GNU Octave

A high-level interactive language for numerical computations
Edition 3 for Octave version 3.4.3-rc0
February 2011

Free Your Numbers

John W. Eaton
David Bateman
Sgren Hauberg

Copyright © 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2011 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 3.4.3-
rc0 of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface 1
Acknowledgements 1
How You Can Contribute to Octaveo i, 4
Distribution. 4

1 A Brief Introduction to Octave................ 5
1.1 Running Octave.o 5
1.2 Simple Examples. ... 5

1.2.1 Elementary Calculations.............., 5)
1.2.2 Creating a Matrix ... 6
1.2.3 Matrix Arithmetic........ ... i 6
1.2.4 Solving Systems of Linear Equations....................... 6
1.2.5 Integrating Differential Equations.......................... 7
1.2.6 Producing Graphical Output 8
1.2.7 Editing What You Have Typed............. 8
1.2.8 Help and Documentation.................................. 8
1.3 Conventions.t 9
1.3.1 Fonts ..o e 9
1.3.2 Evaluation Notation............. ... i .. 9
1.3.3 Printing Notation i i i 9
1.3.4 Error MesSages.ouuuutiint i 10
1.3.5 Format of Descriptions, 10
1.3.5.1 A Sample Function Description...................... 10
1.3.5.2 A Sample Command Description 11
1.3.5.3 A Sample Variable Description 11

2 Getting Started............... ...l 13

2.1 Invoking Octave from the Command Line 13
2.1.1 Command Line Options............ooiiiiiiiiiin.. 13
2.1.2 Startup Files.o 16

2.2 Quitting Octave. ..o 17

2.3 Commands for Getting Help........... 17

2.4 Command Line Editing o i 21
2.4.1 Cursor Motiono 21
2.4.2 Killing and Yanking.............ooiiiiiiiiiiiii... 22
2.4.3 Commands For Changing Text 22
2.4.4 Letting Readline Type For You........................ ... 23
2.4.5 Commands For Manipulating The History 23
2.4.6 Customizing readlineccoviuiieeiiiieeannnnn.. 26
2.4.7 Customizing the Prompt 26
2.4.8 Diary and Echo Commands 28

2.5 How Octave Reports Errors...................... 29

ii

2.6 Executable Octave Programs................. ..., 30
2.7 Comments in Octave Programs............. 31
2.7.1 Single Line Comments.coouiiiiiiiiiiin .. 31
2.7.2 Block Comments..........c.oouuiiiiiiiiiiiiiiiiiiean 31
2.7.3 Comments and the Help System.......................... 32
Data Types ... 33
3.1 Built-in Data Types..... .o 33
3.1.1 Numeric Objectsouiiii 35
3.1.2 Missing Data. ... 36
3.1.3 String Objects ...t 36
3.1.4 Data Structure Objects........ ..., 36
3.1.5 Cell Array ObJectso 36
3.2 User-defined Data Types........cooiiiiiiiiiiiiiiiii .. 37
3.3 ODbjJect SIzZes ...ttt 37
Numeric Data Types.......................... 41
A1 MabTiCeS . oo 42
4.1.1 Empty Matrices. ... 45
4.2 RANEES ..ot 45
4.3 Single Precision Data Types.........ccoiiiiiiiiii i 46
4.4 Integer Data Types ... 47
4.4.1 Integer Arithmetic i 49
4.5 Bit Manipulations........... ... 50
4.6 Logical Values 52
4.7 Promotion and Demotion of Data Types....................... 53
4.8 Predicates for Numeric Objects......... ...t 54
Strings. ... 57
5.1 Escape Sequences in String Constants......................... 57
5.2 Character ATTAYS ... o.vttn et 58
5.3 Creating Strings ..o 59
5.3.1 Concatenating Strings............ccooiiiiiiiiiiiiiia... 59
5.3.2 Conversion of Numerical Data to Strings.................. 62
5.4 Comparing SETringsouueiitn e 64
5.5 Manipulating Strings. ... 66
5.6 String CONVErSIONSttt 74

5.7 Character Class Functions., 78

GNU Octave

6 Data Containers............................... 81
6.1 SEIUCTUTES . oot 81
6.1.1 Basic Usage and Examples, 81
6.1.2 Structure ATTaysouueiiiii 84
6.1.3 Creating Structuresc.viiiiiieiiiinennnnn... 86
6.1.4 Manipulating Structures........... i 88
6.1.5 Processing Data in Structures 91
6.2 Cell ATTays ..ottt 92
6.2.1 Basic Usage of Cell Arrayst 92
6.2.2 Creating Cell Arraycooiiiiiiiiiiiii ... 94
6.2.3 Indexing Cell Arraysc.ciiiiiiiiiiiiiiii.. 96
6.2.4 Cell Arrays of Strings ..., 99
6.2.5 Processing Data in Cell Arrays.......................... 100
6.3 Comma Separated Lists..............ooiiiiiiiii .. 102
6.3.1 Comma Separated Lists Generated from Cell Arrays..... 102
6.3.2 Comma Separated Lists Generated from Structure Arrays
... 103
Variables............ 105
7.1 Global Variables i i 107
7.2 Persistent Variables.......... ... 108
7.3 Status of Variables......... 110
Expressions................ 115
8.1 Index EXPressions...........oueeiiiiiiniiiiiiiannn.. 115
8.2 Calling Functions oo i 117
8.2.1 Callby Value ... 118
8.2.2 Recursion......... ... 119
8.3 Arithmetic Operators...... ..., 120
8.4 Comparison Operatorsc.oouuiiiiiiiieniiieennn.. 123
8.5 Boolean Expressionso 124
8.5.1 Element-by-element Boolean Operators.................. 124
8.5.2 Short-circuit Boolean Operators......................... 125
8.6 Assignment Expressions.............. i 127
8.7 Increment Operators.............cooiiiiiiiiiiiiiiiiennn.. 129
8.8 Operator Precedence............ ... i i, 130
Evaluation 131
9.1 Calling a Function by its Name 131

9.2 Evaluation in a Different Context 133

iii

iv

10 Statements, 135
10.1 The if Statement i 135
10.2 The switch Statement.............c.oooiiiiiiiiiiiiii .. 137

10.2.1 Notes for the C Programmer 138
10.3 The while Statement oiiiiiiiiiieeiiiea . 139
10.4 The do-until Statementt .. 140
10.5 The for Statemento 140

10.5.1 Looping Over Structure Elements 141
10.6 The break Statement........... ..., 142
10.7 The continue Statementt .. 143
10.8 The unwind_protect Statement 144
10.9 The try Statement 144
10.10 Continuation Lines i i 145

11 Functions and Scripts 147
11.1 Defining Functions.o, 147
11.2 Multiple Return Values, 149
11.3 Variable-length Argument Lists........... 152
11.4 TIgnoring Arguments.ottt i, 153
11.5 Variable-length Return Listso ... 154
11.6 Returning from a Function.............. 155
11.7 Default Arguments ... 155
11.8 Function Fileso 156

