Java 3D" API
Specification

Version 1.1 Alpha 01, February 27, 1998

S

< Sun

microsystems

JavaSoft

A Sun Microsystems, Inc. Business
901 San Antonio Road

Palo Alto, CA 94303 USA
415960-1300 fax 415 969-9131

00 1997, 1998 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, for-
eign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN’s intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean-room implementa-
tions of this specification that (i) are complete implementations of this specification, (ii)
pass all test suites relating to this specification that are available from SUN, (iii) do not
derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java, JavaScript, and Java 3D are trademarks of Sun Microsystems, Inc. Sun, Sun Micro-
systems, the Sun logo, Java and HotJava are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIX is a registered trademark in the United States and other coun-
tries, exclusively licensed through X/Open Company, Ltd. All other product names men-
tioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

Preface XV
1 IntroductiontoJava3D 1
Ll G0alS ..ot 1
1.2 Programming Paradigm. 2
1.2.1 The Scene Graph Programming Model 2
122 RenderingModes i 2
1.2.3 Extensibility 3
1.3 HighPerformance 4
1.3.1 Layered Implementation........................... 4
1.3.2 Target Hardware Platforms 4
1.4 Support for Building Applications and Applets 5
141 BIOWSEIS. . .ottt e 5
142 GamesS. . .. 5
1.5 Overview of Java 3D Object Hierarchy. 6
1.6 Structuringthe Java3D Program.t 7
1.6.1 Java 3D Application Scene Graph 7
1.6.2 RecipeforaJdava3DProgram 8
1.6.3 HelloUniverse: A Sample Java 3D Program 9
2 Scene GraphBasiCS.o 15
2.1 SceneGraphStructure. i 15
2.1.1 Spatial Separation. i 15
2.1.2 Statelnheritance........... i 16
213 Rendering......... .. 17
2.2 SceneGraphObjects 17
221 NodeObjects 19
2.2.2 NodeComponentObjects 23
2.3 Scene Graph Superstructure Objects. 24
2.3.1 VirtualUniverse Object.t 24
232 LocaleObject.t 24
2.4 Scene Graph Viewing Objects. i 25
241 Canvas3DObject ... 25
242 Screen3DObject. 25
243 ViewObject........... 25
244 PhysicalBody Object 26
2.45 PhysicalEnvironment Object 26

Version 1.1 Alpha 01, February 27, 1998 ili

CONTENTS

3 Scene Graph Superstructure i 27
3.1 TheVirtualUniverse 27
3.2 EstablishingaScene............. . i 28
3.3 LoadingaVirtualUniversec i, 29
3.4 Coordinate SYStems 29
3.5 High-resolution Coordinates 29

3.5.1 Java 3D High-resolution Coordinates. 29
3.5.2 Java 3D Virtual World Coordinates 30
3.5.3 Details of High-resolution Coordinates. 30
3.6 API for Superstructure Objects 32
3.6.1 VirtualUniverse Object, 32
3.6.2 LocaleObject 32
3.6.3 HiResCoordObject............................. 33

4 GroupNode Objects 37
41 Group NOde 37
4.2 BranchGroup Node. 40
4.3 TransformGroup Node 42
4.4 OrderedGroup NoOde. 44
45 DecalGroup Node. 44
46 SwitchNode. 45
4.7 SharedGroup Node. 47

5 LeafNode Objects......... 49
51 LeafNode. 49
5.2 Shape3D Nodet e 51
5.3 BoundingleafNode.......... i 53
5.4 Background Node. 54
55 ClipNode 56
56 FogNode e 57

5.6.1 ExponentialFogNode 59
5.6.2 LinearFogNode............. 60
5.7 LightNode 62
5.7.1 AmbientLight Node. 64
5.7.2 DirectionalLight Node. 64
5.7.3 PointLightNode i 65
574 SpotLightNode 66
5.8 SoundNode 68
5.8.1 BackgroundSoundNode 74
5.8.2 PointSoundNode. 75
583 ConeSoundNode............. 79
5.9 Soundscape Node. 86
5.10 ViewPlatform Node 88
5.11 Behavior Node i 89
5.12 Morph NOde e 89
5.13 Link Node. 91

Java 3D API Specification

6 ReusingScene Graphs i, 93

6.1 Sharing Subgraphs. 93
6.1.1 SharedGroupNode............... 93
6.1.2 LinkLeafNode............. 95
6.2 Cloning Subgraphs. 96
6.2.1 References to Node Component Objects 97
6.2.2 References to Other Scene Graph Nodes 98
6.2.3 DanglingReferences. i, 101
6.2.4 SubclassingNodes 102
6.2.5 NodeReferenceTable Object. 103
6.2.6 Example User BehaviorNode 103
7 Node ComponentObjects. 107
7.1 Node Component Objects: Attributes 107
7.1.1 AppearanceObject............ ..., 107
7.1.2 ColoringAttributes Object 111
7.1.3 LineAttributes Object. 112
7.1.4 PointAttributes Object 114
7.1.5 PolygonAttributes Object. 115
7.1.6 RenderingAttributes Object 117
7.1.7 TextureAttributes Object 119
7.1.8 TransparencyAttributes Object. 120
7.1.9 Material Object. 122
7.1.10 Texture Object 124
7.1.11 Texture2D Object. 128
7.1.12 Texture3aDObject............. 128
7.1.13 TexCoordGeneration Object. 129
7.1.14 MediaContainer Object. 132
7.1.15 AuralAttributes Object. 133
7.1.16 ImageComponentObject 139
7.1.17 ImageComponent2D Object. 141
7.1.18 ImageComponent3D Object. 142
7.1.19 DepthComponent Object 143
7.1.20 DepthComponentFloat Object 143
7.1.21 DepthComponentintObject 144
7.1.22 DepthComponentNative Object. 144
7.1.23 BoundsObject 145
7.1.24 BoundingBox Object 146
7.1.25 BoundingSphere Object......................... 148
7.1.26 BoundingPolytope Object. 150
7.1.27 Transform3D Object. 152
7.2 Node Component Objects: Geometry 164
7.2.1 GeometryArray Object. 164
7.22 PointArrayObject. 171
7.23 LineArrayObject 171
7.24 TriangleArray Object 172
7.25 QuadArray Object. 172
7.2.6 GeometryStripArray Object. 172

Version 1.1 Alpha 01, February 27, 1998

Vi

CONTENTS

7.2.7 LineStripArray Object. 173
7.2.8 TriangleStripArray Object. 173
7.2.9 TriangleFanArray Object 174
7.2.10 IndexedGeometryArray Object................... 174
7.2.11 IndexedPointArray Object. 177
7.2.12 IndexedLineArray Object 177
7.2.13 IndexedTriangleArray Object 178
7.2.14 IndexedQuadArray Object 178
7.2.15 IndexedGeometryStripArray Object............... 179
7.2.16 IndexedLineStripArray Object 179
7.2.17 IndexedTriangleStripArray Object 180
7.2.18 IndexedTriangleFanArray Object. 181
7.2.19 CompressedGeometry Object 181
7.2.20 CompressedGeometryHeader Object 182
7.221 RasterObject......... ... 184
7.222 Font3DObject.......... .. 187
7.2.23 FontExtrusion Object 188
7.2.24 Text3D Geometry Object 189
7.3 Math Component Objects. 192
7.3.1 TupleObjects 192
7.3.2 MatrixObjects. 193
8 ViewModel. 195
8.1 WhyaNewModel? 196
8.1.1 The Physical Environment Influences the View. 196
8.2 Separation of Physical and Virtual. 197
8.2.1 TheVirtualWorld.............. 197
8.2.2 ThePhysicalWorld............................ 197
8.3 The Objects That Definethe View. 198
8.4 ViewPlatform: A Place in the Virtual World 199
8.4.1 Moving Through the Virtual World 200
8.4.2 DroppinglnonaFavoritePlace 201
8.4.3 ViewAttachPolicy............................ 202
8.4.4 Associating Geometry with a ViewPlatform. 203
8.5 GeneratingaVIiew 203
8.5.1 Composing Model and Viewing Transformations 203
8.5.2 MultipleLocales 205
8.6 A Minimal Environment. 206
8.7 TheViewObject. i i e 206
8.7.1 ProjectionPolicy.............. 208
8.7.2 ClipPolicies 210
8.7.3 Projection and Clip Parameters. 211
8.7.4 Frame Start Time, Duration, and Number. 212
8.7.5 View Traversal and Behavior Scheduling. 213
8.7.6 Scene Antialiasing. i, 213
8.7.7 DepthBuffer................. 214
8.8 The Screen3D Object. 214
8.9 TheCanvas3D Object. i 215

Java 3D API Specification

8.9.1 Window System—Provided Parameters 215
8.9.2 Other Canvas3D Parameters. 216
8.10 The PhysicalBody Object, 216
8.11 The PhysicalEnvironment Object 217
9 Behaviorsand Interpolators 219
9.1 BehaviorObject. 219
9.1.1 CodeStructuret 220
9.1.2 WakeupCondition Object. 221
9.1.3 WakeupCriterion Object. 221
9.1.4 Composing WakeupCriterion Objects 222
9.2 ComposingBehaviors 222
9.3 Scheduling 222
9.4 How Java 3D Performs ExecutionCulling 223
9.5 TheBehavior APl 224
9.5.1 TheBehaviorNode..............., 224
9.5.2 WakeupCondition Object. 226
9.5.3 The WakeupCriterion Objects 226
9.6 Interpolator Behaviors. 236
9.6.1 Mapping TimetoAlpha......................... 237
9.6.2 AccelerationofAlpha. 241
9.6.3 TheAlphaClass................c ... 242
9.6.4 The lInterpolatorBaseClass 246
9.6.5 Positioninterpolator Object. 247
9.6.6 Rotationinterpolator Object 248
9.6.7 Colorinterpolator Object. 250
9.6.8 Scalelnterpolator Object. 251
9.6.9 SwitchValuelnterpolator Object. 252
9.6.10 Transparencylinterpolator Object 253
9.6.11 PositionPathinterpolator Object. 254
9.6.12 RotPosPathinterpolator Object. 256
9.6.13 RotPosScalePathinterpolator Object 257
9.6.14 RotationPathinterpolator Object. 259
9.7 Level-of-Detail Behaviors. i 260
9.7.1 LODODJECt ..o v ittt 260
9.7.2 DistanceLOD Object 261
9.8 Billboard Behavior. 262
10 Input Devicesand Picking i, 265
10.1 InputDevice Interface i 265
10.1.1 The AbstractInterface 266
10.1.2 Instantiating and Registering a New Device 267
10.2 SENSOIS. . . oottt 267
10.2.1 Using and Assigning Sensors. 268
10.2.2 Behindthe (Sensor)Scenes 268
10.2.3 TheSensorObject, 268
10.2.4 The SensorRead Object 271
10.3 PicKiNg. . ..o 272

Version 1.1 Alpha 01, February 27, 1998 vii

CONTENTS

10.3.1 SceneGraphPath Object. 273
10.3.2 BranchGroup Node and Locale Node Pick Methods .. 275
10.3.3 PickShape Object 275
10.3.4 PickPointObject i 276
10.3.5 PickRayObject i 276
10.3.6 PickSegmentObject 277
11 Audio DEVICES. . . . oo 279
11.1 AudioDevice Interfacet 279
11.1.1 Initialization. 280
11.1.2 AudioPlayback.......... i 280
11.1.3 Device-Driver-SpecificData. 282
11.2 Instantiating and Registering a New Device 282
11.3 AudioMixerDevice Interface 283
12 Execution and RenderingModel 285
12.1 Three Major RenderingModes i .. 285
12.1.1 ImmediateMode 285
12.1.2 RetainedModec. i 286
12.1.3 Compiled-retained Mode. 286
12.2 Instantiating the RenderLoop i a.. 287
12.2.1 An Application-level Perspective 287
12.2.2 Retained and Compiled-retained Rendering Modes . . . 287
13 Immediate-Mode Rendering. 289
13.1 Two Styles of Immediate-Mode Rendering.................... 289
13.1.1 Pure Immediate-Mode Rendering................. 289
13.1.2 Mixed-Mode Rendering 291
13.2 Canvas3D Methods 292
13.3 APIforimmediate Mode 294
13.3.1 GraphicsContext3D. 294
A MathObjects 299
Al Tuple Objects 299
ALl Tuple2fClass. ... 299
Al2 Tuple3bClass 305
Al3 Tuple3dClass 308
Al4 Tuple3fClass. 313
A.l5 TupledbClass 319
Al6 TupleddClass ... 322
AL7 TupledfClass. ... 329
A18 AxisAngleddClass ..., 338
A.1.9 AxisAngledfClass. i 340
A.1.10 GVector Class . ..ot 342
A2 Matrix ObjectS e 345
A21 Matrix3fClass.o 346
A22 Matrix3dClass ... 353

viii Java 3D API Specification

A23 MatrixdfClass 359

A24 MatrixddClass 367
A25 GMatrixClass. ... 376
B 3D Geometry COMPressionuuinnnnnan... 381
B.1 COMPressSiONt 381
B.2 DeCOmMPreSSIONt e 382
B.3 Appendix Organization 382
B.4 Generalized Triangle Strip. i 382
B.5 Generalized Triangle Mesh 383
B.6 Position Representation and Quantization. 386
B.7 Color Representation and Quantization. 387
B.8 Normal Representation and Quantization 388
B.8.1 Normalsasindices........... 389
B.8.2 Normal Encoding Parameterization 390
B.9 Moadified Huffman Encoding. 392
B.10 Geometry Compression Commandsc..ouuiinne.... 393
B.11 Bit Layout of Geometry Decompression Commands 395
B.12 Geometry Decompression Command BitDetails 395
B.12.1 NOP ... 395
B.12.2 setState 395
B.12.3 setTable. 397
B.12.4 meshBufferReference........................... 398
B.12.5 Position Subcommand 399
B.12.6 Color Subcommand 399
B.12.7 Normal Subcommand. 400
B.12.8 VEIeX ... e 402
B.12.9 normal. 403
B.12.10 COIOr 403
B.13 Semantics of Geometry Decompression Commands 403
B.13.1 Header and Body to Variable-Length Command. 404
B.13.2 Variable-Length Command to Command 405
B.13.3 Delta Positionto Position. 405
B.13.4 DeltaColortoColor. i, 406
B.13.5 Encoded Delta Normal to Encoded Normal.......... 406
B.13.6 Encoded Normal to Rectilinear Normal. 406
B.14 Semantics of Vertices 407
B.14.1 CommandtoVertex........... ..., 407
B.14.2 Vertex to Intermediate Triangle 408
B.14.3 Intermediate Triangle to Final Triangle 409
B.15 Outline of Geometry Process.t 410
B.15.1 Compressing GeometryData 410
B.15.2 Convert to Generalized Mesh Format 410
B.15.3 POSItiON. 410
B.15.4 Normals 411
B.155 Colors.o 412
B.15.6 Collect Delta Code Statistics 412
B.15.7 Position Delta Code Statistics. 412

Version 1.1 Alpha 01, February 27, 1998 IX

CONTENTS

B.15.8 Color Delta Code Statistics. 412
B.15.9 Normal Delta Code Statistics 412
B.15.10 AssignHuffmanTags, 413
B.15.11 Assemble the Pieces into a Bit Stream 414
C ViewModelDetails 415
C.1 An Overview of the Java 3D ViewModel. 415
C.2 Physical Environments and Their Effects 416
C.2.1 AHead-mountedExample 416
C.2.2 A Room-mounted Example...................... 416
C.2.3 Impact of Head Position and Orientation on the
Camera. 416
C.3 The Coordinate Systems. i 417
C.3.1 Room-mounted Coordinate Systems. 417
C.3.2 Head-mounted Coordinate Systems 419
C.4 The ViewPlatform Object. i 420
C.5 TheViewObject. 420
Ch51 ViewPalicy........ ... i 421
C.5.2 ScreenScalePolicy..................... 422
C.5.3 Window Eyepoint Policy. 422
C.5.4 Monoscopic ViewPolicy 423
C.5.5 Sensors and Their Location in the Virtual World 424
C.6 TheScreen3D ObjecCt.t 424
C.6.1 Screen3D Calibration Parameters................. 426
C.6.2 Accessing and Changing Head Tracker Coordinates . . 427
C.7 TheCanvas3DObjecCt. e 427
C.7.1 Scene Antialiasing., 428
C.7.2 Accessing and Modifying an Eye’s Image Plate
Position 428
C.7.3 CanvasWidthandHeight....................... 429
C.8 The PhysicalBody Object. i, 429
C.9 The PhysicalEnvironment Object. 431
C.10 Viewing in Head-tracked Environments 433
C.10.1 A Room-mounted Display with Head Tracking 433
C.10.2 A Head-mounted Display with Head Tracking. 434
C.11 Compatibility Mode 434
C.11.1 Overview of the Camera-based View Model 435
C.11.2 Using the Camera-based View Model. 436
D EXCEPtioNS e 441
D.1 BadTransformException. i, 441
D.2 CapabilityNotSetException, 442
D.3 DanglingReferenceException., 442
D.4 lllegalRenderingStateException., 443
D.5 lllegalSharingException. 443
D.6 MismatchedSizeException.t 444
D.7 MultipleParentException, 444
D.8 RestrictedAccessException 444

Java 3D API Specification

D.9 SceneGraphCycleException, 445

D.10 SingularMatrixException. 445
D.11 SoundEXCEption.o i e 446
E EqQUatiONS. 447
E.1 FOgEQUAtiONS 447
E.2 Lighting EQUatiONs. 448
E.3 Sound Equations 450
E.3.1 Headphone Playback Equations. 450
E.3.2 Speaker Playback Equations. 458
E.4 Texture Mapping Equations 459
E.4.1 TextureLookup i 459
E.4.2 Texture Application 462
F VRML Support. 465
F.L O VRML 1.0 . 465
F.1.1 Mapping VRML 1.0 Files onto Java 3D Objects. 466
F.1.2 A VRML 1.0 Browsing Environment 466
F.2 VRML 2.0 .. 466
F.2.1 VRML Support Requires a VRML Runtime
Environment. 467
F.22 AnApproach......... i 467
F.2.3 ABIOWSEr. 468
F.2.4 Optimizing for Viewing versus Editing 469
GlOSSaIY . . . 471
INdEX. oo 475

Version 1.1 Alpha 01, February 27, 1998 Xi

Figures

Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 3-1
Figure 4-1
Figure 4-2
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 9-1
Figure 9-2

Figure 9-3

Figure 9-4

Java3D ObjectHierarchy 6
Application Scene Graph 7
A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph) 16
Viewinga Scene Graph 26
The Virtual Universe e e 28
Group Node Hierarchy e 37
Altering the Scene GraphatRunTime 41
Leaf Node Hierarchy i 50
PointSound Distance Gain Attenuation 77
CoONESOUNG . . . 80
ConeSound with a Single Distance Gain Attenuation Array 83
ConeSound with Two Distance Gain Attenuation Arrays. 84
Multiple Soundscape Application Regions 86
Sharinga Subgraph. 94
Referenced and Duplicated NodeComponent Objects. 98
References to Other Scene Graph Nodes 99
Updated Subgraph aftgrdateNodeReferences Call 100
Dangling Reference: Bold Nodes Are Being Cloned. 101
Attribute Component Object Hierarchy 108
Sound Reverberation Parameters.o 134
Geometry Component Object Hierarchy 165
Various Text Alignmentsand Paths. 191
View Object, Its Component Objects, and Their Interconnection.. 198
A Portion of a Scene Graph Containing a ViewPlatform Object. 200
A Simple Scene Graph with View Control 201
Object and ViewPlatform Transformations 205
An Interpolator’s Generic Time-to-Alpha Mapping Sequence 237
An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable
Only thea-Increasing andi-at-1 Portion of the Waveform.......... 238
An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable
Only thea-Decreasing and-at-0 Portion of the Waveform 239
An Interpolator Set to a Loop Count of 1 with Mode Flags Set to
Enable All Portions of the Waveform 239

Version 1.1 Alpha 01, February 27, 1998 Xiii

Xiv

FIGURES

Figure 9-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable

Only thea-Increasing andt-at-1 Portion of the Waveform 240
Figure 9-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable

Only thea-Decreasing and-at-0 Portion of the Waveform. 240
Figure 9-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to

Enable All Portions of the Waveform. 240
Figure 9-8 How am-Increasing Waveform Changes with Various Values of

increasingAlphaRampDuration. 242
Figure 13-1 Minimal Immediate-Mode Structure. 290
Figure A-1 Math ObjectHierarchy 300
Figure B-1 A Generalized Triangle Strip 384
Figure B-2 A Generalized Triangle Mesh. 385
Figure B-3 Encoding of the Six Sextants of Each Octant of a Sphere 391
Figure B-4 Bit Layout of Geometry Compression Commands. 396
Figure C-1 Display Rigidly Attached to the TrackerBase 417
Figure C-2 Display Rigidly Attached to the Head Tracker (Sensor). 420
Figure C-3 A Portion of a Scene Graph Containing a Single Screen3D Object. ... 425
Figure C-4 A Single-Screen Display Environment. 425
Figure C-5 A Portion of a Scene Graph Containing Three Screen3D Objects. 426
Figure C-6 A Three-Screen Display Environment 426
Figure C-7 The Camera-based ViewModel 436
Figure C-8 A Perspective Viewing Frustum 438
Figure C-9 Perspective View Model Arguments. 438
Figure C-10 Orthographic View Model 439
Figure E-1 Signalto Only One EarlIsDirect, 451
Figure E-2 Signalsto Both Ears AreIndirect 452
Figure E-3 ConeSound with a Single Distance Gain Attenuation Array 454
Figure E-4 ConeSound with Two Distance Attenuation Arrays. 454

Java 3D API Specification

Preface

THIS document describes the Java 3D™ API and presents some details on the
implementation of the API. This specification is not intended as a programmer’s
guide. The programmer’s guide will be written after the specification has been
finalized.

This specification is written for 3D graphics application programmers. We
assume that the reader has at least a rudimentary understanding of computer
graphics. This includes familiarity with the essentials of computer graphics algo-
rithms as well as familiarity with basic graphics hardware and associated termi-
nology.

Related Documentation

This specification is intended to be used in conjunction with the Java 3D refer-
ence guide, an online, browser-accessible, javadoc-generated API reference.

Style Conventions
The following style conventions are used in this specification:

* Lucida type is used to represent computer code and the names of files and
directories.

* Bold Lucida type is used for Java 3D API declarations.
» Bold type is used to represent variables.
» ltalic typeis used for emphasis and for equations.

Programming Conventions

Java 3D uses the following programming conventions:

Version 1.1 Alpha 01, February 27, 1998 XV

XVi

PREFACE

e The default coordinate system is right-handed, withbeing up, X
horizontal to the right, andzdirected toward the viewer.

» All angles or rotational representations are in radians.
» All distances are expressed in units or fractions of meters.

Acknowledgments

We gratefully acknowledge Warren Dale for writing the Sound API portion of
this specification, Daniel Petersen for writing the scene graph sharing portion of
the specification, and Bruce Bartlett for his assistance with the editing, format-
ting, and indexing of the specification.

We thank the Java 3D partners for their help in defining the Java 3D API. The
Java 3D partner companies include Silicon Graphics, Inc., Intel Corporation,
Apple Computer, Inc., and Sun Microsystems, Inc.

We also thank the many individuals and companies for their comments and sug-
gestions on the successive drafts of this specification.

Henry Sowizral
Kevin Rushforth
Michael Deering
Sun Microsystems
November 1997

Java 3D API Specification

CHAPTER 1

Introduction to Java 3D

THE Java 3D API is an application programming interface used for writing
three-dimensional graphics applications and applets. It gives developers high-
level constructs for creating and manipulating 3D geometry and for constructing
the structures used in rendering that geometry. Application developers can
describe very large virtual worlds using these constructs, which provide Java 3D
with enough information to render these worlds efficiently.

Java 3D delivers Java’s “write once, run anywhere” benefit to developers of 3D
graphics applications. Java 3D is part of the JavaMedia suite of APIs, making it
available on a wide range of platforms. It also integrates well with the Internet
because applications and applets written using the Java 3D API have access to
the entire set of Java classes.

The Java 3D API draws its ideas from existing graphics APIs and from new tech-
nologies. Java 3D’s low-level graphics constructs synthesize the best ideas found
in low-level APIs such as Direct3D, OpenGL, QuickDraw3D, and XGL. Simi-
larly, its higher-level constructs synthesize the best ideas found in several scene
graph—based systems. Java 3D introduces some concepts not commonly consid-
ered part of the graphics environment, such as 3D spatial sound. Java 3D’s sound
capabilities help to provide a more immersive experience for the user.

1.1 Goals

Java 3D was designed with several goals in mind. Chief among them is high per-
formance. Several design decisions were made so that Java 3D implementations
can deliver the highest level of performance to application users. In particular,
when trade-offs were made, the alternative that benefited runtime execution was
chosen.

Other important Java 3D goals are to

Version 1.1 Alpha 01, February 27, 1998 1

1.2 Programming Paradigm INTRODUCTION TO JAVA 3D

» Provide a rich set of features for creating interesting 3D worlds, tempered
by the need to avoid nonessential or obscure features. Features that could
be layered on top of Java 3D were not included.

» Provide a high-level object-oriented programming paradigm that enables
developers to deploy sophisticated applications and applets rapidly.

» Provide support for runtime loaders. This allows Java 3D to accommodate
a wide variety of file formats, such as vendor-specific CAD formats, inter-
change formats, VRML 1.0, and VRML 2.0.

1.2 Programming Paradigm

Java 3D is an object-oriented API. Applications construct individual graphics
elements as separate objects and connect them together into a treelike structure
called ascene graphThe application manipulates these objects using their pre-
defined accessor, mutator, and node-linking methods.

1.2.1 The Scene Graph Programming Model

Java 3D’s scene graph—based programming model provides a simple and flexible
mechanism for representing and rendering scenes. The scene graph contains a
complete description of the entire scene, or virtual universe. This includes the
geometric data, the attribute information, and the viewing information needed to
render the scene from a particular point of view. Chapter 2, “Scene Graph
Basics,” provides more information on the Java 3D scene graph programming
model.

The Java 3D API improves on previous graphics APIs by eliminating many of
the bookkeeping and programming chores that those APIs impose. Java 3D
allows the programmer to think about geometric objects rather than about trian-
gles—about the scene and its composition rather than about how to write the ren-
dering code for efficiently displaying the scene.

1.2.2 Rendering Modes

Java 3D includes three different rendering modes: immediate mode, retained
mode, and compiled-retained mode (see Chapter 12, “Execution and Rendering
Model”). Each successive rendering mode allows Java 3D more freedom in opti-
mizing an application’s execution. Most Java 3D applications will want to take
advantage of the convenience and performance benefits that the retained and
compiled-retained modes provide.

2 Java 3D API Specification

INTRODUCTION TO JAVA 3D Extensibility 1.2.3

1.2.2.1 Immediate Mode

Immediate mode leaves little room for global optimization at the scene graph
level. Even so, Java 3D has raised the level of abstraction and accelerates imme-
diate mode rendering on a per-object basis. An application must provide a
Java 3D draw method with a complete set of points, lines, or triangles, which are
then rendered by the high-speed Java 3D renderer. Of course, the application can
build these lists of points, lines, or triangles in any manner it chooses.

1.2.2.2 Retained Mode

Retained mode requires an application to construct a scene graph and specify
which elements of that scene graph may change during rendering. The scene
graph describes the objects in the virtual universe, the arrangement of those
objects, and how the application animates those objects.

1.2.2.3 Compiled-Retained Mode

Compiled-retained mode, like retained mode, requires the application to con-
struct a scene graph and specify which elements of the scene graph may change
during rendering. Additionally, the application can compile some or all of the
subgraphs that make up a complete scene graph. Java 3D compiles these graphs
into an internal format. The compiled representation of the scene graph may bear
little resemblance to the original tree structure provided by the application, how-
ever, it is functionally equivalent. Compiled-retained mode provides the highest
performance.

1.2.3 Extensibility

Most Java 3D classes expose only accessor and mutator methods. Those methods
operate only on that object’s internal state, making it meaningless for an applica-
tion to override them. Therefore, Java 3D declares most methods as final.

Applications can extend Java 3D’s classes and add their own methods. However,

they may not override Java 3D’s scene graph traversal semantics because the
nodes do not contain explicit traversal and draw methods. Java 3D’s renderer

retains those semantics internally.

Java 3Ddoesprovide hooks for mixing Java 3D—controlled scene graph render-
ing and user-controlled rendering using Java 3D’s immediate mode constructs
(see Section 13.1.2, “Mixed-Mode Rendering”). Alternatively, the application
can stop Java 3D’s renderer and do all its drawing in immediate mode (see
Section 13.1.1, “Pure Immediate-Mode Rendering”).

Version 1.1 Alpha 01, February 27, 1998 3

1.3

High Performance INTRODUCTION TO JAVA 3D

Behaviors require applications to extend the Behavior object and to override its

methods with user-written Java code. These extended objects should contain ref-
erences to those scene graph objects that they will manipulate at run time.

Chapter 9, “Behaviors and Interpolators,” describes Java 3D’s behavior model.

1.3 High Performance

Java 3D’s programming model allows the Java 3D API to do the mundane tasks,
such as scene graph traversal, managing attribute state changes, and so forth,
thereby simplifying the application’s job. Java 3D does this without sacrificing
performance. At first glance, it might appear that this approach would create
more work for the API, however, it actually has the opposite effect. Java 3D’s
higher level of abstraction not only changes the amount but, more important, also
the kind of work the APl must perform. Java 3D does not need to impose the
same type of constraints as do APIs with a lower level of abstraction, thus allow-
ing Java 3D to introduce optimizations not possible with these lower-level APIs.

Additionally, leaving the details of rendering to Java 3D allows it to tune the ren-
dering to the underlying hardware. For example, relaxing the strict rendering
order imposed by other APIs allows parallel traversal as well as parallel render-
ing. Knowing which portions of the scene graph cannot be modified at run time
allows Java 3D to flatten the tree, pretransform geometry, or represent the geom-
etry in a native hardware format without the need to keep the original data.

1.3.1 Layered Implementation

Besides optimizations at the scene graph level, one of the more important factors
that determines the performance of Java 3D is the time it takes to render the vis-
ible geometry. Java 3D implementations are layered to take advantage of the
native, low-level API that is available on a given system. In particular, we antici-
pate that Java 3D implementations that use Direct3D, OpenGL, and
QuickDraw3D will become available. This means that Java 3D rendering will be
accelerated across the same wide range of systems that are supported by these
lower-level APIs.

1.3.2 Target Hardware Platforms

Java 3D is aimed at a wide range of 3D-capable hardware and software plat-
forms, from low-cost PC game cards and software renderers at the low end,
through midrange workstations, all the way up to very high-performance special-
ized 3D image generators.

Java 3D API Specification

INTRODUCTION TO JAVA 3D Games 1.4.2

Java 3D implementations are expected to provide useful rendering rates on most
modern PCs, especially those with 3D graphics accelerator cards. On midrange
workstations, Java 3D is expected to provide applications with nearly full-speed
hardware performance.

Finally, Java 3D is designed to scale as the underlying hardware platforms
increase in speed over time. Tomorrow’s 3D PC game accelerators will support
more complex virtual worlds than high-priced workstations of a few years ago.

Java 3D is prepared to meet this increase in hardware performance.

1.4 Support for Building Applications and Applets

Java 3D neither anticipates nor directly supports every possible 3D need. Instead
it provides support for adding those features through Java code.

Objects defined using a computer-aided design (CAD) system or an animation
system may be included in a Java 3D-based application. Most such modeling
packages have an external format (sometimes proprietary). Designers can export
geometry designed using an external modeler to a file. Java 3D can use that geo-
metric information, but only if an application provides a means for reading and
translating the modeler’s file format into Java 3D primitives.

Similarly, VRML loaders will parse and translate VRML files and generate the
appropriate Java 3D objects and Java code necessary to support the file's con-
tents. For more information, see Appendix F, “VRML Support.”

1.4.1 Browsers

Today’s Internet browsers support 3D content by passing such data to plug-in 3D
viewers that render into their own window. It is anticipated that, over time, the
display of 3D content will become integrated into the main browser display. In
fact, some of today’s 3D browsers display 2D content as 2D objects within a 3D
world.

1.4.2 Games

Developers of 3D game software have typically attempted to wring out every last
ounce of performance from the hardware. Historically they have been quite will-
ing to use hardware-specific, nonportable optimizations to get the best perfor-
mance possible. As such, in the past, game developers have tended to program
below the level of easy-to-use software such as Java 3D. However, the trend in

Version 1.1 Alpha 01, February 27, 1998 5

15

Overview of Java 3D Object Hierarchy INTRODUCTION TO JAVA 3D

3D games today is to leverage general-purpose 3D hardware accelerators and to
use fewer “tricks” in rendering.

So, while Java 3D was not explicitly designed to match the game developer’s
every expectation, Java 3D’s sophisticated implementation techniques should
provide more than enough performance to support many game applications. One
might argue that applications written using a general API like Java 3D may have
a slight performance penalty over those employing special, nonportable tech-
niques. However, other factors such as portability, time to market, and develop-
ment cost must be weighed against absolute peak performance.

1.5 Overview of Java 3D Object Hierarchy

Java 3D defines several basic classes that are used to construct and manipulate a
scene graph and to control viewing and rendering. Figure 1-1 shows the overall
object hierarchy used by Java 3D. Subsequent chapters provide more detail for
specific portions of the hierarchy.

javax.media.j3d
VirtualUniverse
Locale
View
PhysicalBody
PhysicalEnvironment
Screen3D
Canvas3D (extends awt.Canvas)
SceneGraphObject
Node
Group
Leaf
NodeComponent
Various component objects
Transform3D

javax.vecmath
Matrix classes
Tuple classes

Figure 1-1 Java 3D Object Hierarchy

Java 3D API Specification

INTRODUCTION TO JAVA 3D Java 3D Application Scene Grapil.6.1

1.6 Structuring the Java 3D Program

This section illustrates how a developer might structure a Java 3D application.
The simple application in this example creates a scene graph that draws an object
in the middle of a window and rotates the object about its center point.

1.6.1 Java 3D Application Scene Graph

The scene graph for the sample application is shown in Figure 1-2.

VirtualUniverse Object

Locale Object

Behavior Node

Sh 3D Nod .
[N TEEONE fde—] view

ViewPlatform Object
Other Objects

Figure 1-2 Application Scene Graph

The scene graph consists of superstructure components—a VirtualUniverse
object and a Locale object—and a set of branch graphs. Each branch graph is a
subgraph that is rooted by a BranchGroup node that is attached to the superstruc-
ture. For more information, see Chapter 2, “Scene Graph Basics.”

A VirtualUniverse object defines a named universe. Java 3D permits the creation
of more than one universe, though the vast majority of applications will use just
one. The VirtualUniverse object provides a grounding for scene graphs. All
Java 3D scene graphs must connect to a VirtualUniverse object to be displayed.
For more information, see Chapter 3, “Scene Graph Superstructure.”

Below the VirtualUniverse object is a Locale object. The Locale object defines
the origin, in high-resolution coordinates, of its attached branch graphs. A virtual

Version 1.1 Alpha 01, February 27, 1998 7

1.6.2 Recipe for a Java 3D Program INTRODUCTION TO JAVA 3D

universe may contain as many Locales as needed. In this example, a single
Locale object is defined with its origin at (0.0, 0.0, 0.0).

The scene graph itself starts with the BranchGroup nodes (see Section 4.2,
“BranchGroup Node”). A BranchGroup serves as the root of a subgraph, called a
branch graph of the scene graph. Only BranchGroup objects can attach to
Locale objects.

In this example there are two branch graphs and, thus, two BranchGroup nodes.
Attached to the left BranchGroup are two subgraphs. One subgraph consists of a
user-extended Behavior leaf node. The Behavior node contains Java code for
manipulating the transformation matrix associated with the object’s geometry.

The other subgraph in this BranchGroup consists of a TransformGroup node that
specifies the position (relative to the Locale), orientation, and scale of the geo-
metric objects in the virtual universe. A single child, a Shape3D leaf node, refers
to two component objects: a Geometry object and an Appearance object. The
Geometry object describes the geometric shape of a 3D object (a cube in our
simple example). The Appearance object describes the appearance of the geome-
try (color, texture, material reflection characteristics, and so forth).

The right BranchGroup has a single subgraph that consists of a TransformGroup
node and a ViewPlatform leaf node. The TransformGroup specifies the position
(relative to the Locale), orientation, and scale of the ViewPlatform. This trans-
formed ViewPlatform object defines the end user’s view within the virtual uni-
verse.

Finally, the ViewPlatform is referenced by a View object that specifies all of the
parameters needed to render the scene from the point of view of the
ViewPlatform. Also referenced by the View object are other objects that contain
information, such as the drawing canvas into which Java 3D renders, the screen
that contains the canvas, and information about the physical environment.

1.6.2 Recipe for a Java 3D Program

The following steps are taken by the example program to create the scene graph
elements and link them together. Java 3D will then render the scene graph and
display the graphics in a window on the screen:

1. Create a Canvas3D object and add it to the Applet panel.

2. Create a BranchGroup as the root of the scene branch graph.

3. Construct a Shape3D node with a TransformGroup node above it.

4. Attach a RotationInterpolator behavior to the TransformGroup.

8 Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Prograrh.6.3

5. Call the universe builder utility function to do the following:

a. Establish a virtual universe with a single high-resolution Locale (see
Chapter 2, “Scene Graph Basics”).

b. Create the PhysicalBody, PhysicalEnvironment, View, and ViewPlat-
form obijects.

c. Create a BranchGroup as the root of the view platform branch graph.
d. Insert the view platform branch graph into the Locale.
6. Insert the scene branch graph into the universe builder’s Locale.

The Java 3D renderer then starts running in an infinite loop. The renderer con-
ceptually performs the following operations:

while(true) {
Process 1input
If (request to exit) break
Perform Behaviors
Traverse the scene graph and render visible objects

}

Cleanup and exit

1.6.3 HelloUniverse: A Sample Java 3D Program

Here are code fragments from a simple progtsi]oUniverse.java, that cre-
ates a cube and a RotationInterpolator behavior object that rotates the cube at a
constant rate oft2 radians per second.

1.6.3.1 HelloUniverse Class

The HelloUniverse class, on the next page, creates the branch graph that includes
the cube and the Rotationinterpolator behavior. It then adds this branch graph to
the Locale object generated by the UniverseBuilder utility.

Version 1.1 Alpha 01, February 27, 1998 9

1.6.3 HelloUniverse: A Sample Java 3D Program

10

INTRODUCTION TO JAVA 3D

public class HelloUniverse extends Applet {
public BranchGroup createSceneGraph() {

}

// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup(Q);

// Create the TransformGroup node and initialize it to the

// identity. Enable the TRANSFORM_WRITE capability so that

// our behavior code can modify it at run time. Add it to

// the root of the subgraph.

TransformGroup objTrans = new TransformGroup();

objTrans.setCapability(
TransformGroup.ALLOW_TRANSFORM_WRITE) ;

objRoot.addChild(objTrans);

// Create a simple Shape3D node; add it to the scene graph.

objTrans.addChild(new ColorCube().getShape());

// Create a new Behavior object that will perform the
// desired operation on the specified transform and add
// it into the scene graph.
Transform3D yAxis = new Transform3D();
Alpha rotationAlpha = new Alpha(

-1, Alpha.INCREASING_ENABLE,

0, 0, 4000, 0, 0, 0, 0, 0);
RotationInterpolator rotator = new RotationInterpolator(

rotationAlpha, objTrans, yAxis,

0.0f, (float) Math.PI*2.0f);
BoundingSphere bounds =

new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);

rotator.setSchedulingBounds(bounds);
objTrans.addChild(rotator);

return objRoot;

public HelloUniverse() {

setLayout(new BorderLayout());

Canvas3D c¢ = new Canvas3D(graphicsConfig);
add("Center", c);

// Create a simple scene and attach it to the virtual
// universe

BranchGroup scene = createSceneGraph();
UniverseBuilder u = new UniverseBuilder(c);
u.addBranchGraph(scene);

Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Prograrh.6.3

1.6.3.2 UniverseBuilder Class

The UniverseBuilder class establishes and initializes Java 3D’s virtual universe,
Locale, and viewing objects, and constructs the view platform branch graph. The
example code shown below is a simplified version of the UniverseBuilder that
will be supplied as part of the Java 3D utility package.

public class UniverseBuilder extends Object {
// User-specified canvas
Canvas3D canvas;

// Scene graph elements to which the user may want access

VirtualUniverse universe;
Locale locale;
TransformGroup vpTrans;
View view;

public UniverseBuilder(Canvas3D c) {
this.canvas = c;

// Establish a virtual universe that has a single
// hi-res Locale

universe = new VirtualUniverse();

locale = new Locale(universe);

// Create a PhysicalBody and PhysicalEnvironment object
PhysicalBody body = new PhysicalBody();
PhysicalEnvironment environment =

new PhysicalEnvironment();

// Create a View and attach the Canvas3D and the physical
// body and environment to the view.

view = new View();

view.addCanvas3D(c);

view.setPhysicalBody(body);
view.setPhysicalEnvironment(environment);

// Create a BranchGroup node for the view platform
BranchGroup vpRoot = new BranchGroup();

// Create a ViewPlatform object, and its associated

// TransformGroup object, and attach it to the root of the
// subgraph. Attach the view to the view platform.
Transform3D t = new Transform3D();

t.set(new Vector3f(0.0f, 0.0f, 2.01));

ViewPlatform vp = new ViewPlatform();

vpTrans = new TransformGroup(t);

Version 1.1 Alpha 01, February 27, 1998 11

1.6.3 HelloUniverse: A Sample Java 3D Program INTRODUCTION TO JAVA 3D

12

vpTrans.addChild(vp);
vpRoot.addChild(vpTrans);

view.attachViewPTatform(vp);

// Attach the branch graph to the universe, via the
// Locale. The scene graph is now Tive!
Tocale.addBranchGraph(vpRoot) ;

3

public void addBranchGraph(BranchGroup bg) {
Tocale.addBranchGraph(bg);
}

1.6.3.3 ColorCube Class

The ColorCube Class creates a Shape3D node that contains the geometry for an
unlit, colored cube.

public class ColorCube extends Object {
private static final float[] verts = {
// front face

1.o0f, -1.0f, 1.0f, l1.of, 1.0f, 1.of,

-1.0f, 1.0f, 1.0of, -1.0f, -1.0f, 1.0f,
// back face

-1.0f, -1.0f, -1.0f, -1.0f, 1.0f, -1.0f,

1.0f, 1.0f, -1.0f, 1.0f, -1.0f, -1.0f,
// right face

1.0f, -1.0f, -1.0f, l1.0f, 1.0f, -1.0f,

1.0f, 1.o0f, 1.of, 1.0f, -1.0f, 1.0f,
// left face

-1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.of,

-1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f,
// top face

1.0f, 1.0f, 1.of, 1.0f, 1.0f, -1.0f,

-1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0of,
// bottom face

-1.0f, -1.0f, 1.0f, -1.0f, -1.0f, -1.0f,

1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f,

b
private static final float[] colors = {
// front face (red)

1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,

1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
// back face (green)

0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,

Java 3D API Specification

INTRODUCTION TO JAVA 3D HelloUniverse: A Sample Java 3D Prograrh.6.3

0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
// right face (blue)
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
// left face (yellow)

.0f, 0.0f, 1.0f,
.0f, 0.0f, 1.0f,

1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f,

1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f,
// top face (magenta)

1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,

1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,
// bottom face (cyan)

0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,

0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f,

};
private Shape3D shape;

public ColorCube() {
QuadArray cube = new QuadArray(24,
QuadArray.COORDINATES | QuadArray.COLOR_3);

cube.setCoordinates(0, verts);
cube.setColors(0@, colors);

shape = new Shape3D(cube, new Appearance());

}

public Shape3D getShape() {
return shape;
}

Version 1.1 Alpha 01, February 27, 1998 13

CHAPTER2

Scene Graph Basics

A scene graph consists of Java 3D objects, caltmtes arranged in a tree
structure. The user creates one or more scene subgraphs and attaches them to a
virtual universe. The individual connections between Java 3D nodes always rep-
resent a directed relationship: parent to child. Java 3D restricts scene graphs in
one major way: Scene graphs may not contain cycles. Thus, a Java 3D scene
graph is a directed acyclic graph (DAG). See Figure 2-1.

Java 3D refines the Node object class into two subclasses: Group and Leaf node
objects. Group node objects group together one or more child nodes. A group

node can point to zero or more children but can have only one parent. The

SharedGroup node cannot have any parents (although it allows sharing portions
of a scene graph, as described in Chapter 6, “Reusing Scene Graphs”). Leaf node
objects contain the actual definitions of shapes (geometry), lights, fog, sounds,

and so forth. A leaf node has no children and only one parent. The semantics of
the various group and leaf nodes are described in subsequent chapters.

2.1 Scene Graph Structure

A scene graph organizes and controls the rendering of its constituent objects. The
Java 3D renderer draws a scene graph in a consistent way that allows for concur-
rence. The Java 3D renderer can draw one object independently of other objects.
Java 3D can allow such independence because its scene graphs have a particular
form and cannot share state among branches of a tree.

2.1.1 Spatial Separation

The hierarchy of the scene graph encourages a natural spatial grouping on the
geometric objects found at the leaves of the graph. Internal nodes act to group
their children together. A group node also defines a spatial bound that contains

Version 1.1 Alpha 01, February 27, 1998 15

2.1.2

16

State Inheritance SCENE GRAPH BASICS

all the geometry defined by its descendants. Spatial grouping allows for efficient
implementation of operations such as proximity detection, collision detection,
view frustum culling, and occlusion culling.

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

FOAAA A

Figure 2-1 A Java 3D Scene Graph Is a DAG (Directed Acyclic Graph)

2.1.2 State Inheritance

A leaf node’s state is defined by the nodes in a direct path between the scene
graph’s root and the leaf. Because a leaf’s graphics context only relies on a linear
path between the root and that node, the Java 3D renderer can decide to traverse
the scene graph in whatever order it wishes. It can traverse the scene graph from
left to right and top to bottom, in level order from right to left, or even in paral-

lel. The only exceptions to this rule are spatially bounded attributes such as lights
and fog.

This characteristic is in marked contrast to many older scene graph—based APIs
(including PHIGS and SGI’s Inventor), where if a node above or to the left of a
node changes the graphics state, the change affects the graphics state of all nodes
below it or to its right.

Java 3D API Specification

SCENE GRAPH BASICS Scene Graph Objects 2.2

The most common node object, along the path from the root to the leaf, that
changes the graphics state is the TransformGroup object. The TransformGroup
object can change the position, orientation, and scale of the objects below it.

Most graphics state attributes are set by a Shape3D leaf node through its constit-
uent Appearance object, thus allowing parallel rendering. The Shape3D node

also has a constituent Geometry object that specifies its geometry—this permits
different shape objects to share common geometry without sharing material

attributes (or vice versa).

2.1.3 Rendering

The Java 3D renderer incorporates all graphics state changes made in a direct
path from a scene graph root to a leaf object in the drawing of that leaf object.
Java 3D provides this semantic for both retained and compiled-retained modes.

2.2 Scene Graph Objects

A Java 3D scene graph consists of a collection of Java 3D node objects con-
nected in a tree structure. These node objects reference other scene graph objects
callednode component objectall scene graph node and component objects are
subclasses of a common SceneGraphObiject class. The SceneGraphObiject class
is an abstract class that defines methods that are common among nodes and com-
ponent objects.

Scene graph objects are constructed by creating a new instance of the desired
class and are accessed and manipulated using the objactimdget methods.

Once a scene graph object is created and connected to other scene graph objects
to form a subgraph, the entire subgraph can be attached to a virtual universe—via
a high-resolution Locale object—making the objdige (see Section 3.6.2,
“Locale Object”). Prior to attaching a subgraph to a virtual universe, the entire
subgraph can beompiledinto an optimized, internal format (see Section 4.2,
“BranchGroup Node”).

An important characteristic of all scene graph objects is that they can only be
accessed or modified during the creation of a scene graph, except where explic-
itly allowed. Access to mostet andget methods of objects that are part of a

live or compiled scene graph is restricted. Such restrictions provide the scene
graph compiler with usage information it can use in optimally compiling or ren-
dering a scene graph. Each object has a set of capability bits that enable certain
functionality when the object is live or compiled. By default, all capability bits
are disabled (cleared). Only thoset andget methods corresponding to capa-

Version 1.1 Alpha 01, February 27, 1998 17

Scene Graph Objects SCENE GRAPH BASICS

bility bits that are explicitly enabled (set) prior to the object being compiled or
made live are legal. The methods for setting and getting capability bits are
described next.

Constructors

The SceneGraphObject specifies one constructor.

public SceneGraphObject()

Constructs a new SceneGraphObject.

Methods

The following methods are available on all scene graph objects.

public final boolean isCompiled()
public final boolean 1isLive()

The first method returns a flag that indicates whether the node is part of a scene
graph that has been compiled. If so, only those capabilities explicitly allowed by
the object’s capability bits are allowed. The second method returns a flag that
indicates whether the node is part of a scene graph that has been attached to a
virtual universe via a high-resolution Locale object.

public final boolean getCapability(int bit)
public final void setCapability(int bit)
public final void clearCapability(int bit)

These three methods provide applications with the means for accessing and mod-
ifying the capability bits of a scene graph object. The bit positions of the capabil-
ity bits are defined as public static final constants on a per-object basis. Every
instance of every scene graph object has its own set of capability bits. An exam-
ple of a capability bit is theLLOW_BOUNDS_WRITE bit in node objects. Only those
methods corresponding to capabilities that are endidéarethe object is first
compiled or made live are subsequently allowed for that objegesAricte-
dAccessException is thrown if an application calls:tCapability or clearCa-
pability on live or compiled objects. Note that only a single bit may be set or
cleared per method invocation—Dbits magt be ORed together.

public void setUserData(Object userData)
public Object getUserData()

These methods access or modify the userData field associated with this scene
graph object. The userData field is a reference to an arbitrary object and may be

Java 3D API Specification

SCENE GRAPH BASICS Node Objects2.2.1

used to store any user-specific data associated with this scene graph object—it is
not used by the Java 3D API. If this object is cloned, the userData field is copied
to the newly cloned object.

2.2.1 Node Objects

Node objects divide into group node objects and leaf node objects. Group nodes
serve to group their child node objects together according to the group node’s
semantics. Leaf nodes specify the actual elements that Java 3D uses in rendering;
specifically, geometric objects, lights, and sounds. These node objects are
described in Chapter 4, “Group Node Objects” and Chapter 5, “Leaf Node
Objects.”

Constants

Node object constants allow an application to individually enable runtime capa-
bilities. These capability bits are enforced only when the node is part of a live or
compiled scene graph.

public static final int ALLOW_PICK

This is a deprecated method. UgaPickable(boolean) instead.

public static final int ALLOW_BOUNDS_READ
public static final int ALLOW_BOUNDS_WRITE

These bits, when set using texCapabi1ity method, specify that the node will
permit an application to invoke th@tBounds andsetBounds methods, respec-
tively. An application can choose to enable a particséarmethod but not the
associatedet method, or vice versahe application can choose to enable both
methods or, by default, leave the method(s) disabled.

public static final int ALLOW_AUTO_COMPUTE_BOUNDS_READ
public static final int ALLOW_AUTO_COMPUTE_BOUNDS_WRITE

These bits, when set using terCapabi1ity method, specify that the node will
permit an application to invoke th@etBoundsAutoCompute and set-
BoundsAutoCompute methods, respectively. An application can choose to enable

a particularset method but not the associatgelt method, or vice versahe
application can choose to enable both methods or, by default, leave the method(s)
disabled.

Version 1.1 Alpha 01, February 27, 1998 19

221

20

Node Objects SCENE GRAPH BASICS

public static final int ENABLE_PICK_REPORTING

This flag specifies that this node will be reported in a SceneGraphPath. By
default, this is disabled.

public static final int ALLOW_PICKABLE_READ
public static final int ALLOW_PICKABLE_WRITE

These flags specify that this Node can have its pickability read or changed.

public static final int ENABLE_COLLISION_REPORTING

This flag specifies that this Node will be reported in the collision SceneGraph-
Path if a collision occurs. This capability is only specifiable for Group nodes; it

is ignored for Leaf nodes. The default for Group nodes is false. All interior nodes
not needed for uniqueness in a SceneGraphPath that don’t have this flag set to
true will not be reported in the SceneGraphPath.

public static final int ALLOW_COLLIDABLE_READ
public static final int ALLOW_COLLIDABLE_WRITE

These flags specify that this Node allows read or write access to its collidability
state.

public static final int ALLOW_LOCAL_TO_VWORLD_READ

This flag specifies that this node allows read access to its local-coordinates-to-
virtual-world-(Vworld)-coordinates transform.

Constructors
The Node object specifies the following constructor.

public Node()

This constructor constructs and initializes a Node object. The Node class pro-
vides an abstract class for all group and leaf nodes. It provides a common frame-
work for constructing a Java 3D scene graph, specifically, bounding volumes.

Methods

The following methods are available on Node objects, subject to the capabilities
that are enabled for live or compiled nodes.

Java 3D API Specification

SCENE GRAPH BASICS Node Objects2.2.1

public final Node getParent()

Retrieves the parent of this nodenail 1 if this node has no parent. This method
is only valid during the construction of the scene graph. If this object is part of a
live or compiled scene graphRastrictedAccessException will be thrown.

public final Bounds getBounds()
public final void setBounds(Bounds bounds)

These methods access or modify this node’s geometric bounds.

public final void getLocalToVworld(Transform3D t)

public final void getLocalToVworld(SceneGraphPath path,
Transform3D t)

These methods access the local-coordinates-to-virtual-world-coordinates trans-
form for this node and place the result into the specified Transform3D argument.
The first form is used for nodes that ao part of a shared subgraph, the second
form is used for nodes thate part of a shared subgraph. The local-coordinates-
to-Vworld-coordinates transform is the composite of all transforms in the scene
graph from the root down to this node (via the specified Link nodes, in the sec-
ond case). It is only valid for nodes that are part of a live scene graph. An excep-
tion will be thrown if the node is not part of a live scene graph or if the
appropriate capability is not set. Additionally, the first form will throw an excep-
tion if the node is part of a shared subgraph.

public final void setBoundsAutoCompute(boolean autoCompute)
public final boolean getBoundsAutoCompute()

These methods set and get the value that determines whether the node’s geomet-
ric bounds are computed automatically, in which case the bounds will be read-
only, or are set manually, in which case the value specifiedtBpunds will be

used. The default is automatic.

public void setPickable(boolean pickable)
public boolean getPickable()

These methods set and retrieve the flag indicating whether this node can be
picked. A setting offalse means that this node and its children are all unpick-
able.

public void setCollidable(boolean collidable)
public boolean getCollidable()

The set method sets the collidable value. The get method returns the collidable
value. This value determines whether this node and its children, if a group node,

Version 1.1 Alpha 01, February 27, 1998 21

221

22

Node Objects SCENE GRAPH BASICS

can be considered for collision purposes. If the value is false, neither this node
nor any children nodes will be traversed for collision purposes. The default value
is true. The collidable setting is the way that an application can perform collision

culling.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is cakkddnby
eTree to duplicate the current nodeloneNode should be overridden by any
user-subclassed objects. All subclasses must havecthwieNode method con-
sist of the following lines:

public Node cloneNode(boolean forceDuplicate) {
UserSubClass usc = new UserSubClass();
usc.duplicateNode(this, forceDuplicate);
return usc;

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from #lie¢ginalNode into the
current node. This method is called from theneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'siuplicateOnCloneTree value is used to determine whether

the NodeComponent should be duplicated in the new node or if just a reference
to the current node should be placed in the new node. This flag can be overridden
by setting theforceDuplicate parameter in theloneTree method totrue.

public Node cloneTree()
public Node cloneTree(boolean forceDuplicate)

public Node cloneTree(boolean forceDuplicate,
boolean allowDanglingReference)

These methods duplicate all the nodes of the specified subgraph. Group nodes
are duplicated via a call toloneNode, and thencloneTree is called for each

child node. For leaf nodes, component data can either be duplicated or be made
a reference to the original data. Leaf nedeneTree behavior is determined by
theduplicateOnCloneTree flag found in every leaf node’s component data class
and by theforceDuplicate parameter. Th&orceDuplicate parameter, when

set totrue, causes théuplicateOnCloneTree flag to be ignored. Thellow-
DanglingReferences flag, when set tarue, allows thecloneTree method to

Java 3D API Specification

SCENE GRAPH BASICS NodeComponent Objecf3.2.2

complete even when a dangling reference is discovered. When this parameter is
false, a DanglingReferenceException iS generated as soon a%oneTree
detects this situation.

2.2.2 NodeComponent Objects

Node component objects include the actual geometry and appearance attributes
used to render the geometry. These component objects are described in
Chapter 7, “Node Component Objects.”

Constructors

The NodeComponent object specifies the following constructor.

public NodeComponent()

This constructor constructs and initializes a NodeComponent object. The Node-
Component class provides an abstract class for all component objects.

Methods

The following methods are available on NodeComponent objects.

public void setDuplicateOnCloneTree(boolean duplicate)
public boolean getGetDuplicateOnCloneTree()

These methods access or modify dhe1icateOnCloneTree value of the Node-
Component object. ThéuplicateOnCloneTree value is used by th€loneTree
method to determine if NodeComponent objects should be duplicated or just ref-
erenced in the cloned leaf object.

public NodeComponent cloneNodeComponent()

This method creates a new instance of a NodeComponent object. This method is
called by thecloneNode method to duplicate the current node. EheneNode-
Component should be overridden by any user-subclassed NodeComponent
objects. All subclasses must have thdisneNodeComponent method consist of

the following lines:

public NodeComponent cloneNodeComponent() {
UserNodeComponent unc = new UserNodeComponent();
unc.duplicateNodeComponent(this);
return unc;

Version 1.1 Alpha 01, February 27, 1998 23

2.3

24

Scene Graph Superstructure Objects SCENE GRAPH BASICS

public void duplicateNodeComponent(NodeComponent
originalNodeComponent)

This method copies all node information fr@miginalNodeComponent into the
current node. This method is called from thineNodeComponent method,
which is in turn called by theloneNode method.

2.3 Scene Graph Superstructure Objects

Java 3D defines two scene graph superstructure objects, VirtualUniverse and
Locale, which are used to contain collections of subgraphs that comprise the
scene graph. These objects are described in more detail in Chapter 3, “Scene
Graph Superstructure.”

2.3.1 VirtualUniverse Obiject

A VirtualUniverse object consists of a list of Locale objects that contain a collec-

tion of scene graph nodes that exist in the universe. Typically, an application will

need only one VirtualUniverse, even for very large virtual databases. Operations
on a VirtualUniverse include enumerating the Locale objects contained within

the universe. See Section 3.6.1, “VirtualUniverse Object,” for more information.

2.3.2 Locale Object

The Locale object acts as a container for a collection of subgraphs of the scene
graph that are rooted by a BranchGroup node. A Locale also defines a location
within the virtual universe using high-resolution coordinates (HiResCoord) to
specify its position. The HiResCoord serves as the origin for all scene graph
objects contained within the Locale.

A Locale has no parent in the scene graph, but is implicitly attached to a virtual
universe when it is constructed. A Locale may reference an arbitrary number of
BranchGroup nodes, but has no explicit children.

The coordinates of all scene graph objects are relative to the HiResCoord of the
Locale in which they are contained. Operations on a Locale include setting or
getting the HiResCoord of the Locale, adding a subgraph, and removing a sub-
graph (see Section 3.6.2, “Locale Obiject,” for more information).

Java 3D API Specification

SCENE GRAPH BASICS View Object2.4.3

2.4 Scene Graph Viewing Objects

Java 3D defines five scene graph viewing objects that are not part of the scene
graph per se but serve to define the viewing parameters and to provide hooks into
the physical world. These objects are Canvas3D, Screen3D, View, PhysicalBody,
and PhysicalEnvironment. They are described in more detail in Chapter 8, “View
Model,” and Appendix C, “View Model Details.”

2.4.1 Canvas3D Object

The Canvas3D object encapsulates all of the parameters associated with the win-
dow being rendered into (see Section 8.9, “The Canvas3D Object”). When a
Canvas3D object is attached to a View object, the Java 3D traverser renders the
specified view onto the canvas. Multiple Canvas3D objects can point to the same
View object.

2.4.2 Screen3D Object

The Screen3D object encapsulates all of the parameters associated with the phys-
ical screen containing the canvas, such as the width and height of the screen in
pixels, the physical dimensions of the screen, and various physical calibration
values (see Section 8.8, “The Screen3D Object”).

2.4.3 View Object

The View object specifies information needed to render the scene graph.
Figure 2-2 shows a View object attached to a simple scene graph for viewing the
scene.

The View object is the central Java 3D object for coordinating all aspects of
viewing (see Section 8.7, “The View Object”). All viewing parameters in
Java 3D are either directly contained within the View object or within objects
pointed to by a View object. Java 3D supports multiple simultaneously active
View objects, each of which can render to one or more canvases.

Version 1.1 Alpha 01, February 27, 1998 25

2.4.4 PhysicalBody Object SCENE GRAPH BASICS

Virtual Universe

Hi-Res Locale

View | — {Canvas3D »| Screen3D

Platform Y \

A A Physical Physical
Body Environment

Figure 2-2 Viewing a Scene Graph

2.4.4 PhysicalBody Obiject

The PhysicalBody object encapsulates all of the parameters associated with the
physical body, such as head position, right and left eye position, and so forth.
(see Section 8.10, “The PhysicalBody Object”).

2.4.5 PhysicalEnvironment Object

The PhysicalEnvironment object encapsulates all of the parameters associated
with the physical environment, such as calibration information for the tracker
base for the head or hand tracker (see Section 8.11, “The PhysicalEnvironment
Object”).

26 Java 3D API Specification

CHAPTER3

Scene Graph Superstructure

\]AVA 3D’s superstructure consists of one or more VirtualUniverse objects, each
of which contains a set of one or more high-resolution Locale objects. The
Locale objects, in turn, contain collections of subgraphs that comprise the scene
graph (see Figure 3-1).

3.1 The Virtual Universe

Java 3D defines the concept oVigtual universeas a three-dimensional space

with an associated set of objects. Virtual universes serve as the largest unit of
aggregate representation, and can also be thought of as databases. Virtual uni-
verses can be very large, both in physical space units and in content. Indeed, in
most cases a single virtual universe will serve an application’s entire needs.

Virtual universes are separate entities in that no node object may exist in more
than one virtual universe at any one time. Likewise, the objects in one virtual

universe are not visible in, nor do they interact with objects in, any other virtual

universe.

To support large virtual universes, Java 3D introduces the concept of Locales that
have high-resolution coordinateas an origin. Think of high-resolution coordi-
nates as “tie-downs” that precisely anchor the locations of objects specified using
less precise floating-point coordinates that are within the range of influence of
the high-resolution coordinates.

