
ner’s

tener
placed

s from
 center
of the
n 10

ent
• A monaural speaker.

• A pair of speakers, equally distant from the listener, both at some a
from the head coordinate systemZ axis. It’s assumed that the speakers a
at the same elevation and oriented symmetrically about the listener.

The type of playback chosen affects the sound image generated. Cross-tal
cellation is applied to the audio image if playback over stereo speake
selected.

Methods

The following methods affect the playback of sound processed by the Jav
sound renderer.

public abstract void setAudioPlaybackType(int type)
public abstract int getAudioPlaybackType()

These methods set and retrieve the type of audio playback device (HEADPHONES,
MONO_SPEAKER, or STEREO_SPEAKERS) used to output the analog audio from re
dering Java 3D Sound nodes.

public abstract void setCenterEarToSpeaker(float distance)
public abstract float getCenterEarToSpeaker()

These methods set and retrieve the distance in meters from the center ea
midpoint between the left and right ears) and one of the speakers in the liste
environment. For monaural speaker playback, a typical distance from the lis
to the speaker in a workstation cabinet is 0.76 meters. For stereo speakers
at the sides of the display, this might be 0.82 meters.

public abstract void setAngleOffsetToSpeaker(float angle)
public abstract float getAngleOffsetToSpeaker()

These methods set and retrieve the angle, in radians, between the vector
the center ear to each of the speaker transducers and the vectors from the
ear parallel to the head coordinate’s Z axis. Speakers placed at the sides
computer display typically range between 0.175 and 0.350 radians (betwee
and 20 degrees).

public abstract PhysicalEnvironment getPhysicalEnvironment()

This method returns a reference to the AudioDevice’s PhysicalEnvironm
object.
281Version 1.1 Alpha 01, February 27, 1998

11.1.3 Device-Driver-Specific Data AUDIO DEVICES

282

ither
ple-
ered
e will

and
(dur-
stics

a 3D

num-
es.

ecific
device
ca-

ject
vice

 the
ment
3D
at
11.1.3 Device-Driver-Specific Data

While the sound image created for final output to the playback system is e
only monaural or stereo (for this version of Java 3D), most device-driver im
mentations will mix the left and right image signals generated for each rend
sound source before outputting the final playback image. Each sound sourc
useN input channels of this internal mixer.

Each implemented Java 3D audio device driver will have its own limitations
driver-specific characteristics. These include channel availability and usage
ing rendering). Methods for querying these device-driver-specific characteri
are provided below.

Methods

public abstract int getTotalChannels()

This method retrieves the maximum number of channels available for Jav
sound rendering for all sound sources.

public abstract int getChannelsAvailable()

During rendering, when Sound nodes are playing, this method returns the
ber of channels still available to Java 3D for rendering additional Sound nod

public abstract int getChannelsUsedForSound(Sound node)

This is a deprecated method. This method is now part of the Sound class.

11.2 Instantiating and Registering a New Device

A browser or applications developer must instantiate whatever system-sp
audio devices that he or she needs and that exist on the system. This
information typically exists in a site configuration file. The browser or appli
tion will instantiate the physical environment as requested by the end user.

The API for instantiating devices is site-specific, but it consists of a device ob
with a constructor and at least all of the methods specified in the AudioDe
interface.

Once instantiated, the browser or application must register the device with
Java 3D sound scheduler by associating this device with a PhysicalEnviron
object. ThesetAudioDevice method introduces new devices to the Java
environment and theallAudioDevices method produces an enumeration th
Java 3D API Specification

AUDIO DEVICES AudioMixerDevice Interface 11.3

See

r-

vel-
an
ose
allows examination of all available devices within a Java 3D environment.
Section C.9, “The PhysicalEnvironment Object,” for more details.

11.3 AudioMixerDevice Interface

The AudioMixerDevice interface extension is under construction until the Ve
sion 1.1 Java 3D API Specification is frozen. Check the javadoc for details.

The intent is for this interface to be implemented by AudioDevice driver de
opers. TheAudioMixerDevice interface methods should not be called by
application. Eventually this interface (when it is stable) will be used by th
implementing their own Audio Devices.
283Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 12

g

irtu-
inimal

iate-

hav-
odes,
lly, it

ode,
pport
n-the-

eed.
cture
etry

epen-
The
ng.”
Execution and Renderin
Model

JAVA 3D’s execution and rendering model assumes the existence of a V
alUniverse object and an attached scene graph. This scene graph can be m
and not noticeable from an application’s perspective when using immed
mode rendering, but it must exist.

Java 3D’s execution model intertwines with its rendering modes and with be
iors and their scheduling. This chapter first describes the three rendering m
then describes how an application starts up a Java 3D environment, and fina
discusses how the various rendering modes work within this framework.

12.1 Three Major Rendering Modes

Java 3D supports three different modes for rendering scenes: immediate m
retained mode, and compiled-retained mode. These three levels of API su
represent a potentially large variation in graphics processing speed and in o
fly restructuring.

12.1.1 Immediate Mode

Immediate mode allows maximum flexibility at some cost in rendering sp
The application programmer can either use or ignore the scene graph stru
inherent in Java 3D’s design. The programmer can choose to draw geom
directly or to define a scene graph. Immediate mode can either be used ind
dently or mixed with retained and/or compiled-retained mode rendering.
immediate-mode API is described in Chapter 13, “Immediate-Mode Renderi
285

12.1.2 Retained Mode EXECUTION AND RENDERING MODEL

286

ode
ects
h itself
cene
tained
ity.

bjects

jects,
jects
r has
rform
d an
D sys-
mum
state

om-
res-
g.

king.
d with

ed in
ct or

 inter-
ss to
 con-

ures
aximal
cene

er of
ual
12.1.2 Retained Mode

Retained mode allows a great deal of the flexibility provided by immediate m
while also providing a substantial increase in rendering speed. All obj
defined in the scene graph are accessible and manipulable. The scene grap
is fully manipulable. The application programmer can rapidly construct the s
graph, create and delete nodes, and instantly “see” the effect of edits. Re
mode also allows maximal access to objects through a general pick capabil

Java 3D’s retained mode allows a programmer to construct objects, insert o
into a database, compose objects, and add behaviors to objects.

In retained mode, Java 3D knows that the programmer has defined ob
knows how the programmer has combined those objects into compound ob
or scene graphs, and knows what behaviors or actions the programme
attached to objects in the database. This knowledge allows Java 3D to pe
many optimizations. It can construct specialized data structures that hol
object’s geometry in a manner that enhances the speed at which the Java 3
tem can render it. It can compile object behaviors so that they run at maxi
speed when invoked. It can flatten transformation manipulations and
changes where possible in the scene graph.

12.1.3 Compiled-retained Mode

Compiled-retained mode allows the Java 3D API to perform an arbitrarily c
plex series of optimizations including, but not restricted to, geometry comp
sion, scene graph flattening, geometry grouping, and state change clusterin

Compiled-retained mode provides hooks for end-user manipulation and pic
Pick operations return the closest object (in scene graph space) associate
the picked geometry.

Java 3D’s compiled-retained mode ensures effective graphics rendering spe
yet one more way. A programmer can request that Java 3D compile an obje
a scene graph. Once compiled, the programmer has minimal access to the
nal structure of the object or scene graph. Capability flags provide acce
specified components that the application program may need to modify on a
tinuing basis.

A compiled object or scene graph consists of whatever internal struct
Java 3D wishes to create to ensure that objects or scene graphs render at m
rates. Because Java 3D knows that the majority of the compiled object’s or s
graph’s components will not change, it can perform an extraordinary numb
optimizations, including the fusing of multiple objects into one concept
Java 3D API Specification

EXECUTION AND RENDERING MODEL Retained and Compiled-retained Rendering Modes12.2.2

bject
into

usly.
cene
on-
The
ocess
ple-

cting
ained
a ref-
sh to
d use

rtual
peats
va 3D
l uni-

des.
ode,

ts the
object, turning an object into compressed geometry, or even breaking an o
up into like-kind components and reassembling the like-kind components
new “conceptual objects.”

12.2 Instantiating the Render Loop

From an application’s perspective, Java 3D’s render loop runs continuo
Whenever an application adds a scene branch to the virtual world, that s
branch is instantly visible. This high-level view of the render loop permits c
current implementations of Java 3D as well as serial implementations.
remainder of this section describes the Java 3D render loop bootstrap pr
from a serialized perspective. Differences that would appear in concurrent im
mentations are noted as well.

12.2.1 An Application-level Perspective

First the application must construct its scene graphs. It does this by constru
scene graph nodes and component objects and linking them into self-cont
trees with a BranchGroup node as a root. The application next must obtain
erence to any constituent nodes or objects within that branch that it may wi
manipulate. It sets the capabilities of all the objects to match their anticipate
and only then compiles the branch using the BranchGroup’scompile method.
Whether or not it compiles the branch, the application can add it to the vi
universe by adding the BranchGroup to a Locale object. The application re
this process for each branch it wishes to create. Note that for concurrent Ja
implementations, whenever an application adds a branch to the active virtua
verse, that branch becomes visible.

12.2.2 Retained and Compiled-retained Rendering Modes

This initialization process is identical for retained and compiled-retained mo
In both modes, the application builds a scene graph. In compiled-retained m
the application then compiles the scene graph. Then the application inser
(possibly compiled) scene graph into the virtual universe.
287Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
C H A P T E R 13

g

ts in
ering.
xibil-

graph
dom,
ode,
om-

form

edi-
 and
anvas.
rom

s that
Such
aphi-

te and
Immediate-Mode Renderin

JAVA 3D is fundamentally a scene graph–based API. Most of the construc
the API are biased toward retained mode and compiled-retained mode rend
However, there are some applications that want both the control and the fle
ity that immediate-mode rendering offers.

Immediate-mode applications can either use or ignore Java 3D’s scene
structure. By using immediate mode, end-user applications have more free
but this freedom comes at the expense of performance. In immediate m
Java 3D has no high-level information concerning graphical objects or their c
position. Because it has minimal global knowledge, Java 3D can only per
localized optimizations on behalf of the application programmer.

13.1 Two Styles of Immediate-Mode Rendering

Use of Java 3D’s immediate mode falls into one of two categories: pure imm
ate-mode rendering and mixed-mode rendering in which immediate mode
retained or compiled-retained mode interoperate and render to the same c
The Java 3D renderer is idle in pure immediate mode, distinguishing it f
mixed-mode rendering.

13.1.1 Pure Immediate-Mode Rendering

Pure immediate-mode rendering provides for those applications and applet
do not want Java 3D to do any automatic rendering of the scene graph.
applications may not even wish to build a scene graph to represent their gr
cal data. However, they use Java 3D’s attribute objects to set graphics sta
Java 3D’s geometric objects to render geometry.
289

13.1.1 Pure Immediate-Mode Rendering IMMEDIATE-MODE RENDERING

290

jects
ate a
cts,

solu-
bject
that
s the

lf of
lica-

user
ally,
sibil-

a the
ct
A pure immediate mode application must create a minimal set of Java 3D ob
before rendering. In addition to a Canvas3D object, the application must cre
View object, with its associated PhysicalBody and PhysicalEnvironment obje
and the following scene graph elements: a VirtualUniverse object, a high-re
tion Locale object, a BranchGroup node object, a TransformGroup node o
with associated transform and, finally, a ViewPlatform leaf node object
defines the position and orientation within the virtual universe that generate
view (see Figure 13-1).

Figure 13-1 Minimal Immediate-Mode Structure

Java 3D provides utility functions that create much of this structure on beha
a pure immediate-mode application, making it less noticeable from the app
tion’s perspective—but the structure must exist.

All rendering is done completely under user control. It is necessary for the
to clear the 3D canvas, render all geometry, and swap the buffers. Addition
rendering the right and left eye for stereo viewing becomes the sole respon
ity of the application.

In pure immediate mode, the user must stop the Java 3D renderer, vi
Canvas3D objectstopRenderer() method, prior to adding the Canvas3D obje

BG

VP

Virtual Universe

Hi-Res Locale

View Canvas3D

Screen3D

Physical
Body

Physical
Environment

TG

BranchGroup

TransformGroup

ViewPlatform
Java 3D API Specification

IMMEDIATE-MODE RENDERING Mixed-Mode Rendering13.1.2

orm

ore
s run-
va 3D

 with
ity to
 ren-
g the
to an active View object (that is, one that is attached to a live ViewPlatf
object).

13.1.2 Mixed-Mode Rendering

Mixing immediate mode and retained or compiled-retained mode requires m
structure than pure immediate mode. In mixed mode, the Java 3D renderer i
ning continuously, rendering the scene graph into the canvas. The basic Ja
stereo rendering loop, executed for each Canvas3D, is as follows:

clear canvas (both eyes)
call preRender() // user-supplied method
set left eye view
render opaque scene graph objects
call renderField(FIELD_LEFT) // user-supplied method
render transparent scene graph objects
set right eye view
render opaque scene graph objects again
call renderField(FIELD_RIGHT) // user-supplied method
render transparent scene graph objects again
call postRender() // user-supplied method
synchronize and swap buffers
call postSwap() // user-supplied method

The basic Java 3Dmonoscopic rendering loop is as follows:

clear canvas
call preRender() // user-supplied method
set view
render opaque scene graph objects
call renderField(FIELD_ALL) // user-supplied method
render transparent scene graph objects
call postRender() // user-supplied method
synchronize and swap buffers
call postSwap() // user-supplied method

In both cases, the entire loop, beginning with clearing the canvas and ending
swapping the buffers, defines a frame. The application is given the opportun
render immediate-mode geometry at any of the clearly identified spots in the
dering loop. A user specifies his or her own rendering methods by extendin
Canvas3D class and overriding thepreRender, postRender, postSwap, and/or
renderField methods.
291Version 1.1 Alpha 01, February 27, 1998

13.2 Canvas3D Methods IMMEDIATE-MODE RENDERING

292

 are

 This
e ren-

mode

D is
t

 with
ist. It
nder-

any
okes
ne for

any
okes
efore
13.2 Canvas3D Methods

The Canvas3D methods that directly affect immediate-mode rendering
described here.

When a Canvas3D object is created, it is initially marked as being started.
means that as soon as the Canvas3D is added to an active View object, th
dering loop will render the scene graph to the canvas. In pure immediate
the renderer must be stopped (via a call tostopRenderer) prior to adding the
canvas to an active View object.

Constants

public static final int FIELD_LEFT
public static final int FIELD_RIGHT
public static final int FIELD_ALL

These constants specify the field that the rendering loop for this Canvas3
rendering. TheFIELD_LEFT andFIELD_RIGHT values indicate the left and righ
fields of a field-sequential stereo rendering loop, respectively. TheFIELD_ALL

value indicates a monoscopic or single-pass stereo rendering loop.

Methods

public final GraphicsContext3D getGraphicsContext3D()

This method retrieves the immediate-mode 3D graphics context associated
this Canvas3D. It creates a new graphics context if one does not already ex
returns a GraphicsContext3D object that can be used for immediate mode re
ing to this Canvas3D.

public void preRender()

Applications that wish to perform operations in the rendering loop prior to
actual rendering must override this method. The Java 3D rendering loop inv
this method after clearing the canvas and before any rendering has been do
this frame.

public void postRender()

Applications that wish to perform operations in the rendering loop following
actual rendering must override this method. The Java 3D rendering loop inv
this method after completing all rendering to the canvas for this frame and b
the buffer swap.
Java 3D API Specification

IMMEDIATE-MODE RENDERING Canvas3D Methods 13.2

ring
thod
ciated

ust
sibly
ono-
al ste-
 and

ed by
 mix

nder-

e

y

 If the

one
 ren-

 this

r this
r has
ffer. If
 ren-
public void postSwap()

Applications that wish to perform operations at the very end of the rende
loop must override this method. The Java 3D rendering loop invokes this me
after completing all rendering to this canvas, and all other canvases asso
with the current view, for this frame following the buffer swap.

public void renderField(int fieldDesc)

Applications that wish to perform operations during the rendering loop m
override this function. The Java 3D rendering loop invokes this method, pos
twice, during the loop. It is called once for each field (once per frame on a m
scopic system or once each for the right eye and left eye on a field-sequenti
reo system). This method is called after all opaque objects are rendered
before any transparent objects are rendered (subject to restrictions impos
OrderedGroup nodes). This is intended for use by applications that want to
retained/compiled-retained mode rendering with some immediate-mode re
ing. The fieldDesc parameter is the field description:FIELD_LEFT, FIELD_

RIGHT, or FIELD_ALL. Applications that wish to work correctly in stereo mod
should render the same image for bothFIELD_LEFT andFIELD_RIGHT calls. If
Java 3D calls the renderer withFIELD_ALL, the immediate-mode rendering onl
needs to be done once.

public final void startRenderer()
public final void stopRenderer()

These methods start or stop the Java 3D renderer for this Canvas3D object.
Java 3D renderer is currently running whenstopRenderer is called, the render-
ing will be synchronized before being stopped. No further rendering will be d
to this canvas by Java 3D until the renderer is started again. If the Java 3D
derer is not currently running whenstartRenderer is called, any rendering to
other Canvas3D objects sharing the same View will be synchronized before
Canvas3D’s renderer is (re)started.

public final void swap()

This method synchronizes and swaps buffers on a double-buffered canvas fo
Canvas3D object. This method may only be called if the Java 3D rendere
been stopped. In the normal case, the renderer automatically swaps the bu
the application invokes this method and the canvas has a running Java 3D
derer, aRestrictedAccessException exception is thrown.
293Version 1.1 Alpha 01, February 27, 1998

13.3 API for Immediate Mode IMMEDIATE-MODE RENDERING

294

 and
scene
to the

a 3D
ct. A
state

lica-
hich

plica-

t used
 spec-
dual
13.3 API for Immediate Mode

The Java 3D immediate mode allows an application to directly set attributes
draw three-dimensional geometry using the same objects as in Java 3D
graphs. An immediate-mode application renders by passing these objects
set anddraw methods of a GraphicsContext3D object.

13.3.1 GraphicsContext3D

The GraphicsContext3D object is used for immediate-mode rendering into
canvas. It is created by, and associated with, a specific Canvas3D obje
GraphicsContext3D class defines methods that manipulate 3D graphics
attributes and draw 3D geometric primitives.

Constructors

There are no publicly accessible constructors of GraphicsContext3D. An app
tion obtains a 3D graphics context object from the Canvas3D object into w
the application wishes to render by using thegetGraphicsContext3D method.

The Canvas3D object creates a new GraphicsContext3D the first time an ap
tion invokesgetGraphicsContext3D. A new GraphicsContext3D initializes its
state variables to the following defaults:

Background object: null
Fog object: null
Appearance object: null
List of Light objects: empty
High-Res coordinates: (0, 0, 0)
modelTransform: identity
AuralAttributes object : null
List of Sound objects: empty

Methods

public final Canvas3D getCanvas3D()

This method gets the Canvas3D that created this GraphicsContext3D.

public final void setAppearance(Appearance appearance)
public final Appearance getAppearance()

These methods access or modify the current Appearance component objec
by this 3D graphics context. The graphics context stores a reference to the
ified Appearance object. This means that the application may modify indivi
Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3D13.3.1

 object
bject
rt of a

ce
 con-

 used
 spec-
ack-
 node
ot be
scene
-
 to
plica-

is 3D
d Fog
 the
. The
tly be

e
 ren-
appearance attributes by using the appropriate methods on the Appearance
(see Section 7.1.1, “Appearance Object”). The Appearance component o
must not be part of a live scene graph, nor may it subsequently be made pa
live scene graph—anIllegalSharingException is thrown in such cases. If the
Appearance object isnull, default values will be used for all appearan
attributes—it is as if an Appearance node were created using the default
structor.

public final void setBackground(Background background)
public final Background getBackground()

These methods access or modify the current Background leaf node object
by this 3D graphics context. The graphics context stores a reference to the
ified Background node. This means that the application may modify the b
ground color or image by using the appropriate methods on the Background
object (see Section 5.4, “Background Node”). The Background node must n
part of a live scene graph, nor may it subsequently be made part of a live
graph—anIllegalSharingException is thrown in such cases. If the Back
ground object isnull, the default background color of black (0,0,0) is used
clear the canvas prior to rendering a new frame. The Background node’s ap
tion region is ignored for immediate-mode rendering.

public final void setFog(Fog fog)
public final Fog getFog()

These methods access or modify the current Fog leaf node object used by th
graphics context. The graphics context stores a reference to the specifie
node. This means that the application may modify the fog attributes using
appropriate methods on the Fog node object (see Section 5.6, “Fog Node”)
Fog node must not be part of a live scene graph, nor may it subsequen
made part of a live scene graph—anIllegalSharingException is thrown in
such cases. If the Fog object isnull, fog is disabled. Both the region of influenc
and the hierarchical scope of the Fog node are ignored for immediate-mode
dering.

public final void addLight(Light light)
public final void insertLight(Light light, int index)
public final void setLight(Light light, int index)
public final Light getLight(int index)
public final void removeLight(int index)
295Version 1.1 Alpha 01, February 27, 1998

13.3.1 GraphicsContext3D IMMEDIATE-MODE RENDERING

296

 con-
he
ex.
ro-
he
he

ghts.
 the
n 5.7,
ive
h—an

ode

phics
thod,
h-

ed
peci-

ille-
public final int numLights()
public final Enumeration getAllLights()

These methods access or modify the list of lights used by this 3D graphics
text. TheaddLight method adds a new light to the end of the list of lights. T
insertLight method inserts a new light before the light at the specified ind
ThesetLight method replaces the light at the specified index with the light p
vided. TheremoveLight method removes the light at the specified index. T
numLights method returns a count of the number of lights in the list. T
getLight method returns the light at the specified index. ThegetAllLights

method retrieves the Enumeration object of all lights.

The graphics context stores a reference to each light object in the list of li
This means that the application may modify the light attributes for any of
lights using the appropriate methods on that Light node object (see Sectio
“Light Node”). None of the Light nodes in the list of lights may be part of a l
scene graph, nor may they subsequently be made part of a live scene grap
IllegalSharingException is thrown in such cases. Adding anull Light object
to the list will result in aNullPointerException. Both the region of influence
and the hierarchical scope of all lights in the list are ignored for immediate-m
rendering.

public void setHiRes(int x[], int y[], int z[])
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods access or modify the high-resolution coordinates of this gra
context to the location specified by the parameters provided. In the first me
the parametersx, y, andz are arrays of eight 32-bit integers that specify the hig
resolution coordinates point.

public void setModelTransform(Transform3D t)
public void multiplyModelTransform(Transform3D t)
public void getModelTransform(Transform3D t)

These methods access or modify the current model transform. Themultiply-

ModelTransform method multiplies the current model transform by the specifi
transform and stores the result back into the current model transform. The s
fied transformation must be affine. ABadTransformException is thrown (see
Section D.1, “BadTransformException”) if an attempt is made to specify an
gal Transform3D.
Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3D13.3.1

bject
to the
dify
ral-
al-
ay it

ere

age-
aster
onent
g this
l data

rrent

 the

cal to

pe3D
public final void setAuralAttributes(AuralAttributes attributes)
public final AuralAttributes getAuralAttributes()

These methods access or modify the current AuralAttributes component o
used by this 3D graphics context. The graphics context stores a reference
specified AuralAttributes object. This means that the application may mo
individual audio attributes by using the appropriate methods in the Au
Attributes object (see Section 7.1.15, “AuralAttributes Object”). The Aur
Attributes component object must not be part of a live scene graph, nor m
subsequently be made part of a live scene graph—anIllegalSharingExcep-

tion is thrown in such cases. If the AuralAttributes object isnull, default values
will be used for all audio attributes—it is as if an AuralAttributes object w
created using the default constructor.

public final void readRaster(Raster raster)

This method reads an image from the frame buffer and copies it into the Im
Component or DepthComponent objects referenced by the specified R
object. All parameters of the Raster object and the component ImageComp
or DepthComponent objects must be set to the desired values prior to callin
method. These values determine the location, size, and format of the pixe
that is read.

public final void clear()

This method clears the canvas to the color or image specified by the cu
Background leaf node object.

public final void draw(Geometry geometry)
public final void draw(Shape3D shape)

The firstdraw method draws the specified Geometry component object using
current state in the graphics context. The seconddraw method draws the speci-
fied Shape3D leaf node object. This is a convenience method that is identi
calling thesetAppearance(Appearance) anddraw(Geometry) methods passing
the Appearance and Geometry component objects of the specified Sha
nodes as arguments.

public final void addSound(Sound sound)
public final void insertSound(Sound sound, int index)
public final void setSound(Sound sound, int index)
public final Sound getSound(int index)
public final void removeSound(int index)
public final int numSounds()
297Version 1.1 Alpha 01, February 27, 1998

13.3.1 GraphicsContext3D IMMEDIATE-MODE RENDERING

298

s con-
on-

he
th
ci-
f

.
.

unds.
f the
 (see
 may
a live

a

lay-
und’s
for
public final boolean isSoundPlaying(int index)
public final Enumeration getAllSounds()

These methods access or modify the list of sounds used by this 3D graphic
text. TheaddSound method appends the specified sound to this graphics c
text’s list of sounds. TheinsertSound method inserts the specified sound at t
specified index location. ThesetSound method replaces the specified sound wi
the sound provided. TheremoveSound method removes the sound at the spe
fied index location. ThenumSounds method retrieves the current number o
sounds in this graphics context. ThegetSound method retrieves the index-
selected sound. TheisSoundPlaying method retrieves the sound-playing flag
ThegetAllSounds method retrieves the Enumeration object of all the sounds

The graphics context stores a reference to each sound object in the list of so
This means that the application may modify the sound attributes for any o
sounds by using the appropriate methods on that Sound node object
Section 5.8, “Sound Node”). None of the Sound nodes in the list of sounds
be part of a live scene graph, nor may they subsequently be made part of
scene graph—anIllegalSharingException is thrown in such cases. Adding
null Sound object to the list results in aNullPointerException. If the list of
sounds is empty, sound rendering is disabled.

Adding or inserting a sound to the list of sounds implicitly starts the sound p
ing. Once a sound is finished playing, it can be restarted by setting the so
enable flag totrue. The scheduling region of all sounds in the list is ignored
immediate-mode rendering.
Java 3D API Specification

Version 1.1 Alpha 01, February 27, 1998
A P P E N D I X A
ate
jects

priate

lly and
e not
es will
sepa-

r-ele-

ying

ublic
Math Objects

M ATHEMATICAL objects allow Java 3D users to represent and manipul
low-level mathematical constructs such as vectors and matrices. Math ob
also define specific operations that allow users to manipulate them in appro
ways.

Java 3D needs these vector and matrix math classes. It uses them interna
also makes them available to applications for their use. However, they ar
part of Java 3D. Rather, they are defined here for convenience. These class
become more widely distributed, which is why Java 3D defines them as a
ratejavax.vecmath package. Figure A-1 shows the math object hierarchy.

A.1 Tuple Objects

Java 3D uses tuple objects to represent and manipulate two-, three-, and fou
ment values.

A.1.1 Tuple2f Class

The Tuple2f class is a generic two-element tuple mostly used for specif
points and vectors made up of single-precision floating-pointx,y coordinates.

Variables

The component values of a Tuple2f are directly accessible through the p
variablesx andy. To access thex component of a Tuple2f calledupperLeftCor-
ner, a programmer would writeupperLeftCorner.x. The programmer would
access they component similarly.
299

A.1.1 Tuple2f Class MATH OBJECTS

300
Figure A-1 Math Object Hierarchy

public float x
public float y

Thex andy coordinates, respectively.

Constructors

public Tuple2f(float x, float y)
public Tuple2f(float t[])

Tuple Objects
Tuple2f

Point2f
TexCoord2f
Vector2f

Tuple3b
Color3b

Tuple3d
Point3d
Vector3d

Tuple3f
Color3f
Point3f
TexCoord3f
Vector3f

Tuple4b
Color4b

Tuple4d
Point4d
Quat4d
Vector4d

Tuple4f
Color4f
Point4f
Quat4f
Vector4f

AxisAngle4d
AxisAngle4f
GVector

Matrix Objects
Matrix3f
Matrix3d
Matrix4f
Matrix4d
GMatrix
Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.1

ener-

2f

-

lues
public Tuple2f(Tuple2f t1)
public Tuple2f()

These four constructors each return a new Tuple2f. The first constructor g
ates a Tuple2f from two floating-point numbersx andy. The second constructor
generates a Tuple2f from the first two elements of arrayt. The third constructor
generates a Tuple2f from the tuplet1. The final constructor generates a Tuple
with the value of (0.0, 0.0).

Methods

public final void set(float x, float y)
public final void set(float t[])
public final void set(Tuple2f t1)
public final void get(float t[])

The set methods set the value of tuplethis to the values provided. Theget
method copies the values of the elements of this tuple into the arrayt.

public final void add(Tuple2f t1, Tuple2f t2)
public final void add(Tuple2f t1)
public final void sub(Tuple2f t1, Tuple2f t2)
public final void sub(Tuple2f t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2,
placing the result inthis. The secondadd method computes the element-by-ele
ment sum of this tuple and tuplet1, placing the result inthis. The firstsub
method performs an element-by-element subtraction of tuplet2 from tuplet1
and places the result inthis (this = t1 – t2). The secondsub method performs an
element-by-element subtraction oft1 from this and places the result inthis
(this = this – t1).

public final void negate(Tuple2f t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the va
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scale(float s, Tuple2f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple2f t1)
public final void scaleAdd(float s, Tuple2f t1, Tuple2f t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
301Version 1.1 Alpha 01, February 27, 1998

A.1.1 Tuple2f Class MATH OBJECTS

302

le

lute
the

first

uple

 lin-
multiplies each element of this tuple by the scale factors and places the resulting
scaled tuple intothis. The firstscaleAdd method scales this tuple by the sca
factors, adds the result to tuplet1, and places the result into the tuplethis (this
= s*this + t1). The secondscaleAdd method scales tuplet1 by the scale factor
s, adds the result to tuplet2, then places the result into the tuplethis (this =
s*t1 + t2)

public final void absolute()
public final void absolute(Tuple2f t)

The first absolute method sets each component of this tuple to its abso
value. The secondabsolute method sets each component of this tuple to
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple2f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple2f t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple2f t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to themax parameter and
assigns these clamped values to this tuple. In each method the values of tt

remain unchanged.

public final void interpolate(Tuple2f t1, Tuple2f t2, float alpha)
public final void interpolate(Tuple2f t1, float alpha)

The first method linearly interpolates between tuplest1 andt2 and places the
result into this tuple (this = alpha * t1 + (1 – alpha) * t2). The second method
early interpolates between this tuple and tuplet1 and places the result into this
tuple (this = alpha * this + (1 – alpha) * t1).

public boolean equals(Tuple2f t1)

This method returnstrue if all of the data members of tuplet1 are equal to the
corresponding data members in this tuple.
Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.1

ns

 this

ata

pre-

erates
-

2f
 of

nce
public boolean epsilonEquals(Tuple2f t1, float epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two Tuple2f objects with identical data values (that is,equals(Tuple2f)

returnstrue) will return the same hash number. Two objects with different d
members may return the same hash number, although this is not likely.

public String toString()

This method returns a string that contains the values of this Tuple2f.

A.1.1.1 Point2f Class

The Point2f class extends Tuple2f. The Point2f is a two-element point re
sented by single-precision floating-pointx,y coordinates.

Constructors

public Point2f(float x, float y)
public Point2f(float p[])
public Point2f(Point2f p1)
public Point2f(Tuple2f t1)
public Point2f()

These four constructors each return a new Point2f. The first constructor gen
a Point2f from two floating-point numbersx andy. The second constructor gen
erates a Point2f from the first two elements of arrayp. The third constructor gen-
erates a Point2f from the pointp1. The fourth constructor generates a Point
from the Tuple2ft1. The final constructor generates a Point2f with the value
(0.0, 0.0).

Methods

public final float distanceSquared(Point2f p1)
public final float distance(Point2f p1)

The distanceSquared method computes the square of the Euclidean dista
between this point and pointp1 and returns the result. Thedistance method

MAX abs x1 x2–() abs y1 y2–(),[]
303Version 1.1 Alpha 01, February 27, 1998

A.1.1 Tuple2f Class MATH OBJECTS

304

int

pre-

ener-

a
tor2f
computes the Euclidean distance between this point and pointp1 and returns the
result.

public final float distanceL1(Point2f p1)

This method computes the L1 (Manhattan) distance between this point and po
p1. The L1 distance is equal to

public final float distanceLinf(Point2f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

A.1.1.2 Vector2f Class

The Vector2f class extends Tuple2f. The Vector2f is a two-element vector re
sented by single-precision floating-pointx,y coordinates.

Constructors

public Vector2f(float x, float y)
public Vector2f(float v[])
public Vector2f(Vector2f v1)
public Vector2f(Tuple2f t1)
public Vector2f()

These four constructors each return a new Vector2f. The first constructor g
ates a Vector2f from two floating-point numbersx andy. The second constructor
generates a Vector2f from the first two elements of arrayv. The third constructor
generates a Vector2f from the vectorv1. The fourth constructor generates
Vector2f from the specified Tuple2f. The final constructor generates a Vec
with the value of (0.0, 0.0).

Methods

public final float dot(Vector2f v1)

Thedot method computes the dot product between this vector and vectorv1 and
returns the resulting value.

abs x1 x2–() abs y1 y2–()+

MAX abs x1 x2–() abs y1 y2–(),[]
Java 3D API Specification

MATH OBJECTS Tuple3b Class A.1.2

tor
The

ment

 gen-

le.
public final float lengthSquared()
public final float length()

The lengthSquared method computes the square of the length of the vec
this and returns its length as a single-precision floating-point number.
length method computes the length of the vectorthis and returns its length as
a single-precision floating-point number.

public final void normalize(Vector2f v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final float angle(Vector2f v1)

This method returns the angle, in radians, between this vector and vectorv1. The
return value is constrained to the range [0,π].

A.1.1.3 TexCoord2f Class

The TexCoord2f class is a subset of Tuple2f. The TexCoord2f is a two-ele
vector represented by single-precision floating-point x,y coordinates.

Constructors

public TexCoord2f(float x, float y)
public TexCoord2f(float v[])
public TexCoord2f(TexCoord2f v1)
public TexCoord2f(Tuple2f t1)
public TexCoord2f()

These four constructors each return a new TexCoord2f. The first constructor
erates a TexCoord2f from two floating-point numbersx andy. The second con-
structor generates a TexCoord2f from the first two elements of arrayv. The third
constructor generates a TexCoord2f from the TexCoord2fv1. The fourth con-
structor generates a TexCoord2f from the Tuple2ft1. The final constructor gen-
erates a TexCoord2f with the value of (0.0, 0.0).

A.1.2 Tuple3b Class

The Tuple3b class is used for colors. This class represents a three-byte tup
305Version 1.1 Alpha 01, February 27, 1998

A.1.2 Tuple3b Class MATH OBJECTS

306

ublic
d
s

 rec-
ats the

ener-
s

Variables

The component values of a Tuple3b are directly accessible through the p
variablesx, y, and z. To access thex (red) component of a Tuple3b calle
myColor, a programmer would writemyColor.x. The programmer would acces
they (green) andz (blue) components similarly.

Note: Java defines a byte as a signed integer in the range [−128, 127]. However,
colors are more typically represented by values in the range [0, 255]. Java 3D
ognizes this and, in those cases where Color3b is used to represent color, tre
bytes as if the range were [0, 255].

public byte x
public byte y
public byte z

The red, green, and blue values, respectively.

Constructors

public Tuple3b(byte b1, byte b2, byte b3)
public Tuple3b(byte t[])
public Tuple3b(Tuple3b t1)
public Tuple3b()

These four constructors each return a new Tuple3b. The first constructor g
ates a Tuple3b from three bytesb1, b2, andb3. The second constructor generate
a Tuple3b from the first three elements of arrayt. The third constructor gener-
ates a Tuple3b from the byte-precision Tuple3bt1. The final constructor gener-
ates a Tuple3b with the value of (0.0, 0.0, 0.0).

Methods

public String toString()

This method returns a string that contains the values of this Tuple3b.
Java 3D API Specification

MATH OBJECTS Tuple3b Class A.1.2

he

t. Two

ata

ener-
s

th
public final void set(byte t[])
public final void set(Tuple3b t1)
public final void get(byte t[])
public final void get(Tuple3b t1)

The first set method sets the values of thex, y, and z data members of this
Tuple3b to the values in the arrayt of length three. The secondset method sets
the values of thex, y, andz data members of this Tuple3b to the values in t
argument tuplet1. The firstget method places the values of thex, y, andz com-
ponents of this Tuple3b into the arrayt of length three. The secondget method
places the values of thex, y, andz components of this Tuple3b into the tuplet1.

public boolean equals(Tuple3b t1)

This method returnstrue if all of the data members of Tuple3bt1 are equal to
the corresponding data members in this tuple.

public int hashCode()

This method returns a hash number based on the data values in this objec
different Tuple3b objects with identical data values (that is,equals(Tuple3b)

returnstrue) will return the same hash number. Two tuples with different d
members may return the same hash value, although this is not likely.

A.1.2.1 Color3b Class

The Color3b class extends Tuple3b and represents three-byte color values.

Constructors

public Color3b(byte c1, byte c2, byte c3)
public Color3b(byte c[])
public Color3b(Color3b c1)
public Color3b(Tuple3b t1)
public Color3b()

These four constructors each return a new Color3b. The first constructor g
ates a Color3b from three bytesc1, c2, andc3. The second constructor generate
a Color3b from the first three elements of arrayc. The third constructor gener-
ates a Color3b from the byte-precision Color3bc1. The fourth constructor gener-
ates a Color3b from the tuplet1. The final constructor generates a Color3b wi
the value of (0.0, 0.0, 0.0).
307Version 1.1 Alpha 01, February 27, 1998

A.1.3 Tuple3d Class MATH OBJECTS

308

preci-

ublic

ener-

e

A.1.3 Tuple3d Class

The Tuple3d class is a generic three-element tuple represented by double-
sion floating-pointx, y, andz coordinates.

Variables

The component values of a Tuple3d are directly accessible through the p
variablesx, y, andz. To access thex component of a Tuple3d calledupperLeft-
Corner, a programmer would writeupperLeftCorner.x. The programmer
would access they andz components similarly.

public double x
public double y
public double z

Thex, y, andz coordinates, respectively.

Constructors

public Tuple3d(double x, double y, double z)
public Tuple3d(double t[])
public Tuple3d(Tuple3d t1)
public Tuple3d(Tuple3f t1)
public Tuple3d()

These five constructors each return a new Tuple3d. The first constructor g
ates a Tuple3d from three floating-point numbersx, y, andz. The second con-
structor generates a Tuple3d from the first three elements of arrayt. The third
constructor generates a Tuple3d from the double-precision Tuple3dt1. The
fourth constructor generates a Tuple3d from the single-precision Tuple3ft1. The
final constructor generates a Tuple3d with the value of (0.0, 0.0, 0.0).

Methods

public final void set(double x, double y, double z)
public final void set(double t[])
public final void set(Tuple3d t1)
public final void set(Tuple3f t1)
public final void get(double t[])
public final void get(Tuple3d t)

The fourset methods set the value of tuplethis to the values specified or to th
values of the specified vectors. The twoget methods copy thex, y, andz values
into the arrayt of length three.
Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.3

-

lues

rm is

t. Two

ata
public final void add(Tuple3d t1, Tuple3d t2)
public final void add(Tuple3d t1)
public final void sub(Tuple3d t1, Tuple3d t2)
public final void sub(Tuple3d t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2
and places the result inthis. The secondadd method computes the ele
ment-by-element sum of this tuple and tuplet1 and places the result intothis.
The first sub method performs an element-by-element subtraction of tuplet2

from tuple t1 and places the result inthis (this = t1 – t2). The secondsub
method performs an element-by-element subtraction of tuplet1 from this tuple
and places the result inthis (this = this – t1).

public final void negate(Tuple3d t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the va
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scale(double s, Tuple3d t1)
public final void scale(double s)
public final void scaleAdd(double s, Tuple3f t1)
public final void scaleAdd(double s, Tuple3d t1, Tuple3d t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiplies each element ofthis tuple by the scale factors and places the result-
ing scaled tuple back intothis. The firstscaleAdd method scales this tuple by
the scale factors, adds the result to tuplet1, and places the result into tuplethis
(this = s*this + t1). The secondscaleAdd method scales the tuplet1 by the scale
factors, adds the result to the tuplet2, and places the result into the tuplethis

(this = s*t1 + t2).

public String toString()

This method returns a string that contains the values of this Tuple3d. The fo
(x, y, z).

public int hashCode()

This method returns a hash number based on the data values in this objec
different Tuple3d objects with identical data values (that is,equals(Tuple3d)

returnstrue) will return the same hash number. Two tuples with different d
members may return the same hash value, although this is not likely.
309Version 1.1 Alpha 01, February 27, 1998

A.1.3 Tuple3d Class MATH OBJECTS

310

ns

lute
the

first

uple

ond
public boolean equals(Tuple3d v1)

This method returnstrue if all of the data members of Tuple3dv1 are equal to
the corresponding data members in this Tuple3d.

public boolean epsilonEquals(Tuple3d t1, double epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple3d t)

The first absolute method sets each component of this tuple to its abso
value. The secondabsolute method sets each component of this tuple to
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple3d t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple3d t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple3dt)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The
clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to themax parameter and
assigns these clamped values to this tuple. In each method, the values of tt

remain unchanged.

public final void interpolate(Tuple3d t1, Tuple3d t2, float alpha)
public final void interpolate(Tuple3d t1, float alpha)

The firstinterpolate method linearly interpolates between tuplest1 andt2 and
places the result into this tuple (this = alpha * t1 + (1 – alpha) * t2). The sec
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = alpha * this + (1 – alpha) * t1).

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.3

epre-

erates

a

nce

oint3d

int
A.1.3.1 Point3d Class

The Point3d class extends Tuple3d. The Point3d is a three-element point r
sented by double-precision floating-pointx, y, andz coordinates.

Constructors

public Point3d(double x, double y, double z)
public Point3d(double p[])
public Point3d(Point3d p1)
public Point3d(Point3f p1)
public Point3d(Tuple3d t1)
public Point3d(Tuple3f t1)
public Point3d()

These five constructors each return a new Point3d. The first constructor gen
a Point3d from three floating-point numbersx, y, andz. The second constructor
generates a Point3d from the first three elements of arrayp. The third constructor
generates a Point3d from the double-precision Point3dp1. The fourth constructor
generates a Point3d from the single-precision Point3fp1. The fifth and sixth con-
structors generate a Point3d from the tuplet1. The final constructor generates
Point3d with the value of (0.0, 0.0, 0.0).

Methods

public final double distanceSquared(Point3d p1)
public final double distance(Point3d p1)

The distanceSquared method computes the square of the Euclidean dista
between this Point3d and the Point3dp1 and returns the result. Thedistance
method computes the Euclidean distance between this Point3d and the P
p1 and returns the result.

public final float distanceL1(Point3d p1)

This method computes the L1 (Manhattan) distance between this point and po
p1. The L1 distance is equal to

public final float distanceLinf(Point3d p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

abs x1 x2–() abs y1 y2–() abs z1 z2–()+ +
311Version 1.1 Alpha 01, February 27, 1998

A.1.3 Tuple3d Class MATH OBJECTS

312

-

r rep-

ener-
public final void project(Point4d p1)

This method multiplies each of thex, y, andz components of the Point4d param
eterp1 by 1/w and places the projected values into this point.

A.1.3.2 Vector3d Class

The Vector3d class extends Tuple3d. The Vector3d is a three-element vecto
resented by double-precision floating-pointx, y, andz coordinates. If this value
represents a normal, it should be normalized.

Constructors

public Vector3d(double x, double y, double z)
public Vector3d(double v[])
public Vector3d(Vector3d v1)
public Vector3d(Vector3f v1)
public Vector3d(Tuple3d t1)
public Vector3d(Tuple3f t1)
public Vector3d()

These five constructors each return a new Vector3d. The first constructor g
ates a Vector3d from three floating-point numbersx, y, andz. The second con-
structor generates a Vector3d from the first three elements of arrayv. The third
constructor generates a Vector3d from the double-precision vectorv1. The fourth
constructor generates a Vector3d from the single-precision vectorv1. The fifth
and sixth constructors generate a Vector3d from the tuplet1. The final construc-
tor generates a Vector3d with the value of (0.0, 0.0, 0.0).

Methods

public final void cross(Vector3d v1, Vector3d v2)

The cross method computes the vector cross-product of vectorsv1 andv2 and
places the result inthis.

public final void normalize(Vector3d v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.4

he

tor

preci-

ublic

erates
public final double dot(Vector3d v1)

Thedot method returns the dot product of this vector and vectorv1.

public final double lengthSquared()
public final double length()

The lengthSquared method returns the squared length of this vector. T
length method returns the length of this vector.

public final double angle(Vector3d v1)

This method returns the angle, in radians, between this vector and the vecv1

parameter. The return value is constrained to the range [0,π].

A.1.4 Tuple3f Class

The Tuple3f class is a generic three-element tuple represented by single-
sion floating-pointx, y, andz coordinates.

Variables

The component values of a Tuple3f are directly accessible through the p
variablesx, y, andz. To access thex component of a Tuple3f calledupperLeft-
Corner, a programmer would writeupperLeftCorner.x. The programmer
would access they andz components similarly.

public float x
public float y
public float z

Thex, y, andz coordinates, respectively.

Constructors

public Tuple3f(float x, float y, float z)
public Tuple3f(float t[])
public Tuple3f(Tuple3d t1)
public Tuple3f(Tuple3f t1)
public Tuple3f()

These five constructors each return a new Tuple3f. The first constructor gen
a Tuple3f from three floating-point numbersx, y, andz. The second constructor
generates a Tuple3f from the first three elements of arrayt. The third constructor
generates a Tuple3f from the double-precision Tuple3dt1. The fourth construc-
313Version 1.1 Alpha 01, February 27, 1998

A.1.4 Tuple3f Class MATH OBJECTS

314

r

-

lt

lues
tor generates a Tuple3f from the single-precision Tuple3ft1. The final construc-
tor generates a Tuple3f with the value of (0.0, 0.0, 0.0).

Methods

public String toString()

This method returns a string that contains the values of this Tuple3f.

public final void set(float x, float y, float z)
public final void set(float t[])
public final void set(Tuple3f t1)
public final void set(Tuple3d t1)
public final void get(float t[])
public final void get(Tuple3f t)

The fourset methods set the value of vectorthis to the coordinates provided o
to the values of the vectors provided. The firstget method gets the value of this
vector and copies the values into the arrayt. The secondget method gets the
value of this vector and copies the values into tuplet.

public final void add(Tuple3f t1, Tuple3f t2)
public final void add(Tuple3f t1)
public final void sub(Tuple3f t1, Tuple3f t2)
public final void sub(Tuple3f t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2,
placing the result inthis. The secondadd method computes the element-by-ele
ment sum ofthis and tuplet1 and places the result inthis. The first sub
method performs an element-by-element subtraction of tuplet2 from tuplet1
and places the result inthis (this = t1 – t2). The secondsub method performs an
element-by-element subtraction of tuplet1 from this tuple and places the resu
into this (this = this – t1).

public final void negate(Tuple3f t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the va
from tuplet1. The secondnegate method negates the vectorthis and places the
resulting tuple back intothis.
Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.4

ns

lute
the

first
public final void scale(float s, Tuple3f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple3f t1)
public final void scaleAdd(float s, Tuple3f t1, Tuple3f t2)

The firstscale method multiplies each element of the vectort1 by the scale fac-
tor s and places the resulting scaled vector intothis. The secondscale method
multiples the vectorthis by the scale factors and replacesthis with the scaled
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).

public boolean equals(Tuple3f t1)

This method returnstrue if all of the data members of tuplet1 are equal to the
corresponding data members in this Tuple3f.

public boolean epsilonEquals(Tuple3f t1, float epsilon)

This method returnstrue if the L∞ distance between this tuple and tuplet1 is
less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple3f t)

The first absolute method sets each component of this tuple to its abso
value. The secondabsolute method sets each component of this tuple to
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple3f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple3f t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple3f t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps the values from tuplet to the range [min, max] and assigns
these clamped values to this tuple. The firstclampMin method clamps each value
of this tuple to themin parameter. The secondclampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
315Version 1.1 Alpha 01, February 27, 1998

A.1.4 Tuple3f Class MATH OBJECTS

316

uple

 lin-

t. Two

ata

pre-

erates

y

clampMax method clamps each value of this tuple to themax parameter. The sec-
ond clampMax method clamps each value of tuplet to themax parameter and
assigns these clamped values to this tuple. In each method the values of tt

remain unchanged.

public final void interpolate(Tuple3f t1, Tuple3f t2, float alpha)
public final void interpolate(Tuple3f t1, float alpha)

The first method linearly interpolates between tuplest1 andt2 and places the
result into this tuple (this = alpha * t1 + (1 – alpha) * t2). The second method
early interpolates between this tuple and tuplet1 and places the result into this
tuple (this = alpha * this + (1–alpha) * t1).

int hashCode()

This method returns a hash number based on the data values in this objec
different Tuple3f objects with identical data values (that is,equals(Tuple3f)

returnstrue) will return the same hash number. Two tuples with different d
members may return the same hash value, although this is not likely.