11.8.1 Manipulating the Load Path 159

11.8.2 Subfunctions......... o i 161

11.8.3 Private Functions......... i 161

11.8.4 Overloading and Autoloading 162

11.8.5 Function Locking 162

11.8.6 Function Precedenceo L. 164
11.9 Script Files . ..o 164
11.10 Function Handles, Inline Functions, and Anonymous Functions

.. 166

11.10.1 Function Handles oot 166

11.10.2 Anonymous Functions, 166

11.10.3 Inline Functions o i, 167
1111 Commands . ..ottt 168
11.12 Organization of Functions Distributed with Octave......... 169

12 Errors and Warnings 171

12.1 Handling Errors ... 171
12.1.1 Raising Errors ... 171
12.1.2 Catching Errors....... ... 174
12.1.3 Recovering From Errors.......... 176

12.2 Handling Warnings ..., 176
12.2.1 Issuing Warnings.ccoeeeeemiiiiiiieeneeeeen... 176

12.2.2 Enabling and Disabling Warnings 177

GNU Octave

13 Debugging.............. ... 183

13.1 Entering Debug Mode 183
13.2 Leaving Debug Mode ... 183
13.3 Breakpoints ... e 184
13.4 Debug Mode. 185
13.5 Call Stack . ..o 186
14 Input and Output........................... 187
14.1 Basic Input and Output i i 187
14.1.1 Terminal Outpub....... ..o 187
14.1.1.1 Paging Screen OUutput.........c.ooviuienneenne ... 190
14.1.2 Terminal Input 191
14.1.3 Simple File I/O ... o 193
14.1.3.1 Saving Data on Unexpected Exits 199

14.2 C-Style I/O Functions, 201
14.2.1 Opening and Closing Files 201
14.2.2 Simple Output 203
14.2.3 Line-Oriented Input......... 203
14.2.4 Formatted Output ..., 204
14.2.5 Output Conversion for Matrices........................ 205
14.2.6 Output Conversion Syntax..............cooeiiieino.... 206
14.2.7 Table of Output Conversions................c.coooee.... 207
14.2.8 Integer Conversionsooueeeiiieeeniieennnn.. 208
14.2.9 Floating-Point Conversions.....................ooou... 208
14.2.10 Other Output Conversionsccovvviiinn.. 209
14.2.11 Formatted Input ... 209
14.2.12 Input Conversion Syntax............cooveeiueenneenn.. 211
14.2.13 Table of Input Conversions................c..ooven... 211
14.2.14 Numeric Input Conversionsoooo.. 212
14.2.15 String Input Conversions................coovieeino ... 212
14.2.16 Binary I/O ... 213
14.2.17 Temporary Files...... o i 215
14.2.18 End of File and Errors.......... oL 216
14.2.19 File Positioning......... ..o o i 217
14.3 GUI Dialogs for I/O o 218
15 Plotting.......... 221
15.1 Introduction to Plotting L, 221
15.2 High-Level Plottingco i, 221
15.2.1 Two-Dimensional Plots, 221
15.2.1.1 Axis Configuration............... ..., 239
15.2.1.2 Two-dimensional Function Plotting................ 241
15.2.1.3 Two-dimensional Geometric Shapes 244
15.2.2 Three-Dimensional Plots.............. 244
15.2.2.1 Aspect Ratio.......... ... i 255
15.2.2.2 Three-dimensional Function Plotting 256

15.2.2.3 Three-dimensional Geometric Shapes.............. 259

GNU Octave

15.2.3 Plot Annotations i 260
15.2.4 Multiple Plots on One Page 263
15.2.5 Multiple Plot Windows ..., 264
15.2.6 Use of axis, line, and patch functions 264
15.2.7 Manipulation of plot windows.......................... 265
15.2.8 Use of the interpreter Property 268
15.2.9 Printing and Saving Plots.......... o . 270
15.2.10 Interacting with Plots..................oo i i i 274
15.2.11 Test Plotting Functions 275
15.3 Graphics Data Structures............ ... o i i 276
15.3.1 Introduction to Graphics Structures.................... 276
15.3.2 Graphics Objects ... 277
15.3.2.1 Handle Functions, 278
15.3.3 Graphics Object Properties 280
15.3.3.1 Root Figure Properties............................ 280
15.3.3.2 Figure Properties o i i 281
15.3.3.3 Axes Properties........... ..o 284
15.3.3.4 Line Propertiescooi i 288
15.3.3.5 Text Propertiesccooviiiiiiiiiiiii ... 290
15.3.3.6 Image Properties.......... ...t 291
15.3.3.7 Patch Properties...............o.o L. 292
15.3.3.8 Surface Properties............ ... il 294
15.3.4 Searching Properties............. ... 296
15.3.5 Managing Default Properties........................... 297
15.4 Advanced Plotting. ... 298
15.4.1 ColOrS .ot 298
15.4.2 Line Styles. ... 298
15.4.3 Marker Styles. ... 298
15.4.4 Callbacks...... oo i 299
15.4.5 Application-defined Data....................cooiia.. 300
15.4.6 ODbject GroupS.ouiii e 300
15.4.6.1 Data Sources in Object Groups.................... 304
15.4.6.2 Area Series.........oouiii i 304
15.4.6.3 Bar Series. ... 305
15.4.6.4 Contour GroupsS.couuuriiiieeeeeiaaaain.. 306
15.4.6.5 Error Bar Series. ... 307
15.4.6.6 Line Series.........oouiuiiiiiii i 308
15.4.6.7 Quiver Groupcvviutiti e 308
15.4.6.8 Scatter Group.c.oviviiiiiiiiiiinniea.n. 309
15.4.6.9 Stair Groupottt 310
15.4.6.10 Stem Seriesc.oviiiin i, 310
15.4.6.11 Surface Groupooeiiiiiiii .. 311
15.4.7 Graphics Toolkits......... ... i 312

15.4.7.1 Customizing Toolkit Behavior..................... 312

vii

16 Matrix Manipulation....................... 315
16.1 Finding Elements and Checking Conditions 315
16.2 Rearranging Matrices. ..., 318
16.3 Applying a Function to an Array..............coooiii .. 327
16.4 Special Utility Matrices....... ..o, 329
16.5 Famous Matrices. ... 336

17 Arithmetic.................. 339
17.1 Exponents and Logarithms..............., 339
17.2 Complex Arithmetic........... ... i, 341
17.3 Trigonometry 342
17.4 Sums and Products............... i i 345
17.5 Utility Functions....... ..o 348
17.6 Special Functions........ ... i 354
17.7 Rational Approximationscoiiiiiiiii.... 359
17.8 Coordinate Transformations................ 360
17.9 Mathematical Constants.......... ..., 361

18 Linear Algebra.............................. 365
18.1 Techniques Used for Linear Algebra......................... 365
18.2 Basic Matrix Functions i 365
18.3 Matrix Factorizations..........o i 371
18.4 Functions of a Matrix.............ooiiiiiii, 380
18.5 Specialized Solvers........ ... 382

19 Nonlinear Equations........................ 385
19.1 0 SOLVETS .« oot 385
19.2 MINImIzZersoooiii e 388

20 Diagonal and Permutation Matrices....... 391
20.1 Creating and Manipulating Diagonal and Permutation Matrices

.. 391
20.1.1 Creating Diagonal Matrices, 391
20.1.2 Creating Permutation Matrices......................... 392
20.1.3 Explicit and Implicit Conversions 393