A Locale, with its associated high-resolution coordinates, serves as the next level
of representation down from a virtual universe. All virtual universes contain one
or more high-resolution-coordinate Locales, and all other objects are attached to
a Locale. High-resolution coordinates act as an upper-level translation-only
transform node. For example, the coordinates of all objects attached to a particu-

Version 1.1 Alpha 01, February 27, 1998 27

3.2

28

Establishing a Scene SCENE GRAPH SUPERSTRUCTURE

lar Locale are all relative to the location of that Locale’s high-resolution coordi-
nates.

Virtual Universe

Hi-Res Locales

BranchGroup Nodes

Group Nodes

FOAA A A

Figure 3-1 The Virtual Universe

While a virtual universe is similar to the traditional computer graphics concept of

a scene graph, a given virtual universe can become so large that it is often better
to think of a scene graph as the descendent of a high-resolution-coordinate
Locale.

3.2 Establishing a Scene

To construct a three-dimensional scene, the programmer must execute a Java 3D
program. The Java 3D application must first create a VirtualUniverse object and
attach at least one Locale to it. Then the desired scene graph is constructed, start-
ing with a BranchGroup node and including at least one ViewPlatform object,
and is attached to the Locale. Finally, a View object is constructed that references
the ViewPlatform object (see Section 1.6, “Structuring the Java 3D Program”).
As soon as a scene graph containing a ViewPlatform is attached to the Virtu-
alUniverse, Java 3D’s rendering loop is engaged, and the scene will appear on
the drawing canvas(es) associated with the View object.

Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Java 3D High-resolution Coordinat8ss.1

3.3 Loading a Virtual Universe

Java 3D is a runtime application programming interface (API), not a file format.
As an API, Java 3D provides no direct mechanism for loading or storing a virtual
universe. Constructing a scene graph involves the execution of a Java 3D pro-
gram. However, loaders to convert a number of standard 3D file formats to or
from Java 3D virtual universes are expected to be generally available.

3.4 Coordinate Systems

By default, Java 3D coordinate systems are right-handed, with the orientation
semantics being that +Y is the local gravitational up, +X is horizontal to the
right, and +Z is directly toward the viewer. The default units are meters.

3.5 High-resolution Coordinates

Double-precision floating-point, single-precision floating-point, or even fixed-
point representations of three-dimensional coordinates are sufficient to represent
and display rich 3D scenes. Unfortunately, scenes are not worlds, let alone uni-
verses. If one ventures even a hundred miles away from the (0.0, 0.0, 0.0) origin
using only single-precision floating-point coordinates, representable points
become quite quantized, to at very best a third of an inch (and much more
coarsely than that in practice).

To “shrink” down to a small size (say the size of an IC transistor), even very near
(0.0, 0.0, 0.0), the same problem arises.

If a large contiguous virtual universe is to be supported, some form of higher-res-
olution addressing is required. Thus the choice of 256-bit positional components
for “high-resolution” positions.

3.5.1 Java 3D High-resolution Coordinates

Java 3D high-resolution coordinates consist of three 256-bit fixed-point numbers,

one each for x, y, and z. The fixed point is at bit 128, and the value 1.0 is defined
to be exactly 1 meter. This coordinate system is sufficient to describe a universe
in excess of several hundred billion light years across, yet still define objects

smaller than a proton (down to below the planck length). Table 3-1 shows how

many bits are needed above or below the fixed point to represent the range of
interesting physical dimensions.

Version 1.1 Alpha 01, February 27, 1998 29

3.5.2

30

Java 3D Virtual World Coordinates SCENE GRAPH SUPERSTRUCTURE

Table 3-1 Java 3D High-Resolution Coordinates

2" Meters Units
87.29 Universe (20 billion light years)
69.68 Galaxy (100,000 light years)
53.07 Light year

43.43 Solar system diameter
23.60 Earth diameter
10.65 Mile

9.97 Kilometer
0.00 Meter
-19.93 Micron
-33.22 Angstrom
-115.57 Planck length

A 256-bit fixed-point number also has the advantage of being able to directly
represent nearly any reasonable single-precision floating-point exedady

High-resolution coordinates in Java 3D are only used to embed more traditional
floating point coordinate systems within a much higher-resolution substrate. In
this way a visually seamless virtual universe of any conceivable size or scale can
be created, without worry about numerical accuracy.

3.5.2 Java 3D Virtual World Coordinates

Within a given virtual world coordinate system, positions are expressed by three
floating point numbers. The virtual world coordinate scale is in meters, but this
can be affected by scale changes in the object hierarchy.

3.5.3 Details of High-resolution Coordinates

High-resolution coordinates are represented as signed, two’s-complement, fixed-
point numbers consisting of 256 bits. Although Java 3D keeps the internal repre-
sentation of high-resolution coordinates opaque, users specify such coordinates
using 8-element integer arrays. Java 3D treats the integer found at index O as
containing the most significant bits and that found at index 7 as containing the
least significant bits of the high-resolution coordinate. The binary point is located
at bit position 128, or between the integers at index 3 and 4. A high-resolution
coordinate of 1.0 is 1 meter.

Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE Details of High-resolution Coordinatgss.3

The semantics of how file loaders deal with high-resolution coordinates is up to
the individual file loader, as Java 3D does not directly define any file-loading
semantics. However, some general advice can be given (note that this advice is
not officially part of the Java 3D specification).

For “small” virtual universes (on the order of hundreds of meters across in rela-
tive scale), a single Locale with high-resolution coordinates at location
(0.0, 0.0, 0.0) as the root node (below the VirtualUniverse object) is sufficient; a
loader can automatically construct this node during the loading process, and the
point in high-resolution coordinates does not need any direct representation in
the external file.

Larger virtual universes are expected to be usually constructed like computer
directory hierarchies, that is, as a “root” virtual universe containing mostly exter-
nal file references to embedded virtual universes. In this case, the file reference
object (user-specific data hung off a Java 3D group or hi-res node) defines the
location for the data to be read into the current virtual universe.

The data file’s contents should be parented to the file object node while being
read, thus inheriting the high-resolution coordinates of the file object as the new
relative virtual universe origin of the embedded scene graph. If this scene graph
itself contains high-resolution coordinates, it will need to be offset (translated) by
the amount in the file object’s high-resolution coordinates, and then added to the
larger virtual universe as new high-resolution coordinates, with their contents
hung off below them. Once again, the above procedure is not part of the official
Java 3D specification, but some more details on the care and use of high-resolu-
tion coordinates in external file formats will probably be available as a Java 3D
application note.

Authoring tools that directly support high-resolution coordinates should create
additional high-resolution coordinates as a user creates new geometry “suffi-
ciently” far away (or of different scale) from existing high-resolution coordi-
nates.

Semantics of widely moving objectsMost fixed and nearly-fixed objects stay
attached to the same high-resolution Locale. Objects that make wide changes in
position or scale may need to be periodically reparented to more appropriate
high-resolution Locale. If no appropriate high-resolution Locale exists, the appli-
cation may need to create a new one.

Semantics of viewing The ViewPlatform object and the associated nodes in its
hierarchy are very often widely moving objects. Applications will typically

attach the view platform to the most appropriate high-resolution Locale. For dis-
play, all objects will first have their positions translated by the difference

Version 1.1 Alpha 01, February 27, 1998 31

3.6

32

API for Superstructure Objects SCENE GRAPH SUPERSTRUCTURE

between the location of their high-resolution Locale, and the view platform's
high-resolution Locale. (In the common case of the Locales being the same, no
translation is necessary.)

3.6 API for Superstructure Objects

This section describes the API for the VirtualUniverse, Locale, and HiResCoord
objects.

3.6.1 VirtualUniverse Obiject

The VirtualUniverse object consists of a set of Locale objects.

Constructors
The VirtualUniverse object has the following constructors.

public VirtualUniverse()

This constructs a new VirtualUniverse object. This VirtualUniverse can then be
used to create Locale objects.

Methods
The VirtualUniverse object has the following methods.

public final Enumeration getAllLocales()
public final int numLocales()

The first method returns the Enumeration object of all Locales in this virtual uni-
verse. ThenumLocales method returns the number of Locales.

3.6.2 Locale Object

The Locale object consists of a point, specified using high-resolution coordi-
nates, and a set of subgraphs, rooted by BranchGroup node objects.

Constructors

The Locale object has the following constructors.

Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE HiResCoord Objed.6.3

public Locale(VirtualUniverse universe)
public Locale(VirtualUniverse universe, int x[1, int y[], int z[1)
public Locale(VirtualUniverse universe, HiResCoord hiRes)

These three constructors create a new high-resolution Locale object in the speci-
fied VirtualUniverse. The first form constructs a Locale object located at
(0.0, 0.0, 0.0). The other two forms construct a Locale object using the specified
high-resolution coordinates. In the second form, the parametgrsandz are

arrays of eight 32-bit integers that specify the respective high-resolution coordi-
nate.

Methods

The Locale object has the following methods. For the Locale picking methods,
see Section 10.3.2, “BranchGroup Node and Locale Node Pick Methods.”

public VirtualUniverse getVirtualUniverse()

This method retrieves the virtual universe within which this Locale object is con-
tained.

public void setHiRes(int x[], int y[], int z[1)
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods set or get the high-resolution coordinates of this Locale.

public void addBranchGraph(BranchGroup branchGroup)
public void removeBranchGraph(BranchGroup branchGroup)

public void replaceBranchGraph(BranchGroup oldGroup,
BranchGroup newGroup)

public int numBranchGraphs()
public Enumeration getAll1BranchGraphs()

The first three methods add, remove, and replace a branch graph in this Locale.
Adding a branch graph has the effect of making the branch graph “live.” The
fourth method retrieves the number of branch graphs in this Locale. The last
method retrieves an Enumeration object of all branch graphs.

3.6.3 HiResCoord Object

A HiResCoord object defines a point using a set of three high-resolution coordi-
nates, each of which consists of three two’s-complement fixed-point numbers.
Each high-resolution number consists of 256 total bits with a binary point at bit
128. Java 3D uses integer arrays of length eight to define or extract a single 256-

Version 1.1 Alpha 01, February 27, 1998 33

3.6.3

34

HiResCoord Object SCENE GRAPH SUPERSTRUCTURE

bit coordinate value. Java 3D interprets the integer at index 0 as the 32 most sig-
nificant bits and the integer at index 7 as the 32 least significant bits.

Constructors

The HiResCoord object has the following constructors.

public HiResCoord(int x[], int y[1, int z[])
public HiResCoord(HiResCoord hc)
public HiResCoord()

The first constructor generates the high-resolution coordinate point from three
integer arrays of length eight. The integer arrays specify the coordinate values
corresponding with their name. The second constructor creates a new high-reso-
lution coordinate point by cloning the high-resolution coordinatesThe third
constructor creates new high-resolution coordinates with value (0.0, 0.0, 0.0).

Methods

public void setHiResCoord(int x[], int y[1, int z[])
public void setHiResCoord(HiResCoord hiRes)

public void setHiResCoordX(int x[1)

public void setHiResCoordY(int y[]1)

public void setHiResCoordZ(int z[])

These five methods modify the value of high-resolution coordinates The

first method resets all three coordinate values with the values specified by the
three integer arrays. The second method sets the valttei ofto that of high-
resolution coordinatesiRes. The third, fourth, and fifth methods reset the corre-
sponding coordinate afhis.

public void getHiResCoord(int x[]1, int y[]1, int z[])
public void getHiResCoord(HiResCoord hc)

public void getHiResCoordX(int x[])

public void getHiResCoordY(int y[])

public void getHiResCoordZ(int z[])

These five methods retrieve the value of the high-resolution coordittaites

The first method retrieves the high-resolution coordinates’ values and places

those values into the three integer arrays specified. All three arrays must have
length greater than or equal to eight. The second method updates the value of the
high-resolution coordinates: to match the value afhis. The third, fourth, and

fifth methods retrieve the coordinate value that corresponds to their name and

update the integer array specified, which must be of length eight or greater.

Java 3D API Specification

SCENE GRAPH SUPERSTRUCTURE HiResCoord Objed.6.3

public void add(HiResCoord hl, HiResCoord h2)
public void sub(HiResCoord hl, HiResCoord h2)

These two methods perform arithmetic operations on high-resolution coordi-
nates. The first method adds to h2 and stores the result this. The second
method subtracts2 from h1l and stores the result his.

public void scale(int scale, HiResCoord hl)
public void scale(int scale)

These methods scale a high-resolution coordinate point. The first method scales
hl by the scalar valuecale and places the scaled coordinates ititds. The
second method scalesis by the scalar valuecale and places the scaled coor-
dinates back intahis.

public void negate(HiResCoord hl)
public void negate()

These two methods negate a high-resolution coordinate point. The first method
negateshl and stores the result ithis. The second method negatgs s and
stores its negated value back inta s.

public void difference(HiResCoord hl, Vector3d v)

This method subtractsl from this and stores the resulting difference vector in
the double-precision floating-point vectar Note that although the individual
high-resolution coordinate points cannot be represented accurately by double-
precision numbers, this difference vector between tbambe accurately repre-
sented by doubles for many practical purposes, such as viewing.

public boolean equals(HiResCoord hl)

This method performs an arithmetic comparison betwéeés andhl. It returns
true if the two high-resolution coordinate points are equal; otherwise, it returns
false.

public double distance(HiResCoord hl)

This method computes the linear distance between high-resolution coordinate
points this and hl, and returns this value expressed as a double. Note that
although the individual high-resolution coordinate points cannot be represented
accurately by double precision numbers, this distance betweerc#mdm accu-
rately represented by a double for many practical purposes.

Version 1.1 Alpha 01, February 27, 1998 35

CHAPTER I

Group Node Objeéts

GROUP nodes are the glue elements used in constructing a scene graph. The
following subsections list the seven group nodes (see Figure 4-1) and their defi-
nitions. All group nodes can have a variable number of child node objects—
including other group nodes as well as leaf nodes. These children have an asso-
ciated index that allows operations to specify a particular child. However, unless
one of the special ordered group nodes is used, the Java 3D renderer can choose
to render a group node’s children in whatever order it wishes (including render-
ing the children in parallel).

SceneGraphObject
Node
Group
BranchGroup
OrderedGroup
DecalGroup

SharedGroup
Switch
TransformGroup

Figure 4-1 Group Node Hierarchy

4.1 Group Node

The Group node object is a general-purpose grouping node. Group nodes have
exactly one parent and an arbitrary number of children that are rendered in an
unspecified order (or in parallel). Operations on Group node objects include add-
ing, removing, and enumerating the children of the Group node. The subclasses
of Group node add additional semantics.

Version 1.1 Alpha 01, February 27, 1998 37

4.1

38

Group Node GROUP NODE OBJECTS
Constants

public static final int ALLOW_CHILDREN_READ
public static final int ALLOW_CHILDREN_WRITE
public static final int ALLOW_CHILDREN_EXTEND

These flags, when enabled using teCapability method, specify that this
Group node will allow the following methods, respectively:

* numChildren, getChild, getAT1Children
e setChild, insertChild, removeChild
e addChild, moveTo

These capability bits are enforced only when the node is part of a live or com-
piled scene graph.

public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

These flags, when enabled using #eeCapability method, specify that this
Group node will allow reading and writing of its collision bounds.

Constructors

public Group(Q

Constructs and initializes a Group node object.

Methods

The Group node class defines the following methods.

public final int numChildrenQ
public final Node getChild(int index)

The first method returns a count of the number of children. The second method
returns the child at the specified index.

public final void setChild(Node child, int 1index)
public final void insertChild(Node child, int -{index)
public final void removeChild(int index)

The first method replaces the child at the specified index with a new child. The
second method inserts a new child before the child at the specified index. The
third method removes the child at the specified index. Note that if this Group

Java 3D API Specification

GROUP NODE OBJECTS Group Node 4.1

node is part of a live or compiled scene graph, only BranchGroup nodes may be
added to or removed from it—and only if the appropriate capability bits are set.

public final Enumeration getAl1Children()
This method returns an Enumeration object of all children.

public final void addChild(Node child)

This method adds a new child as the last child in the group. Note that if this
Group node is part of a live or compiled scene graph, only BranchGroup nodes
may be added to it—and only if the appropriate capability bits are set.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is cakkddrby
eTree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from ¢hi@ginalNode into the
current node. This method is called from theneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'duplicateOnCloneTree flag is used to determine whether the
NodeComponent should be duplicated in the new node or if just a reference to
the current node should be placed in the new node. This flag can be overridden
by setting theforceDuplicate parameter in theloneTree method totrue.

public final void moveTo(BranchGroup branchGroup)

This method moves the specified BranchGroup node from its old location in the
scene graph to the end of this group, in an atomic manner. Functionally, this
method is equivalent to the following lines:

branchGroup.detach();
this.addChild(branchGroup);

If either this Group or the specified BranchGroup is part of a live or compiled
scene graph, the appropriate capability bits must be set in the affected nodes.

Version 1.1 Alpha 01, February 27, 1998 39

4.2

40

BranchGroup Node GROUP NODE OBJECTS

public final Bounds setCollisionBounds(Bounds bounds)
public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object for a node.

public final void setAlternateCollisionTarget(boolean target)
public final boolean getAlternateCollisionTarget()

The set method causes this Group node to be reported as the collision target
when collision is being used and this node or any of its children is in a collision.
The default is false. This method tries to set the capability bit
Node.ENABLE_COLLISION_REPORTING. The get method returns the collision tar-

get state.

For collision with USE_ GEOMETRY set, the collision traverser will check the
geometry of all the Group node’'s leaf descendants. For collision with
USE_BOUNDS set, the collision traverser will check the bounds at this Group
node. In both cases, if there is a collision, this Group node will be reported as the
colliding object in the SceneGraphPath.

4.2 BranchGroup Node

A BranchGroup is the root of a subgraph of a scene that may be compiled as a
unit, attached to a virtual universe, or included as a child of a group node in
another subgraph. A subgraph, rooted by a BranchGroup node, can be thought of
as a compile unit. The following things may be done with BranchGroup.

* A BranchGroup may be compiled by calling dsmpile method. This
causes the entire subgraph to be compiled. If any BranchGroup nodes are
contained within the subgraph, they are compiled as well (along with their
descendants).

» A BranchGroup may be inserted into a virtual universe by attaching it to a
Locale. The entire subgraph is then said ttivee

A BranchGroup that is contained within another subgraph may be
reparented or detached at run time if the appropriate capabilities are set.
See Figure 4-2.

Note that if a BranchGroup is included in another subgraph, as a child of some
other group node, it may not be attached to a Locale.

Java 3D API Specification

GROUP NODE OBJECTS BranchGroup Node 4.2

Virtual Universe

Hi-Res Locale

BranchGroup Node

Figure 4-2 Altering the Scene Graph at Run Time

Constants
The BranchGroup class adds the following new constant.

public static final int ALLOW_DETACH

This flag, when enabled using thetCapability method, allows this Branch-
Group node to be detached from its parent group node. This capability flag is
enforced only when the node is part of a live or compiled scene graph.

Methods

The BranchGroup class defines the following methods.

public final void compile()

This method compiles the scene graph rooted at this BranchGroup and creates
and caches a newly compiled scene graph.

Version 1.1 Alpha 01, February 27, 1998 41

4.3

42

TransformGroup Node GROUP NODE OBJECTS

public final void detach(Q)

This method detaches the BranchGroup node from its parent.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is cali@dnlay
Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from #lr@ginalNode into the
current node. This method is called from theneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'siuplicateOnCloneTree value is used to determine whether

the NodeComponent should be duplicated in the new node or if just a reference
to the current node should be placed in the new node. This flag can be overridden
by setting theforceDuplicate parameter in theloneTree method totrue.

4.3 TransformGroup Node

The TransformGroup node specifies a single spatial transformation—via a
Transform3D object (see Section 7.1.27, “Transform3D Object”)—that can posi-
tion, orient, and scale all of its children.

The specified transformation must be affine. Further, if the TransformGroup node
is used as an ancestor of a ViewPlatform node in the scene graph, then the trans-
formation must be congruent—only rotations, translations, and uniform scales
are allowed in a direct path from a Locale to a ViewPlatform nodadArans-
formException (see Section D.1, “BadTransformException”) is thrown if an
attempt is made to specify an illegal transform.

Note: Even though arbitrary affine transformations are allowed, better
performance will result if all matrices within a branch graph are congruent—
containing only rotations, translation, amdiform scale.

The effects of transformations in the scene graph are cumulative. The concatena-
tion of the transformations of each TransformGroup in a direct path from the
Locale to a Leaf node defines a composite model transformation (CMT) that

Java 3D API Specification

GROUP NODE OBJECTS TransformGroup Node 4.3

takes points in that Leaf node’s local coordinates and transforms them into Vir-
tual World (Vworld) coordinates. This composite transformation is used to trans-
form points, normals, and distances into Vworld coordinates. Points are
transformed by the CMT. Normals are transformed by the inverse-transpose of
the CMT. Distances are transformed by the scale of the CMT. In the case of a
transformation containing a nonuniform scale or shear, the maximum scale value
in any direction is used. This ensures, for example, that a transformed bounding
sphere, which is specified as a point and a radius, continues to enclose all objects
that are also transformed using a nonuniform scale.

Constants

The TransformGroup class adds the following new flags.

public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

These flags, when enabled using sheCapability method, allow this node’s
Transform3D to be read or written. They are only used when the node is part of
a live or compiled scene graph.

Constructors

public TransformGroup()
public TransformGroup(Transform3D tl1)

These construct and initialize a new TransformGroup. The first form initializes
the node’s Transform3D to the identity transformation; the second form initial-
izes the node’s Transform3D to a copy of the specified transform.

Methods

The TransformGroup class defines the following methods.

public final void setTransform(Transform3D tl)

public final void getTransform(Transform3D tl)

These methods retrieve or set this node’s attached Transform3D object by copy-
ing the transform to or from the specified object.

public Node cloneNode(boolean forceDuplicate)

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

The first method creates a new instance of the node. This method is called by
cloneTree to duplicate the current node. The second method copies all the node

Version 1.1 Alpha 01, February 27, 1998 43

4.4

44

OrderedGroup Node GROUP NODE OBJECTS

information from theoriginalNode into the current node. This method is called
from thecloneNode method, which is in turn called by th@&oneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'suplicateOnCloneTree flag is used to determine whether the
NodeComponent should be duplicated in the new node or a reference to the cur-
rent node should be placed in the new node. This flag can be overridden by set-
ting theforceDuplicate parameter in theloneTree method totrue.

4.4 OrderedGroup Node

The OrderedGroup node guarantees that Java 3D will render its children in their
index order. Only the OrderedGroup node and its subclasses make any use of the
order of their children during rendering.

Methods

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is caliédnlay
Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from #lt@ginalNode into the
current node. This method is called from theneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'siuplicateOnCloneTree value is used to determine whether

the NodeComponent should be duplicated in the new node or if just a reference
to the current node should be placed in the new node. This flag can be overridden
by setting theforceDuplicate parameter in theloneTree method totrue.

4.5 DecalGroup Node

The DecalGroup node is a subclass of the OrderedGroup node. The DecalGroup
node is an ordered group node used for defining decal geometry on top of other
geometry. The DecalGroup node specifies that its children should be rendered in
index order and that they generate coplanar objects. Examples of this include
painted decals or text on surfaces and a checkerboard layered on top of a table.

Java 3D API Specification

GROUP NODE OBJECTS Switch Node 4.6

The first child, at index 0, defines the surface on top of which all other children
are rendered. The geometry of this child must encompass all other children; oth-
erwise, incorrect rendering may result. The polygons contained within each of
the children must be facing the same way. If the polygons defined by the first
child are front facing, then all other surfaces should be front facing. In this case,
the polygons are rendered in order. The renderer can use knowledge of the copla-
nar nature of the surfaces to avdibuffer collisions (for example, if the under-
lying implementation supports stenciling or polygon offset, then these techniques
may be employed). If the main surface is back facing, then all other surfaces
should be back facing and need not be rendered (even if back-face culling is dis-
abled).

Note that using the DecalGroup node does not guaranteg-khsfer collisions
are avoided. An implementation of Java 3D may fall back to treating DecalGroup
node as an ordinary OrderedGroup node.

Methods

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is cali@dnlay
Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from ¢hiéginalNode into the
current node. This method is called from tieneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'sluplicateOnCloneTree value is used to determine whether

the NodeComponent should be duplicated in the new node or if just a reference
to the current node should be placed in the new node. This flag can be overridden
by setting theforceDuplicate parameter in theloneTree method totrue.

4.6 Switch Node

The Switch group node allows a Java 3D application to choose dynamically

among a number of subgraphs. The Switch node contains an ordered list of chil-
dren and a switch value. The switch value determines which child or children

Java 3D will render. Note that the index order of children is only used for select-

ing the appropriate child or children—it does not specify rendering order.

Version 1.1 Alpha 01, February 27, 1998 45

4.6

46

Switch Node GROUP NODE OBJECTS
Constants

public static final int ALLOW_SWITCH_READ
public static final int ALLOW_SWITCH_WRITE

These flags, when enabled using tkeCapability method, allow reading and
writing of the values that specify the child-selection criteria. They are only used
when the node is part of a live or compiled scene graph.

public static final int CHILD_NONE
public static final int CHILD_ALL
public static final int CHILD_MASK

These values, when used in place of a non-negative integer index value, indicate
which children of the Switch node are selected for rendering. A value of
CHILD_NONE indicates that no children are rendered. A valueHafD_ALL indi-

cates that all children are rendered, effectively making this Switch node operate
as an ordinary Group node. A valueGafiLD_MASK indicates that thehi1dMask

BitSet is used to select the children that are rendered.

Constructors

public SwitchQ
public Switch(int whichChild)
public Switch(int whichChild, BitSet childMask)

These constructors initialize a new Switch node using the specified parameters.
The default values for those parameters not specified are as follows:

whichChild: CHILD _NONE
childMask: empty

Methods

The Switch node class defines the following methods.

public final void setWhichChild(int whichChild)
public final int getWhichChildQ

These methods access or modify the index of the child that the Switch object will
draw. The value may be a non-negative integer, indicating a specific child, or it
may be one of the following constant8ILD_NONE, CHILD_ALL, Or CHILD_MASK.

If the specified value is out of range, then no children are drawn.

Java 3D API Specification

GROUP NODE OBJECTS SharedGroup Node 4.7

public final void setChildMask(BitSet childMask)
public final BitSet getChildMask()

These methods access or modify the mask used to select the children that the
Switch object will draw when thehichChild parameter iHILD_MASK. This
parameter is ignored during rendering if it chChild parameter is a value
other thanCHILD_MASK.

public final Node currentChild()

This method returns the currently selected chilakhlifchChild is out of range,
or is set toCHILD_MASK, CHILD_ALL, or CHILD_NONE, thennul1l is returned.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is cali@dnlay
Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from ¢hi@ginalNode into the
current node. This method is called from theneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'sluplicateOnCloneTree value is used to determine whether

the NodeComponent should be duplicated in the new node or if just a reference
to the current node should be placed in the new node. This flag can be overridden
by setting theforceDuplicate parameter in theloneTree method totrue.

4.7 SharedGroup Node

A SharedGroup node provides a mechanism for sharing the same subgraph in
different parts of the tree via a Link node. See Section 6.1.1, “SharedGroup
Node,” for a description of this node.

Version 1.1 Alpha 01, February 27, 1998 47

CHAPTER5

Leaf Node Objeclts

L EAF nodes define atomic entities such as geometry, lights, and sounds. The
leaf nodes and their associated meanings follow.

5.1 Leaf Node

The Leaf node is an abstract class for all scene graph nodes that have no chil-
dren. Leaf nodes specify lights, geometry, and sounds; provide special linking
and instancing capabilities for sharing scene graphs; and provide a view platform
for positioning and orienting a view in the virtual world. Figure 5-1 shows the
Leaf node object hierarchy.

Constructors

public Leaf(Q

Constructs and initializes a new Leaf object.

Methods

The Leaf node object defines the following methods.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This method is called by theloneTree method (see Section 6.2, “Cloning Sub-
graphs”) after all nodes in the subgraph have been cloned. The user can query the
NodeReferenceTable object to determine if any nodes that the Leaf node refer-
ences have been duplicated by #HieneTree call and, if so, what the corre-
sponding Node is in the new subgraph. If a user extends a predefined Java 3D
object and adds a reference to another node, this method must be defined in order
to ensure proper operation of théoneTree method. The first statement in the

Version 1.1 Alpha 01, February 27, 1998 49

51

50

Leaf Node LEAF NODE OBJECTS

user's updateNodeReferences method must besuper.updateNodeRefer-
ences(referenceTable). For predefined Java 3D nodes, this method will be
implemented automatically.

The NodeReferenceTable object is passed togtigceNodeReferences method

and allows references from the old subgraph to be translated into references in
the cloned subgraph. See Section 6.2.5, “NodeReferenceTable Object,” for more
details.

public Node cloneTree(boolean forceDuplicate)

This method duplicates all nodes of the specified subgraph. For group nodes, the
node is first duplicated via a call tdoneNode and thencloneTree is called for

each child node. For leaf nodes, component data can either be duplicated or be
made a reference to the original data. Leaf noldseTree behavior is deter-
mined by theluplicateOnCloneTree flag found in every leaf node’s component
data class and by tHerceDuplicate parameter.

SceneGraphObject
Node
Leaf
Background
Behavior
Predefined behaviors
BoundingLeaf
Clip
Fog
ExponentialFog
LinearFog
Light
AmbientLight
DirectionalLight
PointLight
SpotLight
Link
Morph
Shape3D
Sound
BackgroundSound
PointSound
ConeSound
Soundscape
ViewPlatform

Figure 5-1 Leaf Node Hierarchy

Java 3D API Specification

LEAF NODE OBJECTS Shape3D Node 5.2

5.2 Shape3D Node

The Shape3D leaf node object specifies all geometric objects. It contains two
components: a reference to the shape’s geometry and its appearance component.
The Geometry object defines the shape’s geometric data. The Appearance object
specifies that object’s appearance attributes, including color, material, texture,
and so on. See Chapter 7, “Node Component Objects” for details of the Geome-
try and Appearance objects.

Constants

The Shape3D node object defines the following flags.

public static final int ALLOW_GEOMETRY_READ

public static final int ALLOW_GEOMETRY_WRITE

public static final int ALLOW_APPEARANCE_READ

public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_COLLISION_BOUNDS_WRITE
public static final int ALLOW_COLLISION_BOUNDS_READ

These flags, when enabled using tkeCapability method, allow reading and
writing of the Geometry and Appearance component objects and the collision
bounds, respectively. These capability flags are enforced only when the node is
part of a live or compiled scene graph.

Constructors

The Shape3D node object defines the following constructors.

public Shape3D(Geometry geometry, Appearance appearance)
public Shape3D(Geometry geometry)
public Shape3D()

The first form constructs and initializes a new Shape3D object with the specified
geometry and appearance components. The second form uses the specified
geometry and aull appearance component. The third form uses bailil &
geometry component anchall appearance component. If the geometry compo-
nent isnull, then no geometry is drawn. If the appearance componeniis

then default values are used for all appearance attributes.

Methods

The Shape3D node object defines the following methods.

Version 1.1 Alpha 01, February 27, 1998 51

52

52

Shape3D Node LEAF NODE OBJECTS

public final void setGeometry(Geometry geometry)
public final Geometry getGeometry()

These methods access or modify the Geometry component object associated with
this Shape3D node.

public final void setAppearance(Appearance appearance)

public final Appearance getAppearance()

These methods access or modify the Appearance component object associated
with this Shape3D node. Setting itrio11 results in default attribute use.

public final void setCollisionBounds(Bounds bounds)

public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounds for this node.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is cali@édnlay
Tree to duplicate the current nod€loneNode should be overridden by any user-
subclassed objects. All subclasses must have ¢hefeNode method consist of
the following lines:

public Node cloneNode(boolean forceDuplicate) {
UserSubClass usc = new UserSubClass();
usc.duplicateNode(this, forceDuplicate);
return usc;

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from #lr@ginalNode into the
current node. This method is called from theneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'duplicateOnCloneTree flag is used to determine whether the
NodeComponent should be duplicated in the new node or if just a reference to
the current node should be placed in the new node. This flag can be overridden
by setting theforceDuplicate parameter in theloneTree method totrue.

Java 3D API Specification

LEAF NODE OBJECTS BoundingLeaf Node 5.3

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This method is called by theloneTree method (see Section 6.2, “Cloning Sub-
graphs”) after all nodes in the subgraph have been cloned. The user can query the
NodeReferenceTable object to determine if any nodes that the leaf node refer-
ences have been duplicated by tHieneTree call and, if so, what the corre-
sponding node is in the new subgraph. If a user extends a predefined Java 3D
object and adds a reference to another node, this method must be defined in order
to ensure proper operation of theoneTree method. The first statement in the
user’'s updateNodeReferences method must besuper.updateNodeRefer-
ences(referenceTable). For predefined Java 3D nodes, this method will be
implemented automatically.

The NodeReferenceTable object is passed taghieteNodeReferences method

and allows references from the old subgraph to be translated into references in
the cloned subgraph. See Section 6.2.5, “NodeReferenceTable Object,” for more
details.

5.3 BoundingLeaf Node

The BoundingLeaf node defines a bounding region object that can be referenced
by other leaf nodes to define a region of influence (Fog and Light nodes), an acti-
vation region (Background, Clip, and Soundscape nodes), or a scheduling region
(Sound and Behavior nodes). The bounding region is defined in the local coordi-
nate system of the BoundingLeaf node. A reference to a BoundingLeaf node can
be used in place of a locally defined bounds object for any of the aforementioned
regions.

This allows an application to specify a bounding region in one coordinate system
(the local coordinate system of the BoundingLeaf node) other than the local
coordinate system of the node that references the bounds. For an example of how
this might be used, consider a closed room with a number of track lights. Each
light can move independent of the other lights and, as such, needs its own local
coordinate system. However, the bounding volume is used by all the lights in the
boundary of the room, which doesn’'t move when the lights move. In this exam-
ple, the BoundingLeaf node allows the bounding region to be defined in the local
coordinate system of the room, rather than in the local coordinate system of a
particular light. All lights can then share this single bounding volume.

Constants
The BoundingLeaf node object defines the following flags.

Version 1.1 Alpha 01, February 27, 1998 53

54

54

Background Node LEAF NODE OBJECTS

public static final int ALLOW_REGION_READ
public static final int ALLOW_REGION_WRITE

These flags, when enabled using tleCapability method, allow an applica-
tion to invoke methods that respectively read and write the bounding region
object.

Constructors

The BoundingLeaf node object defines the following constructors.

public BoundinglLeaf()
Public BoundinglLeaf(Bounds region)

The first form constructs a BoundingLeaf node with a unit sphere region object.
The second form constructs a BoundingLeaf node with the specified bounding
region.

Methods

public final void setRegion(Bounds region)
public final Bounds getRegion()

These methods set and retrieve the BoundingLeaf node’s bounding region.

5.4 Background Node

The Background leaf node defines either a solid background color or a back-
ground image that is used to fill the window at the beginning of each new frame.
It also specifies an application region in which this Background node is active. A
Background node is active when its application region intersects the
ViewPlatform’s activation volume. If multiple Background nodes are active, the
Background node that is “closest” to the eye will be used. If no Background
nodes are active, then the window is cleared to black.

Constants

The Background node object defines the following flags.

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_IMAGE_READ
public static final int ALLOW_IMAGE_WRITE
public static final int ALLOW_COLOR_READ

Java 3D API Specification

LEAF NODE OBJECTS Background Node 5.4

public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_GEOMETRY_READ
public static final int ALLOW_GEOMETRY_WRITE

These flags, when enabled using theCapability method, allow an applica-

tion to invoke methods that respectively read and write the application region, the
image, the color, and the background geometry. These capability flags are
enforced only when the node is part of a live or compiled scene graph.

Constructors

The Background node object defines the following constructors.

public Background()

public Background(Color3f color)

public Background(float r, float g, float b)
public Background(ImageComponent2D image)

The first form constructs a Background leaf node with a default color of black
(0.0, 0.0, 0.0). The next two forms construct a Background leaf node with the
specified color. The final form constructs a Background leaf node with the spec-
ified 2D image.

Methods

The Background node object defines the following methods.

public final void getColor(Color3f color)
public final void setColor(Color3f color)
public final void setColor(float r, float g, float b)

These three methods access or modify the background color.

public final ImageComponent2D getImage()

public final void setImage(ImageComponent2D qimage)

These two methods access or modify the background image. If the image is not
null then it is used in place of the color.

public final void setGeometry(BranchGroup branch)

public final BranchGroup getGeometry()

These two methods access or modify the Background geometrget@eome-
try method sets the background geometry to the specified BranchGroup node. If
non-null, this background geometry is drawn on top of the background color or

Version 1.1 Alpha 01, February 27, 1998 55

5.5

56

Clip Node LEAF NODE OBJECTS

image using a projection matrix that essentially puts the geometry at infinity. The
geometry should be pretessellated onto a unit sphere.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Background node’s application bounds.
This bounds is used as the application region when the application bounding leaf
is set tonu11. ThegetApplicationBounds method returns a copy of the associ-
ated bounds.

public final void setApplicationBoundinglLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundinglLeaf()

These two methods access or modify the Background node’s application bound-
ing leaf. When set to a value other than1, this bounding leaf overrides the
application bounds object and is used as the application region.

5.5 Clip Node

The Clip leaf node defines the far clipping plane used to clip objects in the vir-
tual universe. It also specifies an application region in which this Clip node is
active. A Clip node is active when its application region intersects the
ViewPlatform’s activation volume. If multiple Clip nodes are active, the Clip
node that is “closest” to the eye will be used. The back distance value specified
by this Clip node overrides the value specified in the View object. If no Clip
nodes are active, then the back clip distance is used from the View object.

Constants

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_BACK_DISTANCE_READ
public static final int ALLOW_BACK_DISTANCE_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-

tion to invoke methods that respectively read and write the application region and
the back distance. These capability flags are enforced only when the node is part
of a live or compiled scene graph.

Constructors

The Clip node object defines the following constructors.

Java 3D API Specification

LEAF NODE OBJECTS Fog Node 5.6

public Clip(double backDistance)
public ClipQ

The first constructor constructs a Clip leaf node with the rear clip plane at the
specified distance, in the local coordinate system, from the eye. The second con-
structor constructs a Clip leaf node with a default back clipping distance.

Methods

The Clip node object defines the following methods.

public final void setBackDistance(double backDistance)
public final double getBackDistance()

These methods access or modify the back clipping distances in the Clip node.
This distance specifies the back clipping plane in the local coordinate system of
the node.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Clip node’s application bounds. This
bounds is used as the application region when the application bounding leaf is
set tonu11. ThegetApplicationBounds method returns a copy of the associated
bounds.

public final void setApplicationBoundinglLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundinglLeaf()

These two methods access or modify the Clip node’s application bounding leaf.
When set to a value other thaumi 1, this bounding leaf overrides the application
bounds object and is used as the application region.

5.6 Fog Node

The Fog leaf node is an abstract class that defines a common set of attributes that
control fog, or depth cueing, in the scene. The Fog node includes a parameter
that specifies the fog color and a Bounds object that specifies the region of influ-
ence for the Fog node.

Objects whose bounding volumes intersect the Fog node’s region of influence
have fog applied to their color after lighting and texturing have been applied. The
Fog node also contains a list of Group nodes that indicates the hierarchical scope
of this fog. If the list of scoping nodes is empty, the fog urd@serse scopand

Version 1.1 Alpha 01, February 27, 1998 57

5.6

58

Fog Node LEAF NODE OBJECTS

will apply to all nodes in the virtual universe that are within the Fog node’s
region of influence.

If the regions of influence of multiple Fog nodes overlap, the Java 3D system

will choose a single set of fog parameters for those objects that lie in the inter-

section. This is done in an implementation-dependent manner, but in general, the
Fog node that is “closest” to the object is chosen.

Constants

The Fog node object defines the following flags.

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE

These flags, when enabled using tkeCapability method, allow an applica-
tion to invoke methods that respectively read the region of influence, write the
region of influence, read color, and write color. These capability flags are
enforced only when the node is part of a live or compiled scene graph.

Constructors

The Fog node object defines the following constructors.

public Fog()
public Fog(float r, float g, float b)
public Fog(Color3f color)

These constructors each construct a new Fog node. The first constructor uses
default values for all parameters. The remaining constructors use the specified

parameters and use defaults for those parameters not specified. Default values are
as follows:

color: black (0,0,0)

list of scoping nodesempty

influencingRegiorn empty
Methods

The Fog node object defines the following methods.

Java 3D API Specification

LEAF NODE OBJECTS ExponentialFog Node5.6.1

public final void setColor(float r, float g, float b)
public final void setColor(Color3f color)
public final void getColor(Color3f color)

These three methods access or modify the Fog node’s color. An application will
typically set this to the same value as the background color.

public final void setInfluencingBounds(Bounds region)
public final Bounds getInfluencingBounds()

These methods access or modify the Fog node’s influencing bounds. This bounds
is used as the region of influence when the influencing bounding leaf is set to
null. The Fog node operates on all objects that intersect its region of influence.
The getInfluencingBounds method returns a copy of the associated bounds.

public final void setInfluencingBoundingLeaf(BoundingLeaf region)
public final BoundinglLeaf getInfluencingBoundingLeaf()

These methods access or modify the Fog node’s influencing bounding leaf.
When set to a value other thaunl 1, this overrides the influencing bounds object
and is used as the region of influence.

public final void setScope(Group scope, int index)
public final Group getScope(int index)

public final void addScope(Group scope)

public final void insertScope(Group scope, int index)
public final void removeScope(int index)

public final int numScopes()

public final Enumeration getAll1Scopes()

These methods access or modify the Fog node’s hierarchical scope. By default,
Fog nodes are scoped only by their regions of influence. These methods allow
them to be further scoped by a Group node in the hierarchy. The hierarchical
scoping of a Fog node cannot be accessed or modified if the node is part of a live
or compiled scene graph.

5.6.1 ExponentialFog Node

The ExponentialFog leaf node extends the Fog leaf node by adding a fog density
that is used as the exponent of the fog equation. For more information on the fog
eguation, see Appendix E, “Equations.”

The density is defined in the local coordinate system of the node, but the actual
fog equation will ideally take place in eye coordinates.

Version 1.1 Alpha 01, February 27, 1998 59

5.6.2

60

LinearFog Node LEAF NODE OBJECTS

Constants

The ExponentialFog node object defines the following flags.

public static final int ALLOW_DENSITY_READ
public static final int ALLOW_DENSITY_WRITE

These flags, when enabled using tleCapability method, allow an applica-

tion to invoke methods that respectively read and write the density values. These
capability flags are enforced only when the node is part of a live or compiled
scene graph.

Constructors

The ExponentialFog node object defines the following constructors.

public ExponentialFog()

public ExponentialFog(float r, float g, float b)

public ExponentialFog(Color3f color)

public ExponentialFog(float r, float g, float b, float density)
public ExponentialFog(Color3f color, float density)

Each of these constructors creates a new ExponentialFog node. The first con-
structor uses default values for all parameters. The remaining constructors use
the specified parameters and use defaults for those parameters not specified.
Default values are as follows:

density: 1.0

Methods

The ExponentialFog node object defines the following methods.

public final void setDensity(float density)
public final float getDensity()

These two methods access or modify the density in the ExponentialFog object.

5.6.2 LinearFog Node

The LinearFog leaf node extends the Fog leaf node by adding a pair of distance
values, in Z, at which fog should start obscuring the scene and should maximally
obscure the scene.

Java 3D API Specification

LEAF NODE OBJECTS LinearFog Node 5.6.2

The front and back fog distances are defined in the local coordinate system of the
node, but the actual fog equation will ideally take place in eye coordinates. For
more information on the fog equation, see Appendix E, “Equations.”

Constants
The LinearFog node object defines the following flags.

public static final int ALLOW_DISTANCE_READ
public static final int ALLOW_DISTANCE_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-

tion to invoke methods that respectively read and write the distance values. These
capability flags are enforced only when the node is part of a live or compiled
scene graph.

Constructors

The LinearFog node object defines the following constructors.

public LinearFog()
public LinearFog(float r, float g, float b)
public LinearFog(Color3f color)

public LinearFog(float r, float g, float b, double frontDistance,
double backDistance)

public LinearFog(Color3f color, double frontDistance,
double backDistance)

These constructors each construct a new LinearFog node. The first constructor
uses default values for all parameters. The remaining constructors use the speci-
fied parameters and use defaults for those parameters not specified. Default val-
ues are as follows:

front distance: 0.1
back distance 1.0

Methods

The LinearFog node object defines the following methods.

public final void setFrontDistance(float frontDistance)
public final float getFrontDistance()

public final void setBackDistance(float backDistance)
public final float getBackDistance()

These four methods access or modify the front and back distances in the Linear-
Fog object. The front distance is the distance at which the fog starts obscuring

Version 1.1 Alpha 01, February 27, 1998 61

5.7

62

Light Node LEAF NODE OBJECTS

objects. The back distance is the distance at which the fog fully obscures objects.
Objects drawn closer than the front fog distance are not affected by fog. Objects
drawn farther than the back fog distance are drawn entirely in the fog color.

5.7 Light Node

The Light leaf node is an abstract class that defines the properties common to all
Light nodes. A light has associated with it a color, a state (whether it is on or
off), and a Bounds object that specifies the region of influence for the light.
Objects whose bounding volumes intersect the Light node’s region of influence
are lit by this light. The Light node also contains a Group node that indicates the
hierarchical scope of this light. If no scoping node is specified, then the light has
universe scopand applies to all nodes in the virtual universe that are within the
light's region of influence.

The Java 3D lighting model is based on a subset of the OpenGL lighting model.

Constants

The Light node object defines the following flags.

public static final int ALLOW_INFLUENCING_BOUNDS_READ
public static final int ALLOW_INFLUENCING_BOUNDS_WRITE
public static final int ALLOW_STATE_READ
public static final int ALLOW_STATE_WRITE
public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE

These flags, when enabled using $keCapability method, allow reading and
writing of the region of influence, the state, and the color, respectively. These
capability flags are enforced only when the node is part of a live or compiled
scene graph.

Constructors

The Light node object defines the following constructors.

public LightQ
public Light(Color3f color)
public Light(boolean 1ightOn, Color3f color)

These three constructors construct and initialize a light.

Java 3D API Specification

LEAF NODE OBJECTS Light Node 5.7

Methods

The Light node object defines the following methods.

public final void setEnable(boolean state)
public final boolean getEnable()

These methods access or modify the state of this light (that is, whether the light
is enabled).

public final void setColor(Color3f color)
public final void getColor(Color3f color)

These methods access or madify the current color of this light.

public final setInfluencingBounds(Bounds region)
public final Bounds getInfluencingBounds()

These methods access or modify the Light node’s influencing bounds. This
bounds is used as the region of influence when the influencing bounding leaf is
set tonu11. The Light node operates on all objects that intersect its region of
influence. ThegetInfluencingBounds method returns a copy of the associated
bounds.

public final setInfluencingBoundingLeaf(BoundingLeaf region)
public final BoundinglLeaf getInfluencingBoundingLeaf()

These methods access or modify the Light node’s influencing bounding leaf.
When set to a value other thaunl 1, this overrides the influencing bounds object
and is used as the region of influence.

public final void setScope(Group scope, int index)
public final Group getScope(int index)

public final void addScope(Group scope)

public final void insertScope(Group scope, int index)
public final void removeScope(int index)

public final int numScopes()

public final Enumeration getAll1Scopes()

These methods access or modify the Light node’s hierarchical scope. By default,
Light nodes are scoped only by their regions of influence bounds. These methods
allow them to be further scoped by a node in the hierarchy.

Version 1.1 Alpha 01, February 27, 1998 63

5.7.1 AmbientLight Node LEAF NODE OBJECTS

64

5.7.1 AmbientLight Node

An AmbientLight node defines an ambient light source. It has the same attributes
as the abstract Light node.

Constructors

The AmbientLight node defines the following constructors.

public AmbientLight()
public AmbientLight(Color3f color)
public AmbientLight(boolean 1ightOn, Color3f color)

The first constructor constructs and initializes a new AmbientLight node using
default parameters. The next two constructors construct and initialize a new
AmbientLight node using the specified parameters. ddier parameter is the
color of the light source. Theighton flag indicates whether this light is on or

off.

5.7.2 DirectionalLight Node

A DirectionalLight node defines an oriented light with an origin at infinity. It has
the same attributes as a Light node, with the addition of a direction vector to
specify the direction in which it shines.

Constants

The DirectionalLight node object defines the following flags.

public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using tkeCapability method, allow an applica-

tion to invoke methods that respectively read or write the associated direction.
These capability flags are enforced only when the node is part of a live or com-
piled scene graph.

The DirectionalLight’s direction vector is defined in the local coordinate system
of the node.

Constructors

The DirectionalLight node object defines the following constructors.

Java 3D API Specification

LEAF NODE OBJECTS PointLight Node 5.7.3

public DirectionalLight()
Constructs and initializes a directional light. The default direction of the light is
toward the screen, along the negatiaxis.

public DirectionalLight(Color3f color, Vector3f direction)

public DirectionalLight(boolean LightOn, Color3f color,
Vector3f direction)

These constructors construct and initialize a directional light with the parameters
provided.

Methods

The DirectionalLight node object defines the following methods.

public final void setDirection(Vector3f direction)
public final void setDirection(float x, float y, float 2z)
public final void getDirection(Vector3f direction)

These methods access or modify the light's current direction.

5.7.3 PointLight Node

A PointLight node defines a point light source located at some point in space and
radiating light in all directions (also known agasitional ligh). It has the same
attributes as a Light node, with the addition of location and attenuation parame-
ters.

The PointLight’s position is defined in the local coordinate system of the node.

Constants

The PointLight node object defines the following flags.

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_ATTENUATION_READ
public static final int ALLOW_ATTENUATION_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-

tion to invoke methods that respectively read position, write position, read atten-
uation parameters, and write attenuation parameters. These capability flags are
enforced only when the node is part of a live or compiled scene graph.

Version 1.1 Alpha 01, February 27, 1998 65

5.7.4 SpotLight Node LEAF NODE OBJECTS

66

Constructors

The PointLight Node defines the following constructors.

public PointLight()

Constructs and initializes a point light source with the default position at
0.0, 0.0, 0.0.

public PointLight(Color3f color, Point3f position,
Point3f attenuation)

public PointLight(boolean 1ightOn, Color3f color,
Point3f position, Point3f attenuation)

These constructors construct and initialize a point light with the specified param-
eters.

Methods

The PointLight node object defines the following methods.

public final void setPosition(Point3f position)
public final void setPosition(float x, float y, float z)
public final void getPosition(Point3f position)

These methods access or modify the point light's current position.

public final void setAttenuation(Point3f attenuation)

public final void setAttenuation(float constant, float linear,
float quadratic)

public final void getAttenuation(Point3f attenuation)

These methods access or modify the point light's current attenuation. The values
presented to the methods specify the coefficients of the attenuation polynomial,
with constant providing the constant termjinear providing the linear coeffi-
cient, andquadratic providing the quadratic coefficient.

5.7.4 SpotLight Node

A SpotLight node defines a point light source located at some point in space and
radiating in a specific direction. It has the same attributes as a PointLight node,
with the addition of a direction of radiation, a spread angle to specify its limits,
and a concentration factor that specifies how quickly the light intensity attenuates
as a function of the angle of radiation as measured from the direction of radia-
tion.

Java 3D API Specification

LEAF NODE OBJECTS SpotLight Node 5.7.4

Constants

The SpotLight node object defines the following flags.

public static final int ALLOW_SPREAD_ANGLE_READ
public static final int ALLOW_SPREAD_ANGLE_WRITE
public static final int ALLOW_CONCENTRATION_READ
public static final int ALLOW_CONCENTRATION_WRITE
public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-

tion to invoke methods that respectively read and write spread angle, concentra-
tion, and direction. These capability flags are enforced only when the node is
part of a live or compiled scene graph.

The SpotLight's direction vector and spread angle are defined in the local coordi-
nate system of the node.

Constructors

The SpotLight node object defines the following constructors.

public SpotLight()

Constructs and initializes a new spotlight with the default values.

public SpotLight(Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,
float concentration)

public SpotLight(boolean 1ightOn, Color3f color, Point3f position,
Point3f attenuation, Vector3f direction, float spreadAngle,
float concentration)

These construct and initialize a new spotlight with the parameters specified.

Methods
The SpotLight node object defines the following methods.

public final void setSpreadAngle(float spreadAngle)
public final float getSpreadAngle()

These methods access or modify the spread angle, in radians, of this spotlight.

Version 1.1 Alpha 01, February 27, 1998 67

5.8

68

Sound Node LEAF NODE OBJECTS

public final void setConcentration(float concentration)
public final float getConcentration()

These methods access or modify the concentration of this spotlight.

public final void setDirection(float x, float y, float z)
public final void setDirection(Vector3f direction)
public final void getDirection(Vector3f direction)

These methods access or modify the direction of this spotlight.

5.8 Sound Node

The Sound leaf node is an abstract class that defines the properties common to all
Sound nodes. A scene graph can contain multiple sounds. Each Sound node con-
tains a reference to the sound data, an amplitude scale factor, a release flag
denoting that the sound associated with this node is to play to the end when the
sound is disabled, the number of times the sound is to be repeated, a state
(whether the sound is on or off), a scheduling region, a priority, and a flag denot-
ing if the sound is to continue playing “silently” even while it is inactive. When-
ever the listener is within the Sound node’s scheduling bounds, the sound is
potentially audible.

Constants

The Sound object contains the following flags.

public static final int ALLOW_SOUND_DATA_READ

public static final int ALLOW_SOUND_DATA_WRITE
public static final int ALLOW_INITIAL_GAIN_READ
public static final int ALLOW_INITIAL_GAIN_WRITE
public static final int ALLOW_LOOP_READ

public static final int ALLOW_LOOP_WRITE

public static final int ALLOW_RELEASE_READ

public static final int ALLOW_RELEASE_WRITE

public static final int ALLOW_CONT_PLAY_READ

public static final int ALLOW_CONT_PLAY_WRITE

public static final int ALLOW_ENABLE_READ

public static final int ALLOW_ENABLE_WRITE

public static final int ALLOW_SCHEDULING_BOUNDS_READ
public static final int ALLOW_SCHEDULING_BOUNDS_WRITE
public static final int ALLOW_PRIORITY_READ

public static final int ALLOW_PRIORITY_WRITE

Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

public static final int ALLOW_DURATION_READ
public static final int ALLOW_CHANNELS_USED_READ
public static final int ALLOW_IS_PLAYING_READ
public static final int ALLOW_IS_READY_READ

These flags, when enabled using theCapability method, allow an applica-

tion to invoke methods that respectively read and write the sound data, the initial
gain information, the loop information, the release flag, the continuous play flag,
the sound on/off switch, the scheduling region, the prioritization value, the dura-
tion information, and the sound playing information. These capability flags are
enforced only when the node is part of a live or compiled scene graph.

public static final float NO_FILTER

This constant defines a floating point value that denotes that no filter value is set.
Filters are described in Section 5.8.3, “ConeSound Node.”

public static final int DURATION_UNKNOWN

This constant denotes that the sound’s duration could not be calculated. A fall-
back forgetburation of a non-cached sound.

Constructors

The Sound node object defines the following constructors.

public Sound(Q)

Constructs and initializes a new Sound node object that includes the following
defaults for its fields:

sound data null

initial gain: 1.0

loop: O

release flagfalse

continuous flag false

on switch false

scheduling region null (cannot be scheduled)
priority : 1.0

public Sound(MediaContainer soundData, float initialGain)

Constructs and initializes a new Sound node object using the provided data and
gain parameter values, and defaults for all other fields. This constructor implic-

itly loads the sound data associated with this node if the implementation uses
sound caching.

Version 1.1 Alpha 01, February 27, 1998 69

5.8

70

Sound Node LEAF NODE OBJECTS

public Sound(MediaContainer soundData, float initialGain,
int ToopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority)

Constructs and initializes a new Sound node object using the provided parameter
values.

Methods

The Sound node object defines the following methods.

public final void setSoundData(MediaContainer soundData)
public final MediaContainer getSoundData()

These methods provide a way to associate different types of audio data with a
Sound node. This data can be cached (buffered) or noncached (unbuffered or
streaming). If the AudioDevice has been attached to the PhysicalEnvironment,
the sound data is made ready to begin playing. Certain functionality cannot be
applied to true sreaming sound data: sound duration is unknown, looping is dis-
abled, and the sound cannot be restarted. Furthermore, depending on the imple-
mentation of the AudioDevice used, streaming, non-cached data may not be fully
spatialized.

public final void setInitialGain(float amplitude)
public final float getInitialGain(Q)

This gain is a scale factor that is applied to the sound data associated with this
sound source to increase or decrease its overall amplitude.

public final void setLoop(int ToopCount)
public final int getLoop()

Data for nonstreaming sound (such as a sound sample) can contain two loop
points marking a section of the data that is to be looped a specific number of
times. Thus, sound data can be divided into three segmentattadick (before

the begin loop point), theustain(between the begin and end loop points), and
the release(after the end loop point). If there are no loop begin and end points
defined as part of the sound data (say for Java Media Player types that do not
contain sound samples), then the begin loop point is set at the beginning of the
sound data, and the end loop point at the end of the sound data. If this is the case,
looping the sound means repeating the whole sound. However, these begin and
end loop points can be placed anywhere within the sound data, allowing a por-
tion in the middle of the sound to be looped.

A sound can be looped a specified number of times after it is activated and
before it is completed. The loop count value explicitly sets the number of times

Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

the sound is looped. Any non-negative number is a valid value. A value of 0
denotes that the looped section is not repeated, but is played only once. A value
of —1 denotes that the loop is repeated indefinitely.

Changing the loop count of a sound after the sound has been started will not
dynamically affect the loop count currently used by the sound playing. The new
loop count will be used the next time the sound is enabled.

public final void setReleaseEnable(boolean state)
public final boolean getReleaseEnable()

When a sound is disabled, its playback would normally stop immediately no
matter what part of the sound data was currently being played. By setting the
Release flag tarue for nodes with nonstreaming sound data, the sound is

allowed to play from its current position in the sound data to the end of the data
(without repeats), thus playing the release portion of the sound before stopping.

public final void setContinuousEnable(boolean state)
public final boolean getContinuousEnable()

For some applications, it's useful to turn a sound source “off” but to continue
“silently” playing the sound so that when it is turned back “on” the sound picks
up playing in the same location (over time) as it would have been if the sound
had never been disabled (turned off). Setting the continuous flagidacauses

the sound renderer to keep track of where (over time) the sound would be play-
ing even when the sound is disabled.

public final setSchedulingBounds(Bounds region)
public final Bounds getSchedulingBounds()

These two methods access or modify the Sound node’s scheduling bounds. This
bounds is used as the scheduling region when the scheduling bounding leaf is set
to null1. A sound is scheduled for activation when its scheduling region inter-
sects the ViewPlatform’s activation volume. TdwcSchedulingBounds method
returns a copy of the associated bounds.

public final void setSchedulingBoundinglLeaf(BoundingLeaf region)
public final BoundinglLeaf getSchedulingBoundinglLeaf()

These two methods access or modify the Sound node’s scheduling bounding leaf.
When set to a value other thaunl 1, this bounding leaf overrides the scheduling
bounds object and is used as the scheduling region.

Version 1.1 Alpha 01, February 27, 1998 71

5.8

72

Sound Node LEAF NODE OBJECTS

public final void setPriority(float ranking)
public final float getPriority(Q)

These methods access or modify the Sound node’s priority, which is used to rank
concurrently playing sounds in order of importance during playback. When more
sounds are started than the AudioDevice can handle, the Sound node with the
lowest priority ranking is deactivated. If a sound is deactivated (due to a sound
with a higher priority being started), it is automatically reactivated when
resources become available (for example, when a sound with a higher priority
finishes playing) or when the ordering of sound nodes is changed due to a change
in a Sound node’s priority.

Sounds with a lower priority than a sound that cannot be played due to a lack of
channels will be played. For example, assume we have eight channels available
for playing sounds. After ordering four sounds, we begin playing them in order,
checking if the number of channels required to play a given sound are actually
available before the sound is played. Furthermore, say the first sound needs three
channels to play, the second sound needs four channels, the third sound needs
three channels and the fourth sound needs only one channel. The first and sec-
onds sounds can be started because they require seven of the eight available
channels. The third sound cannot be audibly started because it requires three
channels and only one is still available. Consequently, the third sound starts play-
ing “silently.” The fourth sound can and will be started since it only requires one
channel. The third sound will be made audible when three channels become
available (i.e., when the first or second sound is finished playing).

Sounds given the same priority are ordered randomly. If the application wants a
specific ordering it must assign unique priorities to each sound.

Methods to determine what audio output resources are required for playback of a
Sound node on a particular AudioDevice and to determine the currently available
audio output resources are described in Chapter 11, “Audio Devices.”

public final void setEnable(boolean state)
public final boolean getEnable()

These two methods access or modify the playing state of this sound (that is,
whether the sound is enabled). When enabled, the sound source is started and
thus can potentially be heard, depending on its activation state, gain control
parameters, continuation state, and spatialization parameters. If the continuous
state istrue and the sound is not active, enabling the sound starts the sound
silently “playing” so that when the sound is activated, the sound is (potentially)
heard from somewhere in the middle of the sound data. The activation state can
change from active to inactive any number of times without stopping or starting

Java 3D API Specification

LEAF NODE OBJECTS Sound Node 5.8

the sound. To restart a sound at the beginning of its data, re-enable the sound by
calling setEnable with a value oftrue.

Setting the enable flag torue during construction will act as a request to start
the sound playing “as soon as it can” be started. This could be close to immedi-
ately in limited cases, but several conditions, detailed below, must be meet for a
sound to be ready to be played.

public final boolean 1isReady()

This method retrieves the sound’s “ready” status denoting that the sound is fully
prepared for playing (either audibly or silently) to begin. Sound data associated
with a Sound node, either during construction (when the MediaContainer is
passed into the constructor as a parameter) or by callirfgpundData(), it can

be prepared to begin playing only after the following conditions are satisfied:

* The Sound node has non-null sound data associated with it

* The Sound node is live

* There is an active View in the Universe

e There is an initialized AudioDevice associated with the PhysicalEnviron-
ment.

Depending on the type of MediaContainer the sound data is and on the imple-
mentation of the AudioDevice used, sound data preparation could consist of
opening, attaching, loading, or copying into memory the associated sound data.
The query methodjsReady()) returnstrue when the sound is fully prepro-
cessed so that it is playable (audibly if active, silently if not active).

public final boolean 1isPlaying()

A sound source will not be heard unless it is both enabled (turned on) and acti-
vated. While these two conditions are meet, the sound is potentially audible and
the methodisPT1aying() will return a status ofrue.

When the sound finishes playing its sound data (including all loops), it is implic-
itly disabled.

public final boolean isPlayingSilently()

This method returns the sound’s silent status. If a sound is enabled before it is
activated it is begun playing silently. If a sound is enabled then deactivated while
playing it continues playing silently. In both of these cas®3aying() returns

false but the methodsPlayingSilently() returnstrue.

