SOMobjects Developer’s Toolkit
Programmer’s Guide, Volume I: SOM and DSOM
SOMobjects Version 3.0

Note: Before using this information and the product it supports, be sure to read the
general information under Notices on page iii.

Second Edition (December 1996)

This edition of Programmer’s Guide, Volume |: SOM and DSOM applies to SOMobjects Developer’s Toolkit for
SOM Version 3.0 and to all subsequent releases of the product until otherwise indicated in new releases or
technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: IBM CORPORATION PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply
to you.

IBM Corporation does not warrant that the contents of this publication or the accompanying source code
examples, whether individually or as one or more groups, will meet your requirements nor that the publication or
the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes are incorporated in new editions of the publication. IBM Corporation might
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any
time.

This publication might contain references to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not be
construed to mean that IBM Corporation intends to announce such IBM products, programming, or services in
your country. Any reference to an IBM licensed program in this publication is not intended to state or imply that
you can use only the IBM licensed program. You can use any functionally equivalent program instead.

To initiate changes to this publication, submit a problem report from the technical support web page at URL: http://
www.austin.ibm.com/somservice/supform.html. Otherwise, address comments to IBM Corporation, Internal Zip
1002, 11400 Burnet Road, Austin, Texas 78758-3493. IBM Corporation may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Requests for copies of this publication and for technical information about IBM products should be made to your
IBM Authorized Dealer or your IBM Marketing representative.

© Copyright IBM Corporation 1996. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Notices

IBM Corporation may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate AlX, OS/2, or Windows programming techniques. You may copy and distribute these sample programs
in any form without payment to IBM Corporation, for the purposes of developing, using, marketing, or distributing
application programs conforming to the AlX, OS/2, or Windows application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “© (your company name) (current year), All Rights Reserved.” However, the
following copyright notice protects this documentation under the Copyright Laws of the United States and other
countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and making derivative
works.

References in this publication to IBM products, program, or services do not imply that IBM Corporation intends to
make these available in all countries in which it operates.

Any reference to IBM licensed programs, products, or services is not intended to state or imply that only IBM
licensed programs, products, or services can be used. Any functionally-equivalent product, program or service
that does not infringe upon any of the IBM Corporation intellectual property rights may be used instead of the IBM
Corporation product, program, or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM Corporation, are the user’s responsibility.

IBM Corporation may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries in
writing to the:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, New York 10594, USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of
information between independently created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
Department 931S

11400 Burnet Road
Austin, Texas 78758 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Asia-Pacific users can inquire, in writing, to the:

IBM Director of Intellectual Property and Licensing

IBM World Trade Asia Corporation,

2-31 Roppongi 3-chome,

Minato-ku, Tokyo 106, Japan
This publication contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise
is entirely coincidental.

Notices il

Trademarks and Acknowledgements

AlX is a trademark of International Business Machines Corporation.
FrameViewer is a trademark of Frame Technology.

IBM is a registered trademark of International Business Machines Corporation.
0S/2 is a trademark of International Business Machines Corporation.

SOM is a trademark of International Business Machines Corporation.
SOMobiject is a trademark of International Business Machines Corporation.
Windows and Windows NT are trademarks of Microsoft Corporation.

Java and Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. IBM is independent of Sun
Microsystems, Inc.

iV Programmer’s Guide for SOM and DSOM

Contents

Chapter 1. Introduction to the SOMobjects Toolkit 1
Introducing SOM and the SOMobjects Toolkit 1
The SOM Compiler. e e e e e e 2
The SOM Run-Time Library i 3
Frameworks provided in the SOMobjects Toolkit. 3
Distributed SOM 3
Interface Repository Framework i .. 4
Emitter Framework e 4
Metaclass Frameworkt e 4
What's New And Changed in SOMobjects Version3.0 4
General Enhancements 4
SOMobjects onthe World WideWeb 4
Configuration Information i i 4
SOMobjects Enhancements. i 5
DSOM ENhancementst e 6
Metaclass Framework Enhancements 7
ObJECt SEIVICES . . ottt 7
Externalization Service e 7
NamMINg SeIVICE . ..o e e 7
Object Identity Service i e 7
SECUNLY SEIVICE ..o i e e 8
Migration Considerationsttt e 8
Overview of the Programmer's Guide, 8
Chapter 2. Configurationand Startup, 11
A Quick Guide to Configuration i 11
Configuring and Customizing a New Installation 12
Configuration StePSo 12
Register User Applications i i e 12
Running the Sample Programs as an Installation Test 13
Step 1. Installation and Operating System Environment Variables 13
Step 2. Generate Header Files 13
Step 3. Customize Settings in the ConfigurationFile 14
Is Customization Required? it e i e 14
The Configuration File e 15
Syntax of the Configuration File 15
Processing the Configuration Files. 15
Configuration File Stanzast i e 16
ErrorLog Facility i 16
SECUNLY SEIVICE ..o i e e 17
NamMINg SeIVICE . ..o e e e 17
Interface RepPOSItOrY i e 18
SOM Utilities and Metaclass Framework 18
DSOM Configurationttt 18
DSOM IPC . 20
DSOM TCP/IP . . 22
DSOM NetBIOS e 22
SOMobjects Java Client i 22
Step4.IssuesomdchK e 23
Sample somdchk Output for AIX 23

Step 5. Issuing the Configuration Command 24

Contents V

Vi

Selectingthe Install Host i i 24

Configuring the Install Host. i 24
Copying the GLOBAL_OBJREF FILE i 25
Configuring DSOM HOSESt e e e e e 26
Naming Service CONCEPLSot e e e e 27
SHtUCIUNE . . . 27
Factory ServiCe e 28
Reconfiguring DSOM e 28
Alternative Configurations. i e 28
Specifying an Alternative Configuration 29

Step 6. Configuring User Applications 29
Registering Class Interfaces i e 30
Registering Serversand Classes 31
Implementation Definitions e 31
The regimpl Registration Utility 32
RegiStering SeIVerS e 32
Registering Classesottt e e 33
Registration Steps Usingregimpl i 33
Adding Implementations 34
Adding Classes i 35
Command Line Interface toregimpl i 36
Programmatic Interface to the Implementation Repository. 38
The Naming Service and Registering Servers, 40
Customizing ImplementationDef Objects 41
Migration Relationship to the 2.x Implementation Repository. 42
Differences between 2.xand 3.Xt 42
Migrating 2.x Implementation Repositories to Current DSOM Format 44
MOVING SEIVEIS. .« .ttt e e 45
Checking Configuration Values 45
USING SOMUIEIENVt e e e 46
Using somutgetshellenv 46
USING SOMUIIESEIENVttt e e e e 46
Chapter 3. Tutorial for Implementing SOMClasses 49
Basic Concepts of SOM 49
Attributes versus Instance Variables. o 52
Basic Steps for Implementing SOM Classesciiiinn.. 53
Usingthe Tutorial e e 54
Sequence of the Tutorial Examples 54
Example 1. Implementing a Simple Class with One Method 55
Example 2. Adding an Attribute tothe HelloClass 58
Example 3. Overriding an Inherited Method 60
Example 4. Initializinga SOM Object 63
Example 5. Using Multiple Inheritance 65
Continuation of SOM 68
Chapter 4. Using SOM Classes in Client Programs 69
Example Client Program Using ASOMClass 70
SOM Classes: The BaSiCSot e 71
Declaring Object Variables 71
Creating Instancesof aClass. i i 72
Invoking Methods on Objects i e 76
Making Typical Method Calls 76
Accessing Attributes 80

Programmer’s Guide for SOM and DSOM

Usingva listMethods i 80

Using Name-Lookup Method Resolution 84
A Name-Lookup Example i 86
Obtaining a Method’s Procedure Pointer 88
Method Name or Signature Unknown at Compile Time 90
Using Class Objects i e 90
Gettingthe Classof an Object 90
Creatinga Class Object i, 91
Referringto Class Objects i .. 94
Compilingand Linking e 95
Language-Neutral Methods and Functions 96
Generating OQUIPUL 96
Getting Informationabouta Class i 96
Getting Information aboutan Object. 98
DEbUGING . .ot oo e 99
Checking the Validity of Method Calls 100
Exceptionsand Error Handling. i 100
Introduction to EXCEPLioNS i 101
The ENVIroNmentt e e 103
Setting an Exception Value i 103
Gettingan ExceptionValue 103
Example Of Raisingan Exception, 104
The Error Log Facility o e 107
Configuringthe Error Logottt e e 107
Name ofthe Error Log File i, 107
Sizeof the Error Log oo e 107
Type of Information TORecord 107
Display Error MESSagesot 107
UsSINg ThE ErOr LOg . . . ot e e e e e e e 108
Understanding Error LOgENtries i i 108
Locatingthe Correct Log File i i 110
Memory Management e 110
Using SOM Equivalentsto ANSIC Functions 110
Clearing Memory for Objects i e 111
Clearing Memory for the Environment 111
SOM Manipulations Usingsomld i 111
Chapter 5. SOM Interface Definition Language 115
Interface versus Implementation i 115
SOM Interface Definition Languagettt e i 116
Include DIreCtiVeS oo 117
Type and Constant Declarations i, 118
Integral TYPeS . . oo 118
Floating PoIiNt TYPES . ..ottt e e e 118
Character TYpe . ..o e e e 118
Boolean TYpPe ... e 118
OC el TYPE . o e 119
ANY TYPE o e e 119
Constructed TYPES . ..ottt e 119
Template Types (Sequences and Strings)cccvuv.... 122
AT Y S ot e 124
POIN IS . o 124
ObJECE TYPES vttt e e e 124
Exception Declarations. e 125

Contents Vil

Standard Exceptions Prescribed by OMG 126

Interface Declarations. 127
Constant, Type and Exception Declarations. 128
Attribute Declarations 129
Method Declarations. 130
Oneway Keyword e 130
Parameter List 130
RaiSES EXPreSSION . . . vttt 131
Context EXPression e 132
Implementation Statements e 132
Modifier Statements e 133
Declaring Instance Variables and Staticdata Variables 145
Passing Parameters by Copying 146
Passthru Statements i 147
Introducing non-IDL Data TypesorClassescc.v.o... 148
Comments withina SOM IDL File. i 149
Designating Private Methods and Attributes. 149
Defining Multiple Interfacesina.idlFile........... 150
Scoping and Name Resolution i 151
Name Usage in Client Programst 151
Extensions to CORBA IDL permitted by SOMIDL 152
POINtEr X TYPES i 152
UNSIgNed TYPES . o o oo 153
Implementation Section i 153
CommENt ProCeSSING . ..ottt e e 153
Generated Header Files i 153
Chapter 6. The SOM Compiler i i 155
Generating Binding Files 155
Binding Files Created By The CEmitters. 155
Binding Files Created By The C++ Emitters. 156
Other Files the SOM Compiler Generatesccoviiiiiinn.. 157
Porting SOM Classesttt e e e 159
Environment Variables Affecting the SOM Comepiler 159
Runningthe SOM Compiler e 161
ThepdlFacility e 167
Using pdl To Maintain Common Versionsofan IDLFile 167
pdl Simplification of Conditional Expressions. 168
SyntaxofthepdlCommand i 168
Chapter 7. Implementing Classes in SOM 171
SOM Run-Time EnvironNmeNt e e e 171
Run-Time Environment Initialization. 171
SOMObjectClass Object e i 172
SOMClass Class Object i 172
SOMClassMgr Class Object and SOMClassMgrObject 173
Parent Class versus Metaclass.t 174
INNEMtANCE e 176
Techniques for Deriving Subclasses. 177
Deriving Classes through Inheritance 177
Deriving Classes through Specialization 177
Deriving Classes through Addition 177
Multiple Inheritance. e 177
Resolving Problems with Multiple Inheritance 177

Viii Programmer's Guide for SOM and DSOM

SOM-Derived Metaclasses. oot e 180

Method ReSOIULIoN 183
Four kinds of SOM Methods. i i 184
Static Methods 184
Nonstatic Methods e 184
Dynamic Methods i 184
Direct-Call Procedurest 185
Offset Resolution 185
Name-Lookup Resolution. i i e 186
Dispatch-Function Resolution. 187
Customizing Method Resolution. 187
Implementing SOM Classesttt e e e 187
Implementation Template. i e 188
Stub Procedures for Methods 189
Extending the Implementation Template 191
Accessing Internal Instance Variables 191
Making ParentMethod Calls i, 192
Converting C++ Classesto SOM CIasses, 192
Running Incremental Updates of the Implementation Template File 193
Compilingand Linking e i 195
Initializing and Uninitializing Objects 195
Initializer Methods. 196
Declaring New Initializersin SOMIDL iiuo... 197
Considerations somlnit Initialization from Earlier SOM Releases 199
Implementing Initializers 200
Selecting non-Default Ancestor InitializerCalls 201
Using Initializers when Creating New Objects 201
Uninitialization 202
Using SOMDESIIUCE 203
AComplete EXample 203
Implementation Code i 204
Customizing the Initialization of Class Objects. 210
Creating SOM Class Libraries i 210
General Guidelines for Class Library Designers 211
Typesof Class Libraries. i e 211
Building EXport Files. 212
Specifying the Initialization and Termination Function 215
Running the imod Emitter i 216
Creatingthe Class Library 217
Building a SOM Library Implemented with C++on AIX 220
Exporting Variables on Windows NT, i, 221
Other Considerations e 222
Customizing Memory Managemento .. 222
Customizing Class Loadingand Unloading 223
Customizing Class Initialization 223
Customizing DLL Loadingttt i 224
Customizing DLL Unloading.t 225
Customizing Character OUtpUL i e e e e 225
Customizing Error Handling i i 226
Chapter 8. Distributed SOM, e i 229
DSOM Definitiono e 229
DSOM Featureso e 229
DSOM USage . . . ot e 230

Contents X

X

Chapter Outline. e 230

DSOM OVEIVIEW . .« . vttt e e e e e e e e e 231
Limitations. 232
DSOM TUtOral . ..t e e 233
Application ComponeNntS.t e 233
The Stack Interface i 233
Changing a Client Program from a Local to a Remote Stack 234
Stack Server Implementation 238
Compiling the Application 239
Preparing to Run an Application. i 239
Preparing the Environment 239
Registering the Stack Class in the Interface Repository 239
Starting the DSOM Daemont 240
Registering the Server in the Implementation Repository 240
Running the Application 241
Stack Example Run-Time Scenario 241
SUMMIAIY o o e e e e e 243
Basic Client Programming e 243
Initializing a Client Program e 244
The ORB Object e e 244
The SOMD _Init Function i e 244
Finding Initial Object References 244
Creating Remote Objects i e 245
Findinga SOM Object Factoryciiiiiiiiiinnn... 245
Creating an Object fromaFactory 247
Using the somdCreate Function 249
Finding Existing Objects e 250
Making Remote Method Calls. i, 250
Remote Object Invocation Methods 250
Object Reference PassinginMethod Calls 251
Memory Allocationand Ownership 252
Memory-Management Functions 256
Advanced Memory-ManagementOptions 257
Passing Objects by Copying it 261
Passing Foreign Data TYPES . . .o oottt e e 262
Destroying Remote Objects i e 265
Inquiring about a Remote Object Interface or Implementation. 266
Working with Object References. i, 266
Saving and Restoring Referencesto Objects. 267
Exiting a Client Programt e 269
Maintaining Thread Safety i 269
Writing Clients that are also Servers. i, 269
Writing Distributed Workplace Shell Applications. 270
Compilingand Linking Clients. i i, 270
Designing Local/Remote Transparent Programs 271
Class ObjeCts i 271
Object Creation 272
Using Factoriesto Create Objects 272
Using Factories While Controlling Memory Allocation 273
Gaining Access to Existing Objects i, 275
Proxy versus Object Destructioniiiiiiinn... 275
Memory Management of Parameters 276
Distribution Related Errors i e 277
Generating and Resolving Object References 277

Programmer’s Guide for SOM and DSOM

Support for CORBA Specified Interfaces to Local Objects 277

Data Types not Supported In Distributed Interfaces 278
SOM Objects That Do not Have IDL Interfaces 278
Procedure Methods i 278
Global Variables 278
Class Datao e 278
Class Methods e e e 278
Direct Instance Data ACCESSo vttt 278
Passing Objectsby Value 278
Object Invocation: Synchronous, Oneway, Deferred Synchronous and
ASYNCHIONOUS e e 279
Summary of Local/Remote Guidelines.o 279
Method Classification for Local/Remote Transparency 281
Terms Used in Method Classification 281
Basic Server Programming it e 286
Server RUN-TIMe ObjeCtS. e 287
Server Implementation Definition 287
SOM Object Adaptert e e 288
Server object (SOMDSEIVEN) ... it e 288
Server ACHIVation e 289
Example Server Programt e 290
Initializing @ Server Program e 291
Initializing the DSOM Run-Time Environment 291
Initializing the Server’s ImplementationDef 291
Initializing the SOM Object Adapter 292
When Initialization Fails 292
Processing REQUESESt e 293
EXiting a Server Program 293
Managing Objects inthe Server. 294
Object References (SOMDObjects) i, 294
ReferenceData 295
Creating Simple SOM Object References 296
Creating Application-Specific Object References 296
Example: Writing a Persistent Object Server 298
Validity Checking in somdSOMObjFromRef 301
Customizing Factory Creationt 302
Customizing Method Dispatching. 303
Identifying the Source of aRequest i 303
Compiling and Linking Servers. 304
Implementing Classesot e e e e 304
Using SOM Class Libraries e i 304
Role of SomMAsvr 304
Role of SOMOA 305
Role of SOMDSEIVEr ...t e 305
Implementation Constraints 305
Using Other Object Implementations 306
Wrapping a Printer APl 306
Building and Registering Class Libraries 308
Running DSOM Applications e 308
Runningthe DSOM Daemonttt 308
RUNNING DSOM SeIVEIS. . ..ttt e e e e 309
Running the Client Program i i e 310
Running Workgroup Applications. 310
Freeing Interprocess Communication Resourceson AIX. 310

Contents X

Xil

Advanced TOPICSttt 310

Peer versus Client-Server Processes.t 310
Multi-Threaded DSOM Programscuiitennnniinnn... 311
Dynamic Invocation Interface e 311
The NamedValue Structure e 312

The NVLIStClassot e e e 314
Creating Argument LiStS e 314
Buildinga Request 315
Initiating a Request 316
Example Code 317
Buildinga Client-Only stub DLL i 318
Creating User-Supplied Proxies e i 319
Customizing the Default Base Proxy Classcoiiiin... 322
Error Reporting and Troubleshooting Hints 323
Error REPOMtiNg . . .o e e 323
DSOM EIOr COOES. . . oottt e e e 323
Fatal Errors . . .o 323
Troubleshooting Hints. e 323
Checkingthe DSOM Setupt e e 323
Analyzing Problem Symptoms 325
Unexplained Program Crashes 326
DSOM as a CORBA-Compliant Object Request Broker 327
Object Request Broker Run-Time Interfaces 328
Object References and Proxy Objects i .. 329
Interface Definition Language. i e 331
CLanguage Mapping . .. oottt 331
Dynamic Invocation Interface e 331
Implementations i e 331
SBIVEIS . . 332
Object Adapters 332
ORB-t0o-ORB Interoperability 333
DSOM Limitations. . . . o oo 334
DSOM EXIENSIONS. .« . ot ottt e 334
Deprecated DSOM Objects and Methods 335
Chapter 9. The Interface Repository Framework 337
Using the SOM Compiler to Build an Interface Repository 337
Managing Interface Repository Files i 338
The SOM IR File SOMLir e e e 338
Managing IRs With the SOMIR Environment Variable 339
Placing private Information in the Interface Repository 340
Programming with the Interface Repository Objects 340
Methods Introduced by Interface Repository Classes 341
Contained Classt 342
Container Classot 342
ModuleDef Classt e e e 342
InterfaceDef Classt e 342
AttributeDef Class 343
OperationDef Classttt e e 343
ParameterDef Class e 343
TypeDef Class e 343
ConstantDef Class oo 343
ExceptionDef Class 343
RepOSIHOry Classt e e 343

Programmer’s Guide for SOM and DSOM

Accessing Objects in the Interface Repository. 343

A Word about Memory Management i 346
Using TypeCode Pseudo-Objects 346
Providing alignment Information 349
Using tk foreign TypeCode i i 350
TypeCode CoNnstantsttt 351
Usingthe IDLBasiC Type anyco ettt it e 351
Building an Index for the Interface Repository 354
SV X . ot e 354
RetUrn MESSageS . ..ot e e 354
Examples of IRINDEX USE it e 355
Chapter 10. The Metaclass Framework 357
A Note about Metaclass Programmingc0..... 358
Framework Metaclasses for before/after Behavior 358
SOMMBeforeAfter Metaclass.o 359
SOM IDL for ‘Barking’ metaclass 360

C implementation for ‘Barking’ metaclass 360
Composition of before/after Metaclasses. 361
Notes and Advantages of before/after 364
SOMMSinglelnstance Metaclassc i i 364
SOMMTraced Metaclasst e 365
SOMIDL for TracedDog Class oo i e 366
SOMMProxyFor Metaclasst 366
Static Creation of Proxy Classes 367
Dynamic Creation of Proxy Classes. 367
Implementation RevealingMethods. 368
Proxies and the Composition of Metaclasses. 368
Chapter 11. Emitter Framework 369
Structure of the Emitter Framework i i 370
The Object Graph Builder. e 370
The Entry Classeso e e e e e e e 371
The Emitter Class.o 371
The Template Class and Template Definitions. 371
Emitter Framework Classesot 371
SOMTEMIC . . . e e 372
SOMTTemplateOutputC. i e e e e 375
SOMTENtryC and SOMTCIlassEntryC 376
SOMTENYC . .t e e 377
SOMTCoOmMMONENtryC ... e 378
SOMTCIasSENtryC e e 378
SOMTBaseClassEntryC i 378
SOMTMetaClassENtryC e e e 379
SOMTModuleEntryC e 379
SOMTPasSthruENtryC e e e e 379
SOMTTYpedefEntryC e e e 379
SOMTDataENtryC 379
SOMTAttributeENtryC e 379
SOMTMethodENtryC e e e e e 380
SOMTParameterENtryC e e 380
SOMTCONSIENIrYC . .. 380
SOMTENUMENLrYC . .. e 380
SOMTSequenceENntryC i e e 380

Contents Xiii

Xiv

SOMTSHNNGENtryC 380

SOMTUNIONENtrYC . ..o 381
SOMTEnumNameENtryC e e 381
SOMTSHUCIENIIYC . . e e 381
SOMTUserDefinedTypeEntryC i i, 381
Writing an Emitter: the Basics i 381
The newemit Facility e e 381
Running the newemit Programt 381
Designingthe OQutput File e 382
Constructing an Output Template. 382
Customizing Emitter Control Flow. i i, 383
Compiling and Running the New Emitter 384
Debugging an Emitter. e 384
Writing an Emitter: Advanced TOPICSot e 385
Defining New Symbols e 385
Customizing Section-Emitting Methods 387
Changing Section Names i e e e 387
ShadoWing 388
Handling Modules e e 389
Error Handling. e 389
Standard Symbols 390
Symbols by Section Validity 390
Symbols by Entry Class Availability 392
For SOMTENtryC Class oo i i e e e 392

For SOMTCommonEntryC Classciiiiiiiiiinnn... 393

For SOMTAttributeENtryC Classt iiee e 393

For SOMTENUMENtryC Class . ..o 393

For SOMTCIassEntryC Classcuiiiiii i 393

For SOMTCoNStENtryC Classttt 394

For SOMTMethodEntryC Class 394

For SOMTParameterEntryC Class, 394

For SOMTPassthruEntryC Class it i i 395

For SOMTSequenceEntryC Classt 395

For SOMTStringENtryC Classttt 395

For SOMTTypedefEntryC Classcciiiiiiiiinnn... 395

The Section-Name symbols e 395
Appendix A.Error Codes e 397
Special Error Codes . ..ot 397
SOMKerel Error Codesot e e 397
DSOM EIOr CoOeSttt e e e e 398
Externalization Service Error Codest 404
Naming Service Error Codes i e e 406
Security Service Error Codeso 408
Object Services (OS) Server Error Codest 410
Metaclass Framework Error Codesttt 415
Appendix B. Converting OIDL Filesto IDLiiiiu... 417
To Convertornotto CONVErt e 417
Converting .csc Filesto .idlFiles 417
Adding Type Information 420
Appendix C. SOM IDL Language Grammarc.ouuueeennnnnn.. 421

Programmer’s Guide for SOM and DSOM

Contents XV

XVi Programmer's Guide for SOM and DSOM

Figures

Figure 1. Naming Service entries made by DSOM when a server is associated with a class27
Figure 2. Typical class, metaclass and object relationships 51
Figure 3. Name-Lookup ResOIUtion 86
Figure 4. Class methods versus instance methods. i 173
Figure 5. The SOM run-time environment provides four primitive objects,

three of them class objects. 174
Figure 6. Characteristics of Parent Class versus Metaclass. 175
Figure 7. Derivation of Parent Classes and Metaclasseso iiii.... 176
Figure 8. Multiple Inheritance can Create Naming Conflicts. 178
Figure 9. Resolution of Multiple-Inheritance Ambiguities. 179
Figure 10. Example of Metaclass Incompatibility 181
Figure 11. Example of a Derived Metaclass. 182
Figure 12. Multiple inheritance in SOM requires derived metaclasses. 183
Figure 13. Search Order for Name-Lookup Resolution. 186
Figure 14. A Default Initializer Ordering of a Class’s Inheritance Hierarchy. 197
Figure 15. DSOM run-time environmMentttt e e e 243
Figure 16. Construction of a Proxy Classo e 330
Figure 17. The primitive objects of the SOM runtime. 357
Figure 18. Class organization of the Metaclass Framework. 358
Figure 19. Ahierarchy of metaclasses 359
Figure 20. Example for composition of before/after metaclasses 362
Figure 21. Relationships of the three techniques for "FierceBarkingDog" 363
Figure 22. All methods (inherited or introduced) invoked on "Collie" are traced 365
Figure 23. Example of a proxy for the "Dog" Class 367
Figure 24. Structure of the SOM Compiler e 369
Figure 25. Structure of the SOM Emitter Framework 370
Figure 26. Entry Class Hierarchy e 377

Figures XVii

XViili Programmer’s Guide for SOM and DSOM

Chapter 1. Introduction to the SOMobjects Toolkit

This chapter provides a brief introduction to the SOMobjects Developer’s Toolkit.

Introducing SOM and the SOMobjects Toolkit

The System Object Model (SOM) is a unified object-oriented programming technology for
building, packaging and manipulating binary class libraries.

e With SOM, you describe the interface for a class of objects; names of the methods it
supports, the return types, parameter types, and so forth, in a standard language called
the Interface Definition Language (IDL).

* You then implement methods in your preferred programming language; an object-
oriented programming language or a procedural language such as C.

Programmers can begin using SOM quickly. SOM extends the advantages of object-
oriented programming to programmers who use non-object-oriented programming
languages.

SOM accommodates changes in implementation details without breaking the binary
interface to a class library or requiring recompiling client programs. If changes to a SOM
class do not require source code changes in client programs, then those client programs do
not need to be recompiled. SOM classes can undergo the following structural changes, yet
retain full backward, binary compatibility:

e Adding new methods

» Changing the size of an object by adding or deleting instance variables

« Inserting new parent (base) classes above a class in the inheritance hierarchy
» Relocating methods upward in the class hierarchy

You can make the typical kinds of changes to an implementation and its interfaces that
evolving software systems experience over time without starting over.

SOM is language-neutral. It preserves the key object-oriented programming characteristics
of encapsulation, inheritance and polymorphism, without requiring that the user and the
creator of a SOM class use the same programming language. SOM is said to be language-
neutral for the following reasons:

» All SOM interactions consist of standard procedure calls. On systems with a standard
linkage convention for system calls, SOM interactions conform to those conventions.
Thus, most programming languages that can make external procedure calls can use
SOM.

e The form of the SOM Application Programming Interface (API) can vary widely from
language to language, due to SOM bindings. Bindings are a set of macros and
procedure calls that make implementing and using SOM classes more convenient by
tailoring the interface to a particular programming language.

e SOM supports several mechanisms for method resolution that can be readily mapped
into the semantics of a wide range of object-oriented programming languages. Thus,
SOM class libraries can be shared across object-oriented languages with differing
object models. A SOM object may be accessed with the following forms of method
resolution:

- Offset resolution: roughly equivalent to the C++ virtual function concept. Offset
resolution implies a static scheme for typing objects, with polymorphism based
strictly on class derivation. It offers the best performance characteristics for SOM

Introduction to the SOMobjects Toolkit 1

method resolution. Methods accessible through offset resolution are called static
methods, because they are considered a fixed aspect of an object’s interface.

- Name-lookup resolution: similar to that employed by Objective-C and Smalltalk.
Name resolution supports untyped (sometimes called dynamically typed) access to
objects, with polymorphism based on the actual protocols that objects honor. Name
resolution lets you write code to manipulate objects with little or no awareness of
the type or shape of the object when the code is compiled.

- Dispatch-function resolution: permits method resolution based on arbitrary rules
known only in the domain of the receiving object. Languages that require special
entry or exit sequences or local objects that represent distributed object domains
are good candidates for using dispatch-function resolution. This technique offers a
high degree of encapsulation for the implementation of an object, with some cost in
performance.

SOM conforms with the Object Management Group’s (OMG) Common Object Request
Broker Architecture (CORBA) standards:

- Interfaces to SOM classes are described in CORBA'’s Interface Definition
Language, IDL. The entire SOMobjects Toolkit supports all CORBA-defined data
types.

- The SOM bindings for the C language are compatible with the C bindings
prescribed by CORBA.

- All information about the interface to a SOM class is available at run time through a
CORBA-defined Interface Repository.

SOM does not replace existing object-oriented languages; it complements them so that
application programs written in different programming languages can share common SOM
class libraries. For example, SOM can be used with C++ to:

Provide upwardly compatible class libraries, so that when a new version of a SOM
class is released, client code needn’t be recompiled, so long as no changes to the
client’s source code are required.

Allow other language users (and other C++ compiler users) to use SOM classes
implemented in C++.

Allow C++ programs to use SOM classes implemented using other languages.

Allow other language users to implement SOM classes derived from SOM classes
implemented in C++.

Allow C++ programmers to implement SOM classes derived from SOM classes
implemented using other languages.

Allow encapsulation (implementation hiding) so that SOM class libraries can be shared
without exposing private instance variables and methods.

Allow dynamic (run-time) method resolution in addition to static (compile-time) method
resolution (on SOM objects).

Allow information about classes to be obtained and updated at run time. C++ classes
are compile-time structures that have no properties at run time.

The SOM Compiler

The SOMobjects Developer Toolkit contains the SOM Compiler to build classes in which
interface and implementation are decoupled. The SOM Compiler reads the IDL definition of
a class interface and generates:

2 Programmer's Guide for SOM and DSOM

e an implementation skeleton for the class
e bindings for programmers
» bindings for client programs

Bindings are language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to SOM that is
tailored to a particular programming language. For example, C programs can invoke
methods in the same way they make ordinary procedure calls. The C++ bindings wrap
SOM objects as C++ objects, so that C++ programs can invoke methods on SOM objects in
the same way they invoke methods on C++ objects. In addition, SOM objects receive full
C++ typechecking, just as C++ objects do. The SOM Compiler can generate both C and
C++ language bindings for a class. The C and C++ bindings work with a variety of
commercial products available from IBM and others. Vendors of other programming
languages may also offer SOM bindings.

The SOM Run-Time Library

The SOM run-time library provides, among other things, a set of classes, methods and
procedures used to create objects and invoke methods. The library allows any
programming language to use classes developed using SOM if that language can:

e Call external procedures
» Store a pointer to a procedure and subsequently invoke that procedure

* Map IDL types onto the programming language’s native types

The user and the creator of a SOM class needn't use the same programming language,
and neither is required to use an object-oriented language. The independence of client
language and implementation language extends to subclassing. A SOM class can be
derived from other SOM classes, and the subclass may or may not be implemented in the
same language as the parent classes. Moreover, SOM’s run-time environment allows
applications to access information about classes dynamically.

Frameworks provided in the SOMobjects Toolkit

In addition to the SOM Compiler and the SOM run-time library, the SOMobjects Developer
Toolkit provides a set of frameworks (class libraries) that can be used in developing object-
oriented applications. These include Distributed SOM, the Interface Repository Framework,
the Emitter Framework and the Metaclass Framework.

Distributed SOM

Distributed SOM (DSOM) lets application programs access SOM objects across address
spaces. Application programs can access objects in other processes, even on different
machines. DSOM provides this transparent access to remote objects through its Object
Request Broker (ORB): the location and implementation of the object are hidden from the
client, and the client accesses the object as if were local. DSOM supports distribution of
objects among processes within a workstation, and across a local area network consisting
of AIX, OS/2, or Windows NT systems, or some mix of these systems.

Introduction to the SOMobjects Toolkit 3

Interface Repository Framework

The Interface Repository is a database, optionally created and maintained by the SOM
Compiler, that holds all the information contained in the IDL description of a class of
objects. The Interface Repository Framework consists of the 11 classes defined in the
CORBA standard for accessing the Interface Repository. Thus, the Interface Repository
Framework provides run-time access to all information contained in the IDL description of a
class of objects. Type information is available as TypeCodes, a CORBA-defined way of
encoding the complete description of any data type that can be constructed in IDL.

Emitter Framework

The Emitter Framework is a collection of SOM classes that you write as your own emitters.
Emitter is a general term used to describe a back-end output component of the SOM
Compiler. Each emitter takes input information about an interface, generated by the SOM
Compiler as it processes an IDL specification, and produces output organized in a different
format. SOM provides a set of emitters that generate the binding files for C and C++
programming (header files and implementation templates). You can write your own special-
purpose emitters. For example, you can write an emitter to produce documentation files or
binding files for programming languages other than C or C++.

Metaclass Framework

The Metaclass Framework is a collection of SOM metaclasses that provide functions used
by SOM class designers to modify the default semantics of method invocation and object
creation. These metaclasses are described in Chapter 10, The Metaclass Framework on
page 357.

What's New And Changed in SOMobjects Version 3.0

SOMobijects Version 3.0 offers many enhancements, changes, and additions to Version
2.1. In addition to the changes listed, many editorial changes have been made to the
documentation.

General Enhancements

4

This section describes new and changed functions that affect all users.

SOMobjects on the World Wide Web

You can find the latest on IBM’s Enterprise Object Technology and Application
Development Solutions, including SOMobjects, on the World Wide Web. Look at:

http://www.software.ibm.com/clubopendoc

for the latest information.

Configuration Information

All the configuration information for SOM and DSOM has been reorganized into a separate
chapter.

The SOMENYV environment variable points to a configuration file containing many settings
needed by the SOMobjects frameworks, components and DSOM communications

Programmer’s Guide for SOM and DSOM

protocols. See “Configuration File Stanzas” on page 16 for additional information relating to
information contained in the configuration file.

SOMobjects Enhancements

The imod emitter produces a C source program that implements a class library’s
initialization and termination function. Compile and link this source file with all the class
implementation source files. See “Specifying the Initialization and Termination
Function” on page 215 for additional information.

The mods emitter creates a file with a list of modifiers specified in an IDL file. Utilities
can use this file to determine the values of the modifiers.

New modifiers have been defined for use in the implementation sections of SOM IDL
files, and some existing modifiers have been enhanced. A majority of the new modifiers
support the DSOM enhancements of Version 3.0. See “Modifier Statements” on

page 133 for a description of each modifier:

- Unqualified modifiers:

classinit (enhanced)
factory
nomplans

- Qualified modifiers:

dual_owned_parameters
dual_owned_result
impctx (enhanced)
impldef_prompts
length
maybe_by value
maybe_by value result
mplan
object_owns_parameters (enhanced)
object_owns_result (enhanced)
pass_by copy
pass_by copy_result
pointer
staticdata (enhanced)
struct
suppress_inout_free
The SOM Compiler’s -m flag that sets global modifiers has new options to control the
actions of the ir,exp, def, and imod emitters.

For situations where a method needs to modify an in parameter, the method can
receive a copy of the parameter. The IDL modifier pass_by_copy is used to identify
parameters that should be copied when passed from the caller of a method to the
method’s implementation. See “Passing Parameters by Copying” on page 146. The
new modifiers listed include the related pass_by_copy and pass_by_copy_result.

SOMobijects 3.0 provides the ability to cast objects. See the SOM kernel methods
somCastObj and somResetObj.

The Service Provider Interface (SPI) interface for thread or semaphore-related
functions is no longer available.

Introduction to the SOMobjects Toolkit 5

e The Error Log facility records exceptions and error conditions that occur within many of
the SOMobijects services. DSOM and Object Services use this facility. You can use the
Error Log to help debug your new applications.

DSOM Enhancements

* The Implementation Repository no longer needs to be replicated or shared between
client and server processes. Instead, the Implementation Repository is used only on
the machine where the server runs. DSOM clients obtain information about DSOM
servers through the distributed Naming Service, rather than from the Implementation
Repository. See “Migration Relationship to the 2.x Implementation Repository” on
page 42 for how the Implementation Repository in this release differs from DSOM 2.x.

* DSOM includes a migration tool, migimpl3, for converting DSOM 2.1 Implementation
Repositories into the DSOM 3.x format. See “Differences between 2.x and 3.x” on
page 42.

* An Implementation Repository can now be extended through user-defined subclasses
of the ImplementationDef class. A single Implementation Repository can support a
heterogeneous mix of different types of ImplementationDef objects. See “Customizing
ImplementationDef Objects” on page 41.

« New interfaces are provided to the regimpl utility for registering servers, to support the
new features of the Implementation Repository. See “The regimpl Registration Utility”
on page 32.

« Improved local and remote transparency is supported. Many methods that previously
could be invoked only on or with a proxy object can now be invoked on or with a local
SOMObject. This includes DIl support for local objects, object_to_string and
string_to_object methods, and most methods of SOMDObject class. See “Dynamic
Invocation Interface” on page 311 as well as the specific methods and classes.

» There is a facility for finding “factory” objects (objects that create other objects) using
the Naming Service. This facility supersedes previous SOMDObjectMgr methods and
SOMDServer methods for creating remote objects. The same interfaces can be used
to create both local and remote objects. See “Creating Remote Objects” on page 245
for more information.

* DSOM includes two new initialization functions, list_initial_services and
resolve_initial_references, that initialize certain object services (for example, the
Interface Repository, Naming Service, and Factory Service). For additional information,
see “Finding Initial Object References” on page 244 as well as reference for the
methods themselves.

» Support for communication through multiple protocols. On 0OS/2, TCP/IP and NetBIOS
are supported through AnyNet. TCP/IP can also be used alone, without AnyNet. On
AIX and Windows NT, the only supported protocol is TCP/IP. See the
SOMDPROTOCOLS environment setting.

» Support for compiling information about method signatures (marshal plans) into the
class library (DLL), so that Interface Repository accesses can be reduced or
eliminated. This is done automatically by the current ih and xih emitters. For
information on when the Interface Repository is required by DSOM, see “Registering
Class Interfaces” on page 30.

e Support for marshalling pointer types within larger data structures. See “Making
Remote Method Calls” on page 250.

6 Programmer’s Guide for SOM and DSOM

e Support for marshalling non-CORBA IDL (foreign) data types. See “Passing Foreign
Data Types” on page 262.

e Support for passing a copy of an object parameter from a client to a server, to provide
improved performance. See “Passing Objects by Copying” on page 261.

» A server's object reference table files are now stored in the directory indicated by the
SOMDDIR setting, rather than as specified in the Implementation Repository. The
same files can be used by multiple servers.

» Support for Java applications and applets as DSOM clients. This allows DSOM server
objects to be accessed from any Java-enabled client or web browser, without requiring
the installation of any additional software on the client machine. The Java client ORB is
written entirely in Java, which means that it runs unmodified on all Java-enabled
platforms.

e Support for Internet Inter-ORB Protocol 1.0, the CORBA standard for message
protocol. This allows DSOM to interoperate with other CORBA-compliant ORBs.

Metaclass Framework Enhancements

The enhancements facilitate the making of a proxy for in-memaory objects. The facility
consists of the metaclass SOMMProxyFor and helper class, SOMMProxyForObject. The
helper class may be subclassed to produce special kinds of proxies (as DSOM does).
Proxy classes can be composed with Before/After Metaclasses.

Object Services

In general, the object services are provided as a combination of concrete and mix-in
classes. Mix-in classes provide the needed behavior to manage your objects. The concrete
classes instantiate distinguished objects used in support of managing your objects.

Externalization Service

The externalization service provides the basis by which an object can externalize or
internalize its state. By inheriting this mix-in class, an object class programmer can enable
their object’s state to be managed without breaking the encapsulation boundary of their
object. Externalization is used by the DSOM pass-by-value facility.