20.2 Linear Algebra with Diagonal and Permutation Matrices 393
20.2.1 Expressions Involving Diagonal Matrices 393
20.2.2 Expressions Involving Permutation Matrices............ 395
20.3 Functions That Are Aware of These Matrices................ 395
20.3.1 Diagonal Matrix Functions............................. 395
20.3.2 Permutation Matrix Functions 395
20.4 Some Examples of Usage. 396

20.5 The Differences in Treatment of Zero Elements.............. 396

viii

21 Sparse Matrices............................. 399
21.1 The Creation and Manipulation of Sparse Matrices.......... 399
21.1.1 Storage of Sparse Matricesooiiiiiiii 399
21.1.2 Creating Sparse Matrices. ...t 400
21.1.3 Finding out Information about Sparse Matrices......... 405
21.1.4 Basic Operators and Functions on Sparse Matrices 409
21.1.4.1 Sparse Functions............. ..o, 409

21.1.4.2 The Return Types of Operators and Functions. 410

21.1.4.3 Mathematical Considerations...................... 411

21.2 Linear Algebra on Sparse Matrices.................cooi... 419
21.3 Tterative Techniques applied to sparse matrices.............. 427
21.4 Real Life Example of the use of Sparse Matrices............. 432
22 Numerical Integration...................... 437
22.1 Functions of One Variable................ 437
22.2 Orthogonal Collocationcooiiiiiiiiiiann.. 444
22.3 Functions of Multiple Variables 445
23 Differential Equations 447
23.1 Ordinary Differential Equations...................... 447
23.2 Differential-Algebraic Equations............................. 449
24 Optimization................................ 459
24.1 Linear Programming............ ..., 459
24.2 Quadratic Programming, 465
24.3 Nonlinear Programming.......... ...t .. 467
24.4 Linear Least SQUATeS.ouiitiiiiii ., 469
25 Statistics............... . 471
25.1 Descriptive Statistics. 471
25.2 Basic Statistical Functions........... oo 476
25.3 Statistical Plots........ .o i 479
25.4 Correlation and Regression Analysis......................... 480
25.5 Distributions 482
256 TeStS oo 489
25.7 Random Number Generation................. ..., 496
26 Sets ... 501
26.1 Set Operations.oouuuuiiini i 501
27 Polynomial Manipulations 505
27.1 Evaluating Polynomials............ 505
27.2 Finding Rootso 506
27.3 Products of Polynomials............ 507
27.4 Derivatives / Integrals / Transforms......................... 510
27.5 Polynomial Interpolation............ 510

27.6 Miscellaneous Functions. ... 513

GNU Octave

28 Interpolation............................. ... 515
28.1 One-dimensional Interpolation 515
28.2 Multi-dimensional Interpolation.................. 520

29 Geometry......... ... 525
29.1 Delaunay Triangulation.................cooiiiiiiiia.. 525

29.1.1 Plotting the Triangulation 527
29.1.2 Identifying Points in Triangulation 528
29.2 Voronoi Diagrams.cooouiiiiiiiiiiiiiiiiiin. 530
29.3 Convex Hull 533
29.4 Interpolation on Scattered Data............................. 535

30 Signal Processing 537

31 Image Processing........................... 549
31.1 Loading and Saving Images, 549
31.2 Displaying Images ... 552
31.3 Representing Images ..o, 553
31.4 Plotting on top of Images......... ..., 558
31.5 Color Conversionuuuueeeiiie e, 558

32 Audio Processing 559

33 Object Oriented Programming 561
33.1 Creating a Classouetiii 561
33.2 Manipulating Classes ..., 563
33.3 Indexing Objects ...t 566

33.3.1 Defining Indexing And Indexed Assignment 567
33.3.2 Indexed Assignment Optimization...................... 570
33.4 Overloading Objectso, 571
33.4.1 Function Overloading i 571
33.4.2 Operator Overloading............. ..., 573
33.4.3 Precedence of Objects. ..., 574

33.5 Inheritance and Aggregation 575

ix

X GNU Octave

34 System Utilities............................. 581
34.1 Timing Utilities. 581
34.2 Filesystem Utilities ... 590
34.3 File Archiving Utilities. ... 598
34.4 Networking Utilities oo i 599

3441 FTP ObJects. .o 599

34.4.2 URL Manipulation............ ... o i, 600
34.5 Controlling Subprocesses. ..., 601
34.6 Process, Group, and User IDs................cooiiiiin... 608
34.7 Environment Variables........... L 608
34.8 Current Working Directory ... 608
34.9 Password Database Functions........................ 609
34.10 Group Database Functions................ 610
34.11 System Information............. ..., 611
34.12 Hashing Functions......... o i i 615

35 Packages............ 617
35.1 Installing and Removing Packages........................... 617
35.2 Using Packages ... 620
35.3 Administrating Packages........... ... i 620
35.4 Creating Packages i 621

35.4.1 The DESCRIPTION Filet 622
35.4.2 The INDEX File. ..o 624
35.4.3 PKG_ADD and PKG_DEL Directives.................. 625

Appendix A Dynamically Linked Functions

... 627
AT Oct-Files. ..o 627
A.1.1 Getting Started with Oct-Files.......................... 627
A.1.2 Matrices and Arrays in Oct-Files 630
A.1.3 Character Strings in Oct-Files 633
A.1.4 Cell Arrays in Oct-Files oot 634
A.1.5 Structures in Oct-Files.......... 635
A.1.6 Sparse Matrices in Oct-Files............................ 637
A.1.6.1 The Differences between the Array and Sparse Classes
.. 637
A.1.6.2 Creating Sparse Matrices in Oct-Files.............. 638
A.1.6.3 Using Sparse Matrices in Oct-Files................. 641
A.1.7 Accessing Global Variables in Oct-Files................. 642
A.1.8 Calling Octave Functions from Oct-Files................ 643
A.1.9 Calling External Code from Oct-Files................... 644
A.1.10 Allocating Local Memory in Oct-Files 646
A.1.11 Input Parameter Checking in Oct-Files 647
A.1.12 Exception and Error Handling in Oct-Files............. 648
A.1.13 Documentation and Test of Oct-Files.................. 649
A2 Mex-Files 650

A.2.1 Getting Started with Mex-Files......................... 651

A.2.2 Working with Matrices and Arrays in Mex-Files......... 652

A.2.3 Character Strings in Mex-Files............. 654

A.2.4 Cell Arrays with Mex-Files, 655

A.2.5 Structures with Mex-Files 656

A.2.6 Sparse Matrices with Mex-Files......................... 658

A.2.7 Calling Other Functions in Mex-Files 661

A.3 Standalone Programs........ i 662
Appendix B Test and Demo Functions 667
B.1 Test Functions i 667
B.2 Demonstration Functions.......................o i i 671
Appendix C Tips and Standards 675
C.1 Writing Clean Octave Programsc.ooooiiia... 675
C.2 Tips for Making Code Run Faster............................ 675
C.3 Tips on Writing Commentscooviiiiiiiiiennn... 678
C.4 Conventional Headers for Octave Functions 678
C.5 Tips for Documentation Strings.................ccoovvvin... 680
Appendix D Contributing Guidelines......... 687
D.1 How to Contribute 687
D.2 General Guidelines 688
D.3 Octave Sources (m-files) ..., 689
D4 CH SOUTCES. .ottt 690
D.5 Other SOUrcesooii 691
Appendix E Obsolete Functions.............. 693
Appendix F Known Causes of Trouble 695
F.1 Actual Bugs We Haven’t Fixed Yet 695
F.2 Reporting Bugs. ... 695
F.2.1 Have You Found a Bug?o .. 695