A.1.4.1 Point3f Class

The Point3f class extends Tuple3f. The Point3f is a three-element point re
sented by single-precision floating-pointx, y, andz coordinates.

Constructors

public Point3f(float x, float y, float z)
public Point3f(float p[])
public Point3f(Point3d p1)
public Point3f(Point3f p1)
public Point3f(Tuple3d t1)
public Point3f(Tuple3f t1)
public Point3f()

These five constructors each return a new Point3f. The first constructor gen
a point from three floating-point numbersx, y, andz. The second constructor
(Point3f(float p[]) generates a point from the first three elements of arrap.
The third constructor generates a point from the double-precision pointp1. The
fourth constructor generates a point from the single-precision pointp1. The fifth
and sixth constructors generate a Point3f from the tuplet1. The final constructor
generates a point with the value of (0.0, 0.0, 0.0).
Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.4

 and

int

-

 rep-

ener-
Methods

public final float distance(Point3f p1)
public final float distanceSquared(Point3f p1)

The distance method computes the Euclidean distance between this point
the pointp1 and returns the result. ThedistanceSquared method computes the
square of the Euclidean distance between this point and the pointp1 and returns
the result.

public final float distanceL1(Point3f p1)

This method computes the L1 (Manhattan) distance between this point and po
p1. The L1 distance is equal to

public final float distanceLinf(Point3f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4f p1)

This method multiplies each of thex, y, andz components of the Point4f param
eterp1 by 1/w and places the projected values into this point.

A.1.4.2 Vector3f Class

The Vector3f class extends Tuple3f. The Vector3f is a three-element vector
resented by single-precision floating-pointx, y, andz coordinates.

Constructors

public Vector3f(float x, float y, float z)
public Vector3f(float v[])
public Vector3f(Vector3d v1)
public Vector3f(Vector3f v1)
public Vector3f(Tuple3d t1)
Public Vector3f(Tuple3f t1)
public Vector3f()

These five constructors each return a new Vector3f. The first constructor g
ates a Vector3f from three floating-point numbersx, y, andz. The second con-

abs x1 x2–() abs y1 y2–() abs z1 z2–()+ +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–(),,[]
317Version 1.1 Alpha 01, February 27, 1998

A.1.4 Tuple3f Class MATH OBJECTS

318

-

or

ector

t tex-
structor generates a Vector3f from the first three elements of arrayv. The third
constructor generates a Vector3f from the double-precision Vector3dv1. The
fourth constructor generates a Vector3f from the single-precision Vector3fv1.
The fifth and sixth constructors generate a Vector3f from the tuplet1. The final
constructor generates a Vector3f with the value of (0.0, 0.0, 0.0).

Methods

public final float length()
public final float lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a single-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a sin
gle-precision floating-point number.

public final void cross(Vector3f v1, Vector3f v2)

The cross method computes the vector cross-product ofv1 andv2 and places
the result inthis.

public final float dot(Vector3f v1)

Thedot method computes the dot product between this vector and the vectv1

and returns the resulting value.

public final void normalize(Vector3f v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final float angle(Vector3f v1)

This method returns the angle, in radians, between this vector and the v
parameter. The return value is constrained to the range [0,π].

A.1.4.3 TexCoord3f Class

The TexCoord3f class extends Tuple3f. The TexCoord3f is a three-elemen
ture coordinate represented by single-precision floating-pointx, y, andz coordi-
nates.
Java 3D API Specification

MATH OBJECTS Tuple4b Class A.1.5

 gen-

nts of
-pre-
or-
ith

alue

mpo-

ener-

ts
ion
Constructors

public TexCoord3f(float x, float y, float z)
public TexCoord3f(float v[])
public TexCoord3f(TexCoord3f v1)
public TexCoord3f(Tuple3d t1)
public TexCoord3f(Tuple3f t1)
public TexCoord3f()

These four constructors each return a new TexCoord3f. The first constructor
erates a texture coordinate from three floating-point numbersx, y, andz. The
second constructor generates a texture coordinate from the first three eleme
arrayv. The third constructor generates a texture coordinate from the single
cision TexCoord3fv1. The fourth and fifth constructors generate a texture co
dinate from tuplet1. The final constructor generates a texture coordinate w
the value of (0.0, 0.0, 0.0).

A.1.4.4 Color3f Class

The Color3f class extends Tuple3f. The Color3f is a three-element color v
represented by single-precision floating-pointx, y, andz values. Thex, y, andz
values represent the red, blue, and green color values, respectively. Color co
nents should be in the range [0.0, 1.0].

Constructors

public Color3f(float x, float y, float z)
public Color3f(float v[])
public Color3f(Color3f v1)
public Color3f(Tuple3d t1)
public Color3f(Tuple3f t1)
public Color3f()

These four constructors each return a new Color3f. The first constructor g
ates a Color3f from three floating-point numbersx, y, andz. The second con-
structor (Color3f(float v[]) generates a Color3f from the first three elemen
of arrayv. The third constructor generates a Color3f from the single-precis
color v1. The fourth and fifth constructors generate a Color3f from the tuplet1.
The final constructor generates a Color3f with the value of (0.0, 0.0, 0.0).

A.1.5 Tuple4b Class

The Tuple4b class represents four-byte tuples.
319Version 1.1 Alpha 01, February 27, 1998

A.1.5 Tuple4b Class MATH OBJECTS

320

ublic
e,

ever,
 rec-
ats the

ener-

y

.0).
Variables

The component values of a Tuple4b are directly accessible through the p
variablesx, y, z, andw. Thex, y, z, andw values represent the red, green, blu
and alpha values, respectively. To access thex (red) component of a Tuple4b
called backgroundColor, a programmer would writebackgroundColor.x. The
programmer would access they (green),z (blue), andw (alpha) components sim-
ilarly.

Note: Java defines a byte as a signed integer in the range [–128, 127]. How
colors are more typically represented by values in the range [0, 255]. Java 3D
ognizes this and, in those cases where Color4b is used to represent color, tre
bytes as if the range were [0, 255].

public byte x
public byte y
public byte z
public byte w

The red, green, blue, and alpha values, respectively.

Constructors

public Tuple4b(byte b1, byte b2, byte b3, byte b4)
public Tuple4b(byte t[])
public Tuple4b(Tuple4b t1)
public Tuple4b()

These four constructors each return a new Tuple4b. The first constructor g
ates a Tuple4b from four bytesb1, b2, b3, and b4. The second constructor
(Tuple4b(byte t[]) generates a Tuple4b from the first four elements of arrat.
The third constructor generates a Tuple4b from the byte-precision Tuple4bt1.
The final constructor generates a Tuple4b with the value of (0.0, 0.0, 0.0, 0

Methods

public String toString()

This method returns a string that contains the values of this Tuple4b.
Java 3D API Specification

MATH OBJECTS Tuple4b Class A.1.5

 the
rs

e

t. Two

er-
ly.

(red,

ener-
r-

b

public final void set(byte b[])
public final void set(Tuple4b t1)
public final void get(byte b[])
public final void get(Tuple4b t1)

The firstset method sets the value of the data members of this Tuple4b to
value of the arrayb. The secondset method sets the value of the data membe
of this Tuple4b to the value of the argument tuplet1. The first get method
places the values of thex, y, z, andw components of this Tuple4b into the byt
arrayb. The secondget method places the values of thex, y, z, andw compo-
nents of this Tuple4b into the Tuple4bt1.

public boolean equals(Tuple4b t1)

This method returnstrue if all of the data members of Tuple4bt1 are equal to
the corresponding data members in this Tuple4b.

public int hashCode()

This method returns a hash number based on the data values in this objec
different Tuple4b objects with identical data values (that is,equals(Tuple4b)

returnstrue) will return the same hash number. Two Tuple4b objects with diff
ent data members may return the same hash value, although this is not like

A.1.5.1 Color4b Class

The Color4b class extends Tuple4b. The Color4b is a four-byte color value
green, blue, and alpha).

Constructors

public Color4b(byte b1, byte b2, byte b3, byte b4)
public Color4b(byte c[])
public Color4b(Color4b c1)
public Color4b(Tuple4b t1)
public Color4b()

These four constructors each return a new Color4b. The first constructor g
ates a Color4b from four bytesb1, b2, b3, andb4. The second constructor gene
ates a Color4b from the first four elements of byte arrayc. The third constructor
generates a Color4b from the byte-precision Color4bc1. The fourth constructor
generates a Color4b from the tuplet1. The final constructor generates a Color4
with the value of (0.0, 0.0, 0.0, 0.0).
321Version 1.1 Alpha 01, February 27, 1998

A.1.6 Tuple4d Class MATH OBJECTS

322

preci-

ublic

ener-

ts
sion
sion
0.0,
A.1.6 Tuple4d Class

The Tuple4d class represents a four-element tuple represented by double-
sion floating-pointx, y, z, andw coordinates.

Variables

The component values of a Tuple4d are directly accessible through the p
variablesx, y, z, andw. To access thex component of a Tuple4d calledupper-
LeftCorner, a programmer would writeupperLeftCorner.x. The programmer
would access they, z, andw components similarly.

public double x
public double y
public double z
public double w

Thex, y, z, andw coordinates, respectively.

Constructors

public Tuple4d(double x, double y, double z, double w)
public Tuple4d(double t[])
public Tuple4d(Tuple4d t1)
public Tuple4d(Tuple4f t1)
public Tuple4d()

These five constructors each return a new Tuple4d. The first constructor g
ates a Tuple4d from four floating-point numbersx, y, z, andw. The second con-
structor (Tuple4d(double t[]) generates a Tuple4d from the first four elemen
of arrayt. The third constructor generates a Tuple4d from the double-preci
tuple t1. The fourth constructor generates a Tuple4d from the single-preci
tuple t1. The final constructor generates a Tuple4d with the value of (0.0,
0.0, 0.0).
Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.6

e
s

ple

lues
Methods

public final void set(double x, double y, double z, double w)
public final void set(double t[])
public final void set(Tuple4d t1)
public final void set(Tuple4f t1)
public final void get(double t[])
public final void get(Tuple4d t)

These methods set the value of the tuplethis to the values specified or to th
values of the specified tuples. The firstget method retrieves the value of thi
tuple and places it into the arrayt of length four, inx, y, z, w order. The second
get method retrieves the value of this tuple and places it into tuplet.

public final void add(Tuple4d t1, Tuple4d t2)
public final void add(Tuple4d t1)
public final void sub(Tuple4d t1, Tuple4d t2)
public final void sub(Tuple4d t1)

The firstadd method computes the element-by-element sum of the tuplet1 and
the tuplet2, placing the result inthis. The secondadd method computes the
element-by-element sum of this tuple and the tuplet1 and places the result in
this. The firstsub method performs an element-by-element subtraction of tu
t2 from tuplet1 and places the result inthis. The secondsub method performs
an element-by-element subtraction of tuplet1 from this tuple and places the
result inthis.

public final void negate(Tuple4d t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the va
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.

public final void scale(double s, Tuple4d t1)
public final void scale(double s)
public final void scaleAdd(double s, Tuple4d t1)
public final void scaleAdd(double s, Tuple4d t1, Tuple4d t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiples the tuplethis by the scale factors and replacesthis with the scaled
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
323Version 1.1 Alpha 01, February 27, 1998

A.1.6 Tuple4d Class MATH OBJECTS

324

ond

m is

d
ns

lute
the

le
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).

public void interpolate(Tuple4d t1, Tuple4d t2, float alpha)
public void interpolate(Tuple4d t1, float alpha)

The firstinterpolate method linearly interpolates between tuplest1 andt2 and
places the result into this tuple (this = alpha * t1 + (1 – alpha) * t2). The sec
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = alpha * this + (1 – alpha) * t1).

public String toString()

This method returns a string that contains the values of this tuple. The for
(x, y, z, w).

public boolean equals(Tuple4d v1)

This method returnstrue if all of the data members of tuplev1 are equal to the
corresponding data members in this tuple.

public boolean epsilonEquals(Tuple4d t1, double epsilon)

This method returnstrue if the L∞ distance between this Tuple4d and Tuple4
t1 is less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple4d t)

The first absolute method sets each component of this tuple to its abso
value. The secondabsolute method sets each component of this tuple to
absolute value of the corresponding component in tuplet.

public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple4d t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple4d t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple4d t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps this tuple to the range [min, max] and places the values
into tuplet. The firstclampMin method clamps the minimum value of this tup

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]
Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.6

t. Two

er-
ly.

epre-

erates

ray
t
t

 and
to themin parameter. The secondclampMin method clamps the minimum value
of this tuple to themin parameter and places the values into the tuplet. The first
clampMax method clamps the maximum value of this tuple to themax parameter.
The secondclampMax method clamps the maximum value of this tuple to themax

parameter and places the values into the tuplet.

public int hashCode()

This method returns a hash number based on the data values in this objec
different Tuple4d objects with identical data values (that is,equals(Tuple4d)

returnstrue) will return the same hash number. Two Tuple4d objects with diff
ent data members may return the same hash value, although this is not like

A.1.6.1 Point4d Class

The Point4d class extends Tuple4d. The Point4d is a four-element point r
sented by double-precision floating-point x, y, z, and w coordinates.

Constructors

public Point4d(double x, double y, double z, double w)
public Point4d(double p[])
public Point4d(Point4d p1)
public Point4d(Point4f p1)
public Point4d(Tuple4d t1)
public Point4d(Tuple4f t1)
public Point4d()

These five constructors each return a new Point4d. The first constructor gen
a Point4d from four floating-point numbersx, y, z, andw. The second constructor
(Point4d(double p[]) generates a Point4d from the first four elements of ar
p. The third constructor generates a Point4d from the double-precision poinp1.
The fourth constructor generates a Point4d from the single-precision poinp1.
The fifth and sixth constructors generate a Point4d from tuplet1. The final con-
structor generates a Point4d with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final double distance(Point4d p1)
public final double distanceSquared(Point4d p1)

The distance method computes the Euclidean distance between this point
the pointp1 and returns the result. ThedistanceSquared method computes the
square of the Euclidean distance between this point and the pointp1 and returns
the result.
325Version 1.1 Alpha 01, February 27, 1998

A.1.6 Tuple4d Class MATH OBJECTS

326

int

 rep-

ener-

f

public final float distanceL1(Point4d p1)

This method computes the L1 (Manhattan) distance between this point and po
p1. The L1 distance is equal to

public final float distanceLinf(Point4d p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

public final void project(Point4d p1)

This method multiplies each of thex, y, andz components of the pointp1 by
, places the projected values into this point, and places a 1 into thew param-

eter of this point.

A.1.6.2 Vector4d Class

The Vector4d class extends Tuple4d. The Vector4d is a four-element vector
resented by double-precision floating-pointx, y, z, andw coordinates.

Constructors

public Vector4d(double x, double y, double z, double w)
public Vector4d(double v[])
public Vector4d(Vector4d v1)
public Vector4d(Vector4f v1)
public Vector4d(Tuple4d t1)
public Vector4d(Tuple4f t1)
public Vector4d()

These five constructors each return a new Vector4d. The first constructor g
ates a Vector4d from four floating-point numbersx, y, z, andw. The second con-
structor generates a Vector4d from the first four elements of arrayv. The third
constructor generates a Vector4d from the double-precision Vector4dv1. The
fourth constructor generates a Vector4d from the single-precision Vector4v1.
The fifth and sixth constructors generate a Vector4d from tuplet1. The final con-
structor generates a Vector4d with the value of (0.0, 0.0, 0.0, 0.0).

abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–()+ + +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]

1 w⁄
Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.6

-

r and

n rep-

erates

ision
pre-
Methods

public final double length()
public final double lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a double-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a dou
ble-precision floating-point number.

public final void dot(Vector4d v1)

This method returns the dot product of this vector and vectorv1.

public final void normalize(Vector4d v1)
public final void normalize()

The firstnormalize method normalizes the vectorv1 to unit length and places
the result inthis. The secondnormalize method normalizes the vectorthis
and places the resulting unit vector back intothis.

public final double angle(Vector4d v1)

This method returns the (four-space) angle, in radians, between this vecto
the vectorv1 parameter. The return value is constrained to the range [0,π].

A.1.6.3 Quat4d Class

The Quat4d class extends Tuple4d. The Quat4d is a four-element quaternio
resented by double-precision floating-pointx, y, z, andw values.

Constructors

public Quat4d(double x, double y, double z, double w)
public Quat4d(double q[])
public Quat4d(Quat4d q1)
public Quat4d(Quat4f q1)
public Quat4d(Tuple4d t1)
public Quat4d(Tuple4f t1)
public Quat4d()

These five constructors each return a new Quat4d. The first constructor gen
a quaternion from four floating-point numbersx, y, z, andw. The second con-
structor generates a quaternion from the first four elements of arrayq of length
four. The third constructor generates a quaternion from the double-prec
quaternionq1. The fourth constructor generates a quaternion from the single-
327Version 1.1 Alpha 01, February 27, 1998

A.1.6 Tuple4d Class MATH OBJECTS

328

om
 0.0,

e of
is

duct
at
r-

oth

ion

zed
f

cision quaternionq1. The fifth and sixth constructors generate a Quat4d fr
tuplet1. The final constructor generates a quaternion with the value of (0.0,
0.0, 0.0).

Methods

public final void conjugate(Quat4d q1)
public final void conjugate()

The firstconjugate method sets the values of this quaternion to the conjugat
quaternionq1. The secondconjugate method negates the value of each of th
quaternion’sx, y, andz coordinates in place.

public final void mul(Quat4d q1, Quat4d q2)
public final void mul(Quat4d q1)

The firstmul method sets the value of this quaternion to the quaternion pro
of quaternionsq1 andq2 (this = q1 * q2). Note that this is safe for aliasing (th
is, this can beq1 or q2). The secondmul method sets the value of this quate
nion to the quaternion products of itself andq1 (this = this * q1).

public final void mulInverse(Quat4d q1, Quat4d q2)
public final void mulInverse(Quat4d q1)

The first mulInverse method multiplies quaternionq1 by the inverse of
quaternionq2 and places the value into this quaternion. The values of b
quaternion arguments are preserved (this = q1 * q2–1). The secondmulInverse
method multiplies this quaternion by the inverse of quaternionq1 and places the
value into this quaternion. The value of the argumentq1 is preserved (this =
this * q1–1).

public final void inverse(Quat4d q1)
public final void inverse()

The first inverse method sets the value of this quaternion to the quatern
inverse of quaternionq1. The secondinverse method sets the value of this
quaternion to the quaternion inverse of itself.

public final void normalize(Quat4d q1)
public final void normalize()

The firstnormalize method sets the value of this quaternion to the normali
value of quaternionq1. The secondnormalize method normalizes the value o
this quaternion in place.
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.7

nent

nion
e sec-

cision

ublic
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a)
public final void set(AxisAngle4d a)

Theseset methods set the value of this quaternion to the rotational compo
of the passed matrix.

public final void interpolate(Quat4d q1, double alpha)
public final void interpolate(Quat4d q1, Quat4d q2, double alpha)

The first method performs a great circle interpolation between this quater
and the quaternion parameter and places the result into this quaternion. Th
ond method performs a great circle interpolation between quaternionq1 and
quaternionq2 and places the result into this quaternion.

A.1.7 Tuple4f Class

The Tuple4f class represents a four-element tuple represented by single-pre
floating-pointx, y, z, andw values.

Variables

The component values of a Tuple4f are directly accessible through the p
variablesx, y, z, andw. To access thex component of a Tuple4f calledupper-
LeftCorner, a programmer would writeupperLeftCorner.x. The programmer
would access they, z, andw components similarly.

public double x
public double y
public double z
public double w

Thex, y, z, andw values, respectively.

Constructors

public Tuple4f(float x, float y, float z, float w)
public Tuple4f(float t[])
public Tuple4f(Tuple4d t1)
329Version 1.1 Alpha 01, February 27, 1998

A.1.7 Tuple4f Class MATH OBJECTS

330

erates

ray

0).

rdi-

-

lues
public Tuple4f(Tuple4f t1)
public Tuple4f()

These five constructors each return a new Tuple4f. The first constructor gen
a Tuple4f from four floating-point numbersx, y, z, andw. The second constructor
(Tuple4f(float t[]) generates a Tuple4f from the first four elements of ar
t. The third constructor generates a Tuple4f from the double-precision tuplet1.
The fourth constructor generates a Tuple4f from the single-precision tuplet1.
The final constructor generates a Tuple4f with the value of (0.0, 0.0, 0.0, 0.

Methods

public final void set(float x, float y, float z, float w)
public final void set(float t[])
public final void set(Tuple4f t1)
public final void set(Tuple4d t1)
public final void get(float t[])
public final void get(Tuple4f t)

The firstset method sets the value of this tuple to the specifiedx, y, z, andw val-
ues. The secondset method sets the value of this tuple to the specified coo
nates in the array. The next two methods set the value of tuplethis to the value
of tuplet1. Theget methods copy the value of this tuple into the tuplet.

public final void add(Tuple4f t1, Tuple4f t2)
public final void add(Tuple4f t1)
public final void sub(Tuple4f t1, Tuple4f t2)
public final void sub(Tuple4f t1)

The firstadd method computes the element-by-element sum of tuplest1 andt2
and places the result inthis. The secondadd method computes the ele
ment-by-element sum of this tuple and tuplet1 and places the result inthis.
The first sub method performs the element-by-element subtraction of tuplet2

from tuple t1 and places the result inthis (this = t1 – t2). The secondsub
method performs the element-by-element subtraction of tuplet1 from this tuple
and places the result inthis (this = this – t1).

public final void negate(Tuple4f t1)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the va
from tuplet1. The secondnegate method negates the tuplethis and places the
resulting tuple back intothis.
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.7

rm is

t
ns

lute
the
public final void scale(float s, Tuple4f t1)
public final void scale(float s)
public final void scaleAdd(float s, Tuple4f t1)
public final void scaleAdd(float s, Tuple4f t1, Tuple4f t2)

The firstscale method multiplies each element of the tuplet1 by the scale fac-
tor s and places the resulting scaled tuple intothis. The secondscale method
multiples the tuplethis by the scale factors, replacingthis with the scaled
value. The firstscaleAdd method scales this tuple by the scale factors, adds the
result to tuplet1, and places the result into tuplethis (this = s*this + t1). The
secondscaleAdd method scales the tuplet1 by the scale factors, adds the result
to the tuplet2, and places the result into the tuplethis (this = s*t1 + t2).

public String toString()

This method returns a string that contains the values of this Tuple4f. The fo
(x, y, z, w).

public boolean equals(Tuple4f t1)

This method returnstrue if all of the data members of Tuple4ft1 are equal to
the corresponding data members in this Tuple4f.

public boolean epsilonEquals(Tuple4f t1, float epsilon)

This method returnstrue if the L∞ distance between this Tuple4f and Tuple4f 1

is less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

public final void absolute()
public final void absolute(Tuple4f t)

The first absolute method sets each component of this tuple to its abso
value. The secondabsolute method sets each component of this tuple to
absolute value of the corresponding component in tuplet.

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]
331Version 1.1 Alpha 01, February 27, 1998

A.1.7 Tuple4f Class MATH OBJECTS

332

le

ond

t. Two

er-
ly.

pre-
public final void clamp(float min, float max)
public final void clamp(float min, float max, Tuple4f t)
public final void clampMin(float min)
public final void clampMin(float min, Tuple4f t)
public final void clampMax(float max)
public final void clampMax(float max, Tuple4f t)

The first clamp method clamps this tuple to the range [min, max]. The second
clamp method clamps this tuple to the range [min, max] and places the values
into tuplet. The firstclampMin method clamps the minimum value of this tup
to themin parameter. The secondclampMin method clamps the minimum value
of this tuple to themin parameter and places the values into the tuplet. The first
clampMax method clamps the maximum value of this tuple to themax parameter.
The secondclampMax method clamps the maximum value of this tuple to themax

parameter and places the values into the tuplet.

public void interpolate(Tuple4f t1, Tuple4f t2, float alpha)
public void interpolate(Tuple4f t1, float alpha)

The firstinterpolate method linearly interpolates between tuplest1 andt2 and
places the result into this tuple (this = alpha * t1 + (1 – alpha) * t2). The sec
interpolate method linearly interpolates between this tuple and tuplet1 and
places the result into this tuple (this = alpha * this + (1 – alpha) * t1).

public int hashCode()

This method returns a hash number based on the data values in this objec
different Tuple4f objects with identical data values (that is,equals(Tuple4f)

returnstrue) will return the same hash number. Two Tuple4f objects with diff
ent data members may return the same hash value, although this is not like

A.1.7.1 Point4f Class

The Point4f class extends Tuple4f. The Point4f is a four-element point re
sented by single-precision floating-point x, y, z, and w coordinates.
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.7

erates

t
t

nce

int
Constructors

public Point4f(float x, float y, float z, float w)
public Point4f(float p[])
public Point4f(Point4d p1)
public Point4f(Point4f p1)
public Point4f(Tuple4d t1)
public Point4f(Tuple4f t1)
public Point4f()

These five constructors each return a new Point4f. The first constructor gen
a Point4f from four floating-point numbersx, y, z, andw. The second constructor
(Point4f(float p[]) generates a Point4f from the first four elements of arrayp.
The third constructor generates a Point4f from the double-precision poinp1.
The fourth constructor generates a Point4f from the single-precision poinp1.
The fifth and sixth constructors generate a Point4f from tuplet1. The final con-
structor generates a Point4f with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final float distanceSquared(Point4f p1)
public final float distance(Point4f p1)

The distanceSquared method computes the square of the Euclidean dista
between this point and the pointp1 and returns the result. Thedistance method
computes the Euclidean distance between this point and the pointp1 and returns
the result.

public final float distanceL1(Point4f p1)

This method computes the L1 (Manhattan) distance between this point and po
p1. The L1 distance is equal to

public final float distanceLinf(Point4f p1)

This method computes the L∞ distance between this point and pointp1. The L∞
distance is equal to

abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–()+ + +

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs w1 w2–(),,,[]
333Version 1.1 Alpha 01, February 27, 1998

A.1.7 Tuple4f Class MATH OBJECTS

334

alue

tively.

ener-

pre-
public final void project(Point4f p1)

This method multiplies each of thex, y, andz components of the pointp1 by
, places the projected values into this point, and places a 1 into thew param-

eter of this point.

A.1.7.2 Color4f Class

The Color4f class extends Tuple4f. The Color4f is a four-element color v
represented by single-precision floating-pointx, y, z, andw values. Thex, y, z,
andw values represent the red, blue, green, and alpha color values, respec
Color and alpha components should be in the range [0.0, 1.0].

Constructors

public Color4f(float x, float y, float z, float w)
public Color4f(float c[])
public Color4f(Color4f c1)
public Color4f(Tuple4d t1)
public Color4f(Tuple4f t1)
public Color4f()

These four constructors each return a new Color4f. The first constructor g
ates a Color4f from four floating-point numbersx, y, z, andw. The second con-
structor generates a Color4f from the first four elements of arrayc. The third
constructor generates a Color4f from the single-precision colorc1. The fourth
and fifth constructors generate a Color4f from tuplet1. The final constructor
generates a Color4f with the value of (0.0, 0.0, 0.0, 0.0).

A.1.7.3 Vector4f Class

The Vector4f class extends Tuple4f. The Vector4f is a four-element vector re
sented by single-precision floating-pointx, y, z, andw coordinates.

1 w⁄
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.7

ener-

-

or

 of

r and
Constructors

public Vector4f(float x, float y, float z, float w)
public Vector4f(float v[])
public Vector4f(Vector4d v1)
public Vector4f(Vector4f v1)
public Vector4f(Tuple4d t1)
public Vector4f(Tuple4f t1)
public Vector4f()

These five constructors each return a new Vector4f. The first constructor g
ates a Vector4f from four floating-point numbersx, y, z, andw. The second con-
structor generates a Vector4f from the first four elements of arrayv. The third
constructor generates a Vector4f from the double-precision Vector4dv1. The
fourth constructor generates a Vector4f from the single-precision Vector4fv1.
The fifth and sixth constructors generate a Vector4f from tuplet1. The final con-
structor generates a Vector4f with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final float length()
public final float lengthSquared()

Thelength method computes the length of the vectorthis and returns its length
as a single-precision floating-point number. ThelengthSquared method com-
putes the square of the length of the vectorthis and returns its length as a sin
gle-precision floating-point number.

public final float dot(Vector4f v1)

Thedot method computes the dot product between this vector and the vectv1

and returns the resulting value.

public final void normalize(Vector4f v1)
public final void normalize()

The firstnormalize method sets the value of this vector to the normalization
vectorv1. The secondnormalize method normalizes this vector in place.

public final float angle(Vector4f v1)

This method returns the (four-space) angle, in radians, between this vecto
the vectorv1 parameter. The return value is constrained to the range [0,π].
335Version 1.1 Alpha 01, February 27, 1998

A.1.7 Tuple4f Class MATH OBJECTS

336

 rep-

erates

reci-
sin-
a

the

e of
to

duct
at
r-
A.1.7.4 Quat4f Class

The Quat4f class extends Tuple4f. The Quat4f is a four-element quaternion
resented by single-precision floating-pointx, y, z, andw coordinates.

Constructors

public Quat4f(float x, float y, float z, float w)
public Quat4f(float q[])
public Quat4f(Quat4d q1)
public Quat4f(Quat4f q1)
public Quat4f(Tuple4d t1)
public Quat4f(Tuple4f t1)
public Quat4f()

These five constructors each return a new Quat4f. The first constructor gen
a quaternion from four floating-point numbersx, y, z, andw. The second con-
structor generates a quaternion from the four floating-point numbers of arrayq of
length four. The third constructor generates a quaternion from the double-p
sion quaternionq1. The fourth constructor generates a quaternion from the
gle-precision quaternionq1. The fifth and sixth constructors generate
quaternion from tuplet1. The final constructor generates a quaternion with
value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void conjugate(Quat4f q1)
public final void conjugate()

The firstconjugate method sets the value of this quaternion to the conjugat
quaternionq1. The secondconjugate method sets the value of this quaternion
the conjugate of itself.

public final void mul(Quat4f q1, Quat4f q2)
public final void mul(Quat4f q1)

The firstmul method sets the value of this quaternion to the quaternion pro
of quaternionsq1 andq2 (this = q1 * q2). Note that this is safe for aliasing (th
is, this can beq1 or q2). The secondmul method sets the value of this quate
nion to the quaternion product of itself andq1 (this = this * q1).
Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.7

ent

rved

ion

zed
f

nent

nion
thod
public final void mulInverse(Quat4f q1, Quat4f q2)
public final void mulInverse(Quat4f q1)

The firstmulInverse method multiplies quaternionq1 by the inverse of quater-
nion q2 and places the value into this quaternion. The value of both argum
quaternions is preserved (this = q1 * q2–1). The secondmulInverse method mul-
tiplies this quaternion by the inverse of quaternionq1 and places the value into
this quaternion. The value of the argument quaternion is prese
(this = this * q1–1).

public final void inverse(Quat4f q1)
public final void inverse()

The first inverse method sets the value of this quaternion to the quatern
inverse of quaternionq1. The secondinverse method sets the value of this
quaternion to the quaternion inverse of itself.

public final void normalize(Quat4f q1)
public final void normalize()

The firstnormalize method sets the value of this quaternion to the normali
value of quaternionq1. The secondnormalize method normalizes the value o
this quaternion in place.

public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a)
public final void set(AxisAngle4d a)

Theseset methods set the value of this quaternion to the rotational compo
of the passed matrix.

public final void interpolate(Quat4f q1, float alpha)
public final void interpolate(Quat4f q1, Quat4f q2, float alpha)

The first method performs a great circle interpolation between this quater
and quaternionq1 and places the result into this quaternion. The second me
performs a great circle interpolation between quaternionq1 and quaternionq2
and places the result into this quaternion.
337Version 1.1 Alpha 01, February 27, 1998

A.1.8 AxisAngle4d Class MATH OBJECTS

338

 dou-
s.

 the

tion

ctor

 array
ision
sin-
ith
A.1.8 AxisAngle4d Class

The AxisAngle4d class represents a four-element axis-angle represented by
ble-precision floating-pointx, y, z coordinates and an angle of rotation in radian
An axis-angle is a rotation ofangle radians about the vectorx,y,z.

Variables

The component values of an AxisAngle4d are directly accessible through
public variablesx, y, z, and angle. To access thex component of an
AxisAngle4d calledmyRotation, a programmer would writemyRotation.x. The
programmer would access they, z, andangle components similarly.

public double x
public double y
public double z
public double angle

The x, y, andz coordinates and the rotational angle, respectively. The rota
angle is expressed in radians.

Constructors

public AxisAngle4d(double x, double y, double z, double angle)
public AxisAngle4d(double a[])
public AxisAngle4d(AxisAngle4d a1)
public AxisAngle4d(AxisAngle4f a1)
public AxisAngle4d()

These five constructors each return a new AxisAngle4d. The first constru
generates an axis-angle from four floating-point numbersx, y, z, andangle. The
second constructor generates an axis-angle from the first four elements of
a. The third constructor generates an axis-angle from the double-prec
axis-anglea1. The fourth constructor generates an axis-angle from the
gle-precision axis-anglea1. The final constructor generates an axis-angle w
the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void set(double x, double y, double z, double angle)
public final void set(double a[])
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
Java 3D API Specification

MATH OBJECTS AxisAngle4d ClassA.1.8

to

ssed
s it

 The

d

t. Two
is,
o
hash
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)
public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void get(double a[])

The firstset method sets the value of this axis-angle to the specifiedx, y, z, and
angle coordinates. The secondset method sets the value of this axis-angle
the specifiedx,y,z angle. The next fourset methods set the value of this
axis-angle to the rotational component of the passed matrixm1. The next twoset
methods set the value of this axis-angle to the value of axis-anglea1. The last
two set methods set the value of this axis-angle to the value of the pa
quaternionq1. Theget method retrieves the value of this axis-angle and place
into the arraya of length four inx,y,z,angle order.

public String toString()

This method returns a string that contains the values of this AxisAngle4d.
form is (x, y, z, angle).

public boolean equals(AxisAngle4d v1)

This method returnstrue if all of the data members of AxisAngle4dv1 are
equal to the corresponding data members in this axis-angle.

public boolean epsilonEquals(AxisAngle4d a1, double epsilon)

This method returnstrue if the L∞ distance between this axis-angle an
axis-anglea1 is less than or equal to theepsilon parameter. Otherwise, this
method returnsfalse. The L∞ distance is equal to

public int hashCode()

This method returns a hash number based on the data values in this objec
different AxisAngle4d objects with identical data values (that
equals(AxisAngle4d) returnstrue) will return the same hash number. Tw
AxisAngle4d objects with different data members may return the same
value, although this is not likely.

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs angle1 angle2–(),,,[]
339Version 1.1 Alpha 01, February 27, 1998

A.1.9 AxisAngle4f Class MATH OBJECTS

340

y sin-
n in

 the

tion

ctor

 array
ision
ou-
ith
A.1.9 AxisAngle4f Class

The AxisAngle4f class represents a four-element axis-angle represented b
gle-precision floating-point x, y, and z coordinates and an angle of rotatio
radians. An axis-angle is a rotation ofangle radians about the vectorx,y,z.

Variables

The component values of an AxisAngle4f are directly accessible through
public variablesx, y, z, and angle. To access thex component of an
AxisAngle4f calledmyRotation, a programmer would writemyRotation.x. The
programmer would access they, z, andangle components similarly.

public float x
public float y
public float z
public float angle

The x, y, andz coordinates and the rotational angle, respectively. The rota
angle is expressed in radians.

Constructors

public AxisAngle4f(float x, float y, float z, float angle)
public AxisAngle4f(float a[])
public AxisAngle4f(AxisAngle4f a1)
public AxisAngle4f(AxisAngle4d a1)
public AxisAngle4f()

These five constructors each return a new AxisAngle4f. The first constru
generates an axis-angle from four floating-point numbersx, y, z, andangle. The
second constructor generates an axis-angle from the first four elements of
a. The third constructor generates an axis-angle from the single-prec
axis-anglea1. The fourth constructor generates an axis-angle from the d
ble-precision axis-anglea1. The final constructor generates an axis-angle w
the value of (0.0, 0.0, 0.0, 0.0).
Java 3D API Specification

MATH OBJECTS AxisAngle4f ClassA.1.9

to

the
nd

 form

d

t. Two
is,
o

Methods

public final void set(float x, float y, float z, float angle)
public final void set(float a[])
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)
public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void get(float a[])

The firstset method sets the value of this axis-angle to the specifiedx, y, z, and
angle coordinates. The secondset method sets the value of this axis-angle
the specified coordinates in the arraya. The next fourset methods set the value
of this axis-angle to the rotational component of the passed matrixm1. The next
two set methods set the value of this axis-angle to the value of axis-anglea1.
The last twoset methods set the value of this axis-angle to the value of
passed quaternionq1. Theget method retrieves the value of this axis-angle a
places it into the arraya of length four inx,y,z,angle order.

public String toString()

This method returns a string that contains the values of this axis-angle. The
is (x, y, z, angle).

public boolean equals(AxisAngle4f a1)

This method returnstrue if all of the data members of axis-anglea1 are equal to
the corresponding data members in this axis-angle.

public boolean epsilonEquals(AxisAngle4f a1, float epsilon)

This method returnstrue if the L∞ distance between this axis-angle an
axis-anglea1 is less than or equal to theepsilon parameter. Otherwise, this
method returnsfalse. The L∞ distance is equal to

public int hashCode()

This method returns a hash number based on the data values in this objec
different AxisAngle4f objects with identical data values (that
equals(AxisAngle4f) returnstrue) will return the same hash number. Tw

MAX abs x1 x2–() abs y1 y2–() abs z1 z2–() abs angle1 angle2–(),,,[]
341Version 1.1 Alpha 01, February 27, 1998

A.1.10 GVector Class MATH OBJECTS

342

ash

zable,

ener-

uctors
 the
ati-

 and

r

AxisAngle4f objects with different data members may return the same h
value, although this is not likely.

A.1.10 GVector Class

The GVector class represents a double-precision, general, dynamically resi
one-dimensional vector class. Index numbering begins with zero.

Constructors

public GVector(int length)
public GVector(double vector[])
public GVector(GVector vector)
public GVector(Tuple2f tuple)
public GVector(Tuple3f tuple)
public GVector(Tuple3d tuple)
public GVector(Tuple4f tuple)
public GVector(Tuple4d tuple)
public GVector(double vector[], int length)

These eight constructors each return a new GVector. The first constructor g
ates a generalized mathematical vector with all elements set to 0.0:length rep-
resents the number of elements in the vector. The second and third constr
generate a generalized mathematical vector and copy the initial value from
parametervector. The next four constructors generate a generalized mathem
cal vector and copy the initial value from the tuple parametertuple. The final
method generates a generalized mathematical vector by copyinglength ele-
ments from the array parameter. The parameterlength must be less than or
equal tovector.length.

Methods

public final void add(GVector v1)
public final void add(GVector v1, GVector v2)
public final void sub(GVector v1)
public final void sub(GVector v1, GVector v2)

The firstadd method computes the element-by-element sum of this GVector
GVectorv1 and places the result inthis. The secondadd method computes the
element-by-element sum of GVectorsv1 andv2 and places the result inthis.
The firstsub method performs the element-by-element subtraction of GVectov1

from this GVector and places the result inthis (this = this – v1). The second
sub method performs the element-by-element subtraction of GVectorv2 from
GVectorv1 and places the result inthis (this = v1 – v2).
Java 3D API Specification

MATH OBJECTS GVector ClassA.1.10

n)
1).

bout

to

ased,
se vec-

rray
in the
ec-
ple
public final void mul(GMatrix m1, GVector v1)
public final void mul(GVector v1, GMatrix m1)

The firstmul method multiplies matrixm1 times vectorv1 and places the result
into this vector (this = m1 * v1). The secondmul method multiplies the transpose
of vectorv1 (that is,v1 becomes a row vector with respect to the multiplicatio
times matrixm1 and places the result into this vector (this = transpose(v1) * m
The result is technically a row vector, but the GVector class only knows a
column vectors, so the result is stored as a column vector.

public final void negate()

This method negates the vectorthis and places the resulting vector back in
this.

public final void zero()

This method sets all the values in this vector to zero.

public final void setSize(int length)
public final void int getSize()

This method changes the size of this vector dynamically. If the size is incre
no data values are lost. If the size is decreased, only those data values who
tor positions were eliminated are lost.

public final void set(double v[])
public final void set(GVector v)
public final void set(Tuple2f t)
public final void set(Tuple3f t)
public final void set(Tuple3d t)
public final void set(Tuple4f t)
public final void set(Tuple4d t)

The firstset method sets the values of this vector to the values found in the a
v: The array should be at least equal in length to the number of elements
vector. The secondset method sets the values of this vector to the values in v
tor v. The last fiveset methods set the value of this vector to the values in tu
t.

public final double getElement(int index)
public final void setElement(int index, double value)

These methods set and retrieve the specified index value of this vector.
343Version 1.1 Alpha 01, February 27, 1998

A.1.10 GVector Class MATH OBJECTS

344

ector
f

 of

 of
r

r

t. Two

ata

ns
public final double norm()
public final double normSquared()

Thenorm method returns the square root of the sum of the squares of this v
(its length inn-dimensional space). ThenormSquared method returns the sum o
the squares of this vector (its length inn-dimensional space).

public final void normalize(GVector v1)
public final void normalize()

The firstnormalize method sets the value of this vector to the normalization
vectorv1. The secondnormalize method normalizes this vector in place.

public final void scale(double s, GVector v1)
public final void scale(double s)
public final void scaleAdd(double s, GVector v1, GVector v2)

The firstscale method sets the value of this vector to the scalar multiplication
the scale factors with the vectorv1. The secondscale method scales this vecto
by the scale factors. ThescaleAdd method scales the vectorv1 by the scale fac-
tor s, adds the result to the vectorv2, and places the result into this vecto
(this = s*v1 + v2).

public String toString()

This method returns a string that contains the values of this vector.

public int hashCode()

This method returns a hash number based on the data values in this objec
different GVector objects with identical data values (that is,equals(GVector)

returnstrue) will return the same hash number. Two objects with different d
members may return the same hash value, although this is not likely.

public boolean equals(GVector vector1)

This method returnstrue if all of the data members of GVectorvector1 are
equal to the corresponding data members in this GVector.

public boolean epsilonEquals(GVector v1, double epsilon)

This method returnstrue if the L∞ distance between this vector and vectorv1 is
less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

MAX abs x1 x2–() abs y1 y2–() …,,[]
Java 3D API Specification

MATH OBJECTS Matrix Objects A.2

alue

the

hod

tions.
sses)
 and

 both
oat-
public final double dot(GVector v1)

This method returns the dot product of this vector and vectorv1.

public final void SVDBackSolve(GMatrix U, GMatrix W, GMatrix V,
GVector x)

public final void LUDBackSolve(GMatrix LU, GVector b,
GVector permutation)

The first method solves forx in Ax = b, wherex is this vector (n × 1), b is an
m × 1 vector, andA is anm × n matrix, defined asA = U * W * transpose(V). U,
W, andV must be precomputed and can be found by taking the singular v
decomposition (SVD) ofA. The second method takes theLU matrix and the per-
mutation vector produced by the GMatrix methodLUD and solves the equation
LU * x = b by placing the solution to the set of linear equations intothis vector
(x).

public final double angle(GVector v1)

This method returns the (n-space) angle, in radians, between this vector and
vectorv1 parameter . The return value is constrained to the range [0,π].

public final void interpolate(GVector v1, GVector v2, float alpha)
public final void interpolate(GVector v1, float alpha)

Deprecated methods. See the next two methods.

public final void interpolate(GVector v1, GVector v2, double alpha)
public final void interpolate(GVector v1, double alpha)

The first method linearly interpolates between vectorsv1 andv2 and places the
result into this vector (this = alpha * v1 + (1 – alpha) * v2). The second met
linearly interpolates between this vector and vectorv1 and places the result into
this vector (this = alpha * this + (1 – alpha) * v1).

A.2 Matrix Objects

Java 3D uses matrix objects to represent rotations and full 3D transforma
The matrix classes (as well as the associated Tuple and AxisAngle cla
include code for accessing, manipulating, and updating the matrix, vector,
AxisAngle classes. Java 3D further subdivides the matrix classes into 3× 3
matrices (mainly to store rotations) and 4× 4 matrices (mainly to store more
complex 3D transformations). These two classes in turn provide support for
single-precision floating-point representations and for double-precision fl
ing-point representations.
345Version 1.1 Alpha 01, February 27, 1998

A.2.1 Matrix3f Class MATH OBJECTS

346

all
ther
rite

tors
.

ublic
t

Matrix operations try to minimize gratuitous allocation of memory, thus
matrix operations update an existing object. To multiply two matrices toge
and store the result in a third, a Java 3D application or applet would w
matrix3.mul(matrix1, matrix2). Herematrix3 receives the results of multi-
plying matrix1 with matrix2.

The Java 3D model for 3× 3 transformations is

The Java 3D model for 4× 4 transformations is

Note: When transforming a Point3f or a Point3d, the inputw is set to 1. When
transforming a Vector3f or Vector3d, the inputw is set to 0.

A.2.1 Matrix3f Class

The Matrix3f class serves to contain 3× 3 matrices mainly for storing and
manipulating 3D rotation matrices. The class includes five different construc
for creating matrices and several operators for manipulating these matrices

Variables

The component values of a Matrix3f are directly accessible through the p
variablesm00, m01, m02, m10, m11, m12, m20, m21, andm22. To access the elemen

m00 m01 m02

m10 m11 m12

m20 m21 m22

x

y

z

⋅
x′
y′
z′

=

x′ m00 x m01 y m02+ z⋅ ⋅+⋅=
y′ m10 x m11 y m12+ z⋅ ⋅+⋅=
z′ m20 x m21 y m22+ z⋅ ⋅+⋅=

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

x

y

z

w

⋅

x′
y′
z′
w′

=

x′ m00 x m01 y m02+ z m03 w⋅+⋅ ⋅+⋅=
y′ m10 x m11 y m12+ z m13 w⋅+⋅ ⋅+⋅=
z′ m20 x m21 y m22+ z m23 w⋅+⋅ ⋅+⋅=
w′ m30 x m31 y m32+ z m33 w⋅+⋅ ⋅+⋅=
Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

 gen-
en-

trix
in row 2 and column 0 of matrixrotate, a programmer would write
rotate.m20. A programmer would access the other values similarly.

public float m00
public float m01
public float m02
public float m10
public float m11
public float m12
public float m20
public float m21
public float m22

These public variables are the elements of the matrix.