Version 1.1 Alpha 01, February 27, 1998 73

5.8.1 BackgroundSound Node LEAF NODE OBJECTS

74

public final long getDuration()

This method returns the length of time (in milliseconds) that the sound media
associated with the sound source could run (including the number of times its
loop section is repeated) if it plays to completion. If the sound media type is
streaming, or if the sound is looped indefinitely, then a value of -1 (implying

infinite length) is returned.

public final int getNumberOfChannelsUsed()

When a sound is started it could use more than one channel on the selected
AudioDevice it is to be played on. This method returns the number of channels
(on the executing audio device) being used by this sound. The method returns 0
if sound is not playing.

5.8.1 BackgroundSound Node

A BackgroundSound node defines an unattenuated, nonspatialized sound source
that has no position or direction. It has the same attributes as a Sound node. This
type of sound is simply added to the sound mix without modification and is use-
ful for playing a mono or stereo music track, or an ambient sound effect. Unlike

a Background (visual) node, more than one BackgroundSound node can be
simultaneously enabled and active.

Constructors

The BackgroundSound node specifies the following constructor.

public BackgroundSound()

Constructs a BackgroundSound node object using the default parameters for
Sound nodes.

public BackgroundSound(MediaContainer soundData,
float initialGain)

public BackgroundSound(MediaContainer soundData,
float initialGain, int loopCount, boolean release,
boolean continuous, boolean enable, Bounds region,
float priority)

The first constructor constructs a new BackgroundSound node using only the
provided parameter values for the sound data and initial gain. The second con-
structor uses the provided parameter values for the sound data, initial gain, the
number of times the loop is looped, a flag denoting whether the sound data is
played to the end, a flag denoting whether the sound plays silently when dis-

Java 3D API Specification

LEAF NODE OBJECTS PointSound Node5.8.2

abled, whether sound is switched on or off, the sound activation region, and a
priority value denoting the playback priority ranking.

5.8.2 PointSound Node

The PointSound node defines a spatially located sound whose waves radiate uni-
formly in all directions from some point in space. It has the same attributes as a
Sound object, with the addition of a location and the specification of distance-
based gain attenuation for listener positions between an array of distances.

The sound’s amplitude is attenuated based on the distance between the listener
and the sound source position. A piecewise linear curve (defined in terms of
pairs consisting of a distance and a gain scale factor) specifies the gain scale fac-
tor slope.

The PointSound’s location and attenuation distances are defined in the local
coordinate system of the node.

Constants

The PointSound object contains the following flags.

public static final int ALLOW_POSITION_READ
public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_DISTANCE_GAIN_READ
public static final int ALLOW_DISTANCE_GAIN_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-

tion to invoke methods that respectively read and write the position and the dis-
tance gain array. These capability flags are enforced only when the node is part
of a live or compiled scene graph.

Constructors
The PointSound node object defines the following constructors.

public PointSound()

Constructs a PointSound node object that includes the defaults for a Sound
object plus the following defaults for its own fields:

Position vector. (0.0, 0.0, 0.0)
Distance gain attenuation null (no attenuation performed)

Version 1.1 Alpha 01, February 27, 1998 75

5.8.2 PointSound Node LEAF NODE OBJECTS

public PointSound(MediaContainer soundData, float initialGain,
Point3f position)

public PointSound(MediaContainer soundData, float initialGain,
float posX, float posY, float posZ)

Both of these constructors construct a PointSound node object using only the
provided parameter values for sound data, sample gain, and position. The
remaining fields are set to the default values specified earlier. The first form uses
vectors as input for its position. The second form uses individual float parameters
for the elements of the position vector.

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f distanceGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, Point2f distanceGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, float attenuationDistancel[],
float attenuationGain[])

public PointSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float attenuationDistance[],
float attenuationGain[])

These four constructors construct a PointSound node object using the provided
parameter values. The first and third forms use points as input for the position.
The second and fourth forms use individual float parameters for the elements of
the position. The first and second forms accept an array of Point2f for the dis-
tance attenuation values where each pair in the array contains a distance and a
gain scale factor. The third and fourth forms accept separate arrays for the com-
ponents of distance attenuation, namely, the distance and gain scale factors. See
the description for theetDistanceGain method, below, for details on how the
separate arrays are interpreted.

Methods

The PointSound node object defines the following methods.

76 Java 3D API Specification

LEAF NODE OBJECTS PointSound Node5.8.2

public final void setPosition(Point3f position)
public final void setPosition(float x, float y, float z)
public final void getPosition(Point3f position)

These methods set and retrieve the position in 3D space from which the sound
radiates.

public final void setDistanceGain(Point2f attenuation[])

public final void setDistanceGain(float distance[], float gain[])
public final int getDistanceGainLength()

public final void getDistanceGain(Point2f attenuation[])

public final void getDistanceGain(float distance[], float gain[])

These methods set and retrieve the sound’s distance attenuation. If this is not set,
no distance gain attenuation is performed (equivalent to using a gain scale factor
of 1.0 for all distances). See Figure 5-2. Gain scale factors are associated with

distances from the listener to the sound source via an array of distance and gain
scale factor pairs. The gain scale factor applied to the sound source is determined
by finding the range of valuesistance[i] anddistance[i+1] that includes

the current distance from the listener to the sound source, then linearly interpo-

lating the corresponding valugsin[i] andgain[i+1] by the same amount.

1.0

Scale Factor

0.0 T T T !
0 10 20 30

Distance (from listener
to sound source)

Figure 5-2 PointSound Distance Gain Attenuation

Version 1.1 Alpha 01, February 27, 1998 77

5.8.2

78

PointSound Node LEAF NODE OBJECTS

If the distance from the listener to the sound source is less than the first distance
in the array, the first gain scale factor is applied to the sound source. This creates
a spherical region around the listener within which all sound gain is uniformly
scaled by the first gain in the array.

If the distance from the listener to the sound source is greater than the last dis-
tance in the array, the last gain scale factor is applied to the sound source.

The first form ofsetDistanceGain takes these pairs of values as an array of
Point2f. The second form accepts two separate arrays for these valudssThe
tance andgainScale arrays should be of the same length. If gagénScale
array length is greater than théstance array length, thgainScale array ele-
ments beyond the length of tldéstance array are ignored. If thgainScale
array is shorter than theistance array, the lasigainScale array value is
repeated to fill an array of length equabitGtance array.

There are two methods fgetDistanceGain, one returning an array of points,
the other returning separate arrays for each attenuation component.

Distance elements in this array of Point2f are a monotonically increasing set of
floating-point numbers measured from the location of the sound source. Gain
scale factor elements in this list of pairs can be any positive floating-point num-
bers. While for most applications this list of gain scale factors will usually be
monotonically decreasing, they do not have to be.

Figure 5-2 shows a graphical representation of a distance gain attenuation list.
The values given for distance/gain pairs would be

((10.0, 1.0), (12.0, 0.9), (16.0, 0.5), (17.0, 0.3),
(20.0, 0.16), (24.0, 0.12), (28.0, 0.05), (30.0, 0.0))

Thus if the current distance from the listener to the sound source is 22 units, a
scale factor of 0.14 would be applied to the sound amplitude. If the current dis-
tance from the listener to the sound source is less than 10 units, the scale factor
of 1.0 would be applied to the sound amplitude. If the current distance from the
listener to the sound source is greater than 30 units, the scale factor of 0.0 would
be applied to the sound amplitude.

The getDistanceGainLength method returns the length of the distance gain
attenuation arrays. Arrays passed ipgaDistanceGain methods should all be
at least this size.

Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

5.8.3 ConeSound Node

The ConeSound node object defines a PointSound node whose sound source is
directed along a specific vector in space. A ConeSound source is attenuated by
gain scale factors and filters based on the angle between the vector from the
source to the listener, and the ConeSound’s direction vector. This attenuation is
either a single spherical distance gain attenuation (as for a general PointSound
source) or dual front and back distance gain attenuations defining elliptical atten-
uation volumes. The angular filter and the active AuralAttribute component filter
define what filtering is applied to the sound source.

This node has the same attributes as a PointSound node, with the addition of a
direction vector and an array of points that each contain an angular distance (in
radians), a gain scale factor, and a filter (which for now consists of a lowpass fil-
ter cutoff frequency). Similar to the definition of the distance gain array for
PointSounds, a piecewise linear curve (defined in terms of radians from the axis)
specifies the slope of these additional attenuation values.

Figure 5-3 shows an approximation of angular attenuation (disregarding distance
attenuation).

Constants

The ConeSound object contains the following flags.

public static final int ALLOW_DIRECTION_READ
public static final int ALLOW_DIRECTION_WRITE
public static final int ALLOW_ANGULAR_ATTENUATION_READ
public static final int ALLOW_ANGULAR_ATTENUATION_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-

tion to invoke methods that respectively read and write the direction and the
angular attenuation array. These capability flags are enforced only when the node
is part of a live or compiled scene graph.

Version 1.1 Alpha 01, February 27, 1998 79

5.8.3 ConeSound Node LEAF NODE OBJECTS

80

DistanceGain[0]

DistanceGain[1]

/

'« angularAttenuation[3]

'« angularAttenuation[0]

- Sound Direction (axis)

Anuated Values

Figure 5-3 ConeSound

Constructors

The ConeSound node object defines the following constructors.

public ConeSound()

Constructs a ConeSound node object that includes the defaults for a PointSound
object plus the following defaults for its own fields:

Direction vector: (0.0, 0.0, 1.0)
Back attenuation: null
Angular attenuation: ((0.0, 1.0), NO_FILTER7{2, 0.0, NO_FILTERY))

public ConeSound(MediaContainer soundData, float initialGain,
Point3f position, Vector3f direction)

public ConeSound(MediaContainer soundData, float initialGain,
float posX, float posY, float posZ, float dirX, float dirY,
float dirZ)

Both of these constructors construct a ConeSound node object using only the
provided parameter values for sound, overall initial gain, position, and direction.
The remaining fields are set to the default values listed earlier. The first form
uses points as input for its position and direction. The second form uses individ-
ual float parameters for the elements of the position and direction vectors.

Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

public ConeSound(MediaContainer soundData, float initialGain,
int ToopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f frontDistanceAttenuation[],
Point2f backDistanceAttenuation[], Vector3f direction)

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float frontDistancel[],
float frontDistanceGain[], float backDistancel[],
float backDistanceGain[], float dirX, float dirY,
float dirZ)

These constructors construct a ConeSound node object using the provided
parameter values. The first form uses points or vectors as input for its position,
direction, and front/back distance attenuation arrays. The second form uses indi-
vidual float parameters for the elements of the position, direction, and two dis-

tance attenuation arrays.

Unlike the single distance gain attenuation array for PointSounds, which define
spherical areas about the sound source between which gains are linearly interpo-
lated, this directed ConeSound can have two distance gain attenuation arrays that
define ellipsoidal attenuation areas. See #eeDistanceGain PointSound
method for details on how the separatetance anddistanceGain arrays are
interpreted.

The ConeSound’s direction vector and angular measurements are defined in the
local coordinate system of the node.

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f distanceAttenuation[],
Vector3f direction, Point3f angularAttenuation[])

public ConeSound(MediaContainer soundData, float initialGain,
int ToopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority, float posX,
float posY, float posZ, float distance[],
float distanceGain[], float dirX, float dirY, float dirZz,
float angle[], float angularGain[],
float frequencyCutoff[])

These constructors construct a ConeSound node object using the provided
parameter values, which include a single spherical distance attenuation array.
The first form uses points and vectors as input for its position, direction, single
spherical distanceAttenuation array, andangularAttenuation array. The
second form uses individual float parameters for the elements of the position,
direction,distanceAttenuation array, ancthngularAttenuation array.

Version 1.1 Alpha 01, February 27, 1998 81

5.8.3

82

ConeSound Node LEAF NODE OBJECTS

The first form accepts arrays of points for the distance attenuation and angular
values. Each Point2f in thié stanceAttenuation array contains a distance and

a gain scale factor. Each Point3f in reyularAttenuation array contains an
angular distance, a gain scale factor, and a filtering value (which is currently
defined as a simple cutoff frequency).

The second form accepts separate arrays for the distance and gain scale factor
components of distance attenuation, and separate arrays for the angular distance,
angular gain, and filtering components of angular attenuation. Sese tibres -
tanceGain PointSound method for details on how the sepatateance and
distanceGain arrays are interpreted. See thexAngularAttenuation Cone-

Sound method for details on how the sepasat@larDistance, angularGain,
andfilter arrays are interpreted.

public ConeSound(MediaContainer soundData, float initialGain,
int loopCount, boolean release, boolean continuous,
boolean enable, Bounds region, float priority,
Point3f position, Point2f frontDistanceAttenuation[],
Point2f backDistanceAttenuation[], Vector3f direction,
Point3f angularAttenuation[])

public ConeSound(MediaContainer soundData, float initialGain,
int ToopCount, boolean release, float priority,
boolean continuous, boolean enable, Bounds region,
float posX, float posY, float posZ, float frontDistance[],
float frontDistanceGain[], float backDistance[],
float backDistanceGain[], float dirX, float dirY,
float dirZ, float angle[], float angularGain[],
float frequencyCutoff[])

These constructors construct a ConeSound node object using the provided
parameter values, which include two distance attenuation arrays defining ellipti-
cal distance attenuation regions. The first form uses points and vectors as input
for its position, direction, and attenuation arrays. The second form uses individ-
ual float parameters for these same elements.

These two constructors differ from the previous two constructors only in the def-
inition of the two distinct front and back distance attenuation arrays. See the
setDistanceGain ConeSound method for details on how the separateance

and distanceGain arrays are interpreted. See thetAngularAttenuation
ConeSound method for details on how the separafi€l arDistance, angular-

Gain, andfilter arrays are interpreted.

Methods

The ConeSound node object defines the following methods.

Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

public final void setDistanceGain(Point2f frontAttenuation[],
Point2f backAttenuation[])

public final void setDistanceGain(float frontDistance[],
float frontGain[], float backDistance[], float backGain[])

public final void setBackDistanceGain(Point2f attenuation[])
public final void setBackDistanceGain(float distance[],
float gain[])
public final void getDistanceGain(Point2f frontAttenuation[],
Point2f backAttenuation[])

public final void getDistanceGain(float frontDistance[],
float frontGain[], float backDistance[], float backGain[])

These methods set and retrieve the ConeSound’s two distance attenuation arrays.
If these are not set, no distance gain attenuation is performed (equivalent to using
a distance gain of 1.0 for all distances). If only one distance attenuation array is
set, spherical attenuation is assumed (see Figure 5-4). If both a front and back
distance attenuation are set, elliptical attenuation regions are defined (see
Figure 5-5). Use the PointSourdtDistanceGain method to set the front dis-
tance attenuation array separately from the back distance attenuation array.

Listener

Angular Distances

]

AN

Distances

Sound
Source

Figure 5-4 ConeSound with a Single Distance Gain Attenuation Array

A front distance attenuation array defines monotonically increasing distances
from the sound source origin along the position direction vector. A back distance
attenuation array (if given) defines monotonically increasing distances from the
sound source origin along the negative direction vector. The two arrays must be
of the same length. TheckDistance[i] gain values must be less than or equal

to frontDistance[i] gain values.

Version 1.1 Alpha 01, February 27, 1998 83

5.8.3 ConeSound Node LEAF NODE OBJECTS

84

Listener

Back Distances Front Distances

Figure 5-5 ConeSound with Two Distance Gain Attenuation Arrays

Gain scale factors are associated with distances from the listener to the sound
source via an array of distance and gain scale factor pairs (see Figure 5-2). The
gain scale factor applied to the sound source is the linear interpolated gain value
within the distance value range that includes the current distance from the lis-

tener to the sound source.

ThegetDistanceGainLength method (defined in PointSound) returns the length
of all distance gain attenuation arrays, including the back distance gain arrays.
Arrays passed into getBackDistanceGain methods should all be at least this size.

public final void setDirection(Vector3f direction)
public final void setDirection(float x, float y, float 2z)
public final void getDirection(Vector3f direction)

This value is the sound source’s direction vector. It is the axis from which angu-
lar distance is measured.

public final void setAngularAttenuation(Point2f attenuation[])
public final void setAngularAttenuation(Point3f attenuation[])

public final void setAngularAttenuation(float angle[],
float angularGain[], float frequencyCutoff[])

public final int getAngularAttenuationLength()
public final void getAngularAttenuation(Point3f attenuation[])

public final void getAngularAttenuation(float angle[],
float angularGain[], float frequencyCutoff[])

These methods set and retrieve the sound’s angular gain and filter attenuation
arrays. If these are not set, no angular gain attenuation or filtering is performed
(equivalent to using an angular gain scale factor of 1.0 and an angular filter of
NO_FILTER for all distances). This attenuation is defined as a triple of angular
distance, gain scale factor, and filter values. The distance is measured as the
angle in radians between the ConeSound’s direction vector and the vector from

Java 3D API Specification

LEAF NODE OBJECTS ConeSound Node5.8.3

the sound source position to the listener. Both the gain scale factor and filter
applied to the sound source are the linear interpolation of values within the dis-
tance value range that includes the angular distance from the sound source axis.

If the angular distance from the listener-sound-position vector and the sound’s
direction vector is less than the first distance in the array, the first gain scale fac-
tor and first filter are applied to the sound source. This creates a conical region
around the listener within which the sound is uniformly attenuated by the first
gain and the first filter in the array.

If the distance from the listener-sound-position vector and the sound’s direction
vector is greater than the last distance in the array, the last gain scale factor and
last filter are applied to the sound source.

Distance elements in this array of points are a monotonically increasing set of
floating point numbers measured from Oteadians. Gain scale factor elements

in this list of points can be any positive floating-point numbers. While for most

applications this list of gain scale factors will usually be monotonically decreas-
ing, they do not have to be. The filter (for now) is a single simple frequency cut-
off value.

In the first form ofsetAngularAttenuation, only the angular distance and
angular gain scale factor pairs are given. The filter values for these tuples are
implicitly set toNO_FILTER. In the second form afetAngularAttenuation, an

array of all three values is supplied.

The third form ofsetAngularAttenuation accepts three separate arrays for
these angular attenuation values. These arrays should be of the same length. If
the angularGain or filtering array length is greater than theyularDistance

array length, the array elements beyond the length afnin€ arDistance array

are ignored. If theangularGain or filtering array is shorter than thengu-
larDistance array, the last value of the short array is repeated to fill an array of
length equal to thangularDistance array.

The getAngularAttenuationArrayLength method returns the length of the
angular attenuation arrays. Arrays passeddatdngularAttenuation methods
should all be at least this size.

There are two methods fgetAngularAttenuation, one returning an array of
points, the other returning separate arrays for each attenuation component.

Figure 5-3 shows an example of an angular attenuation defining four points of
the form (radiant distance, gain scale factor, cutoff filter frequency):

((0.12, 0.8, NO_FILTER), (0.26, 0.6, 18000.0), (0.32, 0.4, 15000.0),

Version 1.1 Alpha 01, February 27, 1998 85

59

86

Soundscape Node LEAF NODE OBJECTS

(0.40, 0.2, 11000.0))

5.9 Soundscape Node

The Soundscape leaf node defines the attributes that characterize the listener’s
aural environment. This node defines an application region and an associated
aural attribute component object that controls reverberation and atmospheric
properties that affect sound source rendering. (Aural attributes are described in
Section 7.1.15, “AuralAttributes Object.”) Multiple Soundscape nodes can be
included in a single scene graph.

The Soundscape application region, different from a Sound node’s scheduling
region, is used to select which Soundscape (and thus which aural attribute object)
is to be applied to the sounds being rendered. This selection is based on the posi-
tion of the ViewPlatform (the “listener”), not the position of the sound.

It will be common for multiple Soundscape regions to be contained within a
scene graph. Figure 5-6 shows application regions for two Soundscape nodes: a
region with a large open area on the right, and a smaller, more constricted, less
reverberant area on the left.

Application Region 1 Application Region 2

Figure 5-6 Multiple Soundscape Application Regions
The reverberation attributes for these two regions could be set to represent their

physical differences so that active sounds are rendered differently depending on
which region the listener is in.

Java 3D API Specification

LEAF NODE OBJECTS Soundscape Node 5.9

Constants

The Soundscape node object defines the following flags.

public static final int ALLOW_APPLICATION_BOUNDS_READ
public static final int ALLOW_APPLICATION_BOUNDS_WRITE
public static final int ALLOW_ATTRIBUTES_READ
public static final int ALLOW_ATTRIBUTES_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-

tion to invoke methods that respectively read and write the application region and
the aural attributes. These capability flags are enforced only when the node is
part of a live or compiled scene graph.

Constructors

The Soundscape node object defines the following constructors.

public Soundscape()

Constructs a Soundscape node object that includes the following defaults for its
elements:

application region: null (no active region)
aural attributes: null (uses default aural attributes)

public Soundscape(Bounds region, AuralAttributes attributes)

This method constructs a Soundscape node object using the specified application
region and aural attributes.

Methods

The Soundscape node object defines the following methods.

public final void setApplicationBounds(Bounds region)
public final Bounds getApplicationBounds()

These two methods access or modify the Soundscape node’s application bounds.
This bounds is used as the application region when the application bounding leaf
is set tonu11. The aural attributes associated with this Soundscape are used to
render the active sounds when this application region intersects the
ViewPlatform’s activation volume. ThegetApplicationBounds method returns

a copy of the associated bounds.

Version 1.1 Alpha 01, February 27, 1998 87

5.10

88

ViewPlatform Node LEAF NODE OBJECTS

public final void setApplicationBoundingLeaf(BoundingLeaf region)
public final BoundingLeaf getApplicationBoundinglLeaf()

These two methods access or modify the Soundscape node’s application bound-
ing leaf. When set to a value other than1, this bounding leaf overrides the
application bounds object and is used as the application region.

public final void setAuralAttributes(AuralAttributes attributes)
public final AuralAttributes getAuralAttributes()

These two methods access or modify the aural attributes of this Soundscape. Set-
ting it tonu11 results in default attribute use.

5.10 ViewPlatform Node

The ViewPlatform node object defines a viewing platform that is referenced by a
View object. The location, orientation, and scale of the composite transforms in
the scene graph from the root to the ViewPlatform specify where the viewpoint is
located and in which direction it is pointing. A viewer navigates through the vir-
tual universe by changing the transform in the scene graph hierarchy above the
ViewPlatform.

Constants

The ViewPlatform node object defines the following flags.

public static final int ALLOW_POLICY_READ
public static final int ALLOW_POLICY_WRITE

These flags, when enabled using tleeCapability method, allow an applica-

tion to invoke methods that respectively read and write the view attach policy.
These capability flags are enforced only when the node is part of a live or com-
piled scene graph.

Methods

The ViewPlatform node object defines the following methods:

public final void setActivationRadius(float activationRadius)
public final float getActivationRadius()

The activation radius defines an activation volume surrounding the center of the
ViewPlatform. This activation volume intersects with the scheduling regions and
application regions of other leaf node objects to determine which of those objects
may affect rendering.

Java 3D API Specification

LEAF NODE OBJECTS Morph Node 5.12

Different leaf objects interact with the ViewPlatform’s activation volume differ-
ently. The Background, Clip, and Soundscape leaf objects each define a set of
attributes and an application region in which those attributes are applied. If more
than one node of a given type (Background, Clip, or Soundscape) intersects the
ViewPlatform’s activation volume, the “most appropriate” node is selected.

Sound leaf objects begin playing their associated sounds when their scheduling
region intersects a ViewPlatform’'s activation volume. Multiple sounds may be
active at the same time.

Behavior objects act somewhat differently. Those Behavior objects with schedul-
ing regions that intersect a ViewPlatform’s activation volume become candidates
for scheduling. Effectively, a ViewPlatform’s activation volume becomes an
additional qualifier on the scheduling of all Behavior objects. See Chapter 9,
“Behaviors and Interpolators,” for more details.

public final void setViewAttachPolicy(int policy)
public final int getViewAttachPolicy()

The view attach policy determines how Java 3D places the user’s virtual eye
point as a function of head position. See Section 8.4.3, “View Attach Policy,” for
details.

5.11 Behavior Node

The Behavior leaf node allows an application to manipulate a scene graph at run
time. Behavior is an abstract class that defines properties common to all Behav-
ior objects in Java 3D. There are several predefined behaviors that are subclasses
of Behavior. Additionally, a Behavior leaf node may be subclassed by the user.
Behaviors are described in Chapter 9, “Behaviors and Interpolators.”

5.12 Morph Node

The Morph leaf node permits an application to morph between multiple Geome-
tryArrays. The Morph node contains a single Appearance node, an array of
GeometryArray objects, and an array of corresponding weights. The Morph node
combines these GeometryArrays into an aggregate shape based on each Geome-
tryArray’s corresponding weight. Typically, Behavior nodes will modify the
weights to achieve various morphing effects.

Version 1.1 Alpha 01, February 27, 1998 89

Constants

The Morph node specifies the following flags.

public static final int ALLOW_GEOMETRY_ARRAY_READ
public static final int ALLOW_GEOMETRY_ARRAY_WRITE
public static final int ALLOW_APPEARANCE_READ

public static final int ALLOW_APPEARANCE_WRITE
public static final int ALLOW_WEIGHTS_READ

public static final int ALLOW_WEIGHTS_WRITE

public static final int ALLOW_COLLISION_BOUNDS_READ
public static final int ALLOW_COLLISION_BOUNDS_WRITE

These flags, when enabled using tkeCapability method, allow an applica-
tion to invoke methods that respectively read and write the GeometryArrays,
appearance, weights, and collision Bounds components.

Constructors

The Morph node specifies the following constructors.

public Morph(GeometryArray geometryArrays[])

public Morph(GeometryArray geometryArrays[],
Appearance appearance)

The first form constructs and initializes a new Morph leaf node with the speci-
fied array of GeometryArray objects andwd1 Appearance object. The second
form uses the specified array of GeometryArray objects and the specified
Appearance object. The length of tewmetryArrays parameter determines the
number of weighted geometry arrays in this Morph nodgedfhetryArrays is

null, then aNul1PointerException is thrown. If the Appearance component is
null, then default values are used for all appearance attributes.

Methods

The Morph node specifies the following methods.

public final void setGeometryArrays(GeometryArray
geometryArrays[])

This method sets the array of GeometryArray objects in the Morph node. Each
GeometryArray component specifies colors, normals, and texture coordinates.
The length of thgeometryArrays parameter must be equal to the length of the
array with which this Morph node was created; otherwise,I&tegal-
ArgumentException is thrown.

LEAF NODE OBJECTS Link Node 5.13

public final GeometryArray getGeometryArray(int index)

This method retrieves a single geometry array from the Morph nodeinthe
parameter specifies which array is returned.

public final void setAppearance(Appearance appearance)
public final Appearance getAppearance()

These methods set and retrieve the Appearance component of this Morph node.
The Appearance component specifies material, texture, texture environment,
transparency, or other rendering parameters. Settingnit1tb results in default
attribute use.

public void setWeights(double weights[])
public double[] getWeights()

These methods set and retrieve the morph weight vector component of this
Morph node. The Morph node “weights” the corresponding GeometryArray by
the amount specified. The length of the ghts parameter must be equal to the
length of the array with which this Morph node was created; otherwigg,1an
galArgumentException is thrown.

public final void setCollisionBounds(Bounds bounds)
public final Bounds getCollisionBounds()

These methods set and retrieve the collision bounding object of this node.

5.13 Link Node

The Link leaf node allows an application to reference a shared subgroup, rooted
by a SharedGroup node, from within a branch of the scene graph. Any number of
Link nodes can refer to the same SharedGroup node. See Section 6.1.2, “Link
Leaf Node,” for a description of this node.

Version 1.1 Alpha 01, February 27, 1998 91

CHAPTER6

Reusing Scene Graphs

\]AVA 3D provides application programmers with two different means for reus-

ing scene graphs. First, multiple scene graphs can share a common subgraph.
Second, the node hierarchy of a common subgraph can be cloned, while still
sharing large component objects such as geometry and texture objects. In the first
case, changes in the shared subgraph affect all scene graphs that refer to the
shared subgraph. In the second case, each instance is unique—a change in one
instance does not affect any other instance.

6.1 Sharing Subgraphs

An application that wishes to share a subgraph from multiple places in a scene
graph must do so through the use of the Link leaf node and an associated
SharedGroup node. The SharedGroup node serves as the root of the shared sub-
graph. The Link leaf node refers to the SharedGroup node. It does not incorpo-
rate the shared scene graph directly into its scene graph.

6.1.1 SharedGroup Node

A SharedGroup node allows multiple Link leaf nodes to share its subgraph (see
Figure 6-1) according to the following semantics:

* A SharedGroup may be referenced by one or more Link leaf nodes. Any
runtime changes to a node or component object in this shared subgraph
affect all graphs that refer to this subgraph.

e A SharedGroup may be compiled by callingdéspile method prior to
being referenced by any Link leaf nodes.

e Only Link leaf nodes may refer to SharedGroup nodes. A SharedGroup
node cannot have parents or be attached to a Locale.

Version 1.1 Alpha 01, February 27, 1998 93

6.1.1 SharedGroup Node REUSING SCENE GRAPHS

94

Virtual Universe

Hi-Res Locale

BranchGroup Nodes

Link Nodes

SharedGroup Node

Figure 6-1 Sharing a Subgraph

A shared subgraph may contain any group node, except an embedded
SharedGroup node (SharedGroup nodes cannot have parents). However, only the
following leaf nodes may appear in a shared subgraph:

Light
Link
Morph
Shape
Sound

An ITlegalSharingException is thrown if any of the following leaf nodes
appear in a shared subgraph:

Java 3D API Specification

REUSING SCENE GRAPHS Link Leaf Node6.1.2

* Background
e BoundingLeaf

* Behavior
 Clip
 Fog

* Soundscape
* ViewPlatform

Methods

The SharedGroup node defines the following methods.

public final void compile()

This method compiles the source SharedGroup associated with this object and
creates and caches a newly compiled scene graph.

public Node cloneNode(boolean forceDuplicate)

This method creates a new instance of the node. This routine is cali@édnlay
Tree to duplicate the current node.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information from #li@¢ginalNode into the
current node. This method is called from theneNode method, which is in turn
called by thecloneTree method.

For each NodeComponent object contained by the object being duplicated, the
NodeComponent'sluplicateOnCloneTree value is used to determine whether

the NodeComponent should be duplicated in the new node or if just a reference
to the current node should be placed in the new node. This flag can be overridden
by setting theforceDuplicate parameter in theloneTree method totrue.

6.1.2 Link Leaf Node

The Link leaf node allows an application to reference a shared graph, rooted by
a SharedGroup node, from within a branch graph or another shared graph. See
Figure 6-1. Any number of Link nodes can refer to the same SharedGroup node.

Version 1.1 Alpha 01, February 27, 1998 95

6.2

96

Cloning Subgraphs REUSING SCENE GRAPHS

Constants

The Link node object defines two flags.

public static final int ALLOW_SHARED_GROUP_READ
public static final int ALLOW_SHARED_GROUP_WRITE

These flags, when enabled using tleCapability method, allow an applica-

tion to invoke methods that respectively read and write the SharedGroup node
pointed to by this Link node. These capability flags are enforced only when the
node is part of a live or compiled scene graph.

Constructors

The Link node object defines two constructors.

public Link(Q)
public Link(SharedGroup sharedGroup)

The first form constructs a Link node object that does not yet point to a
SharedGroup node. The second form constructs a Link node object that points to
the specified SharedGroup node.

Methods

The Link node object defines two methods.

public final void setSharedGroup(SharedGroup sharedGroup)
public final SharedGroup getSharedGroup()

These methods access and modify the SharedGroup node associated with this
Link leaf node.

6.2 Cloning Subgraphs

An application developer may wish to reuse a common subgraph without com-
pletely sharing that subgraph. For example, the developer may wish to create a
parking lot scene consisting of multiple cars, each with a different color. The
developer might define three basic types of cars, such as convertible, truck, and
sedan. To create the parking lot scene, the application will instantiate each type
of car several times. Then the application can change the color of the various
instances to create more variety in the scene. Unlike shared subgraphs, each
instance is a separate copy of the scene graph definition: Changes to one instance
do not affect any other instance.

Java 3D API Specification

REUSING SCENE GRAPHS References to Node Component Objécf3. 1

Java 3D provides the&loneTree method for this purpose. TheloneTree
method allows the programmer to change some attributes (NodeComponent
objects) in a scene graph, while at the same time sharing the majority of the
scene graph data—the geometry.

Methods

public Node cloneTree()
public Node cloneTree(boolean forceDuplicate)

public Node cloneTree(boolean forceDuplicate,
boolean allowDanglingReferences)

These methods start the cloning of the subgraph. The optionadDuplicate
parameter, when set toue, causes leaf NodeComponent objects to ignore their
duplicateOnCloneTree value and always be duplicated (see Section 6.2.1,
“References to Node Component Objects”). Tdi@owDanglingReferences
parameter, when set torue, will permit the cloning of a subgraph even when a
dangling reference is generated (see Section 6.2.3, “Dangling References”). Set-
ting forceDuplicate andallowDanglingReferences to false is the equivalent

of calling cloneTree without any parameters. This will result in NodeCompo-
nent objects being either duplicated or referenced in the cloned node, based on
their duplicateOnCloneTree value. ADanglingReferenceException will be

thrown if a dangling reference is encountered.

When thecloneTree method is called on a node, that node is duplicated along
with its entire internal state. If the node is a Group nadeneTree is then
called on each of the node’s children.

The cloneTree method cannot be called on a live or compiled scene graph.

6.2.1 References to Node Component Objects

WhencloneTree reaches a leaf node, there are two possible actions for handling

the leaf node’s NodeComponent objects (such as Material, Texture, and so forth).
First, the cloned leaf node can reference the original leaf node’s NodeComponent
object—the NodeComponent object itself is not duplicated. Since the cloned leaf
node shares the NodeComponent object with the original leaf node, changing the
data in the NodeComponent object will effect a change in both nodes. This mode
would also be used for objects that are read-only at run time.

Alternatively, the NodeComponent object can be duplicated, in which case the
new leaf node would reference the duplicated object. This mode allows data ref-
erenced by the newly created leaf node to be modified without that modification
affecting the original leaf node.

Version 1.1 Alpha 01, February 27, 1998 97

6.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

98

Figure 6-2 shows two instances of NodeComponent objects that are shared and
one NodeComponent element that is duplicated for the cloned subgraph.

)
N A
AN
¥ 'Y Group Nodes
) [
cloneTree ™ A N
X\ X Leaf Nodes
Lf Lf Lf LN AN AN
L — A L _— A L 7‘ A
|
Y / \ | / |
D o CoO : (| NodeComponents
\
\

Figure 6-2 Referenced and Duplicated NodeComponent Objects

Methods

public final void setDuplicateOnCloneTree(boolean)
public final void getDuplicateOnCloneTree()

These methods set a flag that controls whether a NodeComponent object is dupli-
cated or referenced on a calldtoneTree. By default this flag isalse, mean-

ing that the NodeComponent object will not be duplicated on a call to
cloneTree—newly created leaf nodes will refer to the original NodeComponent
object instead.

If the cToneTree method is called with th€orceDuplicate parameter set to
true, the duplicateOnCloneTree flag is ignored and the entire scene graph is
duplicated.

6.2.2 References to Other Scene Graph Nodes

Leaf nodes that contain references to other nodes (for example, Light nodes ref-
erence a Group node) can create a problem focTtheeTree method. After the
cloneTree operation is performed, the reference in the cloned leaf node will still

Java 3D API Specification

REUSING SCENE GRAPHS References to Other Scene Graph Nodg.2

refer to the node in the original subgraph—a situation that is most likely incor-
rect (see Figure 6-3).

)
N A
% \
e N —
[(
=~ cloneTree)\NZA\ \ /\
| q / \
| {

Lf LA!| A AT AN T
| B |
(- |
- - - -

Figure 6-3 References to Other Scene Graph Nodes

To handle these ambiguities, a callback mechanism is provided.

A leaf node that needs to update referenced nodes upon being duplicated by a
call to cloneTree must implement thaipdateNodeReferences method. By

using this method, the cloned leaf node can determine if any nodes referenced by
it have been duplicated and, if so, update the appropriate references to their
cloned counterparts.

Suppose, for instance, that the leaf node Lfl in Figure 6-3 implemented the
updateNodeReferences method. Once all nodes had been duplicated¢the-

eTree method would then call each cloned leaf’s nogéateNodeReferences
method. When cloned leaf node Lf2's method was called, Lf2 could ask if the
node N1 had been duplicated during theneTree operation. If the node had
been duplicated, leaf Lf2 could then update its internal state with the cloned
node, N2 (see Figure 6-4).

All predefined Java 3D nodes will automatically have thettateNodeRefer-
ences method defined. Only subclassed nodes that reference other nodes need to
have this method overridden by the user.

Version 1.1 Alpha 01, February 27, 1998 99

6.2.2 References to Other Scene Graph Nodes REUSING SCENE GRAPHS

G)
N A
% \
e N —
([
< cloneTree)\NZ/\\ - \‘)
q / \ |
x |
/ ARV
Lf Lf f1 AN AN AN
|

Figure 6-4 Updated Subgraph afterupdateNodeReferences Call

Methods

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This Leaf node method is called by ttimneTree method after all nodes in the
subgraph have been cloned. The user can query the NodeReferenceTable object
(see Section 6.2.5, “NodeReferenceTable Object”) to determine if any nodes that
the leaf node references have been duplicated byldheTree call and, if so,

what the corresponding node is in the new subgraph. If a user extends a pre-
defined Java 3D object and adds a reference to another node, this method must
be defined in order to ensure proper operation ofclle@eTree method. The

first statement in the user'sipdateNodeReferences method must be
super.updateNodeReferences(referenceTable). For predefined Java 3D
nodes, this method will be implemented automatically.

The NodeReferenceTable object is passed taglieteNodeReferences method

and allows references from the old subgraph to be translated into refer-ences in
the cloned subgraph. The translation is performed by geeNew-
NodeReference method.

public final Node getNewNodeReference(Node oldReference)

Deprecated method. See ierNewObjectReference method.

100 Java 3D API Specification

REUSING SCENE GRAPHS Dangling Reference6.2.3

public final SceneGraphObject
getNewObjectReference(SceneGraphObject oldReference)

This method takes a reference to the node in the original subgraph as an input
parameter and returns a reference to the equivalent node in the just-cloned sub-
graph. If the equivalent node in the cloned subgraph does not exist, either an
exception is thrown or a reference to the original node is returned (see
Section 6.2.3, “Dangling References”).

6.2.3 Dangling References

Because:ToneTree is able to start the cloning operation from any node, there is

a potential for creatindangling referencesA dangling reference can occur only
when a leaf node that contains a reference to another scene graph node is cloned.
If the referenced node is not cloned, a dangling reference situation exists: There
are now two leaf nodes that access the same node (Figure 6-5). A dangling refer-
ence is discovered when a leaf nodegateNodeReferences method calls the
getNewNodeReference method and the cloned subgraph does not contain a
counterpart to the node being looked up.

- r
! cloneTree N~
| q
| f
| L / \
L A
T
I |
Lo _|

Figure 6-5 Dangling Reference: Bold Nodes Are Being Cloned

When a dangling reference is discoverethneTree can handle it in one of two
ways. If cloneTree is called without thellowDanglingReferences parameter

set totrue, a dangling reference will result inDanglingReferenceException

being thrown. The user can catch this exception if desiredolfeTree is called

with the allowDanglingReferences parameter set tocrue, the update-
NodeReferences method will return a reference to the same object passed into

Version 1.1 Alpha 01, February 27, 1998 101

6.2.4

102

Subclassing Nodes REUSING SCENE GRAPHS

the getNewNodeReference method. This will result in theloneTree operation
completing with dangling references, as in Figure 6-5.

6.2.4 Subclassing Nodes

All Java 3D predefined nodes (for example, Interpolators and LOD nodes) auto-
matically handle all node reference and duplication operations. When a user sub-
classes a Leaf object or a NodeComponent object, certain methods must be
provided in order to ensure the proper operatioalofeTree.

Leaf node subclasses (for example, Behaviors) that contain any user node-spe-
cific data that needs to be duplicated duringl@eTree operation must define
the following two methods:

Node cloneNode(boolean forceDuplicate);
void duplicateNode(Node n, boolean forceDuplicate)

The cToneNode method consists of three lines:

UserLeafNode un = new UserLeafNode();
un.duplicateNode(this, forceDuplicate);
return un;

The dupl1icateNode method must first calluper.duplicateNode before dupli-
cating any necessary user-specific data or setting any user-specific state.

NodeComponent subclasses that contain any user node-specific data must define
the following two methods:

NodeComponent cloneNodeComponent();
void duplicateNodeComponent (NodeComponent nc);

The cloneNodeComponent method consists of three lines:

UserNodeComponent un = new UserNodeComponent();
un.duplicateNodeComponent(this);
return un;

The dup1icateNodeComponent must first callsuper.duplicateNodeComponent
and then can duplicate any user-specific data or set any user-specific state as nec-
essary.

Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Nod®.2.6

6.2.5 NodeReferenceTable Object

The NodeReferenceTable object is used by a leaf nopésseNodeReferences

method called by theloneTree operation. The NodeReferenceTable maps
nodes from the original subgraph to the new nodes in the cloned subgraph. This
information can than be used to update any cloned leaf node references to refer-
ence nodes in the cloned subgraph. This object can only be created by Java 3D.

Methods

public final Node getNewNodeReference(Node oldReference)

Deprecated method. See tweNewObjectReference method.

public final SceneGraphObject
getNewObjectReference(SceneGraphObject oldReference)

This method takes a reference to the node in the original subgraph as an input
parameter and returns a reference to the equivalent node in the just-cloned sub-
graph. If the equivalent node in the cloned subgraph does not exist, either an
exception is thrown or a reference to the original node is returned (see
Section 6.2.3, “Dangling References”).

6.2.6 Example User Behavior Node

The following is an example of a user-defined Behavior object to show how to
properly define a node to be compatible with ¢dheneTree operation.

class RotationBehavior extends Behavior {
TransformGroup objectTransform;
WakeupOnElapsedFrames w;

Matrix4d rotMat = new Matrix4d();
Matrix4d objectMat = new Matrix4d(Q);
Transform3D t = new Transform(Q);

// Override Behavior's initialize method to set up wakeup
// criteria
public void initialize() {
// Establish initial wakeup criteria
wakeupOn(w) ;
}

// Override Behavior's stimulus method to handle the event
public void processStimulus(Enumeration criteria) {
// Rotate by another PI/120.0 radians

Version 1.1 Alpha 01, February 27, 1998 103

6.2.6 Example User Behavior Node REUSING SCENE GRAPHS

objectMat.mul (objectMat, rotMat);
t.set(objectMat);
objectTransform.setTransform(t);

// Set wakeup criteria for next time
wakeupOn(w) ;
}

// Constructor for rotation behavior.

public RotationBehavior(TransformGroup tg, int numFrames) {
w = new WakeupOnElapsedFrames(numFrames);
objectTransform = tg;
objectMat.setIdentity();

// Create a rotation matrix that rotates PI/120.0
// radians per frame
rotMat.rotX(Math.PI/120.0);

// Note: When this object is duplicated via cloneTree,
// the cloned RotationBehavior node needs to point to
// the TransformGroup in the just-cloned tree.

}

// Sets a new TransformGroup.
public void setTransformGroup(TransformGroup tg) {
objectTransform = tg;

}

// The next two methods are needed for cloneTree to operate
// correctly.
// cloneNode is needed to provide a new instance of the user
// derived subclass.
public Node cloneNode(boolean forceDuplicate) {

// Get all data from current node needed for

// the constructor

int numFrames = w.getElapsedFrameCount();

RotationBehavior r =
new RotationBehavior(objectTransform, w);
r.duplicateNode(this, forceDuplicate);
return r;
}
// duplicateNode is needed to duplicate all super class
// data as well as all user data.
public void duplicateNode(Node n, boolean forceDuplicate) {
super.duplicateNode(n, forceDuplicate);
// Nothing to do here - all unique data was handled
// in the constructor in the cloneNode routine.

104 Java 3D API Specification

REUSING SCENE GRAPHS Example User Behavior Nod®.2.6

// Callback for when this leaf is cloned. For this object

// we want to find the cloned TransformGroup node that this

// clone Leaf node should reference.

public void updateNodeReferences(NodeReferenceTable t) {
super.updateNodeReferences(t);

// Update node's TransformGroup to proper reference
TransformGroup newTg =

(TransformGroup) t.getNewNodeReference(objectTransform);
setTransformGroup (newTg) ;

Version 1.1 Alpha 01, February 27, 1998 105

CHAPTER ;

Node Component Objects

NODE component objects include the actual geometry and appearance
attributes used to render the geometry.

7.1 Node Component Objects: Attributes

Node objects by themselves do not fully specify their exact semantics. They con-
tain information that further refines their exact meaning. Some of that informa-
tion is specified as an attribute and an associated floating-point or integer value.
In many cases, however, the information consists of references to more complex
entities callednode component objectdlode component objects encapsulate
related state information in a single entity. See Figure 7-1.

7.1.1 Appearance Object

The Appearance object is a component object of a Shape3D node that defines all
rendering state attributes for that shape node. If the Appearance object in a
Shape3D node iswul11, default values will be used for all rendering state
attributes.

Constants

The Appearance component object defines the following flags.

public static final int ALLOW_MATERIAL_READ
public static final int ALLOW_MATERIAL_WRITE
public static final int ALLOW_TEXTURE_READ
public static final int ALLOW_TEXTURE_WRITE
public static final int ALLOW_TEXGEN_READ
public static final int ALLOW_TEXGEN_WRITE

Version 1.1 Alpha 01, February 27, 1998 107

7.1.1 Appearance Object NODE COMPONENT OBJECTS

SceneGraphObject
NodeComponent
Appearance
AuralAttributes
ColoringAttributes
LineAttributes
PointAttributes
PolygonAttributes
RenderingAttributes
TextureAttributes
TransparencyAttributes
Material
MediaContainer
TexCoordGeneration
Texture
Texture2D
Texture3D
ImageComponent
ImageComponent2D
ImageComponent3D
DepthComponent
DepthComponentFloat
DepthComponentint
DepthComponentNative
Bounds
BoundingBox
BoundingPolytope
BoundingSphere
Transform3D

Figure 7-1 Attribute Component Object Hierarchy

public static final int ALLOW_TEXTURE_ATTRIBUTES_READ
public static final int ALLOW_TEXTURE_ATTRIBUTES_WRITE
public static final int ALLOW_COLORING_ATTRIBUTES_READ
public static final int ALLOW_COLORING_ATTRIBUTES_WRITE
public static final int ALLOW_TRANSPARENCY_ATTRIBUTES_READ
public static final int ALLOW_TRANSPARENCY_ATTRIBUTES_WRITE
public static final int ALLOW_RENDERING_ATTRIBUTES_READ
public static final int ALLOW_RENDERING_ATTRIBUTES_WRITE
public static final int ALLOW_POLYGON_ATTRIBUTES_READ
public static final int ALLOW_POLYGON_ATTRIBUTES_WRITE
public static final int ALLOW_LINE_ATTRIBUTES_READ

public static final int ALLOW_LINE_ATTRIBUTES_WRITE

108 Java 3D API Specification

NODE COMPONENT OBJECTS Appearance Objeci.1.1

public static final int ALLOW_POINT_ATTRIBUTES_READ
public static final int ALLOW_POINT_ATTRIBUTES_WRITE

These flags, when enabled using theCapability method, allow an applica-

tion to invoke methods that read and write the specified component object refer-
ence (material, texture, texture coordinate generation, and so forth). These
capability flags are enforced only when the object is part of a live or compiled
scene graph.

Constructors

The Appearance object has the following constructor.

public Appearance()

Constructs and initializes an Appearance object. All component object references
are initialized tonu11.

The default values, for those objects withi 1 references, are as follows:

color: white (1,1,1)

texture environment mode TEXENV_REPLACE
texture environment color. white (1,1,1,1)
depth test enabletrue

shade model SHADE_SMOOTH

polygon mode POLYGON_FILL
transparency enable false

transparency mode FASTEST

cull face CULL_BACK

point size 1.0

line width: 1.0

line pattern: PATTERN_SOLID

point antialiasing enable false

line antialiasing enable false

Methods
The Appearance object has the following methods.

public final void setMaterial (Material material)
public final Material getMaterial ()

The Material object specifies the desired material properties used for lighting.
Setting it tonu11 disables lighting.

Version 1.1 Alpha 01, February 27, 1998 109

7.1.1

110

Appearance Object NODE COMPONENT OBJECTS

public final void setTexture(Texture texture)
public final Texture getTexture()

The Texture object specifies the desired texture map and texture parameters. Set-
ting it to nu11 disables texture mapping.

public final void setTextureAttributes(TextureAttributes
textureAttributes)

public final TextureAttributes getTextureAttributes()

These methods set and retrieve the TextureAttributes object. Settinguitto
results in default attribute use.

public final void setColoringAttributes(ColoringAttributes
coloringAttributes)

public final ColoringAttributes getColoringAttributes()

These methods set and retrieve the ColoringAttributes object. Settinguit o
results in default attribute use.

public final void setTransparencyAttributes(
TransparencyAttributes transparencyAttributes)

public final TransparencyAttributes getTransparencyAttributes()

These methods set and retrieve the TransparencyAttributes object. Setting it to
nul1l results in default attribute use.

public final void setRenderingAttributes(RenderingAttributes
renderingAttributes)

public final RenderingAttributes getRenderingAttributes()
These methods set and retrieve the RenderingAttributes object. Settingil to
results in default attribute use.

public final void setPolygonAttributes(PolygonAttributes
polygonAttributes)

public final PolygonAttributes getPolygonAttributes()

These methods set and retrieve the PolygonAttributes object. Settinguitito
results in default attribute use.

public final void setLineAttributes(LineAttributes 1ineAttributes)
public final LineAttributes getLineAttributes()

These methods set and retrieve the LineAttributes object. Settingnii1io
results in default attribute use.

Java 3D API Specification

NODE COMPONENT OBJECTS ColoringAttributes Object/.1.2

public final void setPointAttributes(PointAttributes
pointAttributes)

public final PointAttributes getPointAttributes()
These methods set and retrieve the PointAttributes object. Settingnifl to
results in default attribute use.

public final void setTexCoordGeneration(TexCoordGeneration
texCoordGeneration)

public final TexCoordGeneration getTexCoordGeneration()

These methods set and retrieve the TexCoordGeneration object. Settimg it to
disables texture coordinate generation.

public NodeComponent cloneNodeComponent()

This method creates a new Appearance object. The method is called from a leaf
node’sduplicateNode method.

public void duplicateNodeComponent(NodeComponent originalNode)

This method copies the information foundoiiiginalNode to the current node.
This routine is called as part of th@oneTree operation.

7.1.2 ColoringAttributes Object

The ColoringAttributes object defines attributes that apply to color mapping.
Constants

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE
public static final int ALLOW_SHADE_MODEL_READ
public static final int ALLOW_SHADE_MODEL_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-
tion to invoke methods that respectively read and write its color component and
shade model component information.

Constructors

public ColoringAttributes()
public ColoringAttributes(Color3f color, int shadeModel)

public ColoringAttributes(float red, float green, float blue,
int shadeModel)

These constructors create a ColoringAttributes object with the specified values.

Version 1.1 Alpha 01, February 27, 1998 111

7.1.3

112

LineAttributes Object NODE COMPONENT OBJECTS

Methods

public final void setColor(Color3f color)
public final void setColor(float r, float g, float b)
public final void getColor(Color3f color)

These methods set and retrieve the intrinsic color of this ColoringAttributes com-
ponent object. This color is used when lighting is disabled or when the Material
is null.

public final void setShadeModel (int shadeModel)
public final int getShadeModel ()

These methods set and retrieve the shade model for this ColoringAttributes com-
ponent object. The shade model is one of the following:

* FASTEST: Uses the fastest available method for shading.
* NICEST: Uses the nicest (highest quality) available method for shading.
 SHADE_FLAT: Does not interpolate color across the primitive.

« SHADE_GOURAUD: Smoothly interpolates the color at each vertex
across the primitive.

public NodeComponent cloneNodeComponent()

This method creates a new ColoringAttributes object. This method is called from
a leaf node’slup1icateNode method.

public void duplicateNodeComponent(NodeComponent originalNode)

This method copies the information foundoiniginalNode to the current node.
This method is called as part of thtoneTree operation.

7.1.3 LineAttributes Object

The LineAttributes object defines attributes that apply to line primitives.

Constants

The LineAttributes object specifies the following variables.

Java 3D API Specification

NODE COMPONENT OBJECTS LineAttributes Object/.1.3

public static final int ALLOW_WIDTH_READ

public static final int ALLOW_WIDTH_WRITE

public static final int ALLOW_PATTERN_READ
public static final int ALLOW_PATTERN_WRITE
public static final int ALLOW_ANTIALIASING_READ
public static final int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using theCapability method, allow an applica-
tion to invoke methods that read and write its individual component field infor-
mation.

public static final int PATTERN_SOLID

Draws a solid line with no pattern.

public static final int PATTERN_DASH

Draws a dashed line. Ideally, this will be drawn with a repeating pattern of eight
pixels on and eight pixels off.

public static final int PATTERN_DOT

Draws a dotted line. Ideally, this will be drawn with a repeating pattern of one
pixel on and seven pixels off.

public static final int PATTERN_DASH_DOT
Draws a dashed-dotted line. Ideally, this will be drawn with a repeating pattern
of seven pixels on, four pixels off, one pixel on, and four pixels off.

Constructors

public LineAttributes()

public LineAttributes(float 1ineWidth, 1int 1inePattern,
boolean T1ineAntialiasing)

The first constructor creates a LineAttributes object with default values. The sec-
ond constructor creates a LineAttributes object with specified values of line
width, pattern, and whether antialiasing is enabled or disabled.

Methods

public final void setLineWidth(float 1ineWidth)
public final float getLineWidth(Q)

These methods respectively set and retrieve the line width, in pixels, for this Lin-
eAttributes component object.

Version 1.1 Alpha 01, February 27, 1998 113

7.1.4 PointAttributes Object NODE COMPONENT OBJECTS

114

public final void setLinePattern(int 1linePattern)
public final int getLinePattern()

These methods respectively set and retrieve the line pattern for this LineAt-
tributes component object. THenePattern value describes the line pattern to
be used, which is one of the followin@PATTERN_SOLID, PATTERN_DASH
PATTERN_DOT, Or PATTERN_DASH_DOT.

public final void setLineAntialiasingEnable(boolean state)
public final boolean getLineAntialiasingEnable()

The set method enables or disables line antialiasing for this LineAttributes com-
ponent object. Thget method retrieves the state of the line antialiasing flag.
The flag istrue if line antialiasing is enabledalse if line antialiasing is dis-
abled.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new LineAttributes object; this method is called from
a leaf node'slup1icateNode method. The second method copies the information
found inoriginalNode to the current node; this method is called as part of the
cloneTree operation.

7.1.4 PointAttributes Object

The PointAttributes object defines attributes that apply to point primitives.

Constants

The PointAttributes object specifies the following variables.

public final static int ALLOW_SIZE_READ
public final static int ALLOW_SIZE_WRITE
public final static int ALLOW_ANTIALIASING_READ
public final static int ALLOW_ANTIALIASING_WRITE

These flags, when enabled using $leeCapability method, allow an applica-
tion to invoke methods that read and write its individual component field infor-
mation.

Java 3D API Specification

NODE COMPONENT OBJECTS PolygonAttributes Objec?.1.5
Constructors

public PointAttributes()

public PointAttributes(float pointSize,
boolean pointAntialiasing)

These constructors create a new PointAttributes object.

Methods

public final void setPointSize(float pointSize)

public final float getPointSize()

These methods set and retrieve the point size, in pixels, for this Appearance com-
ponent object.

public final void setPointAntialiasingEnable(boolean state)
public final boolean getPointAntialiasingEnable()

The set method enables or disables point antialiasing for this PointAttributes
component object. Thget method retrieves the state of the point antialiasing
flag. The flag isrue if point antialiasing is enabledalse if point antialiasing

is disabled.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new PointAttributes object; this method is called from
a leaf node'slup1icateNode method. The second method copies the information
found inoriginalNode to the current node; this method is called as part of the
cloneTree operation.

7.1.5 PolygonAttributes Object
The PolygonAttributes object defines attributes that apply to polygon primitives.

Constants

The PolygonAttributes object specifies the following variables.

Version 1.1 Alpha 01, February 27, 1998 115

7.1.5

116

PolygonAttributes Object NODE COMPONENT OBJECTS

public final static int ALLOW_CULL_FACE_READ
public final static int ALLOW_CULL_FACE_WRITE
public final static int ALLOW_MODE_READ
public final static int ALLOW_MODE_WRITE
public final static int ALLOW_OFFSET_READ
public final static int ALLOW_OFFSET_WRITE

These flags, when enabled using tleCapability method, allow an applica-
tion to invoke methods that read and write its individual component field infor-
mation.

Constructors

public PolygonAttributes()

public PolygonAttributes(int polygonMode, int cullFace,
float polygonOffset)

These constructors create a new PolygonAttributes object.
Methods

public final void setCullFace(int cullFace)
public final int getCullFace()

These methods set and retrieve the face culling flag for this PolygonAttributes
component object. The face culling flag is one of the following:

* CULL_NONE: Performs no face culling.

e CULL_FRONT: Culls all front-facing polygons.

 CULL_BACK: Culls all back-facing polygons.

public final void setPolygonMode(int polygonMode)
public final int getPolygonMode()

These methods set and retrieve the polygon rasterization mode for this Appear-
ance component object. The polygon rasterization mode is one of the following:

« POLYGON_POINT: Renders polygonal primitives as points drawn at the
vertices of the polygon.

e POLYGON_LINE: Renders polygonal primitives as lines drawn between
consecutive vertices of the polygon.

e POLYGON_FILL: Renders polygonal primitives by filling the interior of
the polygon.

Java 3D API Specification

NODE COMPONENT OBJECTS RenderingAttributes Objecf.1.6

public final void setPolygonOffset(float polygonOffset)
public final float getPolygonOffset()

These methods set and retrieve the polygon offset. This screen-space offset is
added to the final, device-coordinate Z value of polygon primitives.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new PolygonAttributes object; this method is called
from a leaf node’slup1icateNode method. The second method copies the infor-
mation found inoriginalNode to the current node; this method is called as part
of the cloneTree operation.

7.1.6 RenderingAttributes Object

The RenderingAttributes object defines per-pixel rendering state attributes com-
mon to all primitive types.

Constants

public static final int ALLOW_ALPHA_TEST_VALUE_READ
public static final int ALLOW_ALPHA_TEST_VALUE_WRITE
public static final int ALLOW_ALPHA_TEST_FUNCTION_READ
public static final int ALLOW_ALPHA_TEST_FUNCTION_WRITE
public static final int ALLOW_DEPTH_ENABLE_READ

These flags, when enabled using theCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual test value
and function information.

Constructors

public RenderingAttributes()

public RenderingAttributes(boolean depthBufferEnable,
boolean depthBufferWriteEnable, float alphaTestValue,
int alphaTestFunction)

These constructors create a new RenderingAttributes object.

Version 1.1 Alpha 01, February 27, 1998 117

7.1.6

118

RenderingAttributes Object NODE COMPONENT OBJECTS

Methods

public final void setDepthBufferEnable(boolean state)
public final boolean getDepthBufferEnable()

These methods set and retrieve the depth buffer enable flag for this RenderingAt-
tributes component object. The flagtisue if the depth buffer mode is enabled,
false if disabled.

public final void setDepthBufferWriteEnable(boolean state)
public final boolean getDepthBufferWriteEnable()

These methods set and retrieve the depth buffer write enable flag for this Render-
Attributes component object. The flagtsue if the depth buffer mode is writ-
able,false if the depth buffer is read-only.

public final void setAlphaTestValue(float value)
public final float getAlphaTestValue()

These methods set and retrieve the alpha test value used by the alpha test func-
tion. This value is compared to the alpha value of each rendered pixel.

public final void setAlphaTestFunction(int function)
public final int getAlphaTestFunction()

These methods set and retrieve the alpha test function. The alpha test function is
one of the following:

« ALWAYS: Indicates pixels are always drawn irrespective of the alpha
value. This effectively disables alpha testing.
* NEVER: Indicates pixels are never drawn irrespective of the alpha value.

* EQUAL: Indicates pixels are drawn if the pixel alpha value is equal to the
alpha test value.

« NOT_EQUAL: Indicates pixels are drawn if the pixel alpha value is not
equal to the alpha test value.

* LESS: Indicates pixels are drawn if the pixel alpha value is less than the
alpha test value.

« LESS OR_EQUAL: Indicates pixels are drawn if the pixel alpha value is
less than or equal to the alpha test value.

 GREATER: Indicates pixels are drawn if the pixel alpha value is greater
than the alpha test value.

e GREATER_OR_EQUAL: Indicates pixels are drawn if the pixel alpha
value is greater than or equal to the alpha test value.

Java 3D API Specification

NODE COMPONENT OBJECTS TextureAttributes Objec?.1.7

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new RenderingAttributes object; this method is called
from a leaf node’slup1icateNode method. The second method copies the infor-
mation found inoriginalNode to the current node; this method is called as part
of thecloneTree operation.

7.1.7 TextureAttributes Object

The TextureAttributes object defines attributes that apply to texture mapping.
Constants

public static final int ALLOW_MODE_READ

public static final int ALLOW_MODE_WRITE

public static final int ALLOW_BLEND_COLOR_READ
public static final int ALLOW_BLEND_COLOR_WRITE
public static final int ALLOW_TRANSFORM_READ
public static final int ALLOW_TRANSFORM_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual component
field information.

Constructors

public TextureAttributes()

public TextureAttributes(int textureMode, Transform3D transform,
Color4f textureBlendColor, int perspCorrectionMode)

These constructors create a new TextureAttributes object.

Methods
public final void setTextureMode(int textureMode)
public final int getTextureMode()

These methods set and retrieve the texture mode parameter for this Texture-
Attributes component object. The texture mode is one of the following:

« MODULATE: Modulates the object color with the texture color.

» DECAL: Applies the texture color to the object as a decal.

* BLEND: Blends the texture blend color with the object color.

» REPLACE: Replaces the object color with the texture color.

Version 1.1 Alpha 01, February 27, 1998 119

7.1.8 TransparencyAttributes Object NODE COMPONENT OBJECTS

120

public final void setTextureBlendColor(Color4f textureBlendColor)

public final void setTextureBlendColor(float r, float g, float b,
float a)

public final void getTextureBlendColor(Color4f textureBlendColor)

These methods set and retrieve the texture blend color for this TextureAttributes
component object. The texture blend color is used when the texture mode param-
eter iSBLEND.

public final void setTextureTransform(Transform3D transform)
public final void getTextureTransform(Transform3D transform)

These methods set and retrieve the texture transform object used to transform
texture coordinates. A copy of the specified Transform3D object is stored in this
TextureAttributes object.

public final void setPerspectiveCorrectionMode(int mode)
public final int getPerspectiveCorrectionMode()

These methods set and retrieve the perspective correction mode to be used for
color and texture coordinate interpolation. The perspective correction mode is
one of the following:

* NICEST: Uses the nicest (highest quality) available method for texture
mapping perspective correction.