F.2.2 Where to Report Bugs...........o i 696

F.2.3 How to Report Bugs...........coo i, 696

F.2.4 Sending Patches for Octave, 697

F.3 How To Get Help with Octave............................... 698
Appendix G Installing Octave................ 699
G.1 Compiling Octave with 64-bit Indexing 703
G.2 Installation Problems............ i 706
Appendix H Emacs Octave Support 709
H.1 Imstalling EOS ... oo 709
H.2 Using Octave Mode ... 709
H.3 Running Octave from Within Emacs......................... 713

H.4 Using the Emacs Info Reader for Octave..................... 714

xi

xii

Appendix I Grammar and Parser 717
LT Keywords e 717
L2 Parser . ..o 717

Appendix J GNU GENERAL PUBLIC

LICENSE. 719
Concept Index.............. ... i, 731
Function Index 737

Operator Index................................... 751

GNU Octave

Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,
because that is the computer language of engineering, but every time we have tried that, the
students have spent far too much time trying to figure out why their Fortran code crashes
and not enough time learning about chemical engineering. With Octave, most students pick
up the basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department
at the University of Texas, and the math department at the University of Texas has been
using it for teaching differential equations and linear algebra as well. If you find it useful,
please let us know. We are always interested to find out how Octave is being used in other
places.

Virtually everyone thinks that the name Octave has something to do with music, but it
is actually the name of a former professor of mine who wrote a famous textbook on chemical
reaction engineering, and who was also well known for his ability to do quick ‘back of the
envelope’ calculations. We hope that this software will make it possible for many people to
do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix J [Copying], page 719). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Andy Adler Joel Andersson
Muthiah Annamalai Shai Ayal Roger Banks

Ben Barrowes Alexander Barth David Bateman
Heinz Bauschke Karl Berry David Billinghurst

Don Bindner

Richard Bovey

Marco Caliari
Jean-Francois Cardoso
David Castelow
Albert Chin-A-Young
Martin Costabel
Martin Dalecki

Jakub Bogusz

Marcus Brinkmann
Daniel Calvelo

Joao Cardoso

Vincent Cautaerts
Carsten Clark
Michael Creel

Jorge Barros de Abreu

Moritz Borgmann
Remy Bruno
John C. Campbell
Larrie Carr
Clinton Chee

J. D. Cole

Jeff Cunningham
Carlo de Falco

Thomas D. Dean
Christos Dimitrakakis
John W. Eaton
Stephen Eglen
Gunnar Farnebck
Torsten Finke
Castor Fu

Klaus Gebhardt
Michael D. Godfrey
Tomislav Goles
Steffen Groot
Peter Gustafson
Jaroslav Hajek
Sren Hauberg
Martin Helm

Yozo Hida

A. Scottedward Hodel
David Hoover
Cyril Humbert
Geofl Jacobsen
Steven G. Johnson
Jarkko Kaleva
Fotios Kasolis
Mumit Khan

Arno J. Klaassen
Ken Kouno

Oyvind Kristiansen
Tetsuro Kurita

Kai Labusch

Bill Lash

Friedrich Leisch
Ross Lippert
Massimo Lorenzin
James Macnicol
Orestes Mas
Laurent Mazet
Christoph Mayer
Stefan Monnier
Victor Munoz

Al Niessner

Kai Noda

Michael O’Brien
Arno Onken
Gabriele Pannocchia
Primozz Peterlin
Nicholas Piper
Tom Poage

Philippe Defert
David M. Doolin
Dirk Eddelbuettel
Peter Ekberg
Stephen Fegan
Jose Daniel Munoz Frias
Eduardo Gallestey
Driss Ghaddab
Michael Goflioul
Keith Goodman
Etienne Grossmann
Kai Habel
Benjamin Hall
Dave Hawthorne
Stefan Hepp

Ryan Hinton
Richard Allan Holcombe
Kurt Hornik
Teemu Ikonen
Mats Jansson
Heikki Junes
Mohamed Kamoun
Thomas Kasper
Paul Kienzle
Geoffrey Knauth
Kacper Kowalik
Piotr Krzyzanowski
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie

Timo Lindfors
David Livings

Emil Lucretiu
Jens-Uwe Mager
Makoto Matsumoto
G. D. McBain
Thorsten Meyer
Antoine Moreau
Carmen Navarrete
Rick Niles

Eric Norum

Peter O’Gorman
Luis F. Ortiz
Sylvain Pelissier
Jim Peterson
Robert Platt

Orion Poplawski

GNU Octave

Bill Denney

Pascal A. Dupuis
Paul Eggert

Rolf Fabian

Ramon Garcia Fernandez
Brad Froehle

Walter Gautschi
Nicolo Giorgetti
Glenn Golden

Brian Gough

David Grundberg
William P. Y. Hadisoeseno
Kim Hansen

Daniel Heiserer
Jordi Gutirrez Hermoso
Roman Hodek

Tom Holroyd
Christopher Hulbert
Alan W. Irwin

Cai Jianming
Atsushi Kajita

Lute Kamstra

Joel Keay

Aaron A. King
Heine Kolltveit
Daniel Kraft

Volker Kuhlmann
Rafael Laboissiere
Walter Landry
Maurice LeBrun
Benjamin Lindner
Erik de Castro Lopo
Hoxide Ma

Ricardo Marranita
Tatsuro Matsuoka
Alexander Mamonov
Petr Mikulik

Kai P. Mueller

Todd Neal

Takuji Nishimura
Krzesimir Nowak
Thorsten Ohl

Scott Pakin

Per Persson

Danilo Piazzalunga
Hans Ekkehard Plesser
Ondrej Popp

Preface

Jef Poskanzer

James B. Rawlings
Michael Reifenberger
Matthew W. Roberts
Kevin Ruland

Olli Saarela

Radek Salac

Alois Schloegl

Nicol N. Schraudolph
Thomas L. Scofield
Baylis Shanks

Julius Smith
Quentin H. Spencer
Russell Standish
Judd Storrs

John Swensen

Georg Thimm

Olaf Till

Frederick Umminger
Peter Van Wieren

Francesco Potorti
Eric S. Raymond
Jason Riedy

Andrew Ross
Kristian Rumberg
Toni Saarela

Ben Sapp

Michel D. Schmid
Sebastian Schubert
Daniel J. Sebald
Joseph P. Skudlarek
Shan G. Smith
Christoph Spiel
Doug Stewart
Thomas Stuart
Daisuke Takago
Duncan Temple Lang
Christophe Tournery
Utkarsh Upadhyay
James R. Van Zandt

Konstantinos Poulios
Balint Reczey

Petter Risholm
Mark van Rossum
Ryan Rusaw

Juhani Saastamoinen
Aleksej Saushev
Julian Schnidder
Ludwig Schwardt
Dmitri A. Sergatskov
John Smith

Joerg Specht
Richard Stallman
Jonathan Stickel
Ivan Sutoris

Ariel Tankus

Kris Thielemans
Thomas Treichl
Stefan van der Walt
Gregory Vanuxem

Ivana Varekova
Thomas Weber
Andreas Weingessel
Michael Zeising

Olaf Weber
Bob Weigel
Fook Fah Yap
Alex Zvoleff

Thomas Walter
Rik Wehbring

Michael Weitzel
Federico Zenith

Special thanks to the following people and organizations for supporting the development

of Octave:

The United States Department of Energy, through grant number DE-FG02-04ER25635.

Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCC).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

Texaco Chemical Company, for providing funding to continue the development of this
software.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

http://www.che.utexas.edu/twmcc

4 GNU Octave

e The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

e Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

e John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

e James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

e Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to
produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving
new problems, and to make your code freely available for others to use. See Appendix D
[Contributing Guidelines], page 687, for detailed information on contributing new code.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix F [Trouble], page 695, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix J [Copying], page 719.

Octave is available on CD-ROM, with various collections of other free software, from the
Free Software Foundation. Ordering a copy of Octave from the Free Software Foundation
helps to fund the development of more free software. For more information, write to

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301-1307
USA

Octave can also be downloaded from http://www.octave.org, where additional infor-
mation is available.

octave.org
http://www.octave.org

Chapter 1: A Brief Introduction to Octave 5)

1 A Brief Introduction to Octave

GNU Octave is a high-level language, primarily intended for numerical computations. It
provides a convenient interactive command line interface for solving linear and nonlinear
problems numerically, and for performing other numerical experiments. It may also be used
as a batch-oriented language for data processing.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix J [Copying], page 719.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 3.4.3-rc0.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. Octave displays an
initial message and then a prompt indicating it is ready to accept input. You can begin
typing Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL
and then pressing C. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples
The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’, are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,%,/), exponentiation (~), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, ...). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of
the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

eZ7T — _1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp(i*pi)

6 GNU Octave

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A =[1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A * B

and to form the matrix product ATA, type the command

octave:6> A’ * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\Db

This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H2 + Og — HQO
The equation above is not accurate. The Law of Conservation of Mass requires that the num-

ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

Chapter 1: A Brief Introduction to Octave 7

l‘ng + 33202 — HQO
H: 2x,40x, — 2
O: 0x1+2x,—1

The solution in Octave is found in just three steps.

octave:1> A = [2, 0; 0, 2 1;
octave:2> b = [2; 1 1;
octave:3> x = A\ b

1.2.5 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

%:f(x,t), x(t=ty) = xo

For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k =1.4;

> a 1.5;

> b 0.16;

> ¢ =0.9;

> d = 0.8;

>

> xdot(1l) = r*x(1)*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = cxa*x(1)*x(2)/(1 + b*x(1)) - d*xx(2);
>

> endfunction

Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)’;
it is easy to integrate the set of differential equations:
octave:4> x = lsode ("f", x0, t);

The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described
in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55-64.

8 GNU Octave

1.2.6 Producing Graphical Output
To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate
window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -deps foo.eps
will create a file called ‘foo.eps’ that contains a rendering of the current plot in Encapsu-
lated PostScript format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of
input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual
in Section 2.4 [Command Line Editing], page 21.

1.2.8 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you want
to use. This name of the function may not always be obvious, but a good place to start is to
type help --1ist. This will show you all the operators, keywords, built-in functions, and
loadable functions available in the current session of Octave. An alternative is to search
the documentation using the lookfor function. This function is described in Section 2.3
[Getting Help], page 17.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or
more. Type a RET to advance one line, a SPC to advance one page, and Q to exit the
pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke

Chapter 1: A Brief Introduction to Octave 9

Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual in Section 2.3 [Getting Help|, page 17.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave —--no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form: foo
--bar --baz. Specific keys on your keyboard appear in this font or form: ANY.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=". For example:
sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this
(1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]
and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example:

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 4], 7)
1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ‘¢ 4’. The value that is returned
by evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")
- foo bar
=1

10 GNU Octave

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any.
The category—function, variable, or whatever—is printed next to the right margin. The
description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

Here is a description of an imaginary function foo:

foo (x,y,...) [Function]
The function foo subtracts x from y, then adds the remaining arguments to the result.
If y is not supplied, then the number 19 is used by default.

foo (1, [3, 5], 3, 9)
= [14, 16 1]
foo (5)
= 14

More generally,
foo (w, %X, y, ...)

X - w+y+ ...

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways. The category name for
functions may include another name that indicates the way that the function is defined.
These additional tags include

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.8 [Function Files], page 156.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.

Chapter 1: A Brief Introduction to Octave 11

Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Appendix A [Dynamically Linked Functions]|, page 627.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command’. Commands are functions that may be called with-
out surrounding their arguments in parentheses. For example, here is the description for
Octave’s cd command:

cd dir [Command]

chdir dir [Command]|
Change the current working directory to dir. For example, cd ~/octave changes the
current working directory to ‘“/octave’. If the directory does not exist, an error
message is printed and the working directory is not changed.

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, built-in variables typically exist specifically so that users can change them to alter the
way Octave behaves (built-in variables are also sometimes called user options). Ordinary
variables and built-in variables are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

do_what_i_mean_not_what_i_say [Built-in Variable]
If the value of this variable is nonzero, Octave will do what you actually wanted, even
if you have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot
be changed.

Chapter 2: Getting Started 13

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options
Here is a complete list of the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--doc-cache-file filename
Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of 0CTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

—--echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless ‘--persist’ is also specified.

--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

--help

-h

-7 Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in

14 GNU Octave

the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

-—info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

--info-program program
Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

-—interactive

-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix H [Emacs Octave Support], page 709.

--line-editing
Force readline use for command-line editing.
--no-history
-H Disable recording of command-line history.
--no-init-file
Don’t read the initialization files ‘*/.octaverc’ and ‘.octaverc’.
--no-init-path
Don’t initialize the search path for function files to include default locations.
--no-line-editing
Disable command-line editing.
-—-no-site-file
Don’t read the site-wide ‘octaverc’ initialization files.

--norc
-f Don’t read any of the system or user initialization files at startup. This is equiv-

alent to using both of the options ‘-—-no-init-file’ and ‘--no-site-file’.
--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist
Go to interactive mode after ‘--eval’ or reading from a file named on the
command line.

-—-silent

--quiet

-q Don’t print the usual greeting and version message at startup.

Chapter 2: Getting Started 15

-—traditional

--braindead
For compatibility with MATLAB, set initial values for user preferences to the
following values

Psl = II>> n
P82 = nn
allow_noninteger_range_as_index = true
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
default_save_options = "-mat-binary"
do_braindead_shortcircuit_evaluation = true
fixed_point_format = true
history_timestamp_format_string = "%%-- %D %I:%M %p —-%%"
page_screen_output = false
print_empty_dimensions = false
and disable the following warnings

Octave:abbreviated-property-match
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path

--verbose

-V Turn on verbose output.