Naming Service

The naming service provides a Naming Context. Instances of naming contexts can be
organized into a name hierarchy. You can assign a nhame to your objects within a particular
context. During the configuration process, SOMobjects will build a default global name tree
and bind certain distinguished objects within that name tree.

Object ldentity Service

The object identity service lets you determine whether two objects are in fact the same
object or different. Due to the nature of encapsulation, it is not possible to tell whether two
objects are the same or different merely by examining their object pointers or object
references. By mixing the object identity service, your object is assigned an identity that can
be used by the service to unambiguously determine whether two objects are identical.

Introduction to the SOMobjects Toolkit 7

Security Service

The security service can be used to authenticate clients to secure servers. This is useful for
ensuring that client principals are indeed who they say they are, allowing the principal’s
identity (which can be defined from the Principal object) to be used in access decisions.

Migration Considerations

When migrating to this version from earlier versions, the following changes may require
changes to your applications.

The SOM 3.0 kernel is much more sensitive to memory-management bugs than the SOM
2.1 kernel. For example, if you try to perform a SOMFree on the same pointer twice, or try
to perform a SOMFree on stack-based storage (rather than storage allocated by
SOMMalloc), a trap will occur. In the SOM 2.1 Kernel, such an act was often harmless or
caused corruption that may not have been apparent. If new traps occur from using your
code with the SOM 3.0 kernel, a memory-management bug is the likely cause of the traps.

The enumeration types exception_type and completion_status, defined in somcorba.h, are
now four bytes long instead of one byte long in order to comply with the CORBA
specification. This also aids in using these enumerations across DSOM. If your application
uses variables of these enumeration types, recompile it using the SOM header files in this
release.

The semantics of the somFree method when invoked on a proxy object has been changed
so that both the remote object and the local proxy object are destroyed. See “Destroying
Remote Objects” on page 265.

When a method invoked remotely raises a USER_EXCEPTION that is not declared in the
IDL for the invoked method, DSOM returns a SYSTEM_EXCEPTION to the client with
minor code SOMDERROR_UndeclaredException.

DSOM'’s default parameter-memory-management policy now fully adheres to the CORBA
1.1 specification. Parameter memory is now treated as uniformly caller-owned by the
DSOM runtime in both the client and server address space. Different behavior can be
requested through IDL modifiers. See “Memory Allocation and Ownership” on page 252.

Overview of the Programmer’s Guide

8

Chapter 2, Configuration and Startup on page 11 contains information relating to SOM
and DSOM configuration.

Chapter 3, Tutorial for Implementing SOM Classes on page 49 is a Tutorial with
examples that illustrate techniques for implementing classes in SOM. Study this chapter if
you are new to SOM.

Chapter 4, Using SOM Classes in Client Programs on page 69 describes how an
application program creates instances of a SOM class, how it invokes methods, and so on.
Read this chapter if you plan to create or use SOM classes.

Chapter 5, SOM Interface Definition Language on page 115 describes SOM IDL syntax.
Read this chapter if you plan to create SOM classes.

Chapter 6, The SOM Compiler on page 155 describes the SOM compiler. Read this
chapter if you plan to create SOM classes.

Chapter 7, Implementing Classes in SOM on page 171 provides more comprehensive
information about the SOM system itself, including operation of the SOM run-time
environment, inheritance, and method resolution. This chapter also describes how to create

Programmer’s Guide for SOM and DSOM

language-neutral class libraries using SOM. It includes advanced topics for customizing
SOM to better suit the needs of a particular application. Read this chapter if you plan to
create SOM classes.

Chapter 8, Distributed SOM on page 229 describes DSOM and how to use it and
customize it to access objects across address spaces, even on different machines.

Chapter 9, The Interface Repository Framework on page 337 describes the Interface
Repository Framework of classes supplied with the SOMobjects Toolkit.

Chapter 10, The Metaclass Framework on page 357 describes the Metaclass Framework
and some utility metaclasses that SOM provides to help you derive new classes with
special abilities to execute before and after operations when a method call occurs. It also
tells how to modify the default semantics of method invocation and object creation.

Appendix A, Error Codes on page 397 contains lists of the error codes that can be issued
by the SOM kernel or by the various frameworks.

Appendix B, Converting OIDL Files to IDL on page 417 tells how to convert class
definition files from OIDL syntax (the interface definition language used by a previous
release of SOM) to IDL syntax (the language prescribed by the CORBA standard).

Appendix C, SOM IDL Language Grammar on page 421 contains the SOM IDL language
grammar.

Introduction to the SOMobjects Toolkit 9

10 Programmer's Guide for SOM and DSOM

Chapter 2. Configuration and Startup

This chapter describes the steps between installing the SOMobjects Developer’s Toolkit
software and running your applications. These steps include:

Configuration

Verifying the configuration
Registering applications and servers
Running sample programs

A Quick Guide to Configuration

The configuration information in this chapter covers a broad spectrum of needs, starting
from casual one-time SOMobjects use to the most advanced use. Identify your case in the
following list to get the information you need to configure your system efficiently.

Casel
You want to use just SOM and do not want to use DSOM or Object Services.

- Do Step 1. Installation and Operating System Environment Variables
- Do Step 2. Generate Header Files.
- Skip the rest of this chapter. No further configuration is needed to use SOM.

Case 2
You want to run, on a single machine, just the DSOM sample programs supplied in the
Toolkit.

- Do the installation and configuration, Step 1. Installation and Operating System
Environment Variables on page 13 through Step 2. Generate Header Files.

- If you are reconfiguring your system, first do the steps described in Reconfiguring
DSOM on page 28.

- Do the minimal configuration for running the sample applications, Step 5. In Step 3.
Customize Settings in the Configuration File the minimum required is:

» Decide if you want to modify the default somenv.ini file supplied with the
Toolkit or instead modify a copy of it. If you modify a copy, make sure that you
set the SOMENYV environment variable to point to your copy.

- Do Step 4. Issue somdchk.

- In Step 5. Issuing the Configuration Command on page 24, issue the
som_cfg -i command and make sure it completes without error. This is all you
need do of this step.

Case 3
You want to build and run your own simple DSOM application on a single machine.

- Review DSOM concepts and the DSOM Tutorial on page 233.

- Read the information about client and server programming and then build your
application.

- Read about other dependencies of the Object Services your application may use.
- Do the minimal configuration described in Case 2.
- Register User Applications.

Case 4
You want to build and run your own DSOM application on two or more machines.

Configuration and Startup 11

- Read the configuration steps in this chapter paying special attention to the following:

e Learn about configuring one of the machines as an Install host and the others
as DSOM hosts.
» Learn about the prerequisites for re-running som_cfg.
* Read about SOMDPROTOCOLS and HOSTNAME.
» Do the steps in Case 3, but do all the configuration described in Step 5.
Issuing the Configuration Command.
- Register User Applications.

Case 5
You are an experienced DSOM user and want to customize the DSOM environment.

- Read all of this chapter and exploit the various options provided.

Configuring and Customizing a New Installation

This section first gives a quick list of the steps between installing and using SOM, then
describes each of the steps in detail. Configuration takes many steps, but each of them is
simple and you do most of them only once. The following sections give the steps for
configuring a new installation and for updating your configuration.

Configuration Steps

Complete the installation steps as described in the product README file.
Generate header files.

Customize settings in the configuration file. (This step is optional for single workstation
environments.)

4. Invoke somdchk to verify the environment settings. (This step is optional for all
environments.)

5. Issue the configuration command. All machines in a multi-machine system must be
configured.

6. Register your user applications.

Register User Applications

12

Configuration is typically a one-time process. However, you register each application before
you use it. Thus, you may repeat these steps as you continue to develop applications.

1. Customize settings in the configuration file. Each application might have different
settings, so this step can be redone as needed.

Run somdchk. This step is optional.
Register servers and classes in the Implementation Repository using regimpl.

Migrate any 2.1 Implementation Repositories to the current level. See Migrating 2.x
Implementation Repositories to Current DSOM Format on page 44.

Also, see Running DSOM Applications on page 308.

This sequence can be done as part of your configuration sequence if you have existing
applications. Or, you can repeat some or all of this step as often as you need once you
have created applications.

Programmer’s Guide for SOM and DSOM

Running the Sample Programs as an Installation Test

The SOMobjects Developer Toolkit includes a set of sample programs that you can use
both to learn more about using SOM and to verify your installation. The following steps tell
how to use the sample programs.

1. Change directory to a sample directory.

2. Read the README files associated with samples in general, and with the specific
sample you plan to run.

Set SOMIR to include . \som. ir as the rightmost file, which is required by the samples.

Start the DSOM daemon, somdd, from the sample directory, required for building and
running the sample. If somdd is already running, terminate it and restart it from the
sample directory so that somdd can find and start the sample server. (This is not
generally required for real application servers, which can be found using PATH.)

Build the sample as described in its README file.
Run the sample application as described in its README file.

Step 1. Installation and Operating System Environment
Variables

This process is described in detail in the product README file.

Step 2. Generate Header Files

Ensure that the $SOMBASE/include directory (for AIX) or the $SOMBASE%\include
directory (for OS/2 and Windows NT) exists and is writable. If you already have .h, .xh, or
.bld files there, make sure they are writable.

Select the type of header files appropriate for your development environment.

C++
Issue the somxh command to generate the .xh files for the classes supplied with
SOMobjects Developer Toolkit.

If you plan to program with SOM using the C bindings, you need to select either the strict
CORBA-compliant form in which asterisks (*) are not exposed in object references or the
C++-friendly form in which asterisks are visible in object references. The latter, C++-friendly
form is more appropriate if you plan to later move your class implementations from C to
C++. This choice determines how references appear in your C programs. For example, to
declare a reference to an instance of class Foo you could code:

Foo afoo /*Strict CORBA-compliant form */
or

Foo *afoo /* C++ migration or C++-friendly form */

CORBA-compliant C
Issue the somcorba command to generate the header files if asterisks (*) are not
exposed in object references.

C++-like C
Issue the somstars command to generate the headers for if asterisks are exposed in
object references.

Configuration and Startup 13

All the sample C programs provided with SOMobjects Developer Toolkit assume the
CORBA-compliant coding style and the somcorba command.

If you use somstars, you should also set the SMADDSTAR variable in your local
environment to 1. All subsequent use of the SOM compiler depends on the proper setting of
this environment variable.

If you later switch from one coding style to another, you must convert any C code to that
other style. If you switch from somstars style to somcorba style, you must remove the
SMADDSTAR variable from your environment.

If you install only some of the SOMobjects Developer Toolkit components, and later add
components, you must repeat this step after each component installation.

Step 3. Customize Settings in the Configuration File

SOMobijects looks for run-time environment settings in a configuration file designated by
the SOMENYV environment setting. Compile-time settings are taken from your operating
system environment. You can edit the configuration file to specify default settings for your
installation, or you can change SOMENYV to specify another file with alternate settings. The
SOMENYV environment variable can contain one or more path names spearated by colons
on AIX or by semicolons on OS/2 and Windows NT. The default setting of SOMENYV is
SOMENV/etc/somenv.ini on AIX and %SOMBASE%\etc\somenv.ini on OS/2 and
Windows NT.

The default configuration file defines many settings required by the different frameworks,
including settings for supported communications protocols. You can define your own
configuration settings. This section describes each of the default settings, tells which can
be changed, and, typically, gives suggestions for changing values.

SOMobijects provides three functions relating to the configuration file, somutgetenv,
somutgetshellenv and somutresetenv, that you can use within your applications. See
Checking Configuration Values on page 45 for additional information on these three
functions.

Is Customization Required?

14

To configure a single-machine installation, no configuration of the default configuration file
is required.

The SOMIR and SOMDDIR settings are, perhaps, the most common customizations, but
are not required. You can set SOMIR as an operating system environment variable. If set,
the environment variable takes precedence over the configuration file setting. For this
reason, a SOMIR setting in the configuration file is optional. See SOMIR and SOMDDIR.

If you are configuring a single-machine installation and do not plan to customize any
environment settings in the configuration file, skip to Step 5. Issuing the Configuration
Command.

If you are configuring a multiple-machine installation, you must set the following in your
configuration file:

SOMDPROTOCOLS
HOSTNAME (one setting for each protocol named in SOMDPROTOCOLYS)

Decide whether you want to modify the default configuration file or modify a copy of it. If
you modify a copy, set the SOMENYV environment variable to designate the new copy. The
configuration file can be edited with any ASCII text editor. After you modify the required

Programmer’s Guide for SOM and DSOM

settings, if you do not plan to customize other environment settings in the configuration file,
skip to the next step.

The Configuration File

Configuration File Stanzas on page 16 shows each stanza of the configuration file, then
describes the settings you can accept or change. The descriptions tell you which settings
should be left unchanged. In most cases, comments in the file itself give you condensed
instructions.

Syntax of the Configuration File

Follow these syntax rules when you edit the configuration file:

» Each stanza contains the settings for a component of SOM. The name of the stanza is
enclosed in square brackets ([]) at the beginning of a line. Do not edit the stanza
names.

* Comment lines begin with a semicolon (;) in the first position of the line.
» Blanks and spaces can appear anywhere in the file.

* Some settings are commented out in the sample file; delete the semicolon to set the
value.

* Some values should not be edited. Those values are noted in the file.
e Most settings are of the form item=value.

e The actual file may differ slightly in format from this explanation; the items and values
are the same.

Processing the Configuration Files

If a stanza in a configuration file contains multiple entries for the same identifier name, the
value that takes effect is the first setting for that identifier. For example, in the following
code, namex is set to 10:

[foo]
namex = 10

namex = 20
If SOMENYV defines two or more path names such that multiple configuration files contain
the same stanza and identifier names, but set different values, then the value from the
leftmost file in the path takes effect. For example, on OS/2, given the definition

SOMENV=C: \SOM\ETC\SOMENV . INI;C: \MYAPP\somenv.ini, where namey in stanza
foo is defined as shown, then namey is set to 30, as defined in the leftmost file:

[foo]l in C:\SOM\ETC\SOMENV.INI
namey = 30

[foo]l in C:\MYAPP\SOMENV.INI
namey = 15

The SOMobjects configuration file name/value pairs are read into memory on the first call to
the somutgetenv function by a SOMobjects process. Typically, the call to somutgetenv is
done by one of the SOMobjects frameworks. Unless a SOMobjects application wants to get

Configuration and Startup 15

the value of a specific setting, there is no need for an application program to call this
function.

The configuration file is not read again unless, prior to calling somutgetenv, the process
calls somutresetenv. Therefore, if you change any settings in the configuration file, you
may need to either refresh or restart your SOM application before the new setting is used.

There is a separate instance of the configuration-file settings in memory for each user
process running a SOM framework. This means that if the configuration file settings are
changed, only new user processes of a SOM framework pick up the changes. SOM
framework processes running before the configuration change continue to run with the
older settings until they are restarted or refreshed by calling somutresetenv followed by a
call to somutgetenv. See Checking Configuration Values on page 45 for additional
information on somutgetenv and somutresetenv.

Configuration File Stanzas

This section describes each stanza of the configuration file. You can read it as you edit your
configuration file.

If your system is a single machine, you might not have to edit the configuration file. A
multiple-system installation might need only to specify communications protocols.

Error Log Facility

The [somras] stanza contains the settings for the Error Log Facility. You can control the
size of the error log, what errors get stored, the name of the file, and whether error
information is displayed on the screen. See The Error Log Facility on page 107 for more
information.

[somras]

; RAS configuration stanza. This controls the Error Log Facility.
SOMErrorLogFile=SOMERROR.LOG

; The name of the file where error log entries will be

; stored. If unset, the default is SOMErrorLogFile=SOMERROR.LOG.

; The error log is always

; placed in the directory pointed to by the SOMDDIR

; configuration variable of the [somd] stanza. We recommend that

; all processes on a system share one error log file.

SOMErrorLogSize=128
; The size, in kilobytes, of the error log file. If unset, the
; default is SOMErrorLogSize=128. The default allows space for
; several hundred average sized log entries.

SOMErrorLogControl=WARNING ERROR MAPPED EXCEPTION
; A filter to control what types of log entries will be included
; in the error log file. Multiple values may be specified,
; delimited by spaces. Valid values include INFO, WARNING,
; ERROR, and MAPPED EXCEPTION. If unset, the default is
; SOMErrorLogControl=WARNING ERROR MAPPED EXCEPTION.

SOMErrorLogDisplayMsgs=YES
; In addition to making a log entry also display each formatted
; error log message, without the extended log data, to the standard
; output device. Valid values are NO or YES. If unset, the
; default is SOMErrorLogDisplayMsgs=YES.

16 Programmer's Guide for SOM and DSOM

Security Service

The [somsec] stanza contains the settings for security. You need to consider only the
setting of the LOGIN_INFO_ SOURCE value which affects DSOM remote method calls.

If using the SOMobjects Security Service, users must log in to run as an authenticated
client. Users not logged in run as unauthenticated clients; their requests are rejected by any
server registered as a secure server.

How you login will depend somewhat on the platform you are logging in from and your
preferences.On OS/2, you can login with the OS/2 User Profile Manager (UPM). On AlX,
you can be prompted for your user name and password. On Windows NT, or as an
alternative to OS/2 or AlX, you can supply your user name and password in environment
variables.

If you want to login using UPM on OS/2, set the following:
LOGIN INFO SOURCE=UPM

If you want to be prompted for your user name and password on AlX, set the following:
LOGIN INFO_ SOURCE=PROMPT

If you want to supply your user name and password in environment variables, set the
following:

LOGIN_ INFO_SOURCE=ENV

Setting LOGIN SOURCE INFO=DEFAULT is equivalent to setting LOGIN SOURCE_INFO to
UPM on OS/2 and ENV on AlX or Windows NT. If you want to run as an unauthenticated
client, leave the value for LOGIN SOURCE INFO blank, as follows:

LOGIN_ INFO SOURCE=
The default for REGISTRY DB DIR is SOMDDIR.

[somsec]

; SECURITY SERVER ALIAS is the name used by som cfg to register the
; security server implementation. If unset, the default is

; securityServer

; SECURITY SERVER ALIAS

; LOGIN_ INFO SOURCE is a list of sources for obtaining login

; information of a user for authentication. The possibilities are
; LOGIN INFO_ SOURCE=DEFAULT ENV UPM PROMPT

; The options may be specified in any order and any combination.

; The first option to yield the required login information is used
; and subsequent ones ignored. Unrecognized options are ignored.

; DEFAULT is equivalent to UPM on 0S2 and ENV on AIX and other

; platforms.

; LOGIN INFO SOURCE=

; turns off authentication. Beware that a secure server may reject
; requests from unauthenticated clients.

LOGIN_INFO_SOURCE=DEFAULT
; LOGIN_ TIMEOUT specifies the duration (in seconds) after which

; a quest for login information will timeout.
LOGIN_TIMEOUT=30

Naming Service

The [somnm] stanza contains Naming Service settings and specifies whether the machine
is an Install host or DSOM host for the Naming and Security Services. The HOSTKIND

Configuration and Startup 17

18

setting is inserted into the configuration file by som_cfg. Do not set or change HOSTKIND.
If the system needs to be reconfigured, however, by re-running som_cfg, remove
HOSTKIND from the configuration file before rerunning som_cfg.

[somnm]
HOSTKIND=DSOM
; Name Service environment configuration stanza.
; Uses SOMDDIR setting specified in the [somd] stanza to
; store Naming related files.
; If unset, the default is %SOMBASE$\etc\dsom.
; For the install host, the setting is HOSTKIND=INSTALL

SOMNMOBJREF in the [somnm] stanza, is set by the som_cfg utility. The setting is used
by DSOM for connecting a client application to the Naming Service. It should not be
changed by the user. If, however, the system needs to be reconfigured, by re-running
som_cfg, this setting must be removed from the configuration file before rerunning
som_cfg.

; NAMING SERVER ALIAS=

; NAMING SERVER ALIAS is the name used by som cfg to register the

; naming server implementation. If unset, the default is
; namingServer.

; GLOBAL OBJREF FILE=

; GLOBAL_OBJREF FILE is the file used by som cfg to hold

; the global object reference. In the case of an install host, the
; object reference is written to this file. In the case of a

; DSOM host, the object reference is read from this file.

; If unset, the default places the file SOMNM.REF in the

; directory pointed to by the SOMDDIR configuration variable of

; the [somd] stanza.

; For the DSOM host, this value must be set to a directory other

; than the default.

Interface Repository

The SOMIR specifies a list of files, separated by colons on AlX and semicolons on OS/2
and Windows NT. The SOMIR setting can be specified either using the SOMIR
environment variable or by setting SOMIR in the configuration file. The default is \som.ir.
See Registering Class Interfaces on page 30 and Chapter 9, The Interface Repository
Framework on page 337 for more information on how to set SOMIR and create an IR. For
DSOM, it is preferable to use full path names in the list of IR files, because the IR will be
shared by several programs that may not all be started in the same directory.

SOMIR=
; The location of the Interface Repository.

SOM Utilities and Metaclass Framework

The [somu] stanza specifies settings for the SOM utilities and the metaclass framework.

; [somu]
; SOM utilities and metaclass framework
; SOMM_TRACED=

DSOM Configuration

The [somd] stanza and the following communications stanzas contain settings for DSOM
and for communication between systems. When you edit the SOMDPROTOCOLS setting
of this stanza to specify a communications protocol, make sure to edit any subsequent
stanzas required for that protocol.

Programmer’s Guide for SOM and DSOM

[somd]
; DSOM environment configuration stanza.
SOMDDIR
specifies the directory where various DSOM-related files are stored, including the
Implementation Repository files. See Registering Servers and Classes on page 31
for more information.

Note: If this value is not set, DSOM attempts to use a default directory:either $SSOMBASE/
etc/dsom on AIX or $SOMBASE%\ETC\DSOM on OS/2 and Windows NT.

Because the configuration file uses the backslash character as a line-continuation
character, do not end the SOMDDIR setting with a backslash.

; SOMDDIR

; The location of the Implementation Repository and other
; DSOM-related files.

; If unset, the default is $%$SOMBASE%\etc\dsom.

The directory named by the SOMDDIR setting must exist, be empty, and be writable.

HOSTNAME
specifies the name by which the machine is known (used to set the hostName attribute
of the Principal object, which identifies the caller of a method in a server).
HOSTNAME is also used by the Factory Service to identify the requester of a local
(same-process) factory, and by regimpl when registering classes for _LOCAL creation.
If the HOSTNAME environment variable is set, that setting supersedes the
HOSTNAME setting in the [somd] stanza of the configuration file.

There are separate HOSTNAME settings within the stanzas corresponding to the
individual protocols named by SOMDPROTOCOLS; these are unaffected by the
HOSTNAME environment variable setting.

HOSTNAME=thehostname
; USER=anyuser
; Used to set the Principal object that represents the client.
SOMDPROTOCOLS

should be set to specify the names of the DSOM communications protocols for which
the machine has been configured, separated by spaces. Valid values include:
SOMD_IPC and SOMD_TCPIP on AIX and NT; and SOM_IPC, SOMD_TCPIP, and
SOMD_NetBIOS on OS/2. (Additional protocols may be provided by other vendors.)
The default value is SOMD_IPC only. When the SOMD_IPC (single-machine) protocol
is used, it should be the first name in the list of protocols specified for
SOMDPROTOCOLS.

The setting of SOMDPROTOCOLS for a client and server process must have at least
one entry in common; otherwise, communication between the two processes is not
possible.

On 0OS/2, when AnyNet is running, DSOM processes on different machines can
communicate over any combination of TCP/IP or NetBIOS (provided they are also
running), as designated by the setting of SOMDPROTOCOLS. When AnyNet is not
running, the SOMDPROTOCOLS setting SOMD_NetBIOS is invalid.
(SOMDPROTOCOLS should include SOMD_TCPIP in this case.)

SOMDRECVWAIT
specifies the number of seconds a receiver should wait for a message to complete
transmission before generating a communications time-out error. The default value is
30 seconds. This setting is meaningful only for workgroup applications.

Configuration and Startup 19

20

. SOMDRECVWAIT=30
The number of seconds to wait for a socket to become readable
before generating a communications timeout error.

Note: This setting replaces the 2.1 environment variable SOMDTIMEOUT. For backward
compatibility, if SOMDRECVWAIT is not set, the value of SOMDTIMEOUT will be
used. Unlike SOMDTIMEOUT, however, SOMDRECVWAIT does not include the
time required for the remote method to execute.

SOMDSENDWAIT
SOMDSENDWAIT specifies the number of seconds a sender should try to send a
message before generating a communications time-out error. The default value is 30
seconds. This setting is meaningful only for workgroup applications.
SOMDSENDWAIT=30

The number of seconds to wait for a socket to become writable
before generating a communications timeout error.

SOMDNUMTHREADS
may optionally be set to the maximum number of request threads created per server. If
SOMDNUMTHREADS is not set, then a separate thread is created for each request, if
the server is registered as multithreaded. SOMDNUMTHREADS is relevant only for
DSOM server processes.
; SOMDNUMTHREADS=

The maximum number of threads a multithreaded server will use.
The default is unlimited.

SOMDTHREADSTACKSIZE
may optionally be set to increase the stack size used when creating new threads within
a multithreaded DSOM server process. The default is 65536 (bytes). This setting is
only relevant for DSOM server processes.
; SOMDTHREADSTACKSIZE=
; The stack size used when creating new threads in a server, in
; bytes.
; The default is 65536.
CHECK_CONNECTION_INTERVAL
may optionally be set to determine how often, in minutes, DSOM should check for
broken IPC connection.

;CHECK CONNECTION_ INTERVAL=5

DSOM IPC

The [SOMD_IPC] stanza, in conjunction with the [somd] stanza contains settings for the
IPC protocol.
[SOMD_IPC]

; Stanza for the DSOM IPC protocol for workstation communication
; (UNO IIOP).

HOSTNAME
specifies the name by which the machine is known, for that protocol. For the IPC
transport, this setting must be the same for both the client and the server.

HOSTNAME=thehostname
Set this value to the name by which this machine is known.

Programmer’s Guide for SOM and DSOM

SOMDPORT
specifies the well-known port number (a 16-bit integer) over which the DSOM daemon,
somdd, listens for requests for the current protocol. Each protocol should have its own
port number. Select port numbers that are not likely to be used by other applications.
(Check the $ETC%\SERVICES (on OS/2 and Windows NT) or /etc/services (on AlX)
file for ports reserved for other applications on your machine.) Typically, values below
1024 are reserved and should not be used.

SOMDPORT=3002
; The port on which the DSOM daemon will listen for requests.
CSFactoryClass
is the name of a class capable of creating client-to-server connections for that protocol.
The default SOMobjects configuration file contains valid settings of CSFactoryClass
for the protocols that DSOM provides (SOMD_IPC, SOMD_TCPIP, and
SOMD_NetBIOS). This setting should not be changed or removed.

CSFactoryClass=SOMDCallStrmIIOP: :CallStreamFactoryIIOP
; The CallStreamFactory class name for this protocol.
; This setting should not be changed or removed.
CSRegistrarClass

specifies the name of a class that regimpl can use to register a server supporting that
protocol. The configuration file contains valid settings of CSRegistrarClass for the
protocols that DSOM provides (SOMD_IPC, SOMD_TCPIP, and SOMD_NetBIOS).
This setting should not be changed or removed.

CSRegistrarClass=SOMDCSRegRI: :CallStreamRegistrarRI
; The CallStreamRegistrar class name for this protocol.
; This setting should not be changed or removed.
CSTransportClass

specifies the name of a transport class supporting that protocol. The configuration file
contains valid settings of CSTransportClass for the protocols that DSOM provides
(SOMD_IPC, SOMD_TCPIP, and SOMD_NetBIOS). This setting should not be
changed or removed.

CSTransportClass=SOMDtipc: : IPCTransportFactory
; The Listening transport class name for this protocol.
; This setting should not be changed or removed.
CSLocationName

CSLocationName specifies the protocol used by the server to contact the DSOM
daemon, somdd, when registering itself. The default is to use the same protocol to
contact the daemon as to communicate with client processes. This setting is
meaningful only within the SOMD_IPC, SOMD_TCPIP, and SOMD_NetBIOS stanzas.
This setting should not be changed or removed.

CSLocationName=SOMD IPC

; This is the name of the protocol the server uses to communicate
; with the location service (SOMDD). This setting should not be

; changed or removed.

CSProfileTag
CSProfileTag is a unique tag representing the protocol within object references. These
are defined by the OMG and DSOM. This setting should not be changed or removed.

CSProfileTag=1229081857;
; CallStreamFactory tag for this protocol; its decimal "IBM1".
; This is a protocol-unique tag used to represent the protocol
; within object references.

Configuration and Startup 21

22

CALL_POOL_SIZE
CALL_POOL_SIZE specifies the average number of outstanding remote method calls
a DSOM process expects to have at any one time, over that protocol. The default, if not
specified, is 16. DSOM maintains a pool of internal objects, of this maximum size, for
remote requests. If the number of such objects needed exceeds this limit, they are
created and destroyed on demand.

CALL_POOL_SIZE=16
; The average number of requests that a client expects to send
; simultaneously over this protocol, or if its a server, then
; its the average number of simultaneous objects the server
; expects to export (or return) over this protocol.

ENCAP_POOL_SIZE
ENCAP_POOL_SIZE specifies the average number of requests that a client expects to
send simultaneously over the protocaol, or, if a server, the average number of
simultaneous objects the server expects to export (or return) over the protocol. The
default is 4.

ENCAP_POOL_ SIZE=4
The average number of requests that a client expects to send
simultaneously over this protocol, or if a server,
the average number of simultaneous objects the server
expects to export (or return) over this protocol.

DSOM TCP/IP

The [SOMD_TCPIP] stanza, in conjunction with the [somd] stanza contains settings for the
TCP/IP protocol. These settings are the same as those documented for the [SOMD _IPC]
stanza, although the default values may differ.

[SOMD_TCPIP]
; Stanza for the DSOM TPC/IP protocol (UNO IIOP).

DSOM NetBIOS

The [SOMD_NetBIOS] stanza, in conjunction with the [somd] stanza contains settings for
the NetBIOS Protocol. These settings are the same as those documented for the
[SOMD_IPC] stanza, although the default values may differ.

[SOMD_NetBIOS]
; Stanza for the DSOM NetBIOS protocol (UNO IIOP).

SOMobjects Java Client

The [SOMD_JCLIENT]] stanza contains settings used for configuring the SOMobjects Java
client.

SERVICES_FILE_TARGET
specifies the directory in which the Java client "well-known services" object reference
file will be placed. This file is read by the Java client ORB during its initialization (that is,
when the resolve_initial_references function is called).

SERVICES FILE TARGET=

; The web server directory location of the "well-known objects" file.
; This file can be placed anywhere in the HTML directory tree of the
; Java applet web server, as long as it it not protected by

; any security access mechanisms. A recommended location for this

; file is in the top-level HTML directory, for example

Programmer’s Guide for SOM and DSOM

; SERVICES FILE TARGET=d:\WWW\HTML (/WWW/HTML on AIX)

; where "d:" is the drive letter.

; The services file will be named "services" and created in this

; directory during som cfg execution. If you do not intend to use
; Java clients from this SOM server machine, you can comment this

; line out.

Step 4. Issue somdchk

This step is optional. After you issue the som_cfg command you can re-run somdchk and
save the output in a file. The output may be useful in later problem determination.

Issue the somdchk command to verify the configuration file settings.

somdchk evaluates the environment to verify whether DSOM can operate correctly. As
described in Implementing Classes on page 304 and DSOM Configuration on page 18,
to operate correctly DSOM must be able to find the appropriate libraries (DLLS), the
Interface Repository, and, for servers, the Implementation Repository. The settings of
various environment variables and/or configuration file settings help DSOM find the path to
the libraries and repositories.

The somdchk program generates messages that evaluate the DSOM environment to
determine whether the necessary SOM DLLs can be located, whether Interface and
Implementation Repositories can be located, and it displays important environment
settings. In verbose mode, somdchk gives the default settings for DSOM configuration-file
settings and explains how DSOM uses them.

Invoke the program from the command line using the following. The -v option turns on
verbose mode:

somdchk [-v]

The following example shows sample output from the somdchk -v command. Your output
may differ.

Sample somdchk Output for AIX

DSOM ENVIRONMENT EVALUATTION

SOMBASE = /usr/lpp/som
SOMBASE should be set to the base directory of the SOMObjects
Developer Toolkit.

SOMENV = /usr/lpp/som/etc/somenv.ini.
SOMENV specifies a list of filenames (similar to SOMIR) that make
up the single, logical configuration file.

Default is /usr/lpp/som/etc/somenv.ini

/usr/lpp/som/etc/somenv.ini found.

Searching for important DLLs.....
/usr/lpp/som/lib/som.dll found.
/usr/lpp/som/lib/somd.dll found.
/usr/lpp/som/lib/soms.dll found.
/usr/lpp/som/lib/somdcomm.dll found.

SOMDDIR = /u/somuser/impl rep/
Valid Implementation Repository found in /u/somuser/impl rep/
SOMDDIR may be set to a valid directory in which the Implementation
Repository resides.

Default is /usr/lpp/som/etc/dsom

Configuration and Startup 23

SOMIR = /u/somuser/somuser.ir
SOMIR may be set to a list of file names which together form the
Interface Repository.

SOMDDEBUG =1
SOMDDEBUG may be set to 1 to enable run time error messages.
Default value is 0.

SOMDMESSAGELOG = (null).
SOMDMESSAGELOG may be set to the name of a file where messages may
be logged.

Default is stdout.

SOMDPROTOCOLS = SOMD_IPC SOMD_TCPIP.
SOMDPROTOCOLS provides a list of communications protocols that a
DSOM client/server will attempt to use.

Default is SOMD_ IPC.

etc.

Step 5. Issuing the Configuration Command

som_cfg, the configuration command, configures DSOM and Object Services for a network
of machines. See Chapter 4, Naming Service on page 17 of Programmer’s Guide for
Object Services.

On a single machine you need only to configure an Install host. For a multi-machine
system, you first configure one Install host, then copy configuration information to the other
machines, and then configure those other machines as DSOM hosts.

After Naming Service configuration is complete, somdd, the DSOM daemon remains
running. The DSOM daemon can be stopped and restarted repeatedly without requiring
reconfiguration. Servers can also be started, stopped, and restarted without
reconfiguration. Servers need not be started manually; when a server is required by an
application including the naming or security server), it is started automatically by somdd.

Be aware that if certain environment settings are changed after configuration is done, you
must reconfigure and re-register all application servers and classes. See Reconfiguring
DSOM on page 28.

Selecting the Install Host

One machine in a multiple-system installation is the Install host; the others are the DSOM
hosts. The Security Service and the Global Root Naming Tree are stored at the Install host.
See Roots and Namespaces on page 23 in Programmer’s Guide for Object Services for a
discussion of Naming Concepts. During DSOM processing the DSOM hosts communicate
with the Install host for security authentication and for naming services. Therefore, your
Install host should be physically secure to protect your installation’s security information
and should have the capacity to handle the communications and storage required by your
applications.

Configuring the Install Host

Issue som_cfg -i for the Install host. som_cfg gives you progress messages.
The som_cfg tool performs the following tasks for som_cfg -i:

1. Verifies the environment; makes sure important variables are set.

24 Programmer’s Guide for SOM and DSOM

Starts the DSOM daemon (somdd), if it is not already running.

Registers a naming server (a server to host the root Naming Context) into the (initially
empty) Implementation Repository, in the directory designated by the current
SOMDDIR setting. The default alias of the naming server is namingServer. After
configuration is complete, this server’s entry in the Implementation Repository can be
viewed using regimpl.

4. Creates and initializes the global root Naming Context and local root Naming Context
and the Factory Naming Context within the naming server. These Naming Context
objects (as well as others created later) are stored persistently in the directory
designated by the current SOMDDIR setting.

Creates the GLOBAL_OBJREF_FILE.
Binds the global root Naming Context to the local root Naming Context.

Updates the leftmost configuration file (specified by SOMENV) with information needed
by clients to connect to the Naming Service. Two settings are added to the [somnm]
stanza: HOSTKIND and SOMNMOBJREF. SOMNMOBJREF is the string form of an
object reference (proxy) to the local root Naming Context. This information is used by
the DSOM runtime within client applications to establish the initial connection between
the client and the Naming Service. All other proxies can then be obtained from the
Naming Service.

8. Builds the global naming tree. See Naming Service Concepts on page 27 in this
section, and Roots and Namespaces on page 23 of Programmer’s Guide for Object
Services.

9. Configures the Security Service, which includes registering a security server in the
Implementation Repository, with the default alias securityServer, and initializing a
security database.

10. Configures the well-known services file for Java clients, if the
SERVICES_FILE_TARGET variable in the [SOM_JOE] stanza is non-null. This is
accomplished by copying and reformatting the information in the
GLOBAL_OBJREF_FILE that contains a reference to the global root naming context
object.

After Naming Service configuration is complete, somdd, the DSOM daemon remains
running.

If you plan to reconfigure the Naming Service see Reconfiguring DSOM on page 28.

Copying the GLOBAL_OBJREF _FILE

The GLOBAL_OBJREF_FILE setting in the [somnm] stanza of the configuration file
specifies the name of the file used by som_cfg to hold a reference to the global root
Naming Context object. In the case of an Install host, the object reference is written to this
file. In the case of a DSOM host, the object reference is read from this file. If unset, the
default is to place the file somnm.ref in the directory pointed to by the SOMDDIR
configuration variable of the [somd] stanza.

For a DSOM host this value must be set to a directory other than the default because
som_cfg does not run if there is anything in the default directory.

Do the following steps:

1. Locate the file specified in the GLOBAL_OBJREF_FILE setting of the [somnm] stanza
in the configuration file on the Install host.

Configuration and Startup 25

If GLOBAL_OBJREF_FILE is unset, as it is in the default configuration file, locate the
$SOMBASE/etc/dsom/somnm.ref file on AlX or the
%SOMBASE%\etc\dsom\somnm.ref file on OS/2 or Windows NT. SOMDDIR should
be set to the appropriate path in the [somd] stanza. If SOMDDIR is also unset, as it is in
the default configuration file, then locate the file %SOMBASE%\etc\dsom\somnm.ref
created when som_cfg -i was run on the Install host.

2. Make this file accessible to all DSOM hosts either by copying to all DSOM hosts or by
using a shared file system. This file must appear in a directory other than the one
specified by the SOMDDIR setting in the [somd] stanza of the configuration file at the
DSOM host.

3. Update the GLOBAL_OBJREF_FILE setting of the [somnm] stanza in each DSOM
host’s configuration file to refer to this file using its fully qualified file name.

Configuring DSOM Hosts

26

If you are configuring systems for multi-system DSOM applications, after you configure one
machine as Install host you then configure the others as DSOM hosts. Ensure that somdd,
the DSOM daemon, is running at the Install host.

Issue som_cfg -d for each DSOM host. som_cfg gives you progress messages.
The som_cfg tool performs the following tasks for som_cfg -d:

1. Verifies the environment; makes sure important variables are set.

2. Starts the DSOM daemon (somdd), if it is not already running.

3. Registers a naming server (a server to host the local root Naming Context) into the
(initially empty) Implementation Repository, in the directory designated by the current
SOMDDIR setting. The default alias of the naming server is namingServer. After
configuration is complete, this server’s entry in the Implementation Repository can be
viewed using regimpl.

4. Creates and initializes the local root Naming Context within the naming server. This
Naming Context object and others created later are stored persistently in the directory
designated by the current SOMDDIR setting.

Reads from the GLOBAL_OBJREF_FILE.
Binds the global root naming context on the Install host to the local root naming context.

Updates the leftmost configuration file (specified by SOMENV) with information needed
by clients to connect to the Naming Service. Two settings are added to the [somnm]
stanza: HOSTKIND and SOMNMOBJREF. SOMNMOBJREEF is the string form of an
object reference (proxy) to the local root Naming Context. This information is used by
the DSOM runtime within client applications to establish the initial connection between
the client and the Naming Service. All other proxies can then be obtained from the
Naming Service.

After Naming Service configuration is complete, somdd, the DSOM daemon remains
running.The DSOM daemon can be stopped and restarted repeatedly without requiring
reconfiguration. Servers can also be started, stopped, and restarted without
reconfiguration. Servers need not be started manually; when a server is required by an
application (including the naming or security server), it is started automatically by somdd.

Be aware that if certain environment settings are changed after configuration is done, you
must reconfigure and re-register all application servers and classes. See Reconfiguring
DSOM on page 28.

Programmer’s Guide for SOM and DSOM

Naming Service Concepts

This is a quick overview of the Naming Service and its relation to DSOM.

The Naming Service is a general directory service that allows an object reference to be
associated with (bound to) a user-defined name, yielding a name binding. User-defined
properties can also be associated with the name binding, a mapping from a name to an
object reference. The Naming Service supports searching for the object reference, given its
name (called resolving the name) or given a constraint on its associated properties.