» FASTEST: Uses the fastest available method for texture mapping
perspective correction.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TextureAttributes object; this method is called
from a leaf node’slup1icateNode method. The second method copies the infor-
mation found inoriginalNode to the current node; this method is called as part
of thecloneTree operation.

7.1.8 TransparencyAttributes Object

The TransparencyAttributes object defines all attributes affecting the transpar-
ency of the object.

Java 3D API Specification

NODE COMPONENT OBJECTS TransparencyAttributes Objecf.1.8
Constants

public static final int ALLOW_MODE_READ

public static final int ALLOW_MODE_WRITE
public static final int ALLOW_VALUE_READ
public static final int ALLOW_VALUE_WRITE

These flags, when enabled using tlkeCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual component
field information.

Constructors

public TransparencyAttributes()
public TransparencyAttributes(int tMode, float tVal)

These constructors create a new TransparencyAttributes object.

Methods

public final void setTransparencyMode(int transparencyMode)
public final int getTransparencyMode()

These methods set and retrieve the transparency mode for this Appearance com-
ponent object. The transparency mode is one of the following:

» FASTEST: Uses the fastest available method for transparency.

* NICEST: Uses the nicest available method for transparency.

» SCREEN_DOOR: Uses screen-door transparency. This is done using an
on/off stipple pattern in which the percentage of transparent pixels is
approximately equal to the value specified by the transparency parameter.

» BLENDED: Uses alpha blended transparency. A blend equation of
(alpha*src + (1 — alpha)*dst) is used, where alpha is (1 — transparency).

* NONE: No transparency; opaque object.

public final void setTransparency(float transparency)
public final float getTransparency()

These methods set and retrieve this Appearance object’s transparency value. The
transparency value is in the range [0.0, 1.0], with 0.0 being fully opaque and 1.0
being fully transparent.

Version 1.1 Alpha 01, February 27, 1998 121

7.1.9 Material Object NODE COMPONENT OBJECTS

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TransparencyAttributes object; this method is
called from a leaf node@up1icateNode method. The second method copies the
information found inoriginalNode to the current node; this method is called as
part of thecloneTree operation.

7.1.9 Material Object

The Material object is a component object of an Appearance object that defines
the material properties used when lighting is enabled. If the Material object in an
Appearance object isull, lighting is disabled for all nodes that use that
Appearance object.

Constants

The Material object defines two flags.

public static final int ALLOW_COMPONENT_READ
public static final int ALLOW_COMPONENT_WRITE

These flags, when enabled using tleeCapability method, allow an applica-
tion to invoke methods that respectively read and write its individual component
field information.

Constructors

The Material object has the following constructors.

public Material ()

Constructs and initializes a Material object using default values for all attributes.
The default values are as follows:

ambient color: 0.2, 0.2, 0.2
emissive color black (0.0, 0.0, 0.0)
diffuse color. white (1.0, 1.0, 1.0)
specular color. white (1.0, 1.0, 1.0)
shininess 64.0

122 Java 3D API Specification

NODE COMPONENT OBJECTS Material Object 7.1.9

public Material (Color3f ambientColor, Color3f emmissiveColor,
Color3f diffuseColor, Color3f specularColor,
float shininess)

Constructs and initializes a new Material object using the specified parameters.
The ambient color, emissive color, diffuse color, specular color, and shininess
parameters are specified.

Methods

The Material object has the following methods.

public final void setAmbientColor(Color3f color)
public final void setAmbientColor(float r, float g, float b)
public final void getAmbientColor(Color3f color)

This parameter specifies this material’'s ambient color, that is, how much ambient
light is reflected by the material’s surface.

public final void setEmissiveColor(Color3f color)
public final void setEmissiveColor(float r, float g, float b)
public final void getEmissiveColor(Color3f color)

This parameter specifies the color of light, if any, that the material emits. This
color is added to the color produced by applying the lighting equation.

public final void setDiffuseColor(Color3f color)
public final void setDiffuseColor(float r, float g, float b)

public final void setDiffuseColor(float r, float g, float b,
float a)

public final void getDiffuseColor(Color3f color)

This parameter specifies the color of the material when illuminated by a light
source. In addition to the diffuse color (red, green, and blue), the alpha value is
used to specify transparency such that transparency = (1 — alpha).

public final void setSpecularColor(Color3f color)
public final void setSpecularColor(float r, float g, float b)
public final void getSpecularColor(Color3f color)

This parameter specifies the specular highlight color of the material.

Version 1.1 Alpha 01, February 27, 1998 123

7.1.10 Texture Object NODE COMPONENT OBJECTS

public final void setShininess(float shininess)
public final float getShininess()

This parameter specifies a material specular scattering exponent, or shininess. It
| takes a floating-point number in the range [1.0, 128.0], with 1.0 being not shiny
and 128.0 being very shiny.

public final void setLightingEnable(boolean state)
public final boolean getLightingEnable()

These methods set and retrieve the current state of the lighting enabts-dkag (
or false) for this Appearance component object.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Material object; this method is called from a leaf
node’s duplicateNode method. The second method copies the information
found inoriginalNode to the current node; this method is called as part of the
cloneTree operation.

public String toString(Q)

This method returns a string representation of this Material's values. If the scene
graph is live, only those values with their capability bit set will be displayed.

7.1.10 Texture Object

The Texture object is a component object of an Appearance object that defines
the texture properties used when texture mapping is enabled. If the Texture
object in an Appearance objectnig11, then texture mapping is disabled for all
nodes that use that Appearance object. The Texture object is an abstract class. As
such, all texture objects must be created as either a Texture2D object or a
Texture3D object.

Constants

The Texture object defines the following flags:

124 Java 3D API Specification

NODE COMPONENT OBJECTS Texture Objeat.1.10

public static final int ALLOW_ENABLE_READ

public static final int ALLOW_ENABLE_WRITE

public static final int ALLOW_BOUNDARY_MODE_READ
public static final int ALLOW_FILTER_READ

public static final int ALLOW_IMAGE_READ

public static final int ALLOW_MIPMAP_MODE_READ
public static final int ALLOW_BOUNDARY_COLOR_READ

These flags, when enabled using theCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual compo-
nent field information.

Constructors

The Texture object has the following constructor.

public Texture()

This constructor is not very useful as the default width and height are 0. The
other default values are as follows:

boundaryModeS WRAP

boundaryModeT: WRAP

minification filter : BASE_LEVEL POINT
magnification filter : BASE_LEVEL POINT
boundary color: black (0,0,0,0)

texture image null

public Texture(int mipmapMode, int format, int width, int height)

Constructs an empty Texture object with specifiédmapMode format, width,
and height. Image at level 0 must be set by the application usingtheage
method. ThenipmapMode can be one of the following:

e BASE_LEVEL: Indicates that this Texture object only has a base-level
image. If multiple levels are needed, they will be implicitly computed.

* MULTI_LEVEL_MIPMAP: Indicates that this Texture object has
multiple images—one for each mipmap level (that is;(logx(W,H)) + 1
separate images). tfipmapMode is set toMULTI_LEVEL_MIPMAP, images
for all levels must be set.

The format is the data of textures saved in this object. fidv@at can be one of
the following:

* INTENSITY: Specifies Texture contains only intensity values.
 LUMINANCE: Specifies Texture contains only luminance values.

Version 1.1 Alpha 01, February 27, 1998 125

7.1.10 Texture Object NODE COMPONENT OBJECTS

126

ALPHA: Specifies Texture contains only alpha values.

LUMINANCE_ALPHA: Specifies Texture contains luminance and alpha
values.

RGB: Specifies Texture contains red, green, and blue color values.

RGBA: Specifies Texture contains red, green, and blue color values, and
an alpha value.

Methods

The Texture object has the following methods.

public final void setBoundaryModeS(int boundaryModeS)
public final int getBoundaryModeS()
public final void setBoundaryModeT(int boundaryModeT)
public final int getBoundaryModeT()

These parameters specify the boundary mode for the S and T coordinates in this
Texture object. The boundary mode is as follows:

CLAMP: Clamps texture coordinates to be in the range [0, 1]. A constant
boundary color is used for U,V values that fall outside this range.

WRAP: Repeats the texture by wrapping texture coordinates that are
outside the range [0, 1]. Only the fractional portion of the texture
coordinates is used; the integer portion is discarded.

public final void setMinFilter(int minFilter)
public final int getMinFilter()

This parameter specifies the minification filter function. This function is used
when the pixel being rendered maps to an area greater than one texel. The mini-
fication filter is one of the following:

FASTEST: Uses the fastest available method for processing geometry.
NICEST: Uses the nicest available method for processing geometry.

BASE_LEVEL_POINT: Selects the nearest texel in the level O texture
map.

BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the four
nearest texels in the level O texture map.

MULTI_LEVEL_POINT: Selects the nearest texel in the nearest mipmap.

MULTI_LEVEL_LINEAR: Performs trilinear interpolation of texels
between four texels each from the two nearest mipmap levels.

Java 3D API Specification

NODE COMPONENT OBJECTS Texture Objeat.1.10

public final void setMagFilter(int magFilter)
public final int getMagFilter()

This parameter specifies the magnification filter function. This function is used
when the pixel being rendered maps to an area less than or equal to one texel.
The value is one of the following:

» FASTEST: Uses the fastest available method for processing geometry.
* NICEST: Uses the nicest available method for processing geometry.

e BASE_LEVEL_POINT: Selects the nearest texel in the level 0 texture
map.

e BASE_LEVEL_LINEAR: Performs a bilinear interpolation on the four
nearest texels in the level 0 texture map.

public final void setImage(int level, ImageComponent image)
public final ImageComponent getImage(int level)

These methods set and retrieve a specified mipmap level. Level 0 is the base
level.

public final void setBoundaryColor(Color4f boundaryColor)

public final void setBoundaryColor(float r, float g, float b,
float a)

public final void getBoundaryColor(Color4f boundaryColor)

This parameter specifies the texture boundary color for this Texture object. The
texture boundary color is used whissundaryModeS or boundaryModeT is set to
CLAMP.

public final void setEnable(boolean state)
public final boolean getEnable()

These methods set and retrieve the state of texture mapping for this Texture
object. A value ottrue means that texture mapping is enabfed se means that
texture mapping is disabled.

public final void setMipMapMode(int mipmapMode)
public final int getMipMapMode()

These methods set and retrieve the mipmap mode for texture mapping for this
Texture object. The mipmap mode is eitB&SE_LEVEL Or MULTI_LEVEL_MIP_
MAP.

Version 1.1 Alpha 01, February 27, 1998 127

7.1.11 Texture2D Object NODE COMPONENT OBJECTS

128

7.1.11 Texture2D Object

The Texture2D object is a subclass of the Texture class. It extends the Texture
class by adding a constructor for setting a 2D texture image.

Constructors

The Texture2D object has the following constructors.

public Texture2D(Q)
This constructor is not very useful as the default width and height are 0.
public Texture2D(int mipmapMode, int format, int width, int height)

Constructs and initializes a Texture2D object with the specified attributes. The
mipmapMode parameter is eithe’ASE_LEVEL or MULTI_LEVEL_MIPMAP. The for-

mat parameter is one of the followingINTENSITY, LUMINANCE, ALPHA,
LUMINANCE_ALPHA, RGB, Or RGBA.

Methods

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Texture2D object; this method is called from a
leaf node’sdup1icateNode method. The second method copies the information
found inoriginalNode to the current node; this method is called as part of the
cloneTree operation.

7.1.12 Texture3D Obiject

The Texture3D object is a subclass of the Texture class. It extends the Texture
class by adding a third texture coordinate and by adding a constructor for setting
a 3D texture image.

Constructors

The Texture3D object has the following constructors.

public Texture3D()

This constructor is not very useful as the default width, height, and depth are 0.

Java 3D API Specification

NODE COMPONENT OBJECTS TexCoordGeneration Objettl.13

public Texture3D(int mipmapMode, int format, int width, int height,
int depth)

Constructs and initializes a Texture3D object using the specified attributes. The
mipmapMode parameter is eithe®ASE_LEVEL or MULTI_LEVEL_MIPMAP. The for-

mat parameter is one ANTENSITY, LUMINANCE, ALPHA, LUMINANCE_ALPHA, RGB,

or RGBA. The default value for a Texture3D object is as follows:

e boundaryModeR: WRAP

Methods

The Texture3D object has the following methods.

public final void setBoundaryModeR(int boundaryModeR)
public final int getBoundaryModeR()

This parameter specifies the boundary mode for the R coordinate in this Texture
object. The boundary mode is as follows:

 CLAMP: Clamps texture coordinates to be in the range [0, 1]. A constant
boundary color is used for R values that fall outside this range.

» WRAP: Repeats the texture by wrapping texture coordinates that are
outside the range [0, 1]. Only the fractional portion of the texture
coordinates is used; the integer portion is discarded.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new Texture3D object; this method is called from a
leaf node’sduplicateNode method. The second method copies the information
found inoriginalNode to the current node; this method is called as part of the
cloneTree operation.

7.1.13 TexCoordGeneration Object

The TexCoordGeneration object is a component object of an Appearance object
that defines the parameters used when texture coordinate generation is enabled. If
the TexCoordGeneration object in an Appearance objegtlig texture coordi-

nate generation is disabled for all nodes that use that Appearance object.

Constants

The TexCoordGeneration object specifies the following variables.

Version 1.1 Alpha 01, February 27, 1998 129

7.1.13 TexCoordGeneration Object NODE COMPONENT OBJECTS

130

public final static int ALLOW_ENABLE_READ
public final static int ALLOW_ENABLE_WRITE
public final static int ALLOW_FORMAT_READ
public final static int ALLOW_MODE_READ
public final static int ALLOW_PLANE_READ

These flags, when enabled using tleCapability method, allow an applica-
tion to invoke methods that read, and in some cases write, its individual compo-
nent field information.

public final static int OBJECT_LINEAR

Generates texture coordinates as a linear function in object coordinates.

public final static int EYE_LINEAR

Generates texture coordinates as a linear function in eye coordinates.

public final static int SPHERE_MAP

Generates texture coordinates using a spherical reflection mapping in eye coordi-
nates.

public final static int TEXTURE_COORDINATE_2

Generates 2D texture coordinates (S and T).

public final static int TEXTURE_COORDINATE_3

Generates 3D texture coordinates (S, T, and R).

Constructors

The TexGen object has the following constructors.

public TexCoordGeneration()
public TexCoordGeneration(int genMode, int format)

public TexCoordGeneration(int genMode, int format,
Vector4f planeS)

public TexCoordGeneration(int genMode, int format,
Vector4f planeS, Vector4f planeT)

public TexCoordGeneration(int genMode, int format,
Vector4f planeS, Vector4f planeT, Vector4f planeR)

The first form constructs a TexGen object using default values for all state vari-
ables. The other forms construct a TexGen object by initializing the specified
fields. Default values are used for those state variables not specified in the con-
structor. The parameters are as follows:

Java 3D API Specification

NODE COMPONENT OBJECTS TexCoordGeneration Objettl.13

* genMode: Texture generation mode. On@BIECT_LINEAR, EYE_LINEAR,
or SPHERE_MAP.

« format: Texture format (2D or 3D). Eith@EXTURE_COORDINATE_2 or
TEXTURE_COORDINATE_3.

» planeS: Plane equation for the S coordinate.
« planeT: Plane equation for the T coordinate.
* planeR: Plane equation for the R coordinate.

Default values for parameters that are not specified are as follows:

genMode OBJECT_LINEAR

format: TEXTURE_COORDINATE_2
planeS (1, 0, 0, 0)

planeT: (0, 1, O, 0)

planeR: (0, 0, 0, 0)

Methods

The TexGen object has the following methods.

public final void setEnable(boolean state)
public final boolean getEnable()

This parameter enables or disables texture coordinate generation for this Appear-
ance component object. The valuetisie if texture coordinate generation is
enabled;false if texture coordinate generation is disabled.

public final void setFormat(int format)
public final int getFormat()

This parameter specifies the format, or dimension, of the generated texture coor-
dinates. The format value is eith@EXTURE_COORDINATE_2 oOr TEXTURE_
COORDINATE_3.

public final void setGenMode(int genMode)
public final int getGenMode()

This parameter specifies the texture coordinate generation mode. The value is
one ofOBJECT_LINEAR, EYE_LINEAR, Or SPHERE_MAP.

Version 1.1 Alpha 01, February 27, 1998 131

7.1.14 MediaContainer Object NODE COMPONENT OBJECTS

132

public final void setPlaneS(Vector4f planeS)
public final void getPlaneS(Vector4f planeS)

This parameter specifies the S coordinate plane equation. This plane equation is
used to generate the S coordinateOBAECT_LINEAR and EYE_LINEAR texture
generation modes.

public final void setPlaneT(Vector4f planeT)
public final void getPlaneT(Vector4f planeT)

This parameter specifies the T coordinate plane equation. This plane equation is
used to generate the T coordinateOBIECT_LINEAR and EYE_LINEAR texture
generation modes.

public final void setPlaneR(Vector4f planeR)
public final void getPlaneR(Vector4f planeR)

This parameter specifies the R coordinate plane equation. This plane equation is
used to generate the R coordinateORIECT_LINEAR and EYE_LINEAR texture
generation modes.

public NodeComponent cloneNodeComponent()
public void duplicateNodeComponent(NodeComponent originalNode)

The first method creates a new TexCoordGeneration object; this method is called
from a leaf node’slupT1icateNode method. The second method copies the infor-
mation found inoriginalNode to the current node; this method is called as part
of the cloneTree operation.

7.1.14 MediaContainer Object

The MediaContainer object is a component object of a Sound node that defines
the sound data associated with a Sound node. This component object’s fields ref-
erence a Java Media Framework Player (which contains audio data), a Java
Media Sound data container, or explicit sound sample data. Its fields include a
cache flag and a URL path to sound data recognized by JavaSound (a proposed
Java Media API) as a valid container that includes audio data. Eventually, when
the JavaSound API is completed, the application can use JavaSound query meth-
ods to determine the format, precision, encoding and compression type, data
length, and number of channels required for playback for a particular MediaCon-
tainer at the given URL path.

Constants

The MediaContainer object has the following flags.

Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Objeat.1.15

public static final int ALLOW_CACHE_READ
public static final int ALLOW_CACHE_WRITE
public static final int ALLOW_URL_READ
public static final int ALLOW_URL_WRITE

These flags, when enabled using theCapability method, allow an applica-
tion to invoke methods that read or write its cached flag and its URL string.

Constructors

The MediaContainer object has the following constructors.

public MediaContainer()

Constructs and initializes a new MediaContainer object using the following
default values.

cache data false
URL: null

public MediaContainer(String path)
public MediaContainer(URL url)

Constructs and initializes a new MediaContainer object using the specified path
and forcing the cache data flagttcue.

Methods

The Sound object has the following methods.

public final void setCacheEnable(boolean flag)
public final boolean getCacheEnable()

This parameter specifies whether this component contains a noncached reference
to the sound data or explicit cached sound data.

public final void setURL(String path)
public final void setURLCURL url)
public final String getURL(Q)

This parameter specifies the string path (URL) of the sound data associated with
this component.

7.1.15 AuralAttributes Object

The AuralAttributes object is a component object of a Soundscape node that
defines environmental audio parameters that affect sound rendering. These

Version 1.1 Alpha 01, February 27, 1998 133

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

attributes include gain scale factor, atmospheric rolloff, and parameters control-
ling reverberation, distance frequency filtering, and velocity-activated Doppler
effect.

7.1.15.1 Reverberation

Within Java 3D’s simple model for auralization, there are three components to
sound reverberation for a particular listening space:

» Delay time Approximates the time from the start of a sound until it
reaches the listener after reflecting once off the surfaces in the region.

» Reflection coefficient Attenuates the reverberated sound uniformly (for
all frequencies) as it bounces off surfaces.

* Feedback loop Controls the maximum number of times a sound is
reflected off the surfaces.

None of these parameters are affected by sound position. Figure 7-2 shows the
interaction of these parameters.

Reflection
Coefficient

SoundSource i

Feedback Loop

Figure 7-2 Sound Reverberation Parameters

The reflection coefficient for reverberation is a single scale factor used to approx-
imate the overall reflective or absorptive characteristics of the surfaces in a rever-
beration region in which the listener is located. This scale factor is applied to the
sound’s amplitude regardless of the sound’s position. A value of 1.0 represents
complete (unattenuated) sound reflection, while a value of 0.0 represents full
absorption (reverberation is disabled).

The reverberation delay time is set either explicitly (in milliseconds), or implic-

itly by supplying an additional bounds volume (so the delay time can be calcu-
lated). The bounds of the reverberation space do not have to be the same as the
application region of the Soundscape node using this object.

The reverberation order defines the number of reverberation (feedback) loop iter-
ations to be executed while a sound is played. As long as the reflection coeffi-
cient is small enough, the reverberated sound decreases (as it would naturally)

134 Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Objeat.1.15

each successive iteration. A value of O disables reverberation, a value of 1 creates
a single echo (given that the reverb delay is long enough), and a valliesigf

nifies that reverberation is to loop until it reaches an amplituegfedtive zero

(>60 dB or 1/1000 of sound amplitude). All other positive values are used as the
number of loop iterations.

7.1.15.2 Doppler Effect

Doppler effect can be used to create a greater sense of movement of sound
sources, and can help unambiguate front-back localization errors. The frequency

of sound waves emanating from the source are lowered based on the speed of the
source in relation to the listener, and the sound’s wavelength.

The Doppler scale factor can be used to increase or reduce the change of fre-
guency associated with normal Doppler calculation. To create this Doppler
effect, the relative velocity (change in distance in the local coordinate system
between the sound source and the listener over time, in meters per second) must
be specified. This is nonzero even if the listener is moving but the sound is not.

Constants

The AuralAttributes object has the following flags.

public static final int ALLOW_ATTRIBUTE_GAIN_READ

public static final int ALLOW_ATTRIBUTE_GAIN_WRITE

public static final int ALLOW_ROLLOFF_READ

public static final int ALLOW_ROLLOFF_WRITE

public static final int ALLOW_REFLECTION_COEFFICIENT_READ
public static final int ALLOW_REFLECTION_COEFFICIENT_WRITE
public static final int ALLOW_REVERB_DELAY_READ

public static final int ALLOW_REVERB_DELAY_WRITE

public static final int ALLOW_REVERB_ORDER_READ

public static final int ALLOW_REVERB_ORDER_WRITE

public static final int ALLOW_DISTANCE_FILTER_READ

public static final int ALLOW_DISTANCE_FILTER_WRITE
public static final int ALLOW_DOPPLER_SCALE_FACTOR_READ
public static final int ALLOW_DOPPLER_SCALE_FACTOR_WRITE
public static final int ALLOW_DOPPLER_VELOCITY_READ
public static final int ALLOW_DOPPLER_VELOCITY_WRITE

These flags, when enabled using thkeCapability method, allow an applica-
tion to invoke methods that read or write the associated parameters.

Version 1.1 Alpha 01, February 27, 1998 135

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

136

Constructors

The AuralAttributes object has the following constructors.

public AuralAttributes()

Constructs and initializes a new AuralAttributes object using the following
default values:

attribute gain: 1.0

rolloff: 1.0

reflection coefficient 0.0

reverb delay. 0.0

reverb order: O

distance filtering: null (no filtering performed)
Doppler scale factor 1.0

Doppler velocity: 0.0

public AuralAttributes(float gain, float rolloff,
float reflectionCoefficient, float reverbDelay,
int reverbOrder, Point2f distanceFilter[],
float dopplerScaleFactor, float dopplerVelocity)

public AuralAttributes(float gain, float rolloff,
float reflectionCoefficient, float reverbDelay,
int reverbOrder, float distance[], float frequencyCutoff,
float dopplerScaleFactor, float dopplerVelocity)

Construct and initialize a new AuralAttributes object using the specified parame-
ters.

Methods

The AuralAttributes object has the following methods.

public final void setAttributeGain(float gain)
public final float getAttributeGain()

This parameter specifies an amplitude scale factor applied to the sound. Valid
values arex 0.0.

public final void setRolloff(float rolloff)
public final float getRolloff()

This scale factor is used to model simple atmospheric conditions that affect the
speed of sound. This affects the time a sound takes to reach the listener after it
has begun playing. The normal speed of sound is scaled by this single rolloff
scale factor, thus increasing or decreasing the usual attenuation. Valid values are

Java 3D API Specification

NODE COMPONENT OBJECTS AuralAttributes Objeat.1.15

= 0.0. Values > 1.0 increase the speed of sound, while values < 1.0 decrease its
speed.

public final void setReflectionCoefficient(float reflectionCoeff)
public final float getReflectionCoefficient()

This parameter specifies an average amplitude scale factor for all sound waves
(independent of their frequencies) as they reflect off all surfaces within the acti-
vation region in which the listener is located. There is currently no method to
assign different reflective audio properties to individual surfaces. The range of
values is 0.0 to 1.0. A value of 0.0 represents a fully absorptive surface (no sound
waves reflect off), while a value of 1.0 represents a fully reflective surface
(amplitudes of sound waves reflecting off surfaces are not decreased).

public final void setReverbDelay(float reverbDelay)
public final void setReverbDelay(Bounds reverbVolume)
public final float getReverbDelay()

This parameter specifies the delay time between each order of reflection while
reverberation is being rendered. In the first formsefReverbDelay, an explicit

delay time is given in milliseconds. In the second form, a reverberation bounds
volume is specified, and then the delay time is calculated, becoming the new
reverb time delay. A value of 0.0 for delay time disables reverberation.

public final void setReverbOrder(int reverbOrder)
public final int getReverbOrder()

This parameter specifies the maximum number of times reflections will be added
to the reverberation being calculated. When the amplitude ai-theeflection
reaches effective zero, no further reverberations need be added to the sound
image. A value of O disables reverberation. A valuelo§pecifies that the rever-
beration calculations will loop indefinitely, until timeth reflection term reaches
effective zero.

public final void setDistanceFilter(Point2f attenuation[])

public final void setDistanceFilter(float distancel[],
float frequencyCutoff[])

public final int getDistanceFilterLength()
public final void getDistanceFilter(Point2f attenuation[])

public final void getDistanceFilter(float distancel[],
float frequencyCutoff[])

This parameter specifies a (distance, filter) attenuation pairs array. If this is not
set, no distance filtering is performed (equivalent to using a distance filter of
Sound.NO_FILTER for all distances). Currently, this filter is a low-pass cutoff fre-

Version 1.1 Alpha 01, February 27, 1998 137

7.1.15 AuralAttributes Object NODE COMPONENT OBJECTS

138

guency. This array of pairs defines a piecewise linear slope for a range of values.
This attenuation array is similar to the PointSound nati&g'sanceAttenuation

pair array, except that frequency values are paired with distances in this list.
Using these pairs, distance-based low-pass frequency filtering can be applied
during sound rendering. Distances, specified in the local coordinate system in
meters, must be > 0. Frequencies (in Hz) must be > 0.

If the distance from the listener to the sound source is less than the first distance
in the array, the first filter is applied to the sound source. This creates a spherical
region around the listener within which a sound is uniformly attenuated by the
first filter in the array. If the distance from the listener to the sound source is
greater than the last distance in the array, the last filter is applied to the sound
source.

The first form ofsetDistanceFilter takes these pairs of values as an array of
Point2f. The second form accepts two separate arrays for these valuds$sThe
tance and frequencyCutoff arrays should be of the same length. If fire-
quencyCutoff array length is greater than thestance array length, the
frequencyCutoff array elements beyond the length of tfietance array are
ignored. If thefrequencyCutoff array is shorter than theistance array, the
last frequencyCutoff array value is repeated to fill an array of length equal to
the distance array.

The getDistanceFilterLength method returns the length of the distance filter
arrays. Arrays passed ingetDistanceFilter methods should all be at least
this size.

There are two methods fgetDistanceFilter, one returning an array of points,
the other returning separate arrays for each attenuation component.

Distance elements in this array of pairs are a monotonically increasing set of
floating-point numbers measured from the location of the sound source. Fre-
guency cutoff elements in this list of pairs can be any positive float. While for
most applications this list of values will usually be monotonically decreasing,
they do not have to be.

public final void setDopplerScaleFactor(float
frequencyScaleFactor)

public final float getDopplerScaleFactor()

This parameter specifies a scale factor is used to increase or decrease the change
of frequency resulting from the Doppler effect calculated during sound render-
ing. This allows the application to exaggerate or reduce the change in frequency

Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent Objettl.16

normally resulting from applying the standard Doppler equation to the sound.
Valid values are= 0.0. A value of 0.0 disables any Doppler calculation.

public final void setDopplerVelocity(float velocityScaleFactor)
public final float getDopplerVelocity()

This parameter specifies a scale factor applied toefhéve velocity(change in
distance in the local coordinate system between the sound source and the listener
over time) automatically calculated by the Doppler equation during sound ren-
dering. This allows the application to exaggerate or reduce the relative velocity
calculated by the standard Doppler equation. Valid valuex &6. A value of

0.0 disables any Doppler calculation.

7.1.16 ImageComponent Object

The ImageComponent classes are used for texture and background images. The
ImageComponent object is an abstract class that is used to define 2D or 3D
ImageComponent classes.

Constants

The ImageComponent object has the following flags:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_FORMAT_READ
public static final int ALLOW_IMAGE_READ

These flags, when enabled using theCapability method, allow an applica-
tion to invoke methods that read the associated parameters.

The ImageComponent object specifies the following variables, used to define 2D
or 3D ImageComponent classes. These variables specify the format of the pixel
data.

public final static int FORMAT_RGB

Specifies that each pixel contains three eight-bit channels, one each for red,
green, and blue. This is the sameF@RMAT_RGBS.

public final static int FORMAT_RGBA

Specifies that each pixel contains four eight-bit channels, one each for red, green,
blue, and alpha. This is the sameFaRMAT_RGBAS.

Version 1.1 Alpha 01, February 27, 1998 139

7.1.16 ImageComponent Object NODE COMPONENT OBJECTS

140

public final static int FORMAT_RGB8

Specifies that each pixel contains three eight-bit channels, one each for red,
green, and blue. This is the samer@RMAT_RGB.

public final static int FORMAT_RGBAS

Specifies that each pixel contains four eight-bit channels, one each for red, green,
blue, and alpha. This is the sameFraRMAT_RGBA.

public final static int FORMAT_RGB5

Specifies that each pixel contains three five-bit channels, one each for red, green,
and blue.

public final static int FORMAT_RGB5_Al

Specifies that each pixel contains three five-bit channels, one each for red, green,
and blue, and a one-bit channel for alpha.

public final static int FORMAT_RGB4

Specifies that each pixel contains three four-bit channels, one each for red, green,
and blue.

public final static int FORMAT_RGBA4

Specifies that each pixel contains four four-bit channels, one each for red, green,
blue, and alpha.

public final static int FORMAT_LUM4_ALPHA4

Specifies that each pixel contains two four-bit channels, one each for luminance
and alpha.

public final static int FORMAT_LUM8_ALPHAS8

Specifies that each pixel contains two eight-bit channels, one each for luminance
and alpha.

public static final int FORMAT_R3_G3_B2

Specifies that each pixel contains two three-bit channels, one each for red and
green, and a two-bit channel for blue.

Java 3D API Specification

NODE COMPONENT OBJECTS ImageComponent2D Objecfl.17

public static final int FORMAT_CHANNELS

Specifies that each pixel contains one eight-bit channel. The channel can be used
for only luminance, alpha, or intensity.

Constructors
The ImageComponent object defines the following constructor.

public ImageComponent(int format, int width, int height)

This constructor constructs and initializes a new ImageComponent object.

Methods

The ImageComponent object defines the following methods.

public final int getWidth(Q)
public final int getHeight()
public final int getFormat()

These methods retrieve the width, height, and format of this image component
object.
7.1.17 ImageComponent2D Object

The ImageComponent2D class defines a 2D array of pixels, used for texture and
background images.

Constructors

The ImageComponent2D object defines the following constructors.

public ImageComponent2D(int format, int width, int height)
public ImageComponent2D(int format, BufferedImage image)

The first constructor constructs and initializes a 2D image component object
using the specified format, width, and height. The second constructor constructs
and initializes a 2D image component object using the specified format and buff-
ered image. A copy of the image is made.

Methods

The ImageComponent2D object defines the following methods.

Version 1.1 Alpha 01, February 27, 1998 141

7.1.18 ImageComponent3D Object NODE COMPONENT OBJECTS

142

public void set(BufferedImage image)

This method copies the specified buffered image to this 2D image component
object.

Note: The image must be completely loaded before calling this function.

public final BufferedImage getImage()

This method retrieves a copy of the image in this ImageComponent2D object.

7.1.18 ImageComponent3D Object

The ImageComponent3D class defines a 3D array of pixels, used for texture
images.

Constructors

The ImageComponent3D object defines the following constructors.

public ImageComponent3D(int format, int width, int height,
int depth)
public ImageComponent3D(int format, BufferedImage image[])

The first constructor constructs and initializes a 3D image component object
using the specified format, width, height, and depth. The second constructor con-
structs and initializes a 3D image component object using the specified format
and the buffered image array.

Methods

The ImageComponent3D object defines the following methods.

public final int getDepth()
This method retrieves the depth of this 3D image component object.

public final BufferedImage[] getImage()
public final BufferedImage getImage(int index)

These methods retrieve a copy of the images in this ImageComponent3D object.

Java 3D API Specification

NODE COMPONENT OBJECTS DepthComponentFloat Objéttl.20

public final void set(BufferedImage images[])
public final void set(int index, BufferedImage image)

The first method copies the specified array of Bufferedimage objects to this 3D
image component object. The second method copies the specified Bufferedimage
object to this 3D image component object at the specified index.

7.1.19 DepthComponent Object

The DepthComponent object is an abstract base class that defines a 2D array of
depth (Z) values.

Constants

The DepthComponent object has the following flags:

public static final int ALLOW_SIZE_READ
public static final int ALLOW_DATA_READ

These flags, when enabled using theCapability method, allow an applica-
tion to invoke methods that read the associated parameters.

Methods

public int getWidth()
public int getHeightQ)

These methods get the width and height of this object.

7.1.20 DepthComponentFloat Object

The DepthComponentFloat object extends the DepthComponent object and
defines a 2D array of deptH)(values in floating-point format in the range [0, 1].

A value of 0.0 indicates the closestalue to the user, while a value of 1.0 indi-
cates the farthest value.

Constructors

The DepthComponentFloat object defines the following constructors.

public DepthComponentFloat(int width, int height)

Constructs a new floating-point dep#il{uffer) component object with the spec-
ified width and height.

Version 1.1 Alpha 01, February 27, 1998 143

7.1.21 DepthComponentint Object NODE COMPONENT OBJECTS

144

Methods

public void setDepthData(float depthDatal])
public void getDepthData(float depthDatal])

These methods set and retrieve the specified depth data for this object.

7.1.21 DepthComponentint Object

The DepthComponentint object extends the DepthComponent object and defines
a 2D array of depthz) values in integer format. Values are in the range [0)+2
1], wheren is theZ-buffer pixel depth.

Constructors

The DepthComponentint object defines the following constructor.

public DepthComponentInt(int width, int height)

Constructs a new integer deptri{uffer) component object with the specified
width and height.

Methods

public void setDepthData(int depthDatal])
public void getDepthData(int depthDatal])

These methods set and retrieve the specified depth data for this object.

7.1.22 DepthComponentNative Object

The DepthComponentNative object extends the DepthComponent object and
defines a 2D array of deptH)(values stored in the most efficient format for a
particular device. Values are not accessible by the user and may only be used to
read theZ values and subsequently write them back.

Constructors

The DepthComponentNative object defines the following constructor.

public DepthComponentNative(int width, int height)

Constructs a new native deptB-tfuffer) component object with the specified
width and height.

Java 3D API Specification

NODE COMPONENT OBJECTS Bounds Objedt.1.23

7.1.23 Bounds Object

Bounds objects define three varieties of containing volumes. Java 3D uses these
containing volumes to support various culling operations. The types of bounds
include an axis-aligned-box volume, a spherical volume, and a bounding poly-
tope.

Methods

The Bounds object defines the following methods.

public abstract Object clone()

Clone this object.

public abstract void set(Bounds boundsObject)

This method sets the value of this Bounds object to enclose the specified bound-
ing object.

public abstract boolean 1intersect(Point3d origin,
Point3d direction)

public abstract boolean intersect(Point3d point)
public abstract boolean intersect(Bounds boundsObject)
public abstract boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this Bounds object with a ray, a point,
another Bounds object, or an array of Bounds objects, respectively.

public abstract Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding
object.

public abstract void combine(Bounds boundsObject)
public abstract void combine(Bounds boundsObjects[])
public abstract void combine(Point3d point)

public abstract void combine(Point3d points[])

These methods combine this Bounds object with a bounding object, an array of
bounding objects, a point, or an array of points, respectively.

Version 1.1 Alpha 01, February 27, 1998 145

7.1.24 BoundingBox Object NODE COMPONENT OBJECTS

146

public abstract void transform(Bounds bounds, Transform3D trans)
public abstract void transform(Transform3D trans)

The first method tranforms a Bounds object so that it bounds a volume that is the
result of transforming the given bounding object by the given transform. The sec-
ond method transforms the Bounds object by the given transform.

public abstract boolean +isEmpty()

This method tests whether the bounds is empty. A bounds is empty #uitlis
(either by construction or as the result of a null intersection) or if its volume is
negative. A bounds with a volume of zeraist empty.

7.1.24 BoundingBox Obiject

BoundingBox objects are axis-aligned bounding box volumes.

Constructors

The BoundingBox object defines the following constructors.

public BoundingBox()

public BoundingBox(Point3d lower, Point3d upper)
public BoundingBox(Bounds boundsObject)

public BoundingBox(Bounds bounds[])

The first constructor constructs and initializes a 2X unity BoundingBox about the
origin. The second constructor constructs and initializes a BoundingBox from the
given minimum and maximum i y, andz. The third constructor constructs and
initializes a BoundingBox from a bounding object. The fourth constructor con-
structs and initializes a BoundingBox from an array of bounding objects.

Methods
The BoundingBox object defines the following methods.
public void getLower(Point3d pl)

public void setLower(Point3d pl)
public void setLower(double xmin, double ymin, double zmin)

This parameter specifies the lower corner of this bounding box.

Java 3D API Specification

NODE COMPONENT OBJECTS BoundingBox Objec¢t1.24

public void getUpper(Point3d pl)
public void setUpper(Point3d pl)
public void setUpper(double xmax, double ymax, double zmax)

This parameter specifies the upper corner of this bounding box.

public void set(Bounds boundsObject)

Sets the value of this bounding region to enclose the specified bounding object.

public Object clone()

Creates a copy of this bounding box.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)

public void combine(Point3d points[])

These methods combine this bounding box with a bounding object, an array of
bounding objects, a point, or an array of points, respectively.

public void transform(Bounds boundsObject, Transform3D matrix)
public void transform(Transform3D matrix)

The first method transforms a bounding box so that it bounds a volume that is the
result of transforming the given bounding object by the given transform. The sec-
ond method transforms the bounding box by the given transform.

public boolean intersect(Point3d origin, Vector3d direction)
public boolean intersect(Point3d point)

public boolean intersect(Bounds boundsObject)

public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this bounding box with a ray, a point,
another Bounds object, and an array of Bounds objects, respectively.

public boolean intersect(Bounds boundsObject,
BoundingBox newBoundBox)

public boolean intersect(Bounds boundsObjects[],
BoundingBox newBoundBox)

These methods compute a new BoundingBox that bounds the volume created by
the intersection of this BoundingBox with another Bounds object or array of
Bounds objects.

Version 1.1 Alpha 01, February 27, 1998 147

7.1.25 BoundingSphere Object NODE COMPONENT OBJECTS

148

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding box.

public boolean isEmpty()

This method tests whether the bounding box is empty. A bounding box is empty
if it is nu11 (either by construction or as the result of a null intersection) or if its
volume is negative. A bounding box with a volume of zensoisempty.

7.1.25 BoundingSphere Object

The BoundingSphere object defines a spherical bounding volume. It has two
associated values: the center point and the radius of the sphere.

Constructors

The BoundingSphere object defines the following constructors.

public BoundingSphere()

public BoundingSphere(Point3D center, double radius)
public BoundingSphere(Bounds boundsObject)

public BoundingSphere(Bounds boundsObjects[])

The first constructor constructs and initializes a BoundingSphere to unity (radius
= 1.0 and center at 0.0, 0.0, 0.0). The second constructor constructs and initial-
izes a BoundingSphere from a center and radius. The third constructor constructs
and initializes a BoundingSphere from a bounding object. The fourth constructor
constructs and initializes a BoundingSphere from an array of bounding objects.

Methods
The BoundingSphere object defines the following methods.

public double getRadius()
public void setRadius(double r)

This parameter specifies the bounding sphere radius.

public void getCenter(Point3d center)
public void setCenter(Point3d center)

This parameter defines the position of the bounding sphere.

Java 3D API Specification

NODE COMPONENT OBJECTS BoundingSphere Objettl.25

public void set(Bounds boundsObject)

Sets the value of this bounding sphere to enclose the volume specified by the
Bounds object.

public Object clone()

Creates a copy of the bounding sphere.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)

public void combine(Point3d points[])

These methods combine this bounding sphere with a bounding object, an array
of bounding objects, a point, or an array of points, respectively.

public boolean intersect(Point3d origin, Point3d direction)
public boolean intersect(Point3d point)

public boolean intersect(Bounds boundsObject)

public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this bounding sphere with the given
ray, point, another Bounds object, or an array of Bounds objects.

public boolean intersect(Bounds boundsObject,
BoundingSphere newBoundSphere)

public boolean intersect(Bounds boundsObjects[],
BoundingSphere newBoundSphere)

These methods compute a new BoundingSphere that bounds the volume created
by the intersection of this BoundingSphere with another Bounds object or array
of Bounds objects.

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding
sphere.

public void transform(Bounds boundsObject, Transform3D matrix)
public void transform(Transform3D matrix)

The first method transforms a bounding sphere so that it bounds a volume that is
the result of transforming the given bounding object by the given transform. The
second method transforms the bounding sphere by the given transform. Note that
when transforming a bounding sphere by a transformation matrix containing a
nonuniform scale or a shear, the result is a bounding sphere with a radius equal

Version 1.1 Alpha 01, February 27, 1998 149

7.1.26 BoundingPolytope Object NODE COMPONENT OBJECTS

to the maximal scale in any direction—the bounding sphere does not transform
into an ellipsoid.

public String toString()

This method returns a string representation of this class.

public boolean isEmpty()

This method tests whether the bounding sphere is empty. A bounding sphere is
empty if it isnul11 (either by construction or as the result of a null intersection)
or if its volume is negative. A bounding sphere with a volume of zerwtis
empty.

7.1.26 BoundingPolytope Object

A BoundingPolytope object defines a set of planes that prescribe a convex,
closed polygonal bounding region.

Constructors

The BoundingPolytope object defines the following constructors.

public BoundingPolytope()

public BoundingPolytope(Vector4d planes[])
public BoundingPolytope(Bounds boundsObject)
public BoundingPolytope(Bounds boundsObjects[])

The first constructor constructs a new BoundingPolytope object and initializes it
to a cube where -1 xy,z < 1. The second constructor constructs and initializes
a BoundingPolytope from an array of bounding planes. The third constructor
constructs and initializes a BoundingPolytope from a Bounds object. The final
constructor constructs and initializes a BoundingPolytope from an array of
Bounds objects.

Methods
The BoundingPolytope object defines the following methods.

public void setPlanes(Vector4d planes[])
public void getPlanes(Vector4d planes[])

These methods set and retrieve the bounding planes for this BoundingPolytope
object.

150 Java 3D API Specification

NODE COMPONENT OBJECTS BoundingPolytope Objettl.26

public int getNumPlanes()

This method returns the number of bounding planes for this bounding polytope.

public void set(Bounds boundsObject)

This method sets the planes for this BoundingPolytope by keeping its current
number and direction of the planes and computing new plane positions to
enclose the given Bounds object.

public Object clone()

This method creates a copy of the BoundingPolytope object.

public void combine(Bounds boundsObject)
public void combine(Bounds boundsObjects[])
public void combine(Point3d point)

public void combine(Point3d points[])

These methods combine this BoundingPolytope with a bounding object, an array
of bounding objects, a point, or an array of points, respectively.

public void transform(Bounds bounds, Transform3D matrix)
public void transform(Transform3D matrix)

The first method tranforms a bounding polytope so that it bounds a volume that
is the result of transforming the given bounding object by the given transform.
The second method transforms the bounding polytope by the given transform.

public boolean intersect(Point3d origin, Vector3d direction)
public boolean intersect(Point3d point)

public boolean intersect(Bounds boundsObject)

public boolean intersect(Bounds boundsObjects[])

These methods test for the intersection of this BoundingPolytope with the given
ray, point, another Bounds object, or array of Bounds objects, respectively.

public boolean intersect(Bounds boundsObject,
BoundingPolytope newBoundPolytope)

public boolean intersect(Bounds boundsObjects[],
BoundingPolytope newBoundPolytope)

These methods compute a new BoundingPolytope that bounds the volume cre-
ated by the intersection of this BoundingPolytope with another Bounds object or
array of Bounds objects.

Version 1.1 Alpha 01, February 27, 1998 151

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

152

public Bounds closestIntersection(Bounds boundsObjects[])

This method finds the closest bounding object that intersects this bounding poly-
tope.

public boolean isEmpty()

This method tests whether the bounding polytope is empty. A bounding polytope
is empty if it isnul11 (either by construction or as the result of a null intersection)
or if its volume is negative. A bounding polytope with a volume of zermis
empty.

7.1.27 Transform3D Object

Transformations are represented by matrix multiplication and include such oper-
ations as rotation, scaling, and translation. The Transform3D object is repre-
sented internally as a *4 double-precision floating point matrix. The
mathematical representation is row major, as in traditional matrix mathematics.

Constants

public static final int ZERO

public static final int IDENTITY

public static final int SCALE

public static final int TRANSLATION

public static final int ORTHOGONAL

public static final int RIGID

public static final int CONGRUENT

public static final int AFFINE

public static final int NEGATIVE_DETERMINANT

A Transform3D has an associated type that is internally computed when the
transform object is constructed and updated any time it is modified. A matrix
will typically have multiple types. For example, the type associated with an iden-
tity matrix is the result of ORing all of the types, exceptzfitRO andNEGATIVE_
DETERMINANT, together. There are public methods available to get the ORed type
of the transformation, the sign of the determinant, and the least general matrix
type. The matrix type flags are defined as follows:

 ZERO: Zero matrix.
« IDENTITY: Identity matrix.

e SCALE: This matrix is a uniform scale matrix—there are no rotational or
translation components.

Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object.1.27

TRANSLATION: This matrix has translation components only. The scale
is unity and there are no rotational components.

ORTHOGONAL: The four row vectors that make up an orthogonal matrix
form a basis, meaning that they are mutually orthogonal. The scale is unity
and there are no translation components.

RIGID: The upper % 3 of the matrix is orthogonal, and there is a
translation component—the scale is unity.

CONGRUENT: This is an angle- and length-preserving matrix, meaning
that it can translate, rotate, and reflect about an axis, and scale by an
amount that is uniform in all directions. These operations preserve the
distance between any two points, and the angle between any two
intersecting lines.

AFFINE: An affine matrix can translate, rotate, reflect, scale
anisotropically, and shear. Lines remain straight, and parallel lines remain
parallel, but the angle between intersecting lines can change.

A matrix is also classified by the sign of its determinant:

NEGATIVE_DETERMINANT: This matrix has a negative determinant.
An orthogonal matrix with a positive determinant is a rotation matrix. An
orthogonal matrix with a negative determinant is a reflection and rotation
matrix.

The Java 3D model for 44 transformations is

1

mo mp1 mo2 mo3| | x| |x
mo 1 m2 m3 qy| - |y’
neo nel ne2 3| |z| |z
m80 nB1 nB2 nB3 |w |w

1

x'" = nD0x +mM01 0y +m02 [z + m03 [
y' mOx +mllly +ml2 [z + mli3 [
z' = 20k +m210y +m22 [z + m23 v
w = nB0x +m310y +m32 0 +m33 1w

Note: When transforming a Point3f or a Point3d, the input set to 1. When
transforming a Vector3f or Vector3d, the inpuis set to 0.

Version 1.1 Alpha 01, February 27, 1998 153

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

154

Constructors

The Transform3D object defines the following constructors.

public Transform3D()

This constructs and initializes a new Transform3D object to the identity transfor-
mation.

public Transform3D(Transform3D tl1)

This constructs and initializes a new Transform3D object from the specified
transform.

public Transform3D(Matrix3f ml, Vector3d tl, double s)
public Transform3D(Matrix3d ml, Vector3d tl, double s)
public Transform3D(Matrix3f ml, Vector3f tl, float s)

These construct and initialize a new Transform3D object from the rotation
matrix, translation, and scale values. The scale is applied only to the rotational
component of the matrix (upper<®) and not to the translational components of
the matrix.

public Transform3D(Matrix4f ml)
public Transform3D(Matrix4d ml)

These construct and initialize a new Transform3D object from thd fatrix.
The type of the constructed transform is classified automatically.

public Transform3D(float matrix[])
public Transform3D(double matrix[])

These construct and initialize a new Transform3D object from the array of length
16. The top row of the matrix is initialized to the first four elements of the array,
and so on. The type of the constructed transform is classified automatically.

public Transform3D(Quat4d ql, Vector3d tl, double s)
public Transform3D(Quat4f gql, Vector3d tl, double s)
public Transform3D(Quat4f ql, Vector3f tl, float s)

These construct and initialize a new Transform3D object from the quatgmion
the translationtl, and the scale. The scale is applied only to the rotational
components of the matrix (the uppek 3) and not to the translational compo-
nents of the matrix.

Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object.1.27

public Transform3D(GMatrix ml)

This constructs and initializes a new Transform3D object and initializes it to the
upper 4x 4 of the specified GMatrix. If the specified matrix is smaller than
4 x 4, the remaining elements in the transformation matrix are assigned to zero.

Methods

The Transform3D object defines the following methods.

public final int getType()

This method retrieves the type of this matrix. The type is an ORed bitmask of all
of the type classifications to which it belongs.

public final int getBestType(Q)

This method retrieves the least general type of this matrix. The order of general-
ity from least to most is as followsERO, IDENTITY, SCALE, TRANSLATION,
ORTHOGONAL, RIGID, CONGRUENT, andAFFINE. If the matrix iSORTHOGONAL, call-

ing the methodjetDeterminantSign will yield more information.

public final void setAutoNormalize(boolean autoNormalize)
public final boolean getAutoNormalize()

These methods set and retrieve the state of autonormalization. Autonormalization
performs an automatic singular value decomposition (SVD) normalization of the
rotational components (upperx3) of this matrix after every subsequent matrix
operation on this object, unless the boolean is subsequently gg&tsta The
default value for this parameterfisise.

public final boolean getDeterminantSign()

This method returns the sign of the determinant of this matrix. A return value of
true indicates a positive determinant. A return valuegaifse indicates a nega-

tive determinant. In general, an orthogonal matrix with a positive determinant is
a pure rotation matrix; an orthogonal matrix with a negative determinant is both
a rotation and a reflection matrix.

public final void setIdentity()

This method sets this transform to the identity matrix.

public final void setZero()

This method sets this transform to all zeros.

Version 1.1 Alpha 01, February 27, 1998 155

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

156

public final void setEuler(Vector3d euler)

This method sets the rotational component (uppeBBof this transform to the
rotation matrix converted from the Euler angles provided. ekfler parameter
is a Vector3d consisting of roll, pitch, and yaw.

public final void setRotation(Matrix3d ml)
public final void setRotation(Matrix3f ml)

These methods set the rotational component (upped) ®f this transform to the
values in the specified matrix; the other elements of this transform are
unchanged. A singular value decomposition is performed on this object’'s upper
3 x 3 matrix to factor out the scale, then this object’'s uppeB3natrix compo-

nents are replaced by the input rotational components, and finally the scale is
reapplied to the rotational components.

public final void setRotation(Quat4f ql)
public final void setRotation(Quat4d ql)

These methods set the rotational component (upped) ®f this transform to the
appropriate values derived from the specified quaternion; the other elements of
this transform are unchanged. A singular value decomposition is performed on
this object’s upper 3 3 matrix to factor out the scale, then this object’'s upper

3 x 3 matrix components are replaced by the matrix equivalent of the quaternion,
and finally the scale is reapplied to the rotational components.

public final void setRotation(AxisAngle4d al)
public final void setRotation(AxisAngle4f al)

These methods set the rotational component (upped) ®f this transform to the
appropriate values derived from the specified axis-angle; the other elements of
this transform are unchanged. A singular value decomposition is performed on
this object’s upper 3 3 matrix to factor out the scale, then this object's upper

3 x 3 matrix components are replaced by the matrix equivalent of the axis-angle,
and finally the scale is reapplied to the rotational components.

public final void setScale(double scale)
public final double getScale()

The set method sets the scale component of this transform by factoring out the
current scale from the rotational component and multiplying by the new scale.
The get method performs an SVD normalization of this transform to calculate
and return the scale factor; this transform is not modified.

Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object.1.27

public final void setScale(Vector3d scale)
public final void getScale(Vector3d scale)

The set method sets the possibly non-uniform scale component to the current
transform. Any existing scale is first factored out of the existing transform before
the new scale is applied. Thet method returns the possibly non-uniform scale
components of the current transform and places them into the scale vector.

public final void setNonUniformScale(double xScale, double yScale,
double zScale)

This is a deprecated method. Use ¢heScale(Vector3d) method instead.

public final void scaleAdd(double s, Transform3D tl,
Transform3D t2)

public final void scaleAdd(double s, Transform3D tl)

The first method scales transformn by a uniform scale matrix with scale factor
s, then adds transform2 (this = S*tl + t2). The second method scales this
transform by a uniform scale matrix with scale facipthen adds transform t1
(this = S * this + t1).

public final void setRotationScale(Matrix3f ml)
public final void setRotationScale(Matrix3d ml)
public final void getRotationScale(Matrix3f ml)
public final void getRotationScale(Matrix3d ml)

The set methods replace the uppekr 3 matrix values of this transform with the
values in the matrixl. Theget methods retrieve the uppex3® matrix values
of this transform and place them in the maitrix

public String toString()
This method returns the matrix elements of this transform as a string.

public final void add(Transform3D tl)
public final void add(Transform3D tl, Transform3D t2)
public final void sub(Transform3D tl)
public final void sub(Transform3D tl, Transform3D t2)

The firstadd method adds this transform to the transfatnand places the result
back intothis. The seconchdd method adds the transforma and t2 and
places the result intehis. The firstsub method subtracts transforem from this
transform and places the result back ithids. The secondub method subtracts
transformt2 from t1 and places the result inthis.

Version 1.1 Alpha 01, February 27, 1998 157

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

158

public final void add(double scalar)
public final void add(double scalar, Transform3D tl)

The first method adds a scalar to each component of this transform. The second
method adds a scalar to each component of the transfioamd places the result
into this. Transformt1 is not modified.

public final void transpose()
public final void transpose(Transform3D tl)

The first method transposes this matrix in place. The second method transposes
transformt1 and places the value into this transform. The transform t1 is not
modified.

public void rotX(double angle)
public void rotY(double angle)
public void rotZ(double angle)

These three methods set the value of this matrix to a rotation matrix about the
specified axis. The angle to rotate is specified in radians.

public final void setTranslation(Vector3f trans)
public final void setTranslation(Vector3d trans)

This method modifies the translational components of this transform to the val-
ues of the argument. The other values of this transform are not modified.

public final void set(Quat4f ql)
public final void set(Quat4d ql)

These methods set the value of this transform to the matrix conversion of the
guaternion argument.

public final void set(Quat4d ql, Vector3d tl, double s)
public final void set(Quat4f ql, Vector3d tl, double s)
public final void set(Quat4f ql, Vector3f tl, float s)

These methods set the value of this matrix from the rotation expressed by the
guaterniongl, the translatiort1, and the scale.

public final void set(Vector3d trans)
public final void set(Vector3f trans)

These methods set the translational value of this matrix to the specified vector
parameter values and set the other components of the matrix as if this transform
were an identity matrix.

Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object.1.27

public final void set(Vector3d vl, double scale)
public final void set(Vector3f vl, float scale)

These methods set the value of this transform to a scale and translation matrix;
the translation is scaled by the scale factor and all of the matrix values are mod-
ified.

public final void set(Transform3D tl)

This method sets the matrix, type, and state of this transform to the matrix, type,
and state of the transforail.

public final void set(double matrix[])
public final void set(float matrix[])

These methods set the matrix values of this transform to the specified matrix val-
ues.

public final void set(double scale)
public final void set(double scale, Vector3d vl)
public final void set(float scale, Vector3f vl)

The first method sets the value of this transform to a uniform scale; all of the

matrix values are modified. The next two methods set the value of this transform
to a scale and translation matrix; the scale is not applied to the translation and all
of the matrix values are modified.

public final void set(Matrix4d ml)
public final void set(Matrix4f ml)

These methods set the matrix values of this transform to the matrix values in the
specified matrix.

public final void set(Matrix3f ml)
public final void set(Matrix3d ml)

These methods set the rotational and scale components (up@r & this
transform to the matrix values in the specified matrix. The remaining matrix val-
ues are set to the identity matrix. All values of the matrix are modified.

public final void set(Matrix3f ml, Vector3f tl, float s)
public final void set(Matrix3f ml, Vector3d tl, double s)
public final void set(Matrix3d ml, Vector3d tl, double s)

These methods set the value of this matrix from the rotation expressed by the
rotation matrixm1, the translatiort1, and the scalse. The scale is only applied to

the rotational component of the matrix (upper 3 and not to the translational
component of the matrix.

Version 1.1 Alpha 01, February 27, 1998 159

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

160

public final void set(GMatrix matrix)

These methods set the matrix values of this transform to the matrix values in the
specified matrix. The GMatrix object must specify a4 3x 4, or 3x 3 matrix.

public final void set(AxisAngle4f al)
public final void set(AxisAngle4d al)

These methods set the rotational component (upped) ®f this transform to the
matrix conversion of the specified axis-angle argument. The remaining matrix
values are set to the identity matrix. All values of the matrix are modified.

public final void get(double matrix[])
public final void get(float matrix[])

These methods place the values of this transform into the specified matrix of
length 16. The first four elements of the array will contain the top row of the
transform matrix, and so on.

public final void get(Matrix4d matrix)
public final void get(Matrix4f matrix)

These methods place the values of this transform intmatthei x argument.

public final void get(Matrix3d ml)
public final void get(Matrix3f ml)

These methods place the normalized rotational component of this transform into
the 3x 3 matrix argument.

public final double get(Matrix3d ml, Vector3d tl)
public final float get(Matrix3f ml, Vector3f tl)
public final double get(Matrix3f ml, Vector3d tl)

These methods place the normalized rotational component of this transform into
them1 parameter and the translational component intacthegarameter.

public final void get(Quat4d ql)
public final void get(Quat4f ql)

These methods perform an SVD normalization of this matrix to acquire the nor-
malized rotational component. The values are placed into the gquaterhion
parameter.

Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object.1.27

public final double get(Quat4d ql, Vector3d tl)
public final float get(Quat4f ql, Vector3f tl)
public final double get(Quat4f ql, Vector3d tl)

These methods perform an SVD normalization of this transform to calculate the
rotation as a quaternion, the translation, and the scale. None of the matrix values
are modified.

public final void get(Vector3d trans)
public final void get(Vector3f trans)

These methods retrieve the translational components of this transform.

public final void invert()
public final void invert(Transform3D tl)

The first method inverts this transform in place. The second method sets the
value of this transform to the inverse of the transfezmBoth of these methods

use the transform type to determine the optimal algorithm for inverting the trans-
form.

public final double determinant()

This method calculates and returns the determinatiiiaf transform.

public final void mul(Transform3D tl)
public final void mul(Transform3D tl, Transform3D t2)

The first method sets the value of this transform to the result of multiplying itself
with transformt1 (this = this *t1). The second method sets the value of this
transform to the result of multiplying transformal by transform t2

(this =t1 * t2).

public final void mul(double scalar)
public final void mul(double scalar, Transform3D tl)

The first method multiplies this transform by the scalar constant. The second
method multiplies transform t1 by the scalar constant and places the value into
this transform.

public final void mulInverse(Transform3D tl)
public final void mulInverse(Transform3D tl, Transform3D t2)

The first method multiplies this transform by the inverse of transfarmand
places the result intehis transform (this = this * t1}). The second method mul-
tiplies transforme1 by the inverse of transfor® and places the result inthis
transform (this = t1 * t20).

Version 1.1 Alpha 01, February 27, 1998 161

7.1.27 Transform3D Object NODE COMPONENT OBJECTS

162

public final void mulTransposeRight(Transform3D tl,Transform3D t2)
public final void mulTransposelLeft(Transform3D tl, Transform3D t2)
public final void mulTransposeBoth(Transform3D tl, Transform3D t2)

The first method multiplies the transforen by the transpose of transform

and places the result into this transform (this = t1 * transpose(t2)). The second
method multiplies the transpose of transfarmby transformt2 and places the
result intothis transform (this = transpose(tl) * t2). The third method multiplies
the transpose of transfore1l by the transpose af2 and places the result into
this transform (this = transpose(tl) * transpose(t2)).

public final void normalize()
public final void normalize(Transform3D tl)

Both of these methods use an SVD normalization. Thenitsialize method
normalizes the rotational components (upper33 of matrix this and places
the results back intehis. The secondhormalize method normalizes the rota-
tional components (upperx33) of transformt1 and places the result ihis.

public final void normalizeCP(Q)
public final void normalizeCP(Transform3D tl)

Both of these methods use a cross-product (CP) normalization. The fital -
izeCP method normalizes the rotational components (uppeB)3of this trans-
form and places the result into this transform. The seaonehlizeCP method
normalizes the rotational components (upp&r33of transformt1 and places the
result intothis transform.

public boolean equals(Transform3D tl)

This method returnsrue if all of the data members of transfotmn are equal to
the corresponding data membersiiis transform.

public boolean epsilonEquals(Transform3D tl, double epsilon)

This method returnsrue if the L, distance between this transform and trans-
form m1 is less than or equal to the epsilon parameter; otherwise, it returns
false. The L, distance is equal to:

MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs][(this.m(i,j) — m1.m(i,j)]
public int hashCode()

This method returns a hash number based on the data values in this object. Two
different Transform3D objects with identical data values (thatris is returned
for trans.equals(Transform3D)) will return the same hash number. Two

Java 3D API Specification

NODE COMPONENT OBJECTS Transform3D Object.1.27

Transform3D objects with different data members may return the same hash
value, although this is not likely.

public final void transform(Vector4d vec, vector4d vecOut)
public final void transform(Vector4f vec, Vector4f vecOut)
public final void transform(Vector4d vec)
public final void transform(Vector4f vec)

The first two methods transform the vectet by this transform and place the
result intovecout. The last two methods transform the veatet by this trans-
form and place the result back intec.

public final void transform(Point3d point, Point3d pointOut)
public final void transform(Point3f point, point3f pointOut)
public final void transform(Point3d point)
public final void transform(Point3f point)

The first two methods transform theint parameter by this transform and place
the result intopointOut. The last two methods transform theint parameter
by this transform and place the result back piont. In both cases, the fourth
element of theoint input parameter is assumed to be 1.

public final void transform(Vector3d normal, Vector3d normalOut)
public final void transform(Vector3f normal, Vector3f normalOut)
public final void transform(Vector3d normal)
public final void transform(Vector3f normal)

The first two methods transforms thermal parameter by this transform and
place the value intaormalout. The third and fourth methods transform toe-
mal parameter by this transform and place the value backdmimal.