--version

-v Print the program version number and exit.

file Execute commands from file. Exit when done unless ‘--persist’ is also speci-

fied.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

argv () [Built-in Function]
Return the command line arguments passed to Octave. For example, if you invoked
Octave using the command
octave —--no-line-editing --silent
argv would return a cell array of strings with the elements ‘--no-line-editing’ and
‘--silent’.

If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 30, for an example
of how to create an executable Octave script.

program_name () [Built-in Function]
Return the last component of the value returned by program_invocation_name.

See also: [program_invocation_name|, page 16.

16 GNU Octave

program_invocation_name () [Built-in Function]
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs|, page 30, for an example of how to create
an executable Octave script.

See also: [program_name|, page 15.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

printf ("%s", program_name ());

arg_list = argv O;

for i = l:nargin

printf (" %s", arg_list{i});

endfor

printf ("\n");
See Section 6.2.3 [Indexing Cell Arrays|, page 96, for an explanation of how to retrieve
objects from cell arrays, and Section 11.1 [Defining Functions|, page 147, for information
about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default
is ‘/usr/local’). This file is provided so that changes to the default Octave
environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home /share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc
This file is used to make personal changes to the default Octave environment.

.octaverc
This file can be used to make changes to the default Octave environment for
a particular project. Octave searches for this file in the current directory after
it reads ‘7/.octaverc’. Any use of the cd command in the ‘“/.octaverc’ file
will affect the directory where Octave searches for ‘.octaverc’.

Chapter 2: Getting Started 17

If you start Octave in your home directory, commands from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with
the ‘--verbose’ option but without the ‘--silent’ option.

The dump_prefs function is useful for determining what customizations to Octave are
possible and which are in effect.

dump_prefs () [Function File]

dump_prefs (fid) [Function File]
Dump all of the current user preference variables in a format that can be parsed by
Octave later. fid is a file descriptor as returned by fopen. If file is omitted, the listing
is printed to stdout.

2.2 Quitting Octave

exit (status) [Built-in Function]
quit (status) [Built-in Function]
Exit the current Octave session. If the optional integer value status is supplied, pass
that value to the operating system as the Octave’s exit status. The default value is

Z€ro.
atexit (fcn) [Built-in Function]
atexit (fcn, flag) [Built-in Function]

Register a function to be called when Octave exits. For example,

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);
will remove the function from the list and Octave will not call last_words when it
exits.
Note that atexit only removes the first occurrence of a function from the list, so if a

function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See

18 GNU Octave

Section 11.8 [Function Files|, page 156, for more information about how to document the
functions you write.

help name [Command]

help --list [Command]
Display the help text for name. For example, the command help help prints a short
message describing the help command.

Given the single argument --1ist, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

If invoked without any arguments, help display instructions on how to access help
from the command line.

The help command can give you information about operators, but not the comma
and semicolons that are used as command separators. To get help for those, you must
type help comma or help semicolon.

See also: [doc], page 18, [lookfor], page 18, [which], page 114.

doc function_name [Command]
Display documentation for the function function_name directly from an on-line ver-
sion of the printed manual, using the GNU Info browser. If invoked without any
arguments, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 18.

lookfor str [Command]
lookfor -all str [Command]
[func, helpstring] = lookfor (str) [Function File]

]

[func, helpstring] lookfor (™-all’, str) [Function File
Search for the string str in all functions found in the current function search path.
By default, lookfor searches for str in the first sentence of the help string of each
function found. The entire help text of each function can be searched if the ’-all’
argument is supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the
terminal. Otherwise, the output arguments func and helpstring define the matching
functions and the first sentence of each of their help strings.

The ability of lookfor to correctly identify the first sentence of the help text is depen-
dent on the format of the function’s help. All Octave core functions are correctly for-
matted, but the same can not be guaranteed for external packages and user-supplied
functions. Therefore, the use of the ’-all’ argument may be necessary to find related
functions that are not a part of Octave.

See also: [help], page 18, [doc], page 18, [which], page 114.

To see what is new in the current release of Octave, use the news function.

Chapter 2: Getting Started 19

news () [Function File]
Display the current NEWS file for Octave.

info () [Function File]
Display contact information for the GNU Octave community.

warranty () [Built-in Function]
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file () [Built-in Function]
old_val = info_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave info file. The
default value is ‘octave-home/info/octave.info’, in which octave-home is the root
directory of the Octave installation. The default value may be overridden by the en-
vironment variable 0CTAVE_INFO_FILE, or the command line argument ‘--info-file

NAME’.
See also: [info_program]|, page 19, [doc], page 18, [help], page 18, [makeinfo_program]|,
page 19.
val = info_program () [Built-in Function]
old_val = info_program (new_val) [Built-in Function]

Query or set the internal variable that specifies the name of the info program to run.
The default value is ‘octave-home/libexec/octave/version/exec/arch/info’
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument ‘--info-program

NAME’.
See also: [info_file|, page 19, [doc|, page 18, [help], page 18, [makeinfo_program],
page 19.
val = makeinfo_program () [Built-in Function]
old_val = makeinfo_program (new_val) [Built-in Function]

Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands. The default value is

makeinfo.

See also: [info_file], page 19, [info_program]|, page 19, [doc], page 18, [help], page 18.

val = doc_cache_file () [Built-in Function]
old_val = doc_cache_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave documentation
cache file. A cache file significantly improves the performance of the lookfor com-
mand. The default value is ‘octave-home /share/octave/version/etc/doc-cache’,
in which octave-home is the root directory of the Octave installation, and version is the

20 GNU Octave

Octave version number. The default value may be overridden by the environment vari-
able OCTAVE_DOC_CACHE_FILE, or the command line argument ‘--doc-cache-file
NAME’.

See also: [lookfor], page 18, [info_program], page 19, [doc], page 18, [help], page 18,
[makeinfo_program]|, page 19.

val = suppress_verbose_help_message () [Built-in Function]

old_val = suppress_verbose_help_message (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

The following functions are principally used internally by Octave for generating the docu-
mentation. They are documented here for completeness and because they may occasionally
be useful for users.

gen_doc_cache (out_file, directory) [Function File]
Generate documentation caches for all functions in a given directory.

A documentation cache is generated for all functions in directory. The resulting cache
is saved in the file out_file. The cache is used to speed up lookfor.

If no directory is given (or it is the empty matrix), a cache for builtin operators, etc.
is generated.

See also: [lookfor], page 18, [path], page 160.

[text, format] = get_help_text (name) [Loadable Function]
Return the raw help text of function name.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

[text, format] = get_help_text_from_file (fname) [Loadable Function]
Return the raw help text from the file fname.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

[text, status] = get_first_help_sentence (name) [Function File]
[text, status] = get_first_help_sentence (name, max_len) [Function File]
Return the first sentence of a function’s help text.

The first sentence is defined as the text after the function declaration until either the
first period (".") or the first appearance of two consecutive newlines ("\n\n"). The
text is truncated to a maximum length of max_len, which defaults to 80.