Properties associated with name bindings are simply name-value pairs, where the names
are unbounded strings and the values can be any CORBA type. The Naming Service
provides methods for searching for name bindings whose properties match a given
constraint expression. The constraint is a simple string, formed according to a constraint
grammar. The grammar supports simple and compound boolean, logical, mathematical,
and set expressions. Although property values can be any CORBA type, searches can only
be performed on simple types.

Factory Haming Coritext

name: 2hefod-13a1 1 e(0-7-00- 10005802 7 2aciapal
prop-name: class

prop-valua: classl

prop-name: allas

prop-valua: myServer

prop-name: serverld

prop-valua: 2befol2h-13a11600-7-00- 100008082725

QBJECT_NIL Legend

O ohjact

Aas——pg Ahas B

Figure 1. Naming Service entries made by DSOM when a server is associated with a class

For additional information, see The Naming Service and Registering Servers on page 40.

Structure

The Naming Service is composed of objects called naming contexts, organized in a tree
structure, analogous to a file directory structure. There is a root Naming Context, which can
refer to other Naming Contexts. The nhame-context objects at the leaves of the tree contain
name bindings to application objects (rather than other Naming Contexts). The name-
context objects that make up the Naming Service reside in one or more DSOM servers, so
that client applications can access the Naming Service from anywhere in the network.

Naming-service names are data structures, not simple strings. A simple name, called a
name component, is a structure consisting of two fields: an id and a kind. A name
component specifies a particular object reference relative to a particular Naming Context. A
compound name is a sequence of name components. It allows traversal of successive sub-
contexts within a name tree, analogous to how a compound pathname can specify a file in
a subdirectory of the current directory. Naming Service names are always specified relative
to some Naming Context. Unlike file directories, there are no absolute names in the Naming
Service.

Configuration and Startup 27

Factory Service

DSOM provides an extension to the Naming Service, called the Factory Service. The
Factory Service is implemented as a specialized and well-known Naming Context, known
as the Factory Naming Context. When DSOM servers are registered, and application
classes are associated with them, this information is stored in the Factory Naming Context
of the Naming Service. At runtime, when client applications need to create remote objects,
they can make remote invocations on the Factory Naming Context to request an
appropriate factory object (an object capable of creating another object). This is done via
the usual Naming Service interfaces for finding objects based on a well-known name or
based on a given constraint expression. The Factory Naming Context finds an appropriate
server, starts it dynamically, creates the requested factory object in the server, and returns
to the waiting client a proxy to it. The client application then invokes methods on the factory
proxy to create other objects as needed.

Reconfiguring DSOM

After the Naming and Security Service have been configured using som_cfg, the settings
of SOMDDIR and SOMNMOBJREF and the contents of the directory specified by
SOMDDIR collectively form a single DSOM environment. These settings should not be
subsequently changed independently without reconfiguring the Naming Service.

In addition, the SOMNMOBJREF setting created by som_cfg embeds the
SOMDPROTOCOLS, HOSTNAME, and SOMDPORT settings of the servers it registers
and their associated daemon, somdd. Therefore you must reconfigure if you change these
settings.

If it is necessary to change environment settings and reconfigure the Naming or Security
Service, do the following:

* Change the SOMDDIR setting, if necessary, then remove all files in the directory
indicated by SOMDDIR.

* Remove the HOSTKIND and SOMNMOBJREF settings from the configuration file.
* Rerun som_cfg.
e Re-register all application servers using regimpl.

Alternative Configurations

28

This section describes an alternative DSOM network configuration, which involves less
configuration and runtime overhead than the default described previously. This alternative
is suitable only for environments in which the only use of the Naming Service is through the
DSOM Factory Service.

The default Naming Service network configuration, which results from configuring (using
som_cfg) one machine as install host and the remaining machines as DSOM hosts, yields a
network in which the DSOM daemon (somdd) and a Naming server run on all machines in
the network. In other words, there are no 'pure client' machines in the default network
configuration.

When a client application running on a DSOM host in such a network makes a request to
the DSOM Factory Service, first a remote method invocation will be made on the local root
Naming Context in that machine's Naming server, then a remote invocation is made on the
global root Naming Context on the install host because DSOM's Factory Naming Context
always resides in the global root Naming Context on the install host. The alternative

Programmer’s Guide for SOM and DSOM

configuration described below eliminates the first remote invocation and the client
application contacts the install host directly.

In the alternative configuration, rather than configuring an install host and several DSOM
hosts, one configures only the install host. One then transfers information from the install
host to the DSOM hosts to allow them to contact the install host's Naming server directly,
rather than via a local Naming server on the DSOM host. Such a configuration has the
advantage that only the install host incurs the overhead of a Naming server process. If no
other servers are to be run on a DSOM host, then the DSOM daemon (somdd) and the
Implementation Repository can also be omitted from that host. (The DSOM host then acts
as a client-only machine.) This configuration also has the advantage that accessing the
DSOM Factory Service is more efficient.

This configuration is suitable only for networks in which the Naming Service is only used
through the DSOM Factory Service. If any application to be run on the DSOM host uses the
Naming Service to name or find application objects, then the host must be configured using
som_cfg as described earlier.

Specifying an Alternative Configuration

To define an the alternative configuration, first configure the install host, as already
described. Then copy the SOMNMOBJREF setting from the [somnm] stanza of the
configuration file on the install host (stored in that file as a side-effect of running som_cfg)
to the [somnm] stanza of the configuration files to be used on all the DSOM hosts. This
setting requires several lines.

Every process running on a DSOM host must have SOMENYV set to include some
configuration file whose SOMNMOBJREF setting was copied from the install host, and it
must appear in the [somnm] stanza. This is the information DSOM uses to contact the
Naming Service directly on the install host at run time.

If it later becomes necessary to change a DSOM network from the alternative configuration
to the default configuration, the following steps are required.

Note: The install host does not need to be reconfigured to perform this conversion.

1. Change the SOMDDIR setting on the DSOM host to refer to an empty directory.
(Reconfiguring the DSOM host requires that any server registrations on that machine
be redone.)

2. Copy the GLOBAL_OBJREF_FILE from the install host to the DSOM host, and set
GLOBAL_OBJREF_FILE on the DSOM host to point to the copy, as described earlier.

3. Runsom_cfg -d as described earlier, to configure the DSOM host.
4. Re-register any servers to be run on the DSOM host, using regimpl.

This change can be done gradually, converting a few machines at a time to be full-fledged
DSOM hosts, as necessary.

Step 6. Configuring User Applications
The following sections tell how to configure DSOM applications. Configuring application
consists of the steps:

1. Customize settings in The Configuration File on page 15. Each application might
have different settings, so this step can be redone as needed.

Run somdchk. This step is optional.
Registering Class Interfaces.

Configuration and Startup 29

4. Register servers and classes in the Implementation Repository using regimpl. See The
regimpl Registration Utility on page 32

5. Migrate any 2.1 Implementation Repositories to the current level. See Migrating 2.x
Implementation Repositories to Current DSOM Format on page 44
Also, see Running DSOM Applications on page 308.

This step can be done as part of your configuration sequence if you have existing
applications. Or, you can repeat some or all of this step as often as you need once you
have created applications.

Registering Class Interfaces

30

The Interface Repository (IR) is a collection of files that make up a database of information
about the classes that a DSOM application uses. DSOM relies on the IR for the following:

« Dynamically loading classes (by obtaining the dliname modifier from the IR), including
application classes, user-defined subclasses of SOMDServer (for servers only),
user-defined subclasses of ImplementationDef, user-defined proxy-base classes and
classes to support vendor-supplied DSOM protocols.

» Retrieving the value of the factory modifier for a class with an application-specific
factory (used by servers only).

* Retrieving the value of the baseproxyclass modifier for classes with user-defined
proxy-base classes.

* Registering (with regimpl) a server using a user-defined subclass of
ImplementationDef. (The IR is used to determine the new attributes for which a value
should be solicited from the regimpl user.)

* Making requests using the Dynamic Invocation Interface.
« Responding to the get_interface method.

If a DSOM application relies on any of these services, the appropriate classes should be
registered in the IR prior to running the application. A class’s dliname modifier need not be
registered in the Interface Repository if any of the following holds:

* The class library (DLL) name is the same as the class name.

» The class is guaranteed to be used only after the DLL has been dynamically loaded for
some other class, and the DLL provides a SOMInitModule that causes the class object
to be created automatically when the DLL is loaded by the SOM Class Manager.

» The application client and server are each statically linked to the class library, and
either create the class object explicitly (by calling classNameNewClass or
classNameNew) or the DLL provides a _DLL_InitTerm routine that causes the class
object to be created automatically when the DLL is loaded (by calling a library-provided
SOMiInitModule routine). This requirement is not satisfied for applications using the
somdsvr or SomossVr server programs, because these server programs load all
application classes dynamically.

Note: DSOM 2.x used the IR to discover information about method signatures for remote
method invocations. The IR is no longer used in this way. For libraries built using
SOMobijects 2.x, method signature information must be compiled into the IR as
before.

Information that DSOM uses when making a remote method invocation is stored directly in
the class library (DLL), provided the library was built using the current ih or xih emitter. If
this information is not found, DSOM consults the IR. Class implementors can prevent

Programmer’s Guide for SOM and DSOM

method signature information, called a marshal plan, from being compiled into the DLL by
using the mplan SOM IDL method modifier or the nomplans class modifier.

To register a class in the Interface Repository, compile the IDL description of the class by
running the SOM Compiler and the ir emitter using the following command syntax:

sc -sir -u stack.idl

Before updating the IR, you should set the SOMIR environment variable or the
corresponding entry in the configuration-file [somir] stanza. See Interface Repository on
page 18.

When the ir emitter is run, only the last file specified by SOMIR is updated. At run-time,
however, the sequence of files is examined from left to right. The irdump tool can be used
to examine the contents of the IR. See Using the SOM Compiler to Build an Interface
Repository on page 337 and Managing Interface Repository Files on page 338 for more
information on the ir emitter and SOMIR.

Registering Servers and Classes

Before a server is used, it must be registered in the Implementation Repository. The
Implementation Repository is a persistent store of ImplementationDef objects residing on
a server machine in the directory indicated by the current SOMDDIR setting. The
ImplementationDef class defines attributes necessary for the DSOM daemon to start a
server and for the server to initialize itself.

Each ImplementationDef object in the Implementation Repository represents a single
logical server. At run-time, each logical server is implemented by some executable program
running as a server process, but the logical server exists regardless of whether that server
program is running.

Note: If you have been using the Implementation Repository provided by DSOM 2.x, see
Migration Relationship to the 2.x Implementation Repository on page 42 for
important information about how the Implementation Repository has changed for
DSOM 3.x.

Implementation Definitions

Details of the ImplementationDef object are not currently defined in the CORBA
specification. The attributes defined are required by DSOM and are listed below. You can
subclass ImplementationDef to add your own attributes, as described in Customizing
ImplementationDef Objects on page 41.

impl_id (string)
Contains the DSOM-generated identifier for a server implementation. This identifier is
unigue throughout the network and can be used as a key into the Implementation
Repository.

impl_alias (string)
Contains the alias for a server implementation, specified by the system administrator
when registering the server. This alias must be unique within a particular
Implementation Repository database and can be used as a key. Unlike the impl_id
attribute, the alias does not need to uniquely identify the server throughout the network.

Configuration and Startup 31

impl_program (string)
Contains the name of the program or command file that will be executed when a
process for this server is started by somdd. If the full pathname is not specified, the
directories specified in PATH will be searched for the named program or command file.
The impl_program attribute need not be unique for different ImplementationDef
objects.

Many servers are registered to use the DSOM default server program, somdsvr, or the
object-services server, somossvr. The default server program name is somdsvr. If the
somossvr server program is used, the somOS::Server class must be used. See
impl_server_class (string) for additional information.)

Optionally, the server program can be run under control of a “shell” or debugger, by
specifying the shell or debugger name first, followed by the name of the server
program. (A space separates the two program names.) For example, on OS/2

icsdebug myserver

will start myserver under the control of the icsdebug debugger. Servers that are started
automatically by somdd always pass their impl_id as the first parameter.

impl_flags (Flags)
Contains a hit-vector of flags used to identify server options (for example, the
IMPLDEF_MULTI_THREAD flag indicates a multi-threaded server). Review the
impldef.idl file for the complete set of valid ImplementationDef flags. Unused flag bits
are reserved for future use by IBM.

impl_server_class (string)
Contains the name of the SOMDServer class or subclass to be instantiated by the
server process during initialization, to yield the server’s server object. The default is
SOMDServer. Note that when the somossvr server program is used, the
somOS::Server server class must also be used.

impldef_class
Contains the class name of the implementation definition. Class must inherit from
ImplementationDef, which is the default.

config_file (string)
Contains the name of the configuration file to be used by the server, if different from the
SOMENV setting of the user/process that initiates the server process such as the
DSOM daemon. When the server invokes SOMOA::impl_is_ready, if the server's
ImplementationDef::config_file attribute differs from the current SOMENYV setting and
is non-NULL, the contents of the configuration file named by
ImplementationDef::config_file will be read, any DSOM run-time initialization
performed during SOMD_Init will be refreshed, and for the duration of the server
process the setting of ImplementationDef::config_file will be prepended to the
current SOMENYV setting.

The regimpl Registration Utility

The regimpl utility is used to register servers and classes.

Registering Servers

To register a server in the Implementation Repository, the system administrator can use a
DSOM registration utility: regimpl. The regimpl has a command line interface. You can also
use the ImplRepository interface to do the same function in an application.

32 Programmer’s Guide for SOM and DSOM

Servers may be registered only on the machine on which they will run and should not be
registered on another machine because the HOSTNAME and SOMDPORT entries in the
configuration file of the regimpl user are assumed to be those of the server. This
information is stored in the Naming Service when the server is registered, to be used by the
DSOM Factory Service to assist clients in locating servers.

The settings in the configuration file at the time a server is registered must be consistent
with those in effect when the DSOM daemon is started on the server machine. The
SOMDPROTOCOLS setting used by the daemon must have at least one entry in common
with the setting used when the server was registered, and for the common
SOMDPROTOCOLS entries, the HOSTNAME and SOMDPORT entries must match.

Note: The examples of registering servers in the following sections assume the use of the
generic DSOM server program, somdsvr.exe. A discussion on how to write a
specific server program is found in Basic Server Programming on page 286.

When using the SOM object services, the somossvr server program and the
somOS::Server server class must be used. This server program and server class
provide persistent object references and other services. After registering a server to
use somossvr and somOS::Server, run the server from the command line with the
-i option the first time it is executed, to allow the server to initialize its persistent
storage. Subsequently, the server can be started by somdd on demand, just as with
somdsvr. See Chapter 5, Object Services Server on page 35 of Programmer’s
Guide for Object Services for more information on the somossvr server program and
the somOS::Server server class.

Registering Classes

During the execution of regimpl, or when using the programmatic interface, DSOM updates
the Implementation Repository. In addition to updating the Implementation Repository,
regimpl and the programmatic interface allow you to designate which SOM classes a
server supports. Although the somdsvr and somossvr server programs can load any
accessible SOM class library using somFindClass, the DSOM Factory Service only
creates a factory for a requested class in a server that is registered to support that class.

When you use regimpl to associate a class with a server, DSOM stores this association in
the Naming Service. For more information on how DSOM updates the Naming Service as
servers are registered, see The Naming Service and Registering Servers on page 40.

Servers can be registered to support specific classes or the special class keyword “ ANY.”
DSOM Factory Service users can then request a server that supports a specific class name
or class _ANY. In addition to registering classes with specific servers, classes can be
registered using the server alias keyword “_LOCAL.” This indicates that clients should be
allowed to create local instances of that class using the DSOM Factory Service, provided
they have the same HOSTNAME setting as the one in effect at the time the class was
registered for _LOCAL creation. (The HOSTNAME setting used in this case is the one
found in the [somd] stanza of the SOMobjects configuration file.) For more information on
the DSOM Factory Service, see Creating Remote Objects on page 245.

Registration Steps Using regimpl

To register a server implementation and its classes using the regimpl utility, at the system
prompt enter:

regimpl

Configuration and Startup 33

34

This brings up the DSOM Implementation Registration Utility menu, shown below.

Adding Implementations

1. To begin registering the new implementation, select 1. Add from the
IMPLEMENTATION OPERATIONS section: that is, at the Enter operation: prompt,
enter 1

DSOM IMPLEMENTATION REGISTRATION UTILITY
(C) Copyright IBM Corp. 1992, 1996. All rights reserved.

[IMPLEMENTATION OPERATIONS]
1.Add 2 .Delete 3.Change
4.Show one 5.Show all 6.List aliases

[CLASS OPERATIONS]
7.Add 8.Delete 9.Delete from all 10.List classes
11. Add to all

[SAVE & EXIT OPERATIONS]
12.SAVE and EXIT
Enter operation: 1
The regimpl utility then issues several prompts for information about the server
implementation. Typical responses are shown in bold as an example.

2. Enter a shorthand name for conveniently referencing the registered server
implementation while using regimpl. Avoid using names that being with an underscore.

Enter an alias for new implementation: myServer

3. Enter the name of the ImplementationDef class for regimpl to use for this entry (the
default is ImplementationDef). For details on providing user-written subclasses of
ImplementationDef, see Customizing ImplementationDef Objects on page 41.

Enter ImplDef Class name (default ImplementationDef): <return>

If a user-defined subclass of ImplementationDef was chosen for this server, regimpl
will then prompt for additional information as defined by the ImplementationDef
subclass.

4. Enter the name of the program that will execute as the server. This may be the name of
one of the SOMobjects server programs, somdsvr or somossvr (discussed in
Running DSOM Servers on page 309) or a user-written server program. If the
SoOmMOosSsvr server program is used, the somOS::Server server class must also be
used (see Step 8 in this list). If the program is located in PATH, only the program name
needs to be specified. Otherwise, the pathname must be specified.

Enter server program name: (default: somdsvr) <return>

5. Specify whether the server expects the SOM Object Adapter (SOMOA) to run each
method in a separate thread. Note: You must ensure that methods executed by the
server are thread safe.

Allow multiple threads in the server? [y/n] (default: no) : n

6. Specify whether the server should accept requests from authenticated clients only.
Make server secure? [y/n] (default: no) : <return>

7. Specify whether the server should be managed.

Make server a managed one? [y/n] (default: no) : n

Programmer’s Guide for SOM and DSOM

8. Enter the name of the SOMDServer class or subclass that will manage the objects in
the server. If the somossvr server program was specified for this server, then the
somOS::Server server class must also be used.

Enter server class (default: SOMDServer) : <return>

9. Specify the configuration file to be used by the server, if different from the SOMENV
setting of the user/process that initiates the server process (for example, the DSOM
daemon).

Enter Config file name (default: none) : <return>

10. Each protocol listed in the SOMDPROTOCOLS setting will be presented; select those
protocols that this server will support. If SOMDPROTOCOLS is not set, or if no
protocols are selected, then SOMD_IPC is assumed.

Select protocol ’SOMD IPC’ [y/n] (default: yes) : y

The regimpl system next displays a summary of the information defined so far, and asks
for confirmation. Enter y to save the implementation information in the Implementation
Repository.

Implementation id.........: 2befc82b-13al1e00-7£-00-10005ac9272a
Implementation alias......: myServer

ImplDef Class name........: ImplementationDef

Program name..............: somdsvr

Multithreaded.............: No

Server secure.............: No

Server class..............: SOMDServer

Configuration file........:
Protocol information......:
Protocol: SOMD IPC; Hostname: sherman; Port: 3002;

The above implementation is about to be added. Add? [y/n] vy

Implementation ‘myServer’ successfully added

At this point, regimpl records information about the server in the Naming Service, for use
by the DSOM Factory Service. If the Naming Service has not been configured, or is not
available, an error is reported, but the server is still registered in the Implementation
Repository, and the next time the server’s registration is updated, DSOM attempts to
update the Naming Service. For information on how regimpl updates the Naming Service,
see The Naming Service and Registering Servers on page 40.

Adding classes

Once the server implementation is added, the complete menu reappears. The next series
of prompts and entries will identify the classes associated with this server.

1. To begin, registering new classes, select 7. Add from the CLASS OPERATIONS
section; that is, at the Enter operation: prompt, enter 7

[IMPLEMENTATION OPERATIONS]
1.Add 2 .Delete 3.Change
4 .Show one 5.Show all 6.List aliases

[CLASS OPERATIONS]
7.Add 8.Delete 9.Delete from all 10.List classes
11. Add to all

[SAVE & EXIT OPERATIONS]
12. SAVE and EXIT

Enter operation: 7

Configuration and Startup 35

Enter the name of a class associated with the implementation alias. This can be a fully-
scoped class name (for example, ::M::l or M::l) or an unscoped class name (1),
provided that clients use the same form when requesting a factory for the class using
the DSOM Factory Service. The fully scoped form is recommended when the unscoped
form is ambiguous. To indicate that a server can create instances of any class whose
DLL can be loaded, use the keyword _ANY in place of an actual class name.

Enter name of class: classl

Enter the alias for the server that implements the new class (this should be the same
alias as given above). To indicate that DSOM clients running on this machine can
create instances of the class locally (within the same process) using the DSOM Factory
Service, use the keyword “_LOCAL” rather than an actual server alias.

Enter alias of implementation that implements class: myServer

regimpl also lets you associate your own user-defined properties with the name
bindings it creates when a class/server pair is registered. These additional properties
can then be used in queries to the DSOM Factory Service by client programs.
Additional properties are specified to regimpl as the property’s name, followed by a
space, followed by the property value. Signify no more additional properties by pressing
<returns>.

Enter additional property <name value> pairs: Version 3.0
Enter additional property <name value> pairs: Owner gardner

Enter additional property <name value> pairs: <return>
Implementation id.........: 307elc84-03bde08c-7f-00-08005a883a0b
Implementation alias......: myServer
Class names...............: classl

Property / Value.......: Version = 3.0

Property / Value.......: Owner = gardner

All class/server associations are registered in the Naming Service, for use by the
DSOM Factory Service. When a regimpl user associates a class with a server, as
above, regimpl creates a name binding in the Naming Service to reflect that
association. The server alias, server id, and class name are stored as properties of the
name binding. For more information on how regimpl updates the Naming Service, see
The Naming Service and Registering Servers on page 40.

The above class is about to be added. Add? [y/n] y

Class ‘classl’ now associated with implementation ‘myServer’

The top-level menu will then reappear. Repeat the previous five steps until all classes have
been associated with the server. Finally, select 12. SAVE and EXIT to exit the regimpl
utility.

Command Line Interface to regimpl

36

The regimpl utility also has a command line interface. The command flags correspond to
the interactive commands described above. The syntax of the regimpl commands follow.

To enter interactive mode:
regimpl
To add an implementation:

Programmer’s Guide for SOM and DSOM

regimpl -A -i sStr str] [-v str]

[-p
[-e str {param...}]

[-k {on|off}] [-m {on|off}] [-z str]
[-s {on|off}] [-g str]

[-t str {param...} [-t ...]1]

e To update an implementation:

regimpl -U -i str str] [-v str]

[-p
[-e str {param...}]

[-k {on|off}] [-m {on|off}] [-z str]
[-s {on|off}] [-g str]

[-t str {param...} [-t ...]1]

* To delete one or more implementations:
regimpl -D -i str [-i ...]

* Tolist all, or selected, implementations:
regimpl -L [-i1 str [-i ...]]

e To list all implementation aliases:
regimpl -S

* To add class associations to one or more implementations:
regimpl -a -c str [-c ...] -i str [-1 ...]

* To delete class associations from all, or selected, implementations:
regimpl -d -c¢ str [-c¢ ...] [-1 str [-1 ...]1]

» To list classes associated with all, or selected, implementation:
regimpl -1 [-i str [-i ...]]

The following parameters are used in the previous commands:

-C str Class name (maximum of 16 -c names)

-e str ImplementationDef class name (optional; default
ImplementationDef)

param Values for additional attributes needed by ImplementationDef
subclass. Can be zero or more strings, delimited by spaces.

-g str Server configuration file name (optional)

-i str Implementation alias name (maximum of 16 -i names)
-m {on|off} Enable multi-threaded server (optional; default off)
-p str Server program name (optional; default: somdsvr)
-s {on|off} Allow server to be secure (optional; default off)

-t str Transport protocol

param Additional data needed by transport protocol. Can be zero or
more strings, delimited by spaces.

The -t option designates one (of possibly many) transport protocols
that the server supports. (regimpl intersects this list with those
protocols actually available on the machine.) The string following the -t
option is the name of a protocol as it appears in the configuration file
(in the SOMDPROTOCOLS setting and in its own stanza).

Following a particular -t protocol option can be zero or more strings,
delimited by spaces. (If there are spaces needed within a particular
string, then the string must be enclosed in quotes.) These strings are

Configuration and Startup 37

the information required by the specified protocol. Each protocol
provider specifies what strings are required or allowed for that protocol.
(The protocols shipped with DSOM do not support any.) If any of the
protocols specified generates an error due to the strings specified, then
regimpl rejects the entire command.

-V Sstr Server-class name (optional; default: SOMDServer)
-z str Implementation ID (optional; normally generated by DSOM)

As with the interactive regimpl commands, use the class name keyword _ANY to indicate
that a server can create instances of any class whose DLL can be loaded. Similarly, use
the server alias keyword _LOCAL to indicate that DSOM clients running on this machine
can create instances of the class locally (within the same process) using the DSOM Factory
Service.

Note: The regimpl command and any optional regimpl command flags can be entered at
a system prompt, and the command will execute as described below. For OS/2,
this text-based interface is particularly useful in batch files.

For information on how regimpl updates the Naming Service when servers or classes are
registered, see The Naming Service and Registering Servers on page 40.

Programmatic Interface to the Implementation Repository

38

The Implementation Repository can be accessed and updated dynamically using the
programmatic interface provided by the ImpIRepository class (defined in implrep.idl).
With the ImplRepository programmatic interface, it is possible for an application to define
additional server implementations at run time. The global variable SOMD_ImplRepObject
(in a server process) is initialized by SOMD _Init to point to the ImplRepository object that
represents the Implementation Repository stored in the directory indicated by the current
SOMDDIR setting. The following methods are defined on it:

» Add an implementation definition to the Implementation Repository. The value of the
impl_id attribute in the supplied ImplementationDef object is optional; a unique
Implld will be generated for the newly added ImplementationDef unless the
impl_flags attribute of the ImplementationDef specifies the IMPLDEF_IMPLID_SET
flag. All other attributes, except impl_alias, are optional. As with registering a server
using regimpl, the add_impldef method will attempt to record information about the
server in the Naming Service, in addition to updating the Implementation Repository. If
the Naming Service has not been configured or is not available (for example, when
somdd is not running), an exception will be returned but the server will still have been
registered in the Implementation Repository.

void add_impldef (in ImplementationDef impldef) ;

« Delete an implementation definition from the Implementation Repository, given its

impl_id attribute.
void delete impldef (in ImplId implid);

* Update the implementation definition (defined by the impl_id attribute of the supplied

ImplementationDef) in the Implementation Repository. If the Naming Service has not
been configured or is not available (for example, when somdd is not running), an
exception will be returned but the server will still have been updated in the
Implementation Repository.

void wupdate impldef (in ImplementationDef impldef) ;

* Return a server implementation definition given its impl_id attribute value.

Programmer’s Guide for SOM and DSOM

ImplementationDef find impldef (in ImplId implid);

» Return a server implementation definition, given its user-friendly alias (the impl_alias
attribute of the ImplementationDef).

ImplementationDef find impldef by alias (in string alias_name) ;

« Return a sequence of ImplementationDefs for those servers that have an association
with the specified class. Typically, a server is associated with the classes it knows how
to implement by registering its known classes via the add_class_to_impldef method.

sequence<ImplementationDef> find impldef by class (
in string classname) ;

» Retrieve all ImplementationDef objects in the Implementation Repository.

ORBStatus find all impldefs (
out sequence<ImplementationDef> outimpldefs) ;
» Search the Implementation Repository and return a sequence of the impl_alias
attributes associated with each ImplementationDef object therein.

ORBStatus find all aliases (out sequence<string> impl aliases);

The following methods maintain an association between server implementations and the
names of the classes they implement. These methods effectively maintain a mapping of
className, Implld in the Naming Service. For more information, see The Naming Service
and Registering Servers on page 40.

e Associate a class, identified by name, with a server, identified by the impl_id attribute
of its ImplementationDef. This type of association is used to look up server
implementations via the find_impldef_by class method. The classname can be a fully
scoped class name (such as, ::M::l or M::l) or an unscoped class name (like 1),
provided that clients use the same form when requesting a factory for the class using
the DSOM Factory Service. The fully scoped form is recommended when the unscoped
form is ambiguous. The class name keyword _ANY indicates that the server can create
instances of any class whose DLL can be loaded, and the Implld keyword LOCAL
indicates that DSOM clients running on this machine can create instances of the class
locally (within the same process), using the DSOM Factory Service.

void add class to impldef (
in ImplId implid,
in string classname) ;

» Remove the association of a particular class with a server.

void remove class from impldef (
in ImplId implid,
in string classname) ;

* Remove the association of a particular class from all server implementations in the
Implementation Repository.

void remove class_ from all (in string classname) ;
» Return a sequence of class names associated with a server.
sequence<string> find classes by impldef (in ImplId implid);
« Associate the specified class with all servers currently registered in the Implementation
Repository.
ORBstatus add class to all (in string classname) ;

» Associate the specified class with the specified server. The optional PVList sequence
associates additional, user-defined property values with the name binding created in
the Naming Service.

Configuration and Startup 39

ORBstatus add class with properties (
in ImplId implid,
in string classname,
in PVList pvl);

The Naming Service and Registering Servers

40

Because the DSOM Factory Service relies on the Naming Service, the Naming Service
must be configured before DSOM servers can be registered. See Naming Service
Concepts on page 27.

When a regimpl user associates a particular server with a particular class, DSOM stores
this association in the Naming Service, as a name binding. This information is recorded in a
specialized Naming Context (specialized for the DSOM factory-finding service), called the
Factory Naming Context.

The first time a process (such as, regimpl or an application using the ImplRepository
interface) attempts to add or update a class/server association, DSOM establishes a
connection to the root Naming Context of the Naming Service. DSOM then invokes a
method on the root Naming Context to obtain a proxy to the Factory Naming Context. The
Factory Naming Context is the Naming Context in which associations between servers and
classes are stored.

If the Naming Service is not available, then all operations that require an update to the
factory context will return a system exception.

For each server/class pair registered, DSOM generates a name of the form
<serverUUID><className> (the server’'s ImplementationDef::impl_id attribute
concatenated with the class name). DSOM associates this name, in the Naming Service,
with properties indicating the class name (class), server ID (serverld), server alias (alias)
and information that allows DSOM clients to locate the server. Additional properties may be
associated with the name (for example, by using the add_class_with_properties method
of ImplRepository or via regimpl).

Although names and properties in the Naming Service are usually associated with, or
bound to, non-NULL object references, the names and properties that regimpl stores in the
Factory Naming Context are associated with NULL object references, indicating that the
factory object does not yet exist. (In fact, the server in which the factory object will reside is
probably not even running yet.) The DSOM Factory Service will generate these factory
objects on demand.

When a server is registered to create any class, DSOM uses the keyword _ANY as the
value of the class property.

When a class is registered for server _LOCAL (indicating that DSOM clients can create
local instances of a class using the DSOM Factory Service), the alias property is set to
LOCAL. (LOCAL should not be used as a real server alias.) DSOM then concatenates
the string LOCAL with the current setting of HOSTNAME (from the [somd] stanza of the
configuration file) to construct the value of the serverld property. The Name bound in the
Naming Service is likewise constructed by concatenating LOCAL, the current
HOSTNAME setting, and the class name.

When a server is registered, even if no classes are associated with it, DSOM attempts to
update the Naming Service to contain the information DSOM clients need to locate the
server. This is done primarily to provide continued support for the deprecated
SOMDObjectMgr methods and may be discontinued in a future release. If no classes are
registered for the server, NULL is used as the value of the class property in the Naming
Service, as a placeholder. If this update of the Naming Service cannot be performed (for

Programmer’s Guide for SOM and DSOM

example, if the Naming Service has not been configured or somdd is not running), the
server is still registered in the Implementation Repository, and the Naming Service will be
updated (if available) the next time the server’'s ImplementationDef is updated.

Each time an ImplementationDef is updated, the set of classes associated with the server
is updated in the Naming Service. A new name binding is created, if necessary. Properties
associated with the server in the Naming Service are also updated each time the server
registration is updated.

Because server aliases are not guaranteed to be unique throughout the network (but only
within a single Implementation Repository), multiple name bindings in the Naming Service
may have the same alias property value. If this occurs, then the result of the (now
deprecated) method somdFindServerByName will be nondeterministic. The first server
entry that is found will be returned.

Customizing ImplementationDef Objects

DSOM allows users to store, in the Implementation Repository, instances of user-defined
subclasses of ImplementationDef. This is useful when additional, user-defined attributes
need to be saved as part of a server definition. Each ImplementationDef object in an
Implementation Repository can potentially be an instance of a different subclass. The
regimpl tools let you indicate which class is to be used for each entry. For each new
attribute introduced by that class, regimpl prompts for a value as indicated in the IDL for
the class.

The following conventions must be followed when writing a subclass of ImplementationDef:

1. Methods externalize_to_stream and internalize_from_stream, which are inherited
from CosStream::Streamable, must be overridden.

This is necessary so that instances of the class can be externalized and stored in the
Implementation Repository database.

Within the overriding implementation, each method must first make a parent method
call, then store/retrieve the newly introduced attributes using the methods write_string
and read_string. (New attributes that do not need to be stored persistently need not be
stored/retrieved. Also, the new attributes and their values cannot exceed 255
characters.) The same order of attribute reading/writing should be used in both
methods. For example,

In externalize_to_stream:

_write string(...,attributel);
_write string(...,attribute2);

Ininternalize_from_stream:

attributel
attribute2

_read_string(...
_read string(...

=)i
=)
2. ldentify attributes that require user input.

Newly introduced attributes for which regimpl should prompt must be identified by the
special SOM IDL modifier impldef_prompts in the implementation section of the
class’s IDL definition. The syntax is as follows:

impldef_prompts: attributel, attribute2, ...;

More than one occurrence of this modifier in the IDL is acceptable; in such a case the
following equivalence rule applies:

Configuration and Startup 41

impldef_prompts: attributel;
impldef_prompts: attribute2;

is equivalent to
impldef_prompts: attributel, attribute2;

The new attributes for which regimpl can prompt must be of type string. This is not as
strict a restriction as it appears, since servers that use this attribute can convert it to an
appropriate format. For example, a string representation of a numeric value could be
stored, and converted to an integer or float by a customized server.

The get and set methods for the new attributes must adhere to the caller-owned
memory-management policy (indicated by the IDL modifier memory_management=
corba or by using the caller_owns_result and caller_owns_parameters IDL
modifiers). Because these attributes are of type string, this means that the attributes
must be annotated with the noget and noset IDL modifiers. In your implementation of
the set methods, you must make a copy of the input string before storing it; in your
implementation of the get methods, you must make a copy of the string to be returned.

3. Package the class as a DLL so DSOM can dynamically load the class, using
somFindClass.

4. Compile the new subclass’s interface into the Interface Repository.

Ensure that the interface repository specified by SOMIR contains this interface. This is
required so that SOM can load the class (by getting the dliname modifier from the IR)
and so that regimpl can query the value of the impldef_prompts modifier.

Migration Relationship to the 2.x Implementation Repository

42

The Implementation Repository has been improved significantly in DSOM over earlier
releases. The first topic below discusses the main differences between 2.x Implementation
Repositories and the Implementation Repositories of the current release. The second topic
describes a tool, migimpl3, for converting 2.x Implementation Repositories to 3.x
Implementation Repositories. (This conversion must be done on any existing 2.x
Implementation Repositories before they can be used with the current release of DSOM.)

Differences between 2.x and 3.x

This section describes the major differences between DSOM 2.x Implementation
Repositories and DSOM 3.x Implementation Repositories.

e For increased scalability and manageability of the Implementation Repository, DSOM
no longer requires access to the Implementation Repository by client programs.
Instead, the information needed by clients that was previously stored in the
Implementation Repository is now stored in the Naming Service. Information no longer
stored in the Implementation Repository includes the associations between servers and
classes, and information needed for clients to locate servers.

e Inthe current DSOM, the Implementation Repository files stored in the SOMDDIR
directory contain only the information needed on the server machine. (This includes
information that the DSOM daemon needs to automatically activate the server, and
information that the server needs to initialize itself). Although the underlying
implementation is different, the interfaces for registering servers have been preserved
as much as possible.

Because server/class associations in DSOM are now stored in the Naming Service, the
Naming Service must be configured and the DSOM daemon running on the machines

Programmer’s Guide for SOM and DSOM

on which naming servers will run before updating or accessing this information (for
example, with regimpl or the ImplRepository programmatic interface). In addition,
servers must be registered by running regimpl on the machine on which the server will
run.

Because information that DSOM clients need to locate servers is now stored in the
Naming Service, the impl_hostname attribute of ImplementationDef objects is no
longer used by DSOM.

Because all server registrations throughout the network result in updates to the Naming
Service, it is possible for multiple server entries in the Naming Service to have the
same server alias. (Server aliases are required to be unique within a single
Implementation Repository, but not within the Naming Service.) This means that
somdFindServerByName (which is now deprecated) is no longer deterministic; it
returns the first entry in the Naming Service that matches the given server alias.

Because DSOM now supports communication over multiple protocols simultaneously,
and each protocol can have its own HOSTNAME and SOMDPORT setting, this
information is taken from the configuration file at the time the server is registered,
rather than being specified explicitly. This is another reason that the server must be
registered on the machine on which it will run.

For greater extensibility of the Implementation Repository, DSOM now supports
user-defined subclasses of the ImplementationDef class. A single Implementation
Repository can contain a heterogeneous mix of ImplementationDef objects. For more
information, see Customizing ImplementationDef Objects on page 41.

The current DSOM offers an improved storage mechanism for the Implementation
Repository, with improved performance and scalability. This includes the addition of
file-level locking of Implementation Repository files. As a result of these changes, the
regimpl tool no longer offers an abort operation after an operation has been confirmed.

The port number of the DSOM daemon that is used to contact a server (SOMDPORT)
is recorded when the server is registered, from the configuration file, rather than
requiring the server’s clients to have a matching setting for SOMDPORT. This means
that clients can simultaneously communicate with different DSOM daemons using
different port numbers.

The object reference file and backup file for servers that create object references using
the BOA::create method are now stored in the SOMDDIR directory and can be shared
among multiple servers. The object reference files are no longer specific to a single
server, and the impl_refdata_file and impl_refdata_bkup attributes of
ImplementationDef are no longer used. In addition, the storage mechanism of the
object reference file has been improved for performance and scalability. These
changes require that object reference files created by DSOM 2.x be invalidated when a
server system upgrades to DSOM 3.x.

New attributes have been added to ImplementationDef to support new features of
DSOM. For example, a config_file attribute allows a server’s run-time environment to
differ from the user or process that starts the server (for example, the DSOM daemon).
The interfaces to regimpl have been revised to support these new features.

Configuration and Startup 43

Migrating 2.x Implementation Repositories to Current DSOM

Format

44

Because the format of 2.x Implementation Repositories differs from the format of current
Implementation Repositories, a migration tool has been provided to assist in converting
from one format to the other. This tool is called migimpl3.

Use migimpl3 to migrate entries from a 2.x repository into a newer style repository. The
only 2.x ImplementationDef entries that can migrate into a current repository are those
that have their impl_hostName attribute set either to 1localhost or to the value of the
current HOSTNAME environment setting. This is necessary because DSOM now requires
that a server be registered only on the machine on which that server will run. Therefore,
server entries should only be converted from 2.x to current-level Implementation
Repositories on the machine on which the server will run.

In addition to converting server registrations to the current DSOM format, use migimpl3 to
register the server/class associations with the Naming Service. (These were previously
stored in the 2.x Implementation Repository.) This information is used by DSOM clients and
the DSOM Factory Service to locate the server.

For migimpl3 to update the Naming Service, the SOMDDIR setting in the [somd] stanza of
the SOMobijects configuration file should be set to the name of the Implementation
Repository directory for both DSOM 2.1 and the current version of DSOM. This means that
the DSOM 2.1 format files to be migrated should be copied into the SOMDDIR directory
that was in effect when som_cfg was run.

The Implementation Repository database for DSOM 2.x consists of the following files:

somdimpl.dat
somdimpl.toc
somdcls.toc
somdcls.dat

The current form of the DSOM Implementation Repository database consists of the
following files:

alias.db
aliasdat.db
impl.db

The migimpl3 utility also requires that Naming Service configuration be complete and that
the DSOM daemon, somdd, be running on the machines on which Naming Server server
processes are located. The Naming Servers need not be running, somdd activates them
as necessary.