7.1.27.1 View Model Compatibility Mode Methods: Viewing Matrix

public void TookAt(Point3d eye, Point3d center, Vector3d up)

This is a utility method that specifies the position and orientation of a viewing
transformation. It works very much like the similar function in OpenGL. The
inverse of this transform can be used to control the ViewPlatform object within
the scene graph. Alternatively, this transform can be passed directly to the View’s
VpcToEc transform via the compatibility mode viewing functions defined in
Section C.11.2, “Using the Camera-based View Model.”

Version 1.1 Alpha 01, February 27, 1998 163

7.2

164

Node Component Objects: Geometry NODE COMPONENT OBJECTS
7.1.27.2 View Model Compatibility Mode Methods: Projection Matrix

public void frustum(double left, double right, double bottom,
double top, double near, double far)

public void perspective(double fovx, double aspect, double zNear,
double zFar)

public void ortho(double 1eft, double right, double bottom,
double top, double near, double far)

These three utility methods allow an application to create a perspective or paral-
lel (orthographic) projection matrix. These three methods work very much like
the similar functions in OpenGL. The resulting Transform3D can be used to
directly set the View's left and right projection transforms when in compatibility
mode. See Section C.11.2, “Using the Camera-based View Model,” for details.
The fovx parameter specifies the field of view in thdirection in radians.

7.2 Node Component Objects: Geometry

A Geometry object is an abstract class that specifies the geometry component
information required by a Shape3D node. Geometry objects describe both the
geometry and topology of the Shape3D nodes that reference them. Geometry
objects consist of four generic geometric types: CompressedGeometry, Geometr-
yArray, Raster, and Text3D (see Figure 7-3). Each of these geometric types
defines a visible object or set of objects. A Geometry object is used as a compo-
nent object of a Shape3D leaf node.

7.2.1 GeometryArray Object

A GeometryArray object is an abstract class from which several classes are
derived to specify a set of geometric primitives. A GeometryArray contains sep-
arate arrays of the following vertex components: coordinates, colors, normals,
and texture coordinates, and a bitmask indicating which of these components are
present.

A single GeometryArray contains a predefined collection of per-vertex informa-
tion; all of the vertices in a GeometryArray object have the same format and
primitive type. Different GeometryArrays can contain different per-vertex infor-
mation. One GeometryArray might contain only three-space coordinates; another
might contain per-vertex coordinates, normals, colors, and texture coordinates;
yet another might contain any subset of the previous example.

Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Objeci7.2.1

Constants

The GeometryArray object defines the following flags.

SceneGraphObject
NodeComponent
Geometry
CompressedGeometry
Raster
Text3D
GeometryArray
GeometryStripArray
LineStripArray
TriangleStripArray
TriangleFanArray
LineArray
PointArray
QuadArray
TriangleArray
IndexedGeometryArray
IndexedGeometryStripArray
IndexedLineStripArray
IndexedTriangleStripArray
IndexedTriangleFanArray
IndexedLineArray
IndexedPointArray
IndexedQuadArray
IndexedTriangleArray

Figure 7-3 Geometry Component Object Hierarchy

public static final int ALLOW_COORDINATE_READ
public static final int ALLOW_COORDINATE_WRITE

These flags specify that the GeometryArray object allows reading or writing of
the array of coordinates.

public static final int ALLOW_COLOR_READ
public static final int ALLOW_COLOR_WRITE

These flags specify that the GeometryArray object allows reading or writing of
the array of colors.

public static final int ALLOW_NORMAL_READ
public static final int ALLOW_NORMAL_WRITE

These flags specify that the GeometryArray object allows reading or writing of
the array of normals.

Version 1.1 Alpha 01, February 27, 1998 165

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

166

public static final int ALLOW_TEXCOORD_READ
public final static int ALLOW_TEXCOORD_WRITE

These flags specify that the GeometryArray object allows reading or writing of
the array of texture coordinates.

public final static int ALLOW_COUNT_READ

This flag specifies that the GeometryArray object allows reading any count data
(such as the vertex count) associated with the GeometryArray.

Constructors

The GeometryArray object has the following constructor.

public GeometryArray(int vertexCount, int vertexFormat)

Constructs an empty GeometryArray object with the specified vertex format and
number of vertices. TheertexCount parameter specifies the number of vertex
elements in this array. ThertexFormat parameter is a mask indicating which
vertex components are present in each vertex. The vertex format is specified as a
set of flags that are bitwise ORed together to describe the per-vertex data. The
following vertex formats are supported.

» COORDINATES: Specifies that this vertex array contains coordinates.
This bit must be set.
 NORMALS: Specifies that this vertex array contains normals.

» COLOR_3: Specifies that this vertex array contains colors without alpha.
Colors are specified as floating-point values in the range [0.0, 1.0].

+ COLOR_4: Specifies that this vertex array contains colors with alpha.
Colors are specified as floating-point values in the range [0.0, 1.0]. This
takes precedence OvEILOR_3.

« TEXTURE_COORDINATE_2: Specifies that this vertex array contains
2D texture coordinates (S and T).

« TEXTURE_COORDINATE_3: Specifies that this vertex array contains
3D texture coordinates (S, T, and R). This takes precedenCeeaVeRE_
COORDINATE_2.

Methods

GeometryArray methods provide accegst(and set methods) to individual
vertex component arrays in two different modes: as individual elements or as
arrays of multiple elements.

Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Objeci7.2.1

public final int getVertexCount()

Retrieves the number of vertices in the GeometryArray.

public final int getVertexFormat()

Retrieves the vertex format of the GeometryArray.

public final void setCoordinate(int index, float coordinate[])
public final void getCoordinate(int index, float coordinate[])
public final void setCoordinate(int index, double coordinate[])
public final void getCoordinate(int index, double coordinate[])

Sets or retrieves the coordinate associated with the vertex at the specified index.
The coordinate parameter is an array of three values containing the new coordi-
nate.

public final void setCoordinate(int index, Point3f coordinate)
public final void getCoordinate(int index, Point3f coordinate)
public final void setCoordinate(int index, Point3d coordinate)
public final void getCoordinate(int index, Point3d coordinate)

Sets or retrieves the coordinate associated with the vertex at the specified index.
The coordinate parameter is a point containing the new coordinate.

public final void setCoordinates(int index, float coordinates[])
public final void getCoordinates(int index, float coordinates[])
public final void setCoordinates(int index, double coordinates[])
public final void getCoordinates(int index, double coordinates[])

Sets or retrieves the coordinates associated with the vertices starting at the spec-
ified index. Thecoordinates parameter is an array of 3%alues containingn
new coordinates.

public final void setCoordinates(int index, Point3f coordinates[])
public final void getCoordinates(int index, Point3f coordinates[])
public final void setCoordinates(int index, Point3d coordinates[])
public final void getCoordinates(int index, Point3d coordinates[])

Sets or retrieves the coordinates associated with the vertices starting at the spec-
ified index. Thecoordinates parameter is an array of points containing new
coordinates.

public final void setCoordinates(int index, Point3d coordinates[],
int start, int length)

public final void setCoordinates(int index, Point3f coordinates[],
int start, int length)

Version 1.1 Alpha 01, February 27, 1998 167

7.2.1 GeometryArray Object NODE COMPONENT OBJECTS

public final void setCoordinates(int index, float coordinates[],
int start, int length)

public final void setCoordinates(int index, double coordinates[],
int start, int length)

These methods set the coordinates associated with the vertices starting at the
specified index for this object, using coordinate data starting from vertex index
start for Tength vertices.

public final void setColor(int index, float color[])
public final void getColor(int index, float color[])
public final void setColor(int index, byte color[])
public final void getColor(int index, byte color[])

Sets or retrieves the color associated with the vertex at the specified index. The
color parameter is an array of three or four values containing the new color.

public final void setColor(int index, Color3f color)
public final void getColor(int index, Color3f color)
public final void setColor(int index, Color4f color)
public final void getColor(int index, Color4f color)
public final void setColor(int index, Color3b color)
public final void getColor(int index, Color3b color)
public final void setColor(int index, Color4b color)
public final void getColor(int index, Color4b color)

Sets or retrieves the color associated with the vertex at the specified index. The
color parameter is an array containing the new color.

public final void setColors(int index, float colors[])
public final void getColors(int index, float colors[])
public final void setColors(int index, byte colors[])
public final void getColors(int index, byte colors[])

Sets or retrieves the colors associated with the vertices starting at the specified
index. Thecolors parameter is an array of 8br 4*n values containingn new
colors.

public final void setColors(int index, Color3f colors[])
public final void getColors(int index, Color3f colors[])
public final void setColors(int index, Color4f colors[])
public final void getColors(int index, Color4f colors[])
public final void setColors(int index, Color3b colors[])
public final void getColors(int index, Color3b colors[])

168 Java 3D API Specification

NODE COMPONENT OBJECTS GeometryArray Objeci7.2.1

public final void setColors(int index, Color4b colors[])
public final void getColors(int index, Color4b colors[])

Sets or retrieves the colors associated with the vertices starting at the specified
index. Thecolors parameter is an array containing the new colors.

public final void setColors(int index, float colors[], int start,
int length)

public final void setColors(int index, byte colors[], int start,
int length)

public final void setColors(int index, Color3f colors[], int start,
int length)

public final void setColors(int index, Color4f colors[], int start,
int length)

public final void setColors(int index, Color3b colors[], int start,
int Tlength)

public final void setColors(int index, Color4b colors[], int start,
int length)

These methods set the colors associated with the vertices starting at the specified
index for this object, using data tlors starting at indexstart for Tength
colors.

public final void setNormal(int index, float normal[])

public final void getNormal(int index, float normal[])

Sets or retrieves the normal associated with the vertex at the specified index. The
normal parameter is an array of three values containing the new normal.

public final void setNormal(int index, Vector3f normal)

public final void getNormal(int index, Vector3f normal)

Sets or retrieves the normal associated with the vertex at the specified index. The
normal parameter is a vector containing the new normal.

public final void setNormals(int index, float normals[])

public final void getNormals(int index, float normals[])

Sets or retrieves the normals associated with the vertices starting at the specified
index. Thenormals parameter is an array of 13%values containingh new nor-
mals.

public final void setNormals(int index, Vector3f normals[])
public final void getNormals(int index, Vector3f normals[])

Sets or retrieves the normals associated with the vertices starting at the specified
index. Thenormals parameter is an array of vectors containing new normals.

Version 1.1 Alpha 01, February 27, 1998 169

7.2.1

170

GeometryArray Object NODE COMPONENT OBJECTS

public final void setNormals(int index, float normals[], int start,
int length)

public final void setNormals(int index, Vector3f normals[],
int start, int length)

These methods set the normals associated with the vertices starting at the speci-
fied index for this object, using datariarmals starting at indextart and end-
ing at indexstart+length.

public final void setTextureCoordinate(int index,
float texCoord[])

public final void getTextureCoordinate(int index,
float texCoord[])

Sets or retrieves the texture coordinate associated with the vertex at the specified
index. ThetexCoord parameter is an array of two or three values containing the
new texture coordinate.

public final void setTextureCoordinate(int index,
Point2f texCoord)

public final void getTextureCoordinate(int index,
Point2f texCoord)

public final void setTextureCoordinate(int index,
Point3f texCoord)

public final void getTextureCoordinate(int index,
Point3f texCoord)

Sets or retrieves the texture coordinate associated with the vertex at the specified
index. ThetexCoord parameter is a point containing the new texture coordinate.

public final void setTextureCoordinates(int index,
float texCoords[])

public final void getTextureCoordinates(int index,
float texCoords[])

Sets or retrieves the texture coordinates associated with the vertices starting at
the specified index. TheexCoords parameter is an array of ”2or 3*n values
containingn new texture coordinates.

public final void setTextureCoordinates(int index,
Point2f texCoords[])

public final void getTextureCoordinates(int index,
Point2f texCoords[])

public final void setTextureCoordinates(int index,
Point3f texCoords[])

Java 3D API Specification

NODE COMPONENT OBJECTS LineArray Object7.2.3

public final void getTextureCoordinates(int index,
Point3f texCoords[])

Sets or retrieves the texture coordinates associated with the vertices starting at
the specified index. TheexCoords parameter is an array of points containing
the new texture coordinate.

public final void setTextureCoordinates(int index,
float texCoords[], int start, int length)

public final void setTextureCoordinates(int index,
Point2f texCoords[], int start, int length)

public final void setTextureCoordinates(int index,
Point3f texCoords[], int start, int length)

These methods set the texture coordinates associated with the vertices starting at
the specified index for this object, using datatéxCoords starting at index

start and ending at indextart+1ength.

7.2.2 PointArray Object

The PointArray object extends GeometryArray and provides no additional meth-
ods. Obijects of this class draw the array of vertices as individual points.

Constructors

public PointArray(int vertexCount, int vertexFormat)

Constructs an empty PointArray object with the specified vertex format and
number of vertices.

7.2.3 LineArray Object

The LineArray object extends GeometryArray and provides no additional meth-
ods. Objects of this class draw the array of vertices as individual line segments.
Each pair of vertices defines a line segment to be drawn.

Constructors

public LineArray(int vertexCount, int vertexFormat)

Constructs an empty LineArray object with the specified vertex format and num-
ber of vertices.

Version 1.1 Alpha 01, February 27, 1998 171

7.2.4 TriangleArray Object NODE COMPONENT OBJECTS

172

7.2.4 TriangleArray Object

The TriangleArray object extends GeometryArray and provides no additional
methods. Objects of this class draw the array of vertices as individual triangles.
Each group of three vertices defines a triangle to be drawn.

Constructors

public TriangleArray(int vertexCount, int vertexFormat)

Constructs an empty TriangleArray object with the specified vertex format and
number of vertices.

7.2.5 QuadArray Object

The QuadArray object extends GeometryArray and provides no additional meth-

ods. Objects of this class draw the array of vertices as individual quadrilaterals.

Each group of four vertices defines a quadrilateral to be drawn. A quadrilateral

must be planar and convex or results are undefined. A quadrilateral may be ren-
dered as a pair of triangles with either diagonal line arbitrarily chosen to split the

guad.

Constructors

public QuadArray(int vertexCount, int vertexFormat)

Constructs an empty QuadArray object with the specified vertex format and
number of vertices.
7.2.6 GeometryStripArray Object

GeometryStripArray is an abstract class from which all strip primitives (line
strip, triangle strip, and triangle fan) are derived. In addition to specifying the
array of vertex elements, which is inherited from GeometryArray, the Geome-
tryStripArray class specifies an array of per-strip vertex counts that specifies
where the separate strips appear in the vertex array.

Constructors

The GeometryStripArray object has the following constructor.

Java 3D API Specification

NODE COMPONENT OBJECTS TriangleStripArray Object7.2.8

public GeometryStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty GeometryStripArray object with the specified number of
vertices, vertex format, and an array of vertex counts per stripvelftexCount
parameter specifies the number of vertex elements in this array.

The stripVertexCounts parameter is an array that specifies the count of the
number of vertices for each separate strip. The length of this array specifies the
number of separate strips. The sum of the vertex counts for all strips, as specified
by the stripvertexCounts array, must equal the total count of all vertices as
specified by theertexCount parameter.

Methods

The GeometryStripArray object has the following methods.

public final int getNumStrips(Q)

This method returns the number of strips in the GeometryStripArray.

public final void getStripVertexCounts(int stripVertexCounts[])

This method gets an array containing a list of vertex counts for each strip.

7.2.7 LineStripArray Object

The LineStripArray extends GeometryStripArray and provides no additional
methods. Objects of this class draw an array of vertices as a set of connected line
strips. An array of per-strip vertex counts specifies where the separate strips
appear in the vertex array. For every strip in the set, each vertex, beginning with
the second vertex in the array, defines a line segment to be drawn from the previ-
ous vertex to the current vertex.

Constructors

public LineStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty LineStripArray object with the specified number of vertices,
vertex format, and array of vertex counts per strip.

7.2.8 TriangleStripArray Object

The TriangleStripArray extends GeometryStripArray and provides no additional
methods. Objects of this class draw an array of vertices as a set of connected tri-

Version 1.1 Alpha 01, February 27, 1998 173

7.2.9 TriangleFanArray Object NODE COMPONENT OBJECTS

174

angle strips. An array of per-strip vertex counts specifies where the separate
strips appear in the vertex array. For every strip in the set, each vertex, beginning
with the third vertex in the array, defines a triangle to be drawn using the current
vertex and the two previous vertices.

Constructors

public TriangleStripArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty TriangleStripArray object with the specified number of ver-
tices, vertex format, and array of vertex counts per strip.

7.2.9 TriangleFanArray Object

The TriangleFanArray extends GeometryStripArray and provides no additional
methods. Objects of this class draw an array of vertices as a set of connected tri-
angle fans. An array of per-strip vertex counts specifies where the separate strips
(fans) appear in the vertex array. For every strip in the set, each vertex, beginning
with the third vertex in the array, defines a triangle to be drawn using the current
vertex, the previous vertex, and the first vertex. This can be thought of as a col-
lection of convex polygons.

Constructors

public TriangleFanArray(int vertexCount, int vertexFormat,
int stripVertexCounts[])

Constructs an empty TriangleFanArray object with the specified number of verti-
ces, vertex format, and array of vertex counts per strip.

7.2.10 IndexedGeometryArray Object

An IndexedGeometryArray object is an abstract class that extends Geometr-
yArray to allow vertex data to be accessed via a level of indirection. In addition
to the separate arrays of coordinates, colors, normals, and texture coordinates—
inherited from GeometryArray—an IndexedGeometryArray object adds corre-
sponding arrays of coordinate indices, color indices, normal indices, and texture
coordinate indices.

Constants

The IndexedGeometryArray object defines the following flags.

Java 3D API Specification

NODE COMPONENT OBJECTS IndexedGeometryArray Objec.10

public final static int ALLOW_COORDINATE_INDEX_READ
public final static int ALLOW_COORDINATE_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading or
writing of the array of coordinate indices.

public static final int ALLOW_COLOR_INDEX_READ
public static final int ALLOW_COLOR_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading or
writing of the array of color indices.

public static final int ALLOW_NORMAL_INDEX_READ
public static final int ALLOW_NORMAL_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading or
writing of the array of normal indices.

public static final int ALLOW_TEXCOORD_INDEX_READ
public static final int ALLOW_TEXCOORD_INDEX_WRITE

These flags specify that the IndexedGeometryArray object allows reading or
writing of the array of texture coordinate indices.

Constructors

The IndexedGeometryArray object has one constructor that accepts the same
parameters as GeometryArray.

public IndexedGeometryArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedGeometryArray object with the specified number of
vertices, vertex format, and indices.

Methods

IndexedGeometryArray methods provide accegs @ndset methods) to the
individual vertex component index arrays that are used when rendering the
geometry. This access is allowed in two different modes: as individual index ele-
ments or as arrays of multiple index elements.

Version 1.1 Alpha 01, February 27, 1998 175

7.2.10 IndexedGeometryArray Object NODE COMPONENT OBJECTS

176

public final void setCoordinateIndex(int index,
int coordinateIndex)

public final int getCoordinateIndex(int index)

Sets or retrieves the coordinate index associated with the vertex at the specified
index.

public final void setCoordinateIndices(int index,
int coordinateIndices[])

public final void getCoordinateIndices(int index,
int coordinateIndices[])

Sets or retrieves the coordinate indices associated with the vertices starting at the
specified index.

public final void setColorIndex(int index, int colorIndex)

public final int getColorIndex(int index)

Sets or retrieves the color index associated with the vertex at the specified index.
public final void setColorIndices(int index, int colorIndices[])

public final void getColorIndices(int index, int colorIndices[])

Sets or retrieves the color indices associated with the vertices starting at the spec-
ified index.

public final void setNormalIndex(int index, int normalIndex)

public final int getNormalIndex(int index)

Sets or retrieves the normal index associated with the vertex at the specified
index.

public final void setnormalIndices(int index, int normalIndices[])

public final void getNormalIndices(int index, int normalIndices[])

Sets or retrieves the normal indices associated with the vertices starting at the
specified index.

public final void setTextureCoordinateIndex(int index,
int texCoordIndex)

public final int getTextureCoordinateIndex(int index)

Sets or retrieves the texture coordinate index associated with the vertex at the
specified index.

Java 3D API Specification

NODE COMPONENT OBJECTS IndexedLineArray Objeét2.12

public final void setTextureCoordinateIndices(int index,
int texCoordIndices[])

public final void getTextureCoordinateIndices(int index,
int texCoordIndices[])

Sets or retrieves the texture coordinate indices associated with the vertices start-
ing at the specified index.

public final int getIndexCount()

Retrieves the number of indices for this IndexedGeometryArray.

7.2.11 IndexedPointArray Object

The IndexedPointArray object extends IndexedGeometryArray and provides no
additional methods. Objects of this class draw the array of vertices as individual
points.

Constructors

The IndexedPointArray object has the following constructor.

public IndexedPointArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedPointArray object with the specified number of ver-
tices, vertex format (see Section 7.2.1, “GeometryArray Object,” for a descrip-
tion of the supported vertex formats), and the number of indices in this array.

7.2.12 IndexedLineArray Object

The IndexedLineArray object extends IndexedGeometryArray and provides no
additional methods. Objects of this class draw the array of vertices as individual
line segments. Each pair of vertices defines a line segment to be drawn.

Constructors

The IndexedLineArray object has the following constructor.

public IndexedLineArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedLineArray object with the specified number of ver-
tices, vertex format, and the number of indices in this arrayvé&hexFormat
is a mask indicating which components are present in each vertex (see

Version 1.1 Alpha 01, February 27, 1998 177

7.2.13 IndexedTriangleArray Object NODE COMPONENT OBJECTS

178

Section 7.2.1, “GeometryArray Object,” for a description of the supported vertex
formats).

7.2.13 IndexedTriangleArray Object

The IndexedTriangleArray object extends IndexedGeometryArray and provides
no additional methods. Objects of this class draw the array of vertices as individ-
ual triangles. Each group of three vertices defines a triangle to be drawn.

Constructors

The IndexedTriangleArray object has the following constructor.

public IndexedTriangleArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedTriangleArray object with the specified number of
vertices, vertex format, and the number of indices in this arrayvdiexFor-

mat iS a mask indicating which components are present in each vertex (see
Section 7.2.1, “GeometryArray Object” for a description of the supported vertex

formats).

7.2.14 IndexedQuadArray Object

The IndexedQuadArray object extends IndexedGeometryArray and provides no
additional methods. Objects of this class draw the array of vertices as individual
guadrilaterals. Each group of four vertices defines a quadrilateral to be drawn. A
guadrilateral must be planar and convex or results are undefined. A quadrilateral
may be rendered as a pair of triangles with either diagonal line arbitrarily chosen
to split the quad.

Constructors

The IndexedQuadArray object has the following constructor.

public IndexedQuadArray(int vertexCount, int vertexFormat,
int indexCount)

Constructs an empty IndexedQuadArray object with the specified number of ver-
tices, vertex format (see Section 7.2.1, “GeometryArray Object,” for a descrip-
tion of the supported vertex formats), and the number of indices in this array.

Java 3D API Specification

NODE COMPONENT OBJECTS IndexedLineStripArray Objett2.16

7.2.15 IndexedGeometryStripArray Object

IndexedGeometryStripArray is an abstract class from which all strip primitives

(line strip, triangle strip, and triangle fan) are derived. In addition to specifying

the array of vertex elements, which is inherited from IndexedGeometryArray, the
IndexedGeometryArrayStrip class specifies an array of per-strip index counts
that specifies where the separate strips appear in the indexed vertex array.

Constructors

The IndexedGeometryStripArray object has the following constructor.

public IndexedGeometryStripArray(int vertexCount,
int vertexFormat, int indexCount, int stripIndexCounts[])

Constructs an empty IndexedGeometryStripArray object with the specified num-
ber of vertices, vertex format, number of indices in the array, and an array of
index counts per strip. TheertexCount parameter specifies the number of ver-

tex elements in this array. ThertexFormat parameter is a mask indicating
which vertex components are present in each vertex:iddeCount parameter
specifies the number of indices in this array. $heipIndexCounts parameter

is an array that specifies the count of the number of indices for each separate
strip. The length of this array specifies the number of separate strips. The sum of
the index counts for all strips, as specified bydheipIndexCounts array, must

equal the total count of all indices as specified byitiexCount parameter.

Methods
The IndexedGeometryArrayStrip object has the following methods.

public final int getNumStrips()

Gets the number of strips in the IndexedGeometryStripArray.

public final void getStripIndexCounts(int stripIndexCounts[])

Gets a list of theéndexCounts for each strip.

7.2.16 IndexedLineStripArray Object

The IndexedLineStripArray extends IndexedGeometryStripArray and provides

no additional methods. Objects of this class draw an array of vertices as a set of
connected line strips. An array of per-strip index counts specifies where the sep-
arate strips appear in the indexed vertex array. For every strip in the set, each ver-

Version 1.1 Alpha 01, February 27, 1998 179

7.2.17 IndexedTriangleStripArray Object NODE COMPONENT OBJECTS

180

tex, beginning with the second vertex in the array, defines a line segment to be
drawn from the previous vertex to the current vertex.

Constructors

The IndexedLineStripArray object has the following constructor.

public IndexedLineStripArray(int vertexCount, int vertexFormat,
int indexCount, int stripIndexCounts[])

Constructs an empty IndexedLineStrip object with the specified number of verti-
ces, vertex format, number of indices in this array, and an array that specifies
number of indices for each strip. ThertexFormat parameter is a mask indicat-

ing which components are present in each vertex. This is specified as one or
more individual flags that are bitwise ORed together to describe the per-vertex
data (see Section 7.2.1, “GeometryArray Object,” for a description of the sup-
ported vertex formats).

7.2.17 IndexedTriangleStripArray Object

The IndexedTriangleStripArray extends IndexedGeometryStripArray and pro-
vides no additional methods. Objects of this class draw an array of vertices as a
set of connected triangle strips. An array of per-strip index counts specifies
where the separate strips appear in the indexed vertex array. For every strip in the
set, each vertex, beginning with the third vertex in the array, defines a triangle to
be drawn using the current vertex and the two previous vertices.

Constructors

The IndexedTriangleStripArray object has the following constructor.

public IndexedTriangleStripArray(int vertexCount,
int vertexFormat, int indexCount, int stripIndexCounts[])

Constructs an empty IndexedTriangleStripArray object with the specified number
of vertices, vertex format, number of indices in this array, and an array of index
counts per strip. TheertexFormat parameter is a mask indicating which com-
ponents are present in each vertex. This is specified as one or more individual
flags that are bitwise ORed together to describe the per-vertex data (see
Section 7.2.1, “GeometryArray Object,” for a description of the supported vertex
formats).

Java 3D API Specification

NODE COMPONENT OBJECTS CompressedGeometry Objé@.19

7.2.18 IndexedTriangleFanArray Object

The IndexedTriangleFanArray extends IndexedGeometryStripArray and provides

no additional methods. Objects of this class draw an array of vertices as a set of
connected triangle fans. An array of per-strip index counts specifies where the

separate strips (fans) appear in the indexed vertex array. For every strip in the set,
each vertex, beginning with the third vertex in the array, defines a triangle to be

drawn using the current vertex, the previous vertex, and the first vertex. This can
be thought of as a collection of convex polygons.

Constructors

The IndexedTriangleFanArray object has the following constructor.

public IndexedTriangleFanArray(int vertexCount, int vertexFormat,
int indexCount, int stripIndexCounts[])

Constructs an empty IndexedTriangleFanArray object with the specified number
of vertices, vertex format, number of indices in this array, and an array of index
counts per strip. TheertexFormat parameter is a mask indicating which com-
ponents are present in each vertex. This is specified as one or more individual
flags that are bitwise ORed together to describe the per-vertex data (see
Section 7.2.1, “GeometryArray Object,” for a description of the supported vertex
formats).

7.2.19 CompressedGeometry Object

The CompressedGeometry object is used to store geometry in a compressed for-
mat. CompressedGeometry objects use a special format for representing geomet-
ric information in one order of magnitude less space. The representation, though
lossy, preserves significant object quality during compression. There will be
parameters to allow the user to specify the degree of lossy-ness (for example, a
space versus quality knob).

For more information, see Appendix B, “3D Geometry Compression.”

Constants

The CompressedGeometry object specifies the following variables.

Version 1.1 Alpha 01, February 27, 1998 181

7.2.20 CompressedGeometryHeader Object NODE COMPONENT OBJECTS

182

public final static int ALLOW_COUNT_READ
public final static int ALLOW_HEADER_READ
public final static int ALLOW_GEOMETRY_READ

These flags, when enabled using tleCapability method, allow an applica-
tion to invoke methods that read its individual component field information.

Constructors

public CompressedGeometry(CompressedGeometryHeader hdr,
byte geometry[])

Constructs a CompressedGeometry node componenhdFHeld is copied into

the CompressedGeometry object. Tgeemetry parameter must conform to the
compressed geometry format as described in Appendix B, “3D Geometry Com-
pression.”

Methods

public final int getByteCount()

Retrieves the size, in bytes, of the compressed geometry buffer.

public final void getCompressedGeometryHeader
(CompressedGeometryHeader hdr)

Retrieves the header for this CompressedGeometry object. The header is copied
into the CompressedGeometryHeader object provided.
public final void getCompressedGeometry(byte compGeom[])

Retrieves the compressed geometry associated with the CompressedGeometry
object. Copies the compressed geometry from the CompressedGeometry object
into the given array.

public final Shape3D[] decompress()

Decompresses the compressed geometry. Returns an array of Shape nodes con-
taining the decompressed geometry objects.

7.2.20 CompressedGeometryHeader Object

The CompressedGeometryHeader object is used in conjunction with the Com-
pressedGeometry object. The CompressedGeometryHeader object contains infor-
mation specific to the compressed geometry data stored in the

CompressedGeometry NodeComponent object. This header is used to aid in the

Java 3D API Specification

NODE COMPONENT OBJECTS CompressedGeometryHeader Obje2t20

processing of the compressed geometry by decompression routines. All members
in the CompressedGeometryHeader node are public, gethor set routines

are provided. The CompressedGeometryHeader object should be created, and all
values set, by the geometry compression utility.

Constants

public static final int POINT_BUFFER
public static final int LINE_BUFFER
public static final int TRIANGLE_BUFFER

These flags indicate whether the compressed geometry is made up of individual
points, line segments, or triangles.

public static final int COLOR_IN_BUFFER

public static final int COLOR_ALPHA_IN_BUFFER

These flags indicate whether RGB or alpha color information is initialized in the
compressed geometry buffer.

public int majorVersionNumber
public int minorVersionNumber
public int minorMinorVersionNumber

These indicate the major, minor, and minor-minor version numbers for the com-
pressed geometry format that was used to compress the geometry.

public int bufferType

This flag describes the type of data in the compressed geometry buffer. Only one
type may be present in any given compressed geometry buffer.

public int bufferDataPresent

This flag indicates whether a particular data component (for example, color) is
present in the compressed geometry buffer, preceding any geometric data. If a
particular data type is not present then this information will be inherited from the
Appearance object.

Version 1.1 Alpha 01, February 27, 1998 183

7.2.21 Raster Object NODE COMPONENT OBJECTS

184

public double scale
public int size
public double xOffset
public double yOffset
public double zOffset

These flags indicate the scale, size, and andz offsets that need to be applied
to every point in the compressed geometry buffer to restore the geometry to its
original (uncompressed) position.

Constructors

public CompressedGeometryHeader ()

Creates a new CompressedGeometryHeader object to be used for the creation of
a CompressedGeometry NodeComponent object.

7.2.21 Raster Object

The Raster object extends Geometry to allow drawing a raster image that is
attached to a 3D location in the virtual world. The Raster object contains a point
that is defined in the local object coordinate system of the Shape3D node that
references the Raster. The Raster object also contains a type specifier, a reference
to an ImageComponent2D object or a DepthComponent object, and an integer
x,y offset and a size (width, height) to allow reading or writing of a portion of the
referenced image. In addition to being used as a type of geometry for drawing, a
Raster object may be used to read back pixel data (color and Z-buffer) from the
frame buffer in immediate mode.

Constants

The Raster object defines the following flags.

Java 3D API Specification

NODE COMPONENT OBJECTS Raster Objeat.2.21

public static final int ALLOW_POSITION_READ

public static final int ALLOW_POSITION_WRITE
public static final int ALLOW_OFFSET_READ

public static final int ALLOW_OFFSET_WRITE

public static final int ALLOW_IMAGE_READ

public static final int ALLOW_IMAGE_WRITE

public static final int ALLOW_DEPTH_COMPONENT_READ
public static final int ALLOW_DEPTH_COMPONENT_WRITE
public static final int ALLOW_SIZE_READ

public static final int ALLOW_SIZE_WRITE

public static final int ALLOW_TYPE_READ

These flags specify that the Raster object allows reading or writing of the posi-
tion, offset, image, depth component, size, or type.

public static final int RASTER_COLOR

Specifies a Raster object with color data. In this mode, the ImageComponent ref-
erence must point to a valid ImageComponent object.

public static final int RASTER_DEPTH

Specifies a Raster object with depth (Z-buffer) data. In this mode, the depth com-
ponent reference must point to a valid DepthComponent object.

public static final int RASTER_COLOR_DEPTH

Specifies a Raster object with both color and depth (Z-buffer) data. In this mode,
the image component reference must point to a valid ImageComponent object,
and the depth component reference must point to a valid DepthComponent
object.

Constructors

public Raster()

public Raster(Point3f pos, int type, int xOffset, int yOffset,
int width, int height, ImageComponent2D image,
DepthComponent depthComponent)

public Raster(Point3f pos, int type, Point offset, Dimension size,
ImageComponent2D image, DepthComponent depthComponent)

Constructs and initializes a new Raster object. The first form uses default values.
The next two forms construct a new raster image with the specified values.

Version 1.1 Alpha 01, February 27, 1998 185

7.2.21 Raster Object NODE COMPONENT OBJECTS

186

Methods

public void setPosition(Point3f pos)
public void getPosition(Point3f pos)

These methods set and retrieve the position, in object coordinates, of this raster.
This position is transformed into device coordinates and is used as the upper-left
corner of the raster.

public void setType(int type)
public int getType()

These methods set and retrieve the type of this Raster objectydees one of
the following: RASTER_COLOR, RASTER_DEPTH, Or RASTER_COLOR_DEPTH.

public void setOffset(int xOffset, int yOffset)
public void setOffset(Point offset)
public void getOffset(Point offset)

These methods set and retrieve the offset within the array of pixels at which to
start copying.

public void setSize(int width, int height)
public void setSize(Dimension size)
public void getSize(Dimension size)

These methods set and retrieve the number of pixels to be copied from the pixel
array.

public void setImage(ImageComponent2D qimage)
public ImageComponent2D getImage()

These methods set and retrieve the pixel array used to copy pixels to or from a
Canvas3D. This is used when the type is RASTER_COLOR or RASTER_
COLOR_DEPTH.

public void setDepthComponent(DepthComponent depthComponent)
public DepthComponent getDepthComponent()

These methods set and retrieve the DepthComponent used to copy pixels to or
from a Canvas3D. This is used when thge iS RASTER_DEPTH Or RASTER_
COLOR_DEPTH.

Java 3D API Specification

NODE COMPONENT OBJECTS Font3D Object.2.22

7.2.22 Font3D Object

The Font3D object is used to contain 3D glyphs used in rendering 3D text. These
3D glyphs are constructed from a Java 2D font object and a FontExtrusion object
(see Section 7.2.23, “FontExtrusion Object”). To ensure correct rendering, the
2D font object should be created with the default transform. The point size of the
2D font will be used as a rough measure of how fine a tessellation to use when
creating the Font3D object: the larger the point size, in general, the finer the tes-
sellation.

Constructors

public Font3D(Font font, FontExtrusion extrusionPath)

Creates a Font3D object from the specified Font object. The FontExtrusion

object (see Section 7.2.23, “FontExtrusion Object”) contains the extrusion path

to use on the 2D font glyphs. To ensure correct rendering, the font must be cre-
ated with the default AffineTransform. The point size of a Font object is used as
a rough measure of how finely to tessellate the glyphs. A larger point size will, in

general, have finer detail than the same font with a smaller point size. Passing
null for the FontExtrusion parameter results in no extrusion being done.

Custom 3D fonts as well as methods to save 3D fonts to disk will be addressed
after the 1.0 release of this specification.

Methods

public GeometryStripArray[] getAsTriangles(int glyphCode)

This method returns an array of GeometryStripArrays representing the 3D glyph.
The amount of tessellation is roughly determined by the point size used to create
the 2D Font object. A larger point size will, in general, have finer detail than the
same font with a smaller point size.

A 3D glyph is always defined in a normalized space in which the base of the
glyph is 0.0 on thg-axis and the left side of the glyph is at 0.0 on>tfais.
Because of descenders, the glyph’s coordinates can be negative. The maximum
value of this space is the maximum glyph width and height (obtainedrisota
DesignMetrics.getBounds()).

public Bounds getBounds(int glyphCode)
This method returns the 3D bounding box of the specified glyph code.

Version 1.1 Alpha 01, February 27, 1998 187

7.2.23 FontExtrusion Object NODE COMPONENT OBJECTS

188

public Font getFont()

This method returns the Java 2D font used to create this Font3D obiject.

public void getFontExtrusion(FontExtrusion extrudePath)

This method retrieves the FontExtrusion object used to create this Font3D object,
and copies it into the specified parameter. For information about the FontExtru-
sion object, see Section 7.2.23, “FontExtrusion Object.”

7.2.23 FontExtrusion Object

The FontExtrusion object is used to describe the extrusion path for a Font3D
object (see Section 7.2.22, “Font3D Obiject”). The extrusion path is used in con-
junction with a Font2D object. The extrusion path defines the edge contour of 3D
text. This contour is perpendicular to the face of the text. The contour has its ori-
gin at the edge of the glyph, with 1.0 being the height of the tallest glyph.

Constructors

public FontExtrusion()
public FontExtrusion(Shape extrusionShape)

Both of these constructors create a FontExtrusion object. The first constructor
creates the object with the default extrusion shape. The default shape is a straight
line from 0.0 to 0.2 (straight bevel). The second constructor creates a FontExtru-
sion object with the specified extrusion shape. &f@usionShape parameter is

used to construct the edge contour of a Font3D object. Each shape begins with an
implicit point at 0.0.

Methods

public final void setExtrusionShape(Shape extrusionShape)
public final void getExtrusionShape(Shape extrusionShape)

These methods set and retrieve the 2D Shape object associated with this FontEx-
trusion object. The Shape object describes the extrusion path used to create a 3D
glyph from a 2D glyph. Thget method copies the shape from this object to the
given parameter. Theet method copies the given shape into this FontExtrusion
object.

Java 3D API Specification

NODE COMPONENT OBJECTS Text3D Geometry Objei2.24

7.2.24 Text3D Geometry Object

A Text3D object is a text string that has been converted to 3D geometry. The
Font3D object (see Section 7.2.22, “Font3D Object”) determines the appearance
of the Text3D NodeComponent object. Each Text3D object has a text position—
a point in 3D space where the text should be placed. The 3D text can be placed
around this position using different alignments and paths.

Constants

The Text3D object defines the following flags.

public static final int ALLOW_FONT3D_READ

public static final int ALLOW_FONT3D_WRITE

public static final int ALLOW_STRING_READ

public static final int ALLOW_STRING_WRITE

public static final int ALLOW_POSITION_READ

public static final int ALLOW_POSITION_WRITE

public static final int ALLOW_ALIGNMENT_READ

public static final int ALLOW_ALIGNMENT_WRITE

public static final int ALLOW_PATH_READ

public static final int ALLOW_PATH_WRITE

public static final int ALLOW_CHARACTER_SPACING_READ
public static final int ALLOW_CHARACTER_SPACING_WRITE
public static final int ALLOW_BOUNDING_BOX_READ

These flags control reading and writing of the Font3D component information
for Font3D, the String object, the text position value, the text alignment value,
the text path value, the character spacing, and the bounding box.

Constructors

public Text3DQ)

public Text3D(Font3D font3D)

public Text3D(Font3D font3D, String string)

public Text3D(Font3D font3D, String string, Point3f position)

public Text3D(Font3D font3D, String string, Point3f position,
int alignment, int path)

Create a new Text3D object. The first constructor creates the Text3D object with
no Font3D object associated with itn@l 1 string, and all default values: a posi-
tion of (0.0, 0.0, 0.0), an alignment AfIGN_FIRST, and a path OPATH_RIGHT.

The other constructors set the appropriate values to the passed-in parameters.

Version 1.1 Alpha 01, February 27, 1998 189

7.2.24 Text3D Geometry Object NODE COMPONENT OBJECTS

190

Methods

public final Font3D getFont3D()
public final void setFont3D(Font3D font3d)

These methods get and set the Font3D object associated with this Text3D object.

public final String getString(Q
public final void setString(String string)

These methods get and set the character string associated with this Text3D
object.

public final void getPosition(Point3f position)
public final void setPosition(Point3f position)

These methods get and set the text position.pbeétion parameter is used to
determine the initial placement of the string. The text position is used in conjunc-
tion with the alignment and path to determine how the glyphs are to be placed in
the scene. The default value is (0.0, 0.0, 0.0).

public final void setAlignment(int alignment)
public final int getAlignment()

These methods set and get the text alignment policy for this Text3D NodeCom-
ponent object (see Figure 7-4). Thikignment parameter is used to specify how
glyphs in the string are placed in relation to poeition field. Valid values for

the alignment field are:

* ALIGN_CENTER: places the center of the string on the position point.

 ALIGN_FIRST: places the first character of the string on the position
point.

* ALIGN_LAST: places the last character of the string on the position point.

The default value of this field E.IGN_FIRST.

public final void setPath(int path)
public final int getPath()

These methods set and get the node’s path field. This field is used to specify how
succeeding glyphs in the string are placed in relation to the previous glyph (see
Figure 7-4). The path is relative to the local coordinate system of the Text3D
node. The default coordinate system (see Section 3.4, “Coordinate Systems”) is
right-handed with ¥ being up, X horizontal to the right, and Zdirected
toward the viewer. Valid values for this field are as follows:

Java 3D API Specification

NODE COMPONENT OBJECTS Text3D Geometry Objei2.24

ALIGN_FIRST ALIGN_CENTER ALIGN_LAST
oPATH_RIGHT PATH_‘RIGHT PATH_RIGHT.
TFEL HTAPR, TFEL HTAP ol FEL HTAP
P P D
y 0 0
W
[]
D 8 N
[)

(e} W «

w N P

N U

¢ = Text Position Point

Figure 7-4 Various Text Alignments and Paths

» PATH_LEFT: places succeeding glyphs to the left (Ke&irection) of the
current glyph.

» PATH_RIGHT: places succeeding glyphs to the right (tKelirection) of
the current glyph.

» PATH_UP: places succeeding glyphs above (tfielitection) the current
glyph.

» PATH_DOWN: places succeeding glyphs below (thedirection) the
current glyph.

The default value of this field BATH_RIGHT.

public final void getBoundingBox(BoundingBox bounds)

This method retrieves the 3D bounding box that encloses this Text3D object.

public final void setCharacterSpacing(float characterSpacing)
public final float getCharacterSpacing()

These methods set and get the character spacing used to construct the Text3D
string. This spacing is in addition to the regular spacing between glyphs as
defined in the Font object. A value of 1.0 in this space is measured as the width
of the largest glyph in the 2D font. The default value is 0.0.

Version 1.1 Alpha 01, February 27, 1998 191

7.3 Math Component Objects NODE COMPONENT OBJECTS

7.3 Math Component Objects

Java 3D defines a number of additional objects that are used in the construction
and manipulation of other Java 3D objects. These objects provide low-level stor-
age and manipulation control for users. They provide methods for representing
vertex components (for example, color and position), volumes, vectors, and
matrices.

The tuple and matrix math classes are not part of Java 3D per se, but they are
needed by Java 3D and are defined here for convenience. Java 3D uses these
classes internally and also makes them available for use by applications. These

| classes will be delivered in a separa#@ax.vecmath package. The tuple and
matrix math classes are described in detail in Appendix A, “Math Objects.”

7.3.1 Tuple Objects

The tuple objects, listed in Table 7-1, store tuples of length two, three, and four.
Java 3D tuples are used to store various kinds of information such as colors, nor-
mals, texture coordinates, vertices, and so forth.

The tuple classes are further subdivided by storage type, such as point, vector,
color, and so forth, and by class—whether the vector consists of single- or dou-
ble-precision floating-point numbers or bytes. Only the floating-point tuple
classes support math operations.

| Table7-1 Tuple Objects

Class Description

Tuple2f Used to represent two-component coordinates in single-precision floating-point
format. This class is further divided into the following:
Point2f: Representsy point coordinates.
TexCoord2f: Represenksy texture coordinates.
Vector2f: Representsy vector coordinates.

Tuple3b Used to represent three-component color information stored as three bytes. This class
is further divided into the following:
Color3b: Represents RGB color values.

Tuple3d Used to represent point and vector coordinates in double-precision floating-point
format. This class is further divided into the following:
Point3d: Represenisy,z point coordinates.
Vector3d: Represenisy,z vector coordinates.

192 Java 3D API Specification

NODE COMPONENT OBJECTS Matrix Objects 7.3.2

Table 7-1 Tuple Objects (Continued)

Class Description

Tuple3f Used to represent three-component colors, point coordinates, texture coordinates, and
vectors in single-precision floating-point format. This class is further divided into the
following:

Color3f: Represents RGB color values.
Point3f: Representsy,z point coordinates.
TexCoord3f: Represenksy,z texture coordinates.
Vector3f: Representsy,z vector coordinates.

Tupledb Used to represent four-component color information stored as four bytes. This class is
further divided into the following:
Color4b: Represents R@Bcolor values.

Tuple4dd Used to represent four-component color information, quaternions, and vectors stored
in double-precision floating-point format. This class is further divided into the
following:

Point4d: Representsy,zw point coordinates.
Quat4d: Representsy,zw quaternion coordinates.
Vector4d: Represenisy,zw vector coordinates.

Tuple4f Used to represent four-component color information, point coordinates, quaternions,
and vectors in single-precision floating-point format. This class is further divided into
the following:

Color4f: Represents RGBcolor values.

Point4f: Representsy,z,w point coordinates.
Quat4f: Representsy,zw quaternion coordinates.
Vector4f: Representsy,z,w vector coordinates.

AxisAngledd Used to represent four-component axis-angle rotations consisting of double-precision
floating-pointx, y, andz coordinates and a rotation angle in radians.

AxisAngle4f Used to represent four-component axis-angle rotations consisting of single-precision
floating pointx, y, andz coordinates and a rotation angle in radians.

GVector Used to represent a general, dynamically resizeable, one-dimensional vector class.

These are described in more detail in Appendix A, “Math Objects.”

7.3.2 Matrix Objects

The matrix objects, listed in Table 7-2, define a complete3 dr 4x 4 floating-
point transformation matrix. All the vector subclasses operate using this one
matrix type.

Table 7-2 Matrix Objects

Class Description
Matrix3d Used to represent a double-precision floating-pokit3Bmatrix.
Matrix3f Used to represent a single-precision floating-poi¥t3matrix.

Version 1.1 Alpha 01, February 27, 1998 193

7.3.2 Matrix Objects NODE COMPONENT OBJECTS

Table 7-2 Matrix Objects (Continued)

Class Description
Matrix4d Used to represent a double-precision floating-pokidmatrix.
Matrix4f Used to represent a single-precision floating-poist4matrix.

| GMatrix A double-precision, general, dynamically resize&bd M matrix class.

| These are described in more detail in Appendix A, “Math Objects.”

194 Java 3D API Specification

CHAPTER8

View Model

JAVA 3D introduces a new view model that takes Java’s vision of “write once,
run anywhere” and generalizes it to include display devices and
six-degrees-of-freedom input peripherals such as head trackers. This “write once,
view everywhere” nature of the new view model means that an application or
applet written using the Java 3D view model can render images to a broad range
of display devices, including standard computer displays, multiple-projection
display rooms, and head-mounted displays, without modification of the scene
graph. It also means that the same application, once again without modification,
can render stereoscopic views and can take advantage of the input from a head
tracker to control the rendered view.

Java 3D’s view model achieves this versatility by cleanly separating the virtual
and the physical world. This model distinguishes between how an application
positions, orients, and scales a ViewPlatform object (a viewpoint) within the vir-
tual world and how the Java 3D renderer constructs the final view from that
viewpoint’s position and orientation. The application controls the ViewPlatform’s
position and orientation; the renderer computes what view to render using this
position and orientation, a description of the end-user’'s physical environment,
and the user’s position and orientation within the physical environment.

This chapter first explains why Java 3D chose a different view model and some
of the philosophy behind that choice. It next describes how that model operates
in the simple case of a standard computer screen without head tracking—the
most common case. Finally, it presents the relevant parts of the APl from a
developer’'s perspective. Appendix C, “View Model Details,” describes the
Java 3D view model from an advanced developer and Java 3D implementor’s
perspective.

Version 1.1 Alpha 01, February 27, 1998 195

8.1

196

Why a New Model? VIEW MODEL

8.1 Why a New Model?

Camera-based view models as found in low-level APIs give developers control
over all rendering parameters. This makes sense when dealing with custom appli-
cations, less sense when dealing with systems that wish to have broader applica-
bility: systems such as viewers or browsers that load and display whole worlds as
a single unit or systems where the end users view, navigate, display, and even
interact with the virtual world.

Camera-based view models emulate a camera in the virtual world, not a human
in a virtual world. Developers must continuously reposition a camera to emulate
“a human in the virtual world.”

The Java 3D view model incorporates head tracking directly, if present, with no
additional effort from the developer, thus providing end users with the illusion
that they actually exist inside a virtual world.

The Java 3D view model, when operating in a non-head-tracked environment and
rendering to a single, standard display, acts very much like a traditional cam-
era-based view model, with the added functionality of being able to transparently
generate stereo views.

8.1.1 The Physical Environment Influences the View

Letting the application control all viewing parameters is not reasonable in sys-
tems in which the physical environment dictates some of the view parameters.

One example of this is a head-mounted display (HMD), where the optics of the
head-mounted display directly determine the field of view that the application
should use. Different HMDs have different optics, making it unreasonable for
application developers to hard-wire such parameters or allow end users to vary
that parameter at will.

Another example is a system that automatically computes view parameters as a
function of the user’s current head position. The specification of a world and a
predefined flight path through that world may not exactly specify an end-user’s
view. HMD users would expect to look and thus see to their left or right even
when following a fixed path through the environment—imagine an amusement
park ride with vehicles that follow fixed paths to present content to their visitors,
but visitors can continue to move their heads while on those rides.

Depending on the physical details of the end-user’s environment, the values of
the viewing parameters, particularly the viewing and projection matrices, will
vary widely. The factors that influence the viewing and projection matrices

Java 3D API Specification

VIEW MODEL The Physical World 8.2.2

include the size of the physical display, how the display is mounted (on the user’s
head or on a table), whether the computer knows the user’s head location in three
space, the head mount’'s actual field of view, the display’s pixels per inch, and
other such parameters. For more information, see Appendix C, “View Model
Details.”

8.2 Separation of Physical and Virtual

The Java 3D view model separates the virtual environment, where the application
programmer has placed objects in relation to one another, from the physical envi-
ronment, where the user exists, sees computer displays, and manipulates input
devices.

Java 3D also defines a fundamental correspondence between the user’s physical
world and the virtual world of the graphic application. This physical-to-vir-
tual-world correspondence defines a single common space, a space where an
action taken by an end user affects objects within the virtual world and where
any activity by objects in the virtual world affects the end-user’s view.

8.2.1 The Virtual World

The virtual world is a common space in which virtual objects exist. The virtual
world coordinate system exists relative to a high-resolution Locale—each Locale
object defines the origin of virtual world coordinates for all of the objects
attached to that Locale. The Locale that contains the currently active
ViewPlatform object defines the virtual world coordinates that are used for ren-
dering. Java3D eventually transforms all coordinates associated with scene graph
elements into this common virtual world space.

8.2.2 The Physical World

The physical world is just that—the real, physical world. This is the space in
which the physical user exists, and within which he or she moves his or her head
and hands. This is the space in which any physical trackers define their local
coordinates, and in which several calibration coordinate systems are described.

The physical world is a space, not a common coordinate system between differ-
ent execution instances of Java 3D. So while two different computers at two dif-
ferent physical locations on the globe may be running at the same time, there is
no mechanism directly within Java 3D to relate their local physical world coordi-
nate systems with each other. Because of calibration issues, the local tracker (if

Version 1.1 Alpha 01, February 27, 1998 197

8.3 The Objects That Define the View VIEW MODEL

any) defines the local physical world coordinate system known to a particular
instance of Java 3D.

8.3 The Objects That Define the View

Java 3D distributes its view model parameters across several objects, specifically,
the View object and its associated component objects, the PhysicalBody object,
the PhysicalEnvironment object, the Canvas3D object, and the Screen3D obiject.
Figure 8-1 shows graphically the central role of the View object and the subsid-
iary role of its component objects.

Virtual Universe

Hi-Res Locale

View | — |Canvas3D »| Screen3D

A A Physical Physical
Body

Environment

Figure 8-1 View Object, Its Component Objects, and Their Interconnection

The view-related objects shown in Figure 8-1 and their roles are as follows. For
each of these objects, the portion of the API that relates to modifying the virtual
world and the portion of the API that is relevant to non-head-tracked standard
display configurations are derived in this chapter. The remainder of the details
are described in Appendix C, “View Model Details.”

* ViewPlatform A leaf node that locates a view within a scene graph. The
ViewPlatform’s parents specify its location, orientation, and scale within

198 Java 3D API Specification

VIEW MODEL ViewPlatform: A Place in the Virtual World 8.4

the virtual universe. See Section5.10, “ViewPlatform Node,” and
Section 8.4, “ViewPlatform: A Place in the Virtual World,” for more infor-
mation.

* View. The main view object. It contains many pieces of view state. See
Section 8.7, “The View Object,” for more information.

e Canvas3D The 3D version of the Abstract Windowing Toolkit (AWT)
Canvas object. It represents a window in which Java 3D will draw images.
It contains a reference to a Screen3D object and information describing the
Canvas3D’s size, its shape, and its location within the Screen3D object.
See Section 8.9, “The Canvas3D Obiject,” for more information.

» Screen3D An object that contains information describing the display
screen’s physical properties. Java 3D places display-screen information in
a separate object to prevent the duplication of screen information within
every Canvas3D object that shares a common screen. See Section 8.8,
“The Screen3D Object,” for more information.

» PhysicalBody An object that contains calibration information describing
the user’s physical body. See Section 8.10, “The PhysicalBody Object,”
for more information.

» PhysicalEnvironmentAn object that contains calibration information de-
scribing the physical world, mainly information that describes the environ-
ment's six-degrees-of freedom tracking hardware, if present. See
Section 8.11, “The PhysicalEnvironment Object,” for more information.

Together, these objects describe the geometry of viewing rather than explicitly
providing a viewing or projection matrix. The Java 3D renderer uses this infor-
mation to construct the appropriate viewing and projection matrices. The geo-
metric focus of these view objects provides more flexibility in generating
views—a flexibility needed to support alternative display configurations.

8.4 ViewPlatform: A Place in the Virtual World

A ViewPlatform leaf node defines a coordinate system, and thus a reference
frame with its associated origin or reference point, within the virtual world. The
ViewPlatform serves as a point of attachment for View objects and as a base for
determining a renderer’s view.

Figure 8-2 shows a portion of a scene graph containing a ViewPlatform node.
The nodes directly above a ViewPlatform determine where that ViewPlatform is
located and how it is oriented within the virtual world. By modifying the

Transform3D object associated with a TransformGroup node anywhere directly

Version 1.1 Alpha 01, February 27, 1998 199

8.4.1 Moving Through the Virtual World VIEW MODEL

above a ViewPlatform, an application or behavior can move that ViewPlatform
anywhere within the virtual world. A simple application might define one Trans-
formGroup node directly above a ViewPlatform, as shown in Figure 8-2.

A VirtualUniverse may have many different ViewPlatforms, but a particular View
object can only attach itself to a single ViewPlatform. Thus, each rendering onto
a Canvas3D is done from the point of view of a single ViewPlatform.

Virtual Universe

Hi-Res Locale

BranchGroup @

TransformGroup

Y

ViewPlatform

View | - {Canvas3D Screen3D

Physical Physical
Body Environment

Figure 8-2 A Portion of a Scene Graph Containing a ViewPlatform Object

8.4.1 Moving Through the Virtual World

An application navigates within the virtual world by modifying a ViewPlatform’s
parent TransformGroup. Examples of applications that modify a ViewPlatform’s
location and orientation include browsers, object viewers that provide naviga-
tional controls, applications that do architectural walkthroughs, and even
search-and-destroy games.

Controlling the ViewPlatform object can produce very interesting and useful
results. Our first simple scene graph (see Figure 1-2) defines a scene graph for a
simple application that draws an object in the center of a window and rotates that

200 Java 3D API Specification

VIEW MODEL Dropping In on a Favorite Place 8.4.2

object about its center point. In that figure, the Behavior object modifies the
TransformGroup directly above the Shape3D node.

An alternative application scene graph, shown in Figure 8-3, leaves the central
object alone and moves the ViewPlatform around the world. If the shape node
contains a model of the earth, this application could generate a view similar to
that seen by astronauts as they orbit the earth.

Had we populated this world with more objects, this scene graph would allow
navigation through the world via the Behavior node.

Virtual Universe

Locale Object

BranchGroup Nodes

TransformGroup Nodes

User Code
and Data

Shape3D Nod

‘ 4— View

ViewPlatform Object ¢

Other Objects

Figure 8-3 A Simple Scene Graph with View Control

Applications and behaviors manipulate a TransformGroup through its access
methods. These methods (defined in Section 4.3, “TransformGroup Node”) allow
an application to retrieve and set the Group node’s Transform3D object.
Transform3D Node methods inclugetTransform andsetTransform.

8.4.2 Dropping In on a Favorite Place

A scene graph may contain multiple ViewPlatform objects. If a user detaches a
View object from a ViewPlatform and then reattaches that View to a different
ViewPlatform, the image on the display will now be rendered from the point of
view of the new ViewPlatform. For more information, see Section 8.7, “The
View Object.”

Version 1.1 Alpha 01, February 27, 1998 201

8.4.3 View Attach Policy VIEW MODEL

8.4.3 View Attach Policy

The actual view that Java 3D’s renderer draws depends on the view attach policy
specified within the currently attached ViewPlatform. The ViewPlatform defines
the following methods for setting and retrieving the view attach policy.

Methods

public final void setViewAttachPolicy(int policy)
public final int getViewAttachPolicy(Q)

These methods set and retrieve the coexistence center in virtual world policy. A
ViewPlatform’s view attach policydetermines how Java 3D places the virtual
eyepoint within the ViewPlatform. The policy can have one of the following val-
ues:

« NOMINAL_HEAD: Ensures that the end-user's nominal eye position in
the physical world corresponds to the virtual eye’s nominal eye position in
the virtual world (the ViewPlatform’s origin). In essence, this policy tells
Java 3D to position the virtual eyepoint relative to the ViewPlatform origin
in the same way as the physical eyepoint is positioned relative to its nom-
inal physical-world origin. Deviations in the physical eye’s position and
orientation from nominal in the physical world generate corresponding de-
viations of the virtual eye’s position and orientation in the virtual world

» NOMINAL_FEET: Ensures that the end-user’s virtual feet always touch
the virtual ground. This policy tells Java 3D to compute the physi-
cal-to-virtual-world correspondence in a way that enforces this constraint.
Java 3D does so by appropriately offsetting the physical eye’s position by
the end-user’s physical height. Java 3D usegadfiénalEyeHeightFrom-
Ground parameter found in the PhysicalBody object (see Section 8.10,
“The PhysicalBody Object”) to perform this computation.

» NOMINAL_SCREEN: Allows an application to always have the virtual
eyepoint appear at some “viewable” distance from a point of interest. This
policy tells Java 3D to compute the physical-to-virtual-world correspon-
dence in a way that ensures that the renderer moves the nominal virtual
eyepoint away from the point of interest by the amount specified by the
nominalEyeOffsetFromNominalScreen parameter found in the Physical-
Body object (see Section 8.10, “The PhysicalBody Object”).

* NOMINAL_SCREEN_SCALED: This value is deprecated. All view at-
tach policies are now affected by the screen scale so this policy is identical
to NOMINAL_SCREEN, which should be used instead.

202 Java 3D API Specification

VIEW MODEL Composing Model and Viewing Transformation8.5.1

8.4.4 Associating Geometry with a ViewPlatform

Java 3D does not have any built-in semantics for displaying a visible manifesta-
tion of a ViewPlatform within the virtual world (asvatar). However, a devel-
oper can construct and manipulate an avatar using standard Java 3D constructs.

A developer can construct a small scene graph consisting of a TransformGroup
node, a behavior leaf node, and a shape node and insert it directly under the
BranchGroup node associated with the ViewPlatform object. The shape node
would contain a geometric model of the avatar's head. The behavior node would
change the TransformGroup’s transform periodically to the value stored in a
View object’s UserHeadTovworld parameter, (see Appendix C, “View Model
Details”). The avatar’s virtual head, represented by the shape node, will now
move around in lock-step with the ViewPlatform’s TransformGraogany rel-

ative position and orientation changes of the user’s actual physical head (if a sys-
tem has a head tracker).

8.5 Generating a View

Java 3D generates viewing matrices in one of a few different ways, depending on
whether the end user has a head-mounted or a room-mounted display environ-
ment and whether or not head tracking is enabled. This section describes the
computation for a non-head-tracked, room-mounted display—a standard com-
puter display. Other environments are described in Appendix C, “View Model
Details.”

In the absence of head tracking, the ViewPlatform’s origin specifies the virtual
eye’s location and orientation within the virtual world. However, the eye location
provides only part of the information needed to render an image. The renderer
also needs a projection matrix. In the default mode, Java 3D uses the projection
policy, the specified field-of-view information, and the front and back clipping
distances to construct a viewing frustum.