The optional output argument status returns the status reported by makeinfo. If only
one output argument is requested, and status is non-zero, a warning is displayed.

As an example, the first sentence of this help text is

get_first_help_sentence ("get_first_help_sentence")
-1 ans = Return the first sentence of a function’s help text.

Chapter 2: Getting Started 21

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type C-a,
hold down CTRL and then press A. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press U. Depending on the keyboard, the META key may be
labeled ALT or even WINDOWS. If your terminal does not have a META key, you can
still type Meta characters using two-character sequences starting with ESC. Thus, to enter
M-u, you would type ESC U. The ESC character sequences are also allowed on terminals
with real Meta keys. In the following sections, Meta characters such as Meta-u are written
as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.
Cc-f Move forward one character.
BACKSPACE
Delete the character to the left of the cursor.
DEL Delete the character underneath the cursor.
Cc-d Delete the character underneath the cursor.
M-f Move forward a word.
M-b Move backward a word.
C-a Move to the start of the line.
C-e Move to the end of the line.
Cc-1 Clear the screen, reprinting the current line at the top.
C-_
c-/ Undo the last action. You can undo all the way back to an empty line.
M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

22 GNU Octave

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.
clc () [Built-in Function]

home () [Built-in Function]
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C-q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,

also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

Chapter 2: Getting Started 23

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word
if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You
The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char () [Built-in Function]

old_val = completion_append_char (new_val) [Built-in Function]
Query or set the internal character variable that is appended to successful command-
line completion attempts. The default value is " " (a single space).

completion_matches (hint) [Built-in Function]

Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the current line regardless of where the cursor is. If the line is non-
empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M-< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the his-

tory as necessary. This is an incremental search.

24 GNU Octave

C-s Search forward starting at the current line and moving ‘down’ through the
history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

history options [Command]|
If invoked with no arguments, history displays a list of commands that you have
executed. Valid options are:

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ‘~/.octave_hist’).

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ‘/.octave_hist’).

n Display only the most recent n lines of history.

-q Don’t number the displayed lines of history. This is useful for cutting and
pasting commands using the X Window System.

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

edit_history [first] [last] [Command]
If invoked with no arguments, edit_history allows you to edit the history list using
the editor named by the variable EDITOR. The commands to be edited are first copied
to a temporary file. When you exit the editor, Octave executes the commands that
remain in the file. It is often more convenient to use edit_history to define functions
rather than attempting to enter them directly on the command line. By default, the
block of commands is executed as soon as you exit the editor. To avoid executing any
commands, simply delete all the lines from the buffer before exiting the editor.
The edit_history command takes two optional arguments specifying the history
numbers of first and last commands to edit. For example, the command
edit_history 13
extracts all the commands from the 13th through the last in the history list. The
command
edit_history 13 169
only extracts commands 13 through 169. Specifying a larger number for the first
command than the last command reverses the list of commands before placing them

in the buffer to be edited. If both arguments are omitted, the previous command in
the history list is used.

See also: [run_history|, page 24.
run_history [first] [last] [Command]

Similar to edit_history, except that the editor is not invoked, and the commands
are simply executed as they appear in the history list.

See also: [edit_history], page 24.

Chapter 2: Getting Started 25

Octave also allows you customize the details of when, where, and how history is saved.

val = saving_history () [Built-in Function]

old_val = saving_history (new_val) [Built-in Function]
Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

See also: [history_control], page 25, [history_file], page 25, [history_size|, page 25,
[history_timestamp_format_string|, page 25.

val = history_control () [Built-in Function]

old_val = history_control (new_val) [Built-in Function]
Query or set the internal variable that specifies how commands are saved to the
history list. The default value is an empty character string, but may be overridden
by the environment variable OCTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of saving_history.

See also: |history_file|, page 25, [history_size], page 25, [history_timestamp_format_string] J]
page 25, [saving_history|, page 25.

val = history_file () [Built-in Function]

old_val = history_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used to store
command history. The default value is ‘“/.octave_hist’, but may be overridden by
the environment variable OCTAVE_HISTFILE.

See also: [history_size|, page 25, [saving_history], page 25, [history_timestamp_format_string],Jj

page 25.
val = history_size () [Built-in Function]
old_val = history_size (new_val) [Built-in Function]

Query or set the internal variable that specifies how many entries to store in the
history file. The default value is 1024, but may be overridden by the environment
variable OCTAVE_HISTSIZE.

See also: [history_file], page 25, [history_timestamp_format_string|, page 25,
[saving_history], page 25.

val = history_timestamp_format_string () [Built-in Function]

old_val = history_timestamp_format_string (new_val) [Built-in Function]
Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits. The format string is passed
to strftime. The default value is

26 GNU Octave

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

See also: [strftime], page 583, [history_file], page 25, |history_size], page 25,
[saving_history], page 25.

val = EDITOR () [Built-in Function]

old_val = EDITOR (new_val) [Built-in Function]
Query or set the internal variable that specifies the editor to use with the edit_
history command. The default value is taken from the environment variable EDITOR
when Octave starts. If the environment variable is not initialized, EDITOR will be set
to "emacs".

See also: [edit_history], page 24.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ‘*/.inputrc’.

Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

read_readline_init_file (file) [Built-in Function]
Read the readline library initialization file file. If file is omitted, read the default
initialization file (normally ‘~/.inputrc’).

See Section “Readline Init File” in GNU Readline Library, for details.

re_read_readline_init_file () [Built-in Function]
Re-read the last readline library initialization file that was read. See Section “Readline
Init File” in GNU Readline Library, for details.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

At The time.

A\d’ The date.

“\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.

‘s’ The name of the program (usually just ‘octave’).

Aw’ The current working directory.

AW The basename of the current working directory.

“\u’ The username of the current user.

‘\h’ The hostname, up to the first <.’.

‘\H’ The hostname.

Chapter 2: Getting Started 27

\# The command number of this command, counting from when Octave starts.
A\ The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.
A\$’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.
‘\nnn’ The character whose character code in octal is nnn.
AN A backslash.
val = PS1 () [Built-in Function]
old_val = PS1 (new_val) [Built-in Function]
Query or set the primary prompt string. When executing interactively, Octave dis-
plays the primary prompt when it is ready to read a command.
The default value of the primary prompt string is "\s:\#> ". To change it, use a
command like
PS1 ("\\u@\\H> ")
which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings|, page 57.
You can also use ANSI escape sequences if your terminal supports them. This can be
useful for coloring the prompt. For example,
PS1 ("\\[\\033[01;31m\\J\\s:\\#> \\[\\033[0m\] ")
will give the default Octave prompt a red coloring.
See also: [PS2], page 27, [PS4], page 27.
val = PS2 () [Built-in Function]
old_val = PS2 (new_val) [Built-in Function]
Query or set the secondary prompt string. The secondary prompt is printed when
Octave is expecting additional input to complete a command. For example, if you are
typing a for loop that spans several lines, Octave will print the secondary prompt at
the beginning of each line after the first. The default value of the secondary prompt
string is "> ".
See also: [PS1], page 27, [PS4], page 27.
val = PS4 () [Built-in Function]
old_val = PS4 (new_val) [Built-in Function]

Query or set the character string used to prefix output produced when echoing com-
mands is enabled. The default value is "+ ". See Section 2.4.8 [Diary and Echo
Commands]|, page 28, for a description of echoing commands.