The syntax of the migimpl3 command is as follows:
migimpl3 [-] [-U] [-istrl[-istr]...]
The -l option is a lower case “el”.

To convert all entries from the Implementation Repository Database of DSOM 2.x to that of
the current-level DSOM (provided that the impl_hostname attribute matches
HOSTNAME), simply enter the command:

migimpl3
Default execution for the migimpl3 operation is as follows:

» It does not replace any existing entry in the 3.x Implementation Repository. An error of
duplicate alias/implid entry is returned if a matching impl_alias orimpl_id
is found in the Implementation Repository of the current-level DSOM.

Programmer’s Guide for SOM and DSOM

e |t does not convert entries that have the HOSTNAME setting 1ocalhost unless the -I
option has been specified.

e The config_file attribute in the current-level ImplementationDef is not set.

+ The SOMDPROTOCOLS setting determines which protocols are used when converted
entries are registered. See SOMDPROTOCOLS on page 19 for more details on the
SOMDPROTOCOLS setting.

» Although the ImplementationDef attributes impl_hostname, impl_refdata_file, and
impl_refdata_bkup are no longer used in this release, these attributes have been
retained for backward compatibility. The migration tool will retain any settings for these
attributes found in the 2.x Implementation Repository. These settings will not be
displayed, however, when viewing the implementation using regimpl. (They can still be
accessed programmatically using the ImpIRepository and ImplementationDef
interfaces.)

The optional parameters to the migimpl3 command specify the following operations:

-l
Converts to an Implementation Repository of current-level DSOM if the DSOM
impl_hostname attribute matches the HOSTNAME setting or is set to localhost. If
the -l option is not specified, the migimpl3 tool does not convert entries that have
HOSTNAME=1ocalhost.

Updates any existing entry in the current-level Implementation Repository. No update is
performed if the corresponding impl_id of the impl_alias name does not exist in the
current Implementation Repository database; instead, an error of update failure is
returned. The -U option updates the current Implementation Repository for entries
whose hostname field matches HOSTNAME or is set to 1ocalhost. (In other words,
the -U option implies the -l option.)

-i str
Specifies the Implementation alias hames to be converted or updated (with a maximum
of 16 -i names). Only the specified entries are converted/updated.

Moving Servers

In DSOM, it is possible to move a server from one machine to another, for purposes of
system maintenance, system load balancing, and so on. To move a server:

* The server implementation (program and DLLs) must be moved to the new machine.
« Any data files associated with the server must be moved to the new machine.

» The server implementation definition must be removed from the Implementation
Repository on the original machine and added to the Implementation Repository on the
new machine. If the server program name has changed, the new name should be
entered in the new Implementation Repository entry.

Checking Configuration Values

At times, you need to know the setting of the values defined in the configuration file.
SOMobijects provides three function to perform this action: somutgetenv,
somutgetshellenv and somutresetenv.

Configuration and Startup 45

Using somutgetenv

The somutgetenv function lets a program determine the current setting of a value defined
in the configuration file. The configuration file settings are read only on the first call to this
function. Thereafter, calls to this function consult an in-memory version of the configuration
settings. To refresh the in-memory settings, first call somutresetenv and then
somutgetenv. The somutgetenv function has the syntax:

char * SOMLINK somutgetenv (char * name, char * stanza);

where name is the identifier whose value is requested and stanza is a stanza name. The
given name must represent an identifier within the specified stanza. The somutgetenv
function returns NULL if no value is found. The caller should not free the returned string
value.

As an example, the following function call could be made, based on the somenv.ini excerpt
shown previously:

value = somutgetenv (“CSFactoryClass”, “[SOMD TCPIP]”);

The string value SOMDCallStrmIIOP: :CallStreamFactoryIIOP would be returned
from this call.

Using somutgetshellenv

The somutgetshellenv function returns the value of a SOMobjects setting and is identical
to the somutgetenv function, except that it first checks the system environment to
determine whether a value for the specified identifier exists. This is equivalent to calling the
C library function getenv prior to calling somutgetenv. If the symbol is not defined in the
system environment, this function uses somutgetenv to locate the requested identifier. The
somutgetshellenv function has the syntax:

char * SOMLINK somutgetshellenv (char * name, char * stanza);

The somutgetshellenv function returns NULL if no value is found. Observe that the caller
should not free the returned value.

As an example, the following function call could be made, based on the somenv.ini excerpt
shown previously:

value = somutgetshellenv (“CSFactoryClass”, “[SOMD TCPIP]”) ;

This call would return the string value SOMDCallStrmIIOP: :CallStreamFactoryIIOP
provided that CSFactoryClass was not defined in the system environment.

Using somutresetenv

46

If any values have been changed in the configuration file while the current process is
running, the somutresetenv function can be called to refresh the in-memory representation
of the configuration file. The somutresetenv function has the syntax:

void SOMLINK somutresetenv (char * newenv);

where newenv is a new setting for the SOMENV environment variable. If newenv is
non-NULL, somutresetenv resets the SOMENYV environment variable, using the C library
function putenv with the specified value.

The putenv call made to update the system environment affects only the C run-time
environment used by functions somutresetenv, somutgetenv and somutgetshellenv.

Programmer’s Guide for SOM and DSOM

The somutresetenv function should not be called if another thread is currently accessing
the configuration file settings.

Configuration and Startup 47

48 Programmer's Guide for SOM and DSOM

Chapter 3. Tutorial for Implementing SOM Classes

This tutorial contains five examples showing how to implement SOM classes.

If you plan to implement classes, follow the steps in the tutorial to understand the steps,
processes, files, and the relationships of SOM classes

Even if you expect only to use SOM classes implemented by others, this tutorial can help
you understand the process of using SOM classes.

Basic Concepts of SOM

The SOM, provided by the SOMobjects Developer Toolkit, is a set of libraries, utilities, and
conventions used to create binary class libraries that can be used by application programs
written in various object-oriented programming languages, such as C++ and Smalltalk, or in
traditional procedural languages, such as C and COBOL. The following paragraphs
introduce some of the basic terminology used when creating classes in SOM:

An object is an object-oriented programming entity that has behavior (its methods or
operations) and state (its data values). In SOM, an object is a run-time entity with a
specific set of methods and instance variables. The methods are used by a client
programmer to make the object exhibit behavior, that is, to do something, and the
instance variables are used by the object to store its state. The state of an object can
change over time, which allows the object’s behavior to change. When a method is
invoked on an object, the object is said to be the receiver or target of the method call.

An object’s implementation is determined by the procedures that execute its methods
and by the type and layout of its instance variables. The procedures and instance
variables that implement an object are normally encapsulated or hidden from the caller.
A program can use the object’s methods without knowing how those methods are
implemented. Instead, a user is given access to the object’'s methods through its
interface (a description of the methods in terms of the data elements required as input
and the type of value each method returns).

An interface through which an object can be manipulated is represented by an object
type. By declaring a type for an object variable, a programmer specifies an interface

that can be used to access that object. The SOM Interface Definition Language (IDL)
defines object interfaces. The interface names used in these IDL definitions are also

the type names used by programmers when typing SOM object variables.

A class defines the implementation of objects. The implementation of any SOM object
is defined by a specific SOM class. A class definition begins with an IDL specification of
the interface to its objects. The name of this interface is also used as the class name.
Each object of a given class may also or instantiation of the class.

SOM classes provide external data structures and functions that aid in the efficient use
of objects whose interfaces are declared using SOM IDL. These low-level externals are
determined by a class’s IDL and are called the class’s Abstract Binary Interface (ABI).
Different ABI styles are with various efficiency implications. Specific details concerning
different ABI styles are hidden by language bindings.

Inheritance, or class derivation, is a technique for developing new classes from existing
classes. The original class is called the base, parent, or the direct ancestor class. The
derived class is called a child class or a subclass. The primary advantage of
inheritance is that a derived class inherits all of its parent’'s methods and instance
variables. Through inheritance, a new class can override methods of its parent to
provide new or changed function. In addition, a derived class can introduce new
methods of its own. If a class results from several generations of successive class

Tutorial for Implementing SOM Classes 49

50

derivation, that class knows all of its ancestors’s methods whether overridden or not,
and an object or instance of that class can execute any of those methods.

SOM classes can also take advantage of multiple inheritance, which means that a new
class is jointly derived from two or more parent classes. In this case, the derived class
inherits methods from all of its parents and all of its ancestors, giving it expanded
capabilities. When different parents have methods of the same name that execute
differently, SOM provides ways for avoiding conflicts.

In the SOM run time, classes are themselves objects. Classes have their own methods
and interfaces, and are themselves defined by other classes. For this reason, a class is
often called a class object. The terms class methods and class variables are used to
distinguish between the methods and variables of a class object versus those of its
instances. The type of an object is not the same as the type of its class, which as a
class object has its own type.

A class that defines the implementation of class objects is called a metaclass. Just as
an instance of a class is an object, so an instance of a metaclass is a class object.
Moreover, just as an ordinary class defines methods that its objects respond to, so a
metaclass defines methods that a class object responds to. For example, such
methods might involve operations that execute when a class is creating an instance of
itself. Just as classes are derived from parent classes, so metaclasses can be derived
from parent metaclasses to define new functions for class objects.

The SOM system contains three primitive classes that are the basis for all subsequent
classes:

- SOMObiject Class

- Root ancestor class for all SOM classes

- SOMClass Class

- Root ancestor class for all SOM metaclasses
- SOMClassMgr Class

- Class of the SOMClassMgrObject, an object created automatically during SOM
initialization to maintain a registry of existing classes and to assist in dynamic class
loading and unloading

SOMClass is defined as a subclass of SOMObject and inherits all generic object
methods; this is why instances of a metaclass are class objects rather than simply
classes in the SOM run time. Figure 2 illustrates typical relationships of classes,
metaclasses, and objects in the SOM run time. (This figure does not include the
SOMClassMgrObject.)

Programmer’s Guide for SOM and DSOM

Malaclass "M"

RN\

Leqgend

rmetaclass
@ class
O obiject

— inherits fram

Object "1*

Object "0 "
—— -+ iz an ingtanca cf
Figure 2. Typical class, metaclass and object relationships

SOM classes are designed to be language neutral. SOM classes can be implemented in
one programming language and used in programs of another language. To achieve
language neutrality, the interface for a class of objects must be defined separately from its
implementation. That is, defining interface and implementation requires two completely
separate steps (plus an intervening compile), as follows:

e Aninterface is the information that a program must know to use an object of a
particular class. This interface is described in an interface definition (which is also the
class definition), using a formal language whose syntax is independent of the
programming language used to implement the class’s methods. For SOM classes, this
is the SOM Interface Definition Language (SOM IDL). The interface is defined in a file
known as the IDL source file or, using its extension, the .idl file.

An interface definition is specified within the interface declaration (or interface
statement) of the .idl file, which includes:

- The interface name or class name and the names of the class’s parents,
- The names of the class’s attributes and the signatures of its new methods.

Each method signature includes the method name and the type and order of its
arguments, as well as the type of its return value if any. Attributes are instance
variables for which set and get methods are automatically defined for use by the
application program. Instance variables that are not attributes are hidden from the user.

» After the IDL source file is complete, the SOM Compiler is used to analyze the .idl file
and create the implementation template file, within which the class implementation is
defined. Before invoking the SOM Compiler, the class implementor can set an
environment variable that determines which emitters (output-generating programs) the
SOM Compiler calls and, consequently, to which programming language and operating
system the resulting binding files relate.

Tutorial for Implementing SOM Classes 51

In addition to the implementation template file itself, the binding files include two
language-specific header files that are #included in the implementation template file
and in application program files. The header files define useful SOM macros, functions,
and procedures that can be invoked from the files that include the header files.

» The implementation of a class is done by the class implementor in the implementation
template file (often called just the implementation file or the template file). As produced
by the SOM Compiler, the template file contains stub procedures for each method of
the class. These are incomplete method procedures that the class implementor uses as
a basis for implementing the class by writing the corresponding code in the
programming language of choice.

In summary, the process of implementing a SOM class includes using the SOM IDL syntax
to create an IDL source file that specifies the interface to a class of objects: the methods
and attributes that a program can use to manipulate an object of that class. The SOM
Compiler is then run to produce an implementation template file and two binding (header)
files that are specific to the designated programming language and operating system.
Finally, the class implementor writes language-specific code in the template file to
implement the method procedures.

At this point, the next step is to write the application (or client) program that use the objects
and methods of the newly implemented class. (Observe that a programmer could write an
application program using a class implemented entirely by someone else.) If not done
previously, the SOM compiler is run to generate usage bindings for the new class, as
appropriate for the language used by the client program (which may be different from the
language in which the class was implemented). After the client program is finished, the
programmer compiles and links it using a language-specific compiler, and executes the
program.

Attributes versus Instance Variables

52

As an alternative to defining msg as an attribute, an instance variable message could be
introduced, with set_msg and get_msg methods defined for setting and retrieving its
value. Instance variables are declared in an implementation statement, as shown below:

interface Hello
{
string get _msg() ;
void set msg(in string msg) ;
#ifdef SOMIDL
implementation
{
string message;
}i
#endif
}i
As demonstrated in this example, one disadvantage to using an instance variable is that the
get_msg and set_msg methods must be defined in the implementation file by the class

implementor. For attributes, by contrast, default implementations of the get and set
methods are generated automatically by the SOM Compiler in the .ih and .xih header files.

Programmer’s Guide for SOM and DSOM

Note: For some attributes the default implementation generated by the SOM Compiler for
the set method may not be suitable. This happens because the SOM Compiler only
performs a shallow copy, which typically is not useful for distributed objects with
these types of attributes. In such cases, it is possible to write your own
implementations, as you do for any other method, by specifying the noset/noget
modifiers for the attribute. (See Modifier Statements on page 133.)

Regardless of whether you let the SOM Compiler generate your implementations or not, if
access to instance data is required, either from a subclass or a client program, then this
access should be facilitated by using an attribute. Otherwise, instance data can be defined
in the implementation statement as above (using the same syntax as used to declare
variables in C or C++), with appropriate methods defined to access it. For more information
about “implementation” statements, see Implementation Statements on page 132.

As an example where instance variables would be used (rather than attributes), consider a
class Date that provides a method for returning the current date. Suppose the date is
represented by three instance variables: mm, dd and yy. Rather than making mm, dd, and
yy attributes (and allowing clients to access them directly), “Date” defines mm, dd, and yy
as instance variables in the implementation statement, and defines a method get_date that
converts mm, dd, and yy into a string of the form mm/dd/vyy:

interface Date
{
string get date() ;
#ifdef _ SOMIDL
implementation
{
long mm,dd,yy;
Vi
#endif
Vi
To access instance variables that a class introduces from within the class implementation
file, two forms of notation are available:

somThis->variableName
or
_variableName
For example, the implementation for get_date would likely
access the “mm” instance variable as somThis->mm or mm,
access “dd” as somThis->dd or _dd, and
access “yy” as somThis->yy or yy.

In C++ programs, the _variableName form is available only if the programmer first defines
the macro VARIABLE_MACROS (that is, enter #define VARIABLE MACROS) in the
implementation file prior to including the .xih file for the class.

Basic Steps for Implementing SOM Classes

Implementing and using SOM classes in C or C++ involves the following steps, which are
explicitly illustrated in the examples of this tutorial:

1. Define the interface to objects of the new class (that is, the interface declaration) by
creating a .idl file.

Tutorial for Implementing SOM Classes 53

2. Run the SOM Compiler on the .idl file by issuing the sc command to produce the
following binding files:

- Template implementation file:

- .cfile for C programs

- .Cfile (on AIX) or a .cpp file (on OS/2 or Windows NT) for C++ programs;
- Header file to be included in the implementation file:

- .ihfile for C programs

- .xih file for C++ programmers

- Header file to be included in client programs that use the class:

- .hfile for C clients

- xh file for C++ clients.

To specify whether the SOM Compiler should produce C or C++ bindings, set the value
of the SMEMIT environment variable or use the -s option of the sc command as
described in Chapter 6, The SOM Compiler on page 155. By default, the SOM
Compiler produces C bindings.

Customize the implementation by adding code to the template implementation file.
Create a client program that uses the class.

Compile and link the client code with the class implementation, using a C or C++
compiler.

6. Execute the client program.

Using the Tutorial

The following examples show the syntax for defining interface declarations in a .idl file,
including designating the methods that the class’s instances will perform. In addition, the
example template implementation files contain typical code that the SOM Compiler
produces. Explanations accompanying each example discuss topics that are significant to
the particular example; full explanations of the SOM IDL syntax are contained in Chapter 5,
SOM Interface Definition Language on page 115. Customization of each implementation
file (step 3) is illustrated in both C and C++.

Work through the examples in order. If you do not do so, the code that the SOM Compiler
generates from your revised .idl file may vary slightly from what you see in the tutorial.

When the SOMobijects Toolkit is configured, a choice is made between somcorba and
somstars for the style of C bindings the SOM Compiler generates. The tutorial examples
use the somcorba style, where an interface name used as a type indicates a pointer to an
object, as required by strict CORBA bindings. In the examples, a “*” does not explicitly
appear for types that are pointers to objects. If your system is configured for somstars C
bindings, you can set the environment variable SMADDSTAR=1 or use the SOM Compiler
option -maddstar to request bindings that use explicit pointer stars. For more information,
see Declaring Object Variables on page 71 and Object Types on page 124.

Sequence of the Tutorial Examples

* Example 1. Implementing a Simple Class with One Method — Implementing a
simple class with one method. Prints a default message when the sayHello method is
invoked on an object of the Hello class.

54 programmer’s Guide for SOM and DSOM

Example 2. Adding an Attribute to the Hello Class — Adding an attribute to the
Hello class. Defines a msg attribute for the sayHe1l1lo method to use. The client
program sets a message; then the sayHello method gets the message and prints it.
(There is no defined message when an object of the Hello class is first created.)

Example 3. Overriding an Inherited Method — Overriding an inherited method.
Overrides the SOMobjects method somPrintSelf so that invoking this method on an
object of the Hello class will not only display the class nhame and the object’s location,
but will also include the object’'s message attribute.

Example 4. Initializing a SOM Object — Initializing a SOM object. Overrides the
default initialization method, somDefaultInit, to illustrate how an object’s instance
variables can be initialized when the object is created.

Example 5. Using Multiple Inheritance — Using multiple inheritance. Extends the
Hello class to provide it with multiple inheritance from the Disk and Printer classes.
The Hello interface defines an enum and an output attribute that takes its value from
the enum (either screen, printer or disk). The client program sets the form of output
before invoking the sayHello method to send a msg (as defined as in Example 4).

Example 1. Implementing a Simple Class with One Method

Example 1 defines a class Hello that introduces one new method, sayHello. When
invoked from a client program, the sayHello method prints the fixed string Hello, World!
The example follows the steps described in Basic Steps for Implementing SOM Classes
on page 53.

1.

Define the interface to class Hello that inherits methods from the root class SOMObject
and introduces one new method sayHello. Define these IDL specifications in the file
hello.idl.

The interface statement introduces the name of a new class and any parents (base
classes) it might have (here, root class SOMObject). The body of the interface
declaration introduces the method sayHel1lo. Method declarations in IDL have syntax
similar to C and C++ function prototypes:

#include <somobj.idl> //# Get the parent class definition.
interface Hello : SOMObject
/* This is a simple class that demonstrates how to define
* the interface to a new class of objects in SOM IDL.
*/
{
void sayHello() ;
// This method outputs the string ”"Hello, World!”.
* This method returns the string ”"Hello, World!”. */

Vi

The method sayHel1lo has no (explicit) arguments and returns no value. The characters “//
" start a line comment that finishes at the end of the line. The characters “/*” start a block
comment that finishes with “*/”. Block comments do not nest. The two comment styles can
be used interchangeably. The SOM Compiler ignores throw-away comments that start with
the characters “//#" and finish at the end of the line.

Tutorial for Implementing SOM Classes 55

56

Note: For simplicity, this IDL fragment does not include a releaseorder modifier; the SOM
Compiler issues a warning for the method sayHel1lo. For directions on using the
releaseorder modifier to remove this warning, see Modifier Statements on page
133. (The warning does not prohibit continued use of the .idl file.)

2. Run the SOM Compiler to produce binding files and an implementation template. That
is, issue the sc command, as follows:

> sc -s”c;h;ih” hello.idl (for C bindings)

> sc -s”xc;xh;xih” hello.idl (for C++ bindings)
When set to generate C binding files, the SOM Compiler generates the following
template implementation file, named hello.c. The template implementation file
contains stub procedures for each new method; these are procedures to be filled in by
the implementor.

#include <hello.ih>

/*
* This method outputs the string ”"Hello, World!”. */
SOM_Scope void SOMLINK sayHello (Hello somSelf,

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello”, ”sayHello”);

}

The terms SOM_Scope and SOMLINK in the prototype for all stub procedures are defined
by SOM. In the method procedure for the sayHello method, somSelf is a pointer to the
target object (here, an instance of the class Hello) that responds to the method. A somSelf
parameter appears in the procedure prototype for every method, because SOM requires
every method to act on some object.

The target object is always the first parameter of a method’s procedure, although it should
not be included in the method’s IDL specification. The second parameter, which also is not
included in the method’s IDL specification, is the parameter Environment *ev. The method
can use this parameter to return exception information if the method encounters an error.
(Contrast the prototype for the sayHello method in steps 1 and 2.)

The remaining lines of the preceding template are described in Chapter 7, Implementing
Classes in SOM on page 171. The file is now ready for customization with the C code
needed to implement method sayHello.

When set to generate C++ binding files, the SOM Compiler generates an implementation
template file, hello.C (on AIX) or hello. cpp, similar to the one above.

In addition to generating a template implementation file, the SOM Compiler generates
implementation bindings and usage bindings. These files are named hello.ih and
hello.h for C bindings, and they are named hello.xih and hello.xh for C++
bindings. The hello. c file shown includes the hello. ih implementation binding file.

3. Customize the implementation by adding code to the template implementation file.

Modify the body of the sayHello method procedure in the hello.c (or, for C++,
hello.C or hello. cpp) implementation file so that the sayHel 1o method prints
“Hello, World!”:

SOM_Scope void SOMLINK sayHello (Hello somSelf,

Programmer’s Guide for SOM and DSOM

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug ("Hello” , ”"sayHello”) ;
printf ("Hello, World!\n”) ;

}

4. Create a client program that uses the class.

Write a main program that creates an instance of the Hello class and invokes the
method sayHel1lo on that object.

A C programmer would write the following program in main. ¢, that uses the bindings
defined in the hello.h header file:

#include <hello.h>

int main(int argc, char *argvl([])
{
/* Declare a variable to point to an instance of Hello */
Hello obj;
/* Create an instance of the Hello class */
obj = HelloNew() ;
/* Execute the ”sayHello” method */
_sayHello (obj, somGetGlobalEnvironment()) ;
/* Free the instance: */
__somFree (obj) ;
return (0) ;

}

In the statement obj = HelloNew () the hello.h header file automatically contains
the SOM-defined macro classNameNew(), that is used to create an instance of the
className class (here, the Hello class). In C a method is invoked on an object by
using the form:

_methodName(objectName, environment_arg, other_method_args)
as used in the statement:
_sayHello (obj, somGetGlobalEnvironment()) ;

As shown in this example, you can use the somGetGlobalEnvironment Function
supply the (Environment *) argument of the method.

The code uses somFree Method to free the object created by HelloNew (). somFree
does not require an (Environment *) argument.

A C++ programmer may write the following program in main.C or main.cpp, using the
bindings defined in the hello.xh header file:

#include <hello.xh>

int main(int argc, char *argvl([])

{

/* Declare a variable to point to an instance of Hello */
Hello *obj;

/* Create an instance of the Hello class */

Tutorial for Implementing SOM Classes 57

58

obj = new Hello;

/* Execute the ”sayHello” method */
obj->sayHello (somGetGlobalEnvironment ()) ;
obj->somFree () ;

return (0);

}

The only argument passed to the sayHello method by a C++ client program is the
Environment pointer. (Contrast this with the invocation of sayHel1lo in the C client
program.)

5. Compile and link the client code with the class implementation.

Note: The environment variable SOMBASE represents the directory in which SOM has
been installed.

Under AlX, for C programs

> xlc -I. -I$SOMBASE/include -o hello main.c hello.c \
-L$SOMBASE/lib -1lsomtk

Under AlX, for C++ programs

> x1C -I. -I$SOMBASE/include -o hello main.C hello.C \
-L$SOMBASE/lib -1lsomtk

Note: When building a multithreaded application, use the xlc_r (for C) or xIC_r (for C++)
compiler instead of xIc or xIC.

Under OS/2 or Windows NT, for C programs
> set LIB=%SOMBASE%\1lib;%LIB%
> icc -I. -I%SOMBASE%\include -Fe hello main.c hello.c \
somtk.1lib
Under OS/2 or Windows NT, for C++ programs
> set LIB=%SOMBASE%\1lib;3%LIB%
> icc -I. -I%SOMBASE%\include -Fe hello main.cpp hello.cpp \
somtk.1lib
6. Execute the client program.
> hello
Hello, World!

Example 2. Adding an Attribute to the Hello Class

Example 1 introduced a class Hello that has a method sayHel1lo which prints the fixed
string Hello, World! Example 2 extends the Hello class so that clients can customize
the output from the method sayHello.

1. Modify the interface declaration for the class definition in hello. id1l.

Class Hello is extended by adding an attribute called msg in this example. Declaring
an attribute is equivalent to defining get and set methods. For example, specifying:

attribute string msg;
is equivalent to defining the two methods:
string get msg();

void set msg(in string msg) ;

Programmer’s Guide for SOM and DSOM

An attribute can be used instead of an instance variable to define get and set methods
without having to write their method procedures. The new interface specification for
Hello, that results from adding attribute msg to the Hello class, follows:

#include <somobj.idls>
interface Hello : SOMObject
{
void sayHello();
attribute string msg;
//# This is equivalent to defining the methods:
//# string get msg();
//# void _set msg(string msg) ;
}i
Re-run the SOM Compiler on the updated .idl file, as in Example 1. Implementing a
Simple Class with One Method to produce new header files and updates the existing

implementation file, if needed, to reflect changes made to the .idl file. In this example,
the implementation file is not modified by the SOM Compiler.

Customize the implementation file by modifying the print statement in the sayHello
method procedure. This example prints the contents of the msg attribute (which must
be initialized in the client program) by invoking the _get_msg method. Because the
_get_msg method name begins with an underscore, the method is invoked with two
leading underscores in C.

SOM_Scope void SOMLINK sayHello(Hello somSelf,

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf); */

HelloMethodDebug (”Hello”, "sayHello”);
printf (“%$s\n”, _ get msg(somSelf, ev));
/* for C++, use somSelf-> get msg(ev); */

}

This implementation assumes that _set_msg has been invoked to initialize the msg
attribute before the _get_msg method is invoked by the sayHel1lo method. This
initialization can be done within the client program.

Update the client program to invoke the _set_msg method to initialize the msg attribute
before the sayHel1lo method is invoked. Because the _set_msg method name begins
with an underscore, the C client program invokes the method with two leading
underscores.

For C Programs

#include <hello.h>

int main(int argc, char *argv([])

{
Hello obj;
obj = HelloNew() ;
/* Set the msg text */
__set msg(obj, somGetGlobalEnvironment (),

"Hello World Again”) ;

Tutorial for Implementing SOM Classes 59

60

/* Execute the ”sayHello” method */
_sayHello(obj, somGetGlobalEnvironment ()) ;
_somFree (obj) ;
return (0);

}

For C++ Programs

#include <hello.xh>

int main(int argc, char *argv([])

{
Hello *obj;
obj = new Hello;
/* Set the msg text */
obj->_ set msg(somGetGlobalEnvironment (),

"Hello World Again”) ;

/* Execute the ”“sayHello” method */
obj->sayHello (somGetGlobalEnvironment ()) ;
obj->somFree () ;
return (0);

}

Compile and link the client program,.
Execute the client program:

> hello
Hello World Again

Example 3. Overriding an Inherited Method

In object-oriented programming a subclass can replace an inherited method implementation
with a new implementation especially appropriate to its instances. This is called overriding a
method. Sometimes a class introduces methods that every descendant class is expected to
override. For example, SOMObject introduces the somPrintSelf Method; a SOM
programmer generally overrides this method when implementing a new class.

somPrintSelf prints a brief description of an object. The method is useful when debugging
an application that deals with a number of same class objects, if the class designer has
overridden somPrintSelf with a message that distinguishes different objects of the class.
For example, the implementation of somPrintSelf provided by SOMObject prints the class
of the object and its address in memory. SOMClass overrides this method, when
somPrintSelf is invoked on a class object, the name of the class will print.

This example illustrates how to override somPrintSelf for the Hel1lo class. An important
identifying characteristic of Hel1lo objects is the message they hold. The following steps
show how to override somPrintSelf in Hello to provide this information.

1. Modify the interface declaration in hello.idl to override the somPrintSelf method in
Hello, in hello.idl in the form of an implementation statement, that gives information
about the class, its methods and attributes, and any instance variables. In this example,
the implementation statement introduces the modifiers for the Hello class:

#include <somobj.idls>

interface Hello : SOMObject

Programmer’s Guide for SOM and DSOM

void sayHello() ;
attribute string msg;
#ifdef _ SOMIDL
implementation
{
//# Method Modifiers:
somPrintSelf: override;
// Override the inherited implementation of somPrintSelf.
Vi
#endif
Vi
somPrintSelf introduces a list of maodifiers in the class Hello. Modifiers are like C or
C++ #pragma commands and give specific implementation details to the compiler. This
example uses only the override modifier. Because of the override modifier, when
somPrintSelf is invoked on an instance of class Hello, Hello’s implementation of

somPrintSelf (defined in the implementation file) is called, instead of the
implementation inherited from the parent class, SOMObject.

The #ifdef __ SOMIDL___ and #endif are standard C and C++ preprocessor commands
that cause the implementation statement to be read only when using the SOM IDL
compiler (and not some other IDL compiler).

Re-run the SOM Compiler on the updated .idl file as before. The SOM Compiler
extends the existing implementation file from Example 2. Adding an Attribute to the
Hello Class to include new stub procedures as needed (in this case, for
somPrintSelf). Here is a shortened version of the C language implementation file as
updated by the SOM Compiler; C++ implementation files are similarly revised. Notice
that the code previously added to the sayHello method is not disturbed when the SOM
Compiler updates the implementation file.

#include <hello.ih>
SOM_Scope void SOMLINK sayHello(Hello somSelf,

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug (”Hello” , "sayHello”) ;

printf (“%$s\n”, _ get msg(somSelf, ev));

SOM_Scope void SOMLINK somPrintSelf (Hello somSelf)

HelloData *somThis = HelloGetData (somSelf) ;
HelloMethodDebug (“hello”, “somPrintSelf”) ;
Hello_parent_ SOMObject_somPrintSelf (somSelf) ;

}

The SOM Compiler adds code letting the Hello class redefine somPrintSelf and
provides a default implementation for overriding the somPrintSelf method. This default
implementation simply calls the parent method (the procedure that the parent class of
Hello uses to implement the somPrintSelf method). This parent method call is

Tutorial for Implementing SOM Classes 61

62

accomplished by the macro Hello_parent_ SOMObject_somPrintSelf, defined in
hello.ih.

The stub procedure for overriding the somPrintSelf method does not include an
Environment parameter because somPrintSelf is introduced by SOMObject, which
does not include the Environment parameter in any of its methods (to ensure
backward compatibility). The signature for a method cannot change after it has been
introduced.

3. Customize the implementation.

Within the new somPrintSelf method procedure, display a brief description of the
object, appropriate to Hello objects. The unnecessary parent method call has been
deleted. Also, direct access to instance data introduced by the Hello class is not
required, so the assignment to somThis has been commented out in the first line of the
procedure.

SOM_Scope void SOMLINK somPrintSelf (Hello somSelf)
{
/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug (“Hello” , ”somPrintSelf”) ;
somPrintf (”-- a %s object at location %X with msg: %s\n”,
__somGetClassName (somSelf) ,
somSelf,
__get_msg(somSelf,0));
}

4. Update the client program to illustrate the change. Notice the new message text. For C
programs:

#include <hello.h>

int main(int argc, char *argv([])

{
Hello obj;
Environment *ev = somGetGlobalEnvironment () ;
obj = HelloNew () ;
/* Set the msg text */
__set msg(obj, ev, ”"Hi There”);
/* Execute the ”somPrintSelf” method */
_somPrintSelf (obj) ;
_somFree (obj) ;
return (0);

}

For C++ programs:

#include <hello.xh>

int main(int argc, char *argvl([])

{
Hello *obj;
Environment *ev = somGetGlobalEnvironment () ;

obj = new Hello;

Programmer’s Guide for SOM and DSOM

/* Set the msg text */
__set msg(obj, ev, "Hi There”);
/* Execute the ”"somPrintSelf” method */

obj->somPrintSelf () ;

obj->somFree () ;
return (0);

}

Compile and link the client program.

Execute the client program, which now outputs the message:
> hello
-- a Hello object at location 20062838 with msg: Hi There

Example 4. Initializing a SOM Object

The previous example showed how to override the somPrintSelf Method, introduced by
SOMObject. As in that example, somPrintSelf should generally be overridden when
implementing a new class. Another method introduced by SOMObject that should
generally be overridden is somDefaultlnit which provides a default initializer for the
instance variables introduced by a class.

This example shows how to override somDefaultlnit to give each Hello object’'s message
an initial value when the object is first created. Initializers (including how to introduce new
initializers that take arbitrary arguments, and how to explicitly invoke initializers), are
described in Initializing and Uninitializing Objects on page 195.

The overall process of overriding somDefaultInit is similar to the previous example. The
IDL for Hello is modified. In addition to an override modifier, an init modifier is used to
indicate that a stub procedure for an initialization method is desired. The stub procedures
for initializers are different from normal methods.

1. Modify the interface declaration in hello.idl.
#include <somobj.idls>
interface Hello : SOMObject
{
void sayHello() ;
attribute string msg;
#ifdef SOMIDL
implementation
{
//# Method Modifiers:
somPrintSelf: override;
somDefaultInit: override, init;
}i
#endif

}i

Tutorial for Implementing SOM Classes 63

64

2. Re-run the SOM Compiler on the updated hello. id1 file. The SOM Compiler extends
the existing implementation file. The following example shows the initializer stub
procedure the SOM Compiler adds to the C language implementation file; C++
implementation files would be similarly revised:

SOM_Scope void SOMLINK

somDefaultInit (Hello somSelf, somInitCtrl *ctrl)

HelloData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;

HelloMethodDebug ("Hello”, "somDefaultInit”) ;

Hello BeginInitializer somDefaultInit;

Hello Init SOMObject somDefaultInit (somSelf, ctrl);

/*
* local Hello initialization code added by programmer
*/

}

3. Customize the implementation.

The msg instance variable is set in the implementation template rather than in the client
program. Therefore, the msg is defined as part of the Hel1lo object’s initialization.
SOM_Scope void SOMLINK

somDefaultInit (Hello somSelf, somInitCtrl *ctrl)

HelloData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
HelloMethodDebug (“Hello”, “somDefaultInit”);
Hello BeginInitializer somDefaultInit;
Hello Init SOMObject somDefaultInit (somSelf, ctrl);
/*
* local Hello initialization code added by programmer
*/
__set msg(somSelf, ev, ”“Initial Message”);
}
4. Update the client program to illustrate default initialization.
#include <hello.h>
main ()
{
Hello h = HelloNew() ;
/* Execute the ”"somPrintSelf” method */
_somPrintSelf (h) ;
}

5. Compile and link the client program.

Programmer’s Guide for SOM and DSOM

6. Execute the client program:
> hello
-- a Hello object at 200633A8 with msg: Initial Message

Example 5. Using Multiple Inheritance

The Hello class is useful for writing messages to the screen. Clients also can write
messages to printers and disk files. This example references two additional classes: Printer
and Disk. The Printer class manages messages to a printer, and the Disk class manages
messages sent to files. Define these classes as follows:

#include <somobj.idls>
interface Printer : SOMObject
{
void stringToPrinter (in string s) ;
// This method writes a string to a printer.
i
#include <somobj.idls>
interface Disk : SOMObject
{
void stringToDisk (in string s) ;
// This method writes a string to disk.
i
This example assumes the Printer and Disk classes are defined separately (in print.idl and
disk.idl, for example), are implemented in separate files, and are linked with the other
example code. Given the implementations of the Printer and Disk interfaces, the Hello class
can use them by inheriting from them, as illustrated below.
1. Modify the interface declaration in hello.idl.
#include <disk.idl>
#include <printer.idls>
interface Hello : Disk, Printer
{
void sayHello() ;
attribute string msg;
enum outputTypes {screen, printer, disk};
// Declare an enumeration for the different forms of output
attribute outputTypes output;
// The current form of output
#ifdef _ SOMIDL
implementation {
somDefaultInit: override, init;
}i
#endif //# _ SOMIDL__
}i

Notice that SOMODbject is not listed as a parent of Hel1o. SOMODbject is a parent of
Disk and Printer.

Tutorial for Implementing SOM Classes 65

The IDL specification declares an enumeration outputTypes for the different forms of
output and an attribute output whose value depends on where the client wants the
output of the sayHel1lo method to go.

OM IDL allows the use of structures, unions, enumerations, constants and typedefs,
both inside and outside the body of an interface statement. Declarations that appear
inside an interface body are emitted in the header file hello.h or hello.xh.
Declarations that appear outside of an interface body do not appear in the header file
(unless required by a special #pragma directive, see Running the SOM Compiler on
page 161).

SOM IDL also supports all of the C and C++ preprocessor directives, including
conditional compilation, macro processing, and file inclusion.
2. Re-run the SOM Compiler on the updated .idl file.

The implementation for the somDefaultinit Method does not reflect the addition of two
new parents to Hello because the implementation-file emitter never changes the bodies
of existing method procedures. As a result, method procedures for initializer methods
are not given new parent calls when the parents of a class are changed. One way to
deal with this (when the parents of a class are changed) is to temporarily rename the
method procedures for initializer methods and run the implementation emitter. Once
this is done, the code in the renamed methods can be merged into the new templates,
which include all the appropriate parent method calls. When this is done here, the new
implementation for somDefaultlnit appears:

SOM_Scope void SOMLINK

somDefaultInit (Hello somSelf, somInitCtrl *ctrl)

HelloData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;

HelloMethodDebug ("Hello”, "somDefaultInit”);

Hello BeginInitializer somDefaultInit;

Hello_Init_Disk_somDefaultInit (somSelf, ctrl);
Hello Init Printer somDefaultInit (somSelf, ctrl);
/*
* local Hello initialization code added by programmer
*/
__set msg(somSelf, ev, ”"Initial Message”);
}

3. Continue to customize the implementation file, hello.c. The sayHello method
discussed in Example 2 now allows alternate ways of outputting a msg.

SOM_Scope void SOMLINK sayHello (Hello somSelf,

Environment *ev)

/* HelloData *somThis = HelloGetData (somSelf) ; */
HelloMethodDebug ("Hello” , ”"sayHello”) ;
switch (_ get output (somSelf, ev)) {

/* for C++, use: somSelf-> get output(ev) */

66 Programmer's Guide for SOM and DSOM

case Hello screen:

printf (“%$s\n”, _ get msg(somSelf, ev));
/* for C++, use: somSelf-> get msg(ev) */
break;

case Hello printer:

_stringToPrinter (somSelf, ev, _ get msg(somSelf, ev));
/* for C++, use:
* somSelf->stringToPrinter (ev, somSelf-> get msg(ev));*/
break;

case Hello_disk:

_stringToDisk (somSelf, ev, _ get msg(somSelf, ev));

/* for C++, use:

* gomSelf->stringToDisk (ev, somSelf-> get msg(ev));*/

break;

}
}

The switch statement invokes the appropriate method depending on the value of the
output attribute. The case statements use the enumeration values of outputTypes
declared in hello. id1l by prefacing the enumeration names with the class name
(Hello screen, Hello printer and Hello disk).
Update the client program, as illustrated.

#include <hello.h>

/* for C++, use "hello.xh” and <stdio.h> */
int main(int argc, char *argv([])

{

Hello a = HelloNew () ;
Environment *ev = somGetGlobalEnvironment () ;

/* Invoke "sayHello” on an object and use each output
__set output(a, ev, Hello screen) ;
_sayHello(a, ev) ; /* for C++, use: a->sayHello(ev); */
___set output(a, ev, Hello printer) ;

/* C++: a->_set output (ev, Hello printer); */
_sayHello(a, ev) ;
___set output(a, ev, Hello disk) ;

/* Ct+: a-> set output (ev, Hello disk); */
_sayHello(a, ev) ;
_somFree(a) ; /* for C++, use: a->somFree(); */

return (0);

}

Compile and link the client program. Include the implementation files for the Printer and
Disk classes.