8.5.1 Composing Model and Viewing Transformations

Figure 8-4 shows a simple scene graph. To draw the object labeled “S,” Java 3D
internally constructs the appropriate model, view platform, eye, and projection
matrices. Conceptually, the model transformation for a particular object is com-
puted by concatenating all the matrices in a direct path between the object and
the VirtualUniverse. The view matrix is then computed—again, conceptually—
by concatenating all the matrices between the VirtualUniverse object and the

Version 1.1 Alpha 01, February 27, 1998 203

8.5.1 Composing Model and Viewing Transformations VIEW MODEL

ViewPlatform attached to the current View object. The eye and projection matri-
ces are constructed from the View object and its associated component objects.

In our scene graph, what we would normally consider the model transformation
would consist of the following three transformatiohs:,T,. By multiplying

LT ,T, by a vertex in the shape object, we would transform that vertex into the
virtual universe’s coordinate system. What we would normally consider the view
platform transformation would bd.T,,)* or T,,/'L-%. This presents a problem
since coordinates in the virtual universe are 256-bit fixed-point values, which
cannot be used to efficiently represent transformed points.

Fortunately, however, there is a solution to this problem. Composing the model
and view platform transformations gives us

T 'L T =TT T, =TT,

the matrix that takes vertices in an object’s local coordinate system and places
them in the ViewPlatform’s coordinate system. Note that the high-resolution
Locale transformations cancel each other out, which removes the need to actually
transform points into high-resolution VirtualUniverse coordinates. The general
formula of the matrix that transforms object coordinates to ViewPlatform coordi-
nates isT ;L. T, T, T,T,...T.

As was mentioned above, the View object contains the remainder of the view
information, specifically, the eye matrixg, that takes points in the
ViewPlatform’s local coordinate system and translates them into the user’s eye
coordinate system, and the projection matfxhat projects objects in the eye’s
coordinate system into clipping coordinates. The final concatenation of matrices
for rendering our shape object “S” on the specified CanvasBETs,T,T,. In
general this i®ET, ... T\, T T T, T

The details of how Java 3D constructs the matitcesidP in different end-user
configurations are described in Appendix C, “View Model Details.”

204 Java 3D API Specification

VIEW MODEL Multiple Locales 8.5.2

Virtual Universe

Hi-Res Locale

Y

View | - {Canvas3D »| Screen3D

Physical Physical
Body Environment

Figure 8-4 Object and ViewPlatform Transformations

8.5.2 Multiple Locales

Java 3D supports multiple high-resolution Locales. In some cases, these Locales
are close enough to each other that they can “see” each other, meaning that
objects can be rendered even though they are not in the same Locale as the
ViewPlatform object that is attached to the View. Java 3D automatically handles
this case without the application having to do anything. As in the previous exam-
ple, where the ViewPlatform and the object being rendered are attached to the
same Locale, Java 3D internally constructs the appropriate matrices for cases in
which the ViewPlatform and the object being renderednateattached to the

same Locale.

Let's take two Locales, Land L, with the View attached to a ViewPlatform in

L,. According to our general formula, the modeling transformation—the trans-
formation that takes points in object coordinates and transforms them into Virtu-
alUniverse coordinates—i&T ;T,...T,. In our specific example, a point in
Locale L, would be transformed into VirtualUniverse coordinates by
L,T,T,...T,.. The view platform transformation would be,T,,T,;...T,)™* or

T, 2. T, T, 'L~ Composing these two matrices gives us

Tt Tt i, T T T

Version 1.1 Alpha 01, February 27, 1998 205

8.6

206

A Minimal Environment VIEW MODEL

Thus, to render objects in another Locale, it is sufficient to compute, and

use that as the starting matrix when composing the model transformations. Given
that a Locale is represented by a single high-resolution coordinate position, the
transformationL /'L, is a simple translation by, —L,. Again, it is not neces-

sary to actually transform points into high-resolution VirtualUniverse coordi-
nates.

In general, Locales that are close enough that the difference in their high-resolu-
tion coordinates can be represented in double precision by a noninfinite value are
close enough to be rendered. In practice, more sophisticated culling techniques
can be used to only render those Locales that really are “close enough.”

8.6 A Minimal Environment

An application must create a minimal set of Java 3D objects before Java 3D can
render to a display device. In addition to a Canvas3D object, the application must
create a View object, with its associated PhysicalBody and PhysicalEnvironment
objects, and the following scene graph elements:

» A VirtualUniverse object

* A high-resolution Locale object

» A BranchGroup node object

* A TransformGroup node object with associated transform

* A ViewPlatform leaf node object that defines the position and orientation
within the virtual universe for generating views

8.7 The View Object

The View object coordinates all aspects of the rendering process. It contains all
the parameters or references to objects containing the parameters that determine
how to render images to the windows represented by its Canvas3D objects. It
also contains the set of canvases that represent various “windows” onto a view.

Java 3D allows applications to specify multiple simultaneously active View
objects, each controlling its own set of canvases. For more details on a View
object’s internals, see Section C.5, “The View Object.”

Constructors

The View object specifies the following constructor.

Java 3D API Specification

VIEW MODEL The View Object 8.7

public View()

Constructs and initializes a new View object.

Methods

The View object specifies the following methods.

public final void setPhysicalBody(PhysicalBody physicalBody)
public final PhysicalBody getPhysicalBody()

These methods set and retrieve the View's PhysicalBody object. See
Section 8.10, “The PhysicalBody Object,” for more information on the Physical-
Body object.

public final void setPhysicalEnvironment(PhysicalEnvironment
physicalEnvironment)

public final PhysicalEnvironment getPhysicalEnvironment()

These methods set and retrieve the View's PhysicalEnvironment object. See
Section 8.11, “The PhysicalEnvironment Object,” for more information on the
PhysicalEnvironment object.

public final void attachViewPlatform(ViewPlatform vp)

This method attaches a ViewPlatform leaf node to this View, replacing the exist-
ing ViewPlatform. If the ViewPlatform is part of a live scene graph, or is subse-
guently made live, the scene graph is rendered into all canvases in this View
object’s list of Canvas3D objects. To remove a ViewPlatform without attaching a
new one—causing the View to no longer be renderedwta reference may be
passed to this method. In this case, the behavior is as if rendering were simulta-
neously stopped on all canvases attached to the View—the last frame that was
rendered in each remains visible until the View is again attached to a live
ViewPlatform object. See Section 5.10, “ViewPlatform Node,” for more informa-
tion on ViewPlatform objects.

public final ViewPlatform getViewPlatform()

This method retrieves the currently attached ViewPlatform object.

public final Canvas3D getCanvas3D(int index)

public final void setCanvas3D(Canvas3D canvas3D, int index)
public final void addCanvas3D(Canvas3D canvas3D)

public final void insertCanvas3D(Canvas3D canvas3D, int index)

Version 1.1 Alpha 01, February 27, 1998 207

8.7.1

208

Projection Policy VIEW MODEL

public final void removeCanvas3D(int index)
public final void removeCanvas3D(Canvas3D canvas3D)

These methods set, retrieve, add to, insert after, and remove a Canvas3D object
from this View. The index specifies the reference to the Canvas3D object within
the View object. See Section 8.9, “The Canvas3D Object” for more information
on Canvas3D objects.

public final Enumeration getAllCanvas3Ds()

This method gets the Enumeration object of all the Canvas3Ds.
public final void addInputDevice(InputDevice device)
public final Enumeration allInputDevices()

These methods allow the introduction of new input devices into a Java 3D envi-
ronment and the retrieval of all the input devices available within a Java 3D envi-
ronment. See Section 10.1, “InputDevice Interface” for more information on
input devices.

public final void addAudioDevice(AudioDevice device)
public final Enumeration allAudioDevices()

These methods allow the introduction of new audio devices into a Java 3D envi-
ronment and the retrieval of all the audio devices available within a Java 3D
environment. See Section 11.1, “AudioDevice Interface,” for more information
on audio devices.

public final void setAudioDevice(AudioDevice device)

This method adds an AudioDevice to the list of audio devices.

8.7.1 Projection Policy

The projection policy informs Java 3D whether it should generate a parallel pro-
jection or a perspective projection. This policy is attached to the Java 3D View
object.

Methods

public final void setProjectionPolicy(int policy)
public final int getProjectionPolicy()

These two methods set and retrieve the current projection policy for this view.
The projection policies are as follows:

Java 3D API Specification

VIEW MODEL Projection Policy 8.7.1

e PARALLEL PROJECTION: Specifies that Java 3D should compute a
parallel projection.

* PERSPECTIVE_PROJECTION: Specifies that Java 3D should compute a
perspective projection. This is the default setting.

public final void setlLocalEyelLightingEnable(boolean flag)
public final boolean getLocalEyeLightingEnable()

These methods set and retrieve the local eye lighting flag, which indicates
whether the local eyepoint is used in lighting calculations for perspective projec-
tions. If this flag is set tarue, the view vector is calculated per vertex based on
the direction from the actual eyepoint to the vertex. If this flag is Setik®e, a
single view vector is computed from the eyepoint to the center of the view frus-
tum. This is callednfinite eye lightingLocal eye lighting is disabled by default,
and is ignored for parallel projections.

8.7.1.1 Window Sizing and Movement

When users resize or move windows, Java 3D can choose to think of the window
as attached either to the physical world or to the virtual world. Wiheow
resize policyallows an application to specify how the view model will handle
resizing requests. The window resize policies are specified by two constants.

Constants

public static final int PHYSICAL_WORLD

This variable specifies the policy for resizing and moving windows. This policy
is used in specifyingvindowResizePolicy andwindowMovementPolicy. This
variable specifies that the specified action takes place only in the physical world.
public static final int VIRTUAL_WORLD

This variable specifies that Java 3D applies the associated policy in the virtual
world.

Methods

public final void setWindowResizePolicy(int policy)
public final int getWindowResizePolicy()

This variable specifies how Java 3D modifies the view when a user resizes a win-
dow. A value ofPHYSICAL_WORLD states that Java 3D will treat window resizing
operations a®nly happening in the physical world. This implies that rendered

Version 1.1 Alpha 01, February 27, 1998 209

8.7.2 Clip Policies VIEW MODEL

210

objects continue to fill the same percentage of the newly sized window, using
more or less pixels to draw those objects, depending on whether the window
grew or shrank in size. A value @IRTUAL_WORLD states that Java 3D will treat
window resizing operations as also happening in the virtual world whenever a
resizing occurs in the physical world. This implies that rendered objects remain
the same size (use the same number of pixels), but since the window becomes
larger or smaller, the user sees more or less of the virtual world. The default
value iSPHYSICAL_WORLD.

public final void setWindowMovementPolicy(int policy)
public final int getWindowMovementPolicy()

This variable specifies what part of the virtual world Java 3D will draw as a func-
tion of the window location on the display screen. A valu@HYSICAL_WORLD

states that the window acts as if it mowe$y on the physical screen. As the user
moves the window on the screen, the window’s position on the screen changes
but Java 3D continues to draw exactly the same image within that window. A
value ofVIRTUAL_WORLD states that the window acts as if it also moves within the
virtual world. As the user moves the window on the physical screen, the win-
dow’s position on the screen changes and the image that Java 3D draws changes
as well to match what would be visible in the virtual world from a window in
that new position. The default valuePisySICAL_WORLD.

8.7.2 Clip Policies

The clip policies determine how Java 3D interprets clipping distances to both the
near and far clip planes. The policies can contain one of four values specifying
whether a distance measurement should be interpreted in the physical or the vir-
tual world and whether that distance measurement should be interpreted relative
to the physical eyepoint or the physical screen.

Methods

public final void setFrontClipPolicy(int policy)
public final int getFrontClipPolicy()

public final void setBackClipPolicy(int policy)
public final int getBackClipPolicy()

The front clip policy determines where Java 3D places the front clipping plane.
The value is one of the followin@HYSICAL_EYE, PHYSICAL_SCREEN, VIRTUAL_
EYE, Or VIRTUAL_SCREEN. The default value iBHYSICAL_EYE.

Java 3D API Specification

VIEW MODEL Projection and Clip Parameters 8.7.3

The back clip policydetermines where Java 3D places the back clipping plane.
The value is one of the followin@HYSICAL_EYE, PHYSICAL_SCREEN, VIRTUAL_
EYE, Oor VIRTUAL_SCREEN. The default value iBHYSICAL_EYE.

These policies are defined as follows.

* PHYSICAL_EYE: Specifies that the plane is located relative to the eye’s
position as measured in the physical space (in meters).

 PHYSICAL_SCREEN: Specifies that the plane is located relative to the
screen (that is, the image plate) as measured in physical space (in meters).

 VIRTUAL_EYE: Specifies that the plane is located relative to the virtual
eyepoint as measured in virtual world coordinates.

* VIRTUAL_SCREEN: Specifies that the plane is located relative to the
screen (that is, the image plate) as measured in virtual world coordinates.

8.7.3 Projection and Clip Parameters

The projection and clip parameters determine the view model’s field of view and
the front and back clipping distances.

public final void setFieldOfView(double fieldOfView)
public final double getFieldOfView()

In the default non-head-tracked mode, this value specifies the view model’'s hori-
zontal field of view in radians. This value is ignored when the view model is
operating in head-tracked mode, or when the Canvas3D’s window eyepoint pol-
icy is set to a value other than the default settingE@ATIVE_TO_FIELD_OF_

VIEW (see Section C.5.3, “Window Eyepoint Policy”).

public void setFrontClipDistance(double distance)
public double getFrontClipDistance()

This value specifies the distance away from the clip origin, specified by the front
clip policy variable, in the direction of gaze where objects stop disappearing.
Objects closer than the clip origin (eye or screen) plus the front clip distance are
not drawn. Measurements are done in the space (physical or virtual) that is spec-
ified by the associated front clip policy parameter.

public void setBackClipDistance(double distance)
public double getBackClipDistance()

This value specifies the distance away from the clip origin (specified by the back
clip policy variable) in the direction of gaze where objects begin disappearing.

Version 1.1 Alpha 01, February 27, 1998 211

8.7.4

212

Frame Start Time, Duration, and Number VIEW MODEL

Objects farther away from the clip origin (eye or screen) plus the back clip dis-
tance are not drawn. Measurements are done in the space (physical or virtual)
that is specified by the associated back clip policy parameter. The View object’'s
back clip distance is ignored if the scene graph contains an active Clip leaf node
(see Section 5.5, “Clip Node").

8.7.4 Frame Start Time, Duration, and Number

The following methods are used to get information about system execution and
performance.

public Tong getCurrentFrameStartTime(Q)

This method returns the time at which the most recent rendering frame started. It
is defined as the number of milliseconds since January 1, 1970 00:00:00 GMT.
Since multiple canvases might be attached to this View, the start of a frame is
defined as the point just prior to clearing any canvas attached to this View.

public lTong getLastFrameDuration()

This method returns the duration, in milliseconds, of the most recently completed

rendering frame. The time taken to render all canvases attached to this View is
measured. This duration is computed as the difference between the start of the
most recently completed frame and the end of that frame. Since multiple can-

vases might be attached to this View, the start of a frame is defined as the point
just prior to clearing any canvas attached to this View, while the end of a frame

is defined as the point just after swapping the buffer for all canvases.

public Tong getFrameNumber ()

This method returns the frame number for this view. The frame number starts at
0 and is incremented prior to clearing all the canvases attached to this view.
public static int getMaxFrameStartTimes()

This method retrieves the implementation-dependent maximum number of
frames whose start times will be recorded by the system. This value is guaran-
teed to be at least 10 for all implementations of the Java 3D API.

public lTong getFrameStartTimes(long times[])

This method copies the ldsframe start time values into the user-specified array.
The most recent frame start time is copied to location O of the array, the next
most-recent frame start time is copied into location 1 of the array, and so on. If
times.length is smaller thahaxFrameStartTimes, only the lastimes.length

Java 3D API Specification

VIEW MODEL Scene Antialiasing 8.7.6

values are copied. limes.length is greater thamaxFrameStartTimes, all
array elements after indewxFrameStartTimes — 1 are set to 0.

8.7.5 View Traversal and Behavior Scheduling

The following methods control the traversal, the rendering, and the execution of
the behavior scheduler for this view.

public final long[] stopBehaviorScheduler()
public final void startBehaviorScheduler()
public final boolean isBehaviorSchedulerRunning()

The first method stops the behavior scheduler after all currently-scheduled
behaviors are executed. Any frame-based behaviors scheduled to wake up on the
next frame will be executed at least once before the behavior scheduler is
stopped. The method returns a pair if integers that specify the beginning and end-
ing time (in milliseconds since January 1, 1970 00:00:00 GMT) of the behavior
scheduler’s last pass. The second method starts the behavior scheduler running
after it has been stopped. The third method retrieves a flag that indicates whether
the behavior scheduler is currently running.

public final void stopView()
public final void startView()
public final boolean 1isViewRunning()

The first method stops traversing this view after the current state of the scene
graph is reflected on all canvases attached to this view. The renderers associated
with these canvases are also stopped. The second method starts traversing this
view and starts the renderers associated with all canvases attached to this view.
The third method returns a flag indicating whether the traverser is currently run-
ning on this view.

Note: The above six methods are heavy-weight methods intended for verification
and image capture (recording). They are not intended to be used for flow control.

8.7.6 Scene Antialiasing

public final void setSceneAntialiasingEnable(boolean flag)
public final boolean getSceneAntialiasingEnable()

These methods set and retrieve the scene antialiasing flag. Scene antialiasing is
either enabled or disabled for this view. If enabled, the entire scene will be

Version 1.1 Alpha 01, February 27, 1998 213

8.7.7 Depth Buffer VIEW MODEL

214

antialiased on each canvas in which scene antialiasing is available. Scene antial-
iasing is disabled by default.

8.7.7 Depth Buffer

public final void setDepthBufferFreezeTransparent(boolean flag)
public final boolean getDepthBufferFreezeTransparent()

The set method enables or disables automatic freezing of the depth buffer for
objects rendered during the transparent rendering pass (that is, objects rendered
using alpha blending) for this view. If enabled, depth buffer writes are disabled
during the transparent rendering pass regardless of the value of the
depth-buffer-write-enable flag in the RenderingAttributes object for a particular
node. This flag is enabled by default. Tgee method retrieves this flag.

8.8 The Screen3D Object

The Screen3D object provides a 3D version of the AWT screen object. It con-
tains the screen’s physical properties. Java 3D will support multiple active
Screen3D objects as soon as AWT support is available. Of course, multiple
screens are only available if the machine configuration has multiple output
screens. Java 3D primarily needs to know the physical size (in meters) of the
Screen3D’s visible, addressable raster {thage plat¢ and, in head-tracking
mode, the position and orientation of this raster relative to a well-defined physi-
cal world coordinate system, specifically, the tracker base coordinate system.
Java 3D also needs to know how many pixels the raster can display in both the x
and y dimensions. This information allows Java 3D to calculate a pixel's physical
dimension.

Calibration utilities can change a Screen3D’s physical characteristics or calibra-
tion transforms. See Section C.6, “The Screen3D Object.”

The Screen3D object has no public constructors. Instead, the Screen3D object
associated with a particular Canvas3D object can be obtained from the canvas by
calling thegetScreen3D method. See Section 8.9.2, “Other Canvas3D Parame-
ters.”

Methods

These methods provide applications with information concerning the underlying
display hardware, such as the screen’s width and height in pixels or in meters.

Java 3D API Specification

VIEW MODEL Window System—Provided Parameter8.9.1

public Dimension getSize()

This method retrieves the screen’s (image plate’s) width and height in pixels.
public final double getPhysicalScreenWidth()

public final double getPhysicalScreenHeight()

These methods retrieve the screen’s (image plate’s) physical width and height in
meters.

8.9 The Canvas3D Object

The Canvas3D object extends the AWT Canvas object to include 3D-related
information such as the size of the canvas in pixels, the Canvas3D’s location,
also in pixels, within a Screen3D object, and whether or not the canvas has stereo
enabled. Because all Canvas3D objects contain a reference to a Screen3D object
and because Screen3D objects define the size of a pixel in physical units,
Java 3D can convert a Canvas3D size in pixels to a physical world size in meters.
It can also determine the Canvas3D’s position and orientation in the physical
world.

Constructors

The Canvas3D object specifies one constructor.

public Canvas3D(GraphicsConfiguration graphicsConfiguration)

This constructs and initializes a new Canvas3D object given a valid
Graphics-Configuration object. Java 3D can render into this Canvas3D obiject.

For more information on the GraphicsConfiguration object see the Java 2D spec-
ification, which will be part of the AWT in JDK 1.2.

8.9.1 Window System—Provided Parameters

Java 3D specifies the size of a Canvas3D in pixels. It extracts this information
directly from the AWT’s window system. Java 3D only allows applications to
access these values, not change them.

public Dimension getLocationOnScreen()
public Dimension getSize()

These methods, inherited from the parent Canvas class, retrieve the Canvas3D’s
screen position and size in pixels.

Version 1.1 Alpha 01, February 27, 1998 215

8.9.2

216

Other Canvas3D Parameters VIEW MODEL

8.9.2 Other Canvas3D Parameters

public final boolean getStereoAvailable()

This method specifies whether the underlying hardware supports field-sequential
stereo on this canvas.

public final boolean getStereoEnable()

public final void setStereoEnable(boolean flag)

These methods set or retrieve the flag indicating whether this Canvas3D has ste-
reo enabled. If enabled, Java 3D generates left and right eye images. If the
Canvas3D’'sstereoAvailable flag isfalse, Java 3D displays only tHeft eye’s

view even if an application sefsereoEnable to true. This parameter allows
applications to enable or disable stereo on a canvas-by-canvas basis.

public final void getDoubleBufferAvailable()

This method specifies whether the underlying hardware supports double buffer-
ing on this canvas.

public final boolean getDoubleBufferEnable()

public final void setDoubleBufferEnable(boolean flag)

These methods set or retrieve the flag indicating whether this Canvas3D has dou-
ble buffering enabled. If disabled, all drawing is to the front buffer and no buffer
swap will be done between frames. It should be stressed that running Java 3D
with double buffering disabled is not recommended.

public final boolean getSceneAntialiasingAvailable()

This method specifies whether the underlying hardware supports scene-level
antialiasing.

public final View getView()

Retrieves the View object that points to this Canvas3D.

public final Screen3D getScreen3D()

Retrieves the Screen3D object to which this Canvas3D is attached.

8.10 The PhysicalBody Object

Java 3D defines a PhysicalBody object that contains information concerning the
end user’s physical characteristics. The head parameters allow end users to spec-

Java 3D API Specification

VIEW MODEL The PhysicalEnvironment Object 8.11

ify their own head’s characteristics, such as the location of the eyes and the inter-
pupilary distance. See Section C.8, “The PhysicalBody Obiject,” for details. The
default values are sufficient for applications that are running in a
non-head-tracked environment and that do not manually set the eyepoint.

Constructors

public PhysicalBody()

This constructor constructs and initializes a default PhysicalBody object.

8.11 The PhysicalEnvironment Object

The PhysicalEnvironment object defines several methods that are described in
Section C.9, “The PhysicalEnvironment Object.” The default values are sufficient

for applications that do not use continuous input devices that are run in a
non-head-tracked display environment.

Constructors

public PhysicalEnvironment()

Constructs and initializes a default PhysicalEnvironment object.

Version 1.1 Alpha 01, February 27, 1998 217

CHAPTER9

Behaviors and Interpolators

BEHAVIOR nodes provide the means for animating objects, processing key-
board and mouse inputs, reacting to movement, and enabling and processing pick
events. Behavior nodes contain Java code and state variables. A Behavior node’s
Java code can interact with Java objects, change node values within a Java 3D
scene graph, change the behavior’s internal state—in general, perform any com-
putation it wishes.

Simple behaviors can add surprisingly interesting effects to a scene graph. For
example, one can animate a rigid object by using a Behavior node to repetitively
modify the TransformGroup node that points to the object one wishes to animate.
Alternatively, a Behavior node can track the current position of a mouse and

modify portions of the scene graph in response.

9.1 Behavior Object

A Behavior leaf node object contains a scheduling region and two methods: an
initialize method called once when the behavior becomes “live” amcba
cessStimulus method called whenever appropriate by the Java 3D behavior
scheduler. The Behavior object also contains the state information needed by its
initialize andprocessStimulus methods.

The scheduling regiondefines a spatial volume that serves to enable the sched-
uling of Behavior nodes. A Behavior nodeaistive (can receive stimuli) when-
ever a ViewPlatform’s activation volume intersects a Behavior object's
scheduling region. Only active behaviors can receive stimuli.

The initialize method allows a Behavior object to initialize its internal state
and specify its initial wakeup condition(s). Java 3D invokes a behavior’s initial-
ize code when the behavior's containing BranchGroup node is added to the vir-
tual universe. Java 3D does not invoke theétialize method in a new thread.

Version 1.1 Alpha 01, February 27, 1998 219

9.11

220

Code Structure BEHAVIORS AND INTERPOLATORS

Thus, for Java 3D to regain control, theitialize method must not execute an
infinite loop: It must return. Furthermore, a wakeup condition must be set or else
the behavior'srocessStimulus method is never executed.

TheprocessStimulus method receives and processes a behavior's ongoing mes-
sages. The Java 3D behavior scheduler invokes a Behavior pedeissStim-

ulus method when a ViewPlatform’s activation volume intersects a Behavior
object’'s scheduling region and all of that behavior's wakeup criteria are satisfied.
The processStimulus method performs its computations and actions (possibly
including the registration of state change information that could cause Java 3D to
wake other Behavior objects), establishes its next wakeup condition, and finally
exits.

9.1.1 Code Structure

When the Java 3D behavior scheduler invokes a Behavior ohjectsssStim-

ulus method, that method may perform any computation it wishes. Usually, it
will change its internal state and specify its new wakeup conditions. Most proba-
bly, it will manipulate scene graph elements. However, the behavior code can
only change those aspects of a scene graph element permitted by the capabilities
associated with that scene graph element. A scene graph’'s capabilities restrict
behavioral manipulation to those manipulations explicitly allowed.

The application must provide the Behavior object with references to those scene
graph elements that the Behavior object will manipulate. The application pro-
vides those references as arguments to the behavior’'s constructor when it creates
the Behavior object. Alternatively, the Behavior object itself can obtain access to
the relevant scene graph elements either when Java 3D invokes tiialize

method or each time Java 3D invokespitecessStimulus method.

Behavior methods have a very rigid structure. Java 3D assumes that they always
run to completion (if needed, they can spawn threads). Each method’s basic
structure consists of the following:

» Code to decode and extract references from the WakeupCondition enumer-
ation that caused the object’s awakening

» Code to perform the manipulations associated with the WakeupCondition

» Code to establish this behavior's new WakeupCondition

* A path to Exit (so that execution returns to the Java 3D behavior scheduler)

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS WakeupCriterion Obje®.1.3

9.1.2 WakeupCondition Object

A WakeupCondition object is an abstract class specialized to fourteen different
WakeupCiriterion objects and to four combining objects containing multiple
WakeupCiriterion objects.

A Behavior node provides the Java 3D behavior scheduler with a WakeupCondi-
tion object. When that object’s WakeupCondition has been satisfied, the behavior
scheduler hands that same WakeupCondition back to the Behavior via an enu-
meration.

9.1.3 WakeupCriterion Object

Java 3D provides a rich set of wakeup criteria that Behavior objects can use in
specifying a complex WakeupCondition. These wakeup criteria can cause
Java 3D’s behavior scheduler to invoke a behaviorscessStimuTlus method
whenever

» The center of a ViewPlatform enters a specified region

* The center of a ViewPlatform exits a specified region

* A behavior is activated
* A behavior is deactivated
» A specified TransformGroup node’s transform changes

» Collision is detected between a specified Shape3D node’s Geometry object
and any other object

* Movement occurs between a specified Shape3D node’s Geometry object
and any other object with which it collides

» A specified Shape3D node’s Geometry object no longer collides with any
other object

» A specified Behavior object posts a specific event
* A specified AWT event occurs
* A specified time interval elapses
» A specified number of frames have been drawn
» The center of a specified Sensor enters a specified region
» The center of a specified Sensor exits a specified region
A Behavior object constructs a WakeupCiriterion by constructing the appropriate

criterion object. The Behavior object must provide the appropriate arguments
(usually a reference to some scene graph object and possibly a region of inter-

Version 1.1 Alpha 01, February 27, 1998 221

9.1.4 Composing WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

est). Thus, to specify a WakeupOnViewPlatformEntry, a behavior would specify
the region that will cause the behavior to execute if a ViewPlatform enters it.

9.1.4 Composing WakeupCriterion Objects

A Behavior object can combine multiple WakeupCriterion objects into a more
powerful, composite WakeupCondition. Java 3D behaviors construct a composite
WakeupCondition in one of the following ways:

» WakeupAnd: An array of WakeupCiriterion objects ANDed together.
WakeupCriterion &% WakeupCriterion && ...

* WakeupOr: An array of WakeupCiriterion objects ORed together.
WakeupCriterion || WakeupCriterion ||

* WakeupAndOfOrs: An array of WakeupOr WakeupCondition objects that
are then ANDed together.

WakeupOr && WakeupOr && ...

» WakeupOrOfAnds: An array of WakeupAnd WakeupCondition objects
that are then ORed together.

WakeupAnd || WakeupAnd ||

9.2 Composing Behaviors

Behavior objects can condition themselves to awaken only when signaled by
another Behavior node. The WakeupOnBehaviorPost WakeupCriterion takes as
arguments a reference to a Behavior node and an integer. These two arguments
allow a behavior to limit its wakeup criterion to a specific post by a specific
behavior.

The WakeupOnBehaviorPost WakeupCriterion permits behaviors to chain their
computations, allowing parenthetical computations—one behavior opens a door
and the second closes the same door, or one behavior highlights an object and the
second unhighlights the same object.

9.3 Scheduling

As a virtual universe grows large, Java 3D must carefully husband its resources
to ensure adequate performance. In a 10,000-object virtual universe with 400 or
so Behavior nodes, a naive implementation of Java 3D could easily end up con-
suming the majority of its compute cycles in executing the behaviors associated

222 Java 3D API Specification

BEHAVIORS AND INTERPOLATORS How Java 3D Performs Execution Cullingd.4

with the 400 Behavior objects before it draws a frame. In such a situation, the
frame rate could easily drop to unacceptable levels.

Behavior objects are usually associated with geometric objects in the virtual uni-
verse. In our example of 400 Behavior objects scattered throughout a 10,000-
object virtual universe, only a few of these associated geometric objects would
be visible at a given time. A sizable fraction of the Behavior nodes—those asso-
ciated with nonvisible objects—need not be executed. Only those relatively few
Behavior objects that are associated with visible objects must be executed.

Java 3D mitigates the problem of a large number of Behavior nodes in a high-
population virtual universe through execution culling—choosing only to invoke
those behaviors that have high relevance.

Java 3D requires each behavior to hageleduling regiorand to post a wakeup
condition. Together a behavior's scheduling region and wakeup condition pro-
vide Java 3D’s behavior scheduler with sufficient domain knowledge to selec-
tively prune behavior invocations and only invoke those behaviors that absolutely
need to be executed.

9.4 How Java 3D Performs Execution Culling

Java 3D finds all scheduling regions associated with Behavior nodes and con-
structs a scheduling/volume tree. It also creates an AND/OR tree containing all
the Behavior node wakeup criteria. These two data structures provide the domain
knowledge Java 3D needs to prune unneeded behavior execution (to perform
“execution triage”).

Java 3D must track a behavior's wakeup conditions only if a ViewPlatform
object’s activation volume intersects with that Behavior object's scheduling
region. If the ViewPlatform object’s activation volume does not intersect with a
behavior's scheduling region, Java 3D can safely ignore that behavior's wakeup
criteria.

In essence, the Java 3D scheduler performs the following checks:

 Find all Behavior objects with scheduling regions that intersect the
ViewPlatform object’s activation volume.

» For each Behavior object within the ViewPlatform’s activation volume, if
that behavior's WakeupCondition tsue, schedule that Behavior object
for execution.

Version 1.1 Alpha 01, February 27, 1998 223

9.5

224

The Behavior API BEHAVIORS AND INTERPOLATORS

Java 3D’s behavior scheduler executes those Behavior objects that have been
scheduled by calling the behaviopsocessStimulus method.

9.5 The Behavior API

The Java 3D behavior API spreads its functionality across three objects: the
Behavior leaf node, the WakeupCondition object and its subclasses, and the
WakeupCiriterion objects.

9.5.1 The Behavior Node

The Behavior object is an abstract class that contains the framework for all
behavioral components in Java 3D.

Methods

The Behavior leaf node class defines the following methods.

public abstract void initialize()

This method, invoked by Java 3D’s behavior scheduler, is used to initialize the
behavior's state variables and to establishes its WakeupConditions. Classes that
extend Behavior must provide their owinitialize method.

public abstract void processStimulus(Enumeration criteria)

This method processes stimuli destined for this behavior. The behavior scheduler
invokes this method if its WakeupCondition is satisfied. Classes that extend
Behavior must provide their owgrocessStimulus method.

public final void setSchedulingBounds(Bounds region)
public final Bounds getSchedulingBounds()

These two methods access or modify the Behavior node’s scheduling bounds.
This bounds is used as the scheduling region when the scheduling bounding leaf
is set tonul11. A behavior is scheduled for activation when its scheduling region
intersects the ViewPlatform’s activation volume (if its wakeup criteria have been
satisfied). ThegetSchedulingBounds method returns a copy of the associated
bounds.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Behavior Nod8.5.1

public final void setSchedulingBoundinglLeaf(BoundingLeaf region)
public final BoundinglLeaf getSchedulingBoundinglLeaf()

These two methods access or modify the Behavior node’s scheduling bounding
leaf. When set to a value other thari 1, this bounding leaf overrides the sched-
uling bounds object and is used as the scheduling region.

public void wakeupOn(WakeupCondition criteria)

This method defines this behavior's wakeup criteria. This method may only be
called from a Behavior object'snitialize or processStimulus methods to
(re)arm the next wakeup. It should be the last thing done by those methods.

public void postId(int postId)

This method, when invoked by a behavior, informs the Java 3D scheduler of the
identified event. The scheduler will schedule other Behavior objects that have
registered interest in this posting.

public void duplicateNode(Node originalNode,
boolean forceDuplicate)

This method copies all the node information fremginalNode into the current
node. This method is called from theoneTree method.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This is a callback method used to allow a node to check if any nodes referenced
by that node have been duplicated via a catllitmeTree. This method is called

by thecloneTree method after all nodes in the subgraph have been duplicated.
The cloned leaf node’s method will be called and the leaf node can then look up
any node references by using thecNewNodeReference method found in the
NodeReferenceTable object. If a match is found, a reference to the corresponding
node in the newly cloned subgraph is returned. If no corresponding reference is
found, either aanglingReferenceException is thrown or a reference to the
original node is returned, depending on the value oaiflewDanglingRefer-

ences parameter passed in théoneTree call.

protected View getView()

This method returns the primary view associated with this behavior. This method
is useful with certain types of behaviors, such as Billboard and LOD, that rely on
per-View information and with behaviors in general in regards to scheduling (the
distance from the view platform determines the active behaviors). The “primary”
view is defined to be the first View attached to a live ViewPlatform, if there is

Version 1.1 Alpha 01, February 27, 1998 225

9.5.2 WakeupCondition Object BEHAVIORS AND INTERPOLATORS

226

more than one active View. So, for instance, Billboard behaviors would be ori-
ented toward this primary view, in the case of multiple active views into the same
scene graph.

9.5.2 WakeupCondition Object

WakeupCondition is an abstract class that is extended by the WakeupCriterion,
WakeupOr, WakeupAnd, WakeupOrOfAnds, and WakeupAndOfOr classes. A

Behavior node hands a WakeupCondition object to the behavior scheduler and
the behavior scheduler hands back an enumeration of that WakeupCondition.

Methods

The Java 3D API provides two methods for constructing WakeupCondition enu-
merations.

public Enumeration allElements()
public Enumeration triggeredElements()

These two methods create enumerators that sequentially access this WakeupCon-
dition’s wakeup criteria. The first method creates an enumerator that sequentially
presents all wakeup criteria that were used to construct this WakeupCondition.
The second method creates an enumerator that sequentially presents only those
wakeup criteria that have been satisfied.

9.5.3 The WakeupCiriterion Objects

WakeupCiriterion is an abstract class that consists of several subclasses. Each
subclass specifies one particular wakeup criterion, that criterion’s associated
arguments (if any), and either a flag that indicates whether this criterion caused a
Behavior object to awaken or a return field containing the information that
caused the Behavior object to awaken.

Methods

public boolean hasTriggered()

This predicate method returrsue if this WakeupCiriterion contributed to wak-
ing a Behavior object.

9.5.3.1 WakeupOnAWTEvent

This WakeupCriterion object specifies that Java 3D should awaken a behavior
when the specified AWT event occurs.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objec®&5.3
Constructors

public WakeupOnAWTEvent(int AWTId)
public WakeupOnAWTEvent(long eventMask)

The first constructor creates a VeéalpOnAWTEvent object thahforms the

Java 3D scheduler to wake up the specified Behavior object whenever the AWT
event specified bywTId occurs. The second constructor creates a Wake-
upOnAWTEvent object thainforms the Java 3D scheduler to wake up the
specified Behavior object whenever any of the specified AWENT_MASK
events occur. TheventMask consists of an ORed collection BfENT_MASK val-

ues.

Methods

public AWTEvent[] getAWTEvent()

This method returns the array of consecutive AWT events that triggered this
WakeupCiriterion to awaken the Behavior object. The Behavior object can
retrieve theAwTEvent array and process it in any way it wishes.

9.5.3.2 WakeupOnActivation

The WakeupOnActivation object specifies a wakeup the first time the
ViewPlatform’s activation region intersects with this object’s scheduling region.
This gives the behavior an explicit means of executing code when it is activated.

Constructors

public WakeupOnActivation()
This constructor creates a WakeupOnActivation criterion.

9.5.3.3 WakeupOnBehaviorPost

This WakeupCiriterion object specifies that Java 3D should awaken this behavior
when the specified behavior posts the specified ID.

Constructors

public WakeupOnBehaviorPost(Behavior behavior, int postId)

This constructor creates a WakpOnBehaviorPost object thatforms the
Java 3D scheduler to wake up this Behavior object whenever the specified behav-
ior posts the specifiegbstId. A postId of O specifies that this behavior should

Version 1.1 Alpha 01, February 27, 1998 227

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

228

awaken on any post from the specified behavior. Specifyingla behavior
implies that this behavior should awaken whenever any behavior posts the speci-
fied postId.

Methods

public int getPostId()

This method returns thestId used in creating this WakeupCiriterion.

public Behavior getBehavior()

This method returns the behavior specified in this object’s constructor.

public int getTriggeringPostId()

This method returns the postid that caused the behavior to wake up. If the postid
used to construct this wakeup criterion was not zero, the triggering postid will
always be equal to the postid used in the constructor.

public Behavior getTriggeringBehavior()

This method returns the behavior that triggered this wakeup. If the arming behav-
ior used to construct this object was not null, the triggering behavior will be the
same as the arming behavior.

9.5.3.4 WakeupOnDeactivation

The WakeupOnDeactivation object specifies a wakeup on the first detection of a
ViewPlatform’s activation region no longer intersecting with this object’s sched-
uling region. This gives the behavior an explicit means of executing code when it
is deactivated.

Constructors

public WakeupOnDeactivation()
This constructor creates a new WakeupOnDeactivation criterion.
public WakeupOnDeactivation(Bounds region)

Deprecated constructor. Use the empty constructor instead.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objec85.3

9.5.3.5 WakeupOnElapsedFrames

This WakeupCriterion object specifies that Java 3D should awaken this behavior
after it has rendered the specified number of frames. A value of O implies that
Java 3D will awaken this behavior at the next frame.

Constructors

public WakeupOnElapsedFrames(int frameCount)

This constructor creates a WalkpOnElapsedFrames object thiafiorms the
Java 3D scheduler to wake up the specified Behavior object after it has drawn
frameCount frames. AframeCount value of 0 means wake up at the next frame.

Methods

public int getElapsedFrameCount()

This method returns the frame count used in creating this WakeupCiriterion.

9.5.3.6 WakeupOnElapsedTime

This WakeupCriterion object specifies that Java 3D should awaken this behavior
after an elapsed number of milliseconds.

Constructors

public WakeupOnElapsedTime(long milliseconds)

This constructor creates a WalkpOnElapsedTime object thatforms the
Java 3D scheduler to wake up the specified Behavior object after the specified
number of milliseconds.

Note: The Java 3D scheduler will schedule the object after the specified number
of milliseconds have elapsed, not before. However, the elapsed time may actually
be slightly greater than the time specified.

Methods

public Tong getElapsedFrameTime()

This method returns the WakeupCriterion’s elapsed time value in milliseconds.

Version 1.1 Alpha 01, February 27, 1998 229

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

230

9.5.3.7 WakeupOnSensorEntry

This WakeupCriterion object specifies that Java 3D should awaken this behavior
when any sensor enters the specified region.

Note: There can be situations in which a sensor may enter and then exit an
armed region so rapidly that neither the Entry nor Exit condition is engaged.

Constructors

public WakeupOnSensorEntry(Bounds region)

This constructor creates a WalpOnSensorEntry object thatforms the
Java 3D scheduler to wake up the specified Behavior object whenever it detects a
sensor within the specifiatkgion for the first time.

Methods

public Bounds getBounds()
This method returns the Bounds object used in creating this WakeupCriterion.
9.5.3.8 WakeupOnSensorExit

This WakeupCiriterion object specifies that Java 3D should awaken this behavior
when any sensor, already marked as within the region, is no longer in that region.

Note: This semantic guarantees that an Exit condition is engaged if its corre-
sponding Entry condition was engaged.

Constructors

public WakeupOnSensorExit(Bounds region)

This constructor creates a WalpOnSensorExit object thahforms the
Java 3D scheduler to wake up the specified Behavior object the first time it
detects that a sensor has left the speciféedon.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objec85.3

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCiriterion.

9.5.3.9 WakeupOnCollisionEntry

This WakeupCriterion object specifies that Java 3D should awaken the Wake-
upOnCollisionEntry behavior when the specified object collides with any other
object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or Morph
node is done using the actual geometry or whether the geometric bounds are
used as an approximation.

Constructors

public WakeupOnCollisionEntry(SceneGraphPath armingPath)

public WakeupOnCollisionEntry(SceneGraphPath armingPath,
int speedHint)

public WakeupOnCollisionEntry(Node armingNode)
public WakeupOnCollisionEntry(Node armingNode, int speedHint)
public WakeupOnCollisionEntry(Bounds armingBounds)

These constructors create a WakOnCollisionEntry object thabforms the

Java 3D scheduler to wake up the specified Behavior object if the specified
“armed” node’s geometry or the specified “armed” bounds collides with any
other object in the scene graph. TdpeedHint flag is eithertUSE_GEOMETRY or
USE_BOUNDS.

Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in specifying
the collision detection.

Version 1.1 Alpha 01, February 27, 1998 231

9.5.3

232

The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

9.5.3.10 WakeupOnCaollisionExit

This WakeupCriterion object specifies that Java 3D should awaken the Wake-
upOnCollisionExit behavior when the specified object no longer collides with
any other object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or Morph
node is done using the actual geometry or whether the geometric bounds are
used as an approximation.

Constructors

public WakeupOnCollisionExit(SceneGraphPath armingPath)

public WakeupOnCollisionExit(SceneGraphPath armingPath,
int speedHint)

public WakeupOnCollisionExit(Node armingNode)
public WakeupOnCollisionExit(Node armingNode, int speedHint)
public WakeupOnCollisionExit(Bounds armingBounds)

These constructors create a WakOnCollisionExit object thainforms the

Java 3D scheduler to wake up the specified Behavior object if the specified
“armed” node’'s geometry or the specified “armed” bounds no longer collides
with any other object in the scene graph. EpeedHint flag is eitheruSe_
GEOMETRY Or USE_BOUNDS.

Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in specifying
the collision detection.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objec85.3

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

9.5.3.11 WakeupOnCollisionMovement

This WakeupCriterion object specifies that Java 3D should awaken the Wake-
upOnCollisionMovement behavior when the specified object moves while in a
state of collision with any other object in the scene graph.

Constants

public static final int USE_GEOMETRY
public static final int USE_BOUNDS

These constants specify whether collision against a Group, Shape, or Morph
node is done using the actual geometry or whether the geometric bounds are
used as an approximation.

Constructors

public WakeupOnCollisionMovement(SceneGraphPath armingPath)

public WakeupOnCol1isionMovement(SceneGraphPath armingPath,
int speedHint)

public WakeupOnCollisionMovement(Node armingNode)
public WakeupOnCollisionMovement(Node armingNode, int speedHint)
public WakeupOnCollisionMovement(Bounds armingBounds)

These constructors create a WakpOnCollisionMovement object thetforms

the Java 3D scheduler to wake up the specified Behavior object if the specified
node’'s geometry or the specified bounds collides with any other object in the
scene graph. ThepeedHint flag is eithetUSE_GEOMETRY Or USE_BOUNDS.

Methods

public SceneGraphPath getArmingPath()
public Bounds getArmingBounds()

These methods return the “collideable” path or bounds object used in specifying
the collision detection.

public SceneGraphPath getTriggeringPath()
public Bounds getTriggeringBounds()

These methods return the path or bounds object that caused the collision.

Version 1.1 Alpha 01, February 27, 1998 233

9.5.3 The WakeupCriterion Objects BEHAVIORS AND INTERPOLATORS

234

9.5.3.12 WakeupOnViewPlatformEntry

This WakeupCriterion object specifies that Java 3D should awaken the Wake-
upOnViewPlatformEntry behavior when any ViewPlatform enters the specified
region.

Note: There can be situations in which a ViewPlatform may enter and then exit
an armed region so rapidly that neither the Entry nor Exit condition is engaged.

Constructors

public WakeupOnViewPlatformEntry(Bounds region)

This constructor creates a WakpOnViewPlatformEntry object thanforms
the Java 3D scheduler to wake up the specified Behavior object whenever it
detects a ViewPlatform center within the specifiedion for the first time.

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCriterion.

9.5.3.13 WakeupOnViewPlatformExit

This WakeupCiriterion object specifies that Java 3D should awaken the Wake-
upOnViewPlatformExit behavior when any ViewPlatform, already marked as
within the region, is no longer in that region.

Note: This semantic guarantees that an Exit condition gets engaged if its corre-
sponding Entry condition was engaged.

Constructors

public WakeupOnViewPlatformExit(Bounds region)

This constructor creates a WalpOnViewPlatformExit object thénforms the
Java 3D scheduler to wake up the specified Behavior object the first time it
detects that a ViewPlatform has left the specifieghion.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The WakeupCriterion Objec85.3

Methods

public Bounds getBounds()

This method returns the Bounds object used in creating this WakeupCiriterion.

9.5.3.14 WakeupOnTransformChange

The WakeupOnTransformChange object specifies a wakeup when the transform
within a specified TransformGroup changes.

Constructors

public WakeupOnTransformChange(TransformGroup node)

This constructor creates a new WakeupOnTransformChange criterion.

Methods

public TransformGroup getTransformGroup()

This method returns the TransformGroup node used in creating this WakeupCri-
terion.

9.5.3.15 WakeupAnd

The WakeupAnd class specifies any number of wakeup conditions ANDed
together. This WakeupCondition object specifies that Java 3D should awaken this
Behavior when all of the WakeupCondition’s constituent wakeup criteria become
valid.

Constructors

public WakeupAnd(WakeupCriterion conditions[])

This constructor creates a WalpAnd object thainforms the Java 3D sched-
uler to wake up this Behavior object when all the conditions specified in the
array of WakeupCriterion objects have become valid.

9.5.3.16 WakeupOr

The WakeupOr class specifies any number of wakeup conditions ORed together.
This WakeupCondition object specifies that Java 3D should awaken this Behav-
ior when any of the WakeupCondition’s constituent wakeup criteria becomes

valid.

Version 1.1 Alpha 01, February 27, 1998 235

9.6

236

Interpolator Behaviors BEHAVIORS AND INTERPOLATORS
Constructors

public WakeupOr (WakeupCriterion conditions[])

This constructor creates a WalpOr object thainforms the Java 3D scheduler
to wake up this Behavior object when any condition specified in the array of
WakeupCiriterion objects becomes valid.

9.5.3.17 WakeupAndOfOrs

The WakeupAndOfOrs class specifies any number of OR wakeup conditions
ANDed together. This WakeupCondition object specifies that Java 3D should
awaken this Behavior when all of the WakeupCondition’s constituent WakeupOr
conditions become valid.

Constructors

public WakeupAndOfOrs (WakeupOr conditions[])

This constructor creates a WalkpAndOfOrs object thahforms the Java 3D
scheduler to wake up this Behavior object when all of the WakeupOr conditions
specified in the array of WakeupOr objects become valid.

9.5.3.18 WakeupOrOfAnds

The WakeupOrOfAnds class specifies any number of AND wakeup conditions
ORed together. This WakeupCondition object specifies that Java 3D should
awaken this Behavior when any of the WakeupCondition’s constituent Wakeu-
pAnd conditions becomes valid.

Constructors

public WakeupOrOfAnds (WakeupAnd conditions[])

This constructor creates a WakpOrOfAnds object thahforms the Java 3D
scheduler to wake up this Behavior object when any of the WakeupAnd condi-
tions specified in the array of WakeupAnd objects becomes valid.

9.6 Interpolator Behaviors

This section describes Java 3D’s predefined Interpolator behaviors. They are
called interpolators because they smoothly interpolate among the two extreme
values that an interpolator can produce. Interpolators perform simple behavioral
acts, yet they provide broad functionality.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Mapping Time to Alph8.6.1

The Java 3D API provides interpolators for a number of functions: manipulating
transforms within a TransformGroup, modifying the values of a Switch node,
and modifying Material attributes such as color and transparency.

These predefined Interpolator behaviors share the same mechanism for specify-
ing and later for converting a temporal value into an alpha value. Interpolators
consist of two portions: a generic portion that all interpolators share and a
domain-specific portion.

The generic portion maps time in milliseconds onto a value in the range

[0.0, 1.0] inclusive. The domain-specific portion maps an alpha value in the

range [0.0, 1.0] onto a value appropriate to the predefined behavior's range of
outputs. An alpha value of 0.0 generates an interpolator’s minimum value, an
alpha value of 1.0 generates an interpolator's maximum value, and an alpha
value somewhere in between generates a value proportionally in between the
minimum and maximum values.

9.6.1 Mapping Time to Alpha

Several parameters control the mapping of time onto an alpha value. That map-
ping is deterministic as long as its parameters do not change. Thus, two different
interpolators with the same parameters will generate the same alpha value given
the same time value. This means that two interpolators that do not communicate
can still precisely coordinate their activities, even if they reside in different
threads or even different processors—as long as those processors have consistent
clocks.

Figure 9-1 shows the components of an interpolator's time-to-alpha mapping.
Time is represented on the horizontal axis. Alpha is represented on the vertical
axis. As we move from left to right, we see the alpha value start at 0.0, rise to
1.0, and then decline back to 0.0 on the right-hand side.

|
(o a la ,
increasing | atl | decreasing

? /—\
| 1 L _
Tr‘igger C‘ | | | ‘>

Figure 9-1 An Interpolator's Generic Time-to-Alpha Mapping Sequence

a
ato

o
o=
[
n
@
Q

Version 1.1 Alpha 01, February 27, 1998 237

9.6.1

238

Mapping Time to Alpha BEHAVIORS AND INTERPOLATORS

On the left-hand side, the trigger time defines when this interpolator’'s waveform
begins in milliseconds. The region directly to the right of the trigger time,
labeled Phase Delay, defines a time period where the waveform does not change.
During phase delays is either 0 or 1, depending on which region it precedes.
Phase delays provide an important means for offsetting multiple interpolators
from one another, especially where the interpolators have all the same parame-
ters. The next four regions, labeledncreasinga at 1,a decreasing, and at

0, all specify durations for the corresponding values of alpha.

Interpolators have a loop count that determines how many times to repeat the
sequence of increasingg at 1,a decreasing, and at 0; they also have associ-

ated mode flags that enable either the increasing or decreasing portions, or both,
of the waveform.

Developers can use the loop count in conjunction with the mode flags to generate
various kinds of actions. Specifying a loop count of 1 and enabling the mode flag
for only thea-increasing anax-at-1 portion of the waveform, we would get the
waveform shown in Figure 9-2.

1

o

-
'

Time

Figure 9-2 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only
the 0 -Increasing and 0 -at-1 Portion of the Waveform

In Figure 9-2, the alpha value is 0 before the combination of trigger time plus the
phase delay duration. The alpha value changes from 0 to 1 over a specified inter-
val of time, and thereafter the alpha value remains 1 (subject to the reprogram-
ming of the interpolator's parameters). A possible use of a smghereasing

value might be to combine it with a rotation interpolator to program a door open-

ing.

Similarly, by specifying a loop count of 1 and a mode flag that enables only the
a-decreasing and-at-0 portion of the waveform, we would get the waveform
shown in Figure 9-3.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Mapping Time to Alph8.6.1

1

—

-
'

Time

Figure 9-3 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable Only
the 0 -Decreasing andd-at-0 Portion of the Waveform

In Figure 9-3, the alpha value is 1 before the combination of trigger time plus the
phase delay duration. The alpha value changes from 1 to O over a specified inter-
val, and thereafter the alpha value remains 0 (subject to the reprogramming of
the interpolator's parameters). A possible use of a singiiecreasing value
might be to combine it with a rotation interpolator to program a door closing.

We can combine both of the above waveforms by specifying a loop count of 1
and setting the mode flag to enable bothakacreasing andi-at-1 portion of

the waveform as well as theedecreasing and-at-0 portion of the waveform.
This combination would result in the waveform shown in Figure 9-4.

1

o N o

-
'

Time

Figure 9-4 An Interpolator Set to a Loop Count of 1 with Mode Flags Set to Enable All Por-
tions of the Waveform

In Figure 9-4, the alpha value is 0 before the combination of trigger time plus the
phase delay duration. The alpha value changes from O to 1 over a specified
period of time, remains at 1 for another specified period of time, then changes
from 1 to O over a third specified period of time, and thereafter the alpha value
remains 0 (subject to the reprogramming of the interpolator's parameters). A
possible use of an-increasing followed by an-decreasing value might be to
combine it with a rotation interpolator to program a door swinging open and then
closing.

By increasing the loop count, we can get repetitive behavior, such as a door
swinging open and closed some number of times. At the extreme, we can specify
a loop count of-1 (representing infinity).

Version 1.1 Alpha 01, February 27, 1998 239

9.6.1 Mapping Time to Alpha BEHAVIORS AND INTERPOLATORS

240

We can construct looped versions of the waveforms shown in Figure 9-2,
Figure 9-3, and Figure 9-4. Figure 9-5 shows a looping interpolator with mode
flags set to enable only tleeincreasing andi-at-1 portion of the waveform.

I T P T

'

Time

Figure 9-5 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only thél-
Increasing andQ-at-1 Portion of the Waveform

In Figure 9-5, alpha goes from 0 to 1 over a fixed duration of time, stays at 1 for
another fixed duration of time, and then repeats.

Similarly, Figure 9-6 shows a looping interpolator with mode flags set to enable
only thea-decreasing and-at-0 portion of the waveform.

Mh@h@h@

Time

Figure 9-6 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable Only thél-
Decreasing andd-at-0 Portion of the Waveform

Finally, Figure 9-7 shows a looping interpolator with both the increasing and
decreasing portions of the waveform enabled.

1 1 1 1

-
'

Time

Figure 9-7 An Interpolator Set to Loop Infinitely and Mode Flags Set to Enable All Por-
tions of the Waveform

In all three cases shown by Figure 9-5, Figure 9-6, and Figure 9-7, we can com-
pute the exact value of alpha at any point in time.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Acceleration of Alph&.6.2

Java 3D’s preprogrammed behaviors permit other behaviors to change their
parameters. When such a change occurs, the alpha value changes to match the
state of the newly parameterized interpolator.

9.6.2 Acceleration of Alpha

Commonly, developers want alpha to change slowly at first and to speed up until
the change in alpha reaches some appropriate rate. This is analogous to acceler-
ating your car up to the speed limit—it does not start off immediately at the
speed limit. Developers specify this “ease-in, ease-out” behavior through two
additional parameters, th@creasingAlphaRampDuration and thedecreasin-
gAlphaRampDuration.

Each of these parameters specifies a period within the increasing or decreasing
alpha duration region during which the “change in alpha” is accelerated (until it
reaches its maximum per-unit-of-time step size) and then symmetrically deceler-
ated. Figure 9-8 shows three general examples of howiibeeasingAl-
phaRampDuration method can be used to modify the alpha waveform. A value of

0 for the increasing ramp duration implies thas not accelerated; it changes at

a constant rate. A value of 0.5 or greater (clamped to 0.5) for this increasing
ramp duration implies that the changenins accelerated during the first half of

the period and then decelerated during the second half of the period. For a value
of n that is less than 0.5, alpha is accelerated for duratidveld constant for
duration (1.0~ 2n), then decelerated for duratiorof the period.

Version 1.1 Alpha 01, February 27, 1998 241

9.6.3 The Alpha Class BEHAVIORS AND INTERPOLATORS

Alpha Ramp Examples

Ramp =0 Ramp = 1/2 Duration Ramp < 1/2 Duration

o Acceleration | : | o]

a Velocity
o Value /
O 1

L}
!

.1
] 0

a Increasing o Increasing a Increasing

Figure 9-8 How anQ-Increasing Waveform Changes with Various Values ofincreasin-
gAlphaRampDuration

9.6.3 The Alpha Class

The Alpha class provides common methods for converting a time value into an

242

alpha value (a value in the range 0.0 to 1.0). The Alpha object is effectively a
function of time that generates alpha values in the range [0,1] when sampled:
fy =[0,1]. The functionf, and the characteristics of the Alpha object are deter-
mined by the following user-definable parameters:

loopCount: Specifies the number of times to run this Alpha. A value of —
1 specifies that the Alpha loops indefinitely.

triggerTime: Specifies the time in milliseconds since the system start
time that this object first triggers. df/stemStartTime — currentTime iS
less than zero, the Alpha object is started as soon as possible by the system.

phaseDelayDuration: Specifies the number of milliseconds to wait after
triggerTime before actually starting this Alpha.

mode: The mode can be set to INCREASING_ENABLE or
DECREASING_ENABLE, or the ORed value of the two. INCREASING _
ENABLE activates the increasing Alpha parameters described below.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Clas9.6.3

DECREASING_ENABLE activates the decreasing Alpha parameters list-
ed below.

The increasing Alpha parameters are:

increasingAlphaDuration: Specifies the time period during which Al-
pha goes from zero to one.

increasingAlphaRampDuration: Specifies the time period during which

the Alpha step size increases at the beginning afritv&asingAlphaDu-

ration and, correspondingly, decreases at the end dfrityeasingAl -
phaDuration. This parameter is clamped to half of
increasingAlphaDuration. When this parameter is non-zero, one gets
constant acceleration while it is in effect; constant positive acceleration at
the beginning of the ramp and constant negative acceleration at the end of
the ramp. If this parameter is zero, the effective velocity of the Alpha value
is constant and the acceleration is zero (i.e., linearly increasing alpha
ramp).

alphaAtOneDuration: Specifies the time period that Alpha stays at one.

The decreasing Alpha parameters are:

decreasingAlphaDuration: Specifies the time period during which Al-
pha goes from one to zero.

decreasingAlphaRampDuration: Specifies the time period during which

the Alpha step size increases at the beginning afdtyeasingAlphaDu-

ration and, correspondingly, decreases at the end afeih&asingAl-
phaDuration. This parameter is clamped to half of
decreasingAlphaDuration. When this parameter is non-zero, one gets
constant acceleration while it is in effect; constant positive acceleration at
the beginning of the ramp and constant negative acceleration at the end of
the ramp. If this parameter is zero, the effective velocity of the Alpha value
is constant and the acceleration is zero (i.e., a linearly-decreasing alpha
ramp).

alphaAtZeroDuration: Specifies the time period that Alpha stays at zero.

Constants

public static final int INCREASING_ENABLE
public static final int DECREASING_ENABLE

These flags specify that this alpha’s mode is to use the increasing or decreasing
component of the alpha, respectively.

Version 1.1 Alpha 01, February 27, 1998 243

9.6.3 The Alpha Class BEHAVIORS AND INTERPOLATORS

244

Constructors

public AlphaQ
public Alpha(int ToopCount, long increasingAlphaDuration)

public Alpha(int ToopCount, long triggerTime,
long phaseDelayDuration, long increasingAlphaDuration,
long 1increasingAlphaRampDuration, long alphaAtOneDuration)

public Alpha(int loopCount, int mode, long triggerTime,
Tong phaseDelayDuration, long increasingAlphaDuration,
long increasingAlphaRampDuration,
long alphaAtOneDuration, long decreasingAlphaDuration,
long decreasingAlphaRampDuration,
Tong alphaAtZeroDuration)

The first form constructs a new Alpha object using default values. The remaining
forms construct a new Alpha object using the specified parameters to define the
alpha phases for the object. The default values for the parameters not specified
by the constructors are as follows:

loopCount: -1

mode INCREASING_ENABLE
triggerTime: O
phaseDelayDuration 0
increasingAlphaDuration: 1000
increasingAlphaRampDuration: 0
alphaAtOneDuration: 0
decreasingAlphaDuratiort 0
decreasingAlphaRampDuration 0
alphaAtZeroDuration: 0

Methods

public float value(Q)
public float value(long atTime)

These methods return the alpha value (between 0.0 and 1.0 inclusive) based on
the time-to-alpha parameters established for this interpolator. The first method

returns the alpha for the current time. The second method returns the alpha for an
arbitrary given time. If the alpha mapping has not started, the starting alpha value

is returned. If the alpha mapping has completed, the ending alpha value is

returned.

public void setStartTime(long startTime)
public Tong getStartTime()

These methods set and retrieve this alpha’s start time, the base for all relative
time specifications.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS The Alpha Clas9.6.3

public void setLoopCount(int ToopCount)
public int getLoopCount()

These methods set and retrieve this alpha’s loop count.

public void setMode(int mode)
public int getMode()

These methods set and retrieve this alpha’s mode, which defines which of the
alpha regions are active. The mode is one of the following valNeBEASING_
ENABLE, DECREASING_ENABLE, or both (when both of these modes are ORed
together).

If the mode iSINCREASING_ENABLE, the increasingAlphaDuration, increas-
ingAlphaRampDuration, and alphaAtOneDuration are active. If the mode is
DECREASING_ENABLE, the decreasingAlphaDuration, decreasingAlphaRamp-
Duration, andalphaAtZeroDuration are active. If the mode is both constants
ORed, all regions are active. Active regions are all preceded by the phase delay
region.

public void setTriggerTime(long triggerTime)
public Tong getTriggerTime()

These methods set and retrieve this alpha’s trigger time.

public void setPhaseDelayDuration(long phaseDelayDuration)
public Tong getPhaseDelayDuration()

These methods set and retrieve this alpha’s phase delay duration.

public void setIncreasingAlphaDuration(long
increasingAlphaDuration)

public Tong getIncreasingAlphaDuration()

These methods set and retrieve this alph@seasingAlphaDuration.

public void setIncreasingAlphaRampDuration(long
increasingAlphaRampDuration)

public Tong getIncreasingAlphaRampDuration()

These methods set and retrieve this alph&'s-easingAlphaRampDuration.

public void setAlphAtOneDuration(long alphaAtOneDuration)
public Tong getAlphaAtOneDuration()

These methods set and retrieve this alph&#aAtOneDuration.