Constructors

public Matrix3f(float m00, float m01, float m02, float m10,
float m11, float m12, float m20, float m21, float m22)

public Matrix3f(float v[])
public Matrix3f(Matrix3d m1)
public Matrix3f(Matrix3f m1)
public Matrix3f()

These constructors each return a new Matrix3f object. The first constructor
erates a 3× 3 matrix from the nine values provided. The second constructor g
erates a 3× 3 matrix from the first nine values in the arrayv. The third and fourth
constructors generate a new matrix with the same values as the passed mam1.
The final constructor generates a 3× 3 matrix with all nine values set to 0.0.

Methods

public final void set(Quat4d q1)
public final void set(Quat4f q1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the quaternion argumentq1.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the axis and angle argumenta1.
347Version 1.1 Alpha 01, February 27, 1998

A.2.1 Matrix3f Class MATH OBJECTS

348

ssed
 the
 cop-

in-
 of
. The
e

ts the

s a

n
ts the
ent

3f
e

atrix
to
public final void set(float scale)
public final void set(float m[])

The first method sets the value of this matrix to a scale matrix with the pa
scale amount. The second method sets the values of this matrix to
row-major array parameter (that is, the first three elements of the array are
ied into the first row of this matrix, and so forth).

public final void setElement(int row, int column, float value)
public final float getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 3× 3 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 2 represents the third row), a column indexcolumn

(where a value of 0 represents the first column and a value of 2 represen
third column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn. It returns the element at the corresponding locations a
floating-point value.

public final void setRow(int row, float x, float y, float z)
public final void setRow(int row, Vector3f v)
public final void setRow(int row, float v[])
public final void getRow(int row, Vector3f v)
public final void getRow(int row, float v[])

The threesetRow methods provide a means for constructing a 3× 3 matrix on a
row basis. The row parameterrow determines which row the method invocatio
affects. A row value of 0 represents the first row and a value of 2 represen
third row. The firstsetRow method specifies the three new values as independ
floating-point values. The secondsetRow method uses the values in the Vector
v to update the matrix. The thirdsetRow method uses the first three values in th
arrayv to update the matrix. In all three cases the matrix affected is the m
this. The twogetRow methods copy the matrix values in the specified row in
the vector or array parameter, respectively.
Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

od
ue of

eter,

nt

k
ple
public final void setColumn(int column, float x, float y, float z)
public final void setColumn(int column, Vector3f v)
public final void setColumn(int column, float v[])
public final void getColumn(int column, Vector3f v)
public final void getColumn(int column, float v[])

The threesetColumn methods provide a means for constructing a 3× 3 matrix
on a column basis. Thecolumn parameter determines which column the meth
invocation affects. A column value of 0 represents the first column and a val
2 represents the third column. The firstsetColumn method specifies the three
new values as independent floating-point values. The secondsetColumn method
uses the values in the Vector3fv to update the matrix. The thirdsetColumn
method uses the first three values in the arrayv to update the matrix. In all three
cases the matrix affected is the matrixthis. The twogetColumn methods copy
the matrix values in the specified column into the vector or array param
respectively.

public final void setZero()

This method sets this matrix to all zeros.

public final void setIdentity()

This method sets this Matrix3f to identity.

public final void add(Matrix3f m1, Matrix3f m2)
public final void add(Matrix3f m1)
public final void sub(Matrix3f m1, Matrix3f m2)
public final void sub(Matrix3f m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-eleme
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void transform(Tuple3f t)
public final void transform(Tuple3f t, Tuple3f result)

The first method multiplies this matrix by the tuplet and places the result bac
into the tuple (t = this*t). The second method multiplies this matrix by the tu
t and places the result into the tupleresult (result = this*t).
349Version 1.1 Alpha 01, February 27, 1998

A.2.1 Matrix3f Class MATH OBJECTS

350

ts the

lue of

ise
 con-

(this

sult
public final void transpose()
public final void transpose(Matrix3f m1)

The first method transposes this matrix in place. The second method se
value of this matrix to the transpose of the matrixm1.

public final void invert()
public final void invert(Matrix3f m1)

The first method inverts this matrix in place. The second method sets the va
this matrix to the inverse of the matrixm1.

public final float determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(float angle)
public final void rotY(float angle)
public final void rotZ(float angle)

The threerot methods construct rotation matrices that rotate in a clockw
direction around the axis specified as the last letter of the method name. The
structed matrix replaces the value of the matrixthis. The rotation angle is
expressed in radians.

public final void mul(Matrix3f m1, Matrix3f m2)
public final void mul(Matrix3f m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies the matrixthis with the
matrix m1 and places the result into matrixthis.

public final void mulNormalize(Matrix3f m1)
public final void mulNormalize(Matrix3f m1, Matrix3f m2)

The firstmulNormalize method multiplies this matrix by matrixm1, performs an
SVD normalization of the result, and places the result back into this matrix
= SVDnorm(this ⋅ m1)). The secondmulNormalize method multiplies matrixm1
by matrixm2, performs an SVD normalization of the result, and places the re
into this matrix (this = SVDnorm(m1 ⋅ m2)).
Java 3D API Specification

MATH OBJECTS Matrix3f Class A.2.1

za-
e
to

is
a-

f
d

 sec-
ix
public final void mulTransposeBoth(Matrix3f m1, Matrix3f m2)
public final void mulTransposeRight(Matrix3f m1, Matrix3f m2)
public final void mulTransposeLeft(Matrix3f m1, Matrix3f m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void normalize()
public final void normalize(Matrix3f m1)

The firstnormalize method performs a singular value decomposition normali
tion of this matrix. The secondnormalize method performs a singular valu
decomposition normalization of matrixm1 and places the normalized values in
this.

public final void normalizeCP()
public final void normalizeCP(Matrix3f m1)

The first normalizeCP method performs a cross-product normalization of th
matrix. The secondnormalizeCP method performs a cross-product normaliz
tion of matrixm1 and places the normalized values intothis.

public boolean equals(Matrix3f m1)

The equals method returnstrue if all of the data members of Matrix3fm1 are
equal to the corresponding data members in this Matrix3f.

public boolean epsilonEquals(Matrix3f m1, float epsilon)

This method returnstrue if the L∞ distance between this Matrix3f and Matrix3
m1 is less than or equal to theepsilon parameter. Otherwise, this metho
returnsfalse. The L∞ distance is equal to

MAX[i = 0,1,2,… n; j = 0,1,2,… n; abs(this.m(i,j) – m1.m(i,j)]

public final void negate()
public final void negate(Matrix3f m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrm1

(this = –m1).
351Version 1.1 Alpha 01, February 27, 1998

A.2.1 Matrix3f Class MATH OBJECTS

352

and

t the

k
e

 this
is,
o
alue,

3f.
public final float getScale()

This method performs an SVD normalization of this matrix to calculate
return the uniform scale factor.

public final void setScale(float scale)

This method sets the scale component of the current matrix by factoring ou
current scale (by doing an SVD) and multiplying by the new scale.

public final void add(float scalar)

This method adds a scalar to each component of this matrix.

public final void add(float scalar, Matrix3f m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void mul(float scalar, Matrix3f m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(float scalar)

This method multiplies each element of this matrix by a scalar.

public final void transform(Tuple3f t)
public final void transform(Tuple3f t, Tuple3f result)

The first method multiplies this matrix by the tuplet and places the result bac
into the tuple (t = this*t). The second method multiplies this matrix by th
tuplet and places the result into the tupleresult (result =this*t).

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix3f objects with identical data values (that
equals(Matrix3f) returns true) will return the same hash number. Tw
Matrix3f objects with different data members may return the same hash v
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix
Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

tors
.

ublic
t

 gen-
en-

h
ix
A.2.2 Matrix3d Class

The Matrix3d class serves to contain 3× 3 matrices mainly for storing and
manipulating 3D rotation matrices. The class includes five different construc
for creating matrices and several operators for manipulating these matrices

Variables

The component values of a Matrix3d are directly accessible through the p
variablesm00, m01, m02, m10, m11, m12, m20, m21, andm22. To access the elemen
in row 2 and column 0 of the matrix namedrotate, a programmer would write
rotate.m20. Other matrix values are accessed similarly.

public double m00
public double m01
public double m02
public double m10
public double m11
public double m12
public double m20
public double m21
public double m22

These public variables are the elements of the matrix.

Constructors

public Matrix3d(double m00, double m01, double m02, double m10,
double m11, double m12, double m20, double m21, double m22)

public Matrix3d(double v[])
public Matrix3d()
public Matrix3d(Matrix3d m1)
public Matrix3d(Matrix3f m1)

These constructors each return a new Matrix3d object. The first constructor
erates a 3× 3 matrix from the nine values provided. The second constructor g
erates a 3× 3 matrix from the first nine values in the arrayv. The third
constructor generates a 3× 3 matrix with all nine values set to 0.0. The fourt
and fifth constructors generate a 3× 3 matrix with the same values as the matr
m1 parameter.
353Version 1.1 Alpha 01, February 27, 1998

A.2.2 Matrix3d Class MATH OBJECTS

354

l

d

in-
 of
. The
e

ts the

as a
Methods

public final void set(Matrix3f m1)

This method sets the value of the matrixthis to the float value of the rotationa
components of the passed matrixm1.

public final void set(double scale)
public final void set(double m[])

These methods set the value of the matrixthis to a scale matrix with the passe
scale amount.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the axis and angle argumenta1.

public final void set(Quat4d q1)
public final void set(Quat4f q1)

These twoset methods set the value of the matrixthis to the matrix conversion
of the quaternion argumentq1.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 3× 3 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 2 represents the third row), a column indexcolumn

(where a value of 0 represents the first column and a value of 2 represen
third column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations
floating-point value.
Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

ion
ts the
ent
d
e

atrix
to

od
ue of

eter,

nt
public final void setRow(int row, double x, double y, double z)
public final void setRow(int row, Vector3d v)
public final void setRow(int row, double v[])
public final void getRow(int row, Vector3d v)
public final void getRow(int row, double v[])

The threesetRow methods provide a means for constructing a 3× 3 matrix on a
row basis. Therow parameter determines which row the method invocat
affects. A row value of 0 represents the first row and a value of 2 represen
third row. The firstsetRow method specifies the three new values as independ
floating-point values. The secondsetRow method uses the values in the Vector3
v to update the matrix. The thirdsetRow method uses the first three values in th
arrayv to update the matrix. In all three cases the matrix affected is the m
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.

public final void setColumn(int column, double x, double y,
double z)

public final void setColumn(int column, Vector3d v)
public final void setColumn(int column, double v[])
public final void getColumn(int column, Vector3d v)
public final void getColumn(int column, double v[])

The threesetColumn methods provide a means for constructing a 3× 3 matrix
on a column basis. Thecolumn parameter determines which column the meth
invocation affects. A column value of 0 represents the first column and a val
2 represents the third column. The firstsetColumn method specifies the three
new values as independent floating-point values. The secondsetColumn method
uses the values in the Vector3dv to update the matrix. The thirdsetColumn
method uses the first three values in the arrayv to update the matrix. In all three
cases the matrix affected is the matrixthis. The twogetColumn methods copy
the matrix values in the specified column into the array or vector param
respectively.

public final void add(Matrix3d m1, Matrix3d m2)
public final void add(Matrix3d m1)
public final void sub(Matrix3d m1, Matrix3d m2)
public final void sub(Matrix3d m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-eleme
355Version 1.1 Alpha 01, February 27, 1998

A.2.2 Matrix3d Class MATH OBJECTS

356

k
ple

ts the

lue of

ise
 The
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void add(double scalar)

This method adds a scalar to each component of this matrix.

public final void add(double scalar, Matrix3d m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void transform(Tuple3d t)
public final void transform(Tuple3d t, Tuple3d result)

The first method multiplies this matrix by the tuplet and places the result bac
into the tuple (t = this*t). The second method multiplies this matrix by the tu
t and places the result into the tupleresult (result = this*t).

public final void transpose()
public final void transpose(Matrix3d m1)

The first method transposes this matrix in place. The second method se
value of this matrix to the transpose of the matrixm1.

public final void invert()
public final void invert(Matrix3d m1)

The first method inverts this matrix in place. The second method sets the va
this matrix to the inverse of the matrixm1.

public final double determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(double angle)
public final void rotY(double angle)
public final void rotZ(double angle)

The threerot methods construct rotation matrices that rotate in a clockw
direction around the axis specified by the final letter of the method name.
constructed matrix replaces the value of the matrixthis. The rotation angle is
expressed in radians.
Java 3D API Specification

MATH OBJECTS Matrix3d Class A.2.2

(this

sult

za-
e
to

is
a-
public final void mul(Matrix3d m1, Matrix3d m2)
public final void mul(Matrix3d m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies matrixthis with matrix
m1 and places the result into the matrixthis.

public final void mulNormalize(Matrix3d m1)
public final void mulNormalize(Matrix3d m1, Matrix3d m2)

The firstmulNormalize method multiplies this matrix by matrixm1, performs an
SVD normalization of the result, and places the result back into this matrix
= SVDnorm(this ⋅ m1)). The secondmulNormalize method multiplies matrixm1
by matrixm2, performs an SVD normalization of the result, and places the re
into this matrix (this = SVDnorm(m1 ⋅ m2)).

public final void mulTransposeBoth(Matrix3d m1, Matrix3d m2)
public final void mulTransposeRight(Matrix3d m1, Matrix3d m2)
public final void mulTransposeLeft(Matrix3d m1, Matrix3d m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void normalize()
public final void normalize(Matrix3d m1)

The firstnormalize method performs a singular value decomposition normali
tion of this matrix. The secondnormalize method performs a singular valu
decomposition normalization of matrixm1 and places the normalized values in
this.

public final void normalizeCP()
public final void normalizeCP(Matrix3d m1)

The first normalizeCP method performs a cross-product normalization of th
matrix. The secondnormalizeCP method performs a cross-product normaliz
tion of matrixm1 and places the normalized values intothis.

public boolean equals(Matrix3d m1)

The equals method returnstrue if all of the data members of Matrix3dm1 are
equal to the corresponding data members in this Matrix3d.
357Version 1.1 Alpha 01, February 27, 1998

A.2.2 Matrix3d Class MATH OBJECTS

358

d
ns

 sec-
ix

and

t the

k
e

public boolean epsilonEquals(Matrix3d m1, double epsilon)

This method returnstrue if the L∞ distance between this Matrix3d and Matrix3
m1 is less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

MAX[i = 0,1,2,;j = 0,1,2,; abs(this.m(i,j) – m1.m(i,j)]

public final void negate()
public final void negate(Matrix3d m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrm1

(this = –m1).

public final double getScale()

This method performs an SVD normalization of this matrix to calculate
return the uniform scale factor.

public final void setScale(double scale)

This method sets the scale component of the current matrix by factoring ou
current scale (by doing an SVD) and multiplying by the new scale.

public final void mul(double scalar, Matrix3d m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.

public final void mul(double scalar)

This method multiplies each element of this matrix by a scalar.

public final void transform(Tuple3d t)
public final void transform(Tuple3d t, Tuple3d result)

The first method multiplies this matrix by the tuplet and places the result bac
into the tuple (t = this*t). The second method multiplies this matrix by th
tuplet and places the result into the tupleresult (result = this*t).

public final void setZero()

This method sets this matrix to all zeros.

public final void setIdentity()

This method sets this Matrix3d to identity.
Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

 this
is,

o
alue,

3d.

 con-
hese

ublic

r

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix3d objects with identical data values (that
equals(Matrix3d) returns true) will return the same hash number. Tw
Matrix3d objects with different data members may return the same hash v
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix

A.2.3 Matrix4f Class

The Matrix4f class serves to contain 4× 4 matrices mainly for storing and
manipulating 3D transformation matrices. The class includes seven different
structors for creating matrices and several operators for manipulating t
matrices.

Variables

The component values of a Matrix4f are directly accessible through the p
variablesm00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31,
m32, andm33. To access the element in row 2 and column 0 of matrixrotate, a
programmer would writerotate.m20. A programmer would access the othe
values similarly.

public float m00
public float m01
public float m02
public float m03
public float m10
public float m11
public float m12
public float m13
public float m20
public float m21
public float m22
public float m23
public float m30
public float m31
public float m32
public float m33

These public variables are the elements of the matrix.
359Version 1.1 Alpha 01, February 27, 1998

A.2.3 Matrix4f Class MATH OBJECTS

360

 gen-
ner-

The

ate a

es.

gen-

 of

of
e

Constructors

public Matrix4f(float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33)

public Matrix4f(float v[])
public Matrix4f(Quat4f q1, Vector3f t1, float s)
public Matrix4f(Matrix4d m1)
public Matrix4f(Matrix4f m1)
public Matrix4f(Matrix3f m1, Vector3f t1, float s)
public Matrix4f()

These constructors each return a new Matrix4f object. The first constructor
erates a 4× 4 matrix from the 16 values provided. The second constructor ge
ates a 4× 4 matrix from the first 16 values in the arrayv. The third constructor
generates a 4× 4 matrix from the quaternion, translation, and scale values.
scale is applied only to the rotational components of the matrix (upper 3× 3) and
not to the translational components. The fourth and fifth constructors gener
4 × 4 matrix with the same values as the passed matrixm1. The sixth constructor
generates a 4× 4 matrix from the rotation matrix, translation, and scale valu
The scale is applied only to the rotational components of the matrix (upper 3× 3)
and not to the translational components of the matrix. The final constructor
erates a 4× 4 matrix with all 16 values set to 0.0.

Methods

public final void set(Quat4f q1)
public final void set(Quat4d q1)
public final void set(Quat4f q1, Vector3f t1, float s)
public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Matrix4d m1)
public final void set(Matrix4f m1)
public final void set(AxisAngle4f a1)
public final void set(AxisAngle4d a1)

The first twoset methods set the value of this matrix to the matrix conversion
the quaternion argumentq1. The next twoset methods set the value of this
matrix from the rotation expressed by the quaternionq1, the translationt1, and
the scales. The next twoset methods set the value of this matrix to a copy
the passed matrixm1. The last twoset methods set the value of this matrix to th
matrix conversion of the axis and angle argumenta1.
Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

al-
sla-

ssed
major
o the

ssed

ix. In
atrix
 scale

d by

r to
 the
is
e.
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in them1 argument. The other elements of this matrix are initi
ized as if this were an identity matrix (that is, an affine matrix with no tran
tional component).

public final void set(float scale)
public final void set(float m[])

The first method sets the value of this matrix to a scale matrix with the pa
scale amount. The second method sets the value of this matrix to the row-
array parameter (that is, the first four elements of the array are copied int
first row of this matrix, and so forth).

public final void set(Vector3f v1)

This method sets the value of this matrix to a translation matrix with the pa
translation value.

public final void set(float scale, Vector3f t1)
public final void set(Vector3f t1, float scale)

These methods set the value of this matrix to a scale and translation matr
the first method, the scale is not applied to the translation, and all of the m
values are modified. In the second method, the translation is scaled by the
factor, and all of the matrix values are modified.

public final void set(Matrix3f m1, Vector3f t1, float scale)
public final void set(Matrix3d m1, Vector3d t1, double scale)

These two methods set the value of this matrix from the rotation expresse
the rotation matrixm1, the translationt1, and the scalescale. The translation is
not modified by the scale.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final float get(Matrix3f m1, Vector3f t1)
public final void get(Quat4f q1)
public final void get(Vector3f trans)

The first two methods perform an SVD normalization of this matrix in orde
acquire the normalized rotational component. The values are placed into
matrix parameterm1. The third method performs an SVD normalization of th
matrix to calculate the rotation as a 3× 3 matrix, the translation, and the scal
361Version 1.1 Alpha 01, February 27, 1998

A.2.3 Matrix4f Class MATH OBJECTS

362

per-
nal

 the

in-
 of
. The
e

ts the

as a

to

g out
 sec-
and
None of the matrix values in this matrix are modified. The fourth method
forms an SVD normalization of this matrix to acquire the normalized rotatio
component. The values are placed into the quaternionq1. The final method
retrieves the translational components of this matrix and copies them into
vectortrans.

public final void setElement(int row, int column, float value)
public final float getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 4× 4 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 3 represents the fourth row), a column indexcolumn

(where a value of 0 represents the first column and a value of 3 represen
fourth column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations
floating-point value.

public final void getRotationScale(Matrix3f m1)

This method retrieves the upper 3× 3 values of this matrix and places them in
the matrixm1.

public final void setScale(float scale)
public final float getScale()

The first method sets the scale component of the current matrix by factorin
the current scale (by doing an SVD) and multiplying by the new scale. The
ond method performs an SVD normalization of this matrix to calculate
return the uniform scale factor.

public final void add(float scalar)

This method adds a scalar to each component of this matrix.

public final void add(float scalar, Matrix4f m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void mul(float scalar, Matrix4f m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.
Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

n
ts the
ent
4f
e
atrix
to

od
ue of

cond

y or
public final void mul(float scalar)

This method multiplies each element of this matrix by a scalar.

public final void setRow(int row, float x, float y, float z,
float w)

public final void setRow(int row, Vector4f v)
public final void setRow(int row, float v[])
public final void getRow(int row, Vector4f v)
public final void getRow(int row, float v[])

The threesetRow methods provide a means for constructing a 4× 4 matrix on a
row basis. The row parameterrow determines which row the method invocatio
affects. A row value of 0 represents the first row and a value of 3 represen
fourth row. The firstsetRow method specifies the four new values as independ
floating-point values. The secondsetRow method uses the values in the Vector
v to update the matrix. The thirdsetRow method uses the first four values in th
arrayv to update the matrix. In all three cases the matrix affected is the m
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.

public final void setColumn(int column, float x, float y, float z,
float w)

public final void setColumn(int column, Vector4f v)
public final void setColumn(int column, float v[])
public final void getColumn(int column, Vector4f v)
public final void getColumn(int column, float v[])

The threesetColumn methods provide a means for constructing a 4× 4 matrix
on a column basis. Thecolumn parameter determines which column the meth
invocation affects. A column value of 0 represents the first column and a val
3 represents the fourth column. The firstsetColumn method specifies the four
new values as independent double-precision floating-point values. The se
setColumn method uses the values in the Vector4fv to update the matrix. The
third setColumn method uses the first four values in the arrayv to update the
matrix. In all three cases the matrix affected is the matrixthis. The twogetCol-
umn methods copy the matrix values in the specified column into the arra
vector parameter, respectively.
363Version 1.1 Alpha 01, February 27, 1998

A.2.3 Matrix4f Class MATH OBJECTS

364

x are
per-

is
om-
n the
ect’s

nally
gular

y
 the

s

es of
public final void setRotation(Matrix3d m1)
public final void setRotation(Matrix3f m1)
public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)
public final void setRotation(AxisAngle4f a1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matri
unchanged. In the first two methods, a singular value decomposition is
formed on this object’s upper 3× 3 matrix to factor out the scale, then th
object’s upper 3× 3 matrix components are replaced by the passed rotation c
ponents, and finally the scale is reapplied to the rotational components. I
next two methods, a singular value decomposition is performed on this obj
upper 3× 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix
components are replaced by the matrix equivalent of the quaternion, and fi
the scale is reapplied to the rotational components. In the last method, a sin
value decomposition is performed on this object’s upper 3× 3 matrix to factor
out the scale, then this object’s upper 3× 3 matrix components are replaced b
the matrix equivalent of the axis-angle, and finally the scale is reapplied to
rotational components.

public final void setRotationScale(Matrix3f m1)

This method replaces the upper 3× 3 matrix values of this matrix with the value
in the matrixm1.

public final void setTranslation(Vector3f trans)

This method modifies the translational components of this matrix to the valu
the vectortrans. The other values of this matrix are not modified.

public final void setIdentity()

This method sets this Matrix4f to identity.

public final void setZero()

This method sets this matrix to all zeros.

public final void add(Matrix4f m1, Matrix4f m2)
public final void add(Matrix4f m1)
public final void sub(Matrix4f m1, Matrix4f m2)
public final void sub(Matrix4f m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
Java 3D API Specification

MATH OBJECTS Matrix4f Class A.2.3

nt

t

-

 sec-
ix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-eleme
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void transpose(Matrix4f m1)
public final void transpose()

The firsttranspose method transposes the matrixm1 and places the result into
the matrixthis. The secondtranspose method transposes the matrixthis and
places the result back into the matrixthis.

public final void transform(Point3f point)
public final void transform(Point3f point, Point3f pointOut)

The firsttransform method postmultiplies this matrix by the Point3fpoint and
places the result back intopoint. The multiplication treats the three-elemen
point as if its fourth element were 1. The secondtransform method postmulti-
plies this matrix by the Point3fpoint and places the result intopointOut.

public final void transform(Vector3f normal)
public final void transform(Vector3f normal, Vector3f normalOut)

The firsttransform method postmultiplies this matrix by the Vector3fnormal

and places the result back intonormal. The multiplication treats the three-ele
ment vector as if its fourth element were 0. The secondtransform method post-
multiplies this matrix by the Vector3fnormal and places the result into
normalOut.

public final void transform(Tuple4f vec)
public final void transform(Tuple4f vec, Tuple4f vecOut)

The first transform method postmultiplies this matrix by the tuplevec and
places the result back intovec. The secondtransform method postmultiplies
this matrix by the tuplevec and places the result intovecOut.

public final void negate()
public final void negate(Matrix4f m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix equal to the negation of the matrm1

(this = –m1).
365Version 1.1 Alpha 01, February 27, 1998

A.2.3 Matrix4f Class MATH OBJECTS

366

lue of

ise
 con-
public final void invert()
public final void invert(Matrix4f m1)

The first method inverts this matrix in place. The second method sets the va
this matrix to the inverse of the matrixm1.

public final float determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(float angle)
public final void rotY(float angle)
public final void rotZ(float angle)

The threerot methods construct rotation matrices that rotate in a clockw
direction around the axis specified as the last letter of the method name. The
structed matrix replaces the value of the matrixthis. The rotation angle is
expressed in radians.

public final void mul(Matrix4f m1, Matrix4f m2)
public final void mul(Matrix4f m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies the matrixthis with
matrix m1 and places the result in matrixthis.

public final void mulTransposeBoth(Matrix4f m1, Matrix4f m2)
public final void mulTransposeRight(Matrix4f m1, Matrix4f m2)
public final void mulTransposeLeft(Matrix4f m1, Matrix4f m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public boolean equals(Matrix4f m1)

The equals method returnstrue if all of the data members of Matrix4fm1 are
equal to the corresponding data members in this Matrix4f.
Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

f
ns

 this
is,
o
alue,

4f.

con-
hese

ublic

r

public boolean epsilonEquals(Matrix4f m1, float epsilon)

This method returnstrue if the L∞ distance between this Matrix4f and Matrix4
m1 is less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

MAX[i = 0,1,2,3;j = 0,1,2,3; abs(this.m(i,j) – m1.m(i,j)]

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix4f objects with identical data values (that
equals(Matrix4f) returns true) will return the same hash number. Tw
Matrix4f objects with different data members may return the same hash v
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix

A.2.4 Matrix4d Class

The Matrix4d class serves to contain 4× 4 matrices mainly for storing and
manipulating 3D transformation matrices. The class includes nine different
structors for creating matrices and several operators for manipulating t
matrices.

Variables

The component values of a Matrix4d are directly accessible through the p
variablesm00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31,
m32, andm33. To access the element in row 2 and column 0 of matrixrotate, a
programmer would writerotate.m20. A programmer would access the othe
values similarly.
367Version 1.1 Alpha 01, February 27, 1998

A.2.4 Matrix4d Class MATH OBJECTS

368

 gen-
ner-

le
atrix
ighth
rix.
public double m00
public double m01
public double m02
public double m03
public double m10
public double m11
public double m12
public double m13
public double m20
public double m21
public double m22
public double m23
public double m30
public double m31
public double m32
public double m33

These public variables are the elements of the matrix.

Constructors

public Matrix4d(double m00, double m01, double m02, double m03,
double m10, double m11, double m12, double m13, double m20,
double m21, double m22, double m23, double m30, double m31,
double m32, double m33)

public Matrix4d(double v[])
public Matrix4d(Quat4d q1, Vector3d t1, double s)
public Matrix4d(Quat4f q1, Vector3d t1, double s)
public Matrix4d(Matrix3d m1, Vector3d t1, double s)
public Matrix4d(Matrix3f m1, Vector3d t1, double s)
public Matrix4d(Matrix4d m1)
public Matrix4d(Matrix4f m1)
public Matrix4d()

These constructors each return a new Matrix4d object. The first constructor
erates a 4× 4 matrix from the 16 values provided. The second constructor ge
ates a 4× 4 matrix from the first 16 values in the arrayv. The third through sixth
constructors generate a 4× 4 matrix from the quaternion, translation, and sca
values. The scale is applied only to the rotational components of the m
(upper 3× 3) and not to the translational components. The seventh and e
constructors generate a 4× 4 matrix with the same values as the passed mat
The final constructor generates a 4× 4 matrix with all 16 values set to 0.0.
Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

r to
 the

f this
e.
SVD
The

in-
 of
. The
e

ts the

as a

ion
ts the
ent
d

Methods

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final double get(Matrix3d m1, Vector3d t1)
public final double get(Matrix3f m1, Vector3d t1)
public final void get(Quat4f q1)
public final void get(Quat4d q1)
public final void get(Vector3d trans)

The first two methods perform an SVD normalization of this matrix in orde
acquire the normalized rotational component. The values are placed into
passed parameter. The next two methods perform an SVD normalization o
matrix to calculate the rotation as a 3× 3 matrix, the translation, and the scal
None of the matrix values are modified. The next two methods perform an
normalization of this matrix to acquire the normalized rotational component.
last two methods retrieve the translational components of this matrix.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)

The setElement andgetElement methods provide a means for accessing a s
gle element within a 4× 4 matrix using indices. This is not a preferred method
access, but Java 3D provides these methods for functional completeness
setElement method takes a row indexrow (where a value of 0 represents th
first row and a value of 3 represents the fourth row), a column indexcolumn

(where a value of 0 represents the first column and a value of 3 represen
fourth column), and a value. It sets the corresponding element in matrixthis to
the specified value. ThegetElement method also takes a row indexrow and a
column indexcolumn and returns the element at the corresponding locations
floating-point value.

public final void setRow(int row, double x, double y, double z,
double w)

public final void setRow(int row, Vector4d v)
public final void setRow(int row, double v[])
public final void getRow(int row, Vector4d v)
public final void getRow(int row, double v[])

The threesetRow methods provide a means for constructing a 4× 4 matrix on a
row basis. Therow parameter determines which row the method invocat
affects. A row value of 0 represents the first row and a value of 3 represen
fourth row. The firstsetRow method specifies the four new values as independ
floating-point values. The secondsetRow method uses the values in the Vector4
369Version 1.1 Alpha 01, February 27, 1998

A.2.4 Matrix4d Class MATH OBJECTS

370

e
atrix
to

od
ue of

cond

y or

x are
pper

ale is

x are
pper

 the
v to update the matrix. The thirdsetRow method uses the first four values in th
arrayv to update the matrix. In all three cases the matrix affected is the m
this. The twogetRow methods copy the matrix values in the specified row in
the array or vector parameter, respectively.

public final void setColumn(int column, double x, double y,
double z, double w)

public final void setColumn(int column, Vector4d v)
public final void setColumn(int column, double v[])
public final void getColumn(int column, Vector4d v)
public final void getColumn(int column, double v[])

The threesetColumn methods provide a means for constructing a 4× 4 matrix
on a column basis. Thecolumn parameter determines which column the meth
invocation affects. A column value of 0 represents the first column and a val
3 represents the fourth column. The firstsetColumn method specifies the four
new values as independent double-precision floating-point values. The se
setColumn method uses the values in the Vector4dv to update the matrix. The
third setColumn method uses the first four values in the arrayv to update the
matrix. In all three cases the matrix affected is the matrixthis. The twogetCol-
umn methods copy the matrix values in the specified column into the arra
vector parameter, respectively.

public final void setRotation(Matrix3f m1)
public final void setRotation(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matri
unchanged. A singular value decomposition is performed on this object’s u
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the passed rotation components, and finally the sc
reapplied to the rotational components.

public final void setRotation(Quat4f q1)
public final void setRotation(Quat4d q1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the passed argument. The other elements of this matri
unchanged. A singular value decomposition is performed on this object’s u
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the matrix equivalent of the quaternion, and finally
scale is reapplied to the rotational components.
Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

ix are
pper

scale

es of

g out
 sec-
and
public final void setRotation(AxisAngle4d a1)

This method sets the rotational component (upper 3× 3) of this matrix to the
equivalent values in the passed argument. The other elements of this matr
unchanged. A singular value decomposition is performed on this object’s u
3 × 3 matrix to factor out the scale, then this object’s upper 3× 3 matrix compo-
nents are replaced by the matrix equivalent of the axis-angle, and finally the
is reapplied to the rotational components.

public final void getRotationScale(Matrix3f m1)
public final void getRotationScale(Matrix3d m1)
public final void setRotationScale(Matrix3d m1)
public final void setRotationScale(Matrix3f m1)

The twoget methods retrieve the upper 3× 3 values of this matrix and place
them into the matrixm1. The twoset methods replace the upper 3× 3 matrix
values of this matrix with the values in the matrixm1.

public final void setTranslation(Vector3d trans)

This method modifies the translational components of this matrix to the valu
the Vector3d argument. The other values of this matrix are not modified.

public final void setScale(double scale)
public final double getScale()

The first method sets the scale component of the current matrix by factorin
the current scale (by doing an SVD) and multiplying by the new scale. The
ond method performs an SVD normalization of this matrix to calculate
return the uniform scale factor.

public final void add(double scalar)

This method adds a scalar to each component of this matrix.

public final void add(double scalar, Matrix4d m1)

This method adds a scalar to each component of the matrixm1 and places the
result intothis. Matrix m1 is not modified.

public final void mul(double scalar, Matrix4d m1)

This method multiplies each component of the matrixm1 by a scalar and places
the result intothis. Matrix m1 is not modified.
371Version 1.1 Alpha 01, February 27, 1998

A.2.4 Matrix4d Class MATH OBJECTS

372

nt

(that
this

 ini-
ns-

x

ater-

 axis
public final void mul(double scalar)

This method multiplies each element of this matrix by a scalar.

public final void add(Matrix4d m1, Matrix4d m2)
public final void add(Matrix4d m1)
public final void sub(Matrix4d m1, Matrix4d m2)
public final void sub(Matrix4d m1)

The firstadd method adds the matrixm1 to the matrixm2 and places the result
into the matrixthis. The secondadd method adds the matrixthis to the matrix
m1 and places the result into the matrixthis. The firstsub method performs an
element-by-element subtraction of matrixm2 from matrixm1 and places the result
into the matrixthis. The secondsub method performs an element-by-eleme
subtraction of the matrixm1 from the matrixthis and places the result into the
matrix this.

public final void set(double m[])

This method sets the value of this matrix to the row-major array parameter
is, the first four elements of the array will be copied into the first row of
matrix, and so forth).

public final void set(Matrix3f m1)
public final void set(Matrix3d m1)

These methods set the rotational component (upper 3× 3) of this matrix to the
matrix values in the matrix argument. The other elements of this matrix are
tialized as if this were an identity matrix (that is, an affine matrix with no tra
lational component).

public final void set(Matrix4f m1)
public final void set(Matrix4d m1)

These methods set the value of this matrix to the value of the passed matrim1.

public final void set(Quat4d q1)
public final void set(Quat4f q1)

These methods set the value of this matrix to the matrix conversion of the qu
nion argument.

public final void set(AxisAngle4d a1)
public final void set(AxisAngle4f a1)

These methods set the value of this matrix to the matrix conversion of the
and angle argument.
Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

ssed

y the

scale

 The
ed.

 The
ified.

y the
public final void set(Vector3d v1)

This method sets the value of this matrix to a translation matrix by the pa
translation value.

public final void set(Quat4d q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3d t1, double s)
public final void set(Quat4f q1, Vector3f t1, float s)

These methods set the value of this matrix to the rotation expressed b
quaternionq1, the translationt1, and the scales.

public final void set(double scale)

This method sets the value of this matrix to a scale matrix with the passed
amount.

public final void set(double scale, Vector3d v1)

This method sets the value of this matrix to a scale and translation matrix.
scale is not applied to the translation, and all of the matrix values are modifi

public final void set(Vector3d v1, double scale)

This method sets the value of this matrix to a scale and translation matrix.
translation is scaled by the scale factor, and all of the matrix values are mod

public final void set(Matrix3f m1, Vector3f t1, float scale)
public final void set(Matrix3d m1, Vector3d t1, double scale)

These methods set the value of this matrix from the rotation expressed b
rotation matrixm1, the translationt1, and the scales.

public final void negate(Matrix4d m1)
public final void negate()

The first method sets the value of this matrix to the negation of them1 parameter.
The second method negates the value of this matrix (this = –this).

public final void transpose(Matrix4d m)
public final void transpose()

The firsttranspose method transposes the matrixm and places the result into the
matrix this. The secondtranspose method transposes the matrixthis and
places the result back into the matrixthis.
373Version 1.1 Alpha 01, February 27, 1998

A.2.4 Matrix4d Class MATH OBJECTS

374

nt

u-

lue of
public final void transform(Tuple4d vec)
public final void transform(Tuple4f vec)
public final void transform(Tuple4d vec, Tuple4d vecOut)
public final void transform(Tuple4f vec, Tuple4f vecOut)

The first twotransform methods postmultiply this matrix by the tuplevec and
place the result back intovec. The last twotransform methods postmultiply this
matrix by the tuplevec and place the result intovecOut.

public final void transform(Point3d point)
public final void transform(Point3f point)
public final void transform(Point3d point, Point3d pointOut)
public final void transform(Point3f point, Point3f pointOut)

The first twotransform methods postmultiply this matrix by the point argume
point and place the result back intopoint. The multiplication treats the
three-element point as if its fourth element were 1. The last twotransform

methods postmultiply this matrix by the point argumentpoint and place the
result intopointOut.

public final void transform(Vector3d normal)
public final void transform(Vector3f normal)
public final void transform(Vector3d normal, Vector3d normalOut)
public final void transform(Vector3f normal, Vector3f normalOut)

The first twotransform methods postmultiply this matrix by the vector arg
mentnormal and place the result back intonormal. The multiplication treats the
three-element vector as if its fourth element were 0. The last twotransform

methods postmultiply this matrix by the vector argumentnormal and place the
result intonormalOut.

public final void invert()
public final void invert(Matrix4d m1)

The first method inverts this matrix in place. The second method sets the va
this matrix to the inverse of the matrixm1.

public final double determinant()

The determinant method computes the determinant of the matrixthis and
returns the computed value.

public final void rotX(double angle)
public final void rotY(double angle)
public final void rotZ(double angle)
Java 3D API Specification

MATH OBJECTS Matrix4d Class A.2.4

tion
ructed
n

d
ns
The rot methods construct rotation matrices that rotate in a clockwise direc
around the axis specified as the last letter of the method name. The const
matrix replaces the value of the matrixthis. The rotation angle is expressed i
radians.

public final void mul(Matrix4d m1, Matrix4d m2)
public final void mul(Matrix 4d m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into the matrixthis. The secondmul method multiplies matrixthis with matrix
m1 and places the result into the matrixthis.

public final void mulTransposeBoth(Matrix4d m1, Matrix4d m2)
public final void mulTransposeRight(Matrix4d m1, Matrix4d m2)
public final void mulTransposeLeft(Matrix4d m1, Matrix4d m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrixm2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void setZero()

This method sets this matrix to all zeros.

public final void setIdentity()

This method sets this Matrix4d to identity.

public boolean equals(Matrix4d m1)

The equals method returnstrue if all of the data members of Matrix4dm1 are
equal to the corresponding data members in this Matrix4d.

public boolean epsilonEquals(Matrix4d m1, float epsilon)

This method returnstrue if the L∞ distance between this Matrix4d and Matrix4
m1 is less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

MAX[i = 0,1,2,3;j = 0,1,2,3; abs(this.m(i,j) – m1.m(i,j)]
375Version 1.1 Alpha 01, February 27, 1998

A.2.5 GMatrix Class MATH OBJECTS

376

 this
is,

o
alue,

4d.

ami-
o.

nta-
rough
ating

tes an

-

public int hashCode()

The hashCode method returns a hash number based on the data values in
object. Two different Matrix4d objects with identical data values (that
equals(Matrix4d) returns true) will return the same hash number. Tw
Matrix4d objects with different data members may return the same hash v
although this is not likely.

public String toString()

ThetoString method returns a string that contains the values of this Matrix

A.2.5 GMatrix Class

The GMatrix class serves to contain a double-precision, general, and dyn
cally resizeableM × N matrix. Row and column numbering begins with zer
The representation is row major.

The GMatrix data members are not public, thus allowing efficient impleme
tions of sparse matrices. However, the data members can be modified th
public accessors. The class includes three different constructors for cre
matrices and several operators for manipulating these matrices.

Constructors

public GMatrix(int nRow, int nCol)
public GMatrix(int nRow, int nCol, double matrix[])
public GMatrix(GMatrix matrix)

These constructors each return a new GMatrix. The first constructor genera
nRow by nCol identity matrix. The second constructor generates annRow by nCol

matrix initialized to the values in the arraymatrix. The last constructor gener
ates a new GMatrix and copies the initial values from the parametermatrix

argument.

Methods

public final void mul(GMatrix m1, GMatrix m2)
public final void mul(GMatrix m1)

The firstmul method multiplies matrixm1 with matrix m2 and places the result
into this. The secondmul method multiplies this matrix with matrixm1 and
places the result intothis.
Java 3D API Specification

MATH OBJECTS GMatrix Class A.2.5

o

 sec-

lue of

lues

trix.
ix.
 in

ill
public final void add(GMatrix m1)
public final void add(GMatrix m1, GMatrix m2)
public final void sub(GMatrix m1)
public final void sub(GMatrix m1, GMatrix m2)

The firstadd method adds this matrix to matrixm1 and places the result back int
this. The secondadd method adds matricesm1 andm2 and places the result into
this. The firstsub method subtracts matrixm1 from the matrixthis and places
the result intothis. The secondsub method subtracts matrixm2 from matrixm1
and places the result into the matrixthis.

public final void negate()
public final void negate(GMatrix m1)

The first method negates the value of this matrix in place (this = –this). The
ond method sets the value of this matrix to the negation of the matrixm1 (this =
–m1).

public final void invert()
public final void invert(GMatrix m1)

The first method inverts this matrix in place. The second method sets the va
this matrix to the inverse of the matrixm1.

public final void setIdentity()

This method sets this GMatrix to the identity matrix.

public final void setZero()

This method sets all the values in this matrix to zero.

public final void identityMinus()

This method subtracts this matrix from the identity matrix and puts the va
back intothis (this = I – this).

public final void copySubMatrix(int rowSource, int colSource,
int numRow, int numCol, int rowDest, int colDest,
GMatrix target)

This method copies a submatrix derived from this matrix into the target ma
TherowSource andcolSource parameters define the upper left of the submatr
The numRow andnumCol parameters define the number of rows and columns
the submatrix. The submatrix is copied into the target matrix starting at (rowD-

est, colDest). Thetarget parameter is the matrix into which the submatrix w
be copied.
377Version 1.1 Alpha 01, February 27, 1998

ased,
whose

 the
, in
er of

to
public final void setSize(int nRow, int nCol)

This method changes the size of this matrix dynamically. If the size is incre
no data values will be lost. If the size is decreased, only those data values
matrix positions were eliminated will be lost.

public final void set(double matrix[])
public final void set(GMatrix m1)
public final void set(Matrix3f m1)
public final void set(Matrix3d m1)
public final void set(Matrix4f m1)
public final void set(Matrix4d m1)

The first set method sets the values of this matrix to the values found in
matrix array parameter. The values are copied in one row at a time
row-major fashion. The array should be at least equal in length to the numb
matrix rows times the number of matrix columns in this matrix. The secondset

method sets the values of this matrix to the values found in matrixm1. The last
four set methods set the values of this matrix to the values found in matrixm1.

public final void get(Matrix3d m1)
public final void get(Matrix3f m1)
public final void get(Matrix4d m1)
public final void get(Matrix4f m1)
public final void get(GMatrix m1)

The first two methods place the values in the upper 3× 3 of this matrix into the
matrix m1. The next two methods place the values in the upper 4× 4 of this
matrix into the matrixm1. The final method places the values in this matrix in
the matrixm1. Matrix m1 should be at least as large as this matrix.

public final int getNumRow()
public final int getNumCol()

ThegetNumRow method returns the number of rows in this matrix. ThegetNum-

Col method returns the number of columns in this matrix.

public final void setElement(int row, int column, double value)
public final double getElement(int row, int column)

These methods set and retrieve the value at the specifiedrow andcolumn of this
matrix.

public final void setRow(int row, double array[])
public final void setRow(int row, GVector vector)
public final void getRow(int row, double array[])

MATH OBJECTS GMatrix Class A.2.5

this
rray
ec-
f

 are

t. Two
public final void getRow(int row, GVector vector)
public final void setColumn(int col, double array[])
public final void setColumn(int col, GVector vector)
public final void getColumn(int col, double array[])
public final void getColumn(int col, GVector vector)

ThesetRow methods copy the values from the array into the specified row of
matrix. ThegetRow methods place the values of the specified row into the a
or vertex. ThesetColumn methods copy the values from the array into the sp
ified column of this matrix or vector. ThegetColumn methods place the values o
the specified column into the array or vector.

public final void setScale(double scale)

This method sets this matrix to a uniform scale matrix, and all of the values
reset.

public final void setZero()

Sets all the values in this matrix to zero.

public final void mulTransposeBoth(GMatrix m1, GMatrix m2)
public final void mulTransposeRight(GMatrix m1, GMatrix m2)
public final void mulTransposeLeft(GMatrix m1, GMatrix m2)

ThemulTransposeBoth method multiplies the transpose of matrixm1 (left) times
the transpose of matrixm2 (right) and places the result into this matrix. Themul-

TransposeRight method multiplies matrixm1 times the transpose of matrix m2
and places the result back into this matrix. ThemulTransposeLeft method mul-
tiplies the transpose of matrixm1 times matrixm2 and places the result into this
matrix.

public final void transpose()
public final void transpose(GMatrix m1)

The firsttranspose method transposes this matrix in place. The secondtrans-

pose method places the matrix values of the transpose of matrixm1 into this
matrix.

public String toString()

This method returns a string that contains the values of this GMatrix.

public int hashCode()

This method returns a hash number based on the data values in this objec
different GMatrix objects with identical data values (that is,equals(GMatrix)
379Version 1.1 Alpha 01, February 27, 1998

A.2.5 GMatrix Class MATH OBJECTS

380

ata

x
ns

trix
of

 ele-

are
onal

ter to
od
 was
returnstrue) will return the same hash number. Two objects with different d
members may return the same hash value, although this is not likely.

public boolean equals(GMatrix m1)

This method returnstrue if all of the data members of GMatrixm1 are equal to
the corresponding data members in this GMatrix.

public boolean epsilonEquals(GMatrix m1, float epsilon)

Deprecated method. See the next method.

public boolean epsilonEquals(GMatrix m1, double epsilon)

This method returnstrue if the L∞ distance between this GMatrix and GMatri
m1 is less than or equal to theepsilon parameter. Otherwise, this method retur
false. The L∞ distance is equal to

MAX[i = 0,1,2,… n; j = 0,1,2,… n; abs(this.m(i,j) – m1.m(i,j)]

public final double trace()

This method returns the trace of this matrix.

public final int SVD(GMatrix U, GMatrix W, GMatrix V)

The SVD method finds the singular value decomposition (SVD) of this ma
such thatthis = U * W * VT, and returns the rank of this matrix. The values
U, W, andV are all overwritten. Note that the matrixV is output asV and notVT.
If this matrix ism × n, thenU is m × m, W is a diagonal matrix that ism × n, and
V is n × n. The inverse of this matrix isthis–1 = V * W–1 * UT, whereW–1 is a
diagonal matrix computed by taking the reciprocal of each of the diagonal
ments of matrixW.

public final int LUD(GMatrix LU, GVector permutation)

The LUD method performs an LU decomposition. This matrix must be a squ
matrix, and theLU parameter must be the same size as this matrix. The diag
elements ofL (unity) are not stored. Thepermutation parameter records the
row permutation affected by the partial pivoting, and is used as a parame
the GVectorLUDBackSolve method to solve sets of linear equations. This meth
returns +1 or –1, depending on whether the number of row interchanges
even or odd, respectively.
Java 3D API Specification

Version 1.1 Alpha 01, February 27, 1998
A P P E N D I X B

n

try
 just
ibing
ifica-
rt of
ppen-

e rep-
senta-
ugh

 form,

o the
 bits

results
ele-

 eight
3D Geometry Compressio

JAVA 3D allows programmers to specify geometry using a binary geome
compression format. This compression format is used with APIs other than
Java 3D, and can be used both as a runtime in-memory format for descr
geometry, as well as a storage and network format. Eventually the full spec
tion of the geometry compression format described in this section will be pa
its own stand-alone specification, but for completeness it is included as an a
dix to the early specification of the Java 3D API.