Execute the client program. The message that prints is the msg defined in Example 4
as part of the somDefaultlnit initialization of the Hello object.

Tutorial for Implementing SOM Classes 67

Initial Message
Initial Message — goes to a Printer
Initial Message — goes to Disk

Continuation of SOM

This chapter described features of SOM IDL that are be useful to C and C++ programmers.

SOM IDL provides features such as full type checking, constructs for declaring private
methods, and constructs for defining methods that receive and return pointers to structures.
Chapter 5, SOM Interface Definition Language on page 115 gives a complete description
of the SOM IDL syntax. Chapter 6, The SOM Compiler on page 155 describes how to use
the SOM Compiler. Chapter 7, Implementing Classes in SOM on page 171 provides
helpful information for completing the implementation template, for using initializers
(somDefaultlnit or user-defined initialization methods), for defining SOM class libraries,
and for customizing various aspects of SOMobjects execution.

68 Programmer's Guide for SOM and DSOM

Chapter 4. Using SOM Classes in Client Programs

This chapter discusses the use of fully implemented SOM classes. Read this chapter if you
are using SOM classes created by someone else. This chapter tells how to instantiate an
object and invoke methods from within an application program. If you are creating classes,
read this and Chapter 5, SOM Interface Definition Language on page 115, Chapter 6,
The SOM Compiler on page 155 and Chapter 7, Implementing Classes in SOM on page
171 for information about the SOM Interface Definition Language (SOM IDL) syntax and
other details of class implementation.

Programs that use a class are client programs. A client program can be written in C, C++ or
another language. This chapter describes how client programs can use SOM classes Using
a SOM class involves creating instances of a class, invoking methods on objects and so
forth. All methods, functions and macros described can be used by class implementors
within the implementation file for a class.

Note: Using a SOM class does not include subclassing the class in a client program. In
particular, the C++ compatible SOM classes made available in the .xh binding file
cannot be subclassed in C++ to create new C++ or SOM classes.

Some of the macros and functions described here are supplied as part of SOM’s C and C++
usage bindings. These bindings are functions and macros defined in header files to be
included in client programs. The usage bindings make it more convenient for C and C++
programmers to create and use instances of SOM classes. SOM classes can be used
without the C or C++ bindings. For example, users of other programming languages can
use SOM classes; C and C++ programmers can use a SOM class without using its
language bindings. The language bindings offer a more convenient programmer’s interface
to SOM. Vendors of other languages may offer SOM bindings; check with your language
vendor for possible SOM support.

To use C or C++ bindings for a class, a client program must use the #include preprocessor
directive to include a header file for the class. For a C language client program, the file
classFileStem.h must be included. For a C++ language client program, the file
classFileStem.xh must be included.

The SOM Compiler generates these header files from an IDL interface definition. The
header files contain definitions of the macros and functions that make up the C or C++
bindings for the class. Whether the header files include bindings for the class’s private
methods and attributes depends on the IDL interface definition available and on how the
SOM Compiler was invoked when generating bindings.

Usage binding headers automatically include any other bindings upon which they may rely.
Client programs not using the C or C++ bindings for any particular class of SOM object (a
client program that does not know at compile time what classes it will be using) should
include the SOM-supplied bindings for SOMObject, provided in the header file somobj.h
(for C programs) or somobj.xh (for C++ programs).

This chapter shows how to do each SOM task:

e With C, using C bindings

e With C++, using C++ bindings

* Not using SOM’s C or C++ language bindings.

If neither of the first two approaches is applicable, use the third approach.

Using SOM Classes in Client Programs 69

Contents

Example Client Program Using A SOM Class
SOM Classes: The Basics
Declaring Object Variables
Creating Instances of a Class
Invoking Methods on Objects
Using Class Objects
Compiling and Linking
Language-Neutral Methods and Functions
Generating Output
Getting Information about a Class
Getting Information about an Object
Debugging
Checking the Validity of Method Calls
Exceptions and Error Handling
The Error Log Facility
Configuring the Error Log
Using The Error Log
Locating the Correct Log File
Memory Management
Using SOM Equivalents to ANSI C Functions
Clearing Memory for Objects
Clearing Memory for the Environment
SOM Manipulations Using somld

Example Client Program Using A SOM Class

This C program uses the class Hello as defined in the Tutorial. The Hello class provides
one attribute, msg, of type string, and one method, sayHello. The sayHello method
displays the value of the msg attribute of the object on which the method is invoked.

#include <hello.h> /* include the header file for Hello */
int main(int argc, char *argv([])
{
/* declare a variable (obj) that is a
* pointer to an instance of the Hello class: */
Hello obj;
/* create an instance of the Hello class
* and store a pointer to it in obj: */
obj = HelloNew() ;
/* invoke method set msg on obj with the argument
* “Hello World Again”. This method sets the value
* of obj’s ’'msg’ attribute to the specified string.*/

__set msg(obj, somGetGlobalEnvironment (),

70 Programmer’s Guide for SOM and DSOM

“Hello World Again”) ;
/* invoke method sayHello on obj. This method prints
* the value of obj’s ’'msg’ attribute. */
_sayHello(obj, somGetGlobalEnvironment ()) ;
__somFree (obj) ;
return(0) ;
}
This example is the C++ version:
#include <hello.xh> /* include the header file for Hello */
int main(int argc, char *argv([])
{
/* declare a variable (obj) that is a
* pointer to an instance of the Hello class: */
Hello *obj;
/* create an instance of the Hello class
* and store a pointer to it in obj: */
obj = new Hello;
/* invoke method _set msg on obj with the argument
* “Hello World Again”. This method sets the value

* of obj’s 'msg’ attribute to the specified string. */

obj-> set msg(somGetGlobalEnvironment (),
“Hello World Again”) ;
/* invoke method sayHello on obj. This method

* prints the value of obj’s ’‘msg’ attribute. */

obj->sayHello (somGetGlobalEnvironment ()) ;
obj->somFree () ;

return (0) ;

}

Both client programs produce the output:

Hello World Again

SOM Classes: The Basics

This section describes the basic information needed to use SOM classes in a client
program.

Declaring Object Variables

To declare an object variable, the name of an object interface defined in IDL is used as the
type of the variable. To declare obj to be a pointer to an object that has type interfaceName,
code:

interfaceName obj ; in C programs

Using SOM Classes in Client Programs 71

interfaceName *obj ; in C++ programs

In SOM, objects of this type are instances of the SOM class named interfaceName, or of
any SOM class derived from this class. Thus, for example,

Animal obj; in C programs
Animal *obj; in C++ programs

declares obj as pointer to an object of type Animal that can be used to reference an
instance of the SOM class Animal or any SOM class derived from Animal. The type of an
object need not be the same as its class; an object of type Animal might not be an
instance of the Animal class, it might be an instance of some subclass of Animal;
perhaps, the Ccat class.

All SOM obijects are of type SOMObject, even though they may not be instances of the
SOMObject class. If you do not know, at compile time, what type of object the variable will
point to, the following declaration can be used:

SOMObiject obj; in C programs
SOMObject *obj; in C++ programs

Because the sizes of SOM objects are not known at compile time, instances of SOM
classes must always be dynamically allocated. Thus, a variable declaration must always
define a pointer to an object.

Note: Inthe C usage bindings, as within an IDL specification, an interface name used as
a type implicitly indicates a pointer to an object that has that interface; this is
required by the CORBA specification. The C usage bindings for SOM classes
therefore hide the pointer with a C typedef for interfaceName. This is not
appropriate in the C++ usage bindings, which define a C++ class for interfaceName.
Thus, it is not correct in C++to use a declaration of the form:

interfaceName obj; notvalid in C++ programs

If a C programmer prefers to use explicit pointers to interfaceName types, then the SOM
Compiler option -maddstar can be used when C binding files are generated. The
explicit “*” will then be required in declarations of object variables. This option is required
for compatibility with existing SOM OIDL code. For information on using the -maddstar
option, see Running the SOM Compiler on page 161.

Users of other programming languages must define object variables to be pointers to the
data structure representing SOM objects; this is programming-language dependent. The
header file somtypes.h defines the structure of SOM objects for the C language.

Creating Instances of a Class

72

For C programmers with usage bindings, SOM provides the classNameNew and the
classNameRenew macros for creating instances of a class.

Note: Do not end a class name with the letter “C.” The class name that is used with a
method name is generated as classNameClassData. If a class name ending in “C,”
such as myprogC, is used, the name generated would be myprogCClassData.
Since ClassData and CClassData are different, the compiler would generate the
wrong type of export.

These macros are illustrated with the following examples, each of which creates a single
instance of class Hello:

obj = HelloNew() ;

obj HelloRenew (buffer) ;

Programmer’s Guide for SOM and DSOM

Using classNameNew: After verifying that the className class object exists, the
classNameNew macro invokes the somNew method on the class object. This allocates
enough space for a new instance of className, creates a new instance of the class,
initializes this new object by invoking

on it, and then returns a pointer to it. The classNameNew macro automatically creates the
class object for className, as well as its ancestor classes and metaclass, if these objects
have not already been created.

After a client program has finished using an object created using the classNameNew
macro, invoke somFree Method to free it:

__somFree (obj) ;

After uninitializing the object by invoking somDestruct Method on it, somFree calls the
class object for storage deallocation. Storage for an object created using the
classNameNew macro is allocated by the class of the object. Thus, only the class of the
object can know how to reclaim the object’s storage.

Using classNameRenew: After verifying that the className class object exists, the
classNameRenew macro invokes the somRenew method on the class object.
classNameRenew is used only when the space for the object has been allocated
previously. (Perhaps the space holds an old, no longer needed, uninitialized object.) This
macro converts the given space into a new, initialized instance of className and returns a
pointer to it. You must ensure that the argument of classNameRenew points to a block of
storage large enough to hold an instance of class className. You can invoke the
somGetinstanceSize Method on the class to determine the amount of memory required.
Like classNameNew, the classNameRenew macro automatically creates any required
class objects that have not already been created.

When creating a large number of class instances, it may be more efficient to allocate at
once enough memory to hold all the instances, and then invoke classNameRenew once for
each object to be created, rather than allocating memory separately.

Using classNameNewClass: The C and C++ usage bindings for a SOM class also
provide static linkage to a classNameNewClass procedure that can be used to create the
class object. This can be useful if the class object is needed before its instances are
created.

The following C code uses the function HelloNewClass to create the Hello class object.
The arguments to this function are defined by the usage bindings, and indicate the version
of the class implementation that is assumed by the bindings. See Creating a Class Object
on page 91. Once the class object has been created, the example invokes the
somGetinstanceSize Method on this class to determine the size of a Hel1lo object, uses
SOMMalloc Function to allocate storage, and then uses the Hel1oRenew macro to create
ten instances of the Hello class:

#include <hello.h>

main ()

{

SOMClass helloCls; /* A pointer for the Hello class object */
Hello objA[10]; /* an array of Hello instances */
unsigned char *buffer;

int i;

int size;

/* create the Hello class object: */

helloCls = HelloNewClass (Hello MajorVersion, Hello MinorVersion) ;

Using SOM Classes in Client Programs 73

/* get the amount of space needed for a Hello instance:
* (somGetInstanceSize is a method provided by SOM.) */
size = _somGetInstanceSize (helloCls) ;

size = ((size+3)/4)*4; /* round up to doubleword multiple */

/* allocate the total space needed for ten instances: */

buffer = SOMMalloc (10*size) ;

/* convert the space into ten separate Hello instances: */
for (i=0; 1<10; i+4+)

objA[i] = HelloRenew (buffer+i*size);

/* Uninitialize the objects and free them */
for (i=0; i<10; i++)

__somDestruct (objA[i],0,0);
SOMFree (buffer) ;

}

When an object created with the classNameRenew macro is no longer needed, its storage
must be freed using the dual to the method used to allocate the storage. The typical
method pairs are:

« If an object was originally initialized using the classNameNew macro, the client should
use the somFree Method on it.

» If the program uses the SOMMalloc function to allocate memory, as illustrated in the
example above, then the SOMFree function must be called to free the objects’ storage
because SOMFree is the dual to SOMMalloc. However, first invoke somDestruct
Method to deinitialize the objects in the region to be freed. This allows each object to
free any memory that may have been allocated without the programmer’s knowledge.

Note: Inthe somDestruct method call above, the first zero indicates that memory should
not be freed by the class of the object; you must do it explicitly. The second zero
indicates that the class of the object is responsible for overall control of object
uninitialization. See Initializing and Uninitializing Objects on page 195.

For C++ programmers with usage bindings

instances of a class className can be created with a new operator provided by the usage
bindings of each SOM class. The new operator automatically creates the class object for
className, as well as its ancestor classes and metaclass, if they do not yet exist. After
verifying the existence of the desired class object, the new operator then invokes the
somNewNolnit method on the class. This allocates memory and creates a new instance of
the class, but it does not initialize the new object.

Initialization of the new object is then performed using one of the C++ constructors defined
by the usage bindings. See Initializing and Uninitializing Objects on page 195. Two
variations of the new operator require no arguments. When either is used, the C++ usage
bindings provide a default constructor that invokes the somDefaultinit Method on the new
object. Thus, a new object initialized by somDefaultinit would be created using either of
the forms:

74 Programmer's Guide for SOM and DSOM

new className
new className ()
For example:
obj = new Hello;
objl = new Hello() ;
For convenience, pointers to SOM objects created using the new operator can be freed
using the delete operator. You can also use the somFree Method on page 154:
delete obj;
objl->somFree;

When previously allocated space will be used to hold a new object, C++ programmers
should use the somRenew method, described below. C++ bindings do not provide a macro
for this purpose.

somNew and somRenew: C and C++ programmers, as well as programmers using other
languages, can create instances of a class using the SOM methods somNew and
somRenew, invoked on the class object. As described for the C bindings, first create the
class object using the classNameNewClass procedure or the somFindClass Method. See
Using Class Objects on page 90.

The somNew method invoked on the class object creates a new instance of the class,
initializes the object using somDefaultinit Method, and then returns a pointer to the new
object. The C example below creates a new object of the Hel1lo class.

#include <hello.h>
main ()
{
SOMClass helloCls; /* a pointer to the Hello class */
Hello obj; /* a pointer to a Hello instance */
/* create the Hello class */
helloCls = HelloNewClass (Hello MajorVersion,
Hello MinorVersion) ;
obj = _somNew(helloCls); /* create the Hello instance */

}

Free an object created using the somNew method by invoking the somFree method on it
after the client program is finished using the object.

The somRenew method invoked on the class object creates a new instance of a class
using the given space, rather than allocating new space for the object. The method
converts the given space into an instance of the class, initializes the new object using
somDefaultlnit, and then returns a pointer to the new object. The argument to somRenew
must point to a block of storage large enough to hold the new instance. You can use
somGetinstanceSize Method to determine the amount of memory required. The following
C++ code creates ten instances of the Hello class:

#include <hello.xh>

#include <somcls.xh>

main ()

{

SOMClass *helloCls; // a pointer to the Hello class

Hello *objA[10]; // an array of Hello instance pointers

Using SOM Classes in Client Programs 75

unsigned char *buffer;
int i;
int size;

// create the Hello class object

helloCls = HelloNewClass (Hello MajorVersion,

Hello MinorVersion) ;

// get the amount of space needed for a Hello instance:

size = helloCls->somGetInstanceSize () ;

size = ((size+3)/4)*4; // round up to

// allocate the total space needed for
buffer = SOMMalloc (10*size) ;
// convert the space into ten separate

for (i=0; 1i<10; i++)

doubleword multiple

ten instances

Hello objects

objA[i] = helloCls->somRenew (buffer+i*size);

// Uninitialize the objects and free them

for (i=0; 1i<10; i++)
objA[i] ->somDestruct (0,0) ;
SOMFree (buffer) ;

}

The somNew and somRenew methods are useful for creating instances of a class when
the header file for the class is not included in the client program at compile time. For

example, when the name of the class is specified by user input. However, the

classNameNew macro (for C) and the new operator (for C++) can be used only for classes

whose header file is included in the client program at compile time.

An object created using the somRenew method should be freed by the client program that
allocated its memory, using the dual to whatever allocation approach was initially used. If
the somFree method is not appropriate (because the somNew method was not initially
used), then, before memory is freed, the object should be explicitly deinitialized by invoking
the somDestruct Method on it. The somFree method also calls the somDestruct method.
Refer to the previous C example for Renew for an explanation of the arguments to

somDestruct.

Invoking Methods on Objects

This topic describes the general way to invoke methods in C or C++ and other languages

and then describes more specialized situations.

Making Typical Method Calls

For C programs with usage bindings: To invoke a method in C, use the macro:

_methodName (receiver, args)

76 Programmer’s Guide for SOM and DSOM

The method name is preceded by an underscore (). Arguments to the macro are the
receiver of the method followed by all of the arguments to the method. For example:

_foo(obj, somGetGlobalEnvironment (), x, Vy);

This invokes method foo on obj; the remaining arguments are other arguments to the
method. You can use this expression where a standard function call can be used in C.

Required arguments: In C, calls to methods defined using IDL require at least two
arguments: a pointer to the receiving object and a value of type (environment *). The
environment data structure, specified by CORBA, passes environmental information
between a caller and a called method. For example, it returns exceptions. For more
information, see Exceptions and Error Handling on page 100.)

In the IDL definition of a method, by contrast, the receiver and the Environment pointer are
not listed as parameters to the method. Unlike the receiver, the Environment pointer is
considered a method parameter, even though it is never explicitly specified in IDL. For this
reason, it is called an implicit method parameter. If a method is defined in a .idl file with two
parameters, as in:

int foo (in char ¢, in float f);
then, with the C usage bindings, the method would be invoked with four arguments, as in:
intvar = foo(obj, somGetGlobalEnvironment(), x, y);

where obj is the object responding to the method and x and y are the arguments
corresponding to ¢ and f, above.

If the IDL specification of the method includes a context specification, then the method has
an additional (implicit) context parameter. When invoking the method, this argument must
immediately follow immediately the Environment pointer argument. None of the
SOM-supplied methods require context arguments. The Environment and context method
parameters are prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidl
modifier, then do not supply the (Environment *) and context arguments when invoking
the method. The receiver of the method call is followed immediately by any arguments to
the method. Some of the classes supplied in the SOMobjects Developers Toolkit, including
SOMObject, SOMClass and SOMClassMgr, are defined in this way to ensure
compatibility with previous releases of SOM. Programmer’s Reference for SOM and DSOM
specifies when to use these arguments for each method.

If you use a C expression to compute the first argument to a method call (the receiver), you
must use an expression without side effects, because the first argument is evaluated twice
by the _methodName macro expansion. Do not use a somNew method call or a macro call
of classNameNew as the first argument to a C method call because it creates two new
class instances rather than one.

Enter any additional arguments required by a method, as specified in IDL following the
initial, required arguments to a method (the receiving object, the Environment, if any, and
the context, if any), as specified in IDL. For a discussion of how IDL in, out or inout
argument types map to C/C++ data types, see Parameter List on page 130.

Short form versus long form: If a client program uses the bindings for two different classes
that introduce or inherit two different methods of the same name, then the _methodName
macro described above (called the short form) is not provided by the bindings, because the
macro is ambiguous. The following long form macro, however, is always provided by the
usage bindings for each class that supports the method:

className methodName (receiver, args)

For example, method foo supported by class Bar can be invoked as:

Using SOM Classes in Client Programs 77

78

Bar_ foo (obj, somGetGlobalEnvironment (), x, y)(in C)
where obj has type Bar and x and y are the arguments to method foo.

In most cases (where there is no ambiguity, and where the method is not a va_list method,
as described in Using va_list Methods on page 80), a you can use either the short or the
long form of a method invocation macro interchangeably. However, only the long form
complies with the CORBA standard for C usage bindings. Use only the long form to write
code that can be easily ported to other vendor platforms that support the CORBA standard.
The long form is always available for every method that a class supports. The short form is
provided both as a programming convenience and for source code compatibility with
Release 1 of SOM.

In order to use the long form, you usually know what type an object is expected to have. If
you do not know, but the different methods have the same signature, invoke the method
using name-lookup resolution, as described in this section.

For C++ programmers with usage bindings: To invoke a method, use the standard C++
form shown below:

obj->methodName (args)

where args are the arguments to the method. For instance, the following example invokes
method foo on obj:

obj->foo (somGetGlobalEnvironment (), x, y)

Required arguments: All methods introduced by classes declared using IDL, except those
having the SOM IDL callstyle=oidl modifier, have at least one parameter: a value of type
(Environment *). The Environment data structure is used to pass environmental
information such as exceptions between a caller and a called method. See Exceptions
and Error Handling on page 100.

The Environment pointer is an implicit parameter. That is, in the IDL definition of a method,
the Environment pointer is not explicitly listed as a parameter to the method. For example, if
a method is defined in IDL with two explicit parameters, as in:

int foo (in char ¢, in float f);
then the method would be invoked from C++ bindings with three arguments, as in:
intvar = obj->foo(somGetGlobalEnvironment (), x, y);

where obj is the object responding to the method and x and y are the arguments
corresponding to ¢ and f, above.

If the IDL specification of the method includes a context specification, then the method has
a second implicit parameter, of type context, and the method must be invoked with an
additional context argument. This argument must follow immediately after the Environment
pointer argument. (No SOM-supplied methods require context arguments.) The
Environment and context method parameters are prescribed by the CORBA standard.

If the IDL specification of the class that introduces the method includes the callstyle=oidI
modifier, then do not supply the (Environment *) and context arguments when the method
is invoked. Some of the classes supplied in the SOMobjects Developers Toolkit (including
SOMObject, SOMClass and SOMClassMgr) are defined in this way, to ensure
compatibility with the previous release of SOM. Programmer’s Reference for SOM and
DSOM specifies for each method whether these arguments are used.

Following the initial, required arguments to a method (the receiving object, the
Environment, if any, and the context, if any), you enter any additional arguments required
by that method, as specified in IDL. For a discussion of how IDL in/out/inout argument
types map to C/C++ data types, see Parameter List on page 130.

Programmer’s Guide for SOM and DSOM

For non-C or C++ programs: To invoke a static method (that is, a method declared when
defining an OIDL or IDL object interface) without using the C or C++ usage bindings, you
can use the somResolve procedure. The somResolve procedure takes as arguments a
pointer to the object on which the method is to be invoked and a method token for the
desired method. It returns a pointer to the method’s procedure (or raises a fatal error if the
object does not support the method). Depending on the language and system, it may be
necessary to cast this procedure pointer to the appropriate type; the way this is done is
language-specific.

The method is then invoked by calling the procedure returned by somResolve, passing the
method’s receiver, the Environment pointer and the context argument, if necessary, and
the remainder of the method’s arguments. The means for calling a procedure, given a
pointer returned by somResolve, is language-specific. See the section above for C
programs. The arguments to a method procedure are the same as the arguments passed
using the long form of the C language method-invocation macro for that method.

You must know where to find the method token to use somResolve for the desired
method. Method tokens are available from class objects that support the method (with the
somGetMemberToken Method), or from a global data structure, called the ClassData
structure, corresponding to the class that introduces the method. In C and C++ programs
with access to the definitions for ClassData structures provided by usage bindings you can
access the method token for method methodName introduced by class className with:

classNameClassData.methodName

For example, the method token for method sayHello introduced by class Hello is stored
at location HelloClassData.sayHello, for C and C++ programs. The way method
tokens are accessed in other languages is language-specific.

To use offset resolution to invoke methods from a programming language other than C or
C++, do the following to create an instance of a SOM Class X in Smalltalk:

1. Initialize the SOM run-time environment, if it has not previously been initialized, using
the somEnvironmentNew function.

2. If the class object for class X has not yet been created, use somResolve with
arguments SOMClassMgrObject (returned by somEnvironmentNew Function in
step 1) and the method token for the somFindClass Method, to obtain a method
procedure pointer for the somFindClass method. Use the method procedure for
somFindClass to create the class object for class X: Call the procedure with
arguments SOMClassMgrObject, the result of calling the somldFromString Function
with argument “X”, and the major and minor version numbers for class X (or zero). The
procedure returns the class object for class X.

3. Use somResolve with arguments representing the class object for X (returned by
somFindClass in step 2) and the method token for the somNew method, to obtain a
method procedure pointer for method somNew. (The somNew method is used to
create instances of class X.)

4. Call the method procedure for somNew (using the method procedure pointer obtained
in step 3) with the class object for X (returned by somFindClass in step 3) as the
argument. The procedure returns a new instance of class X.

In addition to somResolve, SOM also supplies the somClassResolve Function. Instead
of an object, the somClassResolve procedure takes a class as its first argument, and then
selects a method procedure from the instance method table of the passed class. (The
somResolve procedure, by contrast, selects a method procedure from the instance
method table of the class of which the passed object is an instance.) The
somClassResolve procedure therefore supports casted method resolution. See

Using SOM Classes in Client Programs 79

80

Programmer’s Reference for SOM and DSOM for more information on somResolve and
somClassResolve.

If you do not know at compile time which class introduces the method to be invoked, or if
you cannot directly access method tokens, then use the somResolveByName Function to
obtain a method procedure using name-lookup resolution, as described in the next section.

If the signature of the method to be invoked is not known at compile time, but can be
discovered at run time, use somResolve or somResolveByName to get a pointer to the
somDispatch method procedure, then use it to invoke the specific method, as described in
Method Name or Signhature Unknown at Compile Time on page 90.

Accessing Attributes

In addition to methods, SOM objects can have attributes. An attribute is an IDL shorthand
for declaring methods. It does not necessarily indicate the presence of any particular
instance data in an object of that type. Attribute methods are called get and set methods.
For example, if a class Hello declares an attribute called msg, then object variables of
type Hello will support the methods get_msg and _set_msg to access or set the value
of the msg attribute. Attributes that are declared as readonly have no set method.

The get and set methods are invoked in the same way as other methods. For example, in
C, given class Hello with attribute msg of type string, the following code segments set and
get the value of the msg attribute:

#include <hello.h>
Hello obj;

Environment *ev = somGetGlobalEnvironment () ;

obj = HelloNew() ;
__set_msg(obj, ev, “Good Morning”);/* note: two leading
underscores */
printf (“%s\n”, _ get msg(obj, ev));
For C++:
#include <hello.xh>
#include <stdio.h>
Hello *obj;

Environment *ev = somGetGlobalEnvironment () ;

obj = new Hello;
obj-> set msg(ev, “Good Morning”) ;
printf (“%s\n”, obj-> get msg(ev));

Attributes available with each class, are described in the documentation of each class in
Programmer’s Reference for SOM and DSOM.

Using va_list Methods

SOM supports methods whose final argument is a va_list. A va_list is a data type whose
representation depends on the operating system platform. To aid construction of portable
code, SOM supports a platform-neutral API for building and manipulating va_lists. Use of
this APl is recommended on all platforms because it is both compliant with the ANSI C
standard and portable.

Programmer’s Guide for SOM and DSOM

A function to create a va_list is not provided. Instead, you can declare local variables of
type somVaBuf and va_list.

Use the following sequence of calls to create and destroy a va_list:
« somVaBuf create
Creates a SOM buffer for variable arguments from which the va_list will be built.
e somVaBuf_add
Adds an argument to the SOM buffer for variable arguments.
e« somVaBuf_get valist
Copies the va_list from the SOM buffer.
« somVaBuf_destroy
Releases the SOM buffer and its associated va_list.
* somvalistSetTarget
Modifies the first scalar value on the va_list without other side effects.
e somvalistGetTarget
Gets the first scalar value from the va_list without other side effects.
Detailed information on these functions is provided in Programmer’s Reference for SOM
and DSOM.

Examples of va_list usage: The following code segments pass a va_list to the
somDispatch method by using the SOMobjects functions that build the va_list.

The somDispatch method (introduced by SOMObject) is a useful method whose final
argument is a va_list. Use somDispatch to invoke some other method on an object when
usage bindings for the dispatched method are unavailable or the method to be dispatched
is unknown until run time. The va_list argument for somDispatch holds the arguments to
be passed to the dispatched method, including the target object for the dispatched method.

For C:
#include <somobj.h>
void f1(SOMObject obj, Environment *ev)
{
char *msg;
va_ list start val;
somVaBuf vb;
char *msgl = “Good Morning”;
vb = (somVaBuf)somVaBuf create (NULL, O0);
somVaBuf add(vb, (char *)&obj, tk pointer);
/* target for _set msg */
somVaBuf add(vb, (char *)&ev, tk pointer)
/* next argument */
somVaBuf add(vb, (char *)&msgl, tk pointer);
/* final argument */
somVaBuf get valist (vb, &start_val);
/* dispatch set msg on object */
SOMObject somDispatch (

Using SOM Classes in Client Programs 81

obj, /* target for somDispatch */
0, /* says ignore dispatched method result */
somIdFromString (“ set msg”),
/* the somId for _set msg */
start_val) ; /* target and args for set msg */
/* dispatch get msg on obj: */
/* Get a fresh copy of the va_list */
somVaBuf get valist (vb, &start val);
SOMObject somDispatch (
obj,
(somToken *)&msg,
/* address to store dispatched result */
somIdFromString (“ get msg”),
start_val); /* target and arguments for _get msg */
printf (“%s\n”,msg) ;
somVaBuf destroy (vb) ;
}
For C++:
#include <somobj.h>
void f1(SOMObject obj, Environment *ev)
{
char *msg;
va_list start_val;
somVaBuf vb;
char *msgl = “Good Morning”
vb = (somVaBuf)somVaBuf create (NULL, O0);
somVaBuf add(vb, (char *)&obj, tk pointer);
/* target for _set msg */
somVaBuf add(vb, (char *)&ev, tk pointer);
/* next argument */
somVaBuf add(vb, (char *)&msgl, tk pointer);
/* final argument */

somVaBuf get valist (vb, &start val);

/* dispatch _set msg on obj: */
obj->SOMObject somDispatch (
0, /* says ignore the dispatched method result */
somIdFromString(“ set msg”),

/* the somId for _set msg */
start_val) ;

/* the target and arguments for _set msg */

/* dispatch get msg on obj: */

82 Programmer’s Guide for SOM and DSOM

/* Get a fresh copy of the va list */
somVaBuf get valist (vb, &start val);
obj->SOMObject somDispatch (
(somToken *)&msg,
/* address to hold dispatched method result */
somIdFromString (“* get msg”),
start _val) ;
/* the target and arguments for _get msg */
printf (“%s\n”, msg);
somVaBuf destroy (vb) ;
}

As a convenience, you can invoke methods whose final argument is a va_list from C and
C++ by using the short form of method invocation and specifying a variable number of
arguments in place of the va_list. That is, beginning at the syntax position where the
va_list argument is expected, SOMobijects interprets all subsequent arguments as being
the components of the va_list. This is illustrated below, using the somDispatch method.

As an example of using the variable-argument interface to somDispatch, the following
code segments illustrate how an example of attribute access (in Accessing Attributes on
page 80) could be recoded to operate without usage bindings for the Hello class. These
code segments are expressed as functions that accept an argument of type SOMObject
under the assumption that bindings for He11o are not available. This requires usage
bindings for SOMObject, which are also required for calling somDispatch.

For C:
#include <somobj.h>

void f1(SOMObject obj, Environment *ev)

{

char *msg;

/* dispatch set msg on obj: */

_somDispatch (
obj, /* the target for somDispatch */
0, /* says ignore the dispatched method result */
somIdFromString (“ set msg”),
/* the somId for _set msg */
obj, /* the target for set msg */
ev, /* the other arguments for _set msg */

“Good Morning”) ;
/* dispatch get msg on obj: */
_somDispatch(

obj,

(somToken *)&msg,

/* address to hold dispatched meth result */

somIdFromString (“* get msg”),

obj, /* the target for get msg */

ev) ; /* the other argument for get msg */

printf (“*%s\n”, msg) ;

Using SOM Classes in Client Programs 83

84

}
For C++:
#include <somobj.xh>
void f1(SOMObject *obj, Environment *ev)
{
char *msg;
/* dispatch _set msg on obj: */
obj->somDispatch (
0, /* says ignore the dispatched method result */
somIdFromString(“ set msg”),

/* dispatched method id */
obj, /* the target for _set msg */
ev, /* the other arguments for _set msg */
“Good Morning”) ;

/* dispatch get msg on obj: */

obj->somDispatch (
(somToken *)&msg,

/* address to store dispatched result */

somIdFromString (“ get msg”),
obj,
ev) ;

printf (“$s\n”, msg);

}

C programmers must be aware that the short form of the invocation macro that is used
above to pass a variable number of arguments to a va_list method is only available in the
absence of ambiguity. The long-form macro which is always available requires an explicit
va_list argument. See Short form versus long form on page 77.

Using Name-Lookup Method Resolution

C or C++ programs: Offset resolution is the most efficient way to select the method
procedure appropriate to a given method call. However, client programs can invoke a
method using name-lookup resolution instead of offset resolution. The C and C++ bindings
for method invocation use offset resolution, but methods defined with the namelookup
SOM IDL modifier result in C bindings where the short form invocation macro uses
name-lookup resolution. For C and C++ bindings, a special lookup_methodName macro is
defined.

Name-lookup resolution is appropriate when you know at compile time which arguments
will be expected by a method (that is, its signature), but do not know the type of the object
on which the method will be invoked. For example, use name-lookup resolution when two
different classes introduce different methods of the same name and signature, and you do
not know which method should be invoked because the type of the object is not known at
compile time.

Name-lookup resolution is also used to invoke dynamic methods (that is, methods that
have been added to a class’s interface at run time rather than being specified in the class’s
IDL specification). For more information on name-lookup method resolution, see Method
Resolution on page 183.

Programmer’s Guide for SOM and DSOM

C only: To invoke a method using name-lookup resolution, when using the C bindings for
a method that has been implemented with the namelookup modifier, use either of the
following macros:

_methodName (receiver, args)
lookup_methodName (receiver, args)

Thus, the short-form method invocation macro results in name-lookup resolution rather than
offset resolution, when the method has been defined as a namelookup method. The long
form of the macro for offset resolution is still available in the C usage bindings. If the
method takes a variable number of arguments, then use the first form shown above when
supplying a variable number of arguments. Use the second form when supplying a va_list
argument in place of the variable number of arguments.

C++ only: To invoke a method using name-lookup resolution, when using the C++
bindings for a method that has been defined with the namelookup modifier, use either of
the following macros:

lookup methodName (receiver, args)
className lookup methodName (receiver, args)

If the method takes a variable number of arguments, then the first form is used when
supplying a variable number of arguments. The second form is used when supplying a
va_list argument in place of the variable number of arguments. Note that the
offset-resolution forms for invoking methods using the C++ bindings are also still available,
even if the method has been defined as a namelookup method.

C/C++: To invoke a method using name-lookup resolution, when the method has not been
defined as a namelookup method:

1. Use the somResolveByName Function or any of the somLookupMethod Method,
somFindMethod or somFindMethodOk to obtain a pointer to the procedure that
implements the desired method.

2. Then, invoke the desired method by calling that procedure, passing the method’s
intended receiver, the Environment pointer and the context argument if needed, and
any method arguments.

The somLookupMethod, somMethodOK methods are invoked on a class object (the
class of the method receiver should be used), and take as an argument the somld for the
desired method (which can be obtained from the method’s name using the
somldFromString Function). For more information on these methods, see Programmer’s
Reference for SOM and DSOM.

Note: There are many ways to acquire a pointer to a method procedure. Once this is
done, you must make appropriate use of this procedure.

e The procedure should be used only on objects for which it is appropriate. Otherwise,
run-time errors are likely to result.

* When the procedure is used, you must give the compiler the correct information
concerning the signature of the method and the linkage required by the method. (On
many systems, there are different ways to pass method arguments, and linkage
information tells a compiler how to pass the arguments indicated by a method’s
signature).

SOM method procedures on OS/2 must be called with system linkage. On Windows NT,
SOM method procedures must be called with __stdcall linkage. On AlX, there is only one
linkage convention for procedure calls. While C and C++ provide standard ways to indicate
a method signature, the way to indicate linkage information depends on the specific
compiler and system. For each method declared using OIDL or IDL, the C and C++ usage

Using SOM Classes in Client Programs 85

bindings therefore use conditional macros and a typedef to name a type that has the
correct linkage convention. You can use this type name when you want to use a procedure
to invoke a method. However, you must have access to the usage bindings for the class
containing the method because that is where the type is defined. The type is named
somTD_className_methodName. This is illustrated in the following example, and further
details are provided in Obtaining a Method’s Procedure Pointer on page 88.

A Name-Lookup Example

The following example shows the use of name-lookup by a SOM client programmer.
Name-lookup resolution is appropriate when a programmer knows that an object will
respond to a method of some given name, but does not know enough about the type of the
object to use offset method resolution. How can this happen? It normally happens when a
programmer wants to write generic code, using methods of the same name and signature
that are applicable to different classes of objects, and yet these classes have ho common
ancestor that introduces the method. This can easily occur in single-inheritance systems
(such as Smalltalk and SOM release 1) and can also happen in multiple-inheritance
systems such as SOM release 2: when class hierarchies designed by different people are
brought together for clients’ use.

If multiple inheritance is available, you can always create a common class ancestor into
which methods of this kind can be migrated. A refactoring of this kind often implements a
semantically pleasing generalization that unifies common features of two previously
unrelated class hierarchies. This step is most practical, however, when it does not require
the redefinition or recompilation of current applications that use offset resolution. SOM is
unigue in that it allows this.

However, such refactoring must redefine the classes that originally introduced the common
methods (so the methods can be inherited from the new unifying class instead). A client
programmer who simply wants to create an application may not control the implementations
of the classes. Thus, the use of name-lookup method resolution seems the best alternative
for programmers who do not want to define new classes, but simply to make use of
available ones.

For example, assume the existence of two different SOM classes, classX and classy,
whose only common ancestor is SOMObject, and who both introduce a method named
reduce that accepts a string as an argument and returns a long. We assume that the
classes were not designed in conjunction with each other. As a result, it is unlikely that the
reduce method was defined with a namelookup modifier. The Figure 3 illustrates the class
hierarchy for this example.

7N\

Legend

clase
— Inharlts from

Figure 3. Name-Lookup Resolution

86 Programmer’s Guide for SOM and DSOM

Following is a C++ generic procedure that uses name-lookup method resolution to invoke
the reduce method on its argument, that may be either classX or classY. There is no
reason to include classY'’s usage bindings, since the typedef provided for the reduce
method procedure in classX is sufficient for invoking the method procedure, independently
of whether the target object is of type classX or classY.

#include classX.xh // use classX’'s method proc typedef

// this procedure can be invoked on a target of type

// classX or classY.

long generic_reducel (SOMObject *target, string arg)

{

somTD_classX reduce reduceProc = (somTD_classX_reduce)
somResolveByName (target, “reduce”);

return reduceProc (target, arg);

}

On the other hand, if the classes were designed in conjunction with each other, and the
class designer felt that programmers might want to write generic code appropriate to either
class of object, the namelookup modifier might have been used. This is a possibility, even
with multiple inheritance. However, it is much more likely that the class designer would use
multiple inheritance to introduce the reduce method in a separate class, and then use this
other class as a parent for both classxX and classy.

In any case, if the reduce method in classX were defined as a namelookup method, the
following code would be appropriate. The name-lookup support provided by classX usage
bindings is still appropriate for use on targets that do not have type classX. As a result,
the reduce method introduced by classY does not need to be defined as a namelookup
method.

#include classX.xh // use classX’'s name-lookup support

// this procedure can be invoked on a target of type

// classX or classY.

long generic_ reduce2 (SOMObject *target, string arg)

{

return lookup reduce (target, arg);

}

For non-C/C++ programmers: Name-lookup resolution is useful for non-C/C++
programmers when the type of an object on which a method must be invoked is not known
at compile time or when method tokens cannot be directly accessed by the programmer. To
invoke a method using name-lookup resolution when not using the C or C++ usage
bindings, use the somResolveByName Function to acquire a procedure pointer. How the
programmer indicates the method arguments and the linkage convention in this case is
compiler specific.

The somResolveByName procedure takes as arguments a pointer to the object on which
the method is to be invoked and the name of the method, as a string. It returns a pointer to
the method’s procedure (or NULL if the method is not supported by the object). The method
can then be invoked by calling the method procedure, passing the method'’s receiver, the

Using SOM Classes in Client Programs 87

88

Environment pointer (if necessary), the context argument (if necessary), and the rest of
the method’s arguments, if any. (See the section above for C programmers; the arguments
to a method procedure are the same as the arguments passed to the long-form C language
method-invocation macro for that method.)