See also: [echo], page 28, [echo_executing_commands|, page 28, [PS1], page 27, [PS2],
page 27.

28 GNU Octave

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by
recording the input you type and the output that Octave produces in a separate file.

diary options [Command]|
Record a list of all commands and the output they produce, mixed together just as
you see them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current working
directory.

of f Stop recording your session in the diary file.

file Record your session in the file named file.

With no arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

echo options [Command]|
Control whether commands are displayed as they are executed. Valid options are:

on Enable echoing of commands as they are executed in script files.

off Disable echoing of commands as they are executed in script files.

on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

With no arguments, echo toggles the current echo state.

val = echo_executing_commands () [Built-in Function]

old_val = echo_executing_commands (new_val) [Built-in Function]
Query or set the internal variable that controls the echo state. It may be the sum of
the following values:

1 Echo commands read from script files.
2 Echo commands from functions.
4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent to
the command echo on all.

The value of echo_executing_commands may be set by the echo command or the
command line option ‘--echo-commands’.

Chapter 2: Getting Started 29

2.5 How Octave Reports Errors
Octave reports two kinds of errors for invalid programs.

A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,

octave:13> function y = f (x) y = x***2; endfunction
Octave will respond immediately with a message like this:

parse error:
syntax error

>>> function y = f (x) y = x***2; endfunction

~

For most parse errors, Octave uses a caret (‘°’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because
the keyword for exponentiation (**) was misspelled. It marked the error at the third ‘*’
because the code leading up to this was correct but the final ‘*’ was not understood.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,

you type
octave:13> £ ()
Octave will respond with

error: ‘x’ undefined near line 1 column 24
error: called from:
error: f at line 1, column 22

This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines are counted from the beginning of the file containing the function
definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function £. If the function £ had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

30 GNU Octave

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘“#!” script mechanism. You can do this on GNU systems and on many Unix systems?.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
‘hello’, containing the following lines:

#! octave-interpreter—-name -qf

a sample Octave program

printf ("Hello, world!\n");
(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!’ appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:

octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of
the executed program. The first argument in the list is the full file name of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent
them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s ‘~/.octaverc’ file. See Section 2.1 [Invoking
Octave from the Command Line], page 13.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently
by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

#! octave-interpreter-name -q -f # comment
is equivalent to typing at the command line:
octave "-q -f # comment"
which will produce an error message. Unfortunately, it is not possible for Octave to deter-

mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!” mechanism.

Note that when Octave is started from an executable script, the built-in function argv
returns a cell array containing the command line arguments passed to the executable Octave

1 The ‘#!” mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

Chapter 2: Getting Started 31

script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf
printf ("%s", program_name ());
arg_list = argv O;
for i = l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.

function countdown
Count down for main rocket engines
disp(3);
disp(2);
disp(1);
disp("Blast Off!"); # Rocket leaves pad
endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘#} or ‘%{ and ‘%} markers. For example,

function quick_countdown
Count down for main rocket engines
disp(3);
#{
disp(2);
disp(1);
#3}
disp("Blast Off!"); # Rocket leaves pad
endfunction

will produce a very quick countdown from '3’ to ’Blast Off’ as the lines "disp(2);" and
"disp(1);" won’t be executed.

32 GNU Octave

The block comment markers must appear alone as the only characters on a line (excepting
whitespace) in order to to be parsed correctly.

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help], page 17) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function £ below,

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

r = 0.25;

endfunction
the command help f produces the output
usage: f (x, t)

This function defines the right-hand
side functions for a set of nonlinear
differential equations.
Although it is possible to put comment lines into keyboard-composed, throw-away Oc-

tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments], page 31) and not block comments for the initial help text.

Chapter 3: Data Types 33

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
S0 it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[Dynamically Linked Functions], page 627, for more information about Octave’s dynamic
linking capabilities. Section 3.2 [User-defined Data Types], page 37 describes what you
must do to define a new data type for Octave.

typeinfo () [Built-in Function]

typeinfo (expr) [Built-in Function]
Return the type of the expression expr, as a string. If expr is omitted, return an
array of strings containing all the currently installed data types.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

class (expr) [Built-in Function]
class (s, id) [Built-in Function]
class (s, id, p, .. .) [Built-in Function]

Return the class of the expression expr or create a class with fields from structure s
and name (string) id. Additional arguments name a list of parent classes from which
the new class is derived.

isa (obj, class) [Function File]
Return true if obj is an object from the class class.

See also: [class]|, page 33, [typeinfo], page 33.

cast (val, type) [Function File]
Convert val to data type type.

See also: [int8|, page 47, [uint8], page 47, [int16], page 48, [uint16], page 48, [int32],
page 48, [uint32], page 48, [int64], page 48, [uint64], page 48, [double], page 41.

typecast (x, class) [Loadable Function]
Return a new array y resulting from interpreting the data of x in memory as data
of the numeric class class. Both the class of x and class must be one of the built-in
numeric classes:

34 GNU Octave

"logical"

""char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uintie"
"uint32"
"uint64"
"double"
"single"

"double complex"
"single complex"

the last two are reserved for class; they indicate that a complex-valued result is
requested. Complex arrays are stored in memory as consecutive pairs of real numbers.
The sizes of integer types are given by their bit counts. Both logical and char are
typically one byte wide; however, this is not guaranteed by C++. If your system is
IEEE conformant, single and double should be 4 bytes and 8 bytes wide, respectively.
"logical" is not allowed for class. If the input is a row vector, the return value is a
row vector, otherwise it is a column vector. If the bit length of x is not divisible by
that of class, an error occurs.

An example of the use of typecast on a little-endian machine is
x = uint16 ([1, 65535]);

typecast (x, ’uint8’)
= [0, 1, 255, 255]

See also: [cast], page 33, [bitunpack], page 35, [bitpack], page 34, [swapbytes|, page 34.

swapbytes (x) [Function File]
Swap the byte order on values, converting from little endian to big endian and vice
versa. For example:

swapbytes (uint16 (1:4))
= [256 512 768 1024]

See also: [typecast], page 33, [cast], page 33.
y = bitpack (x, class) [Loadable Function]

Return a new array y resulting from interpreting an array x as raw bit patterns for
data of the numeric class class. class must be one of the built-in numeric classes:

Chapter 3: Data Types 35

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"

"double"

"single"
The number of elements of x should be divisible by the bit length of class. If it is
not, excess bits are discarded. Bits come in increasing order of significance, i.e., x(1)
is bit 0, x(2) is bit 1, etc. The result is a row vector if x is a row vector, otherwise
it is a column vector.

See also: [bitunpack], page 35, [typecast], page 33.

y = bitpack (x) [Loadable Function]
Return an array y corresponding to the raw bit patterns of x. x must belong to one
of the built-in numeric classes:

"char"
"int8ll
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
"double"
"single"
The result is a row vector if x is a row vector; otherwise, it is a column vector.

See also: [bitpack]|, page 34, [typecast|, page 33.

3.1.1 Numeric Object