Java 3D uses a geometry compression format that allows 3D geometry to b
resented in an order of magnitude less space than most traditional 3D repre
tions, with very little loss in object quality. The compression is achieved thro
several layers of techniques.

B.1 Compression

First, the geometry to be compressed is converted into a generalized mesh
which allows a triangle to be, on average, specified by 0.80 vertices.

Next the data for each vertex component of the geometry is converted t
most efficient representation format for its type and then quantized to as few
as possible.

These quantized bits are differenced between successive vertices, and the
are modified Huffman encoded into self-describing variable-bit-length data
ments.

Finally, these variable-length elements are strung together using Java 3D’s
geometry commands into a final compressed geometry block.
381

B.2 Decompression 3D GEOMETRY COMPRESSION

382

 local

cepts
are an

nd

e-

-

-

l
point

f-

e

 and
ns a
vertex
ace-
used
B.2 Decompression

Upon receipt, compressed geometry blocks are decompressed into the
host’s preferred geometry format by reversing the above process.

B.3 Appendix Organization

Before the bit details of the compression can be specified, several of the con
used in geometry compression need elaboration. The first several sections
expansion of our SIGGRAPH '95 paper on geometry compression.1

• Generalized Triangle Strip. This section is a refresher on the concept a
semantics of a generalized triangle strip.

• Generalized Triangle Mesh. This section introduces the concept and s
mantics of a generalized triangle mesh.

• Color Representation and Quantization. This section describes the fixed
point format used for 3D positional representation.

• Color Representation and Quantization. This section describes the fixed
point format used for color representation.

• Normal Representation and Quantization. This section describes a nove
folded table based representation of surface normals, and the fixed-
format of the resultant normals.

• Modified Huffman Encoding. This section describes the variant of Huf
man delta encoding used for geometry compression.

• Geometry Compression Commands. This section gives an overview of th
eight geometry compression commands.

B.4 Generalized Triangle Strip

A generalized triangle strip is a generalization of the concept of a “zig-zag”
“star” triangle strip. It is a sequence of vertices in which each vertex contai
two-bit replacement code. This replacement code defines how the present
is to be combined with previous vertices to form the next triangle. The repl
ment bits can also be thought of as a generalization of the “move/draw” bit
for lines.

1. Deering, Michael. “Geometry Compression.”Computer Graphics Proceedings, Annual
Conference Series, 1995, ACM SIGGRAPH, pp 13–19.
Java 3D API Specification

3D GEOMETRY COMPRESSION Generalized Triangle MeshB.5

verti-

to be
s cor-
rip).
d,
s the

id,
 must
ent

ple
struc-
strip’s
ip
 less

con-
e gen-

lock-
rs of

y

 effi-

pact
, the
y data
data
ing is
A stack of the last three vertices used to form a triangle is kept. The three
ces are labeled oldest, middle, and newest. An incoming vertex of typereplace_

oldest causes the oldest vertex to be replaced by the middle, the middle
replaced by the newest, and the incoming vertex to become the newest. Thi
responds to a PHIGS PLUS triangle strip (sometimes called a “zig-zag” st
The replacement typereplace_middle leaves the oldest vertex unchange
replaces the middle vertex by the newest, and the incoming vertex become
newest. This corresponds to a triangle star or fan.

The replacement typerestart marks the oldest and middle vertices as inval
and the incoming vertex becomes the newest. Generalized triangle strips
always start with this code. A triangle will be output only when a replacem
operation results in three valid vertices.

Restart corresponds to a “move” operation in polylines, and allows multi
unconnected variable-length triangle strips to be described by a single data
ture passed in by the user, reducing the overhead. The generalized triangle
ability to effectively change from “strip” to “star” mode in the middle of a str
allows more complex geometry to be represented compactly, and requires
input data bandwidth. The restart capability allows several pieces of dis
nected geometry to be passed as one data block. Figure B-1 shows a singl
eralized triangle strip and the associated replacement codes.

Triangles are normalized such that the front face is always defined by a c
wise vertex order after transformation. To support this, there are two flavo
restart:restart_clockwise andrestart_counterclockwise. The vertex order
is reversed after everyreplace_oldest, but remains the same after ever
replace_middle.

B.5 Generalized Triangle Mesh

The first stage of geometry compression is to convert triangle data into an
cient linear strip form: thegeneralized triangle mesh. This is a near-optimal rep-
resentation of triangle data, given fixed storage.

The existing concept of a generalized triangle strip structure allows for com
representation of geometry while maintaining a linear data structure. That is
geometry can be extracted by a single monotonic scan over the vertex arra
structure. This is very important for pipelined hardware implementations, a
format that requires random access back to main memory during process
very problematic.
383Version 1.1 Alpha 01, February 27, 1998

B.5 Generalized Triangle Mesh 3D GEOMETRY COMPRESSION

384

mat
try in

tices
efer-
ffer to

prac-
mesh
Figure B-1 A Generalized Triangle Strip

However, by confining itself to linear strips, the generalized triangle strip for
leaves a potential factor of two (in space) on the table. Consider the geome
Figure B-2.

While it can be represented by one triangle strip, many of the interior ver
appear twice in the strip. This is inherent in any approach wishing to avoid r
ences to old data. Some systems have tried using a simple regular mesh bu
support reuse of old vertices, but there is a problem with this approach in
tice: In general, geometry does not come in a perfectly regular rectangular
structure.

1

2

3

4

5

6

78

9 10

11

1213

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30
31

32

33

21

 1 Restart
 2 RO
 3 RO
 4 RO
 5 RO
 6 RO
 7 Restart
 8 RO
 9 RO
10 RM
11 RM
12 RM
13 RM
14 RM
15 Restart
16 RO
17 RO
18 Restart
19 RO
20 RO
21 RO
22 Restart
23 RO
24 RO
25 RO
26 RO
27 RO
28 RO
29 RM
30 RM
31 RM
32 RM
33 RO

Triangle Strip

Triangle Star

Independent
Triangle

Independent
Quad

Mixed Strip

Vertex Codes

RO = Replace Oldest
RM = Replace Middle
Java 3D API Specification

3D GEOMETRY COMPRESSION Generalized Triangle MeshB.5

s this
f-
 sup-
gnize
ing a

essed
metry
ather
ction.
void

buffer
Figure B-2 A Generalized Triangle Mesh

The generalized technique employed by geometry compression addresse
problem. Old vertices areexplicitly pushed into a queue, and then explicitly re
erenced in the future when the old vertex is desired again. This fine control
ports irregular meshes of nearly any shape. Any viable technique must reco
that storage is finite; thus the maximum queue length is fixed at 16, requir
four-bit index. We refer to this queue as themesh buffer. The combination of
generalized triangle strips and mesh buffer references is referred to as ageneral-
ized triangle mesh.

The fixed mesh buffer size requires all tessellators or restrippers for compr
geometry to break up any runs longer than 16 unique references. Since geo
compression is not meant to be programmed directly at the user level, but r
by sophisticated tessellators or reformatters, this is not too onerous a restri
Sixteen old vertices allow up to 94 percent of the redundant geometry to a
being respecified. Figure B-2 also contains an example of a general mesh
representation of the surface geometry.

1
2 3

4 5

6
7

8
9 10 11

12

13
14 15 16

17

18 19 20
21

22
23 24

25 26
27 28

29
30

Generalized Triangle Strip:
R6, O1, O7, O2, O3, M4, M8, O5, O9, O10, M11,
M17, M16, M9, O15, O8, O7, M14, O13, M6,

Start

O12, M18, M19, M20, M14, O21, O15, O22, O16,
O23, O17, O24, M30, M29, M28, M22, O21, M20,
M27, O26, M19, O25, O18

Generalized Triangle Mesh:
R6p, O1, O7p, O2, O3, M4, M8p, O5, O9p, O10, M11,
M17p, M16p, M-3, O15p, O-5, O6, M14p, O13p, M-9,
O12, M18p, M19p, M20p, M-5, O21p, O-7, O22p, O-9,
O23, O-10, O-7, M30, M29, M28, M-1, O-2, M-3,
M27, O26, M-4, O25, O-5

Legend:
First letter: R = Restart, O = Replace Oldest, M = Replace Middle
Trailing “p” = push into mesh buffer
Number is vertex number, -number is mesh buffer reference
where -1 is most recent pushed vertex.
385Version 1.1 Alpha 01, February 27, 1998

B.6 Position Representation and Quantization 3D GEOMETRY COMPRESSION

386

ment
lock-
der to
esh

ould
uffer
ly

and/
 stor-
and

eam,
 the

nd/or
ocess
rited

rtant
d is
,
ation
ed for

ter-
n to
t the
in a
 the
ded;
on of
orted
The language of geometry compression supports the four vertex replace
codes of generalized triangle strips (replace oldest, replace middle, restart c
wise, and restart counterclockwise), and adds another bit in each vertex hea
indicate if this vertex should be pushed into the mesh buffer or not. The m
buffer reference command has a four-bit field to indicate which old vertex sh
be rereferenced, along with the two-bit vertex replacement code. Mesh b
reference commands donot contain a mesh buffer push bit; old vertices can on
be recycled once.

Geometry rarely is composed purely of positional data; generally a normal
or color are also specified per vertex. Therefore, mesh buffer entries contain
age for all associated per-vertex information (specifically including normal
color).

For maximum space efficiency, when a vertex is specified in the data str
(per-vertex) normal and/or color information should be directly bundled with
position information. This bundling is controlled by two state bits:bundle nor-
mals with vertices (bnv), andbundle colors with vertices (bcv). When a vertex is
pushed into the mesh buffer, these bits control whether its bundled normal a
color are pushed as well. During a mesh buffer reference command, this pr
is reversed. The two bits specify if a normal and/or color should be inhe
from the mesh buffer storage, or inherited from thecurrent normal or current
color.

There are explicit commands for setting these two current values. An impo
exception to this rule occurs when an explicit “set current normal” comman
followed by a mesh buffer reference, with thebnv state bit active. In this case
the former overrides the mesh buffer normal. This allows compact represent
of hard edges in surface geometry. The analogous semantics are also defin
colors, allowing compact representation of hard edges in textures.

B.6 Position Representation and Quantization

The 8-bit exponent of 32-bit IEEE floating-point numbers allows positions li
ally to span the known universe: from a scale of 100 billion light years, dow
the radius of subatomic particles. However, for any given tessellated objec
exponent is really specified just once by the current modeling matrix; with
given modeling space, the object geometry is effectively described with only
24-bit fixed-point mantissa. Visually, in many cases far fewer bits are nee
thus the language of geometry compression supports variable quantizati
position data down to as little as one bit. The maximum number of bits supp
is at most 16 bits of precision per component of position.
Java 3D API Specification

3D GEOMETRY COMPRESSION Color Representation and QuantizationB.7

 spec-
al
ithout
r than

ach
alized
deed
h of
 com-
 situ-
sion.
ere

ell.

hus
nd a
linear
nal
 than

age;
 col-

tions.
age

ore
color

ecom-
es-
rray,
es. In
en the
We still assume that the position and scale of the local modeling spaces are
ified by full 32-bit or 64-bit floating-point coordinates. If sufficient numeric
care is taken, multiple such modeling spaces can be stitched together w
cracks, forming seamless geometry coordinate systems with much greate
16-bit positional precision.

Most geometry is local, so within the 16-bit (or less) modeling space (of e
object), the delta difference between one vertex and the next in the gener
mesh buffer stream is very likely to be less than 16 bits in significance. In
one can histogram the bit length of neighboring position deltas in a batc
geometry and, based on this histogram, assign a variable-length code to
pactly represent the vertices. The typical coding used in many other similar
ations is customized Huffman code; this is the case for geometry compres
The details of the coding of position deltas will be postponed until later, wh
they can be discussed in the context of color and normal delta coding as w

B.7 Color Representation and Quantization

We treat colors similar to positions, but without using negative values. T
RGBα color data is first quantized to 15-bit unsigned fraction components, a
zero sign bit added to form a 16-bit signed number. These are absolute
reflectivity values, with 1.0 representing 100 percent reflectivity. An additio
parameter allows color data to be quantized effectively to any amount less
16 bits; that is, the colors can all be within a 5-5-5 RGB color space. (Theα field
is optional, controlled by thecolor alpha present (cap) state bit.) Note that this
decision doesnot necessarily cause mach banding on the final rendered im
individual pixel colors are still interpolated between these quantized vertex
ors, and vertices also are subject to lighting.

The same delta coding is used for color components as is used for posi
Compression of color data is where geometry compression and traditional im
compression face the most similar problem. However, many of the m
advanced techniques for image compression were rejected for geometry
compression because of the difference in focus.

Image compression makes several assumptions about the viewing of the d
pressed data thatcannot be made for geometry compression. In image compr
sion, it is known a priori that the pixels appear in a perfectly rectangular a
and that when viewed, each pixel subtends a narrow range of visual angl
geometry compression, one has almost no idea what the relationship betwe
viewer and the rasterized geometry will be.
387Version 1.1 Alpha 01, February 27, 1998

B.8 Normal Representation and Quantization 3D GEOMETRY COMPRESSION

388

yed
olor
color
nsity)

lit up
f this
fixed.
ht or
t way

ional
forms
large

od of
EE
nsi-

every
ngles
ith

 the
.
ori-

rld
ls. If
ion of
In image compression, it is known that the spatial frequency of the displa
pixels on the viewer’s eyes is likely higher than the human visual system’s c
acuity. This is why colors are usually converted to yuv space, so that the uv
components can be represented at a lower spatial frequency than the y (inte
component.

Usually the digital bits representing the subsampled uv components are sp
among two or more pixels. Geometry compression cannot take advantage o
because the display scale of the geometry relative to the viewer’s eye is not
Also, given that compressed triangle vertices are connected to four to eig
more other vertices in the generalized triangle mesh, there is no consisten
of sharing “half” the color information across vertices.

Similar arguments apply for the more sophisticated transforms used in tradit
image compression, such as the discrete cosine transform. These trans
assume a regular (rectangular) sampling of pixel values, and require a
amount of random access during decompression.

B.8 Normal Representation and Quantization

Probably the most innovative concept in geometry compression is the meth
compressing surface normals. Traditionally, 96-bit normals (three 32-bit IE
floating-point numbers) are used in calculations to determine 8-bit color inte
ties. Theoretically, 96 bits of information could be used to represent 296 different
normals, spread evenly over the surface of a unit sphere. This is a normal
2–46 radians in any direction. Such angles are so exact that spreading out a
evenly in every direction from earth, you could point out any rock on Mars w
subcentimeter accuracy.

But for normalized normals, the exponent bits are effectively unused. Given
constraint |N| = 1, at least one ofNx, Ny, or Nz must be in the range of 0.5 to 1.0
During rendering, this normal will be transformed by a composite modeling
entation matrixT: N' = N ⋅ T.

Assuming the typical implementation in which lighting is performed in wo
coordinates, the view transform is not involved in the processing of norma
the normals have been prenormalized, then to avoid redundant renormalizat
the normals, the composite modeling transformation matrixT is typically prenor-
malized to divide out any scale changes, and thus

T0,0
2 + T1,0

2 + T2,0
2 = 1, etc.
Java 3D API Specification

3D GEOMETRY COMPRESSION Normals as IndicesB.8.1

ely
. The
rving
rmal
spe-

than
ined

 were
bout
 nor-

mpo-

sted
y of
of this

rmal

d to

ther
its of
sent

es by
-
phere

only
This
3-bit

 the
tion
During the normal transformation, floating-point arithmetic hardware effectiv
truncates all additive arguments to the accuracy of the largest component
result is that for a normalized normal being transformed by a scale-prese
modeling orientation matrix, the numerical accuracy of the transformed no
value is reduced to no more than 24-bit fixed-point accuracy in all but a few
cial cases.

Even 24-bit normal components are still much higher in angular accuracy
the (repaired) Hubble space telescope. After empirical tests, it was determ
that an angular density of 0.01 radians between normals gave results that
not visually distinguishable from finer representations. This works out to a
100,000 normals distributed over the unit sphere. In rectilinear space, these
mals still require high accuracy of representation; we chose to use 16-bit co
nents that include one sign and one guard bit.

This still requires 48 bits to represent a normal. But since we are only intere
in 100,000 specific normals, in theory a single 17-bit index could denote an
these normals. The next section shows how it is possible to take advantage
observation.

B.8.1 Normals as Indices

The most obvious hardware implementation for converting an index of a no
on the unit sphere back into anNx Ny Nz value is by table look-up. The problem
is the size of the table. Fortunately, several symmetry tricks can be applie
greatly reduce the size of the table (by a factor of 48).

First, the unit sphere is symmetrical in the eight quadrants by sign bits. In o
words, if we let three of the normal representation bits be the three sign b
the XYZ components of the normal, then we only need to find a way to repre
one eighth of the unit sphere.

Second, each octant of the unit sphere can be split up into six identical piec
folding about the planesX = Y, X = Z, andY = Z. (See Figure B-3.) The six pos
sible sextants are encoded with another three bits. Now only 1/48 of the s
remains to be represented.

This reduces the 100,000-entry look-up table by a factor of 48, requiring
about 2,000 entries, small enough to fit into an on-chip ROM look-up table.
table needs 11 address bits to index into it, so including our previous two
fields, the result is a grand total of 17 bits for all three normal components.

Representing a finite set of unit normals is equivalent to positioning points on
surface of the unit sphere. While no perfectly equal angular density distribu
389Version 1.1 Alpha 01, February 27, 1998

B.8.2 Normal Encoding Parameterization 3D GEOMETRY COMPRESSION

390

s in
bove
tional

ore
sity
very

s in
unit
e are
ere

 not
pre-

 within
, all

 6-bit
 posi-
 6-bit
repre-
e can
high-

ordi-

nt, in
exists for large numbers of points, many near-optimal distributions exist. Thu
theory one of these with the same sort of 48-way symmetry described a
could be used for the decompression look-up table. However, several addi
constraints mandate a different choice of encoding:

• We desire a scalable density distribution in which zeroing more and m
of the low-order address bits to the table still results in fairly even den
of normals on the unit sphere. Otherwise a different look-up table for e
encoding density would be required.

• We desire a delta-encodable distribution. Statistically, adjacent vertice
geometry will have normals that are nearby on the surface of the
sphere. Nearby locations on the 2D space of the unit-sphere surfac
most succinctly encoded by a 2D offset. We desire a distribution wh
such a metric exists.

• Finally, while the computational cost of the normal encoding process is
too important, in general, distributions with lower encoding costs are
ferred.

For all these reasons, we decided to use a regular grid in the angular space
one sextant as our distribution. Thus, rather than a monolithic 11-bit index
normals within a sextant are much more conveniently represented as two
orthogonal angular addresses, revising our grand total to 18 bits. Just as for
tions and colors, if more quantization of normals is acceptable, then these
indices can be reduced to fewer bits, and thus absolute normals can be
sented using anywhere from 18 to as few as 6 bits. But as will be seen, w
delta-encode this space, further reducing the number of bits required for
quality representation of normals.

B.8.2 Normal Encoding Parameterization

Points on a unit radius sphere are parameterized by two angles,θ andφ, using
spherical coordinates.θ is the angle about the Y-axis;φ is the longitudinal angle
from the y = 0 plane. The mapping between rectangular and spherical co
nates is as follows:

(B.1)

Points on the sphere are folded first by octant, and then by sort order ofxyz into
one of six sextants. All the table encoding takes place in the positive octa
the region bounded by the half spaces:

x θcos φcos⋅= y φsin= z θsin φcos⋅=

x z≥ z y≥ y 0≥
Java 3D API Specification

3D GEOMETRY COMPRESSION Normal Encoding ParameterizationB.8.2

erical
di-

f

most

ues,
This triangular-shaped patch runs from 0 toπ/4 radians inθ, and from 0 to as
much as 0.615479709 radians inφ: φmax.

Quantized angles are represented by twon-bit integers and , wheren is in
the range of 0 to 6. For a givenn, the relationship between these indicesθ andφ
is

(B.2)

These two equations show how values of and can be converted to sph
coordinatesθ andφ, which in turn can be converted to rectilinear normal coor
nate components via equation B.1.

To reverse the process, for example, to encode a given normaln into and ,
one cannot just invert equation B.2. Instead, then must first be folded into the
canonical octant and sextant, resulting inn'. Then n' must be dotted with all
quantized normals in the sextant. For a fixedn, the values of and that
result in the largest (nearest unity) dot product define the proper encoding on.

Now the complete bit format of absolute normals can be given. The upper
three bits specify the octant, the next three bits the sextant, and finally twon-bit
fields specify and . The three-bit sextant field takes on one of six val
the binary codes for which are shown in Figure B-3.

Figure B-3 Encoding of the Six Sextants of Each Octant of a Sphere

θ̂n φ̂n

θ θ̂n() φmax n θ̂n–() 2
n⁄⋅()tanasin=

φ φ̂n() φmax φ̂n 2
n⁄⋅=

θ̂n φ̂n

θ̂n φ̂n

θ̂n φ̂n

θ̂n φ̂n

001

000

010

011

100

101

x < y

x = y

x >

x > zx = zx < z

y < z

y = z

y > z

X

Y

Z

391Version 1.1 Alpha 01, February 27, 1998

B.9 Modified Huffman Encoding 3D GEOMETRY COMPRESSION

392

at the
). By
n be
e
ls).

hin a
hare a
ce in

h bit
tional

nted,
bols.
 that
 bits,

ags to
ld is
ts of
wed

esent
hese
puter
 bits,

 label;
alue
 both

ce.
s is
This discussion has ignored some details. In particular, the three normals
corners of the canonical patch are multiply represented (6, 8, and 12 times
employing the two unused values of the sextant field, these normals ca
uniquely encoded as special normals. Thenormal subcommand describes th
special encoding used for two of these corner cases (14 total special norma

This representation of normals is amenable to delta encoding, at least wit
sextant. (With some additional work, this can be extended to sextants that s
common edge.) The delta code between two normals is simply the differen

 and : and .

B.9 Modified Huffman Encoding

There are many techniques known for minimally representing variable-lengt
fields. For geometry compression, we have chosen a variation of the conven
Huffman technique.

The Huffman compression algorithm takes in a set of symbols to be represe
along with frequency of occurrence statistics (histograms) of those sym
From this, variable-length, uniquely identifiable bit patterns are generated
allow these symbols to be represented with a near-minimum total number of
assuming that symbols do occur at the frequencies specified.

Many compression techniques, including JPEG, create unique symbols as t
indicate the length of a variable-length data field that follows. This data fie
typically a specific-length delta value. Thus the final binary stream consis
(self-describing length) variable-length tag symbols, each immediately follo
by a data field whose length is associated with that unique tag symbol.

The binary format for geometry compression uses this technique to repr
position, normal, and color data fields. For geometry compression, t
<tag, data> fields are immediately preceded by (a more conventional com
instruction set) opcode field. These fields, plus potential additional operand
are referred to asgeometry instructions (see Figure B-4).

Traditionally, each value to be compressed is assigned its own associated
for example, an XYZ delta position would be represented by three tag/v
pairs. However, the delta XYZ values are not uncorrelated, and we can get
a denser and simpler representation by taking advantage of this fact.

In general, the XYZ deltas statistically point equally in all directions in spa
This means that if the number of bits to represent the largest of these deltan,
then statistically the other two delta values require an average ofn – 1.4 bits for

θ̂n φ̂n ∆θ̂n ∆φ̂n
Java 3D API Specification

3D GEOMETRY COMPRESSION Geometry Compression CommandsB.10

tag to

nique
ngs by

ecom-

le

e (n),

lue
en-

ock
. The
 data

ple-
 into
sent
 time
laced
ce

ed in
brief
these
their representation. Thus we made the decision to use a single field-length
indicate the bit length of∆X, ∆Y, and∆Z.

This also means that we cannot take advantage of another Huffman tech
that saves somewhat less than one more bit per component, but our bit savi
not having to specify two additional tag fields (for∆Y and∆Z) outweigh this. A
single tag field also means that a hardware decompression engine can d
press all three fields in parallel, if desired.

Similar arguments hold for deltas of RGBα values, and so here also a sing
field-length tag indicates the bit-length of the∆R, ∆G, ∆B, and∆α (if present)
fields.

Both absolute and delta normals are also parameterized by a single valu
which can be specified by a single tag.

We chose to limit the length of the Huffman tag field to the relatively small va
of six bits. This was done to facilitate high-speed, low-cost hardware implem
tations. (A 64-entry tag look-up table allows decoding of tags in one cl
cycle.) Three such tables exist: one each for positions, normals, and colors
tables contain the length of the tag field, the length of the data field(s), a
normalization coefficient, and an absolute/relative bit.

One additional complication was required to enable reasonable hardware im
mentations. As will be seen in a later section, all instructions are broken up
an eight-bit header and a variable-length body. Sufficient information is pre
in the header to determine the length of the body. But to give the hardware
to process the header information, the header of one instruction must be p
in the stream before the body of the previous instruction. Thus the sequen…
B0 H1B1 H2B2 H3… has to be encoded as follows:

… H1 B0 H2 B1 H3 B2…

B.10 Geometry Compression Commands

Java 3D’s geometry compression protocol defines eight commands to be us
specifying 3D geometry and certain affiliated attributes. This section gives a
overview of these commands and some of their semantics. More detail of
commands, including their bit layout, is given in the following sections.

vertex

The primary command isvertex. A vertex command always specifies a 3D
position, two generalized triangle strip replacement bits (rep), and a mesh buffer
393Version 1.1 Alpha 01, February 27, 1998

B.10 Geometry Compression Commands 3D GEOMETRY COMPRESSION

394

ure

lors:

colors

r or
tant
olor-

hese
later.

st

an

res-

it
f the
push (mbp) bit, and may optionally specify a normal and/or a color (or text
map coordinate). The presence of normal or color data within avertex com-
mand is controlled by two state bits known as the bundling bits:bnv andbcv,
respectively.

normal, color

There are also two stand-alone commands for specifying normals and co
normal and color. These commands may be freely interspersed withvertex

commands, and semantically have (nearly) the same effect as normals or
bundled directly with a normal.

Once a color or normal value is specified, either directly or bundled with aver-

tex command, that color or normal will remain in effect as the current colo
normal until a new value is specified. In this fashion, for example, a cons
material color may be specified to apply to a forthcoming sequence of non-c
bundled vertices.

setState

The setState command updates the value of the three state bits. Two of t
bits are the normal and color bundling bits; the other one will be described

meshBufferReference

The meshBufferReference command allows any of the 16 vertices mo
recently pushed into the mesh buffer to be reused in place of avertex command
at this point. Two vertex replacement bits are also present.

setTable

The setTable command allows a range of entries in one of the three Huffm
decompression tables all to be set to the same new value.

passthrough

The passthrough command allows other data to be embedded in the comp
sion stream.

NOP

The variable length no-operationNOP command allows the compression b
stream to be padded by a specified number of bits. This allows portions o
compression data to be 32-bit aligned when desired.
Java 3D API Specification

3D GEOMETRY COMPRESSION setStateB.12.2

om-
riable)
may
ble-

etry

it
ble-

es-
es to
g to

pare,
als

dard
B.11 Bit Layout of Geometry Decompression Commands

Figure B-4 shows the bit-level layout of the eight geometry decompression c
mands. Each command has a unique opcode, and then some (possible va
number of arguments. The actual bit length of many of the components
vary, and if so, a unique (dynamic) Huffman tag at the very start of any varia
length argument delimits the size of the argument.

B.12 Geometry Decompression Command Bit Details

The following subsections describe the bit details of several of the geom
decompression commands, and much of their associated semantics.

B.12.1 NOP

The variable length no-operation (NOP) command has an 8-bit opcode, a 5-b
count field, and a 0- to 31-bit field of zeros. The total length of the varia
length no-operation command is between 13 and 44 bits.

The variable-lengthNOP command’s primary use is to align geometry decompr
sion commands to word boundaries, when desired. This is useful if one wish
“patch” a decompression instruction in the middle of a stream without havin
bit-align the patch.

B.12.2 setState

ThesetState command has a 7-bit opcode, 3 bits of state to be set, and a s
for a total length of 11 bits. The first and second state bits indicate if norm
and/or colors will be bundled withvertex commands, respectively. The third
state bit indicates if colors will contain an alpha value, in addition to the stan
RGB. The final state bit is unused, and reserved for future use.

0 0 0 0 0 Bit count 0-31 0’s0 0 1

0 0 0 1 1
b
n
v

b
c
v

c
a
p

0 0
395Version 1.1 Alpha 01, February 27, 1998

B.12.2 setState 3D GEOMETRY COMPRESSION

396
Figure B-4 Bit Layout of Geometry Compression Commands

vertex

normal

0 1

1 1

rep

m
b
p

color

1 0

Position bits 0 – 5 Position bits 6 – n Normal bits Color bits

Normal bits 0 – 5 Normal bits 6 – n

Color bits 0 – 5 Color bits 6 – n

meshBufferReference

0 0 Index1
r
e
p

setState

0 0 0 1 1

setTable

0 0 0 1 0

Reserved (unused)

0 0 0 0 1

NOP

0 0 0 0 0 Bit Count 0s0 0 1

Tag ∆X ∆Y ∆ZPosition:

Tag ∆θt ∆φtNormal:

Tag ∆R ∆G ∆BColor: ∆α

(or absolute index)

b
n
v

b
c
v

c
a
p

Table Range Entry

^ ^

0 0 0

r
e
p

Java 3D API Specification

3D GEOMETRY COMPRESSION setTableB.12.3

ess/
shift
ange
fields

 this

le are

 The
tries
pper
gth of
any)

is tag
ns of
B.12.3 setTable

The setTable command has a 5-bit op code, a 2-bit table field, a 7-bit addr
range field, a 4-bit data length field, an absolute/relative bit, and a 4-bit up-
field. The total instruction length is fixed at 23 bits. The table and address/r
fields specify which decompression table entries to update; the remaining
comprise the values to which to update the table entries.

The two-bit table specifies for which of the three decompression tables
update is targeted:

The seven-bit address/range field specifies which entries in the specified tab
to be set to the values in the following fields.

The idea is that table settings are made in aligned power-of-two ranges.
position of the first ‘1’ bit in the address/range field indicates how many en
are to be consecutively set; the remaining bits after the first ‘1’ are the u
address bits of the base of the table entries to be set. This also sets the len
the “tag” that this entry defines as equal to the number of address bits (if
after the first ‘1’ bit.

The data length specifies how large the delta values to be associated with th
are; a data length of 12 implies that the upper 4 bits are to be sign extensio

00 Position

01 Color

10 Normal

11 Unused—reserved for future use

Address/Range Semantics Implicit Tag
Length

1a5a4a3a2a1a0 set table entry a5a4a3a2a1a0 6

01a5a4a3a2a1 set table entry a5a4a3a2a10 through a5a4a3a2a11 5

001a5a4a3a2 set table entry a5a4a3a200 through a5a4a3a211 4

0001a5a4a3 set table entry a5a4a3000 through a5a4a3111 3

00001a5a4 set table entry a5a40000 through a5a41111 2

000001a5 set table entry a500000 through a511111 1

0000001 set table entry 000000 through 111111 0

0 0 0 1 0 Table Data Length

Address/Range

A/R Up-shift
397Version 1.1 Alpha 01, February 27, 1998

B.12.4 meshBufferReference 3D GEOMETRY COMPRESSION

398

of the
tion.
 read
 val-
 of 0
ns and
mum
 to 7,

these

s that
at for
ibing

fer
s.

efine
t has
icate
ssable.

 does

nced
still
the incoming delta value. Note that the data length describes not the length
delta value coming in, but the final position of the delta value for reconstruc
In other words, the data length field is the sum of the actual delta bits to be
in plus the up-shift amount. For the position and color tables, the data length
ues of 1 to 15 correspond to lengths of 1 to 15, but the data length value
encodes an actual length of 16, as a length of 0 makes no sense for positio
colors. For normals, a length of 0 is sometimes appropriate, and the maxi
length needed is only 7. Thus for normals, the values 0 to 7 map through 0
and 8 to 15 are not used.

The up-shift value is the number of bits that the delta values described by
tags will be shifted up before being added to the current value.

The absolute/relative flag indicates whether this table entry describes value
are to be interpreted as an absolute reference or a relative delta. Note th
normals, absolute references will have an additional six leading bits descr
the absolute octant and sextant.

B.12.4 meshBufferReference

The meshBufferReference command has a 3-bit opcode, a 4-bit mesh buf
index field, and a 2-bit vertex replacement field, for a total length of nine bit

The index specifies which element of the mesh buffer should be used to d
the current vertex. A value of 0 indicates to use the most recent vertex tha
been pushed into the mesh buffer (before this command). Larger values ind
successively less recent pushes. Only the most recent 16 pushes are addre

The two-bit vertex replacement field has the same triangle semantics as it
within thevertex command:

There is no mesh buffer re-push bit; mesh buffer contents may be refere
multiple times until 16 newer vertices have been pushed; if a vertex is
needed it must be resent.

0 0 Restart clockwise

0 1 Restart counterclockwise

1 0 Replace middle

1 1 Replace oldest

0 0 Index1
r
e
p

r
e
p

Java 3D API Specification

3D GEOMETRY COMPRESSION Color SubcommandB.12.6

sion
n be
 the
4 bits.
iling

d of
s, the

e bit
s;
f that
ases

sion
bits
gth,

ts. As
zeros

d of
s, the
s, or
B.12.5 Position Subcommand

The position subcommand can only appear within a geometry decompres
vertex command, and always as the first subcommand. The tag field ca
between 0 and 6 bits in length; all three delta (or absolute) fields will have
same length, between 1 and 16 bits, for a range of lengths between 3 and 5
As usual, any subcommand with a total length of less than 6 bits has tra
zeros added to pad the length to a minimum of 6 bits.

As usual, the first six bits of the subcommand are actually forwarded ahea
the rest of the command. Depending on the length of the tag and delta field
first 6 bits might only contain the tag, or the tag and some of theX field bits, or
any subset up to the entire subcommand, if short enough.

For clarity, because it is by far the most typical case, the three coordinat
fields are labeled∆X ∆Y ∆Z, though more properly they are X, Y, and Z field
their actual interpretation is absolute or relative depending on the setting o
bit in the decompression table entry corresponding to the tag field. In both c
the fields are signed two’s-complement numbers.

B.12.6 Color Subcommand

The color subcommand can appear within either a geometry decompres
vertex command orcolor command. The tag field can be between 0 and 6
in length; all three (or four) delta (or absolute) fields will have the same len
between 1 and 16 bits, for a range of lengths between 3 and 54 (or 70) bi
usual, any subcommand with a total length of less than 6 bits has trailing
added to pad the length to a minimum of 6 bits.

As usual, the first six bits of the subcommand are actually forwarded ahea
the rest of the command. Depending on the length of the tag and delta field
first six bits might only contain the tag, or the tag and some of the R field bit
any subset up to the entire subcommand, if short enough.

Tag ∆X ∆Y ∆Zposition:
0–6 1–16 1–16 1–16

0–6 1–16 1–16 1–16
Tag ∆R ∆G ∆Bcolor: ∆α

1–16
399Version 1.1 Alpha 01, February 27, 1998

B.12.7 Normal Subcommand 3D GEOMETRY COMPRESSION

400

s are
eir
bit in
s the

etry
mpo-
ring
s that
 not

ssion
bits
gth,
. The
 nor-

th of
 of 6
For clarity, because it is by far the most typical case, the coordinate bit-field
labeled∆R ∆G ∆B (∆α), though more properly they are R, G, and B fields; th
actual interpretation is absolute or relative depending on the setting of that
the decompression table entry corresponding to the tag field. In both case
fields are signed two’s-complement numbers.

If the most recent setting of thecap bit by asetState command is zero, then no
fourth (alpha) field will be expected, and must not be present. If thecap bit was
set, then the alpha field will be processed and must be present.

The rest of the graphics pipeline and frame buffer following the geom
decompression stage may choose not to use all (up to) 16 bits of color co
nent information; in this case it is acceptable to truncate the trailing bits du
decompression. What the geometry decompression format does require i
color setting of any size up to 16 bits be supported, even if all the bits are
used.

B.12.7 Normal Subcommand

The normal subcommand can appear within either a geometry decompre
vertex command ornormal command. The tag field can be between 0 and 6
in length; the last two delta (or absolute) fields will have the same len
between 1 and 7 bits. Six more bits are always present for absolute normals
range of sizes for a relative normal can be from 6 to 20 bits, and an absolute
mal can be from 6 to 24 bits. (As usual, any subcommand with a total leng
less than 6 bits has trailing zeros added to pad the length to a minimum
bits.)

0–6 0–7 0–7

Tag ∆θt ∆φtnormal: (relative) ^ ^

0–6 0–6 0–6

Tag θt φtnormal: (absolute) ^ ^Sextant

3 3

0–6

Tagnormal: (special) 1 1 Special

4

Java 3D API Specification

3D GEOMETRY COMPRESSION Normal SubcommandB.12.7

d of
s, the
field

 the
o the
f

e tag
wo’s-
 the
here)

is a
nts

 fixed
ides.
 posi-

within
ve a
ve a
f 0.
As usual, the first six bits of the subcommand are actually forwarded ahea
the rest of the command. Depending on the length of the tag and delta field
first six bits might only contain the tag, or the tag and some of the other
bits, or any subset up to the entire subcommand, if short enough.

A normal subcommand is interpreted as relative or absolute depending on
current setting of that bit in the decompression table entry corresponding t
tag field. Unlike theposition andcolor subcommands, the number of fields o
a normal command differ between the absolute and relative types.

When the subcommand is relative, there are two delta angle fields after th
field, both of the same length, up to seven bits. These two fields are signed t
complement numbers. If after delta addition the resulting angle is outside
current sextant or octant, the sextant/octant wrapping rules (described elsew
apply.

When the subcommand is absolute, four bit fields follow the tag. The first
three-bit (fixed-length) absolute sextant field, indicating in which of six sexta
of an octant of the unit sphere this normal resides. The second field is also
at three bits, and indicates in which octant of the unit sphere the normal res
The last two fields are absolute angles within the sextant, and are unsigned
tive numbers, up to six bits in length.

Fourteen special absolute normals are encoded by the unused two settings
the three sextant bits. This is indicated by specifying the angle fields to ha
length of zero (not present), the first two bits of the sextant field to both ha
value of 1, and the trailing bit after the octant field to have a value o
Table B-1 lists the 14 special normals

Table B-1 The 14 Special Normals

Special NX NY NZ Comment

0000 1.0 0.0 0.0 +X axis

0010 –1.0 0.0 0.0 –X axis

0100 0.0 1.0 0.0 +Y axis

0110 0.0 –1.0 0.0 –Y axis

1000 0.0 0.0 1.0 +Z axis

1010 0.0 0.0 –1.0 –Z axis

0001 +X +Y +Z

0011 +X +Y –Z

0101 +X –Y +Z

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄
401Version 1.1 Alpha 01, February 27, 1998

B.12.8 vertex 3D GEOMETRY COMPRESSION

402

etry
mpo-
ring
s that
 if all

of
angle

to the

u-
The rest of the graphics pipeline and frame buffer following the geom
decompression stage may choose not to use all (up to) 16 bits of normal co
nent information; in this case it is acceptable to truncate the trailing bits du
decompression. What the geometry decompression format does require i
normal settings of any size up to 18-bit absolute normals be supported, even
the decompressed bits are not used.

B.12.8 vertex

Thevertex command has a two-bit opcode, aposition subcommand (always),
a two-bit vertex replacement field, a mesh buffer push bit, and, optionally, anor-

mal subcommand and/or acolor command, depending on the current setting
the state bundling bits. The two-bit vertex replacement field has the same tri
semantics as it does within themeshBufferReference command:

The mesh buffer push bit indicates whether this vertex should be pushed in
mesh buffer so as to be eligible for later re-reference.

The position, normal, and color subcommands have the semantics doc
mented in their individual sections.

0111 +X –Y –Z

1001 –X +Y +Z

1011 –X +Y –Z

1101 –X –Y +Z

1111 –X –Y –Z

0 0 Restart clockwise

0 1 Restart counterclockwise

1 0 Replace middle

1 1 Replace oldest

Table B-1 The 14 Special Normals (Continued)

Special NX NY NZ Comment

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

1 3⁄ 1 3⁄ 1 3⁄

0 1 rep

m
b
pPosition bits 0-5 Position bits 6–n Normal bits Color bits
Java 3D API Specification

3D GEOMETRY COMPRESSION Semantics of Geometry Decompression CommandsB.13

2.7,

in the

Sub-

mesh

state
e state
enta-

ption
ssion
ssion
oth, is
B.12.9 normal

Thenormal command has a two-bit opcode, and anormal subcommand.

The normal subcommand has the semantics documented in Section B.1
“Normal Subcommand.”

If a normal command is present immediately before ameshBufferReference

command, then the new normal value overrides the normal data present
mesh buffer for that particular mesh buffer reference.

B.12.10 color

The color command has a two-bit opcode, and acolor subcommand. The
color subcommand semantics are documented in Section B.12.6, “Color
command.”

If a color command is present immediately before ameshBufferReference

command, then the new color value overrides the color data present in the
buffer for that particular mesh buffer reference.

B.13 Semantics of Geometry Decompression Commands

The formal semantics of the compression format is best described by a
description of the decompression process. It must be emphasized that thes
descriptions are given to show the formal semantics, not an efficient implem
tion.

The next few sections will present such a state description. While this descri
is intended to be a complete and unambiguous description of the compre
format and decompression semantics, in practice studying both the compre
process and the decompression process, and studying code examples for b
a better approach for the human understanding process.

1 1 Normal bits 0–5 Normal bits 6–n

1 0 Color bits 0–5 Color bits 6–n
403Version 1.1 Alpha 01, February 27, 1998

B.13.1 Header and Body to Variable-Length Command 3D GEOMETRY COMPRESSION

404

 (six
ds to
ream.
, the
mand
re

lied

able-
ood
ded
H

g with
ded.
 of
heir

are
soft-
l for-

e only
sion
adds
sen-

ate bit
es the
-half
eman-
B.13.1 Header and Body to Variable-Length Command

Geometry decompression commands have a minimum length of eight bits
bits for subcommands). This allows all geometry decompression comman
be split into two physically separate bit sequences within the compressed st
The first bit sequence is always of eight bits in length (six for subcommands)
second bit sequence contains the remaining bits of the decompression com
(if any). Thus a logical stream ofN geometry decompression commands, whe
each command is split into two bit sequences Hi and Bi (i being from 0 toN – 1)
is physically represented as:

H0 B–1 H1 B0 H2 B1 … Hn–1 Bn–2 Hn Bn–1

OK, so what is this “B–1”? All compressed geometry sequences have an imp
(not physically present) H–1 of a variable-length no-op opcode, thus B–1 is
always present (starting at the eighth bit of the stream) as any valid vari
length no-op body. (Just five zeros, the minimum-length no-op, is a g
default.) Thus the implied no-op opcode “jump starts” the header-forwar
decompression process. This process is reversed at the end of the stream. n is a
variable-length no-op opcode, but no body is present, as Bn–1 is the last bits of
the stream.

This is viable because all compressed geometry streams are presented alon
a total bit length of their contents, so no explicit end-of-stream marker is nee
Streamsmust be rounded up to the nearest full 64-bit word multiple by use
additional variable length no-ops (within the body of the stream, that is, t
headers appear before Hn).

This “header-forwarding” shuffled representation is necessary for hardw
decompressors to operate efficiently. While this is not an issue for purely
ware-based decompressor implementations, in order to have one canonica
mat for both hard and soft decompressors, all decompressors must operat
on the header-forwarded representation; this is the only “official” compres
bit-format specified. For a software decompressor, the extra unshuffling
only slightly to the overall overhead of decompression; for hardware, it is es
tial.

Thus the first stage in the decompression process is to put the two separ
sequences for each command back together. The next paragraph describ
flavor of this process, going around the loop approximately one and one
times. The actual process is more accurately described in state machine s
tics.
Java 3D API Specification

3D GEOMETRY COMPRESSION Delta Position to PositionB.13.3

(or
 com-
d (or
ith the
nd is

 com-
iable-
nd is

e

c tag
h and
to a
ts is
bits
First the fixed-length eight- (or six-) bit header for the next full command
subcommand) to be processed is detached from the current head of the
pressed stream. Next, the variable-length body bits for the previous comman
subcommand) are detached from the compressed stream and combined w
already extracted header for the previous command; the previous comma
now complete and can be processed. Now the fixed-length header for the
mand after the next is detached from the bit stream, and then finally the var
length body for the next full command can be detached; the next comma
now complete and can be processed.

// pseudocode for converting bitstream into sequences of
// commands
decompress(stream) {
 previous_header <- no-op
 while (not_empty(stream)) {
 current_header <- get_8_bits(stream)
 previous_body <- get_n_bits(stream,

body_length(previous_header))
 process_command(previous_header, previous_body)
 previous_header <- current_header
 }
}

One slight complexity: theget_8_bits() only extracts six bits of header for th
color or normal subcommand of avertex command. It extracts a full eight bits
of header in all other cases.

B.13.2 Variable-Length Command to Command

The three decompression tables contain entries for each different numeri
describing whether the value in the stream is absolute or relative, and lengt
shift constants describing how to convert the variable-length bit field back in
fixed-length value. The fixed-length value for position and color componen
16 bits in length (sign, unit, 14 fraction); the fields for normal angles are 7
(signed), and 3 each for sextant and octant (if present).