As an example of invoking methods using name-lookup resolution using the procedure
somResolveByName, the following steps are used to create an instance of a SOM
Class X in Smalltalk:

1. Initialize the SOM run-time environment (if it is not already initialized) using the
somEnvironmentNew Function.

2. If the class object for class X has not yet been created, use somResolveByName with
the arguments SOMClassMgrObject (returned by somEnvironmentNew in step 1)
and the string somFindClass, to obtain a method procedure pointer for the
somFindClass method. Use the method procedure for somFindClass to create the
class object for class X. Call the method procedure with these four arguments:
SOMClassMgrObject; the variable holding class X’s somld (the result of calling the
somldFromString Function with argument X); and the major and minor version
numbers for class X (or zero). The result is the class object for class X.

3. Use somResolveByName with arguments the class object for X (returned by
somFindClass in step 2) and the string somNew, to obtain a method procedure pointer
for method somNew. (This somNew method is used to create instances of a class.)

4. Call the method procedure for somNew (using the method procedure pointer obtained
in step 3) with the class object for X (returned by somFindClass in step 3) as the
argument. The result is a new instance of class X. How the programmer indicates the
method arguments and the linkage convention is compiler-specific.

Obtaining a Method’s Procedure Pointer

Method resolution is the process of obtaining a pointer to the procedure that implements a
particular method for a particular object at run time. The method is then invoked
subsequently by calling that procedure, passing the method’s intended receiver, the
Environment pointer (if needed), the context argument (if needed), and the method'’s other
arguments, if any. C and C++ programmers may wish to obtain a pointer to a method’s
procedure for efficient repeated invocations.

Obtaining a pointer to a method’s procedure is achieved in one of two ways, depending on
whether the method is to be resolved using offset resolution or name-lookup resolution.
Obtaining a method’s procedure pointer through offset resolution is faster, but it requires
that the name of the class that introduces the method and the name of the method be
known at compile time. It also requires that the method be defined as part of that class’s
interface in the IDL specification of the class. (See Method Resolution on page 183 for
more information on offset and name-lookup method resolution.)

Offset resolution: To obtain a pointer to a procedure using offset resolution, the C/C++
usage bindings provide the SOM_Resolve Macro and SOM_ResolveNoCheck Macro.
The usage bindings themselves use the first of these, SOM_Resolve, for offset-resolution
method calls. The difference in the two macros is that the SOM_Resolve macro performs
consistency checking on its arguments, but the macro SOM_ResolveNoCheck, which is
faster, does not. Both macros require the same arguments:

SOM_Resolve (receiver, className, methodName)
SOM_ResolveNoCheck (receiver, className, methodName)

where the arguments are as follows:

Programmer’s Guide for SOM and DSOM

receiver
The object to which the method will apply. It should be specified as an expression
without side effects.

className
The name of the class that introduces the method.

methodName
The name of the desired method.

These two names (className and methodName) must be given as tokens, rather than
strings or expressions. (For example, as Animal rather than Animal.) If the symbol
SOM_TestOn is defined and the symbol SOM_NoTest is not defined in the current
compilation unit, then SOM_Resolve verifies that receiver is an instance of className or
some class derived from className. If this test fails, an error message is output

and execution is terminated.

The SOM_Resolve and SOM_ResolveNoCheck macros use the procedure somResolve
to obtain the entry-point address of the desired method procedure (or raise a fatal error if
methodName is not introduced by className). This result can be directly applied to the
method arguments, or stored in a variable of generic procedure type (for example,
somMethodPtr) and retained for later method use. This second possibility would result in a
loss of information, however, for the reasons now given.

The SOM_Resolve or SOM_ResolveNoCheck macros are especially useful because they
cast the method procedure they obtain to the right type to allow the C or C++ compiler to
call this procedure with system linkage and with the appropriate arguments. This is why the
result of SOM_Resolve is immediately useful for calling the method procedure, and why
storing the result of SOM_Resolve in a variable of some “generic” procedure type results in
a loss of information. The correct type information can be regained, however, because the
type used by SOM_Resolve for casting the result of somResolve is available from C/C++
usage bindings using the typedef name somTD_className_methodName. This type name
describes a pointer to a method procedure for methodName introduced by class
className. If the final argument of the method is a va_list, then the method procedure
returned by SOM_Resolve or SOM_ResolveNoCheck must be called with a va_list
argument, and not a variable number of arguments.

The following C example uses SOM_Resolve to obtain a method procedure pointer for
method sayHello, introduced by class Hel1lo, and using it to invoke the method on obj.
The only argument required by the sayHel1lo method is the Environment pointer.)

somMethodProc *p;

SOMObject obj = HelloNew() ;

P = SOM_Resolve (obj, Hello, sayHello);

((somTD_Hello sayHello)p) (obj, somGetGlobalEnvironment()) ;

SOM_Resolve and SOM_ResolveNoCheck can only be used to obtain method
procedures for static methods (methods that have been declared in an IDL specification for
a class) and not methods that are added to a class at run time. See Programmer’s
Reference for SOM and DSOM for more information and examples on SOM_Resolve and
SOM_ResolveNoCheck.

Name-lookup method resolution: To obtain a pointer to a method’s procedure using
name-lookup resolution, use the somResolveByName Function (described in the
following section), or any of the somLookupMethod, somFindMethod and
somFindMethodOK methods. These methods are invoked on a class object that supports
the desired method, and they take an argument specifying the a somld for the desired
method (which can be obtained from the method’s nhame using the somldFromString

Using SOM Classes in Client Programs 89

Function). For more information on these methods and for examples of their use, see
Programmer’s Reference for SOM and DSOM.

Method Name or Signature Unknown at Compile Time

If the programmer does not know a method’s hame at compile time (for example, it might
be specified by user input), then the method can be invoked in one of two ways, depending
upon whether its signature is known:

* Suppose the signature of the method is known at compile time (even though the
method name is not). In that case, when the name of the method becomes available at
run time, the somLookupMethod, somFindMethod or somFindMethodOk methods
or the somResolveByName procedure can be used to obtain a pointer to the method’s
procedure using name-lookup method resolution, as described in the preceding topics.
That method procedure can then be invoked, passing the method’s intended receiver,
the Environment pointer (if needed), the context argument (if needed), and the
remainder of the method’s arguments.

» If the method’s signature is unknown until run time, then dispatch-function resolution is
indicated.

Dispatch-function method resolution: If the signature of the method is not known at
compile time (and hence the method’s argument list cannot be constructed until run time),
then the method can be invoked at run time by:

» placing the arguments in a variable of type va_list at run time

» using the somGetMethodData Method followed by use of the somApply Function or
invoking the somDispatch or somClassDispatch method.

Using somApply is more efficient, since this is what the somDispatch method does, but it
requires two steps instead of one. In either case, the result invokes a stub procedure called
an apply stub, whose purpose is to remove the method arguments from the va_list, and
then pass them to the appropriate method procedure in the way expected by that
procedure. For more information on these methods and for examples of their use, see the
somApply function, and the somGetMethodData, somDispatch and somClassDispatch
methods in Programmer’s Reference for SOM and DSOM.

Using Class Objects

90

Using a class object encompasses three aspects: getting the class of an object, creating a
new class object, or simply referring to a class object through the use of a pointer.

Getting the Class of an Object

To get the class that an object is an instance of, SOM provides the somGetClass Method.
The somGetClass method takes an object as its only argument and returns a pointer to the
class object of which it is an instance. For example, the following statements store in
myClass the class object of which obj is an instance.

myClass = somGetClass (obj) ; (for C)
myClass = obj->somGetClass () ; (for C++)

Getting the class of an object is useful for obtaining information about the object; in some
cases, such information cannot be obtained directly from the object, but only from its class.
Getting Information about a Class on page 96 describes the methods that can be
invoked on a class object after it is obtained using somGetClass.

Programmer’s Guide for SOM and DSOM

The somGetClass method can be overridden by a class to provide enhanced or alternative
semantics for its objects. Because it is usually important to respect the intended semantics
of a class of objects, the somGetClass method should normally be used to access the
class of an object.

In a few special cases, it is not possible to make a method call on an object in order to
determine its class. For such cases, SOM provides the SOM_GetClass Macro. In general,
the somGetClass method and the SOM_GetClass macro may have different behavior (if
somGetClass has been overridden). This difference may be limited to side effects, but it is
possible for their results to differ as well. The SOM_GetClass macro should only be used
when absolutely necessary.

Creating a Class Object

A class object is created automatically the first time the classNameNew macro (for C) or
the new operator (C++) is invoked to create an instance of that class. In other situations,
however, it may be necessary to create a class object explicitly, as this section describes.

Using classNameRenew or somRenew: It is sometimes necessary to create a class
object before creating any instances of the class. For example, creating instances using the
classNameRenew macro or somRenew requires knowing how large the created instance
will be, so that memory can be allocated for it. Getting this information requires creating the
class object (see Creating Instances of a Class on page 72). As another example, a class
object must be explicitly created when a program does not use the SOM bindings for a
class. Without SOM bindings for a class, its instances must be created using somNew or
somRenew, and these methods require that the class object be created in advance.

Use the classNameNewClass procedure to create a class object:
* When using the C/C++ language bindings for the class, and
* When the name of the class is known at compile time.

Using classNameNewClass: The classNameNewClass procedure initializes the SOM
run-time environment, if necessary, creates the class object (unless it already exists),
creates class objects for the ancestor classes and metaclass of the class, if necessary, and
returns a pointer to the newly created class object. After its creation, the class object can be
referenced in client code using the macro

__className (for C and C++ programs)
or the expression
classNameClassData.classObject (for C and C++ programs)

The classNameNewClass procedure takes two arguments, the major version number and
minor version number of the class. These numbers are checked against the version
numbers built into the class library to determine if the class is compatible with the client’s
expectations. The class is compatible if it has the same major version humber and the
same or a higher minor version number. If the class is not compatible, an error is raised.
Major version numbers usually only change when a significant enhancement or
incompatible change is made to a class. Minor version numbers change when minor
enhancements or fixes are made. Downward compatibility is usually maintained across
changes in the minor version number. Zero can be used in place of version numbers to
bypass version number checking.

When using SOM bindings for a class, these bindings define constants representing the
major and minor version numbers of the class at the time the bindings were generated.
These constants are named className_MajorVersion and className_MinorVersion.
For example, the following procedure call:

Using SOM Classes in Client Programs 91

92

AnimalNewClass (Animal MajorVersion, Animal MinorVersion) ;

creates the class object for class Animal. Thereafter, Animal can be used to reference
the Animal class object.

The preceding technique for checking version numbers is not failsafe. For performance
reasons, the version numbers for a class are only checked when the class object is
created, and not when the class object or its instances are used. Thus, run-time errors may
result when usage bindings for a particular version of a class are used to invoke methods
on objects created by an earlier version of the class.

Using somFindClass or somFindClsinFile: To create a class object when not using the
C/C++ language bindings for the class, or when the class name is not known at compile
time:

» First, initialize the SOM run-time environment by calling the somEnvironmentNew
Function (unless it is known that the SOM run-time environment has already been
initialized).

e Then, use the somFindClass Method or somFindClsInFile Method to create the
class object. (The class must already be defined in a dynamically linked library, or DLL.)

The somEnvironmentNew function initializes the SOM run-time environment. It creates
the four primitive SOM objects (SOMClass, SOMObject, SOMClassMgr and the
SOMClassMgrObject), and it initializes SOM global variables. The function takes no
arguments and returns a pointer to the SOMClassMgrObject.

Note: Although somEnvironmentNew must be called before using other SOM functions
and methods, explicitly calling somEnvironmentNew is usually not necessary when using
the C/C++ bindings, because the macros for classNameNewClass, classNameNew and
classNameRenew call it automatically, as does the new operator for C++. Calling
somEnvironmentNew repeatedly does no harm.

After the SOM run-time environment has been initialized, the methods somFindClass and
somFindClsInFile can be used to create a class object. These methods must be invoked

on the class manager, which is pointed to by the global variable SOMClassMgrObject. (It
is also returned as the result of somEnvironmentNew.)

The somFindClass method takes the following arguments:

classld
A somld identifying the name of the class to be created. The somldFromString
Function returns a classld given the name of the class.

major version number
The expected major version number of the class.

minor version number
The expected minor version humber of the class.

The version numbers are checked against the version numbers built into the class library to
determine if the class is compatible with the client’s expectations.

The somFindClass method dynamically loads the DLL containing the class’s
implementation, if needed, creates the class object (unless it already exists) by invoking its
classNameNewClass procedure, and returns a pointer to it. If the class could not be
created, somFindClass returns NULL. For example, the following C code fragment creates
the class Hello and stores a pointer to it in myClass:

SOMClassMgr cm = somEnvironmentNew () ;
somId classId = somIdFromString(“Hello”) ;

SOMClass myClass = _somFindClass (SOMClassMgrObject, classId,

Programmer’s Guide for SOM and DSOM

Hello MajorVersion,

Hello MinorVersion) ;

SOMFree (classId) ;

The somFindClass method uses somLocateClassFile Method to get the name of the
library file containing the class. If the class was defined with a dliname class modifier, then
somLocateClassFile returns that file name; otherwise, it assumes that the class name is
the name of the library file. The somFindClsInFile method is similar to somFindClass,
except that it takes an additional (final) argument: the name of the library file containing the
class. The somFindClsInFile method is useful when a class is packaged in a DLL along
with other classes and the dliname class modifier has not been given in the class’s IDL
specification.

On AIX and the somFindClass and somFindClsInFile methods should not be used to
create a class whose implementation is statically linked with the client program. Instead, the
class object should be created using the <className>NewClass procedure provided by
the class’s header file. Static linkage is not created by simply including usage bindings in a
program, but by use of the offset-resolution method-invocation macros.

Invoking methods without corresponding class usage bindings: This topic builds on
the preceding discussion, and illustrates how a client program can apply dynamic SOM
mechanisms to utilize classes and objects for which specific usage bindings are not
available. This process can be applied when a class implementor did not ship the C/C++
language bindings. Furthermore, the process allows more programming flexibility, because
it is not necessary to know the class and method names at compile time in order to access
them at run time. (At run time, however, you must be able to provide the method
arguments, either explicitly or with a va_list, and provide a generalized way to handle
return values.) As an example application, a programmer might create an online class
viewer that can access many classes without requiring usage bindings for all those classes,
and the person using the viewer can select class names at run time.

As another aspect of flexibility, a code sequence similar to the following C++ example could
be re-used to access any class or method. After getting the somlId for a class name, the
example uses the somFindClass method to create the class object. The somNew method
is then invoked to create an instance of the specified class, and the somDispatch method
is used to invoke a method on the object.

#include <stdio.h>
#include <somcls.xh>
int main ()
{
SOMClass *classobj;
somId tempId;
somId methId;
SOMObject *s2;
Environment * main ev = somGetGlobalEnvironment () ;
tempId = SOM IdFromString (”myClassName”) ;
classobj = SOMClassMgrObject->somFindClass (tempId, 0,0) ;
SOMFree (tempId) ;
if (NULL==classobj)
{

printf (

Using SOM Classes in Client Programs 93

94

"somFindClass could not find the selected class\n”) ;

}

else

{

s2 = (SOMObject *) (classobj->somNew()) ;
methId = somIdFromString (”sayHello”) ;
if (s2->somDispatch((somToken *) 0, methId, s2, ev))

printf ("Method successfully called.\n”);

}

return O;

}

Referring to Class Objects

Saving a pointer as the class object is created: The classNameNewClass macro and
the somFindClass Method, used to create class objects, both return a pointer to the newly
created class object. Hence, one way to obtain a pointer to a class object is to save the
value returned by classNameNewClass or somFindClass when the class object is created.

Getting a pointer after the class object is created: After a class object has been
created, client programs can also get a pointer to the class object from the class name.
When the class name is known at compile time and the client program is using the C or
C++ language bindings, the macro

_className

can be used to refer to the class object for className. Also, when the class name is known
at compile time and the client program is using the C or C++ language bindings, the
expression

classNameClassData.classObject

refers to the class object for className. For example, Hello refers to the class object for
class Hello in C or C++ programs, and HelloClassData.classObject refers to the
class object for class Hel1lo in C or C++ programs.

Getting a pointer to the class object from an instance: If any instances of the class are
known to exist, a pointer to the class object can also be obtained by invoking the
somGetClass Method on such an instance. See Getting the Class of an Object on page
90.

Getting a pointer in other situations: If the class name is not known until run time, or if
the client program is not using the C or C++ language bindings, and no instances of the
class are known to exist, then the somClassFromld Method can be used to obtain a
pointer to a class object after the class object has been created. The somClassFromlid
method should be invoked on the class manager, which is pointed to by the global variable
SOMClassMgrObject. The only argument to the method is a somld for the class name,
which can be obtained using the somldFromString Function. somClassFromld returns a
pointer to the class object of the specified class. For example, the following C code stores
in myClass a pointer to the class object for class Hello (or NULL, if the class cannot be
located):

SOMClassMgr cm = somEnvironmentNew () ;

somId classId = somIdFromString(“Hello”) ;

SOMClass myClass = somClassFromId (SOMClassMgrObject,
classId,

Programmer’s Guide for SOM and DSOM

Hello MajorVersion,
Hello MinorVersion) ;

SOMFree (classId) ;

Compiling and Linking

This section describes how to compile and link C and C++ client programs. Compiling and
linking a client program with a SOM class is done in one of two ways, depending upon
whether or not the class is packaged as a library, as described below.

Note: If you are building an application that uses a combination of C and C++ compiled
object modules, then the C++ linker must be used to link them.

If the class is not packaged as a library (that is, the client program has the implementation
source code for the class, as in the examples given in the SOM IDL tutorial), then the client
program can be compiled together with the class implementation file as follows. (This
assumes that the client program and the class are both implemented in the same language,
C or C++. If this is not the case, then each module must be compiled separately to produce
an object file and the resulting object files linked together to form an executable.)

In the following examples, the environment variable SOMBASE refers to the directory in
which SOM has been installed. The examples also assume that the header files and the
import library for the Hello class reside in the include and lib directories where SOM has
been installed. If this is not the case, additional path information should be supplied for
these files. For client program main and class Hello:

Under AlX, for C programmers: >

xlc -I. -ISSOMBASE/include main.c hello.c \
-LSSOMBASE/lib -lsomtk -o main

Under AlX, for C++ programmers:

> x1C -I. -I$SOMBASE/include main.C hello.C \
-LSSOMBASE/lib -lsomtk -o main

Under OS/2 or Windows NT, for C programmers

> set LIB=%SOMBASE%\1lib;$%LIB%

> icc -I. -I%SOMBASE%\include main.c hello.c somtk.lib
Under OS/2 or Windows NT, for C++ programmers

> set LIB=%SOMBASE%\1lib;%LIB%

> icc -I. -I%SOMBASE%\include main.cpp hello.cpp somtk.lib

If the class is packaged as a class library, then the client program, main, is compiled as
above, except that the class implementation file is not part of the compilation. Instead, the
import library provided with the class library is used to resolve the symbolic references that
appear in main. For example, to compile the C client program main.c that uses class
Hello:

Under AIX:

> xlc -I. -I$SSOMBASE/include main.c -lc -L$SOMBASE/lib\
-lsomtk -lhello -o main

Under OS/2 or Windows NT:
> set LIB=%SOMBASE%\1lib;3%LIB%
> icc -I. -I%SOMBASE%\include main.c somtk.lib hello.lib

Using SOM Classes in Client Programs 95

Language-Neutral Methods and Functions

This section describes methods, functions and macros that client programs can use
regardless of the programming language in which they are written. In other words, these
functions and methods are not part of the C or C++ bindings.

Generating Output

The following functions and methods are used to generate output, including descriptions of
SOM objects. They all produce their output using the character-output procedure held by
the global variable SOMOutCharRoutine. The default procedure for character output
simply writes the character to stdout, but it can be replaced to change the output
destination of the methods and functions below.

somDumpSelf Method
Writes a detailed description of an object, including its class, its location, and its
instance data. The receiver of the method is the object to be dumped. An additional
argument is the nesting level for the description. [All lines in the description will be
indented by (2 * level) spaces.]

somLPrintf Function
Combines somPrefixLevel Function and somPrintf Function. The first argument is
the level of the description (as for somPrefixLevel) and the remaining arguments are
as for somPrintf (or for the C printf function).

somPrefixLevel Function
Generates (by somPrintf) spaces to prefix a line at the indicated level. The return type
is void. The argument is an integer specifying the level. The number of spaces
generated is (2 * level).

somPrintSelf Method
Writes a brief description of an object, including its class and location in memory. The
receiver of the method is the object to be printed.

somPrintf Function
SOM’s version of the C printf function. It generates character stream output through
SOMOutCharRoutine. It has the same interface as the C printf function.

somVprintf Function
Represents the vprint form of somPrintf. Its arguments are a formatting string and a
va_list holding the remaining arguments.

See Programmer’s Reference for SOM and DSOM for more information on a specific
function or method.

Getting Information about a Class

The following methods are used to obtain information about a class or to locate a particular
class object:

somCheckVersion Method
Checks a class for compatibility with the specified major and minor version numbers.
The receiver of the method is the SOM class about which information is needed.
Additional arguments are values of the major and minor version numbers. The method
returns TRUE if the class is compatible, or FALSE otherwise.

96 Programmer’s Guide for SOM and DSOM

somClassFromld Method
Finds the class object of an existing class when given its somld, but without loading
the class. The receiver of the method is the class manager (pointed to by the global
variable SOMClassMgrObject). The additional argument is the class’s somld. The
method returns a pointer to the class (or NULL if the class does not exist).

somDescendedFrom Method
Tests whether one class is derived from another. The receiver of the method is the
class to be tested, and the potential ancestor class is the argument. The method
returns TRUE if the relationships exists, or FALSE otherwise.

somFindClass Method
Finds or creates the class object for a class, given the class’s somld and its major and
minor version numbers. The receiver of the method is the class manager (pointed to by
the global variable SOMClassMgrObject). Additional arguments are the class’s somld
and the major and minor version numbers. The method returns a pointer to the class
object, or NULL if the class could not be created.

somFindClsinFile Method
Finds or creates the class object for a class. This method is similar to somFindClass,
except the user also provides the name of a file to be used for dynamic loading, if
needed. The receiver of the method is the class manager (pointed to by the global
variable SOMClassMgrObject). Additional arguments are the class’s somld, the major
and minor version numbers, and the file name. The method returns a pointer to the
class object, or NULL if the class could not be created.

somGetinstancePartSize Method
Obtains the size of the instance variables introduced by a class. The receiver of the
method is the class object. The method returns the amount of space, in bytes, needed
for the instance variables.

somGetinstanceSize Method
Obtains the total size requirements for an instance of a class. The receiver of the
method is the class object. The method returns the amount of space, in bytes,
required for the instance variables introduced by the class itself and by all of its
ancestor classes.

somGetName Method
Obtains the name of a class. The receiver of the method is the class object. The
method returns the class name.

somGetNumMethods Method
Obtains the number of methods available for a class. The receiver of the method is the
class object. The method returns the total number of currently available methods (static
or otherwise, including inherited methods).

somGetNumStaticMethods Method
Obtains the number of static methods available for a class. (A static method is one
declared in the class’s interface specification .idl file.) The receiver of the method is the
class object. The method returns the total number of available static methods, including
inherited ones.

somGetParents Method
Obtains a sequence of the parent (base) classes of a specified class. The receiver of
the method is the class object. The method returns a pointer to a linked list of the
parent (base) classes (unless the receiver is SOMObject, for which it returns NULL).

Using SOM Classes in Client Programs 97

somGetVersionNumbers Method
Obtains the major and minor version numbers of a class. The receiver of the method is
the class object. The return type is void, and the two arguments are pointers to
locations in memory where the method can store the major and minor version numbers

(of type long).

somSupportsMethod Method
Indicates whether instances of a given class support a given method. The receiver of
the somSupportsMethod method is the class object. The argument is the somld for
the method in question. The somSupportsMethod returns TRUE if the method is
supported, or FALSE otherwise.

See Programmer’s Reference for SOM and DSOM for more information on a specific
method.

Getting Information about an Object

The following methods and functions are used to obtain information about an object
(instance) or to determine whether a variable holds a valid SOM object.

somGetClass Method
Gets the class object of a specified object. The receiver of the method is the object
whose class is desired. The method returns a pointer to the object’s corresponding
class object.

somGetClassName Method
Obtains the class name of an object. The receiver of the method is the object whose
class name is desired. The method returns a pointer to the name of the class of which
the specified object is an instance.

somGetSize Method
Obtains the size of an object. The receiver of the method is the object. The method
returns the amount of contiguous space, in bytes, that is needed to hold the object itself
(not including any additional space that the object may be using or managing outside of
this area).

somIsA Method
Determines whether an object is an instance of a given class or of one of its
descendant classes. The receiver of the method is the object to be tested. An
additional argument is the name of the class to which the object will be compared. This
method returns TRUE if the object is an instance of the specified class or if (unlike
somlsinstanceOf) it is an instance of any descendant class of the given class;
otherwise, the method returns FALSE.

somlsinstanceOf Method
Determines whether an object is an instance of a specific class (but not of any
descendant class). The receiver of the method is the object. The argument is the name
of the class to which the object will be compared. The method returns TRUE if the
object is an instance of the specified class, or FALSE otherwise.

somlIsObj Function
Takes as its only argument an address (which may not be valid). The function returns
TRUE (1) if the address contains a valid SOM object, or FALSE (0) otherwise. This
function is designed to be failsafe.

98 Programmer’s Guide for SOM and DSOM

somRespondsTo Method
Determines whether an object supports a given method. The receiver of the method is
the object. The argument is the somld for the method in question. The
somRespondsTo method returns TRUE if the object supports the method, or FALSE
otherwise.

See Programmer’s Reference for SOM and DSOM for more information on a specific
method or function.

Debugging

The following macros are used to conditionally generate output for debugging. All output
generated by these macros is written using the replaceable character-output procedure
pointed to by the global variable SOMOutCharRoutine. The default procedure simply
writes the character to stdout, but it can be replaced to change the output destination of the
methods and functions below.

Debugging output is produced or suppressed based on the settings of three global
variables, SOM_TracelLevel, SOM_WarnLevel and SOM_AssertLevel:

e SOM_TraceLevel controls the behavior of the classNameMethodDebug macro

e SOM_WarnLevel controls the behavior of: SOM_WarnMsg Macro, SOM_TestC
Macro and SOM_Expect Macro

* SOM_AssertLevel controls the behavior of the SOM_Assert Macro.

Available macros for generating debugging output are as follows:
classNameMethodDebug

(macro for C and C++ programmers using the SOM language bindings for className) The
arguments to this macro are a class name and a method name. If the SOM_TraceLevel
global variable has a nonzero value, the classNameMethodDebug macro produces a
message each time the specified method (as defined by the specified class) is executed.
This macro is typically used within the procedure that implements the specified method.
(The SOM Compiler automatically generates calls to the classNameMethodDebug macro
within the implementation template files it produces.) To suppress method tracing for all
methods of a class, put the following statement in the implementation file after including the
header file for the class:

#define classNameMethodDebug (c,m)\
SOM_NoTrace (c,m)

This can yield a slight performance improvement. The SOMMTraced Metaclass provides a
more extensive tracing facility that includes method parameters and returned values.

SOM_TestC Macro
SOM_TestC takes as an argument a boolean expression. If the boolean expression is
TRUE (nonzero) and SOM_AssertLevel is greater than zero, then an informational
message is output. If the expression is FALSE (zero) and SOM_WarnLevel is greater
than zero, a warning message is produced.

SOM_WarnMsg Macro
SOM_WarnMsg takes as an argument a character string. If the value of
SOM_WarnLevel is greater than zero, the specified message is output.

Using SOM Classes in Client Programs 99

SOM_Assert Macro
SOM_Assert takes as arguments a boolean expression and an error code (an integer).
If the boolean expression is TRUE (nonzero) and SOM_AssertLevel is greater than
zero, then an informational message is output. If the expression is FALSE (zero), and
the error code indicates a warning-level error and SOM_WarnLevel is greater than
zero, then a warning message is output. If the expression is FALSE and the error code
indicates a fatal error, then an error message is produced and the process is
terminated.

SOM_Expect Macro
SOM_Expect takes as an argument a boolean expression. If the boolean expression is
FALSE (zero) and SOM_WarnLevel is set to be greater than zero, then a warning
message is output. If condition is TRUE and SOM_AssertLevel is set to be greater
than zero, then an informational message is output.

somDumpSelf Method and somPrintSelf Method can be useful in testing and debugging.
somPrintSelf produces a brief description of an object, and somDumpSelf produces a
more detailed description. See Programmer’s Reference for SOM and DSOM for more
information.

Checking the Validity of Method Calls

The C and C++ language bindings include code to check the validity of method calls at run
time. If a validity check fails, the SOM_Error Macro ends the process. To enable
method-call validity checking, place the following directive in the client program prior to any
#include directives for SOM header files:

#define SOM TestOn

Alternatively, the -DSOM_TestOn option can be used when compiling the client program to
enable method-call validity checking.

Exceptions and Error Handling

100

In the classes provided in the SOM run-time library (that is, SOMClass, SOMObject and
SOMClassMgr) error handling is performed by a user-replaceable procedure, pointed to by
the global variable SOMError, that produces an error message and an error code and, if
appropriate, ends the process where the error occurred.

Each error is assigned a unique integer error code. Errors are grouped into three
categories, based on the last digit of the error code:

SOM_lIgnore
This category of error represents an informational event. The event is considered
normal and can be ignored or logged at the user’s discretion. Error codes ending in a
digit 2 belong to this category.

SOM_Warn
This category of error represents an unusual condition that is not a normal event, but is
not severe enough to require program termination. Error codes ending in a digit 1
belong to this category.

SOM_Fatal
This category of error represents a condition that should not occur or that would result
in loss of system integrity if processing were allowed to continue. In the default error
handling procedure, these errors cause the termination of the process in which they
occur. Error codes ending in a digit 9 belong to this category.

Programmer’s Guide for SOM and DSOM

The codes for errors detected by SOM are listed in Appendix A, Error Codes on page 397.

When errors are encountered in client programs or user defined-classes, the following two
macros can be used to invoke the error-handling procedure:

SOM_Error Macro
SOM_Error takes an error code as its only argument and invokes the SOM error
handling procedure (pointed to by the global variable SOMError) to handle the error.
The default error handling procedure prints a message that includes the error code, the
name of the source file, and the line number where the macro was invoked. If the last
digit of the error code indicates a serious error (of category SOM_Fatal), the process
causing the error is terminated.)

SOM_Test Macro
SOM_Test takes a boolean expression as an argument. If the expression is TRUE
(nonzero) and the SOM_AssertLevel is greater than zero, then an informational
message is output. If the expression is FALSE (zero), an error message is produced
and the program is terminated.

See Programmer’s Reference for SOM and DSOM for more information on a specific
macro.

Other classes provided by the SOMobjects Developer Toolkit (including those in DSOM,
the Interface Repository framework and the utility classes and metaclasses) handle errors
differently. Rather than invoking SOMError with an error code, their methods return
exceptions by the (Environment *) inout parameter required by these methods. The
following sections describe the exception declarations, the standard exceptions, and how to
set and get exception information in an Environment structure.

Introduction to Exceptions

SOMobijects follows the CORBA model for exception handling. In this model the method
caller receives error information back from the method invocation in a data structure called
the Environment. This is different from the catch/throw model where an exception is
implemented by a long jump or a signal.

CORBA defines two types of exceptions:

USER_EXCEPTION
Explicitly declared in IDL files. Every method that returns a user exception contains a
raises keyword listing the exceptions it may return.

SYSTEM_EXCEPTION
Implicitly defined. Any method may return these exceptions without listing them on a
raises keyword. System exceptions are sometimes called standard exceptions.

User Exceptions

In SOM Interface Definition Language, a method may be declared to return zero or more
exceptions. Each type of exception has a name and, optionally, a struct-like data structure
for holding error information. A method declares the types of exceptions it may return in a
raises expression.

Below is an example IDL declaration of a BAD FLAG exception, which may be raised by a
checkFlag method, as part of a MyObject interface:

interface MyObject ({

exception BAD FLAG {long ErrCode; char Reason[80]; };

void checkFlag(in unsigned long flag) raises (BAD_ FLAG) ;

Using SOM Classes in Client Programs 101

102

i
An exception structure contains information to help the caller understand the nature of the
error. The exception declaration can be treated like a struct definition: that is, whatever you
can access in an IDL struct, you can access in an exception declaration. Alternatively, the
structure can be empty, whereby the exception is just identified by its name.

The SOM Compiler will map the exception declaration in the above example to the
following C language constructs:
typedef struct BAD FLAG {
long ErrCode;
char Reason[80] ;

} BAD FLAG;

#define ex BAD FLAG “MyObject::BAD FLAG”

When an exception is detected, the checkFlag method must call the SOMMalloc
Function to allocate a BAD FLAG structure, initialize it with the appropriate error
information, and make a call to the somSetException Function to record the exception
value in the Environment structure passed in the method call. The caller, after invoking
checkFlag, can check the Environment structure that was passed to the method to see if
there was an exception and, if so, extract the exception value from the Environment.

System Exceptions

In addition to user-defined exceptions (those defined explicitly in an IDL file), there are
several predefined exceptions for system run-time errors. A system exception can be
returned on any method call. (That is, they are implicitly declared for every method whose
class uses IDL call style, and they do not appear in any raises expressions.) The standard
exceptions are listed in Exception Declarations on page 125. Most of the predefined
system exceptions pertain to Object Request Broker errors. Consequently, these types of
exceptions are most likely to occur in DSOM applications.

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO MEMORY
standard exception has the following definition:

enum completion status {YES, NO, MAYBE};
exception NO MEMORY { unsigned long minor;
completion status completed; };

The completion status value indicates whether the method was never initiated (NO),
completed execution prior to the exception (YES), or the completion status is indeterminate
(MAYBE).

Because all the standard exceptions have the same structure, file somcorba.h included by
som.h defines a generic StExcep typedef which can be used instead of the specific
typedefs:

typedef struct StExcep {
unsigned long minor;
completion status completed;
} StExcep;

The standard exceptions are defined in an IDL module called StExcep, in the file named
stexcep.idl, and the C definitions can be found in stexcep.h.

Programmer’s Guide for SOM and DSOM

The Environment

The Environment is a data structure that contains environmental information that can be
passed between a caller and a called object when a method is executed. For example, it is
primarily used to return exception data to the client following a method call.

A pointer to an Environment variable is passed as an argument to method calls (unless the
method’s class has the callstyle=oidl SOM IDL modifier). The Environment typedef is
defined in som.h, and an instance of the structure is allocated by the caller in any
reasonable way: on the stack (by declaring a local variable and initializing it using the
SOM_InitEnvironment Macro), dynamically (using the SOM_CreateLocalEnvironment
Macro) or by calling the somGetGlobalEnvironment Function to allocate an
Environment structure to be shared by objects running in the same thread.

For class libraries that use callstyle=oidl, there is no explicit Environment parameter. For
these libraries, exception information may be passed using the per-thread Environment
structure returned by the somGetGlobalEnvironment procedure.

Setting an Exception Value

To set an exception value in the caller's Environment structure, a method implementation
makes a call to the somSetException procedure:

void somSetException (Environment *ev,

exception type major,

string exception name,

void *params) ;
where ev is a pointer to the Environment structure passed to the method, major is an
exception_type,

typedef enum exception type {

NO EXCEPTION, USER_EXCEPTION, SYSTEM EXCEPTION,

exception type MAX=214783647

} exception type;
exception_name is the string name of the exception (usually the constant defined by the

IDL compiler, for example, ex BAD FLAG), and params is a pointer to an (initialized)
exception structure which must be allocated by SOMMalloc:

The somSetException Function expects the params argument to be a pointer to a
structure that was allocated using SOMMalloc Function. When somSetException is
called, the client passes ownership of the exception structure to the SOM run-time
environment. The SOM run-time environment will free the structure when the exception is
reset (that is, upon next call to somSetException), or when the somExceptionFree
Function is called.

somSetException simply sets the exception value; it performs no exit processing. If there
are multiple calls to somSetException before the method returns, the caller sees only the
last exception value.

Getting an Exception Value

After a method returns, the calling client program can look at the Environment structure to
see if there was an exception. The Environment struct is mostly opaque, except for an
exception type field named _major:

typedef struct Environment

Using SOM Classes in Client Programs 103

104

exception type _major;

} Environment;

If ev._major != NO_EXCEPTION, there was an exception returned by the call. The caller
can retrieve the exception name and value (passed as parameters in the
somSetException Function call) from an Environment struct with the following functions:

string somExceptionId (Environment *ev);
somToken somExceptionValue (Environment *ev) ;

The somExceptionld Function returns the exception name, if any, as a string. The
somExceptionValue Function returns a pointer to the value of the exception, if any,
contained in the exception structure. If NULL is passed as the Environment pointer in either
of the above calls, an implicit call is made to the somGetGlobalEnvironment Function.

The somExceptionFree Function frees any memory in the Environment associated with
the last exception. This function does only a shallow SOMFree of the Environment’s
exception parameters. It does not walk the exception parameters, freeing any nested
memory blocks. For information on managing the memory, objects and exceptions used by
DSOM applications, see Memory-Management Functions on page 256.

void somExceptionFree (Environment *ev);

You can also use the CORBA exception_free API to free the memory in an Environment
structure.

File somcorba.h (included by som.h) provides the following aliases for strict compliance
with CORBA programming interfaces:

#ifdef CORBA FUNCTION NAMES

#define exception id somExceptionId
#define exception value somExceptionValue
#define exception free somExceptionFree

#endif /* CORBA FUNCTION NAMES */

Example Of Raising an Exception

The following IDL interface for a MyObject object in a file called myobject . idl declares
a BAD FLAG exception, which can be raised by the checkFlag method:

interface MyObject ({
exception BAD FLAG { long ErrCode; char Reason[80]; };

void checkFlag(in unsigned long flag) raises(BAD_ FLAG) ;

bi
The SOM IDL compiler maps the exception to the following C language constructs, in
myobject.h:

typedef struct BAD FLAG {
long ErrCode;
char Reason[80];

} BAD FLAG;

#define ex BAD FLAG “MyObject::BAD FLAG”

Programmer’s Guide for SOM and DSOM

A client program that invokes the checkF1lag method might contain the following error
handling code.

Note: The error checking code below lies in the user-written procedure, ErrorCheck, so
the code need not be replicated through the program.

#include “som.h”

#include “myobject.h”

boolean ErrorCheck (Environment *ev) ; /* prototype */

main ()

{
unsigned long flag;
Environment ev;
MyObject myobj;
char *exId;
BAD_FLAG *badFlag;

StExcep *stExValue;

myobj = MyObjectNew () ;
flag = 0x01L;

SOM_InitEnvironment (&ev) ;

/* invoke the checkFlag method, passing the Environment
parameter */

_checkFlag (myobj, &ev, flag);

/* check for exception */

if (ErrorCheck (&ev))

{
/* %/

somExceptionFree (&ev) ; /* free the exception memory */

ALY/
}

/* error checking procedure */

boolean ErrorCheck (Environment *ev)

{

switch (ev._major)

{

case SYSTEM_EXCEPTION:

/* get system exception id and value */

Using SOM Classes in Client Programs 105

exId = somExceptionId(ev) ;
stExValue = somExceptionValue (ev) ;
[* o %/

return (TRUE) ;

case USER_EXCEPTION:

/* get user-defined exception id and value */

exId = somExceptionId(ev) ;

if (strcmp(exId, ex BAD FLAG) == 0)

{
badFlag = (BAD_FLAG *) somExceptionValue (ev) ;
VA

}

/* ... %/

return (TRUE) ;

case NO_EXCEPTION:

return (FALSE) ;

}

The implementation of the checkF1lag method may contain the following error-handling
code:

#include “som.h”
#include “myobject.h”
void checkFlag(MyObject somSelf, Environment *ev,

unsigned long flag)

BAD_FLAG *badFlag;
/*ox/

if (/* flag is invalid */)
{
badFlag = (BAD_FLAG *) SOMMalloc (sizeof (BAD_FLAG)) ;
badFlag->ErrCode = /* bad flag code */;
strcpy (badFlag->Reason, “bad flag was passed”);
somSetException(ev, USER _EXCEPTION,
ex BAD FLAG, (void *)badFlag) ;

return;

VA

106 Programmer's Guide for SOM and DSOM

The Error Log Facility

SOMobijects supports an error log to record exceptions and error conditions that may occur
within the SOMobjects services. DSOM and all the Object Services use this facility.

Most of the data recorded in the error log is formatted to help you debug new applications.
The remaining data is not formatted and can be used by support personnel to help
diagnose more complicated problems.

The error log records only exceptions and errors that occur within code shipped with the
SOMobjects Developer Toolkit. If you wish to record error information from the frameworks
and applications that you develop, you must provide your own facility to do this.