Version 1.1 Alpha 01, February 27, 1998 245

9.6.4 The Interpolator Base Class BEHAVIORS AND INTERPOLATORS

246

public void setDecreasingAlphaDuration(long
decreasingAlphaDuration)

public lTong getDecreasingAlphaDuration()

These methods set and retrieve this alpliés-easingAlphaDuration.

public void setDecreasingAlphaRampDuration(long
decreasingAlphaRampDuration)

public Tong getDecreasingAlphaRampDuration()

These methods set and retrieve this alpbi&seasingAlphaRampDuration.

public void setAlphAtZeroDuration(long alphaAtZeroDuration)
public Tong getAlphaAtZeroDuration()

These methods set and retrieve this alphaaAtZeroDuration.

public boolean finished()

This method returnsrue if this Alpha object is past its activity window, that is,
if it has finished all its looping activity. This method retufa3se if this Alpha
object is still active.

9.6.4 The Interpolator Base Class

Interpolator is an abstract behavior class from which several subclasses are
derived. The base Interpolator class contains an Alpha object that provides the

means for converting a time value (in milliseconds) into an alpha value in the

range [0.0, 1.0] inclusive. Its subclasses map this alpha value into domain-spe-

cific values in their range.
Constants

protected WakeupCriterion defaultWakeupCriterion

This is the default WakeupCondition for all interpolators. Whieeupon method

of Behavior, which takes a WakeupCondition as the method parameter, will need

to be called at the end of tlpeocessStimulus method of any class that sub-
classes Interpolator. This is done with the following method call:

wakeupOn(defaultWakeupCriterion);

Constructors

The Interpolator behavior class has the following constructors.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS PositionInterpolator Objec®.6.5

public Interpolator()
public Interpolator(Alpha alpha)

The first form constructs and initializes a new Interpolator with default values.
The second form provides the common initialization code for all specializations
of Interpolator.

Methods

public void setAlpha(Alpha alpha)

public Alpha getAlpha()

These methods set and retrieve this interpolator’s Alpha object. Settinguitito
causes the Interpolator to stop running.

public void setEnable(boolean state)
public boolean getEnable()

These methods set and retrieve this Interpolator’'s enabled state—the default is
enabled.
public void initialize()

This is the generic predefined interpolatei tialize method. It sets the inter-
polator start time to the current time and schedules the behavior to awaken at the
next frame.

9.6.5 Positioninterpolator Object

The Positioninterpolator class extends Interpolator. It modifies the translational

component of its target TransformGroup by linearly interpolating between a pair

of specified positions (using the value generated by the specified Alpha object).
The interpolated position is used to generate a translation transform along the
local X-axis of this interpolator.

Constructors
The PositionInterpolator object specifies the following constructors.

public PositionInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial position interpolator with a specified targetaéirof-
Translation set to the identity transformationsaartPosition of 0.0, and an
endPosition of 1.0 along theX-axis.

Version 1.1 Alpha 01, February 27, 1998 247

9.6.6

248

Rotationinterpolator Object BEHAVIORS AND INTERPOLATORS

public PositionInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfTranslation, float startPosition,
float endPosition)

Constructs and initializes a new PositionInterpolator that varies the target Trans-
formGroup node’s translational componesitartPosition andendPosition).

The axis0fTranslation parameter specifies the transform that defines the local
coordinate system in which this interpolator operates. The translation is done
along theX-axis of this local coordinate system.

Methods

The Positioninterpolator object specifies the following methods.

public void setStartPosition(float position)
public float getStartPosition()

These two methods set and get the Interpolator’s start position.

public void setEndPosition(float position)
public float getEndPosition()

These two methods set and get the Interpolator’'s end position.

public void setTarget(TransformGroup target)

public TransformGroup getTarget()

These two methods set and get the Interpolator’s target TransformGroup node.
public void setAxisOfTranslation(Transform3D axis)

public Transform3D getAxisOfTranslation()

These two methods set and get the Interpolator’s axis of translation.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into a translation value, computes a
transform based on this value, and updates the specified TransformGroup node
with this new transform.

9.6.6 Rotationinterpolator Object

The Rotationinterpolator class extends Interpolator. It modifies the rotational
component of its target TransformGroup by linearly interpolating between a pair
of specified angles (using the value generated by the specified Alpha object). The

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Rotationinterpolator Obje®.6.6

interpolated angle is used to generate a rotation transform about th&éogsl
of this interpolator.

Constructors

public RotationInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial rotation interpolator with a specifiattget, an axisof-
Rotation set to identity, a minimum angle of 0 radians, and a maximum angle of
2rtradians.

public RotationInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfRotation, float minimumAngle,
float maximumAngle)

Constructs a new rotation interpolator that varies the target TransformGroup
node’s rotational component. TheénimumAngle parameter is the starting angle,

in radians;maximumAngle is the ending angle, in radians. Téei sOfRotation
parameter specifies the transform that defines the local coordinate system in
which this interpolator operates. The rotation is done aboul-thés of this

local coordinate system.

Methods

public void setMinimumAngle(float angle)
public float getMinimumAngle()

These two methods set and get the interpolator's minimum rotation angle, in
radians.

public void setMaximumAngle(float angle)
public float getMaximumAngle()

These two methods set and get the interpolator’s maximum rotation angle, in
radians.

public void setAxisOfRotation(Transform3D axis)
public Transform3D getAxisOfRotation()

These two methods set and get the interpolator’s axis of rotation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup node.

Version 1.1 Alpha 01, February 27, 1998 249

9.6.7 Colorinterpolator Object BEHAVIORS AND INTERPOLATORS

250

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into a rotation angle, computes a trans-
form based on this angle, and updates the specified TransformGroup node with
this new transform.

9.6.7 Colorinterpolator Object

The ColorInterpolator class extends Interpolator. It modifies the color of its target
material object by linearly interpolating between a pair of specified colors (using
the value generated by the specified Alpha object).

Constructors

public ColorInterpolator(Alpha alpha, Material target)

Constructs a trivial color interpolator with a specified target, a start color of
black, and an end color of white.

public ColorInterpolator(Alpha alpha, Material target,
Color3f startColor, color3f endColor)

Constructs a new Colorinterpolator object that varies the target material between
two color valuesqtartColor andendColor).
Methods

public void setStartColor(Color3f color)
public void getStartColor(Color3f color)

These two methods set and get the interpolator’s start color.

public void setEndColor(Color3f color)
public void getEndColor(Color3f color)

These two methods set and get the interpolator’s end color.

public void setTarget(Material target)
public Material getTarget()

These two methods set and get the interpolator's target Material component
object.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Scalelnterpolator Obje@.6.8

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into a color value and updates the
specified Material object with this new color value.

9.6.8 Scalelnterpolator Object

The Scalelnterpolator class extends Interpolator. It modifies the uniform scale
component of its target TransformGroup by linearly interpolating between a pair
of specified scale values (using the value generated by the specified Alpha
object). The interpolated scale value is used to generate a scale transform in the
local coordinate system of this interpolator.

Constructors

public ScaleInterpolator(Alpha alpha, TransformGroup target)

Constructs a trivial scale interpolator that varies its target TransformGroup node
between the two scale values, using the specified alpha, an identity matrix, a
minimum scale of 0.1, and a maximum scale of 1.0.

public ScaleInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfScale, float minimumScale,
float maximumScale)

Constructs a new Scalelnterpolator object that varies the target TransformGroup
node’s scale component between two scale vahiesfumScale andmaximum-

Scale). TheaxisOfScale parameter specifies the transform that defines the local
coordinate system in which this interpolator operates. The scale is done about the
origin of this local coordinate system.

Methods

public void setMinimumScale(float scale)
public float getMinimumScale()

These two methods set and get the interpolator’s minimum scale.

public void setMaximumScale(float scale)
public float getMaximumScale()

These two methods set and get the interpolator’s maximum scale.

Version 1.1 Alpha 01, February 27, 1998 251

9.6.9 SwitchValuelnterpolator Object BEHAVIORS AND INTERPOLATORS

252

public void setAxisOfScale(Transform3D axis)
public Transform3D getAxisOfScale()

These two methods set and get the interpolator’s axis of scale.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup node.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into a scale value, computes a trans-
form based on this value, and updates the specified TransformGroup node with
this new transform.

public void updateNodeReferences(NodeReferenceTable
referenceTable)

This is a callback method used to allow a node to check if any nodes referenced
by that node have been duplicated via a catlltmeTree. This method is called

by thecloneTree method after all nodes in the subgraph have been duplicated.
The cloned leaf node’s method will be called and the leaf node can then look up
any node references by using thetNewNodeReference method found in the
NodeReferenceTable object. If a match is found, a reference to the corresponding
node in the newly cloned subgraph is returned. If no corresponding reference is
found, either aanglingReferenceException is thrown or a reference to the
original node is returned, depending on the value okiiewDanglingRefer-

ences parameter passed in theoneTree call.

9.6.9 SwitchValuelnterpolator Object

The SwitchValuelnterpolator class extends Interpolator. It modifies the selected
child of the target Switch node by linearly interpolating between a pair of speci-
fied child index values (using the value generated by the specified Alpha object).

Constructors

public SwitchValuelnterpolator(Alpha alpha, Switch target)

public SwitchValueInterpolator(Alpha alpha, Switch target,
int firstChildIndex, int lastChildIndex)

Constructs a new SwitchValuelnterpolator object that varies the target Switch
node’s child index between the two values providétr{tChildIndex, the

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS TransparencylInterpolator Obj8c6.10

index of the first children in the Switch node to select, ®sdChildIndex, the
index of the last children in the Switch node to select).

Methods

public void setFirstChildIndex(int firstIndex)
public int getFirstChildIndex()

These two methods set and get the interpolator’s first child index.

public void setLastChildIndex(int TastIndex)
public int getLastChildIndex()

These two methods set and get the interpolator’s last child index.

public void setTarget(Switch target)
public Switch getTarget()

These two methods set and get the interpolator’s target Switch node.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into a child index value and updates
the specified Switch node with this new child index value.

9.6.10 Transparencylnterpolator Object

The Transparencylnterpolator class extends Interpolator. It modifies the transpar-
ency of its target TransparencyAttributes object by linearly interpolating between

a pair of specified transparency values (using the value generated by the specified
Alpha object).

Constructors

public TransparencyInterpolator(Alpha alpha,
TransparencyAttributes target)

Constructs a trivial transparency interpolator with a specified target, a minimum
transparency of 0.0, and a maximum transparency of 1.0.

Version 1.1 Alpha 01, February 27, 1998 253

9.6.11 PositionPathinterpolator Object BEHAVIORS AND INTERPOLATORS

254

public TransparencylInterpolator(Alpha alpha,
TransparencyAttributes target, float minimumTransparency,
float maximumTransparency)

Constructs a new Transparencylnterpolator object that varies the target material’'s
transparency between the two transparency valsifumTransparency, the
starting transparency, amdximumTransparency, the ending transparency).

Methods

public void setMinimumTransparency(float transparency)

public float getMinimumTransparency()

These two methods set and get the interpolator’s minimum transparency.
public void setMaximumTransparency(float transparency)

public float getMaximumTransparency()

These two methods set and get the interpolator's maximum transparency.
public void setTarget(TransparencyAttributes target)

public TransparencyAttributes getTarget()

These two methods set and get the interpolator’s target TransparencyAttributes
component object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into a transparency value and updates
the specified TransparencyAttributes object with this new transparency value.

9.6.11 PositionPathinterpolator Object

The PositionPathinterpolator class extends Interpolator. It modifies the transla-
tional component of its target TransformGroup by linearly interpolating among a
series of predefined knot/position pairs (using the value generated by the speci-
fied Alpha object). The interpolated position is used to generate a translation
transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of 1.0.
An intermediate knot with indek must have a value strictly greater than any
knot with index less thak.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS PositionPathinterpolator Objé:6.11
Constructors

public PositionPathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfTranslation, float
knots[], Point3f positions[])

Constructs a new PasitionPathinterpolator that varies the translation of the target
TransformGroup’s transform. ThexisOfTranslation parameter specifies the
transform that defines the local coordinate system in which this interpolator oper-
ates. Theknots parameter specifies an array of knot values that specifies a
spline. Thepositions parameter specifies an array of position values at the
knots.

Methods

public int getArrayLengths()

This method retrieves the lengths of the interpolator’s knots and positions arrays.

public void setPosition(int index, Point3f position)

public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.
public void setKnot(int 1index, float knot)

public float getKnot(int -+index)

These two methods set and get the interpolator’s indexed knot value.
public void setAxisOfTranslation(Transform3D axis)

public Transform3D getAxisOfTranslation()

These two methods set and get the interpolator’s axis of translation.
public void setTarget(TransformGroup target)

public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into a translation value, computes a
transform based on this value, and updates the specified TransformGroup node
with this new transform.

Version 1.1 Alpha 01, February 27, 1998 255

9.6.12 RotPosPathinterpolator Object BEHAVIORS AND INTERPOLATORS

256

9.6.12 RotPosPathinterpolator Object

The RotPosPathinterpolator class extends Interpolator. It modifies the rotational
and translational components of its target TransformGroup by linearly interpolat-
ing among a series of predefined knot/position and knot/orientation pairs (using
the value generated by the specified Alpha object). The interpolated position and
orientation are used to generate a transform in the local coordinate system of this
interpolator.

The first knot must have a value of 0.0. The last knot must have a value of 1.0.
An intermediate knot with indek must have a value strictly greater than any
knot with index less thak

Constructors

public RotPosPathInterpolator(Alpha alpha, TransformGroup target,
Transform3D axisOfRotPos, float knots[], Quat4f quats[],
Point3f positions[])

This constructor constructs a new RotPosPathinterpolator that varies the rotation
and translation of the target TransformGroup’s transform. &ie0fRotPos
parameter specifies the transform that defines the local coordinate system in
which this interpolator operates. Theots parameter specifies an array of knot
values that specifies a spline. Tqhets parameter specifies an array of quater-
nion values at the knots. Tlpesitions parameter specifies an array of position
values at the knots.

Methods

public int getArraylLengths()

This method retrieves the lengths of the interpolator’s knots, positions, and quats
arrays.

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’s indexed quaternion value.

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotPosScalePathinterpolator Ob@eé. 13

public void setKnot(int index, float knot)
public float getKnot(int -+index)

These two methods set and get the interpolator’s indexed knot value.

public void setAxisOfRotPos(Transform3D axisOfRotPos)
public Transform3D getAxisOfRotPos()

These two methods set and get the interpolator’s axis of rotation and translation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into translation and rotation values,
computes a transform based on these values, and updates the specified Trans-
formGroup node with this new transform.

9.6.13 RotPosScalePathinterpolator Object

The RotPosScalePathinterpolator class extends Interpolator. It varies the rota-
tional, translational, and scale components of its target TransformGroup by lin-
early interpolating among a series of predefined knot/position, knot/orientation,
and knot/scale pairs (using the value generated by the specified Alpha object).
The interpolated position, orientation, and scale are used to generate a transform
in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of 1.0.
An intermediate knot with indek must have a value strictly greater than any
knot with index less thak

Constructors

public RotPosScalePathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfRotPosScale,
float knots[], Quat4f quats[], Point3f positions[],
float scales[])

This constructor constructs a new RotPosScalePathinterpolator that varies the
rotation, translation, and scale of the target TransformGroup’s transform. The
axisOfRotPosScale parameter specifies the transform that defines the local
coordinate system in which this interpolator operates.khbes parameter spec-

Version 1.1 Alpha 01, February 27, 1998 257

9.6.13 RotPosScalePathinterpolator Object BEHAVIORS AND INTERPOLATORS

258

ifies an array of knot values that specifies a spline.qiikes parameter specifies

an array of quaternion values at the knots. ddd tions parameter specifies an

array of position values at the knots. Térale parameter specifies the scale
component value.

Methods

public int getArrayLengths()

This method retrieves the lengths of the interpolator’'s knots and positions arrays.

public void setScale(int index, float scale)
public float getScale(int {index)

These two methods set and get the interpolator’s indexed scale value.

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’'s indexed quaternion value.

public void setPosition(int index, Point3f position)
public void getPosition(int index, Point3f position)

These two methods set and get the interpolator’s indexed position.

public void setKnot(int index, float knot)
public float getKnot(int {index)

These two methods set and get the interpolator’s indexed knot value.

public void setAxisOfRotPosScale(Transform3D axisOfRotPosScale)
public Transform3D getAxisOfRotPosScale()

These two methods set and get the interpolator’s axis of rotation, translation, and
scale.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into translation, rotation, and scale val-

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS RotationPathInterpolator Obj&c6.14

ues, computes a transform based on these values, and updates the specified
TransformGroup node with this new transform.

9.6.14 RotationPathinterpolator Object

The RotationPathinterpolator class extends the Interpolator class. It varies the
rotational component of its target TransformGroup by linearly interpolating
among a series of predefined knot/orientation pairs (using the value generated by
the specified Alpha object). The interpolated orientation is used to generate a
rotation transform in the local coordinate system of this interpolator.

The first knot must have a value of 0.0. The last knot must have a value of 1.0.
An intermediate knot with indek must have a value strictly greater than any
knot with index less thak

Constructors

public RotationPathInterpolator(Alpha alpha,
TransformGroup target, Transform3D axisOfRotation,
float knots[], Quat4f quats[])

This constructor constructs a new RotationPathinterpolator object that varies the
target TransformGroup node’s transform. HxesOfRotation parameter speci-

fies the transform that defines the local coordinate system in which this interpo-
lator operates. Theé¬s parameter specifies an array of knot values that
specifies a spline. Thuats parameter specifies an array of quaternion values at
the knots.

Methods

public int getArrayLengths()

This method retrieves the lengths of the interpolator’'s knots and positions arrays.

public void setQuat(int index, Quat4f quat)
public void getQuat(int index, Quat4f quat)

These two methods set and get the interpolator’'s indexed quaternion value.

public void setKnot(int index, float knot)
public float getKnot(int -{index)

These two methods set and get the interpolator’s indexed knot value.

Version 1.1 Alpha 01, February 27, 1998 259

9.7 Level-of-Detail Behaviors BEHAVIORS AND INTERPOLATORS

public void setAxisOfRotation(Transform3D axisOfRotation)
public Transform3D getAxisOfRotation()

These two methods set and get the interpolator’s axis of rotation.

public void setTarget(TransformGroup target)
public TransformGroup getTarget()

These two methods set and get the interpolator’s target TransformGroup object.

public void processStimulus(Enumeration criteria)

This method is invoked by the behavior scheduler every frame. It maps the alpha
value that corresponds to the current time into a rotation angle, computes a trans-
form based on this angle, and updates the specified TransformGroup node with
this new transform.

9.7 Level-of-Detail Behaviors

The LOD (Level of Detail) leaf node is an abstract behavior class that operates
on a list of Switch group nodes to select one of the children of the Switch nodes.
Specializations of the LOD abstract behavior node implement various level-of-
detail policies.

9.7.1 LOD Object

The DistanceLOD behavior node implements a distance-based LOD policy.
Constructors

public LODQ)
Constructs and initializes a new LOD node.

Methods

The LOD node class defines the following methods.

260 Java 3D API Specification

BEHAVIORS AND INTERPOLATORS DistanceLOD Objed®.7.2

public final void addSwitch(Switch switchNode)

public final void setSwitch(Switch switchNode, 1int 1index)
public final void insertSwitch(Switch switchNode, int index)
public final void removeSwitch(int index)

public final Switch getSwitch(int index)

public final int numSwitches()

The addSwitch method appends the specified Switch node to this LOD's list of
switches. ThesetSwitch method replaces the specified Switch node with the
Switch node provided. ThénsertSwitch method inserts the specified Switch
node at the specified index. ThenoveSwitch method removes the Switch node
at the specified index. ThgtSwitch method returns the Switch node specified
by the index. TheumSwitches method returns a count of this LOD’s switches.

public final Enumeration getAl1Switches()

This method returns the Enumeration object of all switches.

9.7.2 DistanceLOD Object

The DistanceLOD behavior node implements a distance-based LOD policy. The
DistanceLOD behavior selects one of the Switch node’s children based on dis-
tance from the viewer. For distances 0 thronghwhere distance[0] is the most
detail, andn is least—the DistanceLOD selects chid when the viewer

is > distanceafi+1] and< distancefi] from the center of the bounds of the Distan-
ceLOD node. The LOD distances are defined in the local coordinate system of
this node.

Constructors

public DistancelLOD()
public DistanceLOD(float distances[])

Construct and initialize a new DistanceLOD node. Bhetances parameter
specifies a vector of doubles representing LOD cutoff distances.
Methods

public final int numDistances()
public final double getDistance(int whichLOD)
public final void setDistance(int whichLOD, double distance)

ThenumDistances method returns a count of the number of LOD distance cutoff
parameters. ThegetDistance method returns a particular LOD cutoff distance.
The setDistance method sets a particular LOD cutoff distance.

Version 1.1 Alpha 01, February 27, 1998 261

9.8

262

Billboard Behavior BEHAVIORS AND INTERPOLATORS
public void initialize()
This method sets up the initial wakeup criteria.

public void processStimulus(Enumeration criteria)

This method computes the appropriate level of detalil.

9.8 Billboard Behavior

The Billboard behavior node operates on a TransformGroup node to specify a
transform that always aligns itself perpendicular to a specified world-coordinate
axis or to a viewer's view vector—regardless, in either case, of transforms above
the specified transform node in the scene graph.

Billboard nodes provide the most benefit for complex, roughly symmetric
objects. A typical use might consist of a quadrilateral that contains a texture map
of a tree.

Constants
The Billboard class adds the following new constants.

public static final int ROTATE_ABOUT_AXIS

Specifies that rotation should be about the specified axis.

public static final int ROTATE_ABOUT_POINT

Specifies that rotation should be about the specified point and that the children’s
Y-axis should match the ViewPlatform¥axis.

Constructors
The Billboard class specifies the following constructors.

public Billboard(Q)

Constructs a Billboard behavior node WRSITATE_ABOUT_AXIS rotation with an
axis pointing along th&-axis.

Java 3D API Specification

BEHAVIORS AND INTERPOLATORS Billboard Behavior 9.8

public Billboard(TransformGroup tg)
public Billboard(TransformGroup tg, int mode, Vector3f axis)
public Billboard(TransformGroup tg, int mode, Point3f point)

The first constructor constructs a Billboard behavior node with default parame-
ters that operates on the specified tarpeinsformGroup node. The default
alignment mode iBOTATE_ABOUT_AXIS, with the axis along th¥axis. The next

two constructors construct a Billboard behavior node with the specified axis and
mode that operates on the specified TransformGroup nodeaxiheparameter
specifies the ray about which the billboard rotates.pbliet parameter specifies

the position about which the billboard rotates. Thde parameter is the align-
ment mode and is eith@OTATE_ABOUT_AXIS or ROTATE_ABOUT_POINT.

Methods

The Billboard class defines the following methods.

public final void setAlignmentMode(int mode)
public final int getAlignmentMode()

These methods, if enabled by the appropriate flag, permit an application to either
retrieve or set the Billboard node’s alignment mode, orrOTATE_ABOUT_AXIS
Or ROTATE_ABOUT_POINT.

public final void setAlignmentAxis(Vector3f axis)
public final void setAlignmentAxis(float x, float y, float z)
public final void getAlignmentAxis(Vector3f axis)

These methods, if enabled by the appropriate flag, permit an application to set or
retrieve the Billboard node’s alignment axis.

public final void setTarget(TransformGroup tg)
public final TransformGroup getTarget()

These methods set or retrieve the target TransformGroup node for this Billboard
object.

public final void setRotationPoint(float x, float y, float z)
public final void setRotationPoint(Point3f point)
public final void getRotationPoint(Point3f point)

The first two methods set the rotation point. The third method gets the rotation
point and sets the parameter to this value.

Version 1.1 Alpha 01, February 27, 1998 263

9.8 Billboard Behavior BEHAVIORS AND INTERPOLATORS
public void initialize()

This method sets up the initial wakeup criteria.

public void processStimulus(Enumeration criteria)

| This method computes the appropriate transform.

264 Java 3D API Specification

CHAPTER 10

Input Devices and Picking

\]AVA 3D provides access to keyboards and mice using the standard Java API
for keyboard and mouse support. Additionally, Java 3D provides access to a vari-
ety of continuous-input devices such as six-degrees-of-freedom (6DOF) trackers
and joysticks.

Continuous-input devices like 6DOF trackers and joysticks have well defined

continuous inputs. Trackers produce a position and orientation that Java 3D
stores internally as a transformation matrix. Joysticks produce two continuous
values in the range [-1.0, 1.0] that Java 3D stores internally as a transformation
matrix with an identity rotation (no rotation) and one of the joystick values as the

X translation and the other as the Y translation component.

Unfortunately, continuous-input devices do not have the same level of consis-

tency when it comes to their associated switches or buttons. Still, the number of
buttons or switches attached to a particular sensing element remains constant
across all sensing elements associated with a single device.

10.1 InputDevice Interface

The InputDevice interface specifies an abstract input device that a developer can
use in implementing a device driver for a particular device. All implementations
of an InputDevice interface must implement all of its methods. Java 3D’s input
device scheduler uses these methods to interact with specific devices and incor-
porate their input. In addition to the generic methods that all InputDevices must
provide, implementations of an InputDevice will contain whatever device-spe-
cific information and methods are necessary to maintain that device’'s proper
functioning.

All input devices consist of a number of Sensor objects that have a direct one-to-
one relationship with that device’s physical detectors. Sensor objects serve dou-

Version 1.1 Alpha 01, February 27, 1998 265

10.1.1 The Abstract Interface INPUT DEVICES AND PICKING

266

ble duty. They not only represent actual physical detectors but they also serve as
abstract six-degrees-of-freedom transformations that a Java 3D application can
access. The Sensor class is described in more detail in Section 10.2.3, “The Sen-
sor Object.”

10.1.1 The Abstract Interface

All input devices implement a consistent interface that allows the initialization,
processing of input, and finalization of a particular input device. A device-driver
programmer would implement the following methods in whatever device-specific
manner is necessary to perform the specified operations.

Constants

public static final int POLLED
public static final int STREAMING

These flags specify whether the associated device works in polled mode or
streaming mode.

Methods

public abstract boolean 1initialize()

This method initializes the device. It returasue if initialization succeeded,
false otherwise.

public abstract void setProcessingMode(int mode)
public abstract int getProcessingMode()

These methods set and retrieve this device’s processing mode.

public int getSensorCount()

This method returns the number of Sensor objects associated with this device.

public Sensor getSensor(int sensorIndex)

This method returns the specified Sensor associated with this device.

public abstract void setNominalPositionAndOrientation()

This method sets the device’s current position and orientation as the device’s
nominal position and orientation (that is, establishes its reference frame relative
to the “tracker base” reference frame). This method is most useful in defining a
nominal pose in immersive head-tracked situations.

Java 3D API Specification

INPUT DEVICES AND PICKING Sensors 10.2

public abstract void pollAndProcessInput()

This method first polls the device for data values and then processes the values
received from the device.

public abstract void processStreamInput()

This method processes the device’s streaming input.

public abstract void close()

This method closes the device.

10.1.2 Instantiating and Registering a New Device

A browser or applications developer must instantiate whatever system-specific
input devices that he or she needs and that exist on the system. This available-
device information typically exists in a site configuration file. The browser or
application will instantiate the viewing environment as requested by the end user.

The API for instantiating devices is site-specific, but it consists of a device object
with a constructor and at least all of the methods specified in the Input-Device
interface.

Once instantiated, the browser or application must register the device with the
Java 3D input device scheduler. The API for registering devices is specified in
Section 8.7, “The View Object.” TheddInputDevice method introduces new
devices to the Java 3D environment anddhElnputDevices method produces

an enumeration that allows examination of all available devices within a Java 3D
environment.

10.2 Sensors

The Java 3D API provides only an abstract concept of a device. Rather than
focusing on issues of devices and device models, it instead defines the concept of
a sensor. A sensor consists of a timestamped sequence of input values and the
state of the buttons or switches at the time that Java 3D sampled the value. A
sensor also contains a hotspot offset specified in that sensor’s local coordinate
system. If not specified, the hotspot is (0.0, 0.0, 0.0).

Since a typical hardware environment contains multiple sensing elements,
Java 3D maintains an array of sensors. Users can access a sensor directly from
their Java code or they can assign a sensor to one of Java 3D’s predefined 6DOF
entities such as UserHead.

Version 1.1 Alpha 01, February 27, 1998 267

10.2.1 Using and Assigning Sensors INPUT DEVICES AND PICKING

268

10.2.1 Using and Assigning Sensors

Using a sensor is as easy as accessing an object. The application developer writes
Java code to extract the associated sensor value from the array of sensors. The
developer can then directly apply that value to an element in a scene graph or
process the sensor values in whatever way necessary.

Java 3D includes three special six-degrees-of-freedom (6DOF) entities. These
include UserHead, DominantHand, and NondominantHand. An application
developer can assign or change which sensor drives one of these predefined enti-
ties. Java 3D uses the specified sensor to drive the 6DOF entity—most visibly
the View. Application developers should use this facility carefully. It is quite easy

to get the effect of a WristCam—and very disconcerting as well.

10.2.2 Behind the (Sensor) Scenes

Java 3D does not provide raw tracker or joystick-generated data in a sensor. At a
minimum, Java 3D normalizes the raw data using the registration and calibration

parameters either provided by or provided for the end user. It additionally may

filter and process the data to remove noise and improve latency. The application
programmer can suppress this latter effect on a sensor-by-sensor basis.

Unfortunately, tracker or sensor hardware may not always be available or be
operational. Thus, Java 3D provides both an available and an enable flag on a
per-sensor basis.

10.2.3 The Sensor Object

Java 3D stores its sensor array in the PhysicalEnvironment object. Each Sensor
in the array consists of a fixed number of SensorRead objects. Also associated
with each SensorRead is its timestamp and the state of that sensor’s buttons.

Constants

The Sensor object specifies the following constants.

public static final int PREDICT_NONE
public static final int PREDICT_NEXT_FRAME_TIME

These flags define the Sensor’s predictor type. The first flag defines no predic-
tion. The second flag specifies to generate the value to correspond with the next
frame time.

Java 3D API Specification

INPUT DEVICES AND PICKING The Sensor Objed0.2.3

public static final int NO_PREDICTOR
public static final int HEAD_PREDICTOR
public static final int HAND_PREDICTOR

These flags define the Sensor’s predictor policy. The first flag specifies to use no
prediction policy. The second flag specifies to assume that the sensor is predict-
ing head position or orientation. The third flag specifies to assume that the sensor
is predicting hand position or orientation.

public static final int DEFAULT_SENSOR_READ_COUNT

This constant specifies the default number of SensorRead objects constructed
when no SensorRead count is specified.

Constructors

The Sensor object specifies the following constructors.

public Sensor(InputDevice device)
public Sensor(InputDevice device, int sensorReadCount)

public Sensor(InputDevice device, int sensorReadCount,
int sensorButtonCount)

These methods construct a new Sensor object associated with the specified
device and consisting of either a default number of SensorReadssorRead-

Count number of SensorReads and a hot spot at (0.0, 0.0, 0.0) specified in the
sensor’s local coordinate system. The defaulséarsorButtonCount is zero.

public Sensor(InputDevice device, Point3d hotspot)

public Sensor(InputDevice device, int sensorReadCount,
Point3d hotspot)

public Sensor(InputDevice device, int sensorReadCount,
int sensorButtonCount, Point3d hotspot)

These methods construct a new Sensor object associated with the specified
device and consisting of eitheensorReadCount number of SensorReads or a
default number of SensorReads and an offset defining the sensor’s hot spot in the
sensor’s local coordinate system. The defaulséarsorButtonCount is zero.

Methods

public void setSensorReadCount(int count)
public final int getSensorReadCount()
public final int getSensorButtonCount()

These methods set and retrieve the number of SensorRead objects associated
with this sensor and the number of buttons associated with this sensor. Both the

Version 1.1 Alpha 01, February 27, 1998 269

10.2.3 The Sensor Object INPUT DEVICES AND PICKING

270

number of SensorRead objects and the number of buttons are determined at Sen-
sor construction time.

public void getHotspot(Point3d hotspot)
public void setHotspot(Point3d hotspot)

These methods set and retrieve the sensor’s hotspot offset. The hotspot is speci-
fied in the sensor’s local coordinate system.

public void lastRead(Transform3D read)
public void lastRead(Transform3D read, int kth)

These methods extract the most recent sensor reading akth thst recent
sensor reading from the Sensor object. In both cases, the methods copy the sen-
sor value into the specified argument.

public void getRead(Transform3D read)
public void getRead(Transform3D read, long deltaT)

The first method computes the sensor reading consistent with the prediction pol-
icy and copies that value into tihead matrix. The second method computes the
sensor reading consistent as of tidedtaT in the future and copies that value
into theread matrix. All times are in milliseconds.

public Tong lastTime()

public Tong lastTime(int k)

These methods return the time associated with the most recent sensor reading
and with thekth most recent sensor reading, respectively.

public int lastButtons()

public int lastButtons(int k)

These methods return the state of the buttons associated with the most recent
sensor reading and thé& most recent sensor reading, respectively.

public void setPredictor(int predictor)

public int getPredictor()

These methods set and retrieve the sensor’s predictor type. The predictor type is
one of the followingNO_PREDICTOR, HEAD_PREDICTOR, Or HAND_PREDICTOR.

public void setPredictionPolicy(int policy)

public int getPredictionPolicy()

These methods set and retrieve the sensor’s predictor policy. The predictor policy
iS eitherPREDICT_NONE or PREDICT_NEXT_FRAME_TIME.

Java 3D API Specification

INPUT DEVICES AND PICKING The SensorRead Objet0.2.4

public void setDevice(InputDevice device)
public InputDevice getDevice()

These methods set and retrieve the sensor’s input device.

public SensorRead getCurrentSensorRead()

This method returns the current number of SensorRead objects per sensor.

public void setNextSensorRead(long time, Transform3D transform,
int buttons)

This method sets the next SensorRead object to the specified values, including
the next SensorRead’s associated time, transformation, and button state array.
10.2.4 The SensorRead Object

A SensorRead object encapsulates all the information associated with a single
reading of a sensor.

Constants

public final static int MAXIMUM_SENSOR_BUTTON_COUNT

This flag determines the maximum number of sensor-attached buttons tracked on
a per-sensor basis.

Constructors

The SensorRead object specifies the following constructor.
public SensorRead()

Creates a new SensorRead object.

Methods

public final void set(Transform3D tl)
public final void get(Transform3D result)

These methods set and retrieve the SensorRead object’s transform. They allow a
device to store a new rotation and orientation value into the SensorRead object,
and a consumer of that value to access it.

Version 1.1 Alpha 01, February 27, 1998 271

10.3

272

Picking INPUT DEVICES AND PICKING

public final void setTime(long time)
public final long getTime()

These methods set and retrieve the SensorRead object’s timestamp. They allow a
device to store a new timestamp value into the SensorRead object, and a con-
sumer of that value to access it.

public final void setButtons(int values)
public final int getButtons()

These methods set and retrieve the SensorRead object’s button values. They
allow a device to store an integer that encodes the button values into the Sensor-
Read object, and a consumer of those values to access the state of the buttons.

10.3 Picking

Behavior nodes provide the means for building developer-specific picking
semantics. An application developer can define custom picking semantics using
Java 3D’s behavior mechanism (see Chapter 9, “Behaviors and Interpolators”).
The developer might wish to define pick semantics that use a mouse to shoot a
ray into the virtual universe from the current viewpoint, find the first object along
that ray, and highlight that object when the end user releases the mouse button. A
typical scenario follows:

1. The application constructs a Behavior node that arms itself to awaken
when AWT detects a left-mouse-button-down event.
2. Upon awakening from a left-mouse-button-down event, the behavior

a. Updates a Switch node to draw a ray that emanates from the center of
the screen.

b. Changes that ray's TransformGroup node so that the ray points in the
direction of the current mouse position.

c. Declares its interest in mouse-move or left-mouse-button-up events.
3. Upon awakening from a mouse-move event, the behavior

a. Changes that ray’s TransformGroup node so that the ray points in the
direction of the current mouse position.

b. Declares its interest in mouse-move or left-mouse-button-up events.
4. Upon awakening from a left-mouse-button-up event, the behavior

a. Changes that ray’s TransformGroup node so that the ray points in the
direction of the current mouse position.

Java 3D API Specification

INPUT DEVICES AND PICKING SceneGraphPath Objed0.3.1

b. Intersects the ray with all the objects in the virtual universe to find the
first object that the ray intersects.

c. Changes the appearance component of that object's shape node to
highlight the selected object.

d. Declares its interest in left-mouse-button-down events.

Java 3D includes helping functions that aid in intersecting various geometric
objects with objects in the virtual universe by

» Intersecting an oriented ray with all the objects in the virtual universe. That
function can return the first object intersected along that ray, all the objects
that intersect that ray, or a list of all the objects along that ray sorted by dis-
tance from the ray’s origin.

* Intersecting a volume with all the objects in the virtual universe. That func-
tion returns a list of all the objects contained in that volume.

» Discovering which vertex within an object is closest to a specified ray.

10.3.1 SceneGraphPath Object

The SceneGraphPath object represents a path from an object to a BranchGroup
or Locale object. During picking and intersection tests, the user specifies the sub-
tree of the scene graph that should be tested. The whole tree for a Locale is
searched by providing the Locale to the picking or intersection tests.

The SceneGraphPath object represents all the components in the subgraph that
have the capabilitfNABLE_PICK_REPORTING set between the root of the subtree

and the picked or intersected object. All Link nodes are implicitly enabled for
picking.

Constructors

public SceneGraphPath()
public SceneGraphPath(Locale root, Node object)
public SceneGraphPath(Locale root, Node nodes[], Node object)

These construct and initialize a new SceneGraphPath object. The first form uses
default values. The second form specifies the path’s Locale object and the object
in question. The third form includes an array of nodes that fall in between the
Locale and the object in question, and which nodes have Bkt E_PICK_
REPORTING capability bit set. The object parameter may be a Group, Shape3D, or
Morph node. If any other type of leaf node is specifiedI ArgalArgument-
Exception is thrown.

Version 1.1 Alpha 01, February 27, 1998 273

10.3.1 SceneGraphPath Object INPUT DEVICES AND PICKING

274

Methods

public final void set(SceneGraphPath newPath)
public final void setLocale(Locale newlLocale)
public final void setObject(Node object)

public final void setNode(int index, Node newNode)
public final void setNodes(Node nodes[])

These methods set the path’s values. The first method sets the path’s interior val-
ues. The second method sets the path’s Locale to the specified Locale. The third
method sets the path’s object to the specified object (a Group node, or a Shape3D
or Morph leaf node). The fourth method replaces the link node associated with
the specified index with the specified newLink. The last method replaces all of
the link nodes with the new list of link nodes.

public final Locale getLocale()
public final Node getObject()

The first method returns the path’s Locale. The second method returns the path’s
object.

public final int nodeCount()
public final Node getNode(int index)

The first method returns the number of intermediate nodes in this path. The sec-
ond method returns the node associated with the specified index.

public final Transform3D getTransform()

This method returns a copy of the transform associated with this SceneGraph-
Path. The method returns null if there is no transform associated. If this

SceneGraphPath was returned by a Java 3D picking and collision method, the
local-coordinate-to-virtual-coordinate transform for this scene graph object at the

time of the pick or collision is recorded.

public final boolean isSamePath(SceneGraphPath testPath)

This method determines whether two SceneGraphPath objects represent the same
path in the scene graph. Either object might include a different subset of internal
nodes; only the internal link nodes, the Locale, and the Node itself are compared.
The paths are not validated for correctness or uniqueness.

public boolean equals(SceneGraphPath testPath)
This method returnsrue if all of the data members of pathstPath are equal
to the corresponding data members in this SceneGraphPath.

Java 3D API Specification

INPUT DEVICES AND PICKING PickShape Object0.3.3

public int hashCode()

This method returns a hash number based on the data values in this object. Two
different SceneGraphPath objects with identical data values (that is,
trans.equals(SceneGraphPath) returnstrue) will return the same hash num-

ber. Two paths with different data members may return the same hash value,
although this is not likely.

public String toString()

This method returns a string representation of this object. The string contains the
class names of all nodes in the SceneGraphPath.

10.3.2 BranchGroup Node and Locale Node Pick Methods

The following methods are in both the BranchGroup node class and the Locale
node class.

public final SceneGraphPath[] pickA11(PickShape pickShape)
public final SceneGraphPath[] pickAl1Sorted(PickShape pickShape)
public final SceneGraphPath pickClosest(PickShape pickShape)
public final SceneGraphPath pickAny(PickShape pickShape)

These methods return either an array of SceneGraphPath objects or a single
SceneGraphPath object. A SceneGraphPath object describes the entire path from
a Locale to an object that intersects the specified PickShape (see Section 10.3.3,
“PickShape Object”). The methods that return an array either return all the
picked objects or all the picked objects in sorted order starting with the objects
“closest” to the eyepoint and ending with the objects farthest from the eyepoint.
Methods that return a single SceneGraphPath return a single path object that
specifies either the object closest to the eyepoint or any picked object (this latter
method also implements the fastest pick operation possible). All ties in testing
for closest objects intersected result in an indeterminate order.

10.3.3 PickShape Obiject

The PickShape object is an abstract class for describing a shape that can be used
with the BranchGroup and Locale pick methods. The PickShape object is
extended by PickPoint, PickRay, and PickSegment objects.

Version 1.1 Alpha 01, February 27, 1998 275

10.3.4 PickPoint Object INPUT DEVICES AND PICKING

276

10.3.4 PickPoint Object

The PickPoint object provides a point to supply to the BranchGroup and Locale
pick methods. See also Section 10.3.2, “BranchGroup Node and Locale Node
Pick Methods.”

Constructors

public PickPoint(Q)
public PickPoint(Point3d location)

The first constructor creates a PickPoint initialized to (0,0,0). The second con-
structor creates a PickPoint at the specified location.

Methods

public void set(Point3d location)
public void get(Point3d location)

These methods set and retrieve the position of this PickPoint.

10.3.5 PickRay Object

The PickRay object is an encapsulation of a ray that is passed to the pick meth-
ods in BranchGroup and Locale. See also Section 10.3.2, “BranchGroup Node
and Locale Node Pick Methods.”

Constructors

public PickRay()
public PickRay(Point3d origin, Vector3d direction)

The first constructor creates a PickRay initialized with an origin and direction of
(0,0,0). The second constructor creates a PickRay cast from the spacitjeal
anddirection.

Methods

public void set(Point3d origin, Vector3d direction)
public void get(Point3d origin, Vector3d direction)

These methods set and retrieve the ray to point from the spegifigth in the
specifieddirection.

Java 3D API Specification

INPUT DEVICES AND PICKING PickSegment Objedt0.3.6

10.3.6 PickSegment Object

The PickSegment object is an encapsulation of a segment that is passed to the
pick methods in BranchGroup and Locale. See also Section 10.3.2, “Branch-
Group Node and Locale Node Pick Methods.”

Constructors

public PickSegment()
public PickSegment(Point3d start, Point3d end)

The first constructor creates a PickSegment object with the start and end of the
segment initialized to (0,0,0). The second constructor creates a PickSegment
object from the specifiesitart andend points.

Methods

public void set(Point3d start, Point3d end)
public void get(Point3d start, Point3d end)

These methods set and return the line segment fromttre point to theend
point.

Version 1.1 Alpha 01, February 27, 1998 277

CHAPTER 11

Audio Devices

A Java 3D application running on a particular machine could have one of sev-
eral options available to it for playing the audio image created by the sound ren-
derer. Perhaps the machine on which Java 3D is executing has more than one
sound card (for example, one that is a wave table synthesis card and the other
with accelerated sound spatialization hardware). Furthermore, suppose there are
Java 3D audio device drivers that execute Java 3D audio methods on each of
these specific cards. The application would therefore have at least two audio
device drivers through which the audio could be produced. For such a case the
Java 3D application must choose the audio device driver with which sound ren-
dering is to be performed. Once this audio device is chosen, the application can
additionally select the type of audio playback on which device the rendered
sound image is to be output. The playback device (headphones or speaker(s)) is
physically connected to the port to which the selected device driver outputs.

11.1 AudioDevice Interface

The selection of this device driver is done through methods in the PhysicalEnvi-
ronment object (see Section C.9, “The PhysicalEnvironment Object”). The appli-
cation gueries how many audio devices are available. For each device, the user
can get the AudioDevice object that describes it and query its characteristics.
Once a decision is made about which of the available audio devices to use for a
PhysicalEnvironment, the particular device is set into this PhysicalEnvironment’s
fields. Each PhysicalEnvironment object may use only a single audio device.

The AudioDevice object interface specifies an abstract audio device that creators
of Java 3D class libraries would implement for a particular device. Java 3D uses
several methods to interact with specific devices. Since all audio devices imple-
ment this consistent interface, the user could have a portable means of initializ-

Version 1.1 Alpha 01, February 27, 1998 279

11.1.1 |Initialization AUDIO DEVICES

280

ing, setting particular audio device elements, and querying generic character-
istics for any audio device.

Constants

public final static int HEADPHONES

Specifies that audio playback will be through stereo headphones.

public final static int MONO_SPEAKER

Specifies that audio playback will be through a single speaker some distance
away from the listener.

public final static int STEREO_SPEAKERS

Specifies that audio playback will be through stereo speakers some distance
away from, and at some angle to, the listener.

11.1.1 Initialization

Each audio device driver must be initialized. The chosen device driver should be
initialized before any Java 3D Sound methods are executed because the imple-
mentation of the Sound methods, in general, is potentially device-driver depen-
dent.

Methods

public abstract boolean initialize()

Initialize the audio device. Exactly what occurs during initialization is imple-
mentation dependent. This method provides explicit control by the user over
when this initialization occurs.

public abstract boolean close()

Closes the audio device, releasing resources associated with this device.

11.1.2 Audio Playback

Methods to set and retrieve the audio playback parameters are part of the
AudioDevice object. The audio playback information specifies that playback will
be through one of the following:

e Stereo headphones.

Java 3D API Specification

AUDIO DEVICES Audio Playback11.1.2

e A monaural speaker.

» A pair of speakers, equally distant from the listener, both at some angle
from the head coordinate syst@naxis. It's assumed that the speakers are
at the same elevation and oriented symmetrically about the listener.

The type of playback chosen affects the sound image generated. Cross-talk can-
cellation is applied to the audio image if playback over stereo speakers is
selected.

Methods

The following methods affect the playback of sound processed by the Java 3D
sound renderer.

public abstract void setAudioPlaybackType(int type)
public abstract int getAudioPlaybackType()

These methods set and retrieve the type of audio playback desi@®HONES,
MONO_SPEAKER, Or STEREO_SPEAKERS) used to output the analog audio from ren-
dering Java 3D Sound nodes.

public abstract void setCenterEarToSpeaker(float distance)
public abstract float getCenterEarToSpeaker()

These methods set and retrieve the distance in meters from the center ear (the
midpoint between the left and right ears) and one of the speakers in the listener’s
environment. For monaural speaker playback, a typical distance from the listener
to the speaker in a workstation cabinet is 0.76 meters. For stereo speakers placed
at the sides of the display, this might be 0.82 meters.

public abstract void setAngleOffsetToSpeaker(float angle)
public abstract float getAngleOffsetToSpeaker()

These methods set and retrieve the angle, in radians, between the vectors from
the center ear to each of the speaker transducers and the vectors from the center
ear parallel to the head coordinate’s Z axis. Speakers placed at the sides of the
computer display typically range between 0.175 and 0.350 radians (between 10
and 20 degrees).

public abstract PhysicalEnvironment getPhysicalEnvironment()

This method returns a reference to the AudioDevice's PhysicalEnvironment
object.

Version 1.1 Alpha 01, February 27, 1998 281

11.1.3 Device-Driver-Specific Data AUDIO DEVICES

282

11.1.3 Device-Driver-Specific Data

While the sound image created for final output to the playback system is either
only monaural or stereo (for this version of Java 3D), most device-driver imple-
mentations will mix the left and right image signals generated for each rendered
sound source before outputting the final playback image. Each sound source will
useN input channels of this internal mixer.

Each implemented Java 3D audio device driver will have its own limitations and

driver-specific characteristics. These include channel availability and usage (dur-
ing rendering). Methods for querying these device-driver-specific characteristics
are provided below.

Methods

public abstract int getTotalChannels()

This method retrieves the maximum number of channels available for Java 3D
sound rendering for all sound sources.

public abstract int getChannelsAvailable()

During rendering, when Sound nodes are playing, this method returns the num-
ber of channels still available to Java 3D for rendering additional Sound nodes.
public abstract int getChannelsUsedForSound(Sound node)

This is a deprecated method. This method is now part of the Sound class.

11.2 Instantiating and Registering a New Device

A browser or applications developer must instantiate whatever system-specific
audio devices that he or she needs and that exist on the system. This device
information typically exists in a site configuration file. The browser or applica-
tion will instantiate the physical environment as requested by the end user.

The API for instantiating devices is site-specific, but it consists of a device object
with a constructor and at least all of the methods specified in the AudioDevice
interface.

Once instantiated, the browser or application must register the device with the
Java 3D sound scheduler by associating this device with a PhysicalEnvironment
object. ThesetAudioDevice method introduces new devices to the Java 3D
environment and thallAudioDevices method produces an enumeration that

Java 3D API Specification

AUDIO DEVICES AudioMixerDevice Interface 11.3

allows examination of all available devices within a Java 3D environment. See
Section C.9, “The PhysicalEnvironment Object,” for more details.

11.3 AudioMixerDevice Interface

The AudioMixerDevice interface extension is under construction until the Ver-
sion 1.1 Java 3D API Specification is frozen. Check the javadoc for details.

The intent is for this interface to be implemented by AudioDevice driver devel-
opers. TheAudioMixerDevice interface methods should not be called by an
application. Eventually this interface (when it is stable) will be used by those
implementing their own Audio Devices.

Version 1.1 Alpha 01, February 27, 1998 283

CHAPTER 12

Execution and Rendering
Model

JAVA 3D’s execution and rendering model assumes the existence of a Virtu-
alUniverse object and an attached scene graph. This scene graph can be minimal
and not noticeable from an application’s perspective when using immediate-
mode rendering, but it must exist.

Java 3D’s execution model intertwines with its rendering modes and with behav-
iors and their scheduling. This chapter first describes the three rendering modes,
then describes how an application starts up a Java 3D environment, and finally, it
discusses how the various rendering modes work within this framework.

12.1 Three Major Rendering Modes

Java 3D supports three different modes for rendering scenes: immediate mode,
retained mode, and compiled-retained mode. These three levels of API support
represent a potentially large variation in graphics processing speed and in on-the-
fly restructuring.

12.1.1 Immediate Mode

Immediate mode allows maximum flexibility at some cost in rendering speed.
The application programmer can either use or ignore the scene graph structure
inherent in Java 3D’s design. The programmer can choose to draw geometry
directly or to define a scene graph. Immediate mode can either be used indepen-
dently or mixed with retained and/or compiled-retained mode rendering. The
immediate-mode API is described in Chapter 13, “Immediate-Mode Rendering.”

Version 1.1 Alpha 01, February 27, 1998 285

12.1.2 Retained Mode EXECUTION AND RENDERING MODEL

286

12.1.2 Retained Mode

Retained mode allows a great deal of the flexibility provided by immediate mode
while also providing a substantial increase in rendering speed. All objects
defined in the scene graph are accessible and manipulable. The scene graph itself
is fully manipulable. The application programmer can rapidly construct the scene
graph, create and delete nodes, and instantly “see” the effect of edits. Retained
mode also allows maximal access to objects through a general pick capability.

Java 3D'’s retained mode allows a programmer to construct objects, insert objects
into a database, compose objects, and add behaviors to objects.

In retained mode, Java 3D knows that the programmer has defined objects,
knows how the programmer has combined those objects into compound objects
or scene graphs, and knows what behaviors or actions the programmer has
attached to objects in the database. This knowledge allows Java 3D to perform
many optimizations. It can construct specialized data structures that hold an
object's geometry in a manner that enhances the speed at which the Java 3D sys-
tem can render it. It can compile object behaviors so that they run at maximum
speed when invoked. It can flatten transformation manipulations and state
changes where possible in the scene graph.

12.1.3 Compiled-retained Mode

Compiled-retained mode allows the Java 3D API to perform an arbitrarily com-
plex series of optimizations including, but not restricted to, geometry compres-
sion, scene graph flattening, geometry grouping, and state change clustering.

Compiled-retained mode provides hooks for end-user manipulation and picking.
Pick operations return the closest object (in scene graph space) associated with
the picked geometry.

Java 3D’s compiled-retained mode ensures effective graphics rendering speed in
yet one more way. A programmer can request that Java 3D compile an object or
a scene graph. Once compiled, the programmer has minimal access to the inter-
nal structure of the object or scene graph. Capability flags provide access to
specified components that the application program may need to modify on a con-
tinuing basis.

A compiled object or scene graph consists of whatever internal structures
Java 3D wishes to create to ensure that objects or scene graphs render at maximal
rates. Because Java 3D knows that the majority of the compiled object’s or scene
graph’s components will not change, it can perform an extraordinary number of
optimizations, including the fusing of multiple objects into one conceptual

Java 3D API Specification

EXECUTION AND RENDERING MODEL Retained and Compiled-retained Rendering Mddeg.2

object, turning an object into compressed geometry, or even breaking an object
up into like-kind components and reassembling the like-kind components into
new “conceptual objects.”

12.2 Instantiating the Render Loop

From an application’s perspective, Java 3D’s render loop runs continuously.
Whenever an application adds a scene branch to the virtual world, that scene
branch is instantly visible. This high-level view of the render loop permits con-
current implementations of Java 3D as well as serial implementations. The
remainder of this section describes the Java 3D render loop bootstrap process
from a serialized perspective. Differences that would appear in concurrent imple-
mentations are noted as well.

12.2.1 An Application-level Perspective

First the application must construct its scene graphs. It does this by constructing
scene graph nodes and component objects and linking them into self-contained
trees with a BranchGroup node as a root. The application next must obtain a ref-
erence to any constituent nodes or objects within that branch that it may wish to
manipulate. It sets the capabilities of all the objects to match their anticipated use
and only then compiles the branch using the BranchGraigpisile method.
Whether or not it compiles the branch, the application can add it to the virtual
universe by adding the BranchGroup to a Locale object. The application repeats
this process for each branch it wishes to create. Note that for concurrent Java 3D
implementations, whenever an application adds a branch to the active virtual uni-
verse, that branch becomes visible.

12.2.2 Retained and Compiled-retained Rendering Modes

This initialization process is identical for retained and compiled-retained modes.
In both modes, the application builds a scene graph. In compiled-retained mode,
the application then compiles the scene graph. Then the application inserts the
(possibly compiled) scene graph into the virtual universe.

Version 1.1 Alpha 01, February 27, 1998 287

CHAPTER 13

Immediate-Mode Rendering

\]AVA 3D is fundamentally a scene graph—based API. Most of the constructs in
the API are biased toward retained mode and compiled-retained mode rendering.
However, there are some applications that want both the control and the flexibil-
ity that immediate-mode rendering offers.

Immediate-mode applications can either use or ignore Java 3D’s scene graph
structure. By using immediate mode, end-user applications have more freedom,
but this freedom comes at the expense of performance. In immediate mode,
Java 3D has no high-level information concerning graphical objects or their com-

position. Because it has minimal global knowledge, Java 3D can only perform

localized optimizations on behalf of the application programmer.

13.1 Two Styles of Immediate-Mode Rendering

Use of Java 3D’s immediate mode falls into one of two categories: pure immedi-
ate-mode rendering and mixed-mode rendering in which immediate mode and
retained or compiled-retained mode interoperate and render to the same canvas.
The Java 3D renderer is idle in pure immediate mode, distinguishing it from
mixed-mode rendering.

13.1.1 Pure Immediate-Mode Rendering

Pure immediate-mode rendering provides for those applications and applets that
do not want Java 3D to do any automatic rendering of the scene graph. Such
applications may not even wish to build a scene graph to represent their graphi-
cal data. However, they use Java 3D’s attribute objects to set graphics state and
Java 3D’s geometric objects to render geometry.

Version 1.1 Alpha 01, February 27, 1998 289

13.1.1 Pure Immediate-Mode Rendering IMMEDIATE-MODE RENDERING

290

A pure immediate mode application must create a minimal set of Java 3D objects
before rendering. In addition to a Canvas3D object, the application must create a
View object, with its associated PhysicalBody and PhysicalEnvironment objects,
and the following scene graph elements: a VirtualUniverse object, a high-resolu-
tion Locale object, a BranchGroup node object, a TransformGroup node object
with associated transform and, finally, a ViewPlatform leaf node object that
defines the position and orientation within the virtual universe that generates the
view (see Figure 13-1).

Virtual Universe

Hi-Res Locale

BranchGroup @

TransformGroup Screen3D
ViewPlatform * view |= > canvas3D
Y \
Physical Physical
Body Environment

Figure 13-1 Minimal Immediate-Mode Structure

Java 3D provides utility functions that create much of this structure on behalf of
a pure immediate-mode application, making it less noticeable from the applica-
tion’s perspective—but the structure must exist.

All rendering is done completely under user control. It is necessary for the user
to clear the 3D canvas, render all geometry, and swap the buffers. Additionally,
rendering the right and left eye for stereo viewing becomes the sole responsibil-
ity of the application.

In pure immediate mode, the user must stop the Java 3D renderer, via the
Canvas3D objecttopRenderer() method, prior to adding the Canvas3D object

Java 3D API Specification

IMMEDIATE-MODE RENDERING Mixed-Mode Renderind.3.1.2

to an active View object (that is, one that is attached to a live ViewPlatform
object).

13.1.2 Mixed-Mode Rendering

Mixing immediate mode and retained or compiled-retained mode requires more
structure than pure immediate mode. In mixed mode, the Java 3D renderer is run-
ning continuously, rendering the scene graph into the canvas. The basic Java 3D
stereorendering loop, executed for each Canvas3D, is as follows:

clear canvas (both eyes)

call preRender() // user-supplied method
set left eye view

render opaque scene graph objects

call renderField(FIELD_LEFT) // user-supplied method
render transparent scene graph objects

set right eye view

render opaque scene graph objects again

call renderField(FIELD_RIGHT) // user-supplied method
render transparent scene graph objects again

call postRender() // user-supplied method
synchronize and swap buffers

call postSwap() // user-supplied method

The basic Java 3monoscopiaendering loop is as follows:

clear canvas

call preRender() // user-supplied method
set view

render opaque scene graph objects

call renderField(FIELD_ALL) // user-supplied method
render transparent scene graph objects

call postRender() // user-supplied method
synchronize and swap buffers

call postSwap() // user-supplied method

In both cases, the entire loop, beginning with clearing the canvas and ending with
swapping the buffers, defines a frame. The application is given the opportunity to
render immediate-mode geometry at any of the clearly identified spots in the ren-
dering loop. A user specifies his or her own rendering methods by extending the
Canvas3D class and overriding tpeeRender, postRender, postSwap, and/or
renderField methods.

Version 1.1 Alpha 01, February 27, 1998 291

13.2

292

Canvas3D Methods IMMEDIATE-MODE RENDERING

13.2 Canvas3D Methods

The Canvas3D methods that directly affect immediate-mode rendering are
described here.

When a Canvas3D object is created, it is initially marked as being started. This
means that as soon as the Canvas3D is added to an active View object, the ren-
dering loop will render the scene graph to the canvas. In pure immediate mode
the renderer must be stopped (via a calstopRenderer) prior to adding the
canvas to an active View object.

Constants

public static final int FIELD_LEFT
public static final int FIELD_RIGHT
public static final int FIELD_ALL

These constants specify the field that the rendering loop for this Canvas3D is
rendering. TheFIELD_LEFT and FIELD_RIGHT values indicate the left and right
fields of a field-sequential stereo rendering loop, respectively.FTHeD_ALL

value indicates a monoscopic or single-pass stereo rendering loop.

Methods

public final GraphicsContext3D getGraphicsContext3D()

This method retrieves the immediate-mode 3D graphics context associated with
this Canvas3D. It creates a new graphics context if one does not already exist. It
returns a GraphicsContext3D object that can be used for immediate mode render-
ing to this Canvas3D.

public void preRender()

Applications that wish to perform operations in the rendering loop prior to any
actual rendering must override this method. The Java 3D rendering loop invokes
this method after clearing the canvas and before any rendering has been done for
this frame.

public void postRender()

Applications that wish to perform operations in the rendering loop following any
actual rendering must override this method. The Java 3D rendering loop invokes
this method after completing all rendering to the canvas for this frame and before
the buffer swap.

Java 3D API Specification

IMMEDIATE-MODE RENDERING Canvas3D Methods 13.2

public void postSwap()

Applications that wish to perform operations at the very end of the rendering
loop must override this method. The Java 3D rendering loop invokes this method
after completing all rendering to this canvas, and all other canvases associated
with the current view, for this frame following the buffer swap.

public void renderField(int fieldDesc)

Applications that wish to perform operations during the rendering loop must
override this function. The Java 3D rendering loop invokes this method, possibly
twice, during the loop. It is called once for each field (once per frame on a mono-
scopic system or once each for the right eye and left eye on a field-sequential ste-
reo system). This method is called after all opague objects are rendered and
before any transparent objects are rendered (subject to restrictions imposed by
OrderedGroup nodes). This is intended for use by applications that want to mix
retained/compiled-retained mode rendering with some immediate-mode render-
ing. The fieldDesc parameter is the field descriptioRIELD_LEFT, FIELD_

RIGHT, or FIELD_ALL. Applications that wish to work correctly in stereo mode
should render the same image for belfiLD_LEFT and FIELD_RIGHT calls. If

Java 3D calls the renderer wifiELD_ALL, the immediate-mode rendering only
needs to be done once.

public final void startRenderer()
public final void stopRenderer()

These methods start or stop the Java 3D renderer for this Canvas3D object. If the
Java 3D renderer is currently running whedepRenderer is called, the render-

ing will be synchronized before being stopped. No further rendering will be done
to this canvas by Java 3D until the renderer is started again. If the Java 3D ren-
derer is not currently running whestartRenderer is called, any rendering to
other Canvas3D objects sharing the same View will be synchronized before this
Canvas3D's renderer is (re)started.

public final void swap(Q)

This method synchronizes and swaps buffers on a double-buffered canvas for this
Canvas3D object. This method may only be called if the Java 3D renderer has
been stopped. In the normal case, the renderer automatically swaps the buffer. If
the application invokes this method and the canvas has a running Java 3D ren-
derer, aRestrictedAccessException exception is thrown.