B.13.3 Delta Position to Position

absolute_position(x, y, z):
cur_x ← x, cur_y ← y, cur_z ← z
405Version 1.1 Alpha 01, February 27, 1998

B.13.4 Delta Color to Color 3D GEOMETRY COMPRESSION

406
relative_position(∆x, ∆y, ∆z):
cur_x ← cur_x + ∆x, cur_y ← cur_y + ∆y, cur_z ← cur_z + ∆z

B.13.4 Delta Color to Color

absolute_color(r, g, b {, α}):
cur_r ← r, cur_g ← g, cur_b ← b, {cur_α ← α }

relative_color(∆r, ∆g, ∆b {, ∆α}):
cur_r ← cur_r + ∆r, cur_g ← cur_g + ∆g, cur_b ← cur_b + ∆b,
{cur_α ← cur_α + ∆α }

B.13.5 Encoded Delta Normal to Encoded Normal

State:cur_oct, cur_sex, cur_u, cur_v

absolute_normal(oct, sex, u, v):
cur_oct ← oct, cur_sex ← sex, cur_u ← u, cur_v ← v,

relative_normal(∆u, ∆v):

cur_u ← cur_u + ∆u, cur_v ← cur_v + ∆v,
if (cur_u < 0)

cur_u ← -cur_u, cur_sex ← flip_u[cur_sex]
else if (cur_v < 0)

cur_v ← -cur_v, cur_oct ← cur_oct <xor> flip_v[cur_sex]
else if (cur_u + cur_v > 64)

cur_u ← 64 - cur_u, cur_v ← 64 - cur_v,
cur_sex ← flip_uv[cur_sex]

flip_u[6] = { 4, 5, 3, 2, 0, 1 }
flip_v[6] = { 2, 4, 1, 1, 2, 4 }
flip_uv[6] = { 2, 3, 0, 1, 5, 4 }

B.13.6 Encoded Normal to Rectilinear Normal

nx ← norms[v,u].nx, ny ← norms[v,u].ny, nz ←
norms[v,u].nz,
if (cur_sex & 4) t ← nx, nx ← nz, nz ← t
if (cur_sex & 2) t ← ny, ny ← nz, nz ← t
if (cur_sex & 1) t ← nx, nx ← ny, ny ← t
if (cur_oct & 1) nz ← -nz
Java 3D API Specification

3D GEOMETRY COMPRESSION Command to VertexB.14.1

of

state
d that

ficient

and to
ernal

nt
if (cur_oct & 2) ny ← -ny
if (cur_oct & 4) nx ← -nx

The contents of thenorms[] table is exactly specified, and the next revision
this specification will contain an exact listing of the values.

B.14 Semantics of Vertices

The formal semantics of the vertex processing is best described by a
description of the decompression process. Once again it must be emphasize
these state descriptions are given to show the formal semantics, not an ef
implementation.

B.14.1 Command to Vertex

This section describes the state change semantics caused by each comm
generate the next output vertex, prior to assembly into triangles. The int
state consists of the six mode bits, a current normal and current color,normal_

override andcolor_override bits, the 16 mesh buffer vertices, and the curre
mesh index.

normal(n):
current_normal ← n, normal_override ← 1

color(c):
current_color ← c, color_override ← 1

vertex(rep, mbp, p {, n} {, c}):

current_position ← p,
if (bnv) current_normal ← n,
if (bcv) current_color ← c,
output_vertex(rep, current_position, current_normal, current_
color)
if (mbp) mesh_buffer[oldest_mesh_index].position ← p
if (mbp && bnv) mesh_buffer[mesh_index].normal ← n
if (mbp && bcv) mesh_buffer[mesh_index].color ← c
if (mbp) mesh_index ← (mesh_index+1) & 15
normal_override ← 0, color_override ← 0
407Version 1.1 Alpha 01, February 27, 1998

B.14.2 Vertex to Intermediate Triangle 3D GEOMETRY COMPRESSION

408

lace-
trian-
mesh buffer reference(rep, i):

current_position ←
mesh_buffer[(mesh_index - i - 1) & 15].position

if (bnv && !normal_override)
 current_normal ←mesh_buffer[(mesh_index - i - 1) & 15].normal
if (bcv && !color_override)
 current_color ← mesh_buffer[(mesh_index - i - 1) & 15].color
output_vertex(rep, current_position, current_normal, current_
color)

set state(new_bnv, new_bcv, new_cap, new_tex):

bnv ← new_bnv,
bcv ← new_bcv,
cap ← new_cap,
tex ← new_tex

set table(address, range, entry):
…

passthrough(data):
 (null)

vnop(length):
 (null)

B.14.2 Vertex to Intermediate Triangle

This section describes the formal semantics of assembling vertices with rep
ment commands into nearly finished triangles: the semantics of generalized
gle strips.

output_vertex(restart clockwise, newv):
newest ← newv, number_of_vertices ← 1, ccw = 0

output_vertex(restart counterclockwise, newv):
newest ← newv, number_of_vertices ← 1, ccw = 1
Java 3D API Specification

3D GEOMETRY COMPRESSION Intermediate Triangle to Final TriangleB.14.3

antics
ngles
unter-
output_vertex(replace_middle, newv):

if (number_of_vertices < 2)
midlest ← newest, newest ← newv, number_of_vertices++

else if (number_of_vertices < 3)
oldest ← midlest, midlest ← newest, newest ← newv,
number_of_vertices++,
intermediate_triangle(ccw, oldest, midlest, newest)

else if (number_of_vertices == 3)
midlest ← newest, newest ← newv,
intermediate_triangle(ccw, oldest, midlest, newest)

output_vertex(replace_oldest, newv):

if (number_of_vertices < 2)
midlest ← newest, newest ← newv, number_of_vertices++

else if (number_of_vertices < 3)
oldest ← midlest, midlest ← newest, newest ← newv,
number_of_vertices++,
intermediate_triangle(ccw, oldest, midlest, newest)

else if (number_of_vertices == 3)
oldest ← midlest, midlest ← newest, newest ← newv,
ccw = 1 - ccw,
intermediate_triangle(ccw, oldest, midlest, newest)

B.14.3 Intermediate Triangle to Final Triangle

The final stage is to take into account the currentrnt andrct mode bits settings.
These control the semantics of the normal and color vertex data. The sem
of the counterclockwise bit also can be expressed here; thus, the final tria
can always be assumed to be front facing when their vertices appear in co
clockwise order.

intermediate_triangle(ccw, v1, v2, v3):

if (ccw)
 final_triangle(v1.position, v1.normal, v1.color,

 v2.position, v2.normal, v2.color,
 v3.position, v3.normal, v3.color)

else if (!ccw)
 final_triangle(v2.position, v2.normal, v2.color,

 v1.position, v1.normal, v1.color,
 v3.position, v3.normal, v3.color)
409Version 1.1 Alpha 01, February 27, 1998

B.15 Outline of Geometry Process 3D GEOMETRY COMPRESSION

410

com-
com-
 the

 for-
iven

 such
in
ular-
i-

eral-
lysis-

 and/
 the
ere.

 box
n all
the

ing
ding

box,
 box
B.15 Outline of Geometry Process

Java 3D only formally defines the geometry compression format and the de
pression semantics. Authoring tools are free to employ whatever geometry
pression algorithms they choose, as long as the results adhere to
specifications described in the previous sections.

However, to further document the semantics of the geometry compression
mat, an overview of one particular geometry compression algorithm is g
here.

B.15.1 Compressing Geometry Data

Group the geometry to be compressed into separate rigid objects. Typically
objects will be individually culled during rendering, so you should not jo
objects too extensively prior to compression. In optimized systems, the gran
ity of object splitting will be computed by an algorithm that takes culling optim
zation into account.

B.15.2 Convert to Generalized Mesh Format

Once a group of geometry has been identified, it is next converted into gen
ized mesh format. This is a complex step, and a number of topological ana
based algorithms have been applied to it.

The next step is the quantization of the geometry positions, colors, normals,
or texture map coordinates. All these quantizations can be varied within
geometry, but for simplicity a single fixed quantization of each is assumed h

B.15.3 Position

Normalize the position data.

The containing bounding box for the object is computed. This is the minimal
such that all geometry vertices are contained within it. The vertices are the
normalized to be contained within this bounding box by first subtracting
XYZ location of the bounding box center from the vertex XYZ and then divid
all the XYZ vertex values by the half length of the longest side of the boun
box. Thus all normalized positions will be within the±1 unit cube. A constant
matrix transform corresponding to an offset to the center of the bounding
and an inverse scale by the half length of the longest side of the bounding
are created as a prologue for the geometry data.
Java 3D API Specification

3D GEOMETRY COMPRESSION NormalsB.15.4

-

-
 2

inal

rmals
mal
oduct
Quantize the position data.

Assuming that position data is to be quantized ton bits, each vertex position
component should be multiplied by the value of 2n and then rounded to the near
est integer.

B.15.4 Normals

Normalize the normals.

Each normal should be normalized to unit length.

Quantize the XYZ components of the normal to 14 bits accuracy

Each normal component should be multiplied by 214, rounded to the nearest inte
ger, and then converted back to floating-point representation and divided by14.

Quantize the XYZ components of the normal to 14 bits accuracy

If an XYZ component of the normal is negative, invert it and save the orig
sign bits as a three-bit octant value:

oct = 0;
if(nx < 0.0) oct |= 4, nx = -nx
if(ny < 0.0) oct |= 2, ny = -ny
if(nz < 0.0) oct |= 1, nz = -nz

Fold the normal to the nX > nZ > nY sextant

Check (in exactly the following order):

sex = 0;
if (nx < ny) t = nx, nx = ny, ny = t, sex |= 1
if (nz < ny) t = ny, ny = nz, nz = t, sex |= 2
if (nx < nz) t = nx, nx = nz, nz = t, sex |= 4

Match the nearest quantized normal representation

Take the dot product of the normal with each of the quantized reference no
in the table for the specified number of quantized normal bits. That UV nor
index for the reference normal that gives the greatest (nearest unity) dot pr
411Version 1.1 Alpha 01, February 27, 1998

B.15.5 Colors 3D GEOMETRY COMPRESSION

412

 sex-

-

 the

color

y. For
onent

is bit

de.
is is

e
ding

 sex-
g-
result is the new quantized normal representation (along with the octant and
tant representation).

Check for special normals

B.15.5 Colors

The colors are assumed to be in a 0.0 to 1.0 representation to begin with.

Quantize the color values.

Assuming that color data is to be quantized ton bits, each vertex color compo
nent (R, G, B, and optionallyα) should be multiplied by the value of 2n and then
rounded to the nearest integer.

Texture map coordinates may appear in place of color components within
compression stream, as controlled by thetex state bit. If 2D texture mapping is
desired, then the UV texture coordinate values take the place of the RG
components in the compression stream (B is not present).

B.15.6 Collect Delta Code Statistics

Make a pass in generalized mesh order through all vertices in the geometr
each successive pair of vertices, compute the difference between their comp
values, compute the bit length of this (signed) difference, and histogram th
length. Specifics for each component type are detailed in the next sections.

B.15.7 Position Delta Code Statistics

Compute∆X, ∆Y, and∆Z. Determine which of these has the greatest magnitu
Compute the number of bits for this component, including one sign bit. Th
the length to be histogrammed for positions.

B.15.8 Color Delta Code Statistics

Compute∆R, ∆G, ∆B, and∆α (if present). Determine which of these has th
greatest magnitude. Compute the number of bits for this component, inclu
one sign bit. This is the length to be histogrammed for colors.

B.15.9 Normal Delta Code Statistics

For a given pair of normals, check to see if they have the same octant and
tant. If so, compute∆U and∆V. Determine which of these has the greatest ma
Java 3D API Specification

3D GEOMETRY COMPRESSION Assign Huffman TagsB.15.10

 bit.

xtants
luding

 The

ng this

other
ss the

t) nor-
e sex-
r this

pres-
 their

ded in

e. The
 in the
fman
nitude. Compute the number of bits for this component, including one sign
This is the length to be histogrammed for this pair of normals.

If the normals have different sextants and/or octants, check to see if their se
share an edge. Depending on what type of edge they share, the delta inc
the change in edges is encoded in one of three ways: U +∆U < 0, V + ∆V < 0,
and U +∆U + V + ∆V > 64. Each case is discussed in the paragraphs below.
sextant numbers are from the binary codes shown in Figure B-3.

Sextants 0 and 4, 1 and 5, and 2 and 3 share the U = 0 edge. When crossi
boundary,∆U becomes ~U –last_u. This will generate a negativecur_u value
during decompression, which causes the decompressor to invertcur_u and look
up the new sextant in a table.

Sextants 0 and 2, 1 and 3, and 4 and 5 share the U + V = 64 edge.∆U becomes
64 – U –last_u and∆V becomes 64 – V –last_v. Whencur_u + cur_v > 64,
the decompressor setscur_u = 64 –cur_u andcur_v = 64 –cur_v, and a table
lookup determines the new sextant.

Each sextant shares the V = 0 edge with its corresponding sextant in an
octant. When in sextants 1 or 5, the normal moves across the X-axis, acro
Y-axis for sextants 0 or 4, and across the Z-axis for sextants 2 or 3.∆V becomes
~V – last_v. The decompressor inverts a negativecur_v and performs a table
lookup for a mask to exclusive-OR with the current octant value.

Otherwise the normals cannot be delta encoded, and so the second (targe
mal must be represented by an absolute reference to its three octant, thre
tant, and 2 N-bit U V addresses. This is the length to be histogrammed fo
pair of normals.

B.15.10 Assign Huffman Tags

Encode data into variable-bit length decompression commands.

One can use an algorithm similar to the one used by the JPEG image com
sion standard. The main differences are how codes are reassigned when
lengths exceed the maximum code length and how the data bits are enco
the compressed data stream.

The frequencies of the data lengths are used as leaf nodes in a binary tre
algorithm used to generate the tree places the less frequent codes deeper
tree. After the tree is built, the traversal path to a leaf node becomes its Huf
code, and the depth in the tree becomes its code length.
413Version 1.1 Alpha 01, February 27, 1998

B.15.11Assemble the Pieces into a Bit Stream 3D GEOMETRY COMPRESSION

414

 must
easing

e the
Codes generated with a length greater than six, the maximum code length,
be shortened. These nodes are merged with more frequent nodes by incr
the number of sign bits included with the smaller data length.

B.15.11 Assemble the Pieces into a Bit Stream

Given the sequence of variable-bit-length decompression commands, shuffl
first eight (six) bits of each command ahead of its predecessor’s body.
Java 3D API Specification

Version 1.1 Alpha 01, February 27, 1998
A P P E N D I X C
 on
must
sing

 must
 model

er to
ove,
 do
odel

ix-
ker,
ages

case,
y
 and
uter
. In

 that
some-
View Model Details

AN application programmer writing a 3D graphics program that will deploy
a variety of platforms must anticipate the likely end-user environments and
carefully construct the view transformations to match those characteristics u
a low-level API. This appendix addresses many of the issues an application
face and describes the sophisticated features that Java 3D’s advanced view
provides.

C.1 An Overview of the Java 3D View Model

Both camera-based and Java 3D–based view models allow a programm
specify the shape of a view frustum and, under program control, to place, m
and re-orient that frustum within the virtual environment. However, how they
this varies enormously. Unlike the camera-based system, the Java 3D view m
allows slaving the view frustum’s position and orientation to that of a s
degrees-of-freedom tracking device. By slaving the frustum to the trac
Java 3D can automatically modify the view frustum so that the generated im
match the end-user’s viewpoint exactly.

Java 3D must handle two rather different head-tracking situations. In one
we rigidly attach a tracker’sbase, and thus its coordinate frame, to the displa
environment. This corresponds to placing a tracker base in a fixed position
orientation relative to a projection screen within a room, relative to a comp
display on a desk, or relative to the walls of a multiple-wall projection display
the second head-tracking situation, we rigidly attach a tracker’ssensor, not its
base, to the display device. This corresponds to rigidly attaching one of
tracker’s sensors to a head-mounted display and placing the tracker base
where within the physical environment.
415

C.2 Physical Environments and Their Effects VIEW MODEL DETAILS

416

plica-
et’s
m

, but

ntly

ith a
arpet
ven
nderer
ectly
ead-
ience

room
et’s
nflu-
 then
 if the
 rep-

com-
s the

gnifi-
ardly

ser’s
C.2 Physical Environments and Their Effects

Imagine an application where the end user sits on a magic carpet. The ap
tion flies the user through the virtual environment by controlling the carp
location and orientation within the virtual world. At first glance, it might see
that the application also controls what the end user will see—and it does
only superficially.

The following two examples show how end-user environments can significa
affect how an application must construct viewing transformations.

C.2.1 A Head-mounted Example

Imagine that the end user sees the magic carpet and the virtual world w
head-mounted display and head tracker. As the application flies the c
through the virtual world, the user may turn to look to the left, right, or e
toward the rear of the carpet. Because the head tracker keeps the re
informed of the user’s gaze direction, it might not need to draw the scene dir
in front of the magic carpet. The view that the renderer draws on the h
mount’s display must match what the end user would see had the exper
occurred in the real world.

C.2.2 A Room-mounted Example

Imagine a slightly different scenario, where the end user sits in a darkened
in front of a large projection screen. The application still controls the carp
flight path; however, the position and orientation of the user’s head barely i
ences the image drawn on the projection screen. If a user looks left or right,
he or she only sees the darkened room. The screen does not move. It’s as
screen represents the magic carpet’s “front window” and the darkened room
resents the “dark interior” of the carpet.

By adding a left and right screen, we give the magic carpet rider a more
plete view of the virtual world surrounding the carpet. Now our end user see
view to the left or right of the magic carpet by turning left or right.

C.2.3 Impact of Head Position and Orientation on the Camera

In the head-mounted example, the user’s head position and orientation si
cantly affects a camera model’s camera position and orientation but has h
any effect on the projection matrix. In the room-mounted example, the u
Java 3D API Specification

VIEW MODEL DETAILS Room-mounted Coordinate SystemsC.3.1

posi-

ct the
(the
nent

nsate

ng on
head-
unted
uced

sys-
e sys-
 the
nce
head position and orientation contributes little to a camera model’s camera
tion and orientation; however, it does affect the projection matrix.

From a camera-based perspective, the application developer must constru
camera’s position and orientation by combining the virtual-world component
position and orientation of the magic carpet) and the physical-world compo
(the user’s instantaneous head position and orientation).

Java 3D’s view model incorporates the appropriate abstractions to compe
automatically for such variability in end-user hardware environments.

C.3 The Coordinate Systems

The basic view model consists of eight or nine coordinate systems, dependi
whether the end-user environment consists of a room-mounted display or a
mounted display. First we define the coordinate systems used in a room-mo
display environment. Next we define the added coordinate system introd
when using a head-mounted display system.

C.3.1 Room-mounted Coordinate Systems

The room-mounted coordinate system is divided into the virtual coordinate
tem and the physical coordinate system. Figure C-1 shows these coordinat
tems graphically. The coordinate systems within the grayed area exist in
virtual world; those outside exist in the physical world. Note that the coexiste
coordinate system exists in both worlds.

Figure C-1 Display Rigidly Attached to the Tracker Base

Coexistence

Virtual

ViewPlatform Vworld

Head Head Tracker Tracker Base Other Trackers

Image Plate
LCC

RCC

Fishtank Mode
417Version 1.1 Alpha 01, February 27, 1998

C.3.1 Room-mounted Coordinate Systems VIEW MODEL DETAILS

418

stem
 vir-
 the
tem

 the

 of
tab-
ithin

rld.
tual
 coor-

 the
 sys-
for-
ical
orld

 the
va 3D
ify-
C.3.1.1 The Virtual Coordinate Systems

The Virtual World Coordinate System

The virtual world coordinate system encapsulates the unified coordinate sy
for all scene graph objects in the virtual environment. For a given View, the
tual world coordinate system is defined by the Locale object that contains
ViewPlatform object attached to the View. It is a right-handed coordinate sys
with +x to the right, +y up, and +z toward the viewer.

The ViewPlatform Coordinate System

The ViewPlatform coordinate system is the local coordinate system of
ViewPlatform leaf node to which the View is attached.

The Coexistence Coordinate System

A primary implicit goal of any view model is to map a specified local portion
the physical world onto a specified portion of the virtual world. Once es
lished, one can legitimately ask where the user’s head or hand is located w
the virtual world, or where a virtual object is located in the local physical wo
In this way the physical user can interact with objects inhabiting the vir
world, and vice versa. To establish this mapping, Java 3D defines a special
dinate system, calledcoexistence coordinates, that is defined to exist inboth the
physical world and the virtual world.

The coexistence coordinate system exists half in the virtual world and half in
physical world. The two transforms that go from the coexistence coordinate
tem to the virtual world coordinate system and back again contain all the in
mation needed to expand or shrink the virtual world relative to the phys
world, as well as the information needed to position and orient the virtual w
relative to the physical world.

Modifying the transform that maps the coexistence coordinate system into
virtual world coordinate system changes what the end user can see. The Ja
application programmer moves the end user within the virtual world by mod
ing this transform.
Java 3D API Specification

VIEW MODEL DETAILS Head-mounted Coordinate SystemsC.3.2

head
frame

e sys-
at the
s
r left
efined
ordi-

edom
ystem

d with
lative
itial
d to

tems
stems

 sys-
 the

 both
oom-
ordi-
 sys-
C.3.1.2 The Physical Coordinate Systems

The Head Coordinate System

The head coordinate system allows an application to import its user’s
geometry. The coordinate system provides a simple consistent coordinate
for specifying such factors as the location of the eyes and ears.

The Image Plate Coordinate System

The image plate coordinate system corresponds with the physical coordinat
tem of the image generator. The image plate is defined as having its origin
lower left-hand corner of the display area and as lying in the display area’XY
plane. Note that image plate is a different coordinate system than eithe
image plate or right image plate. These last two coordinate systems are d
in head-mounted environments only (see Section C.3.2, “Head-mounted Co
nate Systems”).

The Head Tracker Coordinate System

The head tracker coordinate system corresponds to the six-degrees-of-fre
tracker’s sensor attached to the user’s head. The head tracker’s coordinate s
describes the user’s instantaneous head position.

The Tracker Base Coordinate System

The tracker base coordinate system corresponds to the emitter associate
absolute position/orientation trackers. For those trackers that generate re
position/orientation information, this coordinate system is that tracker’s in
position and orientation. In general, this coordinate system is rigidly attache
the physical world.

C.3.2 Head-mounted Coordinate Systems

Head-mounted coordinate systems divide the same virtual coordinate sys
and the physical coordinate systems. Figure C-2 shows these coordinate sy
graphically. As with the room-mounted coordinate systems, the coordinate
tems within the grayed area exist in the virtual world; those outside exist in
physical world. Once again, the coexistence coordinate system exists in
worlds. The arrangement of the coordinate system differs from those for a r
mounted display environment. The head-mounted version of Java 3D’s co
nate system differs in another way. It includes two image plate coordinate
tems, one for each of an end-user’s eyes.
419Version 1.1 Alpha 01, February 27, 1998

C.4 The ViewPlatform Object VIEW MODEL DETAILS

420

 with
e left
t the

el
e
iron-

The
des
 scene
tion
ce

ol-
m-

of a
o be
irectly
ect
Figure C-2 Display Rigidly Attached to the Head Tracker (Sensor)

The Left Image Plate and Right Image Plate Coordinate Systems

The left image plate and right image plate coordinate systems correspond
the physical coordinate system of the image generator associated with th
and right eye, respectively. The image plate is defined as having its origin a
lower left-hand corner of the display area and lying in the display area’sXY
plane. Note that the left image plate’sXY plane does not necessarily lie parall
to the right image plate’sXY plane. Note that left image plate and right imag
plate are different coordinate systems than the room-mounted display env
ment’s image plate coordinate system.

C.4 The ViewPlatform Object

The ViewPlatform object is a leaf object within the Java 3D scene graph.
ViewPlatform object is the only portion of Java 3D’s viewing model that resi
as a node within the scene graph. Changes to TransformGroup nodes in the
graph hierarchy above a particular ViewPlatform object move the view’s loca
and orientation within the virtual world (see Section 8.4, “ViewPlatform: A Pla
in the Virtual World”). The ViewPlatform object also contains a ViewAttachP
icy and an ActivationRadius (see Section 5.10, “ViewPlatform Node,” for a co
plete description of the ViewPlatform API).

C.5 The View Object

The View object is the central Java 3D object for coordinating all aspects
viewing situation. All parameters that determine the viewing transformation t
used in rendering on a collected set of canvases in Java 3D are either d
contained within the View object, or within objects pointed to by a View obj

LCC

RCC

Left Image Plate

Right Image Plate
Head Tracker

Head

Tracker Base

Other Trackers ViewPlatform Vworld

Virtual

Head-mounted Display (HMD) Mode

Coexistence
Java 3D API Specification

VIEW MODEL DETAILS View Policy C.5.1

ctive

 most

of six-

 This
trans-
ad-

atedly

 the
nsfor-

 The
new
(or pointed to by these, etc.). Java 3D supports multiple simultaneously a
View objects, each of which controls its own set of canvases.

The Java 3D View object has several instance variables and methods, but
are calibration variables or user-helping functions.

Methods

public final void setTrackingEnable(boolean flag)
public final boolean getTrackingEnable()

These methods set and retrieve a flag specifying whether to enable the use
degrees-of-freedom tracking hardware.

public final void getUserHeadToVworld(Transform3D t)

This method retrieves the user-head-to-vworld coordinate system transform.
Transform3D object takes points in the user’s head coordinate system and
forms them into points in the virtual world coordinate system. This value is re
only. Java 3D continually generates it, but only if enabled by using thesetUser-

HeadToVworldEnable method.

public final void setUserHeadToVworldEnable(boolean flag)
public final boolean getUserHeadToVworldEnable()

These methods set and retrieve a flag that specifies whether or not to repe
generate the user-head-to-vworld transform (initiallyfalse).

public String toString()

This method returns a string that contains the values of this View object.

C.5.1 View Policy

The view policy informs Java 3D whether it should generate the view using
head-tracked system of transformations or the head-mounted system of tra
mations. These policies are attached to the Java 3D View object.

Methods

public final void setViewPolicy(int policy)
public final int getViewPolicy()

These two methods set and retrieve the current policy for view computation.
policy variable specifies how Java 3D uses its transforms in computing
viewpoints, as follows:
421Version 1.1 Alpha 01, February 27, 1998

C.5.2 Screen Scale Policy VIEW MODEL DETAILS

422

ints
based
jec-

us-
envi-
ee

en the

licy

tach
.

 when
s

ron-
d on
. The
t can
• SCREEN_VIEW: Specifies that Java 3D should compute new viewpo
using the sequence of transforms appropriate to nonattached, screen-
head-tracked display environments, such as fishtank VR, multiple-pro
tion walls, and VR desks. This is the default setting.

• HMD_VIEW: Specifies that Java 3D should compute new viewpoints
ing the sequence of transforms appropriate to head-mounted display
ronments. This policy is not available in compatibility mode (s
Section C.11, “Compatibility Mode”).

C.5.2 Screen Scale Policy

The screen scale policy specifies where the screen scale comes from wh
view attach policy isNOMINAL_SCREEN_SCALED (see Section 8.4.3, “View Attach
Policy”). The policy can be one of the following:

• SCALE_EXPLICIT: Specifies that the scale used for a view attach po
of NOMINAL_SCREEN_SCALED is taken from the user-providednomi-
nalScreenScale variable.

• SCALE_SCREEN_SIZE: Specifies that the scale used for a view at
policy of NOMINAL_SCREEN_SCALED is derived from the physical screen
This is the default policy.

public final void setScreenScalePolicy(int policy)
public final int getScreenScalePolicy()

These methods set and retrieve the current screen scale policy.

public final void setScreenScale(double scale)
public final double getScreenScale()

These methods set and retrieve the screen scale value. This value is used
the view attach policy isNOMINAL_SCREEN_SCALED and the screen scale policy i
SCALE_EXPLICIT.

C.5.3 Window Eyepoint Policy

The window eyepoint policy comes into effect in a non-head-tracked envi
ment. The policy tells Java 3D how to construct a new view frustum base
changes in the field of view and in the Canvas3D’s location on the screen
policy only comes into effect when the application changes a parameter tha
change the placement of the eyepoint relative to the view frustum.
Java 3D API Specification

VIEW MODEL DETAILS Monoscopic View PolicyC.5.4

it is
ified

pli-
This

ntire
va 3D
 that
n of a

rma-
es a
ative
here
ew is

 non-
lues:
Constants

public static final int RELATIVE_TO_FIELD_OF_VIEW

This variable tells Java 3D that it should modify the eyepoint position so
located at the appropriate place relative to the window to match the spec
field of view. This implies that the view frustum will change whenever the ap
cation changes the field of view. In this mode, the eye position is read-only.
is the default setting.

public static final int RELATIVE_TO_SCREEN

This variable tells Java 3D to interpret the eye’s position relative to the e
screen. No matter where an end user moves a window (a Canvas3D), Ja
continues to interpret the eye’s position relative to the screen. This implies
the view frustum changes shape whenever an end user moves the locatio
window on the screen. In this mode, the field of view is read-only.

public static final int RELATIVE_TO_WINDOW

This variable specifies that Java 3D should interpret the eye’s position info
tion relative to the window (Canvas3D). No matter where an end user mov
window (a Canvas3D), Java 3D continues to interpret the eye’s position rel
to that window. This implies that the frustum remains the same no matter w
the end user moves the window on the screen. In this mode, the field of vi
read-only.

Methods

public final int getWindowEyepointPolicy()
public final void setWindowEyepointPolicy(int policy)

This variable specifies how Java 3D handles the predefined eyepoint in a
head-tracked application. The variable can contain one of three va
RELATIVE_TO_FIELD_OF_VIEW, RELATIVE_TO_SCREEN, or RELATIVE_TO_WINDOW.
The default value isRELATIVE_TO_FIELD_OF_VIEW.

C.5.4 Monoscopic View Policy

This policy specifies how Java 3D generates a monoscopic view.
423Version 1.1 Alpha 01, February 27, 1998

C.5.5 Sensors and Their Location in the Virtual World VIEW MODEL DETAILS

424

cifies
 sec-
 from
e the
 left

vworld
 sen-
ates.
 vir-

 com-
ith-

splay
a dis-
Constants

public final static int LEFT_EYE_VIEW
public final static int RIGHT_EYE_VIEW
public final static int CYCLOPEAN_EYE_VIEW

These constants specify the monoscopic view policy. The first constant spe
that the monoscopic view should be the view as seen from the left eye. The
ond constant specifies that the monoscopic view should be the view as seen
the right eye. The third constant specifies that the monoscopic view should b
view as seen from the “center eye,” the fictional eye half-way between the
and right eyes. This is the default setting.

Methods

public final void setMonoscopicViewPolicy(int policy)
public final int getMonoscopicViewPolicy()

These methods set and return the monoscopic view policy, respectively.

C.5.5 Sensors and Their Location in the Virtual World

public final void getSensorToVworld(Sensor sensor, Transform3D t)
public final void getSensorHotSpotInVworld(Sensor sensor,

Point3d position)
public final void getSensorHotSpotInVworld(Sensor sensor,

Point3f position)

The first method takes the sensor’s last reading and generates a sensor-to-
coordinate system transform. This Transform3D object takes points in that
sor’s local coordinate system and transforms them into virtual world coordin
The next two methods retrieve the specified sensor’s last hotspot location in
tual world coordinates.

C.6 The Screen3D Object

A Screen3D object represents one independent display device. The most
mon environment for a Java 3D application is a desktop computer with or w
out a head tracker. Figure C-3 shows a scene graph fragment for a di
environment designed for such an end-user environment. Figure C-4 shows
play environment that matches the scene graph fragment in Figure C-3.
Java 3D API Specification

VIEW MODEL DETAILS The Screen3D Object C.6

uch
ws a
e cor-

and
with

coex-
Figure C-3 A Portion of a Scene Graph Containing a Single Screen3D Object

Figure C-4 A Single-Screen Display Environment

A multiple-projection wall display presents a more exotic environment. S
environments have multiple screens, typically three or more. Figure C-5 sho
scene graph fragment representing such a system and Figure C-6 shows th
responding display environment.

A multiple-screen environment requires more care during the initialization
calibration phase. Java 3D must know how the Screen3D’s are placed
respect to one another, the tracking device, and the physical portion of the
istence coordinate system.

VP
View Canvas3D Screen3D

Physical
Body

Physical
Environment

TGTransformGroup

ViewPlatform
425Version 1.1 Alpha 01, February 27, 1998

C.6.1 Screen3D Calibration Parameters VIEW MODEL DETAILS

426

8.8,
gram
thods
ters.

 pro-
Figure C-5 A Portion of a Scene Graph Containing Three Screen3D Objects

Figure C-6 A Three-Screen Display Environment

C.6.1 Screen3D Calibration Parameters

The Screen3D object is the 3D version of AWT’s screen object (see Section
“The Screen3D Object”). To use a Java 3D system, someone or some pro
must calibrate the Screen3D object with the coexistence volume. These me
allow that person or program to inform Java 3D of those calibration parame

Measured Parameters

These calibration parameters are set once, typically by a browser, calibration
gram, system administrator, or system calibrator, not by an applet.

VP
View Canvas3D Screen3D

Physical
Body

Physical
Environment

TGTransformGroup

ViewPlatform

Canvas3D Screen3D

Canvas3D Screen3D
Java 3D API Specification

VIEW MODEL DETAILS The Canvas3D Object C.7

ht in
alues
ead-
t the

ystem
nt. If
ly in
 rel-

acker-
king
s not

ulate
ation
ate a
The
com-
sition
public final void setPhysicalScreenWidth(double width)
public final void setPhysicalScreenHeight(double height)

These methods store the screen’s (image plate’s) physical width and heig
meters. The system administrator or system calibrator must provide these v
by measuring the display’s active image width and height. In the case of a h
mounted display, this should be the display’s apparent width and height a
focal plane.

C.6.2 Accessing and Changing Head Tracker Coordinates

public void setTrackerBaseToImagePlate(Transform3D t)
public void getTrackerBaseToImagePlate(Transform3D t)

These methods set and get the tracker-base-to-image-plate coordinate s
transform. If head tracking is enabled, this transform is a calibration consta
head tracking is not enabled, this transform is not used. This is used on
SCREEN_VIEW mode. Users must recalibrate whenever the image plate moves
ative to the tracker.

public void setHeadTrackerToLeftImagePlate(Transform3D t)
public void getHeadTrackerToLeftImagePlate(Transform3D t)
public void setHeadTrackerToRightImagePlate(Transform3D t)
public void getHeadTrackerToRightImagePlate(Transform3D t)

These methods set and get the head-tracker-to-left-image-plate and head-tr
to-right-image-plate coordinate system transforms, respectively. If head trac
is enabled, these transforms are calibration constants. If head tracking i
enabled, these transforms are not used. They are used only inHMD_VIEW mode.

C.7 The Canvas3D Object

Java 3D provides special support for those applications that wish to manip
an eye position even in a non-head-tracked display environment. One situ
where such a facility proves useful is an application that wishes to gener
very high-resolution image composed of lower-resolution tiled images.
application must generate each tiled component of the final image from a
mon eye position with respect to the composite image but a different eye po
from the perspective of each individual tiled element.
427Version 1.1 Alpha 01, February 27, 1998

C.7.1 Scene Antialiasing VIEW MODEL DETAILS

428

avail-

eye’s
. It
age

nd the
. In

ad-
of the
n the

age

es in
 head
n in
C.7.1 Scene Antialiasing

public final boolean getSceneAntialiasingAvailable()

This method returns a status flag indicating whether scene antialiasing is
able.

C.7.2 Accessing and Modifying an Eye’s Image Plate Position

A Canvas3D object provides sophisticated applications with access to the
position information in head-tracked, room-mounted runtime environments
also allows applications to manipulate the position of an eye relative to an im
plate in non-head-tracked runtime environments.

public final void getLeftEyeInImagePlate(Point3d position)
public final void getRightEyeInImagePlate(Point3d position)
public final void getCenterEyeInImagePlate(Point3d position)

These values determine eye placement when a head tracker is not in use a
application is directly controlling the eye position in image plate coordinates
head-tracked mode or when thewindowEyepointPolicy is RELATIVE_TO_

FIELD_OF_VIEW, this value is derived from other values and is read-only. In he
tracked mode, Java 3D repetitively generates these values as a function
current head position. The center eye is the fictional eye half-way betwee
left and right eye.

public final void getPixelLocationInImagePlate(int x, int y,
Point3d position)

This method computes the position of the specified AWT pixel value in im
plate coordinates and copies that value into the object provided.

public final void setLeftManualEyeInImagePlate(Point3d position)
public final void setRightManualEyeInImagePlate(Point3d position)
public final void getLeftManualEyeInImagePlate(Point3d position)
public final void getRightManualEyeInImagePlate(Point3d position)

These methods set and retrieve the position of the manual left and right ey
image plate coordinates. These values determine eye placement when a
tracker is not in use and the application is directly controlling the eye positio
image plate coordinates. In head-tracked mode or when thewindowEyepoint-

Policy is RELATIVE_TO_FIELD_OF_VIEW, this value is ignored. When thewin-
dowEyepointPolicy is RELATIVE_TO_WINDOW, only theZ value is used.
Java 3D API Specification

VIEW MODEL DETAILS The PhysicalBody Object C.8

tem

tem

w, in

cter-
pecify
ion so
head
istent
 thus

sym-
ead

 and
public final void getVworldToImagePlate(Transform3D t)

This method retrieves the current virtual-world-to-image-plate coordinate sys
transform and places it into the specified object.

public final void getImagePlateToVworld(Transform3D t)

This method retrieves the current image-plate-to-virtual-world coordinate sys
transform and places it into the specified object.

C.7.3 Canvas Width and Height

public final double getPhysicalWidth()
public final double getPhysicalHeight()

These methods retrieve the physical width and height of this canvas windo
meters.

C.8 The PhysicalBody Object

The PhysicalBody object contains information concerning the physical chara
istics of the end-user’s body. The head parameters allow end users to s
their own head’s characteristics and thus to customize any Java 3D applicat
that it conforms to their unique geometry. The PhysicalBody object defines
parameters in the head coordinate system. It provides a simple and cons
coordinate frame for specifying such factors as the location of the eyes and
the interpupilary distance.

The Head Coordinate System

The head coordinate system has its origin on the head’s bilateral plane of
metry, roughly half-way between the left and right eyes. The origin of the h
coordinate system is known as thecenter eye. The positiveX-axis extends to the
right. The positiveY-axis extends up. The positiveZ-axis extends into the skull.
Values are in meters.

Constructors

public PhysicalBody()

Constructs a default user PhysicalBody object with the following default eye
ear positions:

Left eye: –0.033, 0.0, 0.0
429Version 1.1 Alpha 01, February 27, 1998

C.8 The PhysicalBody Object VIEW MODEL DETAILS

430

d ear

ser’s

 posi-

d from
moni-
tion

sture

 of the
 the
Right eye: 0.033, 0.0, 0.0
Left ear: –0.080, –0.030, 0.095
Right ear: 0.080, –0.030, 0.095

public PhysicalBody(Point3d leftEyePosition,
Point3d rightEyePosition)

public PhysicalBody(Point3d leftEyePosition,
Point3d rightEyePosition, Point3d leftEarPosition,
Point3d rightEarPosition)

These methods construct a PhysicalBody object with the specified eye an
positions.

Methods

public void getLeftEyePosition(Point3d position)
public void setLeftEyePosition(Point3d position)
public void getRightEyePosition(Point3d position)
public void setRightEyePosition(Point3d position)

These methods set and retrieve the position of the center of rotation of a u
left and right eyes in head coordinates.

public void getLeftEarPosition(Point3d position)
public void setLeftEarPosition(Point3d position)
public void getRightEarPosition(Point3d position)
public void setRightEarPosition(Point3d position)

These methods set and retrieve the position of the user’s left and right ear
tions in head coordinates.

public double getNominalEyeHeightFromGround()
public void setNominalEyeHeightFromGround(double height)

These methods set and retrieve the user’s nominal eye height as measure
the ground to the center eye in the default posture. In a standard computer
tor environment, the default posture would be seated. In a multiple-projec
display room environment or a head-tracked environment, the default po
would be standing.

public double getNominalEyeOffsetFromNominalScreen()
public void setNominalEyeOffsetFromNominalScreen(double offset)

These methods set and retrieve the offset from the center eye to the center
display screen. This offset distance allows an “over the shoulder” view of
scene as seen by the end user.
Java 3D API Specification

VIEW MODEL DETAILS The PhysicalEnvironment Object C.9

 trans-
ead

 both

bject.

ical
out

ject.
 fol-

vices
stick
,” for
ous

ng”).

ows
 than
ered
elds
public void setHeadToHeadTracker(Transform3D t)
public void getHeadToHeadTracker(Transform t)

These methods set and retrieve the head-to-head-tracker coordinate system
form. If head tracking is enabled, this transform is a calibration constant. If h
tracking is not enabled, this transform is not used. This transform is used in
SCREEN_VIEW andHMD_VIEW modes.

public String toString()

This method returns a string that contains the values of this PhysicalBody o

C.9 The PhysicalEnvironment Object

The PhysicalEnvironment object contains information about the local phys
world of the end-user’s physical environment. This includes information ab
audio output devices and tracking sensor hardware, if present.

Constructors

public PhysicalEnvironment()
public PhysicalEnvironment(int sensorCount)

These constructors construct and initialize a new PhysicalEnvironment ob
The first constructor constructs a new PhysicalEnvironment object with the
lowing default sensor and audio fields, and an array ofsensorCount sensor
objects.

Audio device count: 1
Audio devices: null
Input sensor count: 10
Tracking available: false
Input sensors: null

The sensor information provides real-time access to continuous-input de
such as joysticks and trackers. It also contains two-degrees-of-freedom joy
and six-degrees-of-freedom tracker information. See Section 10.2, “Sensors
more information. Java 3D uses Java AWT’s event model for noncontinu
input devices such as keyboards (see Chapter 10, “Input Devices and Picki

Audio device information associated with the PhysicalEnvironment object all
the application a mechanism to choose a particular audio device (if more
one is available) and explicitly set the type of audio playback for sound rend
using this device. See Chapter 11, “Audio Devices,” for more details on the fi
431Version 1.1 Alpha 01, February 27, 1998

C.9 The PhysicalEnvironment Object VIEW MODEL DETAILS

432

soci-

g to

ough

within
s. It
ment

sform.
rack-

ble.

vided.
and methods that set and initialize the device driver and output playback as
ated with the audio device.

Methods

The PhysicalEnvironment object specifies the following methods pertainin
audio output devices and input sensors.

public void setAudioDevice(AudioDevice device)

This method selects the specified AudioDevice object as the device thr
which audio rendering for this PhysicalEnvironment will be performed.

public AudioDevice getAudioDevice()

This retrieves the specified AudioDevice object.

public void setSensorCount(int count)
public int getSensorCount()

These methods set and retrieve the count of the number of sensors stored
the PhysicalEnvironment object. It defaults to a small number of sensor
should be set to the number of sensors available in the end-user’s environ
before initializing the Java 3D API.

public void setCoexistenceToTrackerBase(Transform3D t)
public void getCoexistenceToTrackerBase(Transform3D t)

These methods set the coexistence-to-tracker-base coordinate system tran
If head tracking is enabled, this transform is a calibration constant. If head t
ing is not enabled, this transform is not used. This is used in bothSCREEN_VIEW

andHMD_VIEW modes.

public boolean getTrackingAvailable()

This method returns a status flag indicating whether or not tracking is availa

public void setSensor(int index, Sensor sensor)
public Sensor getSensor(int index)

The first method sets the sensor specified by the index to the sensor pro
The second method retrieves the specified sensor.

public void setDominantHandIndex(int index)
public int getDominantHandIndex()

These methods set and retrieve the index of the dominant hand.
Java 3D API Specification

VIEW MODEL DETAILS A Room-mounted Display with Head TrackingC.10.1

hand.

 phys-
ye-
ess.

for a
cribe
viron-
 or a
how
isplay

 (for
nta-
a 3D
-user’s
 corre-
public void setNonDominantHandIndex(int index)
public int getNonDominantHandIndex()

These methods set and retrieve the index of the nondominant hand.

public void setHeadIndex(int index)
public int getHeadIndex()
public void setRightHandIndex(int index)
public int getRightHandIndex()
public void setLeftHandIndex(int index)
public int getLeftHandIndex()

These methods set and retrieve the index of the head, right hand, and left
Theindex parameter refers to the sensor index.

Physical Coexistence Policy

public int getCoexistenceCenterInPworldPolicy()
public void setCoexistenceCenterInPworldPolicy(int policy)

These methods set and retrieve the physical coexistence policy used in this
ical environment. This policy specifies how Java 3D will place the user’s e
point as a function of current head position during the calibration proc
Java 3D permits one of three values:NOMINAL_HEAD, NOMINAL_FEET, or NOMI-
NAL_SCREEN. Note:NOMINAL_SCREEN_SCALED is not allowed for this policy.

C.10 Viewing in Head-tracked Environments

Section 8.5, “Generating a View,” describes how Java 3D generates a view
standard flat-screen display with no head tracking. In this section, we des
how Java 3D generates a view in a room-mounted, head-tracked display en
ment—either a computer monitor with shutter glasses and head tracking
multiple-wall display with head-tracked shutter glasses. Finally, we describe
Java 3D generates view matrices in a head-mounted and head-tracked d
environment.

C.10.1 A Room-mounted Display with Head Tracking

When head tracking combines with a room-mounted display environment
example, a standard flat screen display), the ViewPlatform’s origin and orie
tion serves as a base for constructing the view matrices. Additionally, Jav
uses the end-user’s head position and orientation to compute where an end
eyes are located in physical space. Each eye’s position serves to offset the
433Version 1.1 Alpha 01, February 27, 1998

C.10.2 A Head-mounted Display with Head Tracking VIEW MODEL DETAILS

434

e’s
lative
 will
nter-
 end-

also
cked,
n and
 a
o not
 move
 rad-
the
ion
oes
isplay
result.

ge in
nces

t the
those
 ori-

of the
 of

ted,
sing
e in
sponding virtual eye’s position relative to the ViewPlatform’s origin. Each ey
position also serves to specify that eye’s frustum since the eye’s position re
to a Screen3D uniquely specifies that eye’s view frustum. Note that Java 3D
access the PhysicalBody object to obtain information describing the user’s i
pupilary distance and tracking hardware, values it needs to compute the
user’s eye positions from the head position information.

C.10.2 A Head-mounted Display with Head Tracking

In a head-mounted environment, the ViewPlatform’s origin and orientation
serves as a base for constructing view matrices. And, as in the head-tra
room-mounted environment, Java 3D also uses the end-user’s head positio
orientation to further modify the ViewPlatform’s position and orientation. In
head-tracked, head-mounted display environment, an end-user’s eyes d
move relative to their respective display screens, rather, the display screens
relative to the virtual environment. A rotation of the head by an end user can
ically affect the final view’s orientation. In this situation, Java 3D combines
position and orientation from the ViewPlatform with the position and orientat
from the head tracker to form the view matrix. The view frustum, however, d
not change since the user’s eyes do not move relative to their respective d
screen, so Java 3D can compute the projection matrix once and cache the

If any of the parameters of a View object are updated, this will effect a chan
the implicit viewing transform (and thus image) of any Canvas3D that refere
that View object.

C.11 Compatibility Mode

A camera-based view model allows application programmers to think abou
images displayed on the computer screen as if a virtual camera took
images. Such a view model allows application programmers to position and
ent a virtual camera within a virtual scene, to manipulate some parameters
virtual camera’s lens (specify its field of view), and to specify the locations
the near and far clipping planes.

Java 3D allows applications to enable compatibility mode for room-moun
non-head-tracked display environments, or to disable compatibility mode u
the following methods. Camera-based viewing functions are only availabl
compatibility mode.
Java 3D API Specification

VIEW MODEL DETAILS Overview of the Camera-based View ModelC.11.1

 by

D’s
hods

irtual
view
tem
 the

tion,
r.

pecify
ated
The
 dis-
 frus-
ies.

with
ttings,
stum
pping
Methods

public final void setCompatibilityModeEnable(boolean flag)
public final boolean getCompatabilityModeEnable()

This flag turns compatibility mode on or off. Compatibility mode is disabled
default.

Note: Use of these view-compatibility functions will disable some of Java 3
view model features and limit the portability of Java 3D programs. These met
are primarily intended to help jump-start porting of existing applications.