The error log is implemented as a wrapping log file. Once it has filled up, the oldest entries
are destroyed as new entries are added. All processes on the same system should be set
up to share a single error log file for greater ease in solving any multi-process interaction
problems that might occur. If you are using DSOM at multiple locations, you have multiple
error logs. Error log files are located in the directory pointed to by the SOMDDIR
configuration variable, under the [somd] stanza, in the configuration file.

Configuring the Error Log

There are four variables in the configuration file, under the [somras] stanza, which you can
set to customize the operation of the error log.

Name of the Error Log File

The SOMErrorLogFile variable controls the name of the error log file. The default setting of
SOMErrorLogFile is SOMERROR.LOG.

Size of the Error Log

The SOMErrorLogSize variable controls the maximum size of the error log file. The default
size is 128 which lets the error log file grow to 128 kilobytes before it begins to wrap. The
default size allows room for several hundred average log entries.

Type of Information To Record

The SOMErrorLogControl variable lets you filter the information to record in the Error Log.
The severity of errors logged, for example, INFO, WARNING, or ERROR can be
individually selected. You can use the MAPPED_EXCEPTION value to select whether to
record a message each time an object service maps an exception into a different exception.
This often occurs as an exception raised by an object service ripples back up through the
object system to the application.

The default setting of SOMErrorLogControl is WARNING ERROR MAPPED_EXCEPTION
which records errors with severities of WARNING and ERROR, as well as all mapped
exceptions. The default setting does not record errors with severity INFO. You may specify
any combination of the control values. To specify multiple values, as the default setting
does, separate each value by one or more blank spaces.

Display Error Messages

The SOMErrorLogDisplayMsgs variable controls whether to also display the error message
to the standard output device each time an Error Log entry is made. The displayed

Using SOM Classes in Client Programs 107

messages do not include any extended log data collected for service personnel. The default
setting of SOMErrorLogDisplayMsgs is YES. The default setting logs errors and displays
the optional messages. This setting is helpful while you are debugging new applications.

Using The Error Log

108

Much of the data in the Error Log is formatted. You can use a text editor to display the
contents of the error log file. The top lines of the file contain the name of the host system
that this error log file is from, the operating system, and the number of the last log entry
written in the file.

To find the last error log entry in the file look for the LASTENTRY: nnnn line in the
information at the top of the file. You can then use the search feature of your text editor to
locate this entry nnnn in the log file. Because the error log wraps around, this entry may be
anywhere in the file.

Understanding Error Log Entries

Each error log entry starts with a message area and may contain extended log data. The
message area contains the following free-form fields:

e The error log entry number enclosed in brackets. Error log entry numbers can range
from 0 to 9999. When the error log entry number reaches 9999 it wraps back to 0 and
starts over again.

« Adate and time stamp telling the system date and time when the error log entry was
made.

e PID: o0Xnnnnis the process identifier of the code that made the error log entry call.
e« TID: oxnnnn identifies the thread, within the process, that made the call.

e Request from clientX on hostY identifies the client name and host name where the
operation request originated. Normally this information is retrieved from the Principal
object that accompanies each DSOM request. If the Principal object is not available,
this portion of the message may say Request from unknown client on
unknown host. You can use this information to help debug servers where requests
are coming from different hosts and clients.

The second part of an error log entry is the optional extended log data. If included, this part
of the entry contains hexadecimal data followed by an ASCII translation of the data. Most of
this data is useful only to service personnel. However, some of the action lists in Appendix
A, Error Codes on page 397 may point out information in this data that will be useful to you.

A complete error log entry that contains both a message and extended log data may look
like the following.
{1234} Thur Oct 12 13:02:46 cst 1995 PID:0XFOA2 TID:0X000B
Raised SYSTEM EXCEPTION UNKNOWN with severity WARNING at
somutil.c:1254.
Request from clientX on hostY.
Error code is 20199 [SOMERROR BadArgument] .

e2 00 00 00 21 00 44 6f 67 43 6C cl1 73 73 00 00 d2
[....!.DogClass...]

00 24 00 00 4d 79 46 61 63 74 6f 72 79 00 00 ff ff
[.$..MyFactory....]

Programmer’s Guide for SOM and DSOM

00 00 00 00 00 ed ed 00 00 ef fe 00 00 00 00 00 00

00 3e 00 00 40 00 00 2a 00 00 00 OO0 ff ff ff ff ed
[.>..@..%.........]

If the extended log data is quite large, you may see continuation blocks that begin with
{#nnnn}, where nnnn is the same number used at the beginning of the log entry. The plus
symbol (+) indicates this is a coniuation block for the same long entry. A continuation block
for the above example would begin:

{+1234} Thur Cot 12 13?702:46 cst 1995 PID 0XFOA2 TID: 0X000B
It is possible for one log entry to have several continuation block.
The Standard Error Messages: The following list shows the four basic message types
that may be logged. The examples do not include the optional extended log data.
{1234} Thur Oct 12 13:02:46 cst 1995 PID:0X0512 TID:0X0837
Raised SYSTEM EXCEPTION UNKNOWN with severity WARNING at
somutil.c:1254.
Request from clientX on hostY.
Error code is 20199 [SOMERROR BadArgument] .

This type of message is logged by an object service when it raises a new exception (that is,
records an exceptional condition into the environment structure). This message includes an
error code. See Appendix A, Error Codes on page 397 to determine its meaning and
actions to take to correct the problem. This type of message also contains a level indicator.
See Level of Errors on page 110 for more information.

{4321} sat Oct 14 13:02:46 cst 1995 PID:0X9909 TID:0X0787

Mapped USER_EXCEPTION WrongTransaction to SYSTEM EXCEPTION BAD PARAM

at somtr.c:231.
Request from clientX on hostY.

New Error code is 00001 [Exception Data Logged] .

This type of message indicates that an object service received an exception from a sub-
service method call and has mapped the original exception into a new exception. This
mapping is often required because services can raise only User Exceptions listed on their
interface descriptions or Standard CORBA Exceptions. You may follow the trail of mapped
exceptions to understand if the exception received by the application code has been re-
mapped from the object service exception that was originally raised. If re-mapping has
occurred, the action list for the original exception, that is, the one with message type (1)
above, may often contain more helpful information for resolving the problem.

{0089} Thur Oct 12 19:06:39 cst 1995 PID:0XFOA3 TID:0X001B
Process abnormally terminated at somutil.c:142.
Request from clientX on hostY.
This type of message indicates an error situation that prevented the object service from
operating reliably.
{1523} sat Oct 14 02:23:16 cst 1995 PID:0XF003 TID:0X0015
Service data collected with severity ERROR at somderr.c:523.
Request from clientX on hostY.

The action lists in Appendix A, Error Codes on page 397 might provide useful information.
This type of message might indicate that the object service logged data for use by service
personnel.

Using SOM Classes in Client Programs 109

Locating

Extended Error Messages: Each object service may also supply some unique extended
error messages. Object service extended error messages always begin with the text from
one of the four standard message types and then append service specific information to the
end of the message.

The object service extended message below illustrates an extension of message type 1.
{1425} Thur Oct 12 11:48:26 cst 1995 PID:0XF0A3 TID:0X001B
Raised SYSTEM EXCEPTION BAD PARAM with severity WARNING at

somp.c:1325.
Request from clientX on hostY.
Error code is 50123 [Bad Persistent ID].
Persistent ID received from client was CustomerPIDO0005.
In this extended error message example Persistent Id received from client

was CustomerPID0005. isthe object service unique extension that was added to a
standard message.

Level of Errors: Some error log entries contain an indication of the error level. The
following error levels are used.

» INFO indicates a problem which is usually handled within the SOMobjects code and
probably does not affect your application.

WARNING indicates a problem that may cause your application to not function
properly. Warning messages cannot be ignored. You must resolve these errors for your
application to function properly.

« ERROR indicates a problem that most likely prevents your application from functioning
properly.

the Correct Log File

In order to use the Error Log effectively you must first determine which systems’ log file you
need to look at. If your application invokes methods on server processes running in remote
systems, you may have to examine the log files on the server systems to determine what
error occurred. It may be helpful to keep SOMErrorLogDisplayMsgs set to YES on each of
the server systems to display error messages while you are debugging your new
application. This lets you determine which system originally raised an exception. Once you
have identified the system which raised the exception, you can look up the error code in
Appendix A, Error Codes on page 397 and use the action list to help you resolve the
problem.

Memory Management

The SOMobjects Developer Toolkit provides several functions for memory management.

Using SOM Equivalents to ANSI C Functions

The memory management functions used by SOM are a subset of those supplied in the
ANSI C standard library. They have the same calling interface and the same return types
as their ANSI C equivalents, but include supplemental error checking. Errors detected by
these functions are passed to the SOMError Function. The correspondence between
SOM memory management functions and their ANSI C standard library equivalents is
shown below:

110 Programmer’s Guide for SOM and DSOM

SOM Function Equivalent ANSI C Library Routine

SOMMalloc malloc
SOMCalloc calloc
SOMRealloc realloc
SOMFree free

SOMMalloc Function, SOMCalloc Function, SOMRealloc Function and SOMFree
Function are actually global variables that point to the SOM memory management
functions (rather than being the names of the functions themselves), so that users can
replace them with their own memory management functions if desired.

Clearing Memory for Objects

The memory associated with objects initialized by a client program must also be freed by
the client. The SOM-provided somFree Method is used to release the storage containing
the receiver object:

#include “origcls.h”

main ()
{
OrigCls myObject;
myObject = OrigClsNew () ;
/* Code to use myObject */

_somFree (myObject) ;

Clearing Memory for the Environment

Any memory associated with an exception in an Environment structure is typically freed
using the somExceptionFree Function. (Or, the CORBA exception_free API can be
used.) The somExceptionFree function takes the following form:

void somExceptionFree (Environment *ev);

For information on managing the memory, objects and exceptions used by DSOM
applications, see Memory-Management Functions on page 256.

SOM Manipulations Using somld

A somld is similar to a number that represents a zero-terminated string. A somld is used in
SOM to identify method names, class names and so forth. For example, many of the SOM
methods that take a method or class name as a parameter require a value of type somlid
rather than string. All SOM manipulations using somlds are case insensitive, although the
original case of the string is preserved.

During its first use with any of the following functions, a somld is automatically converted to
an internal representation (registered). Because the representation of a somld changes, a
special SOM type (somld) is provided for this purpose. Names and the corresponding
somld can be declared at compile time, as follows:

string example = “exampleMethodName” ;

Using SOM Classes in Client Programs 111

112

somId exampleId = &example;
or a somld can be generated at run time, as follows:

somId myMethodId;
myMethodId = somIdFromString (“exampleMethodName”) ;
SOM provides the following functions that generate or use a somld:

somldFromString Function
Finds the somld that corresponds to a string. The method takes a string as its
argument, and returns a value of type somld that represents the string. The returned
somld must later be freed using the SOMFree Function.

somStringFromld Function
Obtains the string that corresponds to a somld. The function takes a somld as its
argument and returns the string that the somld represents.

somComparelds Function
Determines whether two somld values are the same (that is, represent the same
string). This function takes two somld values as arguments. It returns TRUE (1) if the
two somld values represent the same string, or FALSE (0) otherwise.

somCheckld Function
Determines whether SOM already knows a somld. The function takes a somld as its
argument. It verifies whether the somld is registered and in normal form, registers it if
necessary, and returns the input somld.

somRegisterld Function
The same as somCheckld, except it returns TRUE (1) if this is the first time the somld
has been registered, or FALSE (0) otherwise.

somUniqueKey Function
Finds the unique key for a somld. The function takes a somld identifier as its
argument, and returns the unique key for the somld — a number that uniquely
represents the string that the somld represents. This key is the same as the key for
another somld if and only if the other somld refers to the same string as the input
somid.

somTotalReglds Function
Finds the total number of somlds that have been registered, as an unsigned long. This
function is used to determine an appropriate argument to somSetExpectedlds, below,
in later executions of the program. The function takes no input arguments.

somSetException Function
Indicates how many unique somlds SOM can expect to use during program execution,
which, if accurate, can improve the space and time utilization of the program slightly.
This routine must be called before the SOM run-time environment is initialized (that is,
before the somEnvironmentNew Function is invoked and before any objects are
created). This is the only SOM function that can be invoked before the SOM run-time
environment is initialized. The input argument is an unsigned long. The function has no
return value.

somBeginPersistentlds Function
somEndPersistentlds Function
Delimit a time interval for the current thread during which it is guaranteed that:

« any new somld values that are created will refer only to static strings
» these strings will not be subsequently modified or freed.

These functions are useful because somlds that are registered within a persistent 1D
interval can be handled more efficiently.

Programmer’s Guide for SOM and DSOM

See Programmer’s Reference for SOM and DSOM for more information on a specific
function.

Using SOM Classes in Client Programs 113

114 Programmer’s Guide for SOM and DSOM

Chapter 5. SOM Interface Definition Language

This chapter discusses how to define SOM classes. To allow a class of objects to be
implemented in one programming language and used in another (that is, to allow a SOM
class to be language neutral), the interface to objects of this class must be specified
separately from the objects’ implementation.

To summarize: As a first step, a file known as the .idl file is used to declare classes and
their methods, using SOM'’s language-neutral Interface Definition Language (IDL). Next, the
SOM Compiler is run on the .idl file to produce a template implementation file that contains
stub method procedures for the new and overridden methods; this preliminary code
corresponds to the computer language that will implement the class. Then, the class
implementor fills in the stub procedures with code that implements the methods (or
redefines overridden methods) and sets instance data. (This implementation process is in
Chapter 7, Implementing Classes in SOM on page 171.) At this point, the implementation
file can be compiled and linked with a client program that uses it (as described in Chapter
4, Using SOM Classes in Client Programs on page 69).

Syntax for SOM IDL is presented in this chapter, along with helpful information for using
them correctly.

Interface versus Implementation

The interface to a class of objects contains the information that a client must know to use
an object: namely, the names of its attributes and the signatures of its methods. The
interface is described in a formal language independent of the programming language used
to implement the object’s methods. In SOM, the formal language used to define object
interfaces is the Interface Definition Language (IDL), standardized by CORBA.

The implementation of a class of objects (that is, the procedures that implement methods
and the variables used to store an object’s state) is written in the implementor’s preferred
programming language. This language can be object-oriented (for instance, C++) or
procedural (for instance, C).

A completely implemented class definition, then, consists of two main files:

* An IDL specification of the interface to instances of the class: the interface definition file
(or .idl file)

* Method procedures written in the implementor’s language of choice: the
implementation file.

The interface definition file has a .idl extension, as noted. The implementation file,
however, has an extension specific to the language in which it is written. For example,
implementations written in C have a .c extension, and implementations written in C++ have
a .C (for AIX) or .cpp (for OS/2 or Windows NT) extension.

To assist users in implementing SOM classes, the SOMobjects Toolkit provides a SOM
Compiler. The SOM Compiler takes as input an object interface definition file (the .idl file)
and produces a set of binding files that make it convenient to implement and use a SOM
class whose instances are objects that support the defined interface. The binding files and
their purposes are as follows:

* Animplementation template that serves as a guide for how the implementation file for
the class should look. The class implementor fills in this template file with language-
specific code to implement the methods that are available on the class instances.

SOM |Interface Definition Language 115

» Header files to be included:
- inthe class’s implementation file
- inclient programs that use the class

These binding files produced by the SOM Compiler bridge the gap between SOM and the
object model used in object-oriented languages (such as C++), and they allow SOM to be
used with non-object-oriented languages (such as C). The SOM Compiler currently
produces binding files for the C and C++ programming languages. SOM can also be used
with other programming languages; the bindings simply offer a more convenient
programmer’s interface to SOM. Vendors of other languages may offer SOM bindings;
check with your language vendor for possible SOM support.

The subsequent sections of this chapter provide full syntax for SOM IDL and the SOM
Compiler.

SOM Interface Definition Language

116

This section describes the syntax of SOM’s Interface Definition Language (SOM IDL). SOM
IDL complies with CORBA’s standard for IDL; it also adds constructs specific to SOM. (For
more information on the CORBA standard for IDL, see The Common Object Request
Broker: Architecture and Specification, published by Object Management Group and x/
Open.) The full grammar for SOM IDL is given in SOM IDL Language Grammar on page
421. Instructions for converting existing OIDL-syntax files to IDL are given in Converting
OIDL Files to IDL on page 417. The current section describes the syntax and semantics of
SOM IDL using the following conventions:

Literals (such as keywords) appear in bold.

User-supplied elements appear in italics.

{} Groups related items together as a single item.

[1 Encloses an optional item.

* Indicates zero or more repetitions of the preceding item.

+ Indicates one or more repetitions of the preceding item.

| Separates alternatives.

__ Within a set of alternatives, an underscore indicates the default, if defined.

IDL is a formal language used to describe object interfaces. Because, in SOM, objects are
implemented as instances of classes, an IDL object interface definition specifies for a class
of objects what methods (operations) are available, their return types, and their parameter
types. For this reason, we often speak of an IDL specification for a class (as opposed to
simply an object interface). Constructs specific to SOM discussed below further strengthen
this connection between SOM classes, and the IDL language.

IDL generally follows the same lexical rules as C and C++, with some exceptions. In
particular:

» IDL uses the ISO Latin-1 (8859.1) character set (as per the CORBA standard).
* White space is ignhored except as token delimiters.
e C and C++ comment styles are supported.

« IDL supports standard C/C++ preprocessing, including macro substitution, conditional
compilation, and source file inclusion.

Programmer’s Guide for SOM and DSOM

Identifiers (user-defined names for methods, attributes, instance variables, and so on)
are composed of alphanumeric and underscore characters (with the first character
alphabetic) and can be of arbitrary length, up to an operating-system limit of about 250

characters.

Identifiers must be spelled consistently with respect to case throughout a specification.

Identifiers that differ only in case yield a compilation error.

There is a single name space for identifiers (thus, using the same identifier for a
constant and a class name within the same naming scope, for example, yields a

compilation error).

Integer, floating point, character, and string literals are defined as in C and C++.

The terms listed in Table 1 on the following page are reserved keywords and may not be
used otherwise. Keywords must be spelled using upper- and lower-case characters exactly
as shown in the table. For example, “void” is correct, but “Void” yields a compilation error.

any
attribute
boolean
case
char
class
const

context

FALSE

float
implementation
in

inout

interface

long

module

octet

readonly
sequence
short
string
struct
switch
TRUE
TypeCode

Table 1. Keywords for SOM IDL

A typical IDL specification for a single class, residing in a single .idl file, has the following
form. (See Defining Multiple Interfaces in a .idl File on page 150.) The order is
unimportant, except that names must be declared (or forward referenced) before they are
referenced. The subsequent topics of this section describe the requirements for these
specifications:

Include Directives (optional)

Type and Constant Declarations (optional)

Exception Declarations (optional)

Interface Declarations (optional)

Module declaration (optional)

Include Directives

The IDL specification for a class normally contains #include statements that tell the SOM
Compiler where to find the interface definitions (the .idl files) for:

SOM Interface Definition Language 117

e Each of the class’s parent (direct base) classes, and
e The class’s metaclass (if specified).

The #include statements must appear in the above order. For example, if class “C” has
parents foo and bar and metaclass meta, then file C.idl must begin with the following
#include statements:

#include <foo.idls>
#include <bar.idls>
#include <meta.idl>

As in C and C++, if a filename is enclosed in angle brackets (< >), the search for the file will
begin in system-specific locations. If the filename appears in double quotation marks (),
the search for the file will begin in the current working directory, then move to the system-
specific locations.

Type and Constant Declarations

118

IDL specifications may include type declarations and constant declarations as in C and C++,
with the restrictions/extensions described below. IDL supports the following basic types
(these basic types are also defined for C and C++ client and implementation programs,
using the SOM bindings):

Integral Types

IDL supports only the integral types short, long, unsigned short, and unsigned long,
which represent the following value ranges:

short -215 .. 2151
long -281 .. 2811
unsigned short 0 .. 216-1

unsigned long 0 .. 232-1

Floating Point Types

IDL supports the float and double floating-point types. The float type represents the IEEE
single-precision floating-point numbers; double represents the IEEE double-precision
floating-point numbers.

Character Type

IDL supports a char type, which represents an 8-bit quantity. The ISO Latin-1 (8859.1)
character set defines the meaning and representation of graphic characters. The meaning
and representation of null and formatting characters is the numerical value of the character
as defined in the ASCII (ISO 646) standard. Unlike C/C++, type char cannot be qualified as
signed or unsigned. (The octet type, below, can be used in place of unsigned char.)

Boolean Type

IDL supports a boolean type for data items that can take only the values TRUE and FALSE.

Programmer’s Guide for SOM and DSOM

Octet Type

IDL supports an octet type, an 8-bit quantity guaranteed not to undergo conversion when
transmitted by the communication system. The octet type can be used in place of the
unsigned char type.

Any Type

IDL supports an any type, which permits the specification of values of any IDL type. In the
SOM C and C++ bindings, the any type is mapped onto the following struct:

typedef struct any {
TypeCode type;
void * value;
} any;
The _value member for an any type is a pointer to the actual value. The _type member is a
pointer to an instance of a TypeCode that represents the type of the value. The TypeCode
provides functions for obtaining information about an IDL type. Chapter 9, The Interface

Repository Framework on page 337 describes TypeCodes and their associated functions.
For extensive examples, see Using the IDL Basic Type any on page 351.

Constructed Types

In addition to the above basic types, IDL also supports three constructed types: struct,
union, and enum. The structure and enumeration types are specified in IDL just as they
are in C and C++, with the following restrictions:

Unlike C/C++, recursive type specifications are allowed only through the use of the
sequence template type (see below).

Unlike C/C++, structures, discriminated unions, and enumerations in IDL must be
tagged. For example, struct { int a; ... } isaninvalid type specification. The
tag introduces a new type name.

In IDL, constructed type definitions need not be part of a typedef statement;
furthermore, if they are part of a typedef statement, the tag of the struct must differ from
the type name being defined by the typedef. For example, the following are valid IDL
struct and enum definitions:

struct myStruct ({

long x;

double y;
}i /* defines type name myStruct */
enum colors { red, white, blue }; /* defines type name colors */

By contrast, the following IDL definitions are not valid:

typedef struct myStruct { /* NOT VALID */
long x; /* Tag myStruct is the same */
double vy; /* as the type name below; */

} myStruct; /* myStruct has been redefined */

typedef enum colors { red, white, blue } colors; /* NOT VALID */

SOM Interface Definition Language 119

120

The valid IDL struct and enum definitions shown above are translated by the SOM
Compiler into the following definitions in the C and C++ bindings, assuming they were
declared within the scope of interface Hello:

typedef struct Hello myStruct { /* C/C++ bindings for
IDL struct */
long x;
double y;
} Hello myStruct;

typedef unsigned long Hello colors; /* C/C++ bindings for
IDL enum */

#define Hello red 1UL

#define Hello_white 2UL

#define Hello blue 3UL

When an enumeration is defined within an interface statement for a class, then within C/
C++ programs, the enumeration names must be referenced by prefixing the class name.
For example, if the colors enum, above, were defined within the interface statement for
class Hello, then the enumeration names would be referenced as Hello_ red,

Hello white and Hello blue. Notice the first identifier in an enumeration is assigned
the value 1.

All types and constants generated by the SOM Compiler are fully qualified. That is,
prepended to them is the fully qualified name of the interface or module in which they
appear. For example, consider the following fragment of IDL:

module M
typedef long long t;
module N {
typedef long long t;
interface I : SOMObject(
typedef long long t;
}i
}i
}i
That specification would generate the following three types:
typedef long M long t;
typedef long M N long t;
typedef long M_N_ I long_t;

For programmer convenience, the SOM Compiler also generates shorter bindings, without
the interface qualification. Consider the next IDL fragment:

module M {
typedef long long t;
module N
typedef short short t;
interface I : SOMObject({

typedef char char t;

Programmer’s Guide for SOM and DSOM

i
}i
i
In the C/C++ bindings of the preceding fragment, you can refer to:
M long taslong t
M N short t asshort t
M N I char taschar_ t

However, these shorter forms are available only when their interpretation is not ambiguous.
Thus, in the first example the shorthand forM N I long_ t would not be allowed, since it
clashes withM long t andM N long t. If these shorter forms are not required, they can
be ignored by setting #define SOM_DONT USE SHORT NAMES before including the
public header files, or by using the SOM Compiler option -mnouseshort so that they are
not generated in the header files.

In the SOM documentation and samples, both long and short forms are illustrated, for both
type names and method calls. It is the responsibility of each user to adopt a style according
to personal preference. It should be noted, however, that CORBA specifies that only the
long forms must be present.

Union Type: IDL also supports a union type, which is a cross between the C union and
switch statements. The syntax of a union type declaration is as follows:

union identifier switch (switch-type) { case+ }

The identifier following the union keyword defines a new legal type. (Union types may also
be named using a typedef declaration.) The switch-type specifies an integral, character,
boolean, or enumeration type, or the name of a previously defined integral, boolean,
character or enumeration type. Each case of the union is specified with the following syntax:

case-label+ type-spec declarator ;

where type-spec is any valid type specification; declarator is an identifier, an array
declarator (such as, foo [3] [5]), or a pointer declarator (such as, *foo); and each
case-label has one of the following forms:

case const-expr:
default:

The const-expr is a constant expression that must match or be automatically castable to the
switch-type. A default case can appear no more than once.

Unions are mapped onto C/C++ structs. For example, the following IDL declaration:
union Foo switch (long)
case 1l: long x; /* Integer ’'1l’ can be converted */
case 2: float y; /* to the switch type long x/
default: char z;
i
is mapped onto the following C struct:
typedef struct Hello Foo ({
long d;
union {
long x;

float y;

SOM Interface Definition Language 121

char z;
}o_ui
} Hello Foo;

The discriminator is referred to as _d, and the union in the struct is referred to as _u.
Hence, elements of the union are referenced just as in C:

Hello_Foo *v;

/* get a pointer to Foo in v: */

switch(v-> d) ({
case 1: printf(”x = %$1d\n”, v-> u.x); break; /* long */
case 2: printf(”y = %$f\n”, v-> u.y); break; /* float */
default: printf(”z = %c\n”, v-> u.z); break; /* char */

}

Note: This example is from Common Object Request Broker: Architecture and
Specification.

Template Types (Sequences and Strings)

IDL defines two template types not found in C and C++: sequences and strings. A
sequence is a one-dimensional array with two characteristics: a maximum size (specified at
compile time) and a length (determined at run time). Sequences permit passing unbounded
arrays between objects. Sequences are specified as follows:

sequence < simple-type [, positive-integer-const] >

where “simple-type” specifies any valid IDL type, and the optional “positive-integer-const” is
a constant expression that specifies the maximum size of the sequence (as a positive
integer).

Note: The simple-type cannot have a ‘*’ directly in the sequence statement. Instead, a
typedef for the pointer type must be used. For example, instead of:
typedef sequence<long *> seq longptr;
// Error: '*’ not allowed.
use:
typedef long * longptr;
typedef sequence<longptr> seq longptr; // Ok.

In SOM’s C and C++ bindings, sequences are mapped onto structs with the following
members:

unsigned long _maximum;
unsigned long _length;
simple-type *_buffer;
where simple-type is the specified type of the sequence. For example, the IDL declaration
typedef sequence<long, 10> veclO;
results in the following C struct:
#ifndef _IDL SEQUENCE_long defined
#define IDL SEQUENCE long defined
typedef struct ({

unsigned long _maximum;

122 Programmer’s Guide for SOM and DSOM

unsigned long _length;
long * buffer;
} _IDL SEQUENCE long;
#endif /* IDL SEQUENCE long defined */
typedef IDL SEQUENCE long veclO;
and an instance of this type is declared as follows:
veclO0 v = {10L, OL, (long *)NULL};

The _maximum member designates the actual number of elements allocated for the
sequence, and the _length member designates the number of values contained in the
_buffer member. For bounded sequences, it is an error to set the _length or _maximum
member to a value larger than the specified bound of the sequence.

Before a sequence is passed as the value of an in or inout method parameter, the buffer
member must point to an array of elements of the appropriate type, and the _length
member must contain the number of elements to be passed. (If the parameter is inout and
the sequence is unbounded, the _maximum member must also be set to the actual size of
the array. Upon return, _length will contain the number of values copied into _buffer, which
must be less than _maximum.) When a sequence is passed as an out method parameter
or received as the return value, the method procedure allocates storage for _buffer as
needed, the _length member contains the number of elements returned, and the
_maximum member contains the number of elements allocated. (The client is responsible
for subsequently freeing the memory pointed to by _buffer.)

C and C++ programs using SOM'’s language bindings can refer to sequence types as:
_IDL_SEQUENCE_type

where type is the effective type of the sequence members. For example, the IDL type
sequence<long, 10> is referred to in a C/C++ program by the type name

_IDL SEQUENCE long. If longint is defined via a typedef to be type long, then the IDL
type sequence<longint, 10> is also referred to by the type name

_IDL SEQUENCE long.

If the typedef is for a pointer type, then the effective type is the name of the pointer type.
For example, the following statements define a C/C++ type IDL SEQUENCE longptr
and not IDL SEQUENCE long:

typedef long * longptr;
typedef sequence<longptr> seq longptr;

A string is similar to a sequence of type char. It can contain all possible 8-bit quantities
except NULL. Strings are specified as follows:

string [< positive-integer-const > |

where the optional “positive-integer-const” is a constant expression that specifies

the maximum size of the string (as a positive integer, which does not include the extra byte
to hold a NULL as required in C/C++). In SOM’s C and C++ bindings, strings are mapped
onto null-terminated character arrays. The length of the string is encoded by the position of
the null (zero-byte). For example, the following IDL declaration:

typedef string<l1l0> foo;

is converted to the following C/C++ typedef:
typedef char *foo;

A variable of this type is then declared as follows:

foo s = (char *) NULL;

SOM Interface Definition Language 123

124

C and C++ programs using SOM'’s language bindings can refer to string types by the type
name string.

Arrays
Multidimensional, fixed-size arrays can be declared in IDL as follows:
identifier { [positive-integer-const | }+

where the “positive-integer-const” is a constant expression that specifies the array size, in
each dimension, as a positive integer. The array size is fixed at compile time.

Pointers

Although the CORBA standard for IDL does not include them, SOM IDL offers pointer
types. Declarators of a pointer type are specified as in C and C++:

type *declarator

where type is a valid IDL type specification and declarator is an identifier or an array
declarator.

Object Types

The name of the interface to a class of objects can be used as a type. For example, if an
IDL specification includes an interface declaration (described below) for a class (of objects)
C1, then C1 can be used as a type name within that IDL specification. When used as a
type, an interface name indicates a pointer to an object that supports that interface. An
interface name can be used as the type of a method argument, as a method return type, or
as the type of a member of a constructed type (a struct, union, or enum). In all cases, the
use of an interface name implicitly indicates a pointer to an object that supports that
interface.

SOM'’s C usage bindings for SOM classes also follow this convention. However, within
SOM'’s C++ bindings, the pointer is made explicit, and the use of an interface name as a
type refers to a class instance itself, rather than a pointer to a class instance. (For more
explanation, see Declaring Object Variables on page 71.) For example, to declare a
variable myobj that is a pointer to an instance of class Foo in an IDL specification and in a
C program, the following declaration is required:

Foo myobj;
However, in a C++ program, the following declaration is required:
Foo *myobj;

If a C programmer uses the SOM Compiler option -maddstar, then the bindings generated
for C will also require an explicit ‘*’ in declarations. Thus,

Foo myobj ;in IDL requires

Foo *myobj; inboth C and C++ programs.
This style of bindings for C is permitted for two reasons:

* It more closely resembles the bindings for C++, thus making it easier to change to the
C++ bindings at a later date; and

» ltis required for compatibility with existing SOM OIDL code.

Note: The same C and C++ binding emitters should not be run in the same SOM
Compiler command. For example,

Programmer’s Guide for SOM and DSOM

sc "-sh;xh” cls.idl // Not wvalid.

If you wish to generate both C and C++ bindings, you should issue the commands
separately:

sc -sh cls.idl

sc -sxh cls.idl

Exception Declarations

IDL specifications may include exception declarations, which define data structures to be
returned when an exception occurs during the execution of a method. (IDL exceptions are
implemented by simply passing back error information after a method call, as opposed to
the “catch/throw” model where an exception is implemented by a long jump or signal.)
Associated with each type of exception is a name and, optionally, a struct-like data
structure for holding error information. Exceptions are declared as follows:

exception identifier { member* };
The identifier is the name of the exception, and each member has the following form:
type-spec declarators ;

where type-spec is a valid IDL type specification and declarators is a list of identifiers, array
declarators, or pointer declarators, delimited by commas. The members of an exception
structure should contain information to help the caller understand the nature of the error.
The exception declaration can be treated like a struct definition; that is, whatever you can
access in an IDL struct, you can access in an exception declaration. Alternatively, the
structure can be empty, whereby the exception is just identified by its name.

If an exception is returned as the outcome of a method, the exception identifier indicates
which exception occurred. The values of the members of the exception provide additional
information specific to the exception.Method Declarations on page 130 describes how to
indicate that a particular method may raise a particular exception, and Exceptions and
Error Handling on page 100 describes how exceptions are handled.

Following is an example declaration of a BAD FLAG exception:
exception BAD FLAG { long ErrCode; char Reason[80]; };

The SOM Compiler will map the above exception declaration to the following C language
constructs:

#define ex BAD FLAG “::BAD FLAG”
typedef struct BAD FLAG ({
long ErrCode;
char Reason[80];
} BAD FLAG;
Thus, the ex BAD FLAG symbol can be used as a shorthand for naming the exception.
An exception declaration within an interface Hello, such as this:
interface Hello (
exception LOCAL EXCEPTION { long ErrCode; };
Vi
would map onto:
#define ex Hello LOCAL EXCEPTION ”::Hello::LOCAL EXCEPTION”
typedef struct Hello LOCAL EXCEPTION (

SOM Interface Definition Language 125

long ErrCode;
} Hello LOCAL_ EXCEPTION;
#define ex LOCAL EXCEPTION ex Hello LOCAL EXCEPTION

In addition to user-defined exceptions, there are several predefined exceptions for system
run-time errors. The standard exceptions as prescribed by CORBA are in Standard
Exceptions Prescribed by OMG on page 126. The exceptions correspond to standard run-
time errors that may occur during the execution of any method (regardless of the list of
exceptions listed in its IDL specification).

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO_MEMORY
standard exception has the following definition:

enum completion status {YES, NO, MAYBE};
exception NO MEMORY { unsigned long minor;
completion status completed; };

The “completion_status” value indicates whether the method was never initiated (NO),
completed its execution prior to the exception (YES), or the completion status is
indeterminate (MAYBE).

Since all the standard exceptions have the same structure, somcorba.h (included by
som.h) defines a generic StExcep typedef which can be used instead of the specific
typedefs:

typedef struct StExcep ({
unsigned long minor;
completion status completed;
} StExcep;

The standard exceptions in Standard Exceptions Prescribed by OMG on page 126 are
defined in an IDL module called StExcep, in the file called stexcep.idl, and the C
definitions can be found in stexcep.h.

Standard Exceptions Prescribed by OMG

OMG publishes many standards, of which CORBA is only one. In version 3.0, we have
implemented the Transaction Service from OMG. Therefore, CORBA and Transaction
Service exceptions are proper subsets of OMG.

module StExcep {

#define ex body { unsigned long minor; completion status completed;

}

enum completion status { YES, NO, MAYBE };

enum exception type {NO EXCEPTION, USER EXCEPTION,
SYSTEM EXCEPTION} ;

//CORBA-defined standard exceptions

exception UNKNOWN ex_body; // the unknown exception

exception BAD PARAM ex body; // an invalid parameter was passed
exception NO_MEMORY ex body; // dynamic memory allocation failure

exception IMP_LIMIT ex body; // violated implementation limit

126 Programmer’s Guide for SOM and DSOM

exception
exception
exception
exception
exception
exception
exception
exception
exception

exception
request

exception
exception
exception
exception

exception

COMM_FAILURE ex body; // communication failure
INV_OBJREF ex body; // invalid object reference
NO_ PERMISSION ex body;// no permission for attempted op.
INTERNAL ex body; // ORB internal error
MARSHAL ex body; // error marshalling param/result
// ORB initialization failure

// op.
BAD TYPECODE ex body; // bad typecode

INITIALIZE ex body;
NO IMPLEMENT ex body; implementation unavailable
BAD OPERATION ex body; // invalid operation

NO_RESOURCES ex_body; // insufficient resources for

NO_RESPONSE ex body; // response to reqg. not yet available
PERSIST STORE ex body; // persistent storage failure
BAD INV_ORDER ex body; // routine invocations out of order
TRANSIENT ex body; // transient failure - reissue request

FREE MEM ex body; // cannot free memory

exception INV_IDENT ex body; // invalid identifier syntax

exception INV_FLAG ex body; // invalid flag was specified

exception
repository

INTF_REPOS ex_body; // error accessing interface

exception CONTEXT ex_body; // error processing context object
exception OBJ ADAPTER ex body; // failure detected by object adapter
exception DATA CONVERSION ex body; // data conversion error

//Transction Service standard exceptions
exception TransactionRequired ex body;

//operation requires transaction
exception TransactionRolledBack ex body;

//current transaction has rolled
back

exception InvalidTransaction ex body;

//transaction invalid or invalid
state

exception WrongTransaction ex body;

//reply received for wrong
transaction

bi

Interface Declarations

The IDL specification for a class of objects must contain a declaration of the interface these
objects will support. Because, in SOM, objects are implemented using classes, the
interface name is always used as a class name as well. Therefore, an interface declaration
can be understood to specify a class name, and its parent (direct base) class names. This
is the approach used in the following description of an interface declaration. In addition to
the class name and its parents names, an interface indicates new methods (operations),

SOM Interface Definition Language 127

and any constants, type definitions, and exception structures that the interface exports. An
interface declaration has the following syntax:

interface «class-name [: parent-classl, parent-class2, ...]

{

constant declarations (optional)
type declarations (optional)
exception declarations (optional)
attribute declarations (optional)
method declarations (optional)

implementation statement (optional)

};
Many class implementors distinguish a class-name by using an initial capital letter, but that
is optional. The parent-class (or base-class) names specify the interfaces from which the
interface of class-name instances is derived. Parent-class names are required only for the
immediate parent(s). Each parent class must have its own IDL specification (which must be

#included in the subclass’s .idl file). A parent class cannot be named more than once in the
interface statement header.

Note: In general, an interface <className> header must precede any subsequent
implementation that references <className>. For a discussion of multiple interface
statements, see Defining Multiple Interfaces in a .idl File on page 150.

The following topics describe the various declarations/statements that can be specified
within the body of an interface declaration. The order in which these declarations are
specified is usually optional, and declarations of different kinds can be intermixed. Although
all of the declarations/statements are listed above as optional, in some cases using one of
them may mandate another. For example, if a method raises an exception, the exception
structure must be defined beforehand. In general, types, constants, and exceptions, as
well as interface declarations, must be defined before they are referenced, as in C/C++.

Constant, Type and Exception Declarations

128

The form of a constant, type, or exception declaration within the body of an interface
declaration is the same as described previously in this chapter. Constants and types
defined within an interface for a class are transferred by the SOM Compiler to the binding
files it generates for that class, whereas constants and types defined outside of an interface
are not.

Global types (such as, those defined outside of an interface and module) can be emitted by
surrounding them with the following #pragmas:
#pragma somemittypes on
typedef sequence <long,10> veclO;
exception BAD FLAG { long ErrCode; char Reason[80]; };
typedef long long t;
#pragma somemittypes off

Types, constants, and exceptions defined in a parent class are also accessible to the child
class. References to them, however, must be unambiguous. Potential ambiguities can be
resolved by prefacing a name with the name of the class that defines it, separated by the
characters “::" as illustrated below:

MyParentClass: :myType

Programmer’s Guide for SOM and DSOM

Attribute

The child class can redefine any of the type, constant, and exception names that have
been inherited, although this is not advised. The derived class cannot, however, redefine
attributes or methods. It can only replace the implementation of methods through overriding
(as in example 3 of the Tutorial). To refer to a constant, type, or exception “name” defined
by a parent class and redefined by “class-name,” use the “parent-name::name” syntax as
before.

Note: A name reference such as MyParentClass: :myType required in IDL syntax is
equivalent to MyParentClass_ myType in C/C++. For a discussion of name
recognition in SOM, see Scoping and Name Resolution on page 151.

Declarations

Declaring an attribute as part of an interface is equivalent to declaring two accessor
methods: one to retrieve the value of the attribute (a get method, _get_attributeName) and
one to set the value of the attribute (a set method, _set_attributeName).