Version 1.1 Alpha 01, February 27, 1998 293

13.3

294

API for Immediate Mode IMMEDIATE-MODE RENDERING

13.3 API for Immediate Mode

The Java 3D immediate mode allows an application to directly set attributes and
draw three-dimensional geometry using the same objects as in Java 3D scene
graphs. An immediate-mode application renders by passing these objects to the
set anddraw methods of a GraphicsContext3D object.

13.3.1 GraphicsContext3D

The GraphicsContext3D object is used for immediate-mode rendering into a 3D
canvas. It is created by, and associated with, a specific Canvas3D object. A
GraphicsContext3D class defines methods that manipulate 3D graphics state
attributes and draw 3D geometric primitives.

Constructors

There are no publicly accessible constructors of GraphicsContext3D. An applica-
tion obtains a 3D graphics context object from the Canvas3D object into which
the application wishes to render by using gheGraphicsContext3D method.

The Canvas3D object creates a new GraphicsContext3D the first time an applica-
tion invokesgetGraphicsContext3D. A new GraphicsContext3D initializes its
state variables to the following defaults:

Background object null

Fog object null

Appearance object null

List of Light objects: empty
High-Res coordinates (0, 0, 0)
modelTransform: identity
AuralAttributes object : null
List of Sound objects empty

Methods

public final Canvas3D getCanvas3D()

This method gets the Canvas3D that created this GraphicsContext3D.
public final void setAppearance(Appearance appearance)

public final Appearance getAppearance()

These methods access or modify the current Appearance component object used
by this 3D graphics context. The graphics context stores a reference to the spec-
ified Appearance object. This means that the application may modify individual

Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3013.3.1

appearance attributes by using the appropriate methods on the Appearance object
(see Section 7.1.1, “Appearance Object”). The Appearance component object
must not be part of a live scene graph, nor may it subsequently be made part of a
live scene graph—alil1egalSharingException is thrown in such cases. If the
Appearance object isul1, default values will be used for all appearance
attributes—it is as if an Appearance node were created using the default con-
structor.

public final void setBackground(Background background)
public final Background getBackground()

These methods access or modify the current Background leaf node object used
by this 3D graphics context. The graphics context stores a reference to the spec-
ified Background node. This means that the application may modify the back-
ground color or image by using the appropriate methods on the Background node
object (see Section 5.4, “Background Node”). The Background node must not be
part of a live scene graph, nor may it subsequently be made part of a live scene
graph—anIllegalSharingException is thrown in such cases. If the Back-
ground object isw11, the default background color of black (0,0,0) is used to
clear the canvas prior to rendering a new frame. The Background node’s applica-
tion region is ignored for immediate-mode rendering.

public final void setFog(Fog fog)
public final Fog getFog()

These methods access or modify the current Fog leaf node object used by this 3D
graphics context. The graphics context stores a reference to the specified Fog
node. This means that the application may modify the fog attributes using the

appropriate methods on the Fog node object (see Section 5.6, “Fog Node”). The
Fog node must not be part of a live scene graph, nor may it subsequently be
made part of a live scene graph—EHegalSharingException is thrown in

such cases. If the Fog objechisl 1, fog is disabled. Both the region of influence

and the hierarchical scope of the Fog node are ignored for immediate-mode ren-
dering.

public final void addLight(Light Tight)

public final void insertLight(Light 1ight, int index)
public final void setLight(Light Tight, int index)
public final Light getLight(int index)

public final void removelLight(int index)

Version 1.1 Alpha 01, February 27, 1998 295

13.3.1 GraphicsContext3D IMMEDIATE-MODE RENDERING

296

public final int numLights(Q
public final Enumeration getAllLights()

These methods access or maodify the list of lights used by this 3D graphics con-
text. TheaddLight method adds a new light to the end of the list of lights. The
insertLight method inserts a new light before the light at the specified index.
The setLight method replaces the light at the specified index with the light pro-
vided. TheremovelLight method removes the light at the specified index. The
numLights method returns a count of the number of lights in the list. The
getLight method returns the light at the specified index. §e®A11Lights
method retrieves the Enumeration object of all lights.

The graphics context stores a reference to each light object in the list of lights.
This means that the application may modify the light attributes for any of the
lights using the appropriate methods on that Light node object (see Section 5.7,
“Light Node”). None of the Light nodes in the list of lights may be part of a live
scene graph, nor may they subsequently be made part of a live scene graph—an
IT1legalSharingException is thrown in such cases. Addingal1 Light object

to the list will result in @ul1PointerException. Both the region of influence

and the hierarchical scope of all lights in the list are ignored for immediate-mode
rendering.

public void setHiRes(int x[], int y[], int z[])
public void setHiRes(HiResCoord hiRes)
public void getHiRes(HiResCoord hiRes)

These methods access or modify the high-resolution coordinates of this graphics
context to the location specified by the parameters provided. In the first method,
the parameters, y, andz are arrays of eight 32-bit integers that specify the high-
resolution coordinates point.

public void setModelTransform(Transform3D t)
public void multiplyModelTransform(Transform3D t)
public void getModelTransform(Transform3D t)

These methods access or modify the current model transformmuThéply-
ModelTransform method multiplies the current model transform by the specified
transform and stores the result back into the current model transform. The speci-
fied transformation must be affine. BadTransformException is thrown (see
Section D.1, “BadTransformException”) if an attempt is made to specify an ille-
gal Transform3D.

Java 3D API Specification

IMMEDIATE-MODE RENDERING GraphicsContext3013.3.1

public final void setAuralAttributes(AuralAttributes attributes)
public final AuralAttributes getAuralAttributes()

These methods access or modify the current AuralAttributes component object
used by this 3D graphics context. The graphics context stores a reference to the
specified AuralAttributes object. This means that the application may modify
individual audio attributes by using the appropriate methods in the Aural-
Attributes object (see Section 7.1.15, “AuralAttributes Object”). The Aural-
Attributes component object must not be part of a live scene graph, nor may it
subsequently be made part of a live scene graphftaggalSharingExcep-

tion is thrown in such cases. If the AuralAttributes objeeiuisl, default values

will be used for all audio attributes—it is as if an AuralAttributes object were
created using the default constructor.

public final void readRaster(Raster raster)

This method reads an image from the frame buffer and copies it into the Image-
Component or DepthComponent objects referenced by the specified Raster
object. All parameters of the Raster object and the component ImageComponent
or DepthComponent objects must be set to the desired values prior to calling this
method. These values determine the location, size, and format of the pixel data
that is read.

public final void clear()

This method clears the canvas to the color or image specified by the current
Background leaf node object.

public final void draw(Geometry geometry)
public final void draw(Shape3D shape)

The firstdraw method draws the specified Geometry component object using the
current state in the graphics context. The seabad method draws the speci-

fied Shape3D leaf node object. This is a convenience method that is identical to
calling thesetAppearance (Appearance) anddraw(Geometry) methods passing

the Appearance and Geometry component objects of the specified Shape3D
nodes as arguments.

public final void addSound(Sound sound)

public final void insertSound(Sound sound, 1int index)
public final void setSound(Sound sound, 1int index)
public final Sound getSound(int index)

public final void removeSound(int index)

public final int numSounds()

Version 1.1 Alpha 01, February 27, 1998 297

13.3.1 GraphicsContext3D IMMEDIATE-MODE RENDERING

298

public final boolean isSoundPlaying(int index)
public final Enumeration getAll1Sounds()

These methods access or modify the list of sounds used by this 3D graphics con-
text. TheaddSound method appends the specified sound to this graphics con-
text's list of sounds. TheénsertSound method inserts the specified sound at the
specified index location. TheetSound method replaces the specified sound with

the sound provided. TheemoveSound method removes the sound at the speci-
fied index location. ThenumSounds method retrieves the current number of
sounds in this graphics context. TlhetSound method retrieves the index-
selected sound. ThesSoundPlaying method retrieves the sound-playing flag.
The getA11Sounds method retrieves the Enumeration object of all the sounds.

The graphics context stores a reference to each sound object in the list of sounds.
This means that the application may modify the sound attributes for any of the
sounds by using the appropriate methods on that Sound node object (see
Section 5.8, “Sound Node”). None of the Sound nodes in the list of sounds may
be part of a live scene graph, nor may they subsequently be made part of a live
scene graph—anllegalSharingException is thrown in such cases. Adding a

null Sound object to the list results irNal1PointerException. If the list of
sounds is empty, sound rendering is disabled.

Adding or inserting a sound to the list of sounds implicitly starts the sound play-
ing. Once a sound is finished playing, it can be restarted by setting the sound’s
enable flag tarue. The scheduling region of all sounds in the list is ignored for
immediate-mode rendering.

Java 3D API Specification

APPENDIXI \

Math Objectls

M ATHEMATICAL objects allow Java 3D users to represent and manipulate
low-level mathematical constructs such as vectors and matrices. Math objects
also define specific operations that allow users to manipulate them in appropriate
ways.

Java 3D needs these vector and matrix math classes. It uses them internally and
also makes them available to applications for their use. However, they are not
part of Java 3D. Rather, they are defined here for convenience. These classes will
become more widely distributed, which is why Java 3D defines them as a sepa-
ratejavax.vecmath package. Figure A-1 shows the math object hierarchy.

A.1 Tuple Objects

Java 3D uses tuple objects to represent and manipulate two-, three-, and four-ele-
ment values.
A.1.1 Tuple2f Class

The Tuple2f class is a generic two-element tuple mostly used for specifying
points and vectors made up of single-precision floating-pgintoordinates.

Variables

The component values of a Tuple2f are directly accessible through the public
variablesx andy. To access the component of a Tuple2f calleghperLeftCor-

ner, a programmer would writ@pperLeftCorner.x. The programmer would
access thg component similarly.

Version 1.1 Alpha 01, February 27, 1998 299

A.1.1 Tuple2f Class

300

MATH OBJECTS

Tuple Objects

Tuple2f
Point2f
TexCoord2f
Vector2f

Tuple3b
Color3b

Tuple3d
Point3d
Vector3d

Tuple3f
Color3f
Point3f
TexCoord3f
Vector3f

Tupledb
Color4b

Tuple4d
Point4d
Quat4d
Vector4d

Tuple4f
Color4f
Point4f
Quat4f
Vector4f

AxisAngle4d

AxisAngle4f

GVector

Matrix Objects

Matrix3f
Matrix3d
Matrix4f
Matrix4d
GMatrix

Figure A-1 Math Object Hierarchy

public float x
public float y

The x andy coordinates, respectively.

Constructors

public Tuple2f(float x, float y)
public Tuple2f(float t[])

Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.1

public Tuple2f(Tuple2f tl)
public Tuple2f()

These four constructors each return a new Tuple2f. The first constructor gener-
ates a Tuple2f from two floating-point numberandy. The second constructor
generates a Tuple2f from the first two elements of atrdhe third constructor
generates a Tuple2f from the tuple The final constructor generates a Tuple2f
with the value of (0.0, 0.0).

Methods

public final void set(float x, float y)
public final void set(float t[])
public final void set(Tuple2f tl)
public final void get(float t[1)

The set methods set the value of tupt@is to the values provided. Thget
method copies the values of the elements of this tuple into thetarray

public final void add(Tuple2f tl, Tuple2f t2)
public final void add(Tuple2f tl)
public final void sub(Tuple2f tl, Tuple2f t2)
public final void sub(Tuple2f tl)

The firstadd method computes the element-by-element sum of tuplesidt2,
placing the result irthis. The seconddd method computes the element-by-ele-
ment sum of this tuple and tupta, placing the result irthis. The firstsub
method performs an element-by-element subtraction of tgplEom tuple t1
and places the result ihis (this = t1 — t2). The secondib method performs an
element-by-element subtraction of from this and places the result ithis
(this = this — t1).

public final void negate(Tuple2f tl)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the values
from tupletl. The secondegate method negates the tupleis and places the
resulting tuple back intahis.

public final void scale(float s, Tuple2f tl)

public final void scale(float s)

public final void scaleAdd(float s, Tuple2f tl)

public final void scaleAdd(float s, Tuple2f tl, Tuple2f t2)

The firstscale method multiplies each element of the tupleby the scale fac-
tor s and places the resulting scaled tuple ittids. The secondcale method

Version 1.1 Alpha 01, February 27, 1998 301

All

302

Tuple2f Class MATH OBJECTS

multiplies each element of this tuple by the scale factmd places the resulting
scaled tuple intahis. The firstscaleAdd method scales this tuple by the scale
factors, adds the result to tupta, and places the result into the tupla s (this

= s*this + t1). The seconskaleAdd method scales tuplel by the scale factor
s, adds the result to tuplke, then places the result into the tupleis (this =
s*tl + t2)

public final void absolute()
public final void absolute(Tuple2f t)

The first absolute method sets each component of this tuple to its absolute
value. The secondbsolute method sets each component of this tuple to the
absolute value of the corresponding component in tuple

public final void clamp(float min, float max)

public final void clamp(float min, float max, Tuple2f t)
public final void clampMin(float min)

public final void clampMin(float min, Tuple2f t)

public final void clampMax(float max)

public final void clampMax(float max, Tuple2f t)

The firstclamp method clamps this tuple to the rangen] max]. The second
clamp method clamps the values from tupléo the rangenfin, max] and assigns
these clamped values to this tuple. The fifisinpMin method clamps each value

of this tuple to thenin parameter. The secondampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The first
clampMax method clamps each value of this tuple tontlve parameter. The sec-
ond clampMax method clamps each value of tupldo themax parameter and
assigns these clamped values to this tuple. In each method the values ef tuple
remain unchanged.

public final void interpolate(Tuple2f tl, Tuple2f t2, float alpha)
public final void interpolate(Tuple2f tl, float alpha)

The first method linearly interpolates between tuptesand t2 and places the
result into this tuple (this = alpha * t1 + (1 — alpha) * t2). The second method lin-
early interpolates between this tuple and tugleand places the result into this
tuple (this = alpha * this + (1 — alpha) * t1).

public boolean equals(Tuple2f tl)

This method returnsrue if all of the data members of tupte are equal to the
corresponding data members in this tuple.

Java 3D API Specification

MATH OBJECTS Tuple2f Class A.1.1

public boolean epsilonEquals(Tuple2f tl, float epsilon)

This method returnsrue if the L, distance between this tuple and tupleis
less than or equal to thepsilon parameter. Otherwise, this method returns
false. The L, distance is equal to

MAX [abs(x1 — x2), abgyl —y2)]

public int hashCode()

The hashCode method returns a hash number based on the data values in this
object. Two Tuple2f objects with identical data values (thafcigals (Tuple2f)
returnstrue) will return the same hash number. Two objects with different data
members may return the same hash number, although this is not likely.

public String toString()
This method returns a string that contains the values of this Tuple2f.

A.1.1.1 Point2f Class

The Point2f class extends Tuple2f. The Point2f is a two-element point repre-
sented by single-precision floating-poiy coordinates.

Constructors

public Point2f(float x, float y)
public Point2f(float p[]1)

public Point2f(Point2f pl)
public Point2f(Tuple2f tl)
public Point2f()

These four constructors each return a new Point2f. The first constructor generates
a Point2f from two floating-point numbexsandy. The second constructor gen-
erates a Point2f from the first two elements of aprajhe third constructor gen-
erates a Point2f from the poipl. The fourth constructor generates a Point2f
from the Tuple2ft1. The final constructor generates a Point2f with the value of
(0.0, 0.0).

Methods

public final float distanceSquared(Point2f pl)
public final float distance(Point2f pl)

The distanceSquared method computes the square of the Euclidean distance
between this point and pointt and returns the result. Thestance method

Version 1.1 Alpha 01, February 27, 1998 303

A.1.1 Tuple2f Class MATH OBJECTS

304

computes the Euclidean distance between this point andgioarid returns the
result.

public final float distanceLl(Point2f pl)
This method computes theg (Manhattan) distance between this point and point
pl. The Ly distance is equal to

abqx1-x2) + abqyl-y?2)

public final float distanceLinf(Point2f pl)

This method computes the,ldistance between this point and pagimt The L,
distance is equal to

MAX [abs(x1 — x2), abgyl —y2)]

A.1.1.2 Vector2f Class

The Vector2f class extends Tuple2f. The Vector2f is a two-element vector repre-
sented by single-precision floating-poigy coordinates.

Constructors

public Vector2f(float x, float y)
public Vector2f(float v[])

public Vector2f(Vector2f vl)
public Vector2f(Tuple2f tl)
public Vector2f()

These four constructors each return a new Vector2f. The first constructor gener-
ates a Vector2f from two floating-point numberandy. The second constructor
generates a Vector2f from the first two elements of arrdye third constructor
generates a Vector2f from the vectar. The fourth constructor generates a
Vector2f from the specified Tuple2f. The final constructor generates a Vector2f
with the value of (0.0, 0.0).

Methods

public final float dot(Vector2f vl)

Thedot method computes the dot product between this vector and vecaod
returns the resulting value.

Java 3D API Specification

MATH OBJECTS Tuple3b Class A.1.2

public final float lengthSquared()
public final float length()

The TengthSquared method computes the square of the length of the vector
this and returns its length as a single-precision floating-point number. The
length method computes the length of the veatiots and returns its length as

a single-precision floating-point number.

public final void normalize(Vector2f vl)
public final void normalize()

The firstnormalize method normalizes the vectot to unit length and places
the result inthis. The secondormalize method normalizes the vectehis
and places the resulting unit vector back ittos.

public final float angle(Vector2f vl)

This method returns the angle, in radians, between this vector and wiectbie
return value is constrained to the rangeroO,

A.1.1.3 TexCoord2f Class

The TexCoord2f class is a subset of Tuple2f. The TexCoord2f is a two-element
vector represented by single-precision floating-point x,y coordinates.

Constructors

public TexCoord2f(float x, float y)
public TexCoord2f(float v[])

public TexCoord2f(TexCoord2f vl)
public TexCoord2f(Tuple2f tl)
public TexCoord2f()

These four constructors each return a new TexCoord2f. The first constructor gen-
erates a TexCoord2f from two floating-point numbemndy. The second con-
structor generates a TexCoord2f from the first two elements of arfidhe third
constructor generates a TexCoord2f from the TexCoovd2fThe fourth con-
structor generates a TexCoord2f from the Tuplg2fThe final constructor gen-
erates a TexCoord2f with the value of (0.0, 0.0).

A.1.2 Tuple3b Class

The Tuple3b class is used for colors. This class represents a three-byte tuple.

Version 1.1 Alpha 01, February 27, 1998 305

A.1.2 Tuple3b Class MATH OBJECTS
Variables

The component values of a Tuple3b are directly accessible through the public
variablesx, y, and z. To access th& (red) component of a Tuple3b called
myColor, a programmer would writeyColor.x. The programmer would access
they (green) and (blue) components similarly.

Note: Java defines a byte as a signed integer in the rai@8,[127]. However,

colors are more typically represented by values in the range [0, 255]. Java 3D rec-
ognizes this and, in those cases where Color3b is used to represent color, treats the
bytes as if the range were [0, 255].

public byte x
public byte y
public byte z

The red, green, and blue values, respectively.
Constructors

public Tuple3b(byte bl, byte b2, byte b3)
public Tuple3b(byte t[])

public Tuple3b(Tuple3b tl)

public Tuple3b()

These four constructors each return a new Tuple3b. The first constructor gener-
ates a Tuple3b from three bytel b2, andb3. The second constructor generates

a Tuple3b from the first three elements of arrayrhe third constructor gener-

ates a Tuple3b from the byte-precision Tuple3bThe final constructor gener-

ates a Tuple3b with the value of (0.0, 0.0, 0.0).

Methods

public String toString(Q)

This method returns a string that contains the values of this Tuple3b.

306 Java 3D API Specification

MATH OBJECTS Tuple3b Class A.1.2

public final void set(byte t[]1)
public final void set(Tuple3b tl)
public final void get(byte t[1)
public final void get(Tuple3b tl)

The first set method sets the values of thkey, andz data members of this
Tuple3b to the values in the arrayf length three. The secordt method sets
the values of the, y, andz data members of this Tuple3b to the values in the
argument tuple1. The firstget method places the values of they, andz com-
ponents of this Tuple3b into the arrayf length three. The secordt method
places the values of they, andz components of this Tuple3b into the tuplie

public boolean equals(Tuple3b tl)

This method returnsrue if all of the data members of Tuple3h are equal to
the corresponding data members in this tuple.

public int hashCode()

This method returns a hash number based on the data values in this object. Two
different Tuple3b objects with identical data values (thatdsals(Tuple3b)
returnstrue) will return the same hash number. Two tuples with different data
members may return the same hash value, although this is not likely.

A.1.2.1 Color3b Class

The Color3b class extends Tuple3b and represents three-byte color values.
Constructors

public Color3b(byte cl, byte c2, byte c3)
public Color3b(byte c[]1)

public Color3b(Color3b cl)

public Color3b(Tuple3b tl)

public Color3b()

These four constructors each return a new Color3b. The first constructor gener-
ates a Color3b from three bytes, c2, andc3. The second constructor generates

a Color3b from the first three elements of areayfhe third constructor gener-
ates a Color3b from the byte-precision Coloe3bThe fourth constructor gener-
ates a Color3b from the tupta. The final constructor generates a Color3b with
the value of (0.0, 0.0, 0.0).

Version 1.1 Alpha 01, February 27, 1998 307

A.1.3 Tuple3d Class MATH OBJECTS

308

A.1.3 Tuple3d Class

The Tuple3d class is a generic three-element tuple represented by double-preci-
sion floating-poinik, y, andz coordinates.

Variables

The component values of a Tuple3d are directly accessible through the public
variablesx, y, andz. To access the component of a Tuple3d calledperLeft-
Corner, a programmer would writaipperLeftCorner.x. The programmer
would access thg andz components similarly.

public double x
public double y
public double z

Thex, y, andz coordinates, respectively.
Constructors

public Tuple3d(double x, double y, double z)
public Tuple3d(double t[])

public Tuple3d(Tuple3d tl)

public Tuple3d(Tuple3f tl)

public Tuple3d()

These five constructors each return a new Tuple3d. The first constructor gener-
ates a Tuple3d from three floating-point numbers, andz. The second con-
structor generates a Tuple3d from the first three elements of @arfidye third
constructor generates a Tuple3d from the double-precision Tupte3dhe

fourth constructor generates a Tuple3d from the single-precision TupleBhe

final constructor generates a Tuple3d with the value of (0.0, 0.0, 0.0).

Methods

public final void set(double x, double y, double z)
public final void set(double t[])
public final void set(Tuple3d tl)
public final void set(Tuple3f tl)
public final void get(double t[])
public final void get(Tuple3d t)

The fourset methods set the value of tupleis to the values specified or to the
values of the specified vectors. The tyea methods copy the, y, andz values
into the arrayt of length three.

Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.3

public final void add(Tuple3d tl, Tuple3d t2)
public final void add(Tuple3d tl)
public final void sub(Tuple3d tl, Tuple3d t2)
public final void sub(Tuple3d tl)

The firstadd method computes the element-by-element sum of tuplesidt2
and places the result imhis. The secondadd method computes the ele-
ment-by-element sum of this tuple and tupleand places the result inthis.
The firstsub method performs an element-by-element subtraction of tiple
from tuple t1 and places the result ithis (this = t1 — t2). The seconglb
method performs an element-by-element subtraction of tipfeom this tuple
and places the result ithis (this = this — t1).

public final void negate(Tuple3d tl)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the values
from tupletl. The secondegate method negates the tupleis and places the
resulting tuple back intahis.

public final void scale(double s, Tuple3d tl)

public final void scale(double s)

public final void scaleAdd(double s, Tuple3f tl)

public final void scaleAdd(double s, Tuple3d tl, Tuple3d t2)

The firstscale method multiplies each element of the tupleby the scale fac-
tor s and places the resulting scaled tuple ithds. The secondcale method
multiplies each element ahis tuple by the scale factarand places the result-
ing scaled tuple back intthis. The firstscaleAdd method scales this tuple by
the scale factog, adds the result to tupte, and places the result into tupleis
(this = s*this + t1). The secorxtaleAdd method scales the tupte by the scale
factor s, adds the result to the tupte, and places the result into the tupha s
(this = s*t1 + t2).

public String toString()

This method returns a string that contains the values of this Tuple3d. The form is
x, y, 2).

public int hashCode()

This method returns a hash number based on the data values in this object. Two
different Tuple3d objects with identical data values (thatdsals(Tuple3d)
returnstrue) will return the same hash number. Two tuples with different data
members may return the same hash value, although this is not likely.

Version 1.1 Alpha 01, February 27, 1998 309

A.1.3 Tuple3d Class MATH OBJECTS

310

public boolean equals(Tuple3d vl)

This method returnsrue if all of the data members of Tuple3d are equal to
the corresponding data members in this Tuple3d.

public boolean epsilonEquals(Tuple3d tl, double epsilon)

This method returnsrue if the L, distance between this tuple and tupleis
less than or equal to thepsilon parameter. Otherwise, this method returns
false. The L, distance is equal to

MAX [abs(x1 —x2), abqyl —y2), abqzl —72)]

public final void absolute()
public final void absolute(Tuple3d t)

The first absolute method sets each component of this tuple to its absolute
value. The secondbsolute method sets each component of this tuple to the
absolute value of the corresponding component in tuple

public final void clamp(float min, float max)

public final void clamp(float min, float max, Tuple3d t)
public final void clampMin(float min)

public final void clampMin(float min, Tuple3d t)

public final void clampMax(float max)

public final void clampMax(float max, Tuple3dt)

The firstc1lamp method clamps this tuple to the rangen| max]. The second
clamp method clamps the values from tuplé the rangenfin, max] and assigns
these clamped values to this tuple. The fifisinpMin method clamps each value

of this tuple to thenin parameter. The secondampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The first
clampMax method clamps each value of this tuple tontlve parameter. The sec-
ond clampMax method clamps each value of tupldo themax parameter and
assigns these clamped values to this tuple. In each method, the values of tuple
remain unchanged.

public final void interpolate(Tuple3d tl, Tuple3d t2, float alpha)
public final void interpolate(Tuple3d tl, float alpha)

The firstinterpolate method linearly interpolates between tupl@sandt2 and
places the result into this tuple (this = alpha * t1 + (1 — alpha) * t2). The second
interpolate method linearly interpolates between this tuple and tupland
places the result into this tuple (this = alpha * this + (1 — alpha) * t1).

Java 3D API Specification

MATH OBJECTS Tuple3d Class A.1.3

A.1.3.1 Point3d Class

The Point3d class extends Tuple3d. The Point3d is a three-element point repre-
sented by double-precision floating-poxaty, andz coordinates.

Constructors

public Point3d(double x, double y, double z)
public Point3d(double p[])

public Point3d(Point3d pl)

public Point3d(Point3f pl)

public Point3d(Tuple3d tl)

public Point3d(Tuple3f tl)

public Point3d()

These five constructors each return a new Point3d. The first constructor generates
a Point3d from three floating-point numbetsy, andz. The second constructor
generates a Point3d from the first three elements of priBye third constructor
generates a Point3d from the double-precision Powit3d@he fourth constructor
generates a Point3d from the single-precision Popit3The fifth and sixth con-
structors generate a Point3d from the tugleThe final constructor generates a
Point3d with the value of (0.0, 0.0, 0.0).

Methods

public final double distanceSquared(Point3d pl)
public final double distance(Point3d pl)

The distanceSquared method computes the square of the Euclidean distance
between this Point3d and the Point8dand returns the result. Thgstance
method computes the Euclidean distance between this Point3d and the Point3d
pl and returns the result.

public final float distanceLl(Point3d pl)

This method computes the (Manhattan) distance between this point and point
pl. The L distance is equal to

abqx1—x2) + abgyl-y2) + abgzl —z2)

public final float distanceLinf(Point3d pl)

This method computes the ldistance between this point and pgint The L,
distance is equal to

Version 1.1 Alpha 01, February 27, 1998 311

A.1.3 Tuple3d Class MATH OBJECTS

312

MAX [abs(x1 — x2), abqyl —y2), abqzl —z2)]

public final void project(Point4d pl)

This method multiplies each of they, andz components of the Point4d param-
eterpl by 1k and places the projected values into this point.

A.1.3.2 Vector3d Class

The Vector3d class extends Tuple3d. The Vector3d is a three-element vector rep-
resented by double-precision floating-point, andz coordinates. If this value
represents a normal, it should be normalized.

Constructors

public Vector3d(double x, double y, double z)
public Vector3d(double v[])

public Vector3d(Vector3d vl)

public Vector3d(Vector3f vl)

public Vector3d(Tuple3d tl)

public Vector3d(Tuple3f tl)

public Vector3d(Q)

These five constructors each return a new Vector3d. The first constructor gener-
ates a Vector3d from three floating-point numberg, andz. The second con-
structor generates a Vector3d from the first three elements ofvarféne third
constructor generates a Vector3d from the double-precision wactdhe fourth
constructor generates a Vector3d from the single-precision vettdrhe fifth

and sixth constructors generate a Vector3d from the tupl€he final construc-

tor generates a Vector3d with the value of (0.0, 0.0, 0.0).

Methods

public final void cross(Vector3d vl, Vector3d v2)

The cross method computes the vector cross-product of vestbsndv2 and
places the result ighis.

public final void normalize(Vector3d vl)

public final void normalize(Q)

The firstnormalize method normalizes the vectot to unit length and places
the result inthis. The secondormalize method normalizes the vectehis
and places the resulting unit vector back ittos.

Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.4

public final double dot(Vector3d vl)

The dot method returns the dot product of this vector and veator

public final double lengthSquared()
public final double length()

The TengthSquared method returns the squared length of this vector. The
length method returns the length of this vector.

public final double angle(Vector3d vl)

This method returns the angle, in radians, between this vector and thewtector
parameter. The return value is constrained to the rangg. [O,

A.1.4 Tuple3f Class

The Tuple3f class is a generic three-element tuple represented by single-preci-
sion floating-pointk, y, andz coordinates.

Variables

The component values of a Tuple3f are directly accessible through the public
variablesx, y, andz. To access the component of a Tuple3f callegperLeft-
Corner, a programmer would writeipperLeftCorner.x. The programmer
would access thg andz components similarly.

public float x
public float y
public float z

Thex, y, andz coordinates, respectively.
Constructors

public Tuple3f(float x, float y, float 2z)
public Tuple3f(float t[])

public Tuple3f(Tuple3d tl)

public Tuple3f(Tuple3f tl)

public Tuple3f()

These five constructors each return a new Tuple3f. The first constructor generates
a Tuple3f from three floating-point numbessy, andz. The second constructor
generates a Tuple3f from the first three elements of arréie third constructor
generates a Tuple3f from the double-precision Tupig3drhe fourth construc-

Version 1.1 Alpha 01, February 27, 1998 313

A.1.4 Tuple3f Class MATH OBJECTS

tor generates a Tuple3f from the single-precision Tupt@3fThe final construc-
tor generates a Tuple3f with the value of (0.0, 0.0, 0.0).

Methods

public String toString(Q)

This method returns a string that contains the values of this Tuple3f.

public final void set(float x, float y, float z)
public final void set(float t[1)
public final void set(Tuple3f tl)
public final void set(Tuple3d tl)
public final void get(float t[])
public final void get(Tuple3f t)

The fourset methods set the value of vectdris to the coordinates provided or
to the values of the vectors provided. The fikst method gets the value of this
vector and copies the values into the arrayrhe secondjet method gets the
value of this vector and copies the values into ttple

public final void add(Tuple3f tl, Tuple3f t2)
public final void add(Tuple3f tl)
public final void sub(Tuple3f tl, Tuple3f t2)
public final void sub(Tuple3f tl)

The firstadd method computes the element-by-element sum of tuplesidt2,
placing the result irthis. The seconddd method computes the element-by-ele-
ment sum ofthis and tupletl and places the result ithis. The firstsub
method performs an element-by-element subtraction of tgplEom tuple t1
and places the result ihis (this = t1 — t2). The secondib method performs an
element-by-element subtraction of tupte from this tuple and places the result
into this (this = this — t1).

public final void negate(Tuple3f tl)

public final void negate()

The firstnegate method sets the values of this tuple to the negative of the values
from tupletl. The secondegate method negates the vectdris and places the
resulting tuple back intahis.

314 Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.4

public final void scale(float s, Tuple3f tl)

public final void scale(float s)

public final void scaleAdd(float s, Tuple3f tl)

public final void scaleAdd(float s, Tuple3f tl, Tuple3f t2)

The firstscale method multiplies each element of the veatbby the scale fac-
tor s and places the resulting scaled vector ittts. The secondcale method

multiples the vectothis by the scale factay and replaceshis with the scaled
value. The firskcaleAdd method scales this tuple by the scale fasta@dds the
result to tuplet1, and places the result into tupleis (this = s*this + t1). The
secondscaleAdd method scales the tupte by the scale factar, adds the result
to the tuplet2, and places the result into the tupte s (this = s*t1 + t2).

public boolean equals(Tuple3f tl)

This method returnsrue if all of the data members of tupta are equal to the
corresponding data members in this Tuple3f.

public boolean epsilonEquals(Tuple3f tl, float epsilon)

This method returnsrue if the L, distance between this tuple and tupieis
less than or equal to thepsilon parameter. Otherwise, this method returns
false. The L distance is equal to

MAX [abs(x1 —x2), abqyl —y?2), abqz1 —z2)]

public final void absolute()
public final void absolute(Tuple3f t)

The first absolute method sets each component of this tuple to its absolute
value. The secondbsolute method sets each component of this tuple to the
absolute value of the corresponding component in tuple

public final void clamp(float min, float max)

public final void clamp(float min, float max, Tuple3f t)
public final void clampMin(float min)

public final void clampMin(float min, Tuple3f t)

public final void clampMax(float max)

public final void clampMax(float max, Tuple3f t)

The firstclamp method clamps this tuple to the rangeén| max]. The second
clamp method clamps the values from tupléo the rangenfin, max] and assigns
these clamped values to this tuple. The fifisinpMin method clamps each value

of this tuple to thenin parameter. The secordampMin method clamps each
value of the tuplet and assigns these clamped values to this tuple. The first

Version 1.1 Alpha 01, February 27, 1998 315

A.1.4 Tuple3f Class MATH OBJECTS

316

clampMax method clamps each value of this tuple tontlwe parameter. The sec-
ond clampMax method clamps each value of tupldo themax parameter and
assigns these clamped values to this tuple. In each method the values of tuple
remain unchanged.

public final void interpolate(Tuple3f tl, Tuple3f t2, float alpha)
public final void interpolate(Tuple3f tl, float alpha)

The first method linearly interpolates between tuptesand t2 and places the
result into this tuple (this = alpha * t1 + (1 — alpha) * t2). The second method lin-
early interpolates between this tuple and tugleand places the result into this
tuple (this = alpha * this + (1—alpha) * t1).

int hashCode()

This method returns a hash number based on the data values in this object. Two
different Tuple3f objects with identical data values (thateimals(Tuple3f)
returnstrue) will return the same hash number. Two tuples with different data
members may return the same hash value, although this is not likely.

A.1.4.1 Point3f Class

The Point3f class extends Tuple3f. The Point3f is a three-element point repre-
sented by single-precision floating-poiqty, andz coordinates.

Constructors

public Point3f(float x, float y, float 2z)
public Point3f(float p[])

public Point3f(Point3d pl)

public Point3f(Point3f pl)

public Point3f(Tuple3d tl)

public Point3f(Tuple3f tl)

public Point3f()

These five constructors each return a new Point3f. The first constructor generates
a point from three floating-point numbexsy, andz. The second constructor
(Point3f(float p[]) generates a point from the first three elements of atray

The third constructor generates a point from the double-precision gioiiihe

fourth constructor generates a point from the single-precision puirthe fifth

and sixth constructors generate a Point3f from the tpl&he final constructor
generates a point with the value of (0.0, 0.0, 0.0).

Java 3D API Specification

MATH OBJECTS Tuple3f Class A.1.4
Methods

public final float distance(Point3f pl)
public final float distanceSquared(Point3f pl)

The distance method computes the Euclidean distance between this point and
the pointpl and returns the result. ThiéstanceSquared method computes the
square of the Euclidean distance between this point and theppaind returns
the result.
public final float distanceLl(Point3f pl)
This method computes the (Manhattan) distance between this point and point
pl. The L distance is equal to

abqx1—x2) + abgyl-y2) + abgz1 —z2)

public final float distanceLinf(Point3f pl)
This method computes the ldistance between this point and pqint The L,
distance is equal to

MAX [abs(x1 —x2), abqyl —y?2), abqz1 —72)]

public final void project(Point4f pl)

This method multiplies each of tlkey, andz components of the Point4f param-
eterpl by 1k and places the projected values into this point.

A.1.4.2 Vector3f Class

The Vector3f class extends Tuple3f. The Vector3f is a three-element vector rep-
resented by single-precision floating-poiny, andz coordinates.

Constructors

public Vector3f(float x, float y, float z)
public Vector3f(float v[])

public Vector3f(Vector3d vl)

public Vector3f(Vector3f vl)

public Vector3f(Tuple3d tl)

Public Vector3f(Tuple3f tl)

public Vector3f()

These five constructors each return a new Vector3f. The first constructor gener-
ates a Vector3f from three floating-point numbery, andz. The second con-

Version 1.1 Alpha 01, February 27, 1998 317

A.1.4 Tuple3f Class MATH OBJECTS

structor generates a Vector3f from the first three elements of \ari@ye third
constructor generates a Vector3f from the double-precision Vectar3dhe
fourth constructor generates a Vector3f from the single-precision Veator3f
| The fifth and sixth constructors generate a Vector3f from the tapléhe final
constructor generates a Vector3f with the value of (0.0, 0.0, 0.0).

Methods

public final float length()
public final float lengthSquared()

The length method computes the length of the veetors and returns its length
as a single-precision floating-point number. Tle@gthSquared method com-
putes the square of the length of the veetdrs and returns its length as a sin-
gle-precision floating-point number.

public final void cross(Vector3f vl, Vector3f v2)

The cross method computes the vector cross-productiofindv2 and places
the result inthis.

public final float dot(Vector3f vl)

The dot method computes the dot product between this vector and the vector
and returns the resulting value.

public final void normalize(Vector3f vl)

public final void normalize(Q)

The firstnormalize method normalizes the vectot to unit length and places
the result inthis. The secondhormalize method normalizes the vectehis
and places the resulting unit vector back ittos.

public final float angle(Vector3f vl)

This method returns the angle, in radians, between this vector and the vector
parameter. The return value is constrained to the rangg. [O,

A.1.4.3 TexCoord3f Class

The TexCoord3f class extends Tuple3f. The TexCoord3f is a three-element tex-
ture coordinate represented by single-precision floating-poitandz coordi-
nates.

318 Java 3D API Specification

MATH OBJECTS Tuple4b Class A.1.5
Constructors

public TexCoord3f(float x, float y, float z)
public TexCoord3f(float v[])

public TexCoord3f(TexCoord3f vl)

public TexCoord3f(Tuple3d tl)

public TexCoord3f(Tuple3f tl)

public TexCoord3f()

These four constructors each return a new TexCoord3f. The first constructor gen-
erates a texture coordinate from three floating-point numbeys andz. The
second constructor generates a texture coordinate from the first three elements of
arrayv. The third constructor generates a texture coordinate from the single-pre-
cision TexCoord3#1. The fourth and fifth constructors generate a texture coor-
dinate from tupletl. The final constructor generates a texture coordinate with
the value of (0.0, 0.0, 0.0).

A.1.4.4 Color3f Class

The Color3f class extends Tuple3f. The Color3f is a three-element color value
represented by single-precision floating-poiny, andz values. Thex, y, andz

values represent the red, blue, and green color values, respectively. Color compo-
nents should be in the range [0.0, 1.0].

Constructors

public Color3f(float x, float y, float z)
public Color3f(float v[])

public Color3f(Color3f vl)

public Color3f(Tuple3d tl)

public Color3f(Tuple3f tl)

public Color3f()

These four constructors each return a new Color3f. The first constructor gener-
ates a Color3f from three floating-point numbers, andz. The second con-
structor €olor3f(float v[]) generates a Color3f from the first three elements
of arrayv. The third constructor generates a Color3f from the single-precision
color v1. The fourth and fifth constructors generate a Color3f from the tiple

The final constructor generates a Color3f with the value of (0.0, 0.0, 0.0).

A.1.5 Tupledb Class

The Tupledb class represents four-byte tuples.

Version 1.1 Alpha 01, February 27, 1998 319

A.1.5 Tuple4b Class MATH OBJECTS
Variables

The component values of a Tupledb are directly accessible through the public
variablesx, y, z, andw. Thex, y, z, andw values represent the red, green, blue,
and alpha values, respectively. To accessxtlijeed) component of a Tuple4b
called backgroundColor, a programmer would writeackgroundColor.x. The
programmer would access thégreen),z (blue), andv (alpha) components sim-
ilarly.

Note: Java defines a byte as a signed integer in the range [-128, 127]. However,
colors are more typically represented by values in the range [0, 255]. Java 3D rec-
ognizes this and, in those cases where Color4b is used to represent color, treats the
bytes as if the range were [0, 255].

public byte x
public byte y
public byte z
public byte w

The red, green, blue, and alpha values, respectively.
Constructors

public Tuple4b(byte bl, byte b2, byte b3, byte b4)
public Tupled4b(byte t[])

public Tuple4b(Tupled4b tl)

public Tupled4b()

These four constructors each return a new Tupledb. The first constructor gener-
ates a Tupledb from four bytesl, b2, b3, and b4. The second constructor
(Tupledb(byte t[]) generates a Tupledb from the first four elements of atray
The third constructor generates a Tuple4b from the byte-precision Tugle4b
The final constructor generates a Tuple4b with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public String toString(Q)

This method returns a string that contains the values of this Tuple4b.

320 Java 3D API Specification

MATH OBJECTS Tuple4b Class A.1.5

public final void set(byte b[])
public final void set(Tuple4b tl)
public final void get(byte b[1)
public final void get(Tuple4b tl)

The firstset method sets the value of the data members of this Tupledb to the
value of the arrap. The secondet method sets the value of the data members
of this Tuple4b to the value of the argument tuple The firstget method
places the values of the y, z, andw components of this Tuple4b into the byte
arrayb. The secondet method places the values of they, z, andw compo-
nents of this Tuple4b into the Tuple4db.

public boolean equals(Tuple4b tl)

This method returnsrue if all of the data members of Tuple4h are equal to
the corresponding data members in this Tuple4b.

public int hashCode()

This method returns a hash number based on the data values in this object. Two
different Tuple4b objects with identical data values (thatdsals(Tuple4b)
returnstrue) will return the same hash number. Two Tuple4b objects with differ-
ent data members may return the same hash value, although this is not likely.

A.1.5.1 Colordb Class

The Colordb class extends Tuple4b. The Color4b is a four-byte color value (red,
green, blue, and alpha).

Constructors

public Color4b(byte bl, byte b2, byte b3, byte b4)
public Color4b(byte c[])

public Color4b(Color4b cl)

public Color4b(Tupled4b tl)

public Color4b()

These four constructors each return a new Color4b. The first constructor gener-
ates a Color4b from four bytes, b2, b3, andb4. The second constructor gener-
ates a Color4b from the first four elements of byte atrafhe third constructor
generates a Color4b from the byte-precision Col@ibrhe fourth constructor
generates a Color4b from the tuple The final constructor generates a Color4b
with the value of (0.0, 0.0, 0.0, 0.0).

Version 1.1 Alpha 01, February 27, 1998 321

A.1.6 Tuple4d Class MATH OBJECTS

A.1.6 Tuple4d Class

The Tuple4d class represents a four-element tuple represented by double-preci-
sion floating-poink, y, z, andw coordinates.

Variables

The component values of a Tuple4d are directly accessible through the public
variablesx, y, z, andw. To access the component of a Tuple4d callegper-
LeftCorner, a programmer would writepperLeftCorner.x. The programmer
would access thg z, andw components similarly.

public double x
public double y
public double z
public double w

Thex, y, z, andw coordinates, respectively.
Constructors

public Tuple4d(double x, double y, double z, double w)
public Tuple4d(double t[])

public Tuple4d(Tupled4d tl)

public Tuple4d(Tupledf tl)

public Tuple4d()

These five constructors each return a new Tuple4d. The first constructor gener-
ates a Tuple4d from four floating-point numbeysy, z, andw. The second con-
structor fuple4d(double t[]) generates a Tuple4d from the first four elements

of arrayt. The third constructor generates a Tuple4d from the double-precision
tuple t1. The fourth constructor generates a Tupled4d from the single-precision
tuple t1. The final constructor generates a Tuple4d with the value of (0.0, 0.0,
0.0, 0.0).

322 Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.6

Methods

public final void set(double x, double y, double z, double w)
public final void set(double t[])
public final void set(Tuple4d tl)
public final void set(Tuple4f tl)
public final void get(double t[])
public final void get(Tuple4d t)

These methods set the value of the tuplés to the values specified or to the
values of the specified tuples. The figet method retrieves the value of this
tuple and places it into the arrayof length four, inx, y, z, w order. The second

get method retrieves the value of this tuple and places it into tuple

public final void add(Tupled4d tl, Tupled4d t2)
public final void add(Tuple4d tl)
public final void sub(Tuple4d tl, Tupled4d t2)
public final void sub(Tuple4d tl)

The firstadd method computes the element-by-element sum of the tapdad

the tuplet2, placing the result irhis. The secondidd method computes the
element-by-element sum of this tuple and the tupleind places the result in
this. The firstsub method performs an element-by-element subtraction of tuple
t2 from tupletl and places the result #his. The secondub method performs

an element-by-element subtraction of tuple from this tuple and places the
result inthis.

public final void negate(Tuple4d tl)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the values
from tupletl. The secondegate method negates the tupleis and places the
resulting tuple back int@his.

public final void scale(double s, Tuple4d tl)

public final void scale(double s)

public final void scaleAdd(double s, Tuple4d tl)

public final void scaleAdd(double s, Tupled4d tl, Tupledd t2)

The firstscale method multiplies each element of the tupleby the scale fac-
tor s and places the resulting scaled tuple ithds. The secondcale method
multiples the tuplechis by the scale factas and replaceshis with the scaled
value. The firskcaleAdd method scales this tuple by the scale fast@dds the
result to tuplet1, and places the result into tupleis (this = s*this + t1). The

Version 1.1 Alpha 01, February 27, 1998 323

A.1.6 Tuple4d Class MATH OBJECTS

324

secondscaleAdd method scales the tupte by the scale factar, adds the result
to the tuplet2, and places the result into the tuplei s (this = s*t1 + t2).

public void interpolate(Tuple4d tl, Tuple4d t2, float alpha)
public void interpolate(Tuple4d tl, float alpha)

The firstinterpolate method linearly interpolates between tuplesandt2 and
places the result into this tuple (this = alpha * t1 + (1 — alpha) * t2). The second
interpolate method linearly interpolates between this tuple and tupland
places the result into this tuple (this = alpha * this + (1 — alpha) * t1).

public String toString()

This method returns a string that contains the values of this tuple. The form is
&, y, z, w.

public boolean equals(Tuple4d vl)

This method returnsrue if all of the data members of tuple are equal to the
corresponding data members in this tuple.

public boolean epsilonEquals(Tuple4d tl, double epsilon)

This method returnsrue if the L, distance between this Tuple4d and Tuple4d
t1 is less than or equal to tkesilon parameter. Otherwise, this method returns
false. The L distance is equal to

MAX [abs(x1 —x2), abqyl —y?2), abqzl —z2), abgwl —w2)]

public final void absolute()
public final void absolute(Tupled4d t)

The first absoTute method sets each component of this tuple to its absolute
value. The secondbsolute method sets each component of this tuple to the
absolute value of the corresponding component in tuple

public final void clamp(float min, float max)

public final void clamp(float min, float max, Tuple4d t)
public final void clampMin(float min)

public final void clampMin(float min, Tuple4d t)

public final void clampMax(float max)

public final void clampMax(float max, Tuple4d t)

The firstclamp method clamps this tuple to the rangén| max]. The second
clamp method clamps this tuple to the rangén| max] and places the values
into tuplet. The firstclampMin method clamps the minimum value of this tuple

Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.6

to themin parameter. The secordampMin method clamps the minimum value
of this tuple to thenin parameter and places the values into the tuplée first
clampMax method clamps the maximum value of this tuple tomtheparameter.
The secona1ampMax method clamps the maximum value of this tuple tanthe
parameter and places the values into the tuple

public int hashCode()

This method returns a hash number based on the data values in this object. Two
different Tuple4d objects with identical data values (thatdsals(Tuple4d)
returnstrue) will return the same hash number. Two Tuple4d objects with differ-
ent data members may return the same hash value, although this is not likely.

A.1.6.1 Point4d Class

The Point4d class extends Tuple4d. The Point4d is a four-element point repre-
sented by double-precision floating-point x, y, z, and w coordinates.

Constructors

public Point4d(double x, double y, double z, double w)
public Point4d(double p[])

public Point4d(Point4d pl)

public Point4d(Point4f pl)

public Point4d(Tuple4d tl)

public Point4d(Tupled4f tl)

public Point4d()

These five constructors each return a new Point4d. The first constructor generates
a Point4d from four floating-point numbexrsy, z, andw. The second constructor
(Point4d(double p[]) generates a Pointdd from the first four elements of array

p. The third constructor generates a Point4d from the double-precisiorppoint

The fourth constructor generates a Point4d from the single-precisionppoint

The fifth and sixth constructors generate a Point4d from tupl@&he final con-
structor generates a Point4d with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final double distance(Point4d pl)
public final double distanceSquared(Point4d pl)

The distance method computes the Euclidean distance between this point and
the pointpl and returns the result. ThiéstanceSquared method computes the
square of the Euclidean distance between this point and theppaand returns

the result.

Version 1.1 Alpha 01, February 27, 1998 325

A.1.6 Tuple4d Class MATH OBJECTS

326

public final float distanceLl(Point4d pl)

This method computes the (Manhattan) distance between this point and point
pl. The L distance is equal to

abqx1-x2) + abgyl-y2) + abgzl —z2) + abgwl—w2)

public final float distanceLinf(Point4d pl)

This method computes the,Ldistance between this point and pgint The L,
distance is equal to

MAX [abs(x1 —x2), abqyl —y?2), abqz1 —z2), abgwl —w2)]

public final void project(Point4d pl)

This method multiplies each of the y, andz components of the poimtl by
1/w, places the projected values into this point, and places a 1 intgdram-
eter of this point.

A.1.6.2 Vector4dd Class

The Vectordd class extends Tuple4d. The Vector4d is a four-element vector rep-
resented by double-precision floating-poiny, z, andw coordinates.

Constructors

public Vector4d(double x, double y, double z, double w)
public Vector4d(double v[])

public Vector4d(Vector4d vl)

public Vector4d(Vector4f vl)

public Vector4d(Tupled4d tl)

public Vector4d(Tupled4f tl)

public Vector4d()

These five constructors each return a new Vector4d. The first constructor gener-
ates a Vector4dd from four floating-point numbeys, z, andw. The second con-
structor generates a Vectordd from the first four elements of arrélge third
constructor generates a Vector4d from the double-precision Vectar4@ihe

fourth constructor generates a Vectordd from the single-precision Veetor4f

The fifth and sixth constructors generate a Vector4d from tupl€he final con-
structor generates a Vector4d with the value of (0.0, 0.0, 0.0, 0.0).

Java 3D API Specification

MATH OBJECTS Tuple4d Class A.1.6
Methods

public final double length()
public final double lengthSquared()

Thelength method computes the length of the veators and returns its length
as a double-precision floating-point number. TlegthSquared method com-
putes the square of the length of the veetdrs and returns its length as a dou-
ble-precision floating-point number.

public final void dot(Vector4d vl)

This method returns the dot product of this vector and veator

public final void normalize(Vector4d vl)
public final void normalize()

The firstnormalize method normalizes the vectot to unit length and places
the result inthis. The secondormalize method normalizes the vectohis
and places the resulting unit vector back itios.

public final double angle(Vector4d vl)

This method returns the (four-space) angle, in radians, between this vector and
the vectorvl parameter. The return value is constrained to the rangg [O,

A.1.6.3 Quat4d Class

The Quat4d class extends Tuple4d. The Quat4d is a four-element quaternion rep-
resented by double-precision floating-poiny, z, andw values.

Constructors

public Quat4d(double x, double y, double z, double w)
public Quat4d(double q[])

public Quat4d(Quat4d ql)

public Quat4d(Quat4f ql)

public Quat4d(Tuple4d tl)

public Quat4d(Tuple4f tl)

public Quat4d()

These five constructors each return a new Quat4d. The first constructor generates
a quaternion from four floating-point numbe¢sy, z, andw. The second con-
structor generates a quaternion from the first four elements of @whiength

four. The third constructor generates a quaternion from the double-precision
quaterniorgl. The fourth constructor generates a quaternion from the single-pre-

Version 1.1 Alpha 01, February 27, 1998 327

A.1.6 Tuple4d Class MATH OBJECTS

328

cision quaterniomyl. The fifth and sixth constructors generate a Quat4d from
tuple t1. The final constructor generates a quaternion with the value of (0.0, 0.0,
0.0, 0.0).

Methods

public final void conjugate(Quat4d ql)
public final void conjugate()

The firstconjugate method sets the values of this quaternion to the conjugate of
guaterniongl. The secondonjugate method negates the value of each of this
guaternion’sx, y, andz coordinates in place.

public final void mul(Quat4d ql, Quat4d q2)
public final void mul(Quat4d ql)

The firstmul method sets the value of this quaternion to the quaternion product
of quaterniongj1 andqz2 (this = g1 * g2). Note that this is safe for aliasing (that
is, this can beql or g2). The seconeul method sets the value of this quater-
nion to the quaternion products of itself ayid(this = this * q1).

public final void mulInverse(Quat4d ql, Quat4d q2)
public final void mulInverse(Quat4d ql)

The first mulInverse method multiplies quaternioml by the inverse of
guaterniong2 and places the value into this quaternion. The values of both
guaternion arguments are preserved (this = ql"l)qZhe seconthulInverse
method multiplies this quaternion by the inverse of quatergioand places the
value into this quaternion. The value of the argumgnis preserved (this =
this * q179).

public final void inverse(Quat4d ql)
public final void inverse()

The firstinverse method sets the value of this quaternion to the quaternion
inverse of quaternioml. The secondinverse method sets the value of this
guaternion to the quaternion inverse of itself.

public final void normalize(Quat4d ql)
public final void normalize(Q)

The firstnormalize method sets the value of this quaternion to the normalized
value of quaternioml. The seconchormalize method normalizes the value of
this quaternion in place.

Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.7

public final void set(Matrix4f ml)
public final void set(Matrix4d ml)
public final void set(Matrix3f ml)
public final void set(Matrix3d ml)
public final void set(AxisAngle4f a)
public final void set(AxisAngle4d a)

Theseset methods set the value of this quaternion to the rotational component
of the passed matrix.

public final void interpolate(Quat4d ql, double alpha)
public final void interpolate(Quat4d ql, Quat4d g2, double alpha)

The first method performs a great circle interpolation between this quaternion
and the quaternion parameter and places the result into this quaternion. The sec-
ond method performs a great circle interpolation between quatetimiand
guaterniong2 and places the result into this quaternion.

A.1.7 Tuple4f Class

The Tuple4f class represents a four-element tuple represented by single-precision
floating-pointx, y, z, andw values.

Variables

The component values of a Tuple4f are directly accessible through the public
variablesx, y, z, andw. To access the component of a Tuple4f callagper-
LeftCorner, a programmer would writepperLeftCorner.x. The programmer
would access thg, z, andw components similarly.

public double
public double
public double
public double

= N X

Thex, y, z, andw values, respectively.
Constructors
public Tuple4f(float x, float y, float z, float w)

public Tuple4f(float t[])
public Tuple4f(Tupledd tl)

Version 1.1 Alpha 01, February 27, 1998 329

A.1.7 Tuple4f Class MATH OBJECTS

public Tuple4f(Tupled4f tl)
public Tuple4f(Q)

These five constructors each return a new Tuple4f. The first constructor generates
a Tuple4f from four floating-point numbexsy, z, andw. The second constructor
(Tuple4f(float t[]) generates a Tuple4f from the first four elements of array

t. The third constructor generates a Tuple4f from the double-precisionttuple

The fourth constructor generates a Tuple4f from the single-precision #uple

The final constructor generates a Tuple4f with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final void set(float x, float y, float z, float w)
public final void set(float t[1)

public final void set(Tuple4f tl)

public final void set(Tuple4d tl)

public final void get(float t[1)

public final void get(Tuple4f t)

The firstset method sets the value of this tuple to the specijgdz, andw val-

ues. The seconsket method sets the value of this tuple to the specified coordi-
nates in the array. The next two methods set the value oftideto the value

of tuple t1. Theget methods copy the value of this tuple into the tuple

public final void add(Tuple4f tl, Tuple4f t2)
public final void add(Tuple4f tl)
public final void sub(Tuple4f tl, Tuple4f t2)
public final void sub(Tuple4f tl)

The firstadd method computes the element-by-element sum of tuplesidt2
and places the result imhis. The secondadd method computes the ele-
ment-by-element sum of this tuple and tupleand places the result ithis.
The firstsub method performs the element-by-element subtraction of tgple
from tuple t1 and places the result ithis (this = t1 — t2). The seconslb
method performs the element-by-element subtraction of tpfeom this tuple
and places the result ihis (this = this — t1).

public final void negate(Tuple4f tl)
public final void negate()

The firstnegate method sets the values of this tuple to the negative of the values
from tupletl. The secondegate method negates the tupleis and places the
resulting tuple back intehis.

330 Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.7

public final void scale(float s, Tuple4f tl)

public final void scale(float s)

public final void scaleAdd(float s, Tuple4f tl)

public final void scaleAdd(float s, Tuple4f tl, Tupled4f t2)

The firstscale method multiplies each element of the tupleby the scale fac-
tor s and places the resulting scaled tuple ittids. The secondcale method

multiples the tuplethis by the scale factos, replacingthis with the scaled
value. The firskcaleAdd method scales this tuple by the scale fast@dds the
result to tuplet1, and places the result into tupleis (this = s*this + t1). The
secondscaleAdd method scales the tupte by the scale factar, adds the result
to the tuplet2, and places the result into the tupte s (this = s*t1 + t2).

public String toString()

This method returns a string that contains the values of this Tuple4f. The form is
&, y, z, w.

public boolean equals(Tuple4f tl)

This method returnsrue if all of the data members of Tupledf are equal to

the corresponding data members in this Tuple4f.

public boolean epsilonEquals(Tuple4f tl, float epsilon)

This method returnsrue if the L, distance between this Tuple4f and Tupla4f t
is less than or equal to the@silon parameter. Otherwise, this method returns
false. The L distance is equal to

MAX [abs(x1 — x2), abqyl —y?2), abqzl —z2), abgwl —w2)]

public final void absolute()
public final void absolute(Tuple4f t)

The first absolute method sets each component of this tuple to its absolute
value. The secondbsolute method sets each component of this tuple to the
absolute value of the corresponding component in tuple

Version 1.1 Alpha 01, February 27, 1998 331

A.1.7 Tuple4f Class MATH OBJECTS

public final void clamp(float min, float max)

public final void clamp(float min, float max, Tuple4f t)
public final void clampMin(float min)

public final void clampMin(float min, Tuple4f t)

public final void clampMax(float max)

public final void clampMax(float max, Tuple4f t)

The firstclamp method clamps this tuple to the rangén| max]. The second
clamp method clamps this tuple to the ran@en] max] and places the values
into tuplet. The firstclampMin method clamps the minimum value of this tuple
to themin parameter. The secordampMin method clamps the minimum value
of this tuple to thenin parameter and places the values into the tuplée first
clampMax method clamps the maximum value of this tuple tomtheparameter.
The second1ampMax method clamps the maximum value of this tuple tanthe
parameter and places the values into the tuple

public void interpolate(Tuple4f tl, Tuple4f t2, float alpha)
public void interpolate(Tuple4f tl, float alpha)

The firstinterpolate method linearly interpolates between tuplésandt2 and
places the result into this tuple (this = alpha * t1 + (1 — alpha) * t2). The second
interpolate method linearly interpolates between this tuple and tupland
places the result into this tuple (this = alpha * this + (1 — alpha) * t1).

public int hashCode()

This method returns a hash number based on the data values in this object. Two
different Tuple4f objects with identical data values (thateégials (Tuplesf)
returnstrue) will return the same hash number. Two Tuple4f objects with differ-
ent data members may return the same hash value, although this is not likely.

A.1.7.1 Point4f Class

The Point4f class extends Tuple4f. The Point4f is a four-element point repre-
sented by single-precision floating-point x, y, z, and w coordinates.

332 Java 3D API Specification

MATH OBJECTS Tuple4f Class A.1.7
Constructors

public Point4f(float x, float y, float z, float w)
public Point4f(float p[]1)

public Point4f(Point4d pl)

public Point4f(Point4f pl)

public Point4f(Tupled4d tl)

public Point4f(Tupled4f tl)

public Point4f()

These five constructors each return a new Point4f. The first constructor generates
a Point4f from four floating-point numbexsy, z, andw. The second constructor
(Point4f(float p[]) generates a Point4f from the first four elements of array

The third constructor generates a Point4f from the double-precision gioint

The fourth constructor generates a Point4f from the single-precision gaoint

The fifth and sixth constructors generate a Point4f from tetmld@he final con-
structor generates a Point4f with the value of (0.0, 0.0, 0.0, 0.0).

Methods

public final float distanceSquared(Point4f pl)
public final float distance(Point4f pl)

The distanceSquared method computes the square of the Euclidean distance
between this point and the popit and returns the result. Thiéstance method
computes the Euclidean distance between this point and theppand returns

the result.

public final float distanceLl(Point4f pl)

This method computes thg (Manhattan) distance between this point and point
pl. The L distance is equal to

abqx1—x2) + abgyl-y2) + abgzl —z2) + abgwl—w2)

public final float distanceLinf(Point4f pl)

This method computes the,ldistance between this point and pagimt The L,
distance is equal to

MAX [abs(x1 —x2), abgyl —y2), abgz1 — z2), abg w1l —w2)]

Version 1.1 Alpha 01, February 27, 1998 333

A.1.7 Tuple4f Class MATH OBJECTS

public final void project(Point4f pl)

This method multiplies each of the y, andz components of the poimtl by
1/w, places the projected values into this point, and places a 1 intgdram-
eter of this point.

A.1.7.2 Color4f Class

The Color4f class extends Tuple4f. The Color4f is a four-element color value
represented by single-precision floating-poiny, z, andw values. The, y, z,

andw values represent the red, blue, green, and alpha color values, respectively.
Color and alpha components should be in the range [0.0, 1.0].

Constructors

public Color4f(float x, float y, float z, float w)
public Color4f(float c[])
public Color4f(Color4f cl)
public Color4f(Tupled4d tl)
| public Color4f(Tuple4f tl)
public Color4f()

These four constructors each return a new Color4f. The first constructor gener-
ates a Color4f from four floating-point numbexssy, z, andw. The second con-
structor generates a Color4f from the first four elements of arrdyhe third
constructor generates a Color4f from the single-precision ealomhe fourth

| and fifth constructors generate a