C.11.1 Overview of the Camera-based View Model

The traditional camera-based view model, shown in Figure C-7, places a v
camera inside a geometrically specified world. The camera “captures” the
from its current location, orientation, and perspective. The visualization sys
then draws that view on the user’s display device. The application controls
view by moving the virtual camera to a new location, by changing its orienta
by changing its field of view, or by controlling some other camera paramete

The various parameters that users control in a camera-based view model s
the shape of a viewing volume (known as a frustum because of its trunc
pyramidal shape) and locate that frustum within the virtual environment.
rendering pipeline uses the frustum to decide which objects to draw on the
play screen. The rendering pipeline does not draw objects outside the view
tum and it clips (partially draws) objects that intersect the frustum’s boundar

Though a view frustum’s specification may have many items in common
those of a physical camera, such as placement, orientation, and lens se
some frustum parameters have no physical analog. Most noticeably, a fru
has two parameters not found on a physical camera: the near and far cli
planes.
435Version 1.1 Alpha 01, February 27, 1998

C.11.2 Using the Camera-based View Model VIEW MODEL DETAILS

436

am-
from
close
ying
hich

 cor-
eld of

isting
odel
ains

lping
d to
 thus

jects

ing
Figure C-7 The Camera-based View Model

The location of the near and far clipping planes allow the application progr
mer to specify which objects Java 3D should not draw. Objects too far away
the current eyepoint usually do not result in interesting images. Those too
to the eyepoint might obscure the interesting objects. By carefully specif
near and far clipping planes, an application programmer can control w
objects the renderer will not be drawing.

From the perspective of the display device, the virtual camera’s image plane
responds to the display screen. The camera’s placement, orientation, and fi
view determine the shape of the view frustum.

C.11.2 Using the Camera-based View Model

The camera-based view model allows Java 3D to bridge the gap between ex
3D code and Java 3D’s view model. By using the camera-based view m
methods, a programmer retains the familiarity of the older view model but g
some of the flexibility afforded by Java 3D’s new view model.

The traditional camera-based view model is supported in Java 3D by he
methods in the Transform3D object. These methods were explicitly designe
resemble as closely as possible the view functions of older packages, and
should be familiar to most 3D programmers. The resulting Transform3D ob
can be used to set compatibility-mode transforms in the View object.

C.11.2.1 Creating a Viewing Matrix

The Transform3D object provides the following method to create a view
matrix.

Near Clipping Plane

Far Clipping Plane

View Frustum
Java 3D API Specification

VIEW MODEL DETAILS Using the Camera-based View ModelC.11.2

ing
he
thin
iew’s
e

pro-
or-
nd the

apex
s to

rans-
stems

ction:
r
win-
ee

t the

era-
ping
re in

ction:

f

public void lookAt(Point3d eye, Point3d center, Vector3d up)

This is a utility method that specifies the position and orientation of a view
transform. It works very similarly to the equivalent function in OpenGL. T
inverse of this transform can be used to control the ViewPlatform object wi
the scene graph. Alternatively, this transform can be passed directly to the V
VpcToEc transform via the compatibility-mode viewing functions (se
Section C.11.2.3, “Setting the Viewing Transform”).

C.11.2.2 Creating a Projection Matrix

The Transform3D object provides the following three methods for creating a
jection matrix. All three map points from eye coordinates (EC) to clipping co
dinates (CC). Eye coordinates are defined such that (0, 0, 0) is at the eye a
projection plane is atz = –1.

public void frustum(double left, double right, double bottom,
double top, double near, double far)

Thefrustum method establishes a perspective projection with the eye at the
of a symmetric view frustum. The transform maps points from eye coordinate
clipping coordinates. The clipping coordinates generated by the resulting t
form are in a right-handed coordinate system (as are all other coordinate sy
in Java 3D).

The arguments define the frustum and its associated perspective proje
(left, bottom, -near) and(right, top, -near) specify the point on the nea
clipping plane that maps onto the lower-left and upper-right corners of the
dow, respectively. The-far parameter specifies the far clipping plane. S
Figure C-8.

public void perspective(double fovx, double aspect, double zNear,
double zFar)

Theperspective method establishes a perspective projection with the eye a
apex of a symmetric view frustum, centered about theZ-axis, with a fixed field of
view. The resulting perspective projection transform mimics a standard cam
based view model. The transform maps points from eye coordinates to clip
coordinates. The clipping coordinates generated by the resulting transform a
a right-handed coordinate system.

The arguments define the frustum and its associated perspective proje
-near and-far specify the near and far clipping planes;fovx specifies the field
of view in theX dimension, in radians; andaspect specifies the aspect ratio o
the window. See Figure C-9.
437Version 1.1 Alpha 01, February 27, 1998

C.11.2 Using the Camera-based View Model VIEW MODEL DETAILS

438

tion
maps
ates
m.

e
vely.
Figure C-8 A Perspective Viewing Frustum

Figure C-9 Perspective View Model Arguments

public void ortho(double left, double right, double bottom,
double top, double near, double far)

The ortho method establishes a parallel projection. The orthographic projec
transform mimics a standard camera-based video model. The transform
points from eye coordinates to clipping coordinates. The clipping coordin
generated by the resulting transform are in a right-handed coordinate syste

The arguments define a rectangular box used for projection:(left, bottom,
-near) and (right, top, -near) specify the point on the near clipping plan
that maps onto the lower-left and upper-right corners of the window, respecti
The-far parameter specifies the far clipping plane. See Figure C-10.

near

far

top

bottom
right

left

zNear

zFar

aspect = x/y

fovx

Θ x
y

Java 3D API Specification

VIEW MODEL DETAILS Using the Camera-based View ModelC.11.2

rate

PC)
this

rate

and
s. If
Figure C-10 Orthographic View Model

C.11.2.3 Setting the Viewing Transform

The View object provides the following compatibility-mode methods that ope
on the viewing transform.

public final void setVpcToEc(Transform3D vpcToEc)
public final void getVpcToEc(Transform3D vpcToEc)

This compatibility-mode method specifies the ViewPlatform coordinates (V
to eye coordinates viewing transform. If compatibility mode is disabled,
transform is derived from other values and is read-only.

C.11.2.4 Setting the Projection Transform

The View object provides the following compatibility-mode methods that ope
on the projection transform.

public final void setLeftProjection(Transform3D projection)
public final void getLeftProjection(Transform3D projection)
public final void setRightProjection(Transform3D projection)
public final void getRightProjection(Transform3D projection)

These compatibility-mode methods specify a viewing frustum for the left
right eye that transforms points in eye coordinates to clipping coordinate
compatibility mode is disabled, aRestrictedAccessException is thrown. In
monoscopic mode, only the left eye projection matrix is used.

bottom

near far

left

top

rightToward the
Viewpoint

View Volume
439Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
A P P E N D I X D
rrors
ch as

arious
n of

e
tions
s.

r the

roup
 or a

ject
-to-
ith

 con-
Exceptions

THE Java 3D API uses the standard Java exception model for handling e
or exceptional conditions. In addition to using existing exception classes, su
ArrayIndexOutOfBoundsException and IllegalArgumentException, Java 3D
defines several new runtime exceptions. These exceptions are thrown by v
Java 3D methods or by the Java 3D renderer to indicate an error conditio
some kind.

The exceptions defined by Java 3D, as part of thejavax.media.j3d package, are
described in the following sections. They all extendRuntimeException and, as
such, need not be declared in thethrows clause of methods that might cause th
exception to be thrown. This appendix is not an exhaustive list of all excep
expected for Java 3D. Additional exceptions will be added as the need arise

D.1 BadTransformException

Indicates an attempt to use a Tranform3D object that is inappropriate fo
object in which it is being used. For example:

• Transforms that are used in the scene graph, within a TransformG
node, must be affine. They may optionally contain a nonuniform scale
shear, subject to other listed restrictions.

• All transforms in the TransformGroup nodes above a ViewPlatform ob
must be congruent. This ensures that the Vworld-coordinates
ViewPlatform-coordinates transform is angle- and length-preserving w
no shear and only uniform scale.

• Most viewing transforms other than those in the scene graph can only
tain translation and rotation.
441

D.2 CapabilityNotSetException EXCEPTIONS

442

r be

e first
tring to

bject

e first
tring to

s
ph is
nce

n two
• The projection transform is allowed to be non-affine, but it must eithe
a single-point perspective projection or a parallel projection.

Constructors

public BadTransformException()
public BadTransformException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.2 CapabilityNotSetException

This exception indicates an access to a live or compiled Scene Graph o
without the required capability set.

Constructors

public CapabilityNotSetException()
public CapabilityNotSetException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.3 DanglingReferenceException

This exception indicates that during acloneTree call, an updated reference wa
requested for a node that did not get cloned. This occurs when a subgra
duplicated viacloneTree and has at least one leaf node that contains a refere
to a node with no corresponding node in the cloned subgraph. This results i
leaf nodes wanting to share access to the same node.

If dangling references are to be allowed during thecloneTree call, cloneTree
should be called with theallowDanglingReferences parameter set totrue.
Java 3D API Specification

EXCEPTIONS IllegalSharingException D.5

e first
tring to

ob-

e first
tring to

t. For

mme-

ays:

etry
Constructors

public DanglingReferenceException()
public DanglingReferenceException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.4 IllegalRenderingStateException

This exception indicates an illegal state for rendering. This includes:

• Lighting without specifying normals in a geometry array object

• Texturing without specifying texture coordinates in a geometry array
ject

public illegalRenderingStateException()
public illegalRenderingStateException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.5 IllegalSharingException

This exception indicates an illegal attempt to share a scene graph objec
example, the following are illegal:

• Referencing a shared subgraph in more than one virtual universe

• Using the same component object both in the scene graph and in an i
diate-mode graphics context

• Including an unsupported type of leaf node within a shared subgraph

• Referencing a BranchGroup node in more than one of the following w
• Attaching it to a (single) Locale

• Adding it as a child of a Group node within the scene graph

• Referencing it from a (single) Background leaf node as background geom
443Version 1.1 Alpha 01, February 27, 1998

D.6 MismatchedSizeException EXCEPTIONS

444

e first
tring to

cause

e first
tring to

de.

e first
tring to

thout
t

Constructors

public IllegalSharingException()
public IllegalSharingException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.6 MismatchedSizeException

This exception indicates that an operation cannot be completed properly be
of a mismatch in the sizes of the object attributes.

public MismatchedSizeException()
public MismatchedSizeException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.7 MultipleParentException

This exception extendsIllegalSharingException and indicates an attempt to
add a node that is already a child of one group node into another group no

Constructors

public MultipleParentException()
public MultipleParentException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.8 RestrictedAccessException

This exception indicates an attempt to access or modify a state variable wi
permission to do so. For example, invoking aset method for a state variable tha
is currently read-only.
Java 3D API Specification

EXCEPTIONS SingularMatrixException D.10

e first
tring to

wable
nd, as
 ren-
ycle is

e first
tring to

 a

e first
tring to
Constructors

public RestrictedAccessException()
public RestrictedAccessException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.9 SceneGraphCycleException

This exception indicates that one of the live scene graphs attached to a vie
Locale has a cycle in it. Java 3D scene graphs are directed acyclic graphs a
such, do not permit cycles. This exception is either thrown by the Java 3D
derer at scene graph traversal time or when a scene graph containing a c
made live (added as a descendant of a Locale object).

Constructors

public SceneGraphCycleException()
public SceneGraphCycleException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.

D.10 SingularMatrixException

This exception, in thejavax.vecmath package, indicates that the inverse of
matrix cannot be computed.

Constructors

public SingularMatrixException()
public SingularMatrixException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.
445Version 1.1 Alpha 01, February 27, 1998

D.11 SoundException EXCEPTIONS

446

e first
tring to
D.11 SoundException

This exception indicates a problem in loading or playing a sound sample.

Constructors

public SoundException()
public SoundException(String str)

These create the exception object that outputs the exception message. Th
form uses the default message. The second form specifies the message s
be output.
Java 3D API Specification

Version 1.1 Alpha 01, February 27, 1998
A P P E N D I X E
and

he
Equations

THIS appendix contains the Java 3D equations for fog, lighting, sound,
texture mapping. Many of the equations use the following symbols:

E.1 Fog Equations

The ideal fog equation is as follows:

(E.1)

The fog coefficient,f, is computed differently for linear and exponential fog. T
equation for linear fog is as follows:

(E.2)

The equation for exponential fog is as follows:

(E.3)

The parameters used in the fog equations are as follows:

⋅ Multiplication

• Function operator for sound equations,
Dot product for all other equations

C = Color of the pixel being fogged

Cf = Fog color

d = Fog density

F = Front fog distance, measured in eye coordinates

C′ C f C f 1 f–()⋅+⋅=

f
B z–
B F–
-------------=

f e d z⋅–=
447

E.2 Lighting Equations EQUATIONS

448

or-
olor

 by
to
.

or-
 ap-
ace
ple-

g

Fallbacks and Approximations

1. An implementation may approximate per-pixel fog by calculating the c
rect fogged color at each vertex and then linearly interpolating this c
across the primitive.

2. An implementation may approximate exponential fog using linear fog
computing values ofF andB that cause the resulting linear fog ramp
most closely match the effect of the specified exponential fog function

3. An implementation will ideally perform the fog calculations in eye co
dinates, which is an affine space. However, an implementation may
proximate this by performing the fog calculations in a perspective sp
(such as, device coordinates). As with other approximations, the im
mentation should match the specified function as closely as possible.

E.2 Lighting Equations

The ideal lighting equation is as follows:

(E.4)

(E.5)

(E.6)

Note: If (Li • N) ≤ 0, thendiffi andspeci are set to 0.

(E.7)

Note: For directional lights,atteni is set to 1.

B = Back fog distance, measured in eye coordinates

z = The z-coordinate distance from the eyepoint to the pixel bein
fogged, measured in eye coordinates

f = Fog coefficient

Me Ma+ Lci() atteni spoti diff i speci+()⋅ ⋅()
i

Numlt

∑+
i

Numamb

∑⋅

diff i Li N•() Lci Md⋅ ⋅=

speci Si N•()shin Lci Ms⋅ ⋅=

atteni 1 Kci K l i di Kqi di
2⋅+⋅+()⁄=
Java 3D API Specification

EQUATIONS Lighting Equations E.2

gle,

s are

ffer-
ple,
ght
 and
(E.8)

Note: If the vertex is outside the spot light cone, as defined by the cutoff an
spoti is set to 0. For directional and point lights,spoti is set to 1.

This is a subset of OpenGL in that the Java 3D ambient and directional light
not attenuated and only ambient lights contribute to ambient lighting.

The parameters used in the lighting equation are as follows:

The per-light values are as follows:

Fallbacks and Approximations

1. An implementation may approximate the specular function using a di
ent power function that produces a similar specular highlight. For exam
the PHIGS+ lighting model specifies that the reflection vector (the li
vector reflected about the vertex normal) is dotted with the eye vector,

E = Eye vector

Ma = Material ambient color

Md = Material diffuse color

Me = Material emissive color

Ms = Material specular color

N = Vertex normal

shin = Material shininess

di = Distance from vertex to light

Di = Spot light direction

expi = Spot light exponent

Kci = Constant attenuation

Kli = Linear attenuation

Kqi = Quadratic attenuation

Li = Direction from vertex to light

Lci = Light color

Si = Specular half-vector = || (Li + E) ||

spoti max Li– Di⋅() 0,()
expi=
449Version 1.1 Alpha 01, February 27, 1998

E.3 Sound Equations EQUATIONS

450

tion
t most

r may
olor.
nce

cation

signal.

ect
yback

ls are
ner’s

cted
es an
 dif-

e ear
ead
that this dot product is raised to the specular power. An implementa
that uses such a model should map the shininess into an exponent tha
closely matches the effect produced by the ideal equation.

2. Implementations that do not have a separate ambient and diffuse colo
fall back to using an ambient intensity as a percentage of the diffuse c
This ambient intensity should be calculated using the NTSC lumina
equation:

I = 0.30⋅ Red +0.59⋅ Green +0.11⋅ Blue (E.9)

E.3 Sound Equations

There are different sets of sound equations, depending on whether the appli
uses headphones or speakers.

E.3.1 Headphone Playback Equations

For each sound source, Java 3D calculates a separate left and right output
Each left and right sound image includes differences in theinteraural intensity
and aninteraural delay. The calculation results are a set of direct and indir
(delayed) sound signals mixed together before being sent to the audio pla
system’s left and right transducers.

E.3.1.1 Interaural Time Difference (Delay)

For each PointSound and ConeSound source, the left and right output signa
delayed based on the location of the sound and the orientation of the liste
head. The time difference between these two signals is called theinteraural time
difference (ITD). The time delay of a particular sound reaching an ear is affe
by the arc the sound must travel around the listener’s head. Java 3D us
approximation of the ITD using a spherical head model. The interaural path
ference is calculated based on the following cases:

1. The signal from the sound source to only one of the ears is direct. Th
farthest from the sound is shadowed by the listener’s h
(); see Figure E-1:

(E.10)

sinα De 2Dh⁄≥

Ec Vc=

Ef Vt P+=
Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

paths

 the
where

Figure E-1 Signal to Only One Ear Is Direct

2. The signals from the sound source reaches both ears by indirect
around the head (); see Figure E-2:

(E.11)

where

The time from the sound source to the closest ear is , and the time from
sound source to the farthest ear is , whereS is the current AuralAttribute
region’s speed of sound.

If the sound is closest to the left ear, then

(E.12)

P
De
2

------- π
2
--- γ α–()– 

 =

De Va

Vt

Vc

Dh Vh

α

P

γ

sinα De 2Dh⁄<

Ec Vt P′+=

Ef Vt P+=

P
De
2

------- π
2
--- γ α–()– 

 =

P'
De
2

------- π
2
--- γ α+()– 

 =

Ec S⁄
Ef S⁄

IT Dl Ec S⁄=

IT Dr Ef S⁄=
451Version 1.1 Alpha 01, February 27, 1998

E.3.1 Headphone Playback Equations EQUATIONS

452

 an

d

If the sound is closest to the right ear, then

(E.13)

Figure E-2 Signals to Both Ears Are Indirect

The parameters used in the ITD equations are as follows:

α = The smaller of the angles betweenVh (or –Vh) andVa in radians

γ = Angle betweenVh and radius to tangent point onVt in radians

De = Distance between ears (interaural distance)

Dh = Distance from interaural center to sound source

Ec = Distance from sound source to ear closest to sound

Ef = Distance from sound source to ear farthest from sound

P, P' = Arc path around the head an indirect signal must travel to reach
ear

S = Speed of sound for the current AuralAttribute region

Va = Vector from center ear forward parallel toZ axis of head coordi-
nates

Vc = Vector from sound source to ear closest to sound

Vh = Vector from center ear to sound source

Vt = Vector from sound source to tangent point on the listener’s hea

IT Dl Ef S⁄=

IT Dr Ec S⁄=

De

VtVh

Vt

γ

Dh

P

Va

γ

P'

α

Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

st to
a ste-
t and

s

the

ction
er’s
nd the
E.3.1.2 Interaural Intensity (Gain) Difference

For each active and playing Point and ConeSound source,i, separate calculations
for the left and right signal (based on which ear is closest and which is farthe
the source) are combined with nonspatialized BackgroundSound to create
reo sound image. Each equation below is calculated separately for the lef
right ear.

(E.14)

Note: For BackgroundSound sourcesITDi is an identity function so there is no
delay applied to the sample for these sources.

(E.15)

Note: For BackgroundSound sourcesGdi = Gai = 1.0. For PointSound source
Gai = 1.0.

(E.16)

Note: For BackgroundSound sourcesFdi and Fai are identity functions. For
PointSound sourcesFai is an identity function.

If the sound source is on the right side of the head,Ec is used for leftG andF
calculations andEf is used for right. Conversely, if the Sound source is on
left side of the head,Ef is used for left calculations andEc is used for right.

Attenuation

For sound sources with a single distanceGain array defined, the interse
points of Vh (the vector from the sound source position through the listen
position) and the spheres (defined by the distanceGain array) are used to fi
indexk wheredk ≤ L ≤ dk+1. See Figure E-3.

I t()
Gi Fi ITDi Sample t()•[]•()⋅[]

i

numS

∑
maxNumS

--=

Gi Gii Gdi Gai Gri⋅ ⋅ ⋅=

Fi Fdi Fai•=
453Version 1.1 Alpha 01, February 27, 1998

E.3.1 Headphone Playback Equations EQUATIONS

454

ction
Figure E-3 ConeSound with a Single Distance Gain Attenuation Array

For ConeSound sources with two distanceGain arrays defined, the interse
points ofVh and the ellipsi (defined by both the front and backdistanceGain

arrays) closest to the listener’s position are used to determine the indexk. See
Figure E-4.

Figure E-4 ConeSound with Two Distance Attenuation Arrays

The equation for the distance gain is

(E.17)

Listener

Vh

C

D

α

B

A

A = (dk, Gdk)
B = (dk+1, Gdk+1)
C = (αk, Gak)
D = (αk+1, Gak+1)

Listener

Vh

C

D

frontDistanceAttenuation[]

α

backDistanceAttenuation[]

A

B

A = (d1, Gdk)
B = (d2, Gdk+1)
C = (αk, Gak)
D = (αk+1, Gak+1)

Gd Gdk

Gdk 1+ Gdk–() d2 d1–()⋅
L d1–

---+=
Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

tical.

 the

 the

ance
 are
ture

r ex-
one-
 one

two-
er
und
uired.

re as

le

in
Angular attenuation for both the spherical and elliptical cone sounds is iden
The angular distances in the attenuation array closest toα are found and define
the indexk into the angular attenuation array elements. The equation for
angular gain is

(E.18)

Filtering

Similarly, the equations for calculating the AuralAttributes distance filter and
ConeSound angular attenuation frequency cutoff filter are

(E.19)

(E.20)

An N-pole lowpass filter may be used to perform the simple angular and dist
filtering defined in this version of Java 3D. These simple lowpass filters
meant only as an approximation for full, FIR filters (to be added in some fu
version of Java 3D).

Fallbacks and Approximations

1. If more than one lowpass filter is to be applied to the sound source (fo
ample, both an angular filter and a distance filter are applied to a C
Sound source) it is only necessary to use a single filter, specifically the
that has the lowest cutoff frequency.

2. There is no requirement to support anything higher than very simple
pole filtering. Any type of multipole lowpass filter can be used. If high
N-pole or compound filtering are available on the device on which so
rendering is being performed, use of these is encouraged, but not req

The parameters used in the interaural intensity difference (IID) equations a
follows:

A, B = Triples containing DistanceGain linear distance, gain sca
factor, and AuralAttribute cutoff frequency

C, D = Triples containing AngularAttenuation angular distance, ga
scale factor, and cutoff frequency

Ga Gak

Gak 1+ Gak–() αk 1+ αk–()⋅
α αk–

--+=

Fd Fdk

Fdk 1+ Fdk–() d2 d1–()⋅
L d1–

--+=

Fa Fak

Fak 1+ Fak–() αk 1+ αk–()⋅
α αk–

---+=
455Version 1.1 Alpha 01, February 27, 1998

E.3.1 Headphone Playback Equations EQUATIONS

456

ed on
th, as

the

rce

at

n,
E.3.1.3 Doppler Effect Equations

The frequency of sound waves emanating from the source are lowered bas
the speed of the source in relation to the listener, and the sound wave leng
follows:

(E.21)

The parameters used in the Doppler effect equations are as follows:

α = Angle betweenVh andVa in radians

Ec = Distance from sound source to ear closest to sound from
ITD equation

Ef = Distance from sound source to ear farthest from sound sou
from the ITD equation

Fa = Angular filter from ConeSound definition

Fd = Distance filter from AuralAttributes

Ga = Angular gain attenuation scale factor

Gd = Distance gain attenuation scale factor

Gi = Initial gain scale factor

Gr = Current AuralAttribute region’s gain scale factor

I = Stereo sound image

L = Listener distance from sound source

maxNumS= Maximum number of sound sources for the audio device th
the application is using for playback

numS = Number of sound sources

sample = Sound digital sample with a specific sample rate, bit precisio
and an optional encoding and/or compression format

Vh = Vector from center ear to sound source

Dh = Distance from sound source to center ear

Ds = Doppler scale factor (AuralAttribute field)

Dv = Doppler velocity (between the listener and sound source)

f = Frequency

S = Sound source frequency

S f()′ S f() Ds Dv W f Dh,()⁄()⋅[]–=
Java 3D API Specification

EQUATIONS Headphone Playback EquationsE.3.1

ace in
 sound

t and
ound
f the
 not
ation
delay

loop
he

ning
ere
or of
n be
each

lec-
all
nd
E.3.1.4 Reverberation Equations

The overall reverberant sounds, used to give the impression of the aural sp
which the active/enabled source sources are playing, is added to the stereo
image output from equation equation E.14.

(E.22)

Reverberation for each sound is approximated in the following:

(E.23)

Note that the reverberation calculation outputs the same image to both lef
right output signals (thus there is a single monaural calculation for each s
reverberated). Correct first-order (early) reflections, based on the location o
sound source, the listener, and the active AuralAttribute’s bounds, are
required for this version of Java 3D. Approximations based on the reverber
delay time, either suppled by the application or calculated as the average
time within the selected AuralAttribute’s application region, will be used.

The feedback loop is repeated until AuralAttribute’s reverberation feedback
count is reached orGrj ≤ 0.000976 (effective zero amplitude, –60 dB, using t
measure of –6 dB drop for every doubling of distance).

Fallbacks and Approximations

1. Reducing the number of feedback loops repeated while still maintai
the overall impression of the environment. For example, if –10 dB w
used as the drop in gain for every doubling of distance, a scale fact
0.015625 could be used as the effective zero amplitude, which ca
reached in only 15 loop iterations (rather than the 25 needed to r
0.000976).

2. Using preprogrammed “room” reverberation algorithms that allow se
tion of a fixed set of “reverberation types” (for example, large hall, sm
living room), which have implied reflection coefficients, delay times, a
feedback loop durations.

t = Time

W = Wavelength of sound source based on frequency and distance

I ′ t() l r,[] I t() l r,[] Ri
i

numS

∑+=

Ri Gr j Sample t()i⋅() D t Tr j⋅()+()•[]
j

fLoop

∑=
457Version 1.1 Alpha 01, February 27, 1998

E.3.2 Speaker Playback Equations EQUATIONS

458

ystem

ingle
re is
, and
luded

heard
d time
st be

uated
nal for

ns for

rs are
 the

n,

e

The parameters used in the reverberation equations are as follows:

E.3.2 Speaker Playback Equations

Different speaker playback equations are used depending on whether the s
uses monaural or stereo speakers.

E.3.2.1 Monaural Speaker Output

The equations for headphone playback need only be modified to output a s
signal, rather than two signals for left and right transducers. Although the
only one speaker, distance and filter attenuation, Doppler effect, elevation
front and back cues can be distinguished by the listener and should be inc
in the sound image generated.

E.3.2.2 Stereo Speaker Output

In a two-speaker playback system, the signal from one speaker is actually
by both ears and this affects the spectral balance and interaural intensity an
differences heard by each of the listener’s ears. Cross-talk cancellation mu
performed on the right and left signal to compensate for the delayed atten
signal heard by the ear opposite the speaker. Thus a delayed attenuated sig
each of the stereo signals must be added to the output from the equatio
headphone playback.

The equations for stereo speaker playback assume that the two speake
placed symmetrically about the listener (at the same off-axis angle from
viewing axis at an equal distance from the center of the listener’s head).

D = Delay function

fLoop = Reverberation feedback loop count

Gr = Reverberation coefficient acting as a gain scale-factor

I = Stereo image of unreflected sound sources

R = Reverberation for each sound sources

Sample= Sound digital sample with a specific sample rate, bit precisio
and an optional encoding and/or compression format

t = Time

Tr = Reverberation delay time (approximating first-order delay in th
AuralAttribute region)
Java 3D API Specification

EQUATIONS Texture Lookup E.4.1

ed for

rans-
e,
oking
 com-
ode

prim-

mple

 up the
re fil-

nt

an-

ad-

TD,
(E.24)

(E.25)

The parameters used in the cross-talk equations, expanding on the terms us
the equations for headphone playback, are as follows:

E.4 Texture Mapping Equations

Texture mapping can be divided into two steps. The first step takes the t
formed s and t (and possiblyr) texture coordinates, the current texture imag
and the texture filter parameters, and computes a texture color based on lo
up the texture coordinates in the texture map. The second step applies the
puted texture color to the incoming pixel color using the specified texture m
function.

E.4.1 Texture Lookup

The texture lookup stage maps a texture image onto a geometric polygonal
itive. The most common method for doing this is to reverse map thes andt coor-
dinates from the primitive back onto the texture image, then filter and resa
the image. In the simplest case, a point ins, t space is transformed into au, v
address in the texture image space (E.26), then this address is used to look
nearest texel value in the image. This method, used when the selected textu
ter function isBASE_LEVEL_POINT, is called nearest-neighbor sampling or poi
sampling.

(E.26)

α = Angle between vectors from speaker to near and far ears

D = Delay function of signal variant over time

G = Gain attenuation scale factors function taking initial distance and
gular gain scale factors into account

I = Sound image for left and right stereo signals calculated as for he
phone output

P = Distance difference between near ear and far ear as defined for I
the speaker substituted for the sound source in equation

t = Time

I ′ t()l I t()l D t() G P α,() I t()r⋅[]•[]+=

I ′ t()r I t()r D t() G P α,() I t()l⋅[]•[]+=

v t height⋅=

u s width⋅=
459Version 1.1 Alpha 01, February 27, 1998

E.4.1 Texture Lookup EQUATIONS

460

s:

either

e tex-
tex-
single
n is
maps
agni-

ing:

he

f
image
(E.27)

(E.28)

If the texture boundary mode isREPEAT, then only the fractional bits ofs and t
are used, ensuring that boths andt are less than 1.

If the texture boundary mode isCLAMP, then thes andt values are clamped to be
in the range [0, 1] before being mapped intou andv values. Further, ifs ≥ 1, then
i is set towidth– 1; if t ≥ 1, thenj is set toheight– 1.

The parameters in the point-sampled texture lookup equations are as follow

The above equations are used when the selected texture filter function—
the minification or the magnification filter function—isBASE_LEVEL_POINT.
Java 3D selects the appropriate texture filter function based on whether th
ture image is minified or magnified when it is applied to the polygon. If the
ture is applied to the polygon such that more than one texel maps onto a
pixel, then the texture is said to be minified and the minification filter functio
selected. If the texture is applied to the polygon such that a single texel
onto more than one pixel, then the texture is said to be magnified and the m
fication filter function is selected. The selected function is one of the follow
BASE_LEVEL_POINT, BASE_LEVEL_LINEAR, MULTI_LEVEL_POINT, or MULTI_

LEVEL_LINEAR. In the case of magnification, the filter will always be one of t
two base level functions (BASE_LEVEL_POINT or BASE_LEVEL_LINEAR).

If the selected filter function isBASE_LEVEL_LINEAR, then a weighted average o
the four texels that are closest to the sample point in the base level texture
is computed.

width = Width, in pixels, of the texture image

height = Height, in pixels, of the texture image

s = Interpolateds coordinate at the pixel being textured

t = Interpolatedt coordinate at the pixel being textured

u = u coordinate in texture image space

v = v coordinate in texture image space

i = Integer row address into texture image

j = Integer column address into texture image

T = Texture image

i trunc u()=

j trunc v()=

Ct Ti j,=
Java 3D API Specification

EQUATIONS Texture Lookup E.4.1

 lev-
exture

els
ng a
derly-
pos-

e
 for

 per-
ter

ing,
or
(E.29)

(E.30)

(E.31)

If the selected filter function isMULTI_LEVEL_POINT or MULTI_LEVEL_LINEAR,
the texture image needs to be sampled at multiple levels of detail. If multiple
els of detail are needed and the texture object only defines the base level t
image, Java 3D will compute multiple levels of detail as needed.

Mipmapping is the most common filtering technique for handling multiple lev
of detail. If the implementation uses mipmapping, the equations for computi
texture color based on texture coordinates are simply those used by the un
ing rendering API (such as OpenGL or PEX). Other filtering techniques are
sible as well.

Fallbacks and Approximations

1. If the texture boundary mode isCLAMP, an implementation may either us
the closest boundary pixel or the constant boundary color attribute
those values ofs or t that are outside the range [0, 1].

2. An implementation can choose a technique other than mipmapping to
form the filtering of the texture image when the texture minification fil
is MULTI_LEVEL_POINT or MULTI_LEVEL_LINEAR.

3. If mipmapping is chosen by an implementation as the method for filter
it may approximate trilinear filtering with another filtering technique. F
example, an OpenGL implementation may choose to useLINEAR_MIPMAP_

NEAREST or NEAREST_MIPMAP_LINEAR in place ofLINEAR_MIPMAP_LIN-
EAR.

i0 trunc u 0.5–()=

j0 trunc v 0.5–()=

i1 i0 1+=

j1 j0 1+=

α frac u 0.5–()=

β frac v 0.5–()=

Ct 1 α–() 1 β–() Ti 0 j0,⋅ ⋅ α 1 β–() Ti 1 j0,⋅ ⋅+=

1 α–() β Ti 0 j1, α β Ti 1 j1,⋅ ⋅+⋅ ⋅+
461Version 1.1 Alpha 01, February 27, 1998

E.4.2 Texture Application EQUATIONS

462

ming
po-
dded

 the

,

n

E.4.2 Texture Application

Once a texture color has been computed, this color is applied to the inco
pixel color. If lighting is enabled, only the emissive, ambient, and diffuse com
nents of the incoming pixel color are modified. The specular component is a
into the modified pixel color after texture application.

The equations for applying that color to the original pixel color are based on
texture mode, as follows:

REPLACE Texture Mode

(E.32)

MODULATE Texture Mode

(E.33)

DECAL Texture Mode

(E.34)

Note that the texture format must be eitherRGB or RGBA.

BLEND Texture Mode

(E.35)

Note that if the texture format isINTENSITY, alpha is computed identically to red
green, and blue:

(E.36)

The parameters used in the texture mapping equations are as follows:

C = Color of the pixel being texture mapped (if lighting is enabled, the
this does not include the specular component)

Ct = Texture color

Cb = Blend color

C′ Ct=

C′ C Ct⋅=

C′rgb Crgb 1 Ctα–() Ctrgb Ctα⋅+⋅=

C′α Cα=

C′rgb Crgb 1 Ctrgb–() Cbrgb Ctrgb⋅+⋅=

C′α Cα Ctα⋅=

C′α Cα 1 Ctα–() Cbα Ctα⋅+⋅=
Java 3D API Specification

EQUATIONS Texture Application E.4.2

r

pend-

n-

color

lor

or is

d,

.

odi-

lor,
enta-

o the
nent
Note thatCrgb indicates the red, green, and blue channels of colorC and thatCα
indicates the alpha channel of colorC. This convention applies to the other colo
variables as well.

If there is no alpha channel in the texture, a value of 1 is used forCtα in BLEND

andDECAL modes.

When the texture mode is one ofREPLACE, MODULATE, or BLEND, only certain of
the red, green, blue, and alpha channels of the pixel color are modified, de
ing on the texture format, as described below.

• INTENSITY: All four channels of the pixel color are modified. The inte
sity value is used for each ofCtr, Ctg, Ctb, andCtα in the texture applica-
tion equations, and the alpha channel is treated as an ordinary
channel—the equation forC´rbg is also used forC´α.

• LUMINANCE: Only the red, green, and blue channels of the pixel co
are modified. The luminance value is used for each ofCtr, Ctg, andCtb in
the texture application equations. The alpha channel of the pixel col
unmodified.

• ALPHA: Only the alpha channel of the pixel color is modified. The re
green, and blue channels are unmodified.

• LUMINANCE_ALPHA: All four channels of the pixel color are modified
The luminance value is used for each ofCtr, Ctg, andCtb in the texture ap-
plication equations, and the alpha value is used forCtα.

• RGB: Only the red, green, and blue channels of the pixel color are m
fied. The alpha channel of the pixel color is unmodified.

• RGBA: All four channels of the pixel color are modified.

Fallbacks and Approximations

An implementation may apply the texture to all components of the lit co
rather than separating out the specular component. Conversely, an implem
tion may separate out the emissive and ambient components in addition t
specular component, potentially applying the texture to the diffuse compo
only.
463Version 1.1 Alpha 01, February 27, 1998

Version 1.1 Alpha 01, February 27, 1998
A P P E N D I X F
ML
roto-
ed
ick.

o
ort
me-
er-

ewer
try
h as

ser
asso-
mbi-
ent
ition-

 that
ry, all
uch

there
andard.
VRML Support

THIS appendix is designed to help VRML browser developers design a VR
browser and runtime environment using the Java 3D API. Sun has already p
typed a VRML 1.0 and VRML 2.0 3D-only browser. This browser has limit
browsing functionality but includes the ability to load worlds, navigate, and p

VRML files come in one of two formats: VRML 1.0 and VRML 2.0. These tw
file formats are sufficiently different that developers will most likely supp
them separately. In general, VRML 1.0 files allow the definition of static geo
try, predefined “viewpoints,” linking to other worlds, and some simple brows
specific semantics (pick to transport, menu to change viewpoint). The n
VRML 2.0 file format provides an improved facility for defining static geome
and includes support for representing a broader range of information, suc
active components and sound.

A developer can use Java 3D functionality to build a VRML loader and brow
much as he or she would use C and OpenGL to write a VRML loader and
ciated browser. The combination of Java and the Java 3D API—like the co
nation of C and the OpenGL API—provides programmers with suffici
functionality to write complete applications. The Java-based approach add
ally allows the development of complete applets.

F.1 VRML 1.0

VRML 1.0 files describe geometry, the material properties associated with
geometry, and the placement of that geometry with respect to other geomet
within a single virtual world. The file format also includes other properties s
as lights, attach points (via cameras), and links to other files.

VRML 1.0 files also assume the existence of a browser and, over time,
have been some default browser semantics that have become a de facto st
465

F.1.1 Mapping VRML 1.0 Files onto Java 3D Objects VRML SUPPORT

466

RML
oints,
and

 other

3D
les.
truct
RML

ss the

to
ithin
s load-

 win-
 func-
he
ant
I to
igate

er-
 for-
ing
etec-

der/
nodes.
in a
Specifically these include browser-constructed menus, gleaned from the V
1.0 file, that allow an end user to choose among a predefined set of viewp
browser controls that allow an end user to navigate within the virtual world,
mouse-based pick operations that allow an end user to gain access to
worlds.

F.1.1 Mapping VRML 1.0 Files onto Java 3D Objects

VRML 1.0 files do not map directly onto Java 3D objects. However, Java
objects support the complete functionality needed to support VRML 1.0 fi
Thus, a developer can write a simple loader to parse a VRML 1.0 file, cons
a Java 3D scene graph that represents the information contained in the V
file, and let Java 3D render the scene. Unfortunately, this does not addre
browser issue.

F.1.2 A VRML 1.0 Browsing Environment

VRML 1.0 browsers allow end users to navigate within a VRML world,
“pick” objects by using their mouse, to choose among viewpoints defined w
the scene graph via menus, and perform other housekeeping tasks (such a
ing a world).

By using Java, specifically Java’s AWT package, developers can construct
dows, menus, and buttons that allow end-user access to developer-written
tionality. A developer would build a browser that would interface with t
VRML 1.0 loader to load a VRML world and retrieve references to relev
scene graph information. The browser would interface with the Java 3D AP
draw the world, to change viewpoints, to process pick operations, and to nav
within the world.

F.2 VRML 2.0

The VRML 2.0 file format allows the description of geometry, material prop
ties, and object placement, but in an easier manner than the VRML 1.0 file
mat. In addition, the VRML 2.0 file format includes mechanisms for describ
sensors, routes and fields, script nodes, interpolators, support for collision d
tion, and support for picking.

A similar approach to the one used for VRML 1.0 would have worked (a loa
browser combination) had there not been sensors, routes, fields, and script
These new features require a different approach since information flow with
Java 3D API Specification

VRML SUPPORT An Approach F.2.2

ruc-

2.0
 2.0
onto
nto a
tely,
 the
cen-
at is

 Java.
t run

ava-

are
 2.0

on-
0 file.
k fea-
fines

RML
 Java
a 3D
also
a 3D
 Java
va 3D
VRML 2.0 file is specified via routes: Java 3D does not include a similar st
ture.

F.2.1 VRML Support Requires a VRML Runtime Environment

VRML 2.0 files contain both geometry and behavior components. VRML
geometry components map straightforwardly onto Java 3D objects. VRML
behaviors (routes and scripting nodes), however, do not map directory
Java 3D behaviors. The behaviors in a VRML 2.0 scene could be mapped o
set of Java 3D classes that mimic the scene’s functionality, but, unfortuna
this does not work in all cases. VRML 2.0’s runtime semantics, specifically
ability to retarget routes to other fields and the ability to access all the des
dants of a referenced VRML 2.0 object, require that the same structure th
specified in the VRML 2.0 file exists within the runtime environment.

Another problem area involves script nodes based on languages other than
We do not anticipate developers defining interpreters for other languages tha
within the Java environment. We expect that developers will support only J
based script nodes.

This mismatch between VRML 2.0 and Java 3D is bidirectional: There
Java 3D constructs and behaviors that do not map directly onto the VRML
file format.

F.2.2 An Approach

Developers can host a VRML 2.0 file within a Java 3D environment by c
structing exactly the same scene graph structure as specified in a VRML 2.
They can then use the Java 3D behavior system or its mixed-mode callbac
tures to implement field value propagation. The remainder of this section de
one such approach.

F.2.2.1 The Scene Graph Structure

A developer defines a series of thin-layer Java objects that correspond to V
2.0 node types. These thin-layer objects contain references to a set of
objects that represent VRML field objects and references to underlying Jav
objects that implement the functionality of the VRML node. These objects
include code to propagate field value changes to their underlying Jav
objects. Thus, a VRML 2.0 scene graph is represented as a thin layer of
objects, associated Java 3D objects, and methods that manipulate the Ja
scene graph whenever field values change in the thin-layer object.
467Version 1.1 Alpha 01, February 27, 1998

F.2.3 A Browser VRML SUPPORT

468

tics
nnot

n that
these
3D

e to
erac-
ld val-
that
dates
ode
. The
in an

xecu-
m to
psed-
use-
sor

t a
on-
des.
L
le, a
ng
ge
the
3D
The thin-layer objects (VRML nodes) exist only to translate VRML seman
into appropriate actions at runtime. If a VRML scene has subgraphs that ca
be accessed during runtime (because no routes connect into nodes withi
subgraph) then the developer may choose not to retain—or even create—
thin-layer VRML node objects, constructing only the underlying Java
objects.

F.2.2.2 The Execution Environment

The developer of a VRML 2.0 runtime environment must also include cod
propagate events along the routes specified in a VRML file. Either user int
tions or VRML sensors, such as timers, can generate events that change fie
ues. When a field’s value changes, the thin-layer VRML node object
contains the field first updates its underlying Java 3D object(s), and then up
the field’s associated output fields with the new value. The VRML runtime c
then propagates the new output field values, through routes, to other fields
resulting event cascade moves through the VRML route structure, resulting
updated Java 3D scene graph.

The developer must somehow integrate event generation into the Java 3D e
tion environment. This can be done using the Java 3D behavior mechanis
generate events. For example, a WakeupOnElapsedTime or WakeupOnEla
Frames wakeup criteria can trigger a VRML TimeSensor event, and a mo
button WakeupOnAWTEvent wakeup criteria can trigger a VRML TouchSen
event. Other VRML sensors can be implemented in a similar manner.

F.2.3 A Browser

Much like implementing a VRML 1.0 browser, a developer can implemen
VRML 2.0 browser using Java. A VRML 2.0 browser includes specific functi
ality, such as Viewpoint binding and a browser interface for use by Script no
Most of this latter functionality involves interaction with the thin-layer VRM
node objects, but the browser may call Java 3D directly as well. For examp
VRML browser developer can implement VRML Viewpoints by associati
Java 3D ViewPlatform nodes with each VRML Viewpoint. Then, to chan
VRML Viewpoints, the browser would detach the Java 3D View object from
current Java 3D ViewPlatform object and reattach it to the new Java
ViewPlatform object associated with the desired VRML Viewpoint.
Java 3D API Specification

VRML SUPPORT Optimizing for Viewing versus EditingF.2.4

ene
 num-
2.0

ene

rdly
ion
F.2.4 Optimizing for Viewing versus Editing

A VRML browser need not provide access to the complete VRML 2.0 sc
graph and, indeed, a developer can take advantage of this to minimize the
ber of thin-layer VRML 2.0 objects. If there is no way to reference a VRML
node, then its thin-layer object need not exist.

An environment that allows editing must keep the entire thin-layer-object sc
graph in memory.

In either the viewing-only or the editing case, a developer can straightforwa
write a VRML 2.0 file to disk by traversing the thin-layer-object representat
of the scene graph.
469Version 1.1 Alpha 01, February 27, 1998

s in a
rson.

ate

iled
om-
va 3D
ides

ode,
s been
Glossary

avatar
The software representation of a person as the person appears to other
shared virtual universe. The avatar may or may not resemble an actual pe

branch graph
A graph rooted to a BranchGroup node. See alsoscene graph and shared
graph.

CC
Clipping coordinates.

center ear
Midpoint between left and right ears of listener.

center eye
Midpoint between left and right eyes of viewer. This is the head coordin
system origin.

compiled
A subgraph may be compiled by an application using thecompile method of
the root node—a BranchGroup or a SharedGroup—of the graph. A comp
object is any object that is part of a compiled graph. An application can c
pile some or all of the subgraphs that make up a complete scene graph. Ja
compiles these graphs into an internal format. Additionally, Java 3D prov
restricted access to methods of compiled objects or graphs. See alsolive.

compiled-retained mode
One of three modes in which Java 3D objects are rendered. In this m
Java 3D renders the scene graph, or a portion of the scene graph, that ha
previously compiled into an internal format. See alsoretained mode, immediate
mode.
471Version 1.1 Alpha 01, February 27, 1998

GLOSSARY

472

eral

ode
scene

tude
ears.

nal

al

raph
of a
 the
DAG
Directed acyclic graph. Ascene graph.

EC
Eye coordinates.

frustum
Seeview frustum.

group node
A node within ascene graph that composes, transforms, selects, and in gen
modifies its descendant nodes. See alsoleaf node, root node.

HMD
Head-mounted display.

image plate
The display area; the viewing screen or head-mounted display.

immediate mode
One of three modes in which Java 3D objects are rendered. In this m
objects are rendered directly, under user control, rather than as part of a
graph traversal. See alsoretained mode, compiled-retained mode.

IID
Interaural intensity difference. The difference between the perceived ampli
(gain) of the signal from a source as it reaches the listener’s left and right

ITD
Interaural time difference. The difference in time in the arrival of the sig
from a sound source as it reaches the listener’s left and right ears.

leaf node
A node within ascene graph that contains the visual, auditory, and behavior
components of the scene. See alsogroup node, root node.

live
A live graph is any graph that is attached to a Locale object, or a shared g
that is referenced by a live graph. A live object is any object that is part
live graph. Live objects are subject to being traversed and rendered by
Java 3D API Specification

thods

elect

ode,
 graph.

lso

e or

orld
ects
ally
Java 3D renderer. Additionally, Java 3D provides restricted access to me
of live objects or graphs. See alsocompiled.