Attributes are declared as follows:
[readonly] attribute type-spec declarators ;

where type-spec specifies any valid IDL type and declarators is a list of identifiers or pointer
declarators, delimited by commas. (An array declarator cannot be used directly when
declaring an attribute, but the type of an attribute can be a user-defined type that is an
array.) The optional readonly keyword specifies that the value of the attribute can be
accessed but not modified by client programs. (In other words, a readonly attribute has no
set method.) Below are examples of attribute declarations, which are specified within the
body of an interface statement for a class:

interface Goodbye: Hello, SOMObject

{

void sayBye();

attribute short xpos;
attribute char cl, c2;
readonly attribute float xyz;
Vi
The preceding attribute declarations are equivalent to defining the following methods:
short get xpos();
void set xpos(in short xpos);
char _get cl1();
void set cl(in char cl);
char _get c2();
void set c2(in char c2);
float _get xyz();

Note: Although the preceding attribute declarations are equivalent to the explicit method
declarations above, these method declarations are not legal IDL, because the
method names begin with an ‘_". All IDL identifiers must begin with an alphabetic
character, not including ‘.

Attributes are inherited from ancestor classes (indirect base classes). An inherited attribute
name cannot be redefined to be a different type.

SOM Interface Definition Language 129

Method Declarations

130

Method (operation) declarations define the interface of each method introduced by the
class. A method declaration is similar to a C/C++ function definition:

[oneway] type-spec identifier (parameter-list) [raises-expr] [context-expr | ;

where identifier is the name of the method and type-spec is any valid IDL type (or the
keyword void, indicating that the method returns no value). Unlike C and C++ procedures,
methods that do not return a result must specify void as their return type. The remaining
syntax of a method declaration is elaborated in the following subtopics.

Note: Although IDL does not allow methods to receive and return values whose type is a
pointer to a function, it does allow methods to receive and return method names
(as string values). Thus, rather than defining methods that pass pointers to
functions (and that subsequently invoke those functions), programmers should
instead define methods that pass method names (and subsequently invoke those
methods using one of the SOM-supplied method-dispatching or method-resolution
methods or functions, such as somDispatch).

Oneway Keyword

The optional oneway keyword specifies that when a client invokes the method, the
invocation semantics are best-effort, which does not guarantee delivery of the call. Best-
effort implies that the method will be invoked at most once. A oneway method should not
have any output parameters and should have a return type of void. A oneway method also
should not include a raises expression (see below), although it may raise a standard
exception.

If the oneway keyword is not specified, then the method has at-most-once invocation
semantics if an exception is raised, and it has exactly-once semantics if the method
succeeds. This means that a method that raises an exception has been executed zero or
one times, and a method that succeeds has been executed exactly once.

Note: Currently the “oneway” keyword, although accepted, has no effect on the C/C++
bindings that are generated.

Parameter List

The parameter-list contains zero or more parameter declarations for the method, delimited
by commas. (The target object for the method is not explicitly specified as a method
parameter in IDL, nor are the Environment or Context parameters.) If there are no explicit
parameters, the syntax “()” must be used, rather than “(void)”. A parameter declaration has
the following syntax:

{in|out|inout} type-spec declarator
where type-spec is any valid IDL type and declarator is an identifier, array declarator or
pointer declarator.

in, out, inout Parameters: The required in|out|inout directional attribute indicates
whether the parameter is to be passed from client to server (in), from server to client (out),
or in both directions (inout). The following are examples of valid method declarations in
SOM IDL:

short methl (in char ¢, out float f);

oneway void meth2(in char c);

float meth3 () ;

Programmer’s Guide for SOM and DSOM

A method should not modify an in parameter. This is important, because any changes may
be visible to clients and are unexpected, given the in designation. If a change must be
made, the parameter should first be copied and only the copy modified. The

pass_by copy_parameters modifier can be used for this, so that SOMobjects will make a
copy automatically. See Passing Parameters by Copying on page 146.

If a method raises an exception, the values of the return result and the values of the out
and inout parameters (if any) are undefined.

Classes derived from SOMObject can declare methods that take a pointer to a block of
memory containing a variable number of arguments, using a final parameter of type va_list.
(See Using va_list Methods on page 80.) The va_list must use the parameter name ap,
as in the following example:

void MyMethod (in short numArgs, in va list ap);

For in parameters of type array, C and C++ clients must pass the address of the first
element of the array. For in parameters of type struct, union, sequence or any, C/C++
clients must pass the address of a variable of that type, rather than the variable itself.

For all IDL types except arrays, if a parameter of a method is out or inout, then C/C++
clients must pass the address of a variable of that type (or the value of a pointer to that
variable) rather than the variable itself. (For example, to invoke method “methl” above, a
pointer to a variable of type float must be passed in place of parameter “f".) For arrays, C/
C++ clients must pass the address of the first element of the array.

If the return type of a method is a struct, union, sequence, or any type, then for C/C++
clients, the method returns the value of the C/C++ struct representing the IDL struct, union,
sequence, or any. If the return type is string, then the method returns a pointer to the first
character of the string. If the return type is array, then the method returns a pointer to the
first element of the array.

The pointers implicit in the parameter types and return types for IDL method declarations
are made explicit in SOM’s C and C++ bindings. Thus, the stub procedure that the SOM
Compiler generates for method “meth1”, above, has the following signature:

SOM_Scope short SOMLINK methl (char c, float *f)

For C and C++ clients, if a method has an out parameter of type string, sequence, or any,
then the method must allocate the storage for the string, for the _buffer member of the
struct that represents the sequence, or for the _value member of the struct that represents
the any. It is then the responsibility of the client program to free the storage when it is no
longer needed. Similarly, if the return type of a method is string, sequence, any, or array,
then storage must be allocated by the method, and the client program is responsible for
subsequently freeing it.

Note: The foregoing description also applies for the _get_attributeName method
associated with an attribute of type string, sequence, any or array. Hence, the
attribute should be specified with a noget modifier to override automatic
implementation of the attribute’s get method. Then, needed memory can be
allocated by the developer’'s get method implementation and subsequently
deallocated by the caller. (The noget modifier is described under Modifier
Statements on page 133.)

Raises Expression

The optional raises expression (raises-expr) in a method declaration indicates which
exceptions the method may raise. (IDL exceptions are implemented by simply passing back
error information after a method call, as opposed to the catch/throw model where an

SOM Interface Definition Language 131

exception is implemented by a long jump or signal.) A raises expression is specified as
follows:

raises (identifierl, identifier2, ...)

where each identifier is the name of a previously defined exception. In addition to the
exceptions listed in the raises expression, a method may also signal any of the standard
exceptions. Standard exceptions, however, should not appear in a raises expression. If no
raises expression is given, then a method can raise only the standard exceptions. (See
Exception Declarations on page 125 for information on defining exceptions and for the list
of standard exceptions. See Exceptions and Error Handling on page 100 for information
on using exceptions.)

Context Expression

The optional context expression (context-expr) in a method declaration indicates which
elements of the client’'s context the method may consult. A context expression is specified
as follows:

context (identifierl, identifier2, ...)

where each identifier is a string literal made up of alphanumeric characters, periods,
underscores and asterisks. (The first character must be alphabetic, and an asterisk can
only appear as the last character, where it serves as a wildcard matching any characters. If
convenient, identifiers may consist of period-separated valid identifier names, but that form
is optional.)

The Context is a special object that is specified by the CORBA standard. It contains a
property list: a set of property-name/string-value pairs that the client can use to store
information about its environment that methods may find useful. It is used in much the
same way as environment variables. It is passed as an additional (third) parameter to
CORBA-compliant methods that are defined as context-sensitive in IDL, along with the
CORBA-defined Environment structure.

The context expression of a method declaration in IDL specifies which property names
the method uses. If these properties are present in the Context object supplied by the
client, they will be passed to the object implementation, which can access them via the
get_values Method of the Context object. However, the argument that is passed to the
method having a context expression is a Context object, not the names of the properties.
The client program must either create a Context object and use the set_values Method or
set_one_value Method of the Context class to set the context properties, or use the
get_default_context Method. The client program then passes the Context object in the
method invocation. The CORBA standard allows properties in addition to those in the
context expression to be passed in the Context object.

Invoking Methods on Objects on page 76 describes the placement of a context
parameter in a method call.

Implementation Statements

132

A SOM IDL interface statement for a class may contain an implementation statement,
which specifies information about how the class will be implemented (version numbers for
the class, overriding of inherited methods, what resolution mechanisms the bindings for a
particular method will support, and so forth). If the implementation statement is omitted,
default information is assumed.

Programmer’s Guide for SOM and DSOM

Because the implementation statement is specific to SOM IDL, the implementation
statement should be preceded by an #ifdef _ SOMIDL___ directive and followed by an
#endif directive. (See Example 3. Overriding an Inherited Method on page 60.)

The syntax for the implementation statement is as follows:
#ifdef _ SOMIDL
implementation
implementation*
#endif

where each implementation can be a modifier statement, a passthru statement or a
declaring instance, terminated by a semicolon. These constructs are described below. An
interface statement may not contain multiple implementation statements.

Modifier Statements

A modifier statement gives additional implementation information about IDL definitions,
such as interfaces, attributes, methods, and types. Modifiers can be unqualified or qualified:
An SOM Compiler Unqualified Modifiers is associated with the interface it is defined in.
An unqualified modifier statement has the following two syntactic forms:

modifier
modifier = value

where modifier is either a SOM Compiler-defined identifier or a user-defined identifier, and
where value is an identifier, a string enclosed in double quotes (“ "), or a number. For
example:

filestem = foo;

nodata;

persistent;

dllname = "E:/som/dlls”;

A SOM Compiler Qualified Modifiers is associated with a qualifier (by connecting them
with a colon). The qualified modifier has the following syntax:

qualifier : modifier

qualifier : modifier = value

#pragma modifier qualifier : modifier

#pragma modifier qualifier : modifier = value

where qualifier is the identifier of an IDL definition or is a user-defined term. If the qualifier
denotes an IDL definition introduced in the current interface, module, or global scope, then
the modifier is attached to that definition. Otherwise, if the qualifier is user defined, the
modifier is attached to the interface it occurs in. If a user-defined modifier is defined outside
of an interface body (by using #pragma modifier), then it is ignored.

For example, consider the following IDL file. Qualified modifiers can be defined with the
qualifier and the modifier[=value] definition on either side of the colon. Additional modifiers
can be included by separating them with commas.

#include <somobj.idls

#include <somcls.idl>

SOM Interface Definition Language 133

134

typedef long newlInt;

#pragma somemittypes on
#pragma modifier newlInt
#pragma somemittypes off
module M {
typedef long long t;
module N
typedef short short t;
interface M I
implementation {
somDefaultInit
}i
Vi

nonportable;

SOMClass {

override;

interface
void op
#pragma
typedef

I : SOMObject ({
()
modifier op persistent;

char char t;

implementation {

releaseorder
metaclass =

callstyle =

mymod
mymod
e

f
op

Vi

op;
M I;
oidl;
a, b;
c, d;
mymod ;

mymod ;

persistent;

From the preceding IDL file, modifiers are associated with the following definitions:

TypeDef ”::newInt” 1 modifier: nonportable

InterfaceDef ”::M::N::M I” 1 modifier: override = somDefaultInit

InterfaceDef ”::M::N::I” 9 modifiers: metaclass = M_I,
releaseorder = op
callstyle = oidl

mymod = a,b,c,d, e, f

a = mymod
b = mymod
c = mymod
d = mymod
e = mymod

Programmer’s Guide for SOM and DSOM

f = mymod
OperationDef ”::M::N::I::0p” 1 modifier: persistent
Notice how the modifiers for the user-defined qualifier “mymod”:
mymod : a, b;
mymod : ¢, d;
e : mymod;
f : mymod;
map onto:

mymod = a,b,c,d,e, f

a = mymod
b = mymod
c = mymod
d = mymod
e = mymod
£ = mymod

This lets users look up the modifiers with mymod, either by looking for mymod or by using
each individual value that uses mymod. These user-defined modifiers are available for
Emitter writers (see Programmer’s Reference for SOM Emitter Framework) and from the
Interface Repository (see Chapter 9, The Interface Repository Framework on page 337).

SOM Compiler Unqualified Modifiers: Unqualified modifiers include the SOM Compiler-
defined identifiers:

abstract
Specifies that the class is intended for use as a parent for subclass derivations, but not
for creating instances.

abstractparents =“parentName, ..."
Specifies that no implementation will be inherited from the indicated parent class into
the new subclass being defined, for all the interfaces inherited from the parent class.
The implementations not inherited are instance variables and method implementations.
The subclass being defined may inherit these implementations from some other non-
abstract parent, but, otherwise, the subclass is responsible for providing
implementations for the inherited methods by overriding these methods and providing
an appropriate implementation.

At run time, when a class is constructed, abstract inheritance from a parent is
requested using the first argument to somBuildClass, which is a bit mask with bit n set
to 0 only if parent n is abstract. The implementation bindings generate this argument
based on the IDL for a class, and indicate abstract inheritance when the IDL includes
an abstractparents modifier statement.

The parentName can be one or a comma-separated series of simple names or
C_Scoped names. To verify that the implementation bindings emitter correctly
recognized the modifier and the parentNames, you can inspect the call to
somBuildClass in the generated implementation bindings file.

baseproxyclass = class
Specifies the base proxy class to be used by DSOM when dynamically creating a proxy
class for the current class. The base proxy class must be derived from the class
SOMDCIlientProxy. The SOMDClientProxy class will be used if the baseproxyclass
modifier is unspecified. (See Customizing the Default Base Proxy Class on page
322)

SOM Interface Definition Language 135

136

Modifiers that name classes that DSOM loads using somFindClass (such as
baseproxyclass and factory) must be specified in a form that somFindClass can
accept. For classes that are defined within modules, the modifier value must include
the module name.

callstyle = oidlI

Specifies that the method stub procedures generated by SOM’s C/C++ bindings will not
include the CORBA-specified (Environment *ev)and (context *ctx) parameters.

classinit = procedure

Specifies a user-written procedure that will be executed to complete the initialization of
a class object after it is created. The classinit modifier is needed if something should
happen exactly once when a class is created. (That is, you want to define an action that
will not be inherited when subclasses are created. One example of this is for staticdata
variables.) When the classinit modifier is specified in the .idl file for a class, the
implementation file generated by the SOM Compiler provides a template for the
procedure, which includes a parameter that is a pointer to the class. The class
implementor can then fill in the body of this procedure template.

directinitclasses

directinitclasses = “ancestorl, ancestor2, ..."

Specifies the ancestor class whose initializers (and destructors) will be directly invoked
by this class’s initialization (and destruction) routines. If this modifier is not explicitly
specified, the default setting is the parents of the class. For further information, see
Initializing and Uninitializing Objects on page 195.

dllname

dllname=filename

Specifies the name of the library file that will contain the class’s implementation. If
filename contains special characters, then filename should be surrounded by double
quotes (*"). The filename specified can be either a full pathname, or an unqualified (or
partially qualified) filename. In the latter cases, the environment variable LIBPATH on
AIX or OS/2 or PATH on Windows NT is used to locate the file.

When the def, exp, or imod emitter is run, the dllname maodifier is overridden by use of
the SOM Compiler's -m option dll, described under Running the SOM Compiler on
page 161.

factory = className

Specifies the name of the class’s factory. The specified factory will be used to create
instances of the target class in a DSOM server. If no factory is specified, the SOM class
object will be used. For more information, see Customizing Factory Creation on page
302.

filestem = stem

Specifies how the SOM Compiler will construct file names for the binding files it
generates (stem.h, stem.c, etc.). The default stem is the file stem of the .idl file for the
class.

functionprefix

functionprefix = prefix

Directs the SOM Compiler to construct method names by prefixing method names with
prefix. For example, functionprefix=xx; within an implementation statement
would result in a procedure name of xxfoo for method foo. The default for this
attribute is the empty string. If an interface is defined in a module, then the default
function prefix is the fully scoped interface name.

Programmer’s Guide for SOM and DSOM

Using a function prefix with the same name as the class makes it easier to remember
method-procedure names when debugging.

When an .idl file defines multiple interfaces not contained within a module, use of a
function prefix for each interface is essential to avoid hame collisions. For example, if
one interface introduces a method and another interface in the same .idl file overrides
it, then the implementation file for the classes will contain two method procedures of the
same name (unless function prefixes are defined for one of the classes), resulting in a
name collision at compile time.

majorversion
majorversion = number

Specifies the major version number of the current class definition. The major version
number of a class definition usually changes only when a significant enhancement or
incompatible change is made to the class. The number must be a positive integer less
than 232-1. If a non-zero major version humber is specified, SOM will verify that any
code that purports to implement the class has the same major version number. The
default major version number is zero.

memory_management = corba
Specifies that all methods introduced by the class follow the CORBA specification for
parameter memory management, except where a particular method has an explicit
modifier indicating otherwise (using either object_owns_result or
object_owns_parameter). See Memory-Management Functions on page 256 for a
discussion of the CORBA memory-management requirements.

metaclass = class
Specifies the class’s metaclass. The specified metaclass (or one automatically derived
from it at run time) will be used to create the class object for the class. If a metaclass is
specified, its .idl file (if separate) must be included in the include section of the class’s
.idl file. If no metaclass is specified, the metaclass will be defined automatically.

minorversion
minorversion = number

Specifies the minor version number of the current class definition. The minor version
number of a class definition changes whenever minor enhancements or fixes are made
to a class. Class implementors usually maintain backward compatibility across changes
in the minor version number. The “number” must be a positive integer less than 232-1. If
a non-zero minor version number is specified, SOM will verify that any code that
purports to implement the class has the same or a higher minor version number. The
default minor version number is zero.

somallocate = procedure
Specifies a user-written procedure that will be executed to allocate memory for class
instances when the somAllocate Method is invoked.

somdeallocate = procedure
Specifies a user-written procedure that will be executed to deallocate memory for class
instances when the somDeallocate Method is invoked.

The following example illustrates the specification of unqualified interface modifiers:

implementation

{

filestem = hello;
functionprefix = hel;

majorversion = 1;

SOM Interface Definition Language 137

138

minorversion = 2;
classinit = hellolInit;

metaclass = M Hello;

}i
SOM Compiler Qualified Modifiers: Qualified modifiers are categorized according to the
IDL component (class, attribute, method, or type) to which each modifier applies. Listed
below are the SOM Compiler-defined identifiers used as qualified modifiers, along with the
IDL component to which it applies. Descriptions of all qualified modifiers are then given in
alphabetical order. Recall that qualified modifiers are defined using the syntax qualifier:
modifier[=value].

Classes: releaseorder
Attributes: impldef_prompts, indirect, nodata, noget, noset, persistent

Method: caller_owns_parameters, caller_owns_result, const,
dual_owned_parameters, dual_owned_result, init, maybe_by_ value_parameters,
maybe_by_value_result, method, migrate, mplan, namelookup, nocall, noenv,
nonstatic, nooverride, noself, object_owns_parameters, object_owns_result, offset,
override, pass_by_copy, procedure, reintroduce, select, suppress_inout_free

Variables: staticdata
Types: impctx, length, pointer, struct

caller_owns_parameters
caller_owns_parameters ="p1, p2, ..., pn”

Specifies the names of the method’s parameters whose ownership is retained by (in
the case of in parameters) or transferred to (for inout or out parameters) the caller.
This modifier is only valid in the interface specification of the method’s introducing
class. This modifier only makes sense for parameters whose IDL type is a data item
that can be freed (string, object, array, pointer, or TypeCode), or a data item containing
memory that can be freed (for example, a sequence or any), or a struct or union.

For parameters whose type is an object, ownership applies to the object reference
rather than to the object (that is, the caller should invoke the release Method on the
parameter, rather than the somFree Method).

caller_owns_result
Specifies that ownership of the return result of the method is transferred to the caller,
and that the caller is responsible for freeing the memory. This modifier is only valid in
the interface specification of the method’s introducing class. This modifier only makes
sense when the method’s return type is a data type that can be freed (string, object,
array, pointer, or TypeCode), or a data item containing memory that can be freed (for
example, a sequence or any). For methods that return an object, ownership applies to
the object reference rather than to the object (that is, the caller should invoke the
release Method on the result, rather than the somFree Method).

const
Indicates that implementations of the related method should not modify their target
argument. SOM provides no way to verify or guarantee that implementations do not
modify the targets of such methods, and the information provided by this modifier is not
currently of importance to any of the Toolkit emitters. However, the information may
prove useful in the future. For example, since modifiers are available in the Interface
Repository, there may be future uses of this information by DSOM.

dual_owned_parameters
dual_owned_parameters="p1, p2, ..., pn”

Programmer’s Guide for SOM and DSOM

When invoking the method remotely with DSOM, this modifier indicates that a copy of
the named parameters of the specified method is owned by each of the caller and the
object, and each is responsible for releasing its own copy, including introduced pointers
for inout and out parameters. When invoking the method on a local (same-process)
object, the result of the specified method is owned by the object and should not be
freed by the caller. See Advanced Memory-Management Options on page 257.

dual_owned_result
When invoking the method remotely with DSOM, this modifier indicates that the result
of the specified method is owned by each of the caller and the object, and each is
responsible for releasing its own copy. When invoking the method on a local
(same-process) object, the result of the specified method is owned by the object and
should not be freed by the caller. See Advanced Memory-Management Options on
page 257.

impctx
Supports types that cannot be fully defined using IDL. The information provided by this
modifier is built into the TypeCode constructed for the type. See Using tk_foreign
TypeCode on page 350.

One use of impctx is by DSOM to marshal SOMFOREIGN types. For information
regarding DSOM'’s use, see Passing Foreign Data Types on page 262

impldef_prompts
Indicates that the DSOM regimpl tools should prompt the user to supply a value for an
attribute. This modifier can only be used to modify attributes of type string. It is used in
the IDL for a subclass of the DSOM ImplementationDef. For more information, see
Customizing ImplementationDef Objects on page 41.

indirect
Directs the SOM Compiler to generate get and set methods for the attribute that take
and return a pointer to the attribute’s value, rather than the attribute value itself. For
example, if an attribute x of type float is declared to be an indirect attribute, then the
_get_x method will return a pointer to a float, and the input to the _set_x method must
be a pointer to a float. (This modifier is provided for OIDL compatibility only.)

init
Indicates that a method is an initializer method. For information concerning the use of
this modifier, see Initializing and Uninitializing Objects on page 195.

length
length=n

Specifies the size in bytes of the top-level contiguous storage of a foreign type. The
default is 4 bytes. The value of this modifier must be nonzero. This modifier is used by
DSOM to marshal SOMFOREIGN types. For more information, see Passing Foreign
Data Types on page 262.

maybe_ by value parameters
maybe_by value parameters ="p1, p2, ..., pn”

Indicates that, for the named parameters of the specified method, objects passed as
parameters are to be passed to the remote site by copy (rather than by reference) if
this is possible. See Passing Objects by Copying on page 261.

maybe_by_value_result
Indicates that, for the specified method, its returned object is to be passed back to the
client by copy (rather than by reference) if this is possible. See Passing Objects by
Copying on page 261.

SOM Interface Definition Language 139

140

method
Indicates the category of method implementation. See Four kinds of SOM Methods
on page 184 for an explanation of the meanings of these different method modifiers. If
none of these maodifiers is specified, the default is method. Methods with a procedure
modifier cannot be invoked remotely by DSOM.

migrate
migrate =ancestor

Indicates that a method originally introduced by this interface has been moved upward
to a specified ancestor interface. When this is done, the method introduction must be
removed from this interface (because the method is now inherited). However, the
original releaseorder entry for the method should be retained, and migrate should be
used to assure that clients compiled based on the original interface will not require
recompilation. The ancestor interface is specified using a C-scoped interface name. For
example, Module InterfaceName, Not Module: :InterfaceName. See Name
Usage in Client Programs on page 151 for an explanation of C-scoped names.

mplan
mplan=none

Directs the SOM Compiler not to generate a marshal plan for the specified method in
any emitted .ih or .xih file. A marshal plan tells DSOM how to invoke the method
remotely. By default, the SOM Compiler attempts to generate marshal plans for all
methods. It silently abandons the attempt if the signature of the method makes it
impossible for the method to be invoked remotely. Specifying mplan=none can
marginally improve SOM compilation time and DLL size, if you are certain that a
method will never be invoked remotely. See Registering Class Interfaces on page 30

namelookup
See offset.

nocall
Specifies that the related method should not be invoked on an instance of this class
even though it is supported by the interface.

nodata
Directs the SOM Compiler not to define an instance variable corresponding to the
attribute. For example, a “time” attribute would not require an instance variable to
maintain its value, because the value can be obtained from the operating system. The
get and set methods for nodata must be defined by the class implementor; stub
method procedures for them are automatically generated in the implementation
template for the class by the SOM Compiler.

noenv
Indicates that a direct-call procedure does not receive an environment as an argument.

noget
Directs the SOM Compiler not to automatically generate a get method procedure for
the attribute in the .ih or .xih binding file for the class. Instead, the get method must be
implemented by the class implementor. A stub method procedure for the get method is
automatically generated in the implementation template for the class by the SOM
Compiler, to be filled in by the implementor.

nonstatic
See method.

nooverride
Indicates that the method should not be overridden by subclasses. The SOM Compiler
will generate an error if this method is overridden.

Programmer’s Guide for SOM and DSOM

noself
Indicates that a direct-call procedure does not receive a target object as an argument.

noset
Directs the SOM Compiler not to automatically generate a set method procedure for
the attribute in the .ih or .xih binding file for the class. Instead, the set method must be
implemented by the class implementor. A stub method procedure for the set method is
automatically generated in the implementation template for the class by the SOM
Compiler.

The set method procedure that the SOM Compiler generates by default for an attribute
in the .h or .xh binding file (when the noset modifier is not used) does a shallow copy
of the value that is passed to the attribute. For some attribute types, including strings
and pointers, this may not be appropriate. For instance, the set method for an attribute
of type string should perform a string copy, rather than a shallow copy, if the attribute’s
value may be needed after the client program has freed the memory occupied by the
string. In such situations, the class implementor should specify the noset attribute
modifier and implement the attribute’s set method manually, rather than having SOM
implement the set method automatically.

object_owns_parameter
object_owns_parameters ="“pl, p2, ..., pn”

Specifies the names of the method’s parameters whose ownership will be transferred
to the target object, which takes responsibility for the parameter storage. The in
parameters must be allocated by the client with SOMMalloc; in a remote method call,
DSOM *“stands in” and frees them with SOMFree. For a remote target object, the inout
and out parameters in the client’s address space are released when the proxy is
released. On the server side, the target object’'s implementation determines when the
associated memory will be freed after the method completes. Object ownership
sometimes applies to introduced pointers. For more information, see Advanced
Memory-Management Options on page 257.

object_owns_result
Specifies that the object retains ownership of the return result of the method, and that
the caller must not free the memory. The object is responsible for freeing the memory
of the result sometime before the object is destroyed. For more information, see
Advanced Memory-Management Options on page 257.

offset
Indicates whether the SOM Compiler should generate bindings for invoking the method
using offset resolution or name lookup. Offset resolution requires that the class of the
method’s target object be known at compile time. When different methods of the same
name are defined by several classes, namelookup is a more appropriate technique for
method resolution than is offset resolution. (See Invoking Methods on Objects on
page 76.) The default modifier is offset.

override
Indicates that the method is one introduced by an ancestor class and that this class will
re-implement the method. See also the related modifier, select.

pass_by_copy_parameters
pass_by copy_parameters =“p1, p2, ..., pn”

Indicates that, for the named parameters of the specified method, each parameter will
be passed by copy (rather than by reference). See Passing Objects by Copying on
page 261.

SOM Interface Definition Language 141

142

pass_by copy result
Indicates that, for the specified method, its returned object will be passed back to the
client by copy (rather than by reference). See Passing Objects by Copying on page
261.

procedure
See method.

pointer
Indicates that a SOMFOREIGN type has the same storage class as a pointer, which
influences when pointers are introduced by the mapping from IDL to C/C++. The default
is pointer unless struct is specified. For additional information, see Passing Foreign
Data Types on page 262. In the same chapter, see Introduced Pointers on page 255
showing, by data type, when pointers are introduced by the mapping from IDL to C/C++.

reintroduce
Indicates that this interface will hide a nonstatic or direct-call method introduced by
some ancestor interface, and will replace it with another implementation. Only methods
introduced as direct-call procedures or nonstatic methods can be reintroduced. Static
methods (the default implementation category for SOM methods) cannot be
reintroduced.

releaseorder
releaseorder: a, b, c, ...

Specifies the order in which the SOM Compiler will place methods or variables in the
data structures it builds to represent the class. Maintaining a consistent release order
for a class allows the implementation of a class to change without requiring client
programs to be recompiled.

The releaseorder statement should contain every method name introduced by the
class, but should not include any inherited methods. The get and set methods defined
automatically for each new attribute (_get_attributeName and _set_attributeName)
should also be included in the release order list. The order of the names on the list is
unimportant except that once a name is on the list and the class has client programs, it
should not be reordered or removed, even if the method is no longer supported by the
class, or the client programs will require recompilation. New methods should be added
only to the end of the list. If a method named on the list is to be moved up in the class
hierarchy, its name should remain on the current list, but it should also be added to the
release order list for the class that will now introduce it.

If not explicitly specified, the release order will be determined by the SOM Compiler,
and a warning will be issued for each missing method. If new methods or attributes are
subsequently added to the class, the default release order might change; programs
using the class would then require recompilation. Thus, it is advisable to explicitly give
a release order.

select
select = parent

Used in conjunction with the override modifier, this indicates that an inherited static
method will use the implementation inherited from the indicated parent class. Using
select guarantees inheritance of the selected parent’s method implementation, in case
some metaclass implementation may have overridden the default inheritance from the
left-most parent, or when inheritance from a parent further to the right is desired. The
parent is specified using the C-scoped name. For example, use

Module InterfaceName, and notModule: :InterfaceName. See Name Usage in
Client Programs on page 151 for an explanation of C-scoped names.

Programmer’s Guide for SOM and DSOM

staticdata

Indicates that a data variable is not instanced (that is, is not stored within objects), but,
instead, that it will be accessed through an external pointer to which client code can be
linked. This is similar in concept to C++ static data members, but with one level of
indirection. (The indirection is provided to allow SOM objects to be staticdata.)

A class implementor has responsibility for allocating the staticdata variable and for
loading the external pointer to the staticdata variable during class initialization. The
external pointer is located in the ClassData structure for the implementing class, in the
field: classNameClassData.variableName.

The implementor’s responsibility for loading the external pointer(s) can be facilitated by
writing a special class initialization function and indicating its name using the classinit
unqualified modifier (see Example 3 on page 144).

Attributes can be declared as staticdata. This is an important implementation
technigue that allows classes to introduce attributes whose backing storage is neither
instanced nor inherited by subclasses. (See Example 1 on page 143 and Example 3
on page 144) staticdata attributes are valuable for other reasons as well: they hide the
pointer indirection required for their data access, and they are the only DSOM-safe
mechanism for accessing staticdata variables. For this reason, it is recommended that
the staticdata modifier be restricted to attributes.

struct

Indicates that a SOMFOREIGN type has the same storage class as a struct, which
influences when pointers are introduced by the mapping from IDL to C/C++. For
additional information, see Passing Foreign Data Types on page 262 and see
Introduced Pointers on page 255 showing, by data type, when pointers are introduced
by the mapping from IDL to C/C++.

suppress_inout_free

suppress_inout_free="p1, p2, ..., pn”

Directs DSOM to suppress (for the named parameters of the specified method) the
freeing of any part of an inout parameter in the caller’s address space. This modifier is
meaningful only for remote method calls. See Advanced Memory-Management
Options on page 257.

Example 1: The following example illustrates the specification of qualified modifiers:

implementation
{
opl : persistent;
somDefaultInit : override, init;
op2: reintroduce, procedure;
op3: reintroduce, nonstatic;
op4: override, select = ModuleName parentInterfaceName;
op5: migrate = ModuleName ancestorInterfaceName;
op6: procedure, noself, noenv;
long x;
X: staticdata;
y: staticdata; // y and z are attributes
_set_z: object owns parameters = “name”;
_get_z: object owns result;

mymod: a, b;

SOM Interface Definition Language 143

releaseorder: opl,op3,0p2,0p5,0p6,x,y, set z, get z,
set vy, _get y;
Vi
As shown above for attribute z, separate modifiers can be declared for an attribute’s _set

and _get methods, using method modifiers. This capability may be useful for DSOM
applications. (See the DSOM sample program animal that ships with SOMobjects.)

Example 2: For this example, class B, which is derived from class 2, originally introduced
methods fool, foo2 and foo3. If method foo2 were migrated to class a, the modified
class B implementation would be as shown:

interface B : A {
void fool() ;
/* <<-- foo2() has been moved to class A */
void foo3 () ;
implementation ({
releaseorder: fool, foo2, foo3;
majorversion = 1; minorversion = 2;
foo2: migrate = A;
Vi
bi
Example 3: This example for classes X and Y illustrates the use of a staticdata modifier,

along with its corresponding classinit modifier and the template procedure generated for
classinit by the SOM Compiler.

/* IDL for staticdata and classinit example: */
#include <somobj.idls>
interface X : SOMObject ({
attribute long staticAttribute;
attribute long normalAttribute;
implementation {
staticAttribute: staticdata;
classinit = Xinit;
releaseorder: staticAttribute,
_get_staticAttribute,
_set_staticAttribute,
_get normalAttribute,
_set _normalAttribute;
bi
Vi

interface Y : X { };

/* Template procedure for classInit: */
#ifndef SOM Module classinit Source
#define SOM Module classinit Source
#endif

#define X Class_Source

144 Programmer's Guide for SOM and DSOM

#include "classInit.ih”
static long holdStaticAttribute = 1234;
void SOMLINK Xinit (SOMClass *cls)

{

XClassData.staticAttribute = &holdStaticAttribute;

main ()
{
X *x = XNew() ;
Y *y = YNew() ;
somPrintf (“initial staticAttribute = x(%d) = y(%4d)\n”,
__get staticAttribute(x,0),
__get staticAttribute(y,0));
__set staticAttribute(x,0,42);

___set staticAttribute(y,0,4321);

somPrintf (“changed staticAttribute = x(%d) = y(%4d)\n”,
__get staticAttribute(x,0),
__get staticAttribute(y,0));
___set normalAttribute(x,0,10);

___set normalAttribute(y,0,20);

somPrintf (“after setting normalAttribute, x(%d) != y(%d)\n”,
___get normalAttribute(x,0),
___get normalAttribute(y,0));

}

/* Program output:

initial staticAttribute = x(1234) = y(1234)
changed staticAttribute = x(4321) = y(4321)
after setting normalAttribute, x(10) != y(20)

*/

Declaring Instance Variables and Staticdata Variables

Declarators are used within the body of an implementation statement (described in
Implementation Statements on page 132) to specify the instance variables that are
introduced by a class, and the staticdata variables pointed to by the class’s ClassData
structure. These variables are declared using ANSI C syntax for variable declarations,
restricted to valid SOM IDL types (see Type and Constant Declarations on page 118).
For example, the following implementation statement declares two instance variables, x
and y, and a staticdata variable, z, for class Hello":

implementation

SOM Interface Definition Language 145

146

short x;
long vy;
double z;

z: staticdata;
Vi
Instance variables are normally intended to be accessed only by the class’s methods and
not by client programs or subclasses’ methods. For data to be accessed by client programs
or subclass methods, attributes should be used instead of instance variables. (Note,
however, that declaring an attribute has the effect of also declaring an instance variable of
the same name, unless the nodata attribute modifier is specified.)

Staticdata variables, by contrast, are publicly available and are associated specifically with
their introducing class. They are, however, very different in concept from class variables.
Class variables are really instance variables introduced by a metaclass, and are therefore
present in any class that is an instance of the introducing metaclass (or of any metaclass
derived from this metaclass). As a result, class variables present in any given class will also
be present in any class derived from this class (that is, class variables are inherited). In
contrast, staticdata variables are introduced by a class (not a metaclass) and are (only)
accessed from the class’s ClassData structure; they are not inherited.

Passing Parameters by Copying

Under normal circumstances, the in parameters to a method must not be modified by the
method. This is important because any changes made by the method’s implementation (or
callee) may be visible to callers of the method. Moreover, such changes would not be
expected, given the in designation of the parameter.

For situations where a method does need to modify an in parameter, however, the method
can receive a copy of the parameter. The IDL modifier pass_by_copy_parameters is used
to identify parameters that should be copied when passed from the caller of a method to the
method’s implementation. This parameter-passing style is similar to pass by value in C++,
and is generally used to ensure that changes made to parameters by the callee are not
visible to callers.

The following example demonstrates both parameter passing styles:
interface A;
interface B : SOMObject ({
void op(in A al, in A a2);
implementation {
op: pass_by copy parameters =a2;
i
i
In this example, method op takes two in parameters, both of type A. The default parameter
passing semantics for objects is by reference, so a1 is passed to op by reference.

Parameter a2, however, is passed by copy, because modifier pass_by_copy_parameters
is used to override the default call semantics.

C and C++ usage bindings generated by the SOM compiler automatically make copies of
pass_by copy_parameters parameters; thus, callers that use these bindings need not
construct copies explicitly. However, if a method is called through the Dynamic Invocation
Interface or through a method procedure pointer (as returned by the somResolve

Programmer’s Guide for SOM and DSOM

Function, for example), then the caller is responsible for copying
pass_by_copy_parameters parameters.

The designation of pass_by copy_parameters for a method argument does not affect its
type in the corresponding C or C++ bindings. For example, clients of op should pass, for
each parameter, a pointer to an object of type A.

C and C++ usage bindings copy pass_by_copy_parameters of an object type via the copy
constructor somDefaultCopylnit Method, as supported by the formal parameter class.
The copying of all other types is done via a shallow, top-level copy. For example, the top
level of a structure parameter is copied, but no copying is done of any objects that are
referenced from fields within the structure.

Modifier pass_by_copy_parameters can only be used only with in parameters, as it is
incompatible with the callee-to-caller passing of parameter values that takes place with out
and inout parameters.

Passthru Statements

A passthru statement (used within the body of an implementation statement, described
above) lets a class implementor specify blocks of code (for C/C++ programmers, usually
only #include directives) that the SOM compiler will pass into the header files it generates.

Passthru statements are included in SOM IDL primarily for backward compatibility with the
SOM OIDL language, and their use by C and C++ programmers should be limited to
#include directives. C and C++ programmers should use IDL type and constant declarations
rather than passthru statements when possible. (Users of other languages, however, may
require passthru statements for type and constant declarations.)

The SOM compiler ignores the contents of the passthru lines which can contain anything
that needs to be placed near the beginning of a header file for a class. Comments
contained in passthru lines are processed without modification. The syntax for specifying
passthru lines is one of the following forms:

passthru language suffix = literal+ ;
passthru Ianguage suffix before = literal+ ;
passthru language suffix after = literal+ ;
where language specifies the programming language and suffix indicates which header

files will be affected. The SOM Compiler supports suffixes h, ih, xh and xih. For both C and
C++, language is specified as C.

Each literal is a string literal (enclosed in double quotes) to be placed verbatim into the
specified header file. [Double quotes within the passthru literal should be preceded by a
backslash. No other characters escaped with a backslash will be interpreted, and formatting
characters (newlines, tab characters and so forth) are passed through without processing.]
The last literal for a passthru statement must not end in a backslash (put a space or other
character between a final backslash and the closing double quote).

When either of the first two forms is used, passthru lines are placed before the #include
statements in the header file. When the third form is used, passthru lines are placed just
after the #include statements in the header file.

For example, the following passthru statement

implementation

{

passthru C h = "#include <foo.h>";

Vi

SOM Interface Definition Language 147

results in the directive #include <foo.h> being placed at the beginning of the .h C
binding file that the SOM Compiler generates.

For any given target file (as indicated by language_suffix), only one passthru statement
may be defined within each implementation section. You may, however, define multiple
#include statements in a single passthru. For legibility, each #include should begin on a
new line, optionally with a blank line to precede and follow the #include list.

Introducing non-IDL Data Types or Classes

You may want a new .idl file to reference some element that the SOM Compiler would not
recognize, such as a user-defined class or an instance variable or attribute with a user-
defined data type. You can reference such elements if they already exist in .h or .xh files
that the SOM Compiler can #include with your new .idl file, as follows:

 To introduce a non-IDL class, insert an interface statement that is a forward reference
to the existing user-defined class. It must precede the interface statement for the new
class in the .idl file.

* To declare an instance variable or attribute that is not a valid IDL type, declare a
dummy typedef preceding the interface declaration.

* In each case above, in the implementation section use a passthru statement to pass an
#include statement into the language-specific binding files of the new .idl file

- for the existing user-defined class
- for the real typedef

In the following example, the generic SOM type somToken is used in the .idl file for the
user’'s types myRealType and myStructType. The passthru statement then causes an
appropriate #include statement to be emitted into the C/C++ binding file, so that the file
defining types myRealType