LOD
Level of detail. A predefined Behavior that operates on a Switch node to s
from among multiple versions of an object or collection of objects.

polytope
A bounding volume defined by a closed intersection of half-spaces.

retained mode
One of three modes in which Java 3D objects are rendered. In this m
Java 3D traverses the scene graph and renders the objects that are in the
See alsocompiled-retained mode, immediate mode.

root node
A node within ascene graph that establishes the default environment. See a
group node, leaf node.

scene graph
A collection of branch graphs rooted to a Locale. A virtual universe has on
more scene graphs. See alsobranch graph andshared graph.

shared graph
A graph rooted to a SharedGroup node. See alsobranch graph and scene
graph.

stride
The part of an interleaved array that defines the length of a vertex.

three space
Three-dimensional space.

view frustum
A truncated, pyramid-shaped viewing area that defines how much of the w
the viewer sees. Objects not within the view frustum are not visible. Obj
that intersect the boundaries of the viewing frustum are clipped (parti
drawn).
473Version 1.1 Alpha 01, February 27, 1998

GLOSSARY

474
VPC
View platform coordinates.
Java 3D API Specification

Index
2D texture coordinates, 130, 166
3D texture coordinates, 130, 166

A
absolute method

Tuple2f, 302
Tuple3d, 310
Tuple3f, 315
Tuple4d, 324
Tuple4f, 331

acceleration of alpha, 241
accessing an object, 268
activation radius, 88
activation volume, 88
add method

GMatrix, 377
GVector, 342
HiResCoord, 35
Matrix3d, 355
Matrix3f, 349, 352
Matrix4d, 371, 372
Matrix4f, 362, 364
Transform3D, 157
Tuple2f, 301
Tuple3d, 309
Tuple3f, 314
Tuple4d, 323
Tuple4f, 330

addAudioDevice method, 208
addBranchGraph method, 33
addCanvas3D method, 207

addChild method, 39
addInputDevice method, 208
addLight method, 295
addScope method

Fog, 59
Light, 63

addSound method, 297
addSwitch method, 261
AFFINE flag, 152
ALIGN_CENTER flag, 190
ALIGN_FIRST flag, 190
ALIGN_LAST flag, 190
allAudioDevices method, 208
allElements method, 226
allInputDevices method, 208
ALLOW_ALIGNMENT_READ flag,

189
ALLOW_ALIGNMENT_WRITE flag,

189
ALLOW_ALPHA_TEST_FUNCTION_

READ flag, 117
ALLOW_ALPHA_TEST_FUNCTION_

WRITE flag, 117
ALLOW_ALPHA_TEST_VALUE_

READ flag, 117
ALLOW_ALPHA_TEST_VALUE_

WRITE flag, 117
ALLOW_ANGULAR_

ATTENUATION_READ flag, 79
ALLOW_ANGULAR_

ATTENUATION_WRITE flag,
79
475Version 1.1 Alpha 01, February 27, 1998

INDEX

476
ALLOW_ANTIALIASING_READ flag
LineAttributes, 113
PointAttributes, 114

ALLOW_ANTIALIASING_WRITE flag
LineAttributes, 113
PointAttributes, 114

ALLOW_APPEARANCE_READ flag
Morph, 90
Shape3D, 51

ALLOW_APPEARANCE_WRITE flag
Morph, 90
Shape3D, 51

ALLOW_APPLICATION_BOUNDS_
READ flag

Background, 54
Clip, 56
Soundscape, 87

ALLOW_APPLICATION_BOUNDS_
WRITE flag

Background, 54
Clip, 56
Soundscape, 87

ALLOW_ATTENUATION_READ
flag, 65

ALLOW_ATTENUATION_WRITE
flag, 65

ALLOW_ATTRIBUTE_GAIN_READ
flag, 135

ALLOW_ATTRIBUTE_GAIN_WRITE
flag, 135

ALLOW_ATTRIBUTES_READ flag,
87

ALLOW_ATTRIBUTES_WRITE flag,
87

ALLOW_AUTO_COMPUTE_
BOUNDS_READ flag, 19

ALLOW_AUTO_COMPUTE_
BOUNDS_WRITE flag, 19

ALLOW_BACK_DISTANCE_READ
flag, 56

ALLOW_BACK_DISTANCE_WRITE
flag, 56

ALLOW_BLEND_COLOR_READ
flag, 119

ALLOW_BLEND_COLOR_WRITE
flag, 119

ALLOW_BOUNDARY_COLOR_
READ flag, 125

ALLOW_BOUNDARY_MODE_READ
flag, 125

ALLOW_BOUNDING_BOX_READ
flag, 189

ALLOW_BOUNDS_READ flag, 19
ALLOW_BOUNDS_WRITE flag, 19
ALLOW_CACHE_READ flag, 133
ALLOW_CACHE_WRITE flag, 133
ALLOW_CHANNELS_USED_READ

flag, 69
ALLOW_CHARACTER_SPACING_

READ flag, 189
ALLOW_CHARACTER_SPACING_

WRITE flag, 189
ALLOW_CHILDREN_EXTEND flag,

38
ALLOW_CHILDREN_READ flag, 38
ALLOW_CHILDREN_WRITE flag, 38
ALLOW_COLLIDABLE_READ flag,

20
ALLOW_COLLIDABLE_WRITE

flag, 20
ALLOW_COLLISION_BOUNDS_

READ flag
Group, 38
Morph, 90
Shape3D, 51

ALLOW_COLLISION_BOUNDS_
WRITE flag

Group, 38
Morph, 90
Shape3D, 51

ALLOW_COLOR_INDEX_READ
flag, 175

ALLOW_COLOR_INDEX_WRITE
flag, 175
Java 3D API Specification

INDEX
ALLOW_COLOR_READ flag
Background, 54
ColoringAttributes, 111
Fog, 58
GeometryArray, 165
Light, 62

ALLOW_COLOR_WRITE flag
Background, 55
ColoringAttributes, 111
Fog, 58
GeometryArray, 165
Light, 62

ALLOW_COLORING_ATTRIBUTES_
READ flag, 108

ALLOW_COLORING_ATTRIBUTES_
WRITE flag, 108

ALLOW_COMPONENT_READ flag,
122

ALLOW_COMPONENT_WRITE flag,
122

ALLOW_CONCENTRATION_READ
flag, 67

ALLOW_CONCENTRATION_WRITE
flag, 67

ALLOW_CONT_PLAY_READ flag,
68

ALLOW_CONT_PLAY_WRITE flag,
68

ALLOW_COORDINATE_INDEX_
READ flag, 175

ALLOW_COORDINATE_INDEX_
WRITE flag, 175

ALLOW_COORDINATE_READ flag,
165

ALLOW_COORDINATE_WRITE
flag, 165

ALLOW_COUNT_READ flag
CompressedGeometry, 182
GeometryArray, 166

ALLOW_CULL_FACE_READ flag,
116

ALLOW_CULL_FACE_WRITE flag,
116

ALLOW_DATA_READ flag, 143

ALLOW_DENSITY_READ flag, 60
ALLOW_DENSITY_WRITE flag, 60
ALLOW_DEPTH_COMPONENT_

READ flag, 185
ALLOW_DEPTH_COMPONENT_

WRITE flag, 185
ALLOW_DEPTH_ENABLE_READ

flag, 117
ALLOW_DETACH flag, 41
ALLOW_DIRECTION_READ flag

ConeSound, 79
DirectionalLight, 64
SpotLight, 67

ALLOW_DIRECTION_WRITE flag
ConeSound, 79
DirectionalLight, 64
SpotLight, 67

ALLOW_DISTANCE_FILTER_READ
flag, 135

ALLOW_DISTANCE_FILTER_WRITE
flag, 135

ALLOW_DISTANCE_GAIN_READ
flag, 75

ALLOW_DISTANCE_GAIN_WRITE
flag, 75

ALLOW_DISTANCE_READ flag, 61
ALLOW_DISTANCE_WRITE flag, 61
ALLOW_DOPPLER_SCALE_

FACTOR_READ flag, 135
ALLOW_DOPPLER_SCALE_

FACTOR_WRITE flag, 135
ALLOW_DOPPLER_VELOCITY_

READ flag, 135
ALLOW_DOPPLER_VELOCITY_

WRITE flag, 135
ALLOW_DURATION_READ flag, 69
ALLOW_ENABLE_READ flag

Sound, 68
TexCoordGeneration, 130
Texture, 125
477Version 1.1 Alpha 01, February 27, 1998

INDEX

478
ALLOW_ENABLE_WRITE flag
Sound, 68
TexCoordGeneration, 130
Texture, 125

ALLOW_FILTER_READ flag, 125
ALLOW_FONT3D_READ flag, 189
ALLOW_FONT3D_WRITE flag, 189
ALLOW_FORMAT_READ flag

ImageComponent, 139
TexCoordGeneration, 130

ALLOW_GEOMETRY_ARRAY_
READ flag, 90

ALLOW_GEOMETRY_ARRAY_
WRITE flag, 90

ALLOW_GEOMETRY_READ flag
Background, 55
CompressedGeometry, 182
Shape3D, 51

ALLOW_GEOMETRY_WRITE flag
Background, 55
Shape3D, 51

ALLOW_HEADER_READ flag, 182
ALLOW_IMAGE_READ flag

Background, 54
ImageComponent, 139
Raster, 185
Texture, 125

ALLOW_IMAGE_WRITE flag
Background, 54
Raster, 185

ALLOW_INFLUENCING_BOUNDS_
READ flag

Fog, 58
Light, 62

ALLOW_INFLUENCING_BOUNDS_
WRITE flag

Fog, 58
Light, 62

ALLOW_INITIAL_GAIN_READ flag ,
68

ALLOW_INITIAL_GAIN_WRITE
flag, 68

ALLOW_IS_PLAYING_READ flag, 69
ALLOW_IS_READY_READ flag, 69
ALLOW_LINE_ATTRIBUTES_READ

flag, 108
ALLOW_LINE_ATTRIBUTES_WRITE

flag, 108
ALLOW_LOCAL_TO_VWORLD_

READ flag, 20
ALLOW_LOOP_READ flag, 68
ALLOW_LOOP_WRITE flag, 68
ALLOW_MATERIAL_READ flag, 107
ALLOW_MATERIAL_WRITE flag,

107
ALLOW_MIPMAP_MODE_READ

flag, 125
ALLOW_MODE_READ flag

PolygonAttributes, 116
TexCoordGeneration, 130
TextureAttributes, 119
TransparencyAttributes, 121

ALLOW_MODE_WRITE flag
PolygonAttributes, 116
TextureAttributes, 119
TransparencyAttributes, 121

ALLOW_NORMAL_INDEX_READ
flag, 175

ALLOW_NORMAL_INDEX_WRITE
flag, 175

ALLOW_NORMAL_READ flag, 165
ALLOW_NORMAL_WRITE flag, 165
ALLOW_OFFSET_READ flag

PolygonAttributes, 116
Raster, 185

ALLOW_OFFSET_WRITE flag
PolygonAttributes, 116
Raster, 185

ALLOW_PATH_READ flag, 189
ALLOW_PATH_WRITE flag, 189
ALLOW_PATTERN_READ flag, 113
ALLOW_PATTERN_WRITE flag, 113
ALLOW_PICK flag, 19
ALLOW_PICKABLE_READ flag, 20
Java 3D API Specification

INDEX
ALLOW_PICKABLE_WRITE flag, 20
ALLOW_PLANE_READ flag, 130
ALLOW_POINT_ATTRIBUTES_

READ flag, 109
ALLOW_POINT_ATTRIBUTES_

WRITE flag, 109
ALLOW_POLICY_READ flag, 88
ALLOW_POLICY_WRITE flag, 88
ALLOW_POLYGON_ATTRIBUTES_

READ flag, 108
ALLOW_POLYGON_ATTRIBUTES_

WRITE flag, 108
ALLOW_POSITION_READ flag

PointLight, 65
PointSound, 75
Raster, 185
Text3D, 189

ALLOW_POSITION_WRITE flag
PointLight, 65
PointSound, 75
Raster, 185
Text3D, 189

ALLOW_PRIORITY_READ flag, 68
ALLOW_PRIORITY_WRITE flag, 68
ALLOW_REFLECTION_

COEFFICIENT_READ flag, 135
ALLOW_REFLECTION_

COEFFICIENT_WRITE flag, 135
ALLOW_REGION_READ flag, 54
ALLOW_REGION_WRITE flag, 54
ALLOW_RELEASE_READ flag, 68
ALLOW_RELEASE_WRITE flag, 68
ALLOW_RENDERING_

ATTRIBUTES_READ flag, 108
ALLOW_RENDERING_

ATTRIBUTES_WRITE flag, 108
ALLOW_REVERB_DELAY_READ

flag, 135
ALLOW_REVERB_DELAY_WRITE

flag, 135
ALLOW_REVERB_ORDER_READ

flag, 135

ALLOW_REVERB_ORDER_WRITE
flag, 135

ALLOW_ROLLOFF_READ flag, 135
ALLOW_ROLLOFF_WRITE flag, 135
ALLOW_SCHEDULING_BOUNDS_

READ flag, 68
ALLOW_SCHEDULING_BOUNDS_

WRITE flag, 68
ALLOW_SHADE_MODEL_READ

flag, 111
ALLOW_SHADE_MODEL_WRITE

flag, 111
ALLOW_SHARED_GROUP_READ

flag, 96
ALLOW_SHARED_GROUP_WRITE

flag, 96
ALLOW_SIZE_READ flag

DepthComponent, 143
ImageComponent, 139
PointAttributes, 114
Raster, 185

ALLOW_SIZE_WRITE flag
PointAttributes, 114
Raster, 185

ALLOW_SOUND_DATA_READ
flag, 68

ALLOW_SOUND_DATA_WRITE
flag, 68

ALLOW_SPREAD_ANGLE_READ
flag, 67

ALLOW_SPREAD_ANGLE_WRITE
flag, 67

ALLOW_STATE_READ flag, 62
ALLOW_STATE_WRITE flag, 62
ALLOW_STRING_READ flag, 189
ALLOW_STRING_WRITE flag, 189
ALLOW_SWITCH_READ flag, 46
ALLOW_SWITCH_WRITE flag, 46
ALLOW_TEXCOORD_INDEX_READ

flag, 175
ALLOW_TEXCOORD_INDEX_

WRITE flag, 175
ALLOW_TEXCOORD_READ flag,

166
479Version 1.1 Alpha 01, February 27, 1998

INDEX

480
ALLOW_TEXCOORD_WRITE flag,
166

ALLOW_TEXGEN_READ flag, 107
ALLOW_TEXGEN_WRITE flag, 107
ALLOW_TEXTURE_ATTRIBUTES_

READ flag, 108
ALLOW_TEXTURE_ATTRIBUTES_

WRITE flag, 108
ALLOW_TEXTURE_READ flag, 107
ALLOW_TEXTURE_WRITE flag, 107
ALLOW_TRANSFORM_READ flag

TextureAttributes, 119
TransformGroup, 43

ALLOW_TRANSFORM_WRITE flag
TextureAttributes, 119
TransformGroup, 43

ALLOW_TRANSPARENCY_
ATTRIBUTES_READ flag, 108

ALLOW_TRANSPARENCY_
ATTRIBUTES_WRITE flag, 108

ALLOW_TYPE_READ flag, 185
ALLOW_URL_READ flag, 133
ALLOW_URL_WRITE flag, 133
ALLOW_VALUE_READ flag, 121
ALLOW_VALUE_WRITE flag, 121
ALLOW_WEIGHTS_READ flag, 90
ALLOW_WEIGHTS_WRITE flag, 90
ALLOW_WIDTH_READ flag, 113
ALLOW_WIDTH_WRITE flag, 113
alpha

acceleration of, 241
test, 118

ALPHA flag, 126
Alpha object, 242
alphaAtOneDuration parameter, 243
alphaAtZeroDuration parameter, 243
ALWAYS flag, 118
ambient light

color, 123
source, 64

AmbientLight leaf node, 64
amplitude scale factor, 68, 136, 137

angle flag
AxisAngle4d, 338
AxisAngle4f, 340

angle method
Gvector, 345
Vector2f, 305
Vector3D, 313
Vector3f, 318
Vector4d, 327
Vector4f, 335

angular attenuation, 79, 85
animating rigid objects, 219
animation, 219–264
antialiasing, 114, 115
Appearance object, 8, 107, 294
applets, support for building, 5
application region, 56, 57, 87, 88
application scene graph, 7
ArrayIndexOutOfBoundsException, 441
atmospheric conditions, 136
atmospheric rolloff, 134
attachViewPlatform method, 207
attenuation, pointlight, 66
audio device driver, 279

data, 282
initialization, 280

audio devices, 279–283
AudioDevice object, 279–283
AudioMixerDevice interface, 283
aural attributes, 88, 297
AuralAttributes node component object,

133, 136, 297
avatar, 203
AxisAngle4d class, 193, 338

AxisAngle4f class, 193, 340

B
back clip policy, 211, 211
background color, 295
background geometry, 55
Java 3D API Specification

INDEX
Background leaf node, 54, 295
BackgroundSound leaf node, 74
BadTransformException, 441
BASE_LEVEL flag, 125
BASE_LEVEL_LINEAR flag, 126, 127,

460
BASE_LEVEL_POINT flag, 126, 127,

460
Behavior leaf node, 89, 219, 224

behaviors, 219–264
Billboard behavior node, 262
BLEND flag, 119
BLENDED flag, 121
boundary mode, 126, 129
bounding region, 54
BoundingBox node component object,

146
BoundingLeaf node, 53
BoundingPolytope node component

object, 150
BoundingSphere node component

object, 148
Bounds node component objects, 145
BranchGroup node, 8, 40, 275
browser

support, 5
VRML 1.0, 466
VRML 2.0, 468

bufferDataPresent constant, 183
bufferType constant, 183
bundle colors with vertices state bit, 386
bundle normals with vertices state bit,

386

C
cache data flag, 133
calibration parameters, 426
camera-based view model, 434, 436

helping methods, 436
canvas sizing and movement, 209
Canvas3D object, 25, 198, 199, 215, 427

CapabilityNotSetException, 442
CC (Clipping Coordinates), 439
center eye, 429
CHILD_ALL flag , 46
CHILD_MASK flag, 46
CHILD_NONE flag, 46
CLAMP flag

Texture, 126
Texture3D, 129

clamp method
Tuple2f, 302
Tuple3d, 310
Tuple3f, 315
Tuple4d, 324
Tuple4f, 332

clampMax method
Tuple2f, 302
Tuple3d, 310
Tuple3f, 315
Tuple4d, 324
Tuple4f, 332

clampMin method
Tuple2f, 302
Tuple3d, 310
Tuple3f, 315
Tuple4d, 324
Tuple4f, 332

clear method, 297
clearCapability method, 18
Clip leaf node, 56
clip policies, 210
Clipping Coordinates (CC), 439
clipping plane, 56, 57, 210, 211
clone method

BoundingBox, 147
BoundingPolytope, 151
BoundingSphere, 149
Bounds, 145

cloneNode method, 102
BranchGroup, 42
DecalGroup, 45
481Version 1.1 Alpha 01, February 27, 1998

INDEX

482
cloneNode method (Continued)
Group, 39
Node, 22
OrderedGroup, 44
Shape3D, 52
SharedGroup, 95
Switch, 47

cloneNodeComponent method
Appearance, 111
ColoringAttributes, 112
LineAttributes, 114
Material, 124
NodeComponent, 23
PointAttributes, 115
PolygonAttributes, 117
RenderingAttributes, 119
subclassing nodes, 102
TexCoordGeneration, 132
Texture2D, 128
Texture3D, 129
TextureAttributes, 120
TransparencyAttributes, 122

cloneTree method, 97
Leaf, 50
Node, 22

cloning subgraphs, 96–105
close method

AudioDevice, 280
InputDevice, 267

closestIntersection method
BoundingBox, 148
BoundingPolytope, 152
BoundingSphere, 149
Bounds, 145

code structure, 220
coexistence coordinates, 418
collision detection, 16
color

alpha present state bit, 387
command, 394, 403
component information, 111

diffuse, 123
emissive, 123
light, 123
material, 123
parameter, 168
specular, 123
specular highlight, 123
sub-command, 399

COLOR_3 flag, 166
COLOR_4 flag, 166
COLOR_ALPHA_IN_BUFFER flag,

183
COLOR_IN_BUFFER flag, 183
Color3b class, 307
Color3f class, 319
Color4b class, 321
Color4f class, 334
ColoringAttributes object, 111
ColorInterpolator object, 250
colors parameter, 168, 169
combine method

BoundingBox, 147
BoundingPolytope, 151
BoundingSphere, 149
Bounds, 145

compatability mode, 435
compile method

BranchGroup, 41
SharedGroup, 95

compiled-retained mode, 3, 286

component objects,See node component
objects

CompressedGeometry node component
object, 181

CompressedGeometryHeader node
component object, 182

compression
geometry, 381–414
image, 387

concentration, spotlight, 68
ConeSound leaf node, 79
CONGRUENT flag, 152
Java 3D API Specification

INDEX
conjugate method
Quat4d, 328
Quat4f, 336

coordinate systems, 29, 417–420
head, 419, 421, 429
head tracker, 419
high-resolution, 33
image plate, 419
left image plate, 420
physical, 419
right image plate, 420
tracker base, 419
ViewPlatform, 418
virtual world, 418, 421

COORDINATES flag, 166
copySubMatrix method, 377
cross method

Vector3d, 312
Vector3f, 318

cross-product normalization, 162, 351,
357

CULL_BACK flag, 116
CULL_FRONT flag, 116
CULL_NONE flag, 116
currentChild method, 47
CYCLOPEAN_EYE_VIEW flag, 424

D
dangling references, 101
DanglingReferenceException, 442
dashed line, 113
dashed-dotted line, 113
DECAL flag, 119
decal geometry, 44
DecalGroup node, 44
decompress method, 182
decompression, 382
DECREASING_ENABLE flag, 243
decreasingAlphaDuration parameter,

243

decreasingAlphaRampDuration
parameter, 243

DEFAULT_SENSOR_READ_
COUNT, 269

defaultWakeupCriterion flag, 246
depth buffer

enable flag, 118
freezing, 214
mode, 118
write enable flag, 118

DepthComponent object, 143
DepthComponentFloat object, 143
DepthComponentInt object, 144
DepthComponentNative object, 144
detach method, 42
determinant method

Matrix3d, 356
Matrix3f, 350
Matrix4d, 374
Matrix4f, 366
Transform3D, 161

difference method, 35
diffuse color, 123
direction, spotlight, 68
directional light, 64
DirectionalLight leaf node, 64
discrete cosine transform, 388
distance attenuation, 79
distance frequency filtering, 134
distance method

HiResCoord, 35
Point2f, 303
Point3d, 311
Point3f, 317
Point4d, 325
Point4f, 333

distanceL1 method
Point2f, 304
Point3d, 311
Point3f, 317
Point4d, 326
Point4f, 333
483Version 1.1 Alpha 01, February 27, 1998

INDEX

484
distanceLinf method
Point2f, 304
Point3d, 311
Point3f, 317
Point4d, 326
Point4f, 333

DistanceLOD behavior node, 260, 261
distanceSquared method

Point2f, 303
Point3d, 311
Point3f, 317
Point4d, 325
Point4f, 333

Doppler
effect, 135, 138
effect equations, 456, 458
scale factor, 135, 138
velocity, 135, 139

dot method
GVector, 345
Vector2f, 304
Vector3d, 313
Vector3f, 318
Vector4d, 327
Vector4f, 335

dotted line, 113
double buffering enable flag, 216
draw method, 297
duplicateNode method, 102

Behavior, 225
BranchGroup, 42
DecalGroup, 45
Group, 39
Leaf, 52
Node, 22
OrderedGroup, 44
SharedGroup, 95
Switch, 47

duplicateNodeComponent method
Appearance, 111
ColoringAttributes, 112

LineAttributes, 114
Material, 124
MediaContainer, 132
NodeComponent, 24
PointAttributes, 115
PolygonAttributes, 117
RenderingAttributes, 119
subclassing nodes, 102
Texture2D, 128
Texture3D, 129
TextureAttributes, 120
TransparencyAttributes, 122

DURATION_UNKNOWN flag, 69

E
EC (Eye Coordinates), 439
emissive color, 123
ENABLE_COLLISION_REPORTING

flag, 20
ENABLE_PICK_REPORTING flag, 20
environment, sound, 86
epsilonEquals method

AxisAngle4d, 339
AxisAngle4f, 341
GMatrix, 380
GVector, 344
Matrix3d, 358
Matrix3f, 351
Matrix4d, 375
Matrix4f, 367
Transform3D, 162
Tuple2f, 303
Tuple3d, 310
Tuple3f, 315
Tuple4d, 324
Tuple4f, 331

EQUAL flag, 118
equals method

AxisAngle4d, 339
AxisAngle4f, 341
Java 3D API Specification

INDEX
equals method (Continued)
GMatrix, 380
GVector, 344
HiResCoord, 35
Matrix3d, 357
Matrix3f, 351
Matrix4d, 375
Matrix4f, 366
SceneGraphPath, 274
Transform3D, 162
Tuple2f, 302
Tuple3b, 307
Tuple3d, 310
Tuple3f, 315
Tuple4b, 321
Tuple4d, 324
Tuple4f, 331

equations, 447–462
exponential fog, 447
fog, 447
headphone playback, 450
lighting, 448
sound, 450
speaker playback, 458
texture application, 462
texture lookup, 459
texture mapping, 459

error handling, 441
Euler angles, 156
exceptions, 441–446
execution and rendering model, 285–287
execution culling, 223
exponential fog equation, 447
ExponentialFog leaf node, 59
extensibility, 3
Eye Coordinates (EC), 439
eye position manipulation, 427
EYE_LINEAR flag, 130
eyepoint policy, 422

F
face culling flag, 116
FASTEST flag

ColoringAttributes, 112
Texture, 126, 127
TextureAttributes, 120
TransparencyAttributes, 121

field of view, 211
FIELD_ALL flag, 292
FIELD_LEFT flag, 292
FIELD_RIGHT flag, 292
finished method, 246
fog equations, 447
Fog leaf node, 57, 295
Font3D object, 187
FontExtrusion object, 188
forceDuplicate parameter, 97
FORMAT_CHANNEL8 flag, 141
FORMAT_LUM4_ALPHA4 flag, 140
FORMAT_LUM8_ALPHA8 flag, 140
FORMAT_R3_G3_B2 flag, 140
FORMAT_RGB flag, 139
FORMAT_RGB4 flag, 140
FORMAT_RGB5 flag, 140
FORMAT_RGB5_A1 flag, 140
FORMAT_RGB8 flag, 140
FORMAT_RGBA flag, 139
FORMAT_RGBA4 flag, 140
FORMAT_RGBA8 flag, 140
front clip policy, 210, 211
frustum, 435
frustum method, 164, 437

G
gain scale factor, 77, 84, 134
game support, 5
generalized triangle mesh, 384
generalized triangle strip, 382
485Version 1.1 Alpha 01, February 27, 1998

INDEX

486
geometry
component information, 164
compression, 286, 381–414
grouping, 286
instructions, 392
types

GeometryArray, 164
Raster, 184

Geometry object, 8, 164, 297
GeometryArray object, 164
GeometryStripArray object, 172
get method

AxisAngle4d, 339
AxisAngle4f, 341
GMatrix, 378
Matrix4d, 369
Matrix4f, 361
PickPoint, 276
PickRay, 276
PickSegment, 277
SensorRead, 271
Transform3D, 160, 161
Tuple2f, 301
Tuple3b, 307
Tuple3d, 308
Tuple3f, 314
Tuple4b, 321
Tuple4d, 323
Tuple4f, 330

getActivationRadius method, 88
getAlignment method, 190
getAlignmentAxis method, 263
getAlignmentMode method, 263
getAllBranchGraphs method, 33
getAllCanvas3Ds method, 208
getAllChildren method, 39
getAllLights method, 296
getAllLocales method, 32
getAllScopes method

Fog, 59
Light, 63

getAllSounds method, 298

getAllSwitches method, 261
getAlpha method, 247
getAlphaAtOneDuration method, 245
getAlphaAtZeroDuration method, 246
getAlphaTestFunction method, 118
getAlphaTestValue flag, 118
getAlternateCollisionTarget method, 40
getAmbientColor method, 123
getAngleOffsetToSpeaker method, 281
getAngularAttenuation method, 84
getAngularAttenuationLength method,

84
getAppearance method

GraphicsContext3D, 294
Morph, 91
Shape3D, 52

getApplicationBoundingLeaf method
Background, 56
Clip, 57
Soundscape, 88

getApplicationBounds method
Background, 56
Clip, 57
Soundscape, 87

getArmingBounds method
WakeupOnCollisionEntry, 231
WakeupOnCollisionExit, 232
WakeupOnCollisionMovement, 233

getArmingPath method
WakeupOnCollisionEntry, 231
WakeupOnCollisionExit, 232
WakeupOnCollisionMovement, 233

getArrayLengths method
PositionPathInterpolator, 255
RotationPathInterpolator, 259
RotPosPathInterpolator, 256
RotPosScalePathInterpolator, 258

getAsTriangles method, 187
getAttenuation method, 66
getAttributeGain method, 136
getAudioDevice method, 432
getAudioPlaybackType method, 281
Java 3D API Specification

INDEX
getAuralAttributes method
GraphicsContext3D, 297
Soundscape, 88

getAutoNormalize method, 155
getAWTEvent method, 227
getAxisOfRotation method

RotationInterpolator, 249
RotationPathInterpolator, 260

getAxisOfRotPos method, 257
getAxisOfRotPosScale method, 258
getAxisOfScale method, 252
getAxisOfTranslation method

PositionInterpolator, 248
PositionPathInterpolator, 255

getBackClipDistance method, 211
getBackClipPolicy method, 210
getBackDistance method

Clip, 57
LinearFog, 61

getBackground method, 295
getBehavior method, 228
getBestType method, 155
getBoundaryColor method, 127
getBoundaryModeR method, 129
getBoundaryModeS method, 126
getBoundaryModeT method, 126
getBoundingBox method, 191
getBounds method

Font3D, 187
Node, 21
WakeupOnSensorEntry, 230
WakeupOnSensorExit, 231
WakeupOnViewPlatformEntry, 234
WakeupOnViewPlatformExit, 235

getBoundsAutoCompute method, 21
getButtons method, 272
getByteCount method, 182
getCacheEnable method, 133
getCanvas3D method

GraphicsContext3D, 294
View, 207

getCapability method, 18
getCenter method, 148
getCenterEarToSpeaker method, 281
getCenterEyeInImagePlate method, 428
getChannelsAvailable method, 282
getChannelsUsedForSound method, 282
getCharacterSpacing method, 191
getChild method, 38
getChildMask method, 47
getCoexistenceCenterInPworldPolicy

method, 433
getCoexistenceToTrackerBase method,

432
getCollidable method, 21
getCollisionBounds method

Group, 40
Morph, 91
Shape3D, 52

getColor method
Background, 55
ColoringAttributes, 112
Fog, 59
GeometryArray, 168
Light, 63

getColorIndex method, 176
getColorIndices method, 176
getColoringAttributes method, 110
getColors method, 168
getColumn method

GMatrix, 379
Matrix3d, 355
Matrix3f, 349
Matrix4d, 370
Matrix4f, 363

getCompatabilityModeEnable method,
435

getCompressedGeometry method, 182
getCompressedGeometryHeader

method, 182
getConcentration method, 68
getContinuousEnable method, 71
getCoordinate method, 167
487Version 1.1 Alpha 01, February 27, 1998

INDEX

488
getCoordinateIndex method, 176
getCoordinateIndices method, 176
getCoordinates method, 167
getCullFace method, 116
getCurrentFrameStartTime method, 212
getCurrentSensorRead method, 271
getDecreasingAlphaDuration method,

246
getDecreasingAlphaRampDuration

method, 246
getDensity method, 60
getDepth method, 142
getDepthBufferEnable method, 118
getDepthBufferFreezeTransparent

method, 214
getDepthBufferWriteEnable flag, 118
getDepthComponent method, 186
getDepthData method

DepthComponentFloat, 144
DepthComponentInt, 144

getDeterminantSign method, 155
getDevice method, 271
getDiffuseColor method, 123
getDirection method

ConeSound, 84
DirectionalLight, 65
SpotLight, 68

getDistance method, 261
getDistanceFilter method, 137
getDistanceFilterLength method, 137
getDistanceGain method

ConeSound, 83
PointSound, 77

getDistanceGainLength method, 77
getDominantHandIndex method, 432
getDopplerScaleFactor method, 138
getDopplerVelocity method, 139
getDoubleBufferAvailable method, 216
getDoubleBufferEnable method, 216
getDuplicateOnCloneTree method, 98
getDuration method, 74
getElapsedFrameCount method, 229

getElapsedFrameTime method, 229
getElement method

GMatrix, 378
GVector, 343
Matrix3d, 354
Matrix3f, 348
Matrix4d, 369
Matrix4f, 362

getEmissiveColor method, 123
getEnable method

Interpolator, 247
Light, 63
Sound, 72
TexCoordGeneration, 131
Texture, 127

getEndColor method, 250
getEndPosition method, 248
getExtrusionShape method, 188
getFieldOfView method, 211
getFirstChildIndex method, 253
getFog method, 295
getFont method, 188
getFont3D method, 190
getFontExtrusion method, 188
getFormat method

ImageComponent, 141
TexCoordGeneration, 131

getFrameNumber method, 212
getFrameStartTimes method, 212
getFrontClipDistance method, 211
getFrontClipPolicy method, 210
getFrontDistance method, 61
getGenMode method, 131
getGeometry method

Background, 55
Shape3D, 52

getGeometryArray method, 91
getGetDuplicateOnCloneTree method

NodeComponent, 23
getGraphicsContext3D method, 292
getHeadIndex method, 433
Java 3D API Specification

INDEX
getHeadToHeadTracker method, 431
getHeadTrackerToLeftImagePlate

method, 427
getHeadTrackerToRightImagePlate

method, 427
getHeight method

DepthComponent, 143
ImageComponent, 141

getHiRes method
GraphicsContext3D, 296
Locale, 33

getHiResCoord method, 34
getHiResCoordX method, 34
getHiResCoordY method, 34
getHiResCoordZ method, 34
getHotspot method, 270
getImage method

Background, 55
ImageComponent2D, 142
ImageComponent3D, 142
Raster, 186
Texture, 127

getImagePlateToVworld method, 429
getIncreasingAlphaDuration method,

245
getIncreasingAlphaRampDuration

method, 245
getIndexCount method, 177
getInfluencingBoundingLeaf method

Fog, 59
Light, 63

getInfluencingBounds method
Fog, 59
Light, 63

getInitialGain method, 70
getKnot method

PositionPathInterpolator, 255
RotationPathInterpolator, 259
RotPosPathInterpolator, 257
RotPosScalePathInterpolator, 258

getLastChildIndex method, 253
getLastFrameDuration method, 212

getLeftEarPosition method, 430
getLeftEyeInImagePlate method, 428
getLeftEyePosition method, 430
getLeftHandIndex method, 433
getLeftManualEyeInImagePlate

method, 428
getLeftProjection method, 439
getLight method, 295
getLightingEnable method, 124
getLineAntialiasingEnable method, 114
getLineAttributes method, 110
getLinePattern method, 114
getLineWidth method, 113
getLocale method, 274
getLocalEyeLightingEnable method,

209
getLocalToVworld method, 21
getLocationOnScreen method, 215
getLoop method, 70
getLoopCount method, 245
getLower method, 146
getMagFilter method, 127
getMaterial method, 109
getMaxFrameStartTimes method, 212
getMaximumAngle method, 249
getMaximumScale method, 251
getMaximumTransparency method, 254
getMinFilter method, 126
getMinimumAngle method, 249
getMinimumScale method, 251
getMinimumTransparency method, 254
getMipMapMode method, 127
getMode method, 245
getModelTransform method, 296
getMonoscopicViewPolicy method, 424
getNewNodeReference method, 100, 103
getNewObjectReference method, 101,

103
getNode method, 274
getNominalEyeHeightFromGround

method, 430
489Version 1.1 Alpha 01, February 27, 1998

INDEX

490
getNominalEyeOffsetFromNominalScree
n method, 430

getNonDominantHandIndex method,
433

getNormal method, 169
getNormalIndex method, 176
getNormalIndices method, 176
getNormals method, 169
getNumberOfChannelsUsed method, 74
getNumCol method, 378
getNumPlanes method, 151
getNumRow method, 378
getNumStrips method

GeometryStripArray, 173
IndexedGeometryStripArray, 179

getObject method, 274
getOffset method, 186
getParent method, 21
getPath method, 190
getPerspectiveCorrectionMode method,

120
getPhaseDelayDuration method, 245
getPhysicalBody method, 207
getPhysicalEnvironment method

AudioDevice, 281
View, 207

getPhysicalHeight method, 429
getPhysicalScreenHeight method, 215
getPhysicalScreenWidth method, 215
getPhysicalWidth method, 429
getPickable method, 21
getPixelLocationInImagePlate method,

428
getPlaneR method, 132
getPlaneS method, 132
getPlanes method, 150
getPlaneT method, 132
getPointAntialiasingEnable method, 115
getPointAttributes method, 111
getPointSize method, 115
getPolygonAttributes method, 110
getPolygonMode method, 116

getPolygonOffset method, 117
getPosition method

PointLight, 66
PointSound, 77
PositionPathInterpolator, 255
Raster, 186
RotPosPathInterpolator, 256
RotPosScalePathInterpolator, 258
Text3D, 190

getPostId method, 228
getPredictionPolicy method, 270
getPredictor method, 270
getPriority method, 72
getProcessingMode method, 266
getProjectionPolicy method, 208
getQuat method

RotationPathInterpolator, 259
RotPosPathInterpolator, 256
RotPosScalePathInterpolator, 258

getRadius method, 148
getRead method, 270
getReflectionCoefficient method, 137
getRegion method, 54
getReleaseEnable method, 71
getRenderingAttributes method, 110
getReverbDelay method, 137
getReverbOrder method, 137
getRightEarPosition method, 430
getRightEyeInImagePlate method, 428
getRightEyePosition method, 430
getRightHandIndex method, 433
getRightManualEyeInImagePlate

method, 428
getRightProjection method, 439
getRolloff method, 136
getRotationPoint method, 263
getRotationScale method

Matrix4d, 371
Matrix4f, 362
Transform3D, 157

getRow method
GMatrix, 378
Java 3D API Specification

INDEX
getRow method (Continued)
Matrix3d, 355
Matrix3f, 348
Matrix4d, 369
Matrix4f, 363

getScale method
Matrix3d, 358
Matrix3f, 352
Matrix4d, 371
Matrix4f, 362
RotPosScalePathInterpolator, 258
Transform3D, 156

getSceneAntialiasingAvailable method,
216, 428

getSceneAntialiasingEnable method,
213

getSchedulingBoundingLeaf method
Behavior, 225
Sound, 71

getSchedulingBounds method
Behavior, 224
Sound, 71

getScope method
Fog, 59
Light, 63

getScreen3D method, 216
getScreenScale method, 422
getScreenScalePolicy method, 422
getSensor method

InputDevice, 266
PhysicalEnvironment, 432

getSensorButtonCount method, 269
getSensorCount method

InputDevice, 266
PhysicalEnvironment, 432

getSensorHotSpotInVworld method, 424
getSensorReadCount method, 269
getSensorToVworld method, 424
getShadeModel method, 112
getSharedGroup method, 96
getShininess method, 124

getSize method
Canvas3D, 215
GVector, 343
Raster, 186
Screen3D, 215

getSound method, 297
getSoundData method, 70
getSpecularColor method, 123
getSpreadAngle method, 67
getStartColor method, 250
getStartPosition method, 248
getStartTime method, 244
getStereoAvailable method, 216
getStereoEnable method, 216
getString method, 190
getStripIndexCounts method, 179
getStripVertexCounts method, 173
getSwitch method, 261
getTarget method

Billboard, 263
ColorInterpolator, 250
PositionInterpolator, 248
PositionPathInterpolator, 255
RotationInterpolator, 249
RotationPathInterpolator, 260
RotPosPathInterpolator, 257
RotPosScalePathInterpolator, 258
ScaleInterpolator, 252
SwitchValueInterpolator, 253
TransparencyInterpolator, 254

getTexCoordGeneration method, 111
getTexture method, 110
getTextureAttributes method, 110
getTextureBlendColor method, 120
getTextureCoordinate method, 170
getTextureCoordinateIndex method, 176
getTextureCoordinateIndices method,

177
getTextureCoordinates method, 170
getTextureMode method, 119
getTextureTransform method, 120
getTime method, 272
491Version 1.1 Alpha 01, February 27, 1998

INDEX

492
getTotalChannels method, 282
getTrackerBaseToImagePlate method,

427
getTrackingAvailable method, 432
getTrackingEnable method, 421
getTransform method

SceneGraphPath, 274
TransformGroup, 43

getTransformGroup method, 235
getTransparency method, 121
getTransparencyAttributes method, 110
getTransparencyMode method, 121
getTriggeringBehavior method, 228
getTriggeringBounds method

WakeupOnCollisionEntry, 232
WakeupOnCollisionExit, 233
WakeupOnCollisionMovement, 233

getTriggeringPath method
WakeupOnCollisionEntry, 232
WakeupOnCollisionExit, 233
WakeupOnCollisionMovement, 233

getTriggeringPostId method, 228
getTriggerTime method, 245
getType method

Raster, 186
Transform3D, 155

getUpper method, 147
getURL method, 133
getUserData method, 18
getUserHeadToVworld method, 421
getUserHeadToVworldEnable flag, 421
getVertexCount method, 167
getVertexFormat method, 167
getView method

Behavior, 225
Canvas3D, 216

getViewAttachPolicy method, 89, 202
getViewPlatform method, 207
getViewPolicy method, 421
getVirtualUniverse method, 33
getVpcToEc method, 439
getVworldToImagePlate method, 429

getWeights method, 91
getWhichChild method, 46
getWidth method

DepthComponent, 143
ImageComponent, 141

getWindowEyepointPolicy method, 423
getWindowMovementPolicy method,

210
getWindowResizePolicy method, 209
glossary, 471–474
GMatrix class, 194, 376

graphics context, 297
GraphicsContext3D object, 292, 294

great circle interpolation, 329, 337
GREATER flag, 118
GREATER_OR_EQUAL flag, 118
Group node object, 38
group nodes, 15, 37–47

BranchGroup, 40
DecalGroup, 44
OrderedGroup, 44
SharedGroup, 47
Switch, 45
TransformGroup, 42

GVector class, 193, 342

H
HAND_PREDICTOR flag, 269
hardware platforms, 4
hashCode method

AxisAngle4d, 339
AxisAngle4f, 341
GMatrix, 379
GVector, 344
Matrix3d, 359
Matrix3f, 352
Matrix4d, 376
Matrix4f, 367
SceneGraphPath, 275
Transform3D, 162
Java 3D API Specification

INDEX
hashCode method (Continued)
Tuple2f, 303
Tuple3b, 307
Tuple3d, 309
Tuple3f, 316
Tuple4b, 321
Tuple4d, 325
Tuple4f, 332

hasTriggered method, 226
head

coordinate system, 419, 421, 429
parameters, 216, 429
position, 416
tracker coordinate system, 419
tracking, 431

HEAD_PREDICTOR flag, 269
head-mounted coordinate system, 419
headphone playback equations, 450
HEADPHONES flag, 280
hierarchical scope, 59, 63
high-resolution coordinates, 27, 29, 33,

296
HiResCoord object, 24, 33

HMD_VIEW flag, 422
Huffman

compression algorithm, 392
decompression tables, 394
encoding, 381, 387, 392

I
IDENTITY flag, 152
identityMinus method, 377
IllegalArgumentException, 441
IllegalRenderingStateException, 443
IllegalSharingException, 443
image compression, 387
image plate coordinate system, 419

left, 420
right, 420

ImageComponent node component
object, 139

ImageComponent2D node component
object, 141

ImageComponent3D node component
object, 142

immediate mode, 3, 285

API for, 294
rendering, 289–298

INCREASING_ENABLE flag, 243
increasingAlphaDuration parameter, 243
increasingAlphaRampDuration

parameter, 243
indexCount parameter, 179
IndexedGeometryArray object, 174
IndexedGeometryStripArray object, 179
IndexedLineArray object, 177
IndexedLineStripArray object, 179
IndexedPointArray object, 177
IndexedQuadArray object, 178
IndexedTriangleArray object, 178
IndexedTriangleFanArray object, 181
IndexedTriangleStripArray object, 180
infinite eye lighting, 209
influencing region, 59, 63
initialization method, 219
initialize method

AudioDevice, 280
Behavior, 224
Billboard, 264
DistanceLOD, 262
InputDevice, 266
Interpolator, 247

input devices, 265–277
InputDevice object, 265
insertCanvas3D method, 207
insertChild method, 38
insertLight method, 295
insertScope method

Fog, 59
Light, 63

insertSound method, 297
493Version 1.1 Alpha 01, February 27, 1998

INDEX

494
insertSwitch method, 261
instantiating and registering a new

device, 267, 282
INTENSITY flag, 125
interaural

delay, 450
intensity, 450
intensity difference (IID), 453
time difference (ITD), 450

interpolate method
GVector, 345
Quat4d, 329
Quat4f, 337
Tuple2f, 302
Tuple3d, 310
Tuple3f, 316
Tuple4d, 324
Tuple4f, 332

Interpolator object, 246
interpupilary distance, 217, 429
intersect method

BoundingBox, 147
BoundingPolytope, 151
BoundingSphere, 149
Bounds, 145

introduction to Java 3D, 1–13
inverse method

Quat4d, 328
Quat4f, 337

invert method
GMatrix, 377
Matrix3d, 356
Matrix3f, 350
Matrix4d, 374
Matrix4f, 366
Transform3D, 161

isBehaviorSchedulerRunning method,
213

isCompiled method, 18
isEmpty method

BoundingBox, 148
BoundingPolytope, 152

BoundingSphere, 150
Bounds, 146

isLive method, 18
isPlaying method, 73
isPlayingSilently method, 73
isReady method, 73
isSamePath method, 274
isSoundPlaying method, 298
isViewRunning method, 213

J
Java Media API, 132
Java Media Framework Player, 132
Java Media Sound data container, 132
JavaSound API, 132
joystick input processing, 265

K
keyboard input processing, 219

L
L – 1 distance, 304, 311, 317, 326, 333
L – infinite distance, 304, 311, 317, 326,

333, 375, 380
lastButtons method, 270
lastRead method, 270
lastTime method, 270
Leaf node, 49
leaf nodes, 15, 49–91

AmbientLight, 64
Background, 54
BackgroundSound, 74
Behavior, 89, 219, 224

BoundingLeaf, 53
Clip, 56
ConeSound, 79
Java 3D API Specification

INDEX
leaf nodes (Continued)
DirectionalLight, 64
ExponentialFog, 59
Fog, 57, 295
Light, 62
LinearFog, 60
Link, 91, 93, 95

Morph, 89
PointLight, 65
PointSound, 75
Shape3D, 51
Sound, 68, 89
Soundscape, 86
SpotLight, 66
ViewPlatform, 88, 199–203, 420

LEFT_EYE_VIEW flag, 424
length method

Vector2f, 305
Vector3d, 313
Vector3f, 318
Vector4d, 327
Vector4f, 335

lengthSquared method
Vector2f, 305
Vector3d, 313
Vector3f, 318
Vector4d, 327
Vector4f, 335

LESS flag, 118
LESS_OR_EQUAL flag, 118
light

ambient source, 64
color, 123
directional, 64
list of, 296
spot, 66

Light leaf node, 62
lighting equations, 448
line

antialiasing flag, 114
pattern, 114

strip primitive, 172
LINE_BUFFER flag, 183
LinearFog leaf node, 60
LineArray object, 171
LineAttributes object, 112
LineStripArray object, 173
Link leaf node, 91, 93, 95

local eye lighting, 209
Locale object, 24, 32

locales, 27
LOD (level of detail) behavior nodes,

260
lookAt method, 163, 437
loop points, sound, 70
loopCount parameter, 242
LU decomposition, 380
LUD method, 380
LUDBackSolve method, 345
LUMINANCE flag, 125
LUMINANCE_ALPHA flag, 126

M
mach banding, 387
magnification filter, 127
majorVersionNumber constant, 183
Manhattan distance

Point2f, 304
Point3d, 311
Point3f, 317
Point4d, 326
Point4f, 333

material color, 123
Material object, 109, 122

math node component objects, 192, 299–
380

matrix multiplication, 152
matrix objects, 193, 345–380
Matrix3d class, 193, 353

Matrix3f class, 193, 346

Matrix4d class, 194, 367
495Version 1.1 Alpha 01, February 27, 1998

INDEX

496
Matrix4f class, 194, 359

MAXIMUM_SENSOR_BUTTON_
COUNT flag, 271

MediaContainer node component
object, 132

mesh buffer, 385, 386
mesh buffer reference command, 394
meshBufferReference command, 398
minification filter function, 126
minimum environment, 206
minorMinorVersionNumber constant,

183
minorVersionNumber constant, 183
mipmap level, 127
MismatchedSizeException, 444
mixed mode rendering, 291
mode parameter, 242
model transform, 204, 296
MODULATE flag, 119
MONO_SPEAKER flag, 280
monoscopic view policy, 423
Morph leaf node, 89
mouse input processing, 219
moveTo method, 39
moving objects semantics, 31
mul method

GMatrix, 376
GVector, 343
Matrix3d, 357, 358
Matrix3f, 350, 352
Matrix4d, 371, 372, 375
Matrix4f, 362, 366
Quat4d, 328
Quat4f, 336
Transform3D, 161

mulInverse method
Quat4d, 328
Quat4f, 337
Transform3D, 161

mulNormalize method
Matrix3d, 357
Matrix3f, 350

MULTI_LEVEL_LINEAR flag , 126,
460

MULTI_LEVEL_MIPMAP flag, 125
MULTI_LEVEL_POINT flag, 126
MultipleParentException, 444
multiplyModelTransform method, 296
mulTransposeBoth method

GMatrix, 379
Matrix3d, 357
Matrix3f, 351
Matrix4d, 375
Matrix4f, 366
Transform3D, 162

mulTransposeLeft method
GMatrix, 379
Matrix3d, 357
Matrix3f, 351
Matrix4d, 375
Matrix4f, 366
Transform3D, 162

mulTransposeRight method
GMatrix, 379
Matrix3d, 357
Matrix3f, 351
Matrix4d, 375
Matrix4f, 366
Transform3D, 162

N
negate method

GMatrix, 377
GVector, 343
HiResCoord, 35
Matrix3d, 358
Matrix3f, 351
Matrix4d, 373
Matrix4f, 365
Tuple2f, 301
Tuple3d, 309
Tuple3f, 314
Java 3D API Specification

INDEX
negate method (Continued)
Tuple4d, 323
Tuple4f, 330

NEGATIVE_DETERMINANT flag,
152

NEVER flag, 118
NICEST flag

ColoringAttributes, 112
Texture, 126, 127
TextureAttributes, 120
TransparencyAttributes, 121

NO_FILTER flag, 69
NO_PREDICTOR flag, 269
node component objects, 107–194

Appearance, 107
AuralAttributes, 133, 136, 297
BoundingBox, 146
BoundingPolytope, 150
BoundingSphere, 148
Bounds, 145
ColoringAttributes, 111
CompressedGeometry, 181
CompressedGeometryHeader, 182
DepthComponent, 143
DepthComponentFloat, 143
DepthComponentInt, 144
DepthComponentNative, 144
Font3D, 187
FontExtrusion, 188
Geometry, 164
GeometryArray, 164
GeometryStripArray, 172
ImageComponent, 139
ImageComponent2D, 141
ImageComponent3D, 142
IndexedGeometryArray, 174
IndexedGeometryStripArray, 179
IndexedLineArray, 177
IndexedLineStripArray, 179
IndexedPointArray, 177
IndexedQuadArray, 178
IndexedTriangleArray, 178

IndexedTriangleFanArray, 181
IndexedTriangleStripArray, 180
LineArray, 171
LineAttributes, 112
LineStripArray, 173
Material, 122
math, 192, 299–380
matrix, 193
MediaContainer, 132
NodeReferenceTable, 103
PointArray, 171
PointAttributes, 114
PolygonAttributes, 115
QuadArray, 172
Raster, 184
references to, 97
RenderingAttributes, 117
TexCoordGeneration, 129
Text3D, 189
Texture, 124
Texture2D, 128
Texture3D, 128
TextureAttributes, 119
Transform3D, 152
TransparencyAttributes, 120
TriangleArray, 172
TriangleFanArray, 174
TriangleStripArray, 173
tuple, 192

Node object, 19, 20
node objects,See group nodes, leaf nodes
NodeComponent object, 23
nodeCount method, 274
NodeReferenceTable object, 103
NOMINAL_FEET flag, 202
NOMINAL_HEAD flag, 202
NOMINAL_SCREEN flag, 202
NOMINAL_SCREEN_SCALED flag,

202
NONE flag, 121
norm method, 344
497Version 1.1 Alpha 01, February 27, 1998

INDEX

498
normal
command, 394, 403
parameter, 169
sub-command, 400

normalize method
GVector, 344
Matrix3d, 357
Matrix3f, 351
Quat4d, 328
Quat4f, 337
Transform3D, 162
Vector2f, 305
Vector3d, 312
Vector3f, 318
Vector4d, 327
Vector4f, 335

normalizeCP method
Matrix3d, 357
Matrix3f, 351
Transform3D, 162

NORMALS flag, 166
normals parameter, 169
normSquared method, 344
NOT_EQUAL flag, 118
NTSC luminance equation, 450
numBranchGraphs method, 33
numChildren method, 38
numDistances method, 261
numLights method, 296
numLocales method, 32
numScopes method

Fog, 59
Light, 63

numSounds method, 297
numSwitches method, 261

O
object hierarchy, 6
OBJECT_LINEAR flag, 130
occlusion culling, 16

OrderedGroup node, 44
ortho method, 164, 438
ORTHOGONAL flag, 152
orthographic projection matrix, 164

P
parallel projection matrix, 164
PARALLEL_PROJECTION flag, 209
passthrough command, 394
PATH_DOWN flag, 191
PATH_LEFT flag, 191
PATH_RIGHT flag, 191
PATH_UP flag, 191
PATTERN_DASH flag, 113
PATTERN_DASH_DOT flag, 113
PATTERN_DOT flag, 113
PATTERN_SOLID flag, 113
perspective

correction mode, 120
method, 164, 437
projection matrix, 164

PERSPECTIVE_PROJECTION flag,
209

phaseDelayDuration parameter, 242
physical

body, 26
coexistence policy, 433
coordinate systems, 419
environment, 26
world, 197

PHYSICAL_EYE flag, 211
PHYSICAL_SCREEN flag, 211
PHYSICAL_WORLD flag, 209
PhysicalBody object, 26, 198, 199, 216,

290, 429

PhysicalEnvironment object, 26, 198,
199, 217, 290, 431

pickAll method, 275
pickAllSorted method, 275
pickAny method, 275
Java 3D API Specification

INDEX
pickClosest method, 275
picking, 272
PickPoint object, 276
PickRay object, 276
PickSegment object, 277
PickShape object, 275
playing state, sound, 72
point antialiasing flag, 115
point size, 115
POINT_BUFFER flag, 183
Point2f class, 303
Point3d class, 311
Point3f class, 316
Point4d class, 325
Point4f class, 332
PointArray object, 171
PointAttributes object, 114
PointLight leaf node, 65
PointSound leaf node, 75
policies

back clip, 211
clip, 210
eyepoint, 422
front clip, 210
physical coexistance, 433
projection, 208
view, 421
view attach, 88, 202

window resize, 209
pollAndProcessInput method, 267
POLLED flag, 266
polygon offset, 117
polygon rasterization mode, 116
POLYGON_FILL flag, 116
POLYGON_LINE flag, 116
POLYGON_POINT flag, 116
polygonal bounding region, 150
PolygonAttributes object, 115
polytope, 150
position sub-command, 399
position, pointlight, 66

PositionInterpolator object, 247
PositionPathInterpolator object, 254
postId method, 225
postRender method, 292
postSwap method, 293
PREDICT_NEXT_FRAME_TIME

flag, 268
PREDICT_NONE flag, 268
predictor policy, 270
predictor type, 270
preRender method, 292
priority, 72
processing mode, 266
processStimulus method

Behavior, 224
Billboard, 264
ColorInterpolator, 251
DistanceLOD, 262
PositionInterpolator, 248
PositionPathInterpolator, 255
RotationInterpolator, 250
RotationPathInterpolator, 260
RotPosPathInterpolator, 257
RotPosScalePathInterpolator, 258
ScaleInterpolator, 252
SwitchValueInterpolator, 253
TransparencyInterpolator, 254

processStreamInput method, 267
programming conventions, xv
programming paradigm, 2
project method

Point3d, 312
Point3f, 317
Point4d, 326
Point4f, 334

projection policy, 208
proximity detection, 16
pure immediate mode rendering, 289
499Version 1.1 Alpha 01, February 27, 1998

INDEX

500
Q
QuadArray object, 172
quadrilateral, 172, 178
quantization of color data, 387
Quat4d class, 327
Quat4f class, 336

R
R coordinate plane equation, 132
Raster node component object, 184
RASTER_COLOR flag, 185
RASTER_COLOR_DEPTH flag, 185
RASTER_DEPTH flag, 185
readRaster method, 297
reflection coefficient, 134
reflection vector, 449
region

application, 56, 57, 87, 88
of influence, 59, 63
scheduling, 71, 224, 225

RELATIVE_TO_FIELD_OF_VIEW
flag, 423

RELATIVE_TO_SCREEN flag, 423
RELATIVE_TO_WINDOW flag, 423
removeBranchGraph method, 33
removeCanvas3D method, 208
removeChild method, 38
removeLight method, 295
removeScope method

Fog, 59
Light, 63

removeSound method, 297
removeSwitch method, 261
render loop, 287
renderField method, 293
rendering, 17

immediate mode, 289–298
modes, 285

RenderingAttributes object, 117

REPLACE flag, 119
replace_middle, 383
replace_oldest, 383
replaceBranchGraph method, 33
restart_clockwise, 383
restart_counterclockwise, 383
RestrictedAccessException, 444
retained mode, 3, 286
reverberation, 86, 134

delay, 134, 137
equations, 457
order, 134, 137

RGB flag, 126
RGBA flag, 126
RIGHT_EYE_VIEW flag, 424
RIGID flag, 152
rolloff scale factor, 136
ROTATE_ABOUT_AXIS flag, 262
ROTATE_ABOUT_POINT flag, 262
rotation, 152
rotation matrices

Matrix3d, 356
Matrix4d, 375
Matrix4f, 366

RotationInterpolator object, 248
RotationPathInterpolator object, 259
RotPosPathInterpolator object, 256
RotPosScalePathInterpolator object, 257
rotX method

Matrix3d, 356
Matrix3f, 350
Matrix4d, 374
Matrix4f, 366
Transform3D, 158

rotY method
Matrix3d, 356
Matrix3f, 350
Matrix4d, 374
Matrix4f, 366
Transform3D, 158
Java 3D API Specification

INDEX
rotZ method
Matrix3d, 356
Matrix3f, 350
Matrix4d, 374
Matrix4f, 366
Transform3D, 158

S
S coordinate plane equation, 132
scale constant, 184
SCALE flag, 152
scale method

GVector, 344
HiResCoord, 35
Tuple2f, 301
Tuple3d, 309
Tuple3f, 315
Tuple4d, 323
Tuple4f, 331

SCALE_EXPLICIT flag, 422
SCALE_SCREEN_SIZE flag, 422
scaleAdd method

GVector, 344
Transform3D, 157
Tuple2f, 301
Tuple3d, 309
Tuple3f, 315
Tuple4d, 323
Tuple4f, 331

ScaleInterpolator object, 251
scaling, 152
scene antialiasing, 213, 428
scene graph, 15–26

flattening, 286
node component objects, 107–194
objects, 17
reusing, 93–101
structure, 15
superstructure objects, 24
viewing objects, 25

SceneGraphCycleException, 445
SceneGraphObject, 17
SceneGraphPath object, 273
scheduling

behavior, 222
region, 71, 219, 223, 224, 225
volume tree, 223

screen scale policy, 422
screen scale value, 422
SCREEN_DOOR flag, 121
SCREEN_VIEW flag, 422
Screen3D object, 25, 198, 199, 214, 424

calibration parameters, 426
screen-door transparency, 121
Sensor object, 268
SensorRead object, 271
sensors, 267
set method

AxisAngle4d, 338
AxisAngle4f, 341
BoundingBox, 147
BoundingPolytope, 151
BoundingSphere, 149
Bounds, 145
GMatrix, 378
GVector, 343
ImageComponent2D, 142
ImageComponent3D, 143
Matrix3d, 354
Matrix3f, 347
Matrix4d, 372, 373
Matrix4f, 360
PickPoint, 276
PickRay, 276
PickSegment, 277
Quat4d, 329
Quat4f, 337
SceneGraphPath, 274
SensorRead, 271
Transform3D, 158, 160
Tuple2f, 301
501Version 1.1 Alpha 01, February 27, 1998

INDEX

502
set method (Continued)
Tuple3b, 307
Tuple3d, 308
Tuple3f, 314
Tuple4b, 321
Tuple4d, 323
Tuple4f, 330

set state command, 394
set table command, 394
setActivationRadius method, 88
setAlignment method, 190
setAlignmentAxis method, 263
setAlignmentMode method, 263
setAlpha method, 247
setAlphaTestFunction method, 118
setAlphaTestValue flag, 118
setAlphAtOneDuration method, 245
setAlphAtZeroDuration method, 246
setAlternateCollisionTarget method, 40
setAmbientColor method, 123
setAngleOffsetToSpeaker method, 281
setAngularAttenuation method, 84
setAppearance method

GraphicsContext3D, 294
Morph, 91
Shape3D, 52

setApplicationBoundingLeaf method
Background, 56
Clip, 57
Soundscape, 88

setApplicationBounds method
Background, 56
Clip, 57
Soundscape, 87

setAttenuation method, 66
setAttributeGain method, 136
setAudioDevice method

PhysicalEnvironment, 432
View, 208

setAudioPlaybackType method, 281
setAuralAttributes method

GraphicsContext3D, 297
Soundscape, 88

setAutoNormalize method, 155
setAxisOfRotation method

RotationInterpolator, 249
RotationPathInterpolator, 260

setAxisOfRotPos method, 257
setAxisOfRotPosScale method, 258
setAxisOfScale method, 252
setAxisOfTranslation method

PositionInterpolator, 248
PositionPathInterpolator, 255

setBackClipDistance method, 211
setBackClipPolicy method, 210
setBackDistance method

Clip, 57
LinearFog, 61

setBackDistanceGain method, 83
setBackground method, 295
setBoundaryColor method, 127
setBoundaryModeR method, 129
setBoundaryModeS method, 126
setBoundaryModeT method, 126
setBounds method, 21
setBoundsAutoCompute method, 21
setButtons method, 272
setCacheEnable method, 133
setCanvas3D method, 207
setCapability method, 18
setCenter method, 148
setCenterEarToSpeaker method, 281
setCharacterSpacing method, 191
setChild method, 38
setChildMask method, 47
setCoexistenceCenterInPworldPolicy

method, 433
setCoexistenceToTrackerBase method,

432
setCollidable method, 21
setCollisionBounds method

Group, 40
Morph, 91
Java 3D API Specification

INDEX
setCollisionBounds method (Continued)
Shape3D, 52

setColor method
Background, 55
ColoringAttributes, 112
Fog, 59
GeometryArray, 168
Light, 63

setColorIndex method, 176
setColorIndices method, 176
setColoringAttributes method, 110
setColors method, 168
setColumn method

GMatrix, 379
Matrix3d, 355
Matrix3f, 349
Matrix4d, 370
Matrix4f, 363

setCompatibilityModeEnable method,
435

setConcentration method, 68
setContinuousEnable method, 71
setCoordinate method, 167
setCoordinateIndex method, 176
setCoordinateIndices method, 176
setCoordinates method, 167
setCullFace method, 116
setDecreasingAlphaDuration method,

246
setDecreasingAlphaRampDuration

method, 246
setDensity method, 60
setDepthBufferEnable method, 118
setDepthBufferFreezeTransparent

method, 214
setDepthBufferWriteEnable method, 118
setDepthComponent method, 186
setDepthData method

DepthComponentFloat, 144
DepthComponentInt, 144

setDevice method, 271
setDiffuseColor method, 123

setDirection method
ConeSound, 84
DirectionalLight, 65
SpotLight, 68

setDistance method, 261
setDistanceFilter method, 137
setDistanceGain method

ConeSound, 83
PointSound, 77

setDominantHandIndex method, 432
setDopplerScaleFactor method, 138
setDopplerVelocity method, 139
setDoubleBufferEnable method, 216
setDuplicateOnCloneTree method, 23,

98
setElement method

GMatrix, 378
GVector, 343
Matrix3d, 354
Matrix3f, 348
Matrix4d, 369
Matrix4f, 362

setEmissiveColor method, 123
setEnable method

Interpolator, 247
Light, 63
Sound, 72
TexCoordGeneration, 131
Texture, 127

setEndColor method, 250
setEndPosition method, 248
setEuler method, 156
setExtrusionShape method, 188
setFieldOfView method, 211
setFirstChildIndex method, 253
setFog method, 295
setFont3D method, 190
setFormat method, 131
setFrontClipDistance method, 211
setFrontClipPolicy method, 210
setFrontDistance method, 61
setGenMode method, 131
503Version 1.1 Alpha 01, February 27, 1998

INDEX

504
setGeometry method
Background, 55
Shape3D, 52

setGeometryArrays method, 90
setHeadIndex method, 433
setHeadToHeadTracker method, 431
setHeadTrackerToLeftImagePlate

method, 427
setHeadTrackerToRightImagePlate

method, 427
setHiRes method

GraphicsContext3D, 296
Locale, 33

setHiResCoord method, 34
setHiResCoordX method, 34
setHiResCoordY method, 34
setHiResCoordZ method, 34
setHotspot method, 270
setIdentity method

GMatrix, 377
Matrix3d, 358
Matrix3f, 349
Matrix4d, 375
Matrix4f, 364
Transform3D, 155

setImage method
Background, 55
Raster, 186
Texture, 127

setIncreasingAlphaDuration method,
245

setIncreasingAlphaRampDuration
method, 245

setInfluencingBoundingLeaf method
Fog, 59
Light, 63

setInfluencingBounds method
Fog, 59
Light, 63

setInitialGain method, 70
setKnot method

PositionPathInterpolator, 255

RotationPathInterpolator, 259
RotPosPathInterpolator, 257
RotPosScalePathInterpolator, 258

setLastChildIndex method, 253
setLeftEarPosition method, 430
setLeftEyePosition method, 430
setLeftHandIndex method, 433
setLeftManualEyeInImagePlate

method, 428
setLeftProjection method, 439
setLight method, 295
setLightingEnable method, 124
setLineAntialiasingEnable method, 114
setLineAttributes method, 110
setLinePattern method, 114
setLineWidth method, 113
setLocale method, 274
setLocalEyeLightingEnable method, 209
setLoop method, 70
setLoopCount method, 245
setLower method, 146
setMagFilter method, 127
setMaterial method, 109
setMaximumAngle method, 249
setMaximumScale method, 251
setMaximumTransparency method, 254
setMinFilter method, 126
setMinimumAngle method, 249
setMinimumScale method, 251
setMinimumTransparency method, 254
setMipMapMode method, 127
setMode method, 245
setModelTransform method, 296
setMonoscopicViewPolicy method, 424
setNextSensorRead method, 271
setNode method, 274
setNodes method, 274
setNominalEyeHeightFromGround

method, 430
setNominalEyeOffsetFromNominalScree

n method, 430
Java 3D API Specification

INDEX
setNominalPositionAndOrientation
method, 266

setNonDominantHandIndex method,
433

setNonUniformScale method, 157
setNormal method, 169
setNormalIndex method, 176
setNormalIndices method, 176
setNormals method, 169, 170
setObject method, 274
setOffset method, 186
setPath method, 190
setPerspectiveCorrectionMode method,

120
setPhaseDelayDuration method, 245
setPhysicalBody method, 207
setPhysicalEnvironment method, 207
setPhysicalScreenHeight method, 427
setPhysicalScreenWidth method, 427
setPickable method, 21
setPlaneR method, 132
setPlaneS method, 132
setPlanes method, 150
setPlaneT method, 132
setPointAntialiasingEnable method, 115
setPointAttributes method, 111
setPointSize method, 115
setPolygonAttributes method, 110
setPolygonMode method, 116
setPolygonOffset method, 117
setPosition method

PointLight, 66
PointSound, 77
PositionPathInterpolator, 255
Raster, 186
RotPosPathInterpolator, 256
RotPosScalePathInterpolator, 258
Text3D, 190

setPredictionPolicy method, 270
setPredictor method, 270
setPriority method, 72
setProcessingMode method, 266

setProjectionPolicy method, 208
setQuat method

RotationPathInterpolator, 259
RotPosPathInterpolator, 256
RotPosScalePathInterpolator, 258

setRadius method, 148
setReflectionCoefficient method, 137
setRegion method, 54
setReleaseEnable method, 71
setRenderingAttributes method, 110
setReverbDelay method, 137
setReverbOrder method, 137
setRightEarPosition method, 430
setRightEyePosition method, 430
setRightHandIndex method, 433
setRightManualEyeInImagePlate

method, 428
setRightProjection method, 439
setRolloff method, 136
setRotation method

Matrix4d, 370, 371
Matrix4f, 364
Transform3D, 156

setRotationPoint method, 263
setRotationScale method

Matrix4d, 371
Matrix4f, 364
Transform3D, 157

setRow method
GMatrix, 378
Matrix3d, 355
Matrix3f, 348
Matrix4d, 369
Matrix4f, 363

setScale method
GMatrix, 379
Matrix3f, 352
Matrix4d, 371
Matrix4f, 362
RotPosScalePathInterpolator, 258
Transform3D, 156

setSceneAntialiasingEnable method, 213
505Version 1.1 Alpha 01, February 27, 1998

INDEX

506
setSchedulingBoundingLeaf method
Behavior, 225
Sound, 71

setSchedulingBounds method
Behavior, 224
Sound, 71

setScope method
Fog, 59
Light, 63

setScreenScale method, 422
setScreenScalePolicy method, 422
setSensor method, 432
setSensorCount method, 432
setSensorReadCount method, 269
setShadeModel method, 112
setSharedGroup method, 96
setShininess method, 124
setSize method

GMatrix, 378
GVector, 343
Raster, 186

setSound method, 297
setSoundData method

Sound, 70
setSpecularColor method, 123
setSpreadAngle method, 67
setStartColor method, 250
setStartPosition method, 248
setStartTime method, 244
setState command, 395
setStereoEnable method, 216
setString method, 190
setSwitch method, 261
setTable command, 397
setTarget method

Billboard, 263
ColorInterpolator, 250
PositionInterpolator, 248
PositionPathInterpolator, 255
RotationInterpolator, 249
RotationPathInterpolator, 260

RotPosPathInterpolator, 257
RotPosScalePathInterpolator, 258
ScaleInterpolator, 252
SwitchValueInterpolator, 253
TransparencyInterpolator, 254

setTexCoordGeneration method, 111
setTexture method, 110
setTextureAttributes method, 110
setTextureBlendColor method, 120
setTextureCoordinate method, 170
setTextureCoordinateIndex method, 176
setTextureCoordinateIndices method,

177
setTextureCoordinates method, 170, 171
setTextureMode method, 119
setTextureTransform method, 120
setTime method, 272
setTrackerBaseToImagePlate method,

427
setTrackingEnable method, 421
setTransform method, 43
setTranslation method

Matrix4d, 371
Matrix4f, 364
Transform3D, 158

setTransparency method, 121
setTransparencyAttributes method, 110
setTransparencyMode method, 121
setTriggerTime method, 245
setType method, 186
setUpper method, 147
setURL method, 133
setUserData method, 18
setUserHeadToVworldEnable method,

421
setViewAttachPolicy method, 89, 202
setViewPolicy method, 421
setVpcToEc method, 439
setWeights method, 91
setWhichChild method, 46
setWindowEyepointPolicy method, 423
Java 3D API Specification

INDEX
setWindowMovementPolicy method,
210

setWindowResizePolicy method, 209
setZero method

GMatrix, 379
Matrix3d, 358
Matrix3f, 349
Matrix4d, 375
Matrix4f, 364
Transform3D, 155

shade model component information,
111

SHADE_FLAT flag, 112
SHADE_GOURAUD flag, 112
Shape3D leaf node, 17, 51, 297
shared subgraphs, 93–96
SharedGroup node, 47, 93

shininess, 123
singular value decomposition, 351, 370,

380
SingularMatrixException, 445
size constant, 184
solid line, 113
sound

caching, 69
data, 132
enable, 73
environment, 86
equations, 450
list, 298
loop points, 70
playing state, 72
reflection, 137
reverberation, 134
sample, 68
scheduling region, 71, 224, 225
speed, 136

Sound leaf node, 68, 89
SoundException, 446
Soundscape leaf node, 86
spatial separation, 15
speaker playback equations, 458

specular
color, 123
highlight color, 123
scattering exponent, 124

speed of sound, 136
SPHERE_MAP flag, 130
spherical bounding volume, 148
spot light, 66
SpotLight leaf node, 66
spread angle, spotlight, 67
startBehaviorScheduler method, 213
startRenderer method, 293
startView method, 213
state change clustering, 286
state inheritance, 16
stereo enabled flag, 216
STEREO_SPEAKERS flag, 280
StereoAvailable, 216
stimulus method, 220
stopBehaviorScheduler method, 213
stopRenderer method, 293
stopView method, 213
STREAMING flag, 266
stripIndexCounts parameter, 179
stripVertexCounts parameter, 173
style conventions, xv
sub method

GMatrix, 377
GVector, 342
HiResCoord, 35
Matrix3d, 355
Matrix3f, 349
Matrix4d, 372
Matrix4f, 364
Transform3D, 157
Tuple2f, 301
Tuple3d, 309
Tuple3f, 314
Tuple4d, 323
Tuple4f, 330

subclassing nodes, 102
507Version 1.1 Alpha 01, February 27, 1998

INDEX

508
subgraphs
cloning, 96–105
shared, 93–96

surface normal compression, 388
SVD method, 380
SVDBackSolve method, 345
swap method, 293
Switch group node, 45
SwitchValueInterpolator object, 252

T
T coordinate plane equation, 132
texCoord parameter, 170
TexCoord2f class, 305
TexCoord3f class, 318
TexCoordGeneration node component

object, 129
texCoords parameter, 170
text

alignment policy, 190
position, 190

Text3D object, 189
texture

application equations, 462
blend color, 120
boundary color, 127
coordinate generation mode, 131
filter parameters, 459
lookup equations, 459
map, 110, 126, 459
mapping, 124

equations, 459
mode, 119
node component object, 124
object, 110
transform object, 120

Texture node component object, 124
TEXTURE_COORDINATE_2 flag

GeometryArray, 166
TexCoordGeneration, 130

TEXTURE_COORDINATE_3 flag
GeometryArray, 166
TexCoordGeneration, 130

Texture2D node component object, 128
Texture3D node component object, 128
TextureAttributes object, 119
toString method

AxisAngle4d, 339
AxisAngle4f, 341
BoundingSphere, 150
GMatrix, 379
GVector, 344
Material, 124
Matrix3d, 359
Matrix3f, 352
Matrix4d, 376
Matrix4f, 367
PhysicalBody, 431
SceneGraphPath, 275
Transform3D, 157
Tuple2f, 303
Tuple3b, 306
Tuple3d, 309
Tuple3f, 314
Tuple4b, 320
Tuple4d, 324
Tuple4f, 331
View, 421

trace method, 380
tracker, 265

base coordinate system, 419
input processing, 265

transform method
BoundingBox, 147
BoundingPolytope, 151
BoundingSphere, 149
Bounds, 146
Matrix3d, 356, 358
Matrix3f, 349, 352
Matrix4d, 374
Matrix4f, 365
Java 3D API Specification

INDEX
transform method (Continued)
Transform3D, 163

Transform3D node component object,
152

TransformGroup node, 8, 17, 42, 272
translation, 152
TRANSLATION flag, 152
transparency, 120, 123, 254

mode, 121
value, 121

TransparencyAttributes object, 120
TransparencyInterpolator object, 253
transpose method

GMatrix, 379
Matrix3d, 356
Matrix3f, 350
Matrix4d, 373
Matrix4f, 365
Transform3D, 158

triangle fan primitive, 172
triangle strip primitive, 172
TRIANGLE_BUFFER flag, 183
TriangleArray node component object,

172
TriangleFanArray node component

object, 174
TriangleStripArray node component

object, 173
triggeredElements method, 226
triggerTime parameter, 242
tuple objects, 192
Tuple2f class, 192, 299
Tuple3b class, 192, 305
Tuple3d class, 192, 308
Tuple3f class, 193, 313
Tuple4b class, 193, 319
Tuple4d class, 193, 322
Tuple4f class, 193, 329

U
updateNodeReferences method, 100

Behavior, 225
Leaf, 49
ScaleInterpolator, 252
Shape3D, 53

USE_BOUNDS flag
WakeupOnCollisionEntry, 231
WakeupOnCollisionExit, 232
WakeupOnCollisionMovement, 233

USE_GEOMETRY flag
WakeupOnCollisionEntry, 231
WakeupOnCollisionExit, 232
WakeupOnCollisionMovement, 233

V
value method, 244
Vector2f class, 304
Vector3d class, 312
Vector3f class, 317
Vector4d class, 326
Vector4f class, 334
velocity-activated Doppler effect, 134
vertex command, 393, 402
vertexCount parameter

GeometryArray, 166
GeometryStripArray, 173
IndexedGeometryStripArray, 179

vertexFormat parameter
GeometryArray, 166
IndexedGeometryStripArray, 179
IndexedLineStripArray, 180
IndexedTriangleFanArray, 181
IndexedTriangleStripArray, 180

view
attach policy, 88, 202

frustum, 415, 435
culling, 16

model, 195–217, 415–439
509Version 1.1 Alpha 01, February 27, 1998

INDEX

510
view (Continued)
platform transform, 204
policy, 421

View object, 25, 198, 199, 206, 207, 290,
420

viewing
matrices, 203
semantics, 31

ViewPlatform
coordinate system, 418
Coordinates (VPC), 439
leaf node, 88, 199–203, 420

virtual camera, 435
virtual universe, 27–35

loading, 29
virtual world, 197

coordinate system, 418, 421
coordinates, 30

VIRTUAL_EYE flag, 211
VIRTUAL_SCREEN flag, 211
VIRTUAL_WORLD flag, 209
VirtualUniverse object, 7, 24, 32, 285
vnop command, 394, 395
VPC (ViewPlatform Coordinates), 439
VRML 1.0 support, 465
VRML 2.0 support, 466

W
w flag

Tuple4b, 320
Tuple4d, 322
Tuple4f, 329

wakeup
conditions, 220, 223
criterion, 221

WakeupAnd object, 235
WakeupAndOfOrs object, 236
WakeupCondition object, 226
WakeupCriterion object, 222, 226

wakeupOn method, 225

WakeupOnActivation object, 227
WakeupOnAWTEvent object, 227
WakeupOnBehaviorPost object, 227
WakeupOnCollisionEntry object, 231
WakeupOnCollisionExit object, 232
WakeupOnCollisionMovement object,

233
WakeupOnDeactivation object, 228
WakeupOnElapsedFrames object, 229
WakeupOnElapsedTime object, 229
WakeupOnSensorEntry object, 230
WakeupOnSensorExit object, 230
WakeupOnTransformChange object,

235
WakeupOnViewPlatformEntry object,

234
WakeupOnViewPlatformExit object,

234
WakeupOr object, 236
WakeupOrOfAnds object, 236
window

resize policy, 209
sizing and movement, 209

window system provided parameters,
215

WRAP flag
Texture, 126
Texture3D, 129

X
x flag

AxisAngle4d, 338
AxisAngle4f, 340
Tuple2f, 300
Tuple3b, 306
Tuple3d, 308
Tuple3f, 313
Tuple4b, 320
Tuple4d, 322
Tuple4f, 329
Java 3D API Specification

INDEX
xOffset constant, 184

Y
y flag

AxisAngle4d, 338
AxisAngle4f, 340
Tuple2f, 300
Tuple3b, 306
Tuple3d, 308
Tuple3f, 313
Tuple4b, 320
Tuple4d, 322
Tuple4f, 329

yOffset constant, 184

Z
z flag

AxisAngle4d, 338
AxisAngle4f, 340
Tuple3b, 306
Tuple3d, 308
Tuple3f, 313
Tuple4b, 320
Tuple4d, 322
Tuple4f, 329

ZERO flag, 152
zero method

GMatrix, 377
GVector, 343

zOffset constant, 184
511Version 1.1 Alpha 01, February 27, 1998

	Contents
	Figures
	Preface
	Introduction to Java�3D
	1.1 Goals
	1.2 Programming Paradigm
	1.2.1 The Scene Graph Programming Model
	1.2.2 Rendering Modes
	1.2.3 Extensibility

	1.3 High Performance
	1.3.1 Layered Implementation
	1.3.2 Target Hardware Platforms

	1.4 Support for Building Applications and Applets
	1.4.1 Browsers
	1.4.2 Games

	1.5 Overview of Java�3D Object Hierarchy
	1.6 Structuring the Java�3D Program
	1.6.1 Java�3D Application Scene Graph
	1.6.2 Recipe for a Java�3D Program
	1.6.3 HelloUniverse: A Sample Java�3D Program

	Scene Graph Basics
	2.1 Scene Graph Structure
	2.1.1 Spatial Separation
	2.1.2 State Inheritance
	2.1.3 Rendering

	2.2 Scene Graph Objects
	2.2.1 Node Objects
	2.2.2 NodeComponent Objects

	2.3 Scene Graph Superstructure Objects
	2.3.1 VirtualUniverse Object
	2.3.2 Locale Object

	2.4 Scene Graph Viewing Objects
	2.4.1 Canvas3D Object
	2.4.2 Screen3D Object
	2.4.3 View Object
	2.4.4 PhysicalBody Object
	2.4.5 PhysicalEnvironment Object

	Scene Graph Superstructure
	3.1 The Virtual Universe
	3.2 Establishing a Scene
	3.3 Loading a Virtual Universe
	3.4 Coordinate Systems
	3.5 High-resolution Coordinates
	3.5.1 Java�3D High-resolution Coordinates
	3.5.2 Java�3D Virtual World Coordinates
	3.5.3 Details of High-resolution Coordinates

	3.6 API for Superstructure Objects
	3.6.1 VirtualUniverse Object
	3.6.2 Locale Object
	3.6.3 HiResCoord Object

	Group Node Objects
	4.1 Group Node
	4.2 BranchGroup Node
	4.3 TransformGroup Node
	4.4 OrderedGroup Node
	4.5 DecalGroup Node
	4.6 Switch Node
	4.7 SharedGroup Node

	Leaf Node Objects
	5.1 Leaf Node
	5.2 Shape3D Node
	5.3 BoundingLeaf Node
	5.4 Background Node
	5.5 Clip Node
	5.6 Fog Node
	5.6.1 ExponentialFog Node
	5.6.2 LinearFog Node

	5.7 Light Node
	5.7.1 AmbientLight Node
	5.7.2 DirectionalLight Node
	5.7.3 PointLight Node
	5.7.4 SpotLight Node

	5.8 Sound Node
	5.8.1 BackgroundSound Node
	5.8.2 PointSound Node
	5.8.3 ConeSound Node

	5.9 Soundscape Node
	5.10 ViewPlatform Node
	5.11 Behavior Node
	5.12 Morph Node
	5.13 Link Node

	Reusing Scene Graphs
	6.1 Sharing Subgraphs
	6.1.1 SharedGroup Node
	6.1.2 Link Leaf Node

	6.2 Cloning Subgraphs
	6.2.1 References to Node Component Objects
	6.2.2 References to Other Scene Graph Nodes
	6.2.3 Dangling References
	6.2.4 Subclassing Nodes
	6.2.5 NodeReferenceTable Object
	6.2.6 Example User Behavior Node

	Node Component Objects
	7.1 Node Component Objects: Attributes
	7.1.1 Appearance Object
	7.1.2 ColoringAttributes Object
	7.1.3 LineAttributes Object
	7.1.4 PointAttributes Object
	7.1.5 PolygonAttributes Object
	7.1.6 RenderingAttributes Object
	7.1.7 TextureAttributes Object
	7.1.8 TransparencyAttributes Object
	7.1.9 Material Object
	7.1.10 Texture Object
	7.1.11 Texture2D Object
	7.1.12 Texture3D Object
	7.1.13 TexCoordGeneration Object
	7.1.14 MediaContainer Object
	7.1.15 AuralAttributes Object
	7.1.16 ImageComponent Object
	7.1.17 ImageComponent2D Object
	7.1.18 ImageComponent3D Object
	7.1.19 DepthComponent Object
	7.1.20 DepthComponentFloat Object
	7.1.21 DepthComponentInt Object
	7.1.22 DepthComponentNative Object
	7.1.23 Bounds Object
	7.1.24 BoundingBox Object
	7.1.25 BoundingSphere Object
	7.1.26 BoundingPolytope Object
	7.1.27 Transform3D Object

	7.2 Node Component Objects: Geometry
	7.2.1 GeometryArray Object
	7.2.2 PointArray Object
	7.2.3 LineArray Object
	7.2.4 TriangleArray Object
	7.2.5 QuadArray Object
	7.2.6 GeometryStripArray Object
	7.2.7 LineStripArray Object
	7.2.8 TriangleStripArray Object
	7.2.9 TriangleFanArray Object
	7.2.10 IndexedGeometryArray Object
	7.2.11 IndexedPointArray Object
	7.2.12 IndexedLineArray Object
	7.2.13 IndexedTriangleArray Object
	7.2.14 IndexedQuadArray Object
	7.2.15 IndexedGeometryStripArray Object
	7.2.16 IndexedLineStripArray Object
	7.2.17 IndexedTriangleStripArray Object
	7.2.18 IndexedTriangleFanArray Object
	7.2.19 CompressedGeometry Object
	7.2.20 CompressedGeometryHeader Object
	7.2.21 Raster Object
	7.2.22 Font3D Object
	7.2.23 FontExtrusion Object
	7.2.24 Text3D Geometry Object

	7.3 Math Component Objects
	7.3.1 Tuple Objects
	7.3.2 Matrix Objects

	View Model
	8.1 Why a New Model?
	8.1.1 The Physical Environment Influences the View...

	8.2 Separation of Physical and Virtual
	8.2.1 The Virtual World
	8.2.2 The Physical World

	8.3 The Objects That Define the View
	8.4 ViewPlatform: A Place in the Virtual World
	8.4.1 Moving Through the Virtual World
	8.4.2 Dropping In on a Favorite Place
	8.4.3 View Attach Policy
	8.4.4 Associating Geometry with a ViewPlatform

	8.5 Generating a View
	8.5.1 Composing Model and Viewing Transformations
	8.5.2 Multiple Locales

	8.6 A Minimal Environment
	8.7 The View Object
	8.7.1 Projection Policy
	8.7.2 Clip Policies
	8.7.3 Projection and Clip Parameters
	8.7.4 Frame Start Time, Duration, and Number
	8.7.5 View Traversal and Behavior Scheduling
	8.7.6 Scene Antialiasing
	8.7.7 Depth Buffer

	8.8 The Screen3D Object
	8.9 The Canvas3D Object
	8.9.1 Window System–Provided Parameters
	8.9.2 Other Canvas3D Parameters

	8.10 The PhysicalBody Object
	8.11 The PhysicalEnvironment Object

	Behaviors and Interpolators
	9.1 Behavior Object
	9.1.1 Code Structure
	9.1.2 WakeupCondition Object
	9.1.3 WakeupCriterion Object
	9.1.4 Composing WakeupCriterion Objects

	9.2 Composing Behaviors
	9.3 Scheduling
	9.4 How Java�3D Performs Execution Culling
	9.5 The Behavior API
	9.5.1 The Behavior Node
	9.5.2 WakeupCondition Object
	9.5.3 The WakeupCriterion Objects

	9.6 Interpolator Behaviors
	9.6.1 Mapping Time to Alpha
	9.6.2 Acceleration of Alpha
	9.6.3 The Alpha Class
	9.6.4 The Interpolator Base Class
	9.6.5 PositionInterpolator Object
	9.6.6 RotationInterpolator Object
	9.6.7 ColorInterpolator Object
	9.6.8 ScaleInterpolator Object
	9.6.9 SwitchValueInterpolator Object
	9.6.10 TransparencyInterpolator Object
	9.6.11 PositionPathInterpolator Object
	9.6.12 RotPosPathInterpolator Object
	9.6.13 RotPosScalePathInterpolator Object
	9.6.14 RotationPathInterpolator Object

	9.7 Level-of-Detail Behaviors
	9.7.1 LOD Object
	9.7.2 DistanceLOD Object

	9.8 Billboard Behavior

	Input Devices and Picking
	10.1 InputDevice Interface
	10.1.1 The Abstract Interface
	10.1.2 Instantiating and Registering a New Device

	10.2 Sensors
	10.2.1 Using and Assigning Sensors
	10.2.2 Behind the (Sensor) Scenes
	10.2.3 The Sensor Object
	10.2.4 The SensorRead Object

	10.3 Picking
	10.3.1 SceneGraphPath Object
	10.3.2 BranchGroup Node and Locale Node Pick Metho...
	10.3.3 PickShape Object
	10.3.4 PickPoint Object
	10.3.5 PickRay Object
	10.3.6 PickSegment Object

	Audio Devices
	11.1 AudioDevice Interface
	11.1.1 Initialization
	11.1.2 Audio Playback
	11.1.3 Device-Driver-Specific Data

	11.2 Instantiating and Registering a New Device
	11.3 AudioMixerDevice Interface

	Execution and Rendering Model
	12.1 Three Major Rendering Modes
	12.1.1 Immediate Mode
	12.1.2 Retained Mode
	12.1.3 Compiled-retained Mode

	12.2 Instantiating the Render Loop
	12.2.1 An Application-level Perspective
	12.2.2 Retained and Compiled-retained Rendering Mo...

	Immediate-Mode Rendering
	13.1 Two Styles of Immediate-Mode Rendering
	13.1.1 Pure Immediate-Mode Rendering
	13.1.2 Mixed-Mode Rendering

	13.2 Canvas3D Methods
	13.3 API for Immediate Mode
	13.3.1 GraphicsContext3D

	Math Objects
	A.1 Tuple Objects
	A.1.1 Tuple2f Class
	A.1.2 Tuple3b Class
	A.1.3 Tuple3d Class
	A.1.4 Tuple3f Class
	A.1.5 Tuple4b Class
	A.1.6 Tuple4d Class
	A.1.7 Tuple4f Class
	A.1.8 AxisAngle4d Class
	A.1.9 AxisAngle4f Class
	A.1.10 GVector Class

	A.2 Matrix Objects
	A.2.1 Matrix3f Class
	A.2.2 Matrix3d Class
	A.2.3 Matrix4f Class
	A.2.4 Matrix4d Class
	A.2.5 GMatrix Class

	3D Geometry Compression
	B.1 Compression
	B.2 Decompression
	B.3 Appendix Organization
	B.4 Generalized Triangle Strip
	B.5 Generalized Triangle Mesh
	B.6 Position Representation and Quantization
	B.7 Color Representation and Quantization
	B.8 Normal Representation and Quantization
	B.8.1 Normals as Indices
	B.8.2 Normal Encoding Parameterization

	B.9 Modified Huffman Encoding
	B.10 Geometry Compression Commands
	B.11 Bit Layout of Geometry Decompression Commands...
	B.12 Geometry Decompression Command Bit Details
	B.12.1 NOP
	B.12.2 setState
	B.12.3 setTable
	B.12.4 meshBufferReference
	B.12.5 Position Subcommand
	B.12.6 Color Subcommand
	B.12.7 Normal Subcommand
	B.12.8 vertex
	B.12.9 normal
	B.12.10 color

	B.13 Semantics of Geometry Decompression Commands
	B.13.1 Header and Body to Variable-Length Command
	B.13.2 Variable-Length Command to Command
	B.13.3 Delta Position to Position
	B.13.4 Delta Color to Color
	B.13.5 Encoded Delta Normal to Encoded Normal
	B.13.6 Encoded Normal to Rectilinear Normal

	B.14 Semantics of Vertices
	B.14.1 Command to Vertex
	B.14.2 Vertex to Intermediate Triangle
	B.14.3 Intermediate Triangle to Final Triangle

	B.15 Outline of Geometry Process
	B.15.1 Compressing Geometry Data
	B.15.2 Convert to Generalized Mesh Format
	B.15.3 Position
	B.15.4 Normals
	B.15.5 Colors
	B.15.6 Collect Delta Code Statistics
	B.15.7 Position Delta Code Statistics
	B.15.8 Color Delta Code Statistics
	B.15.9 Normal Delta Code Statistics
	B.15.10 Assign Huffman Tags
	B.15.11 Assemble the Pieces into a Bit Stream

	View Model Details
	C.1 An Overview of the Java�3D View Model
	C.2 Physical Environments and Their Effects
	C.2.1 A Head-mounted Example
	C.2.2 A Room-mounted Example
	C.2.3 Impact of Head Position and Orientation on t...

	C.3 The Coordinate Systems
	C.3.1 Room-mounted Coordinate Systems
	C.3.2 Head-mounted Coordinate Systems

	C.4 The ViewPlatform Object
	C.5 The View Object
	C.5.1 View Policy
	C.5.2 Screen Scale Policy
	C.5.3 Window Eyepoint Policy
	C.5.4 Monoscopic View Policy
	C.5.5 Sensors and Their Location in the Virtual Wo...

	C.6 The Screen3D Object
	C.6.1 Screen3D Calibration Parameters
	C.6.2 Accessing and Changing Head Tracker Coordina...

	C.7 The Canvas3D Object
	C.7.1 Scene Antialiasing
	C.7.2 Accessing and Modifying an Eye’s Image Plate...
	C.7.3 Canvas Width and Height

	C.8 The PhysicalBody Object
	C.9 The PhysicalEnvironment Object
	C.10 Viewing in Head-tracked Environments
	C.10.1 A Room-mounted Display with Head Tracking
	C.10.2 A Head-mounted Display with Head Tracking

	C.11 Compatibility Mode
	C.11.1 Overview of the Camera-based View Model
	C.11.2 Using the Camera-based View Model

	Exceptions
	D.1 BadTransformException
	D.2 CapabilityNotSetException
	D.3 DanglingReferenceException
	D.4 IllegalRenderingStateException
	D.5 IllegalSharingException
	D.6 MismatchedSizeException
	D.7 MultipleParentException
	D.8 RestrictedAccessException
	D.9 SceneGraphCycleException
	D.10 SingularMatrixException
	D.11 SoundException

	Equations
	E.1 Fog Equations
	E.2 Lighting Equations
	E.3 Sound Equations
	E.3.1 Headphone Playback Equations
	E.3.2 Speaker Playback Equations

	E.4 Texture Mapping Equations
	E.4.1 Texture Lookup
	E.4.2 Texture Application

	VRML Support
	F.1 VRML 1.0
	F.1.1 Mapping VRML 1.0 Files onto Java�3D Objects
	F.1.2 A VRML 1.0 Browsing Environment

	F.2 VRML 2.0
	F.2.1 VRML Support Requires a VRML Runtime Environ...
	F.2.2 An Approach
	F.2.3 A Browser
	F.2.4 Optimizing for Viewing versus Editing

	Glossary
	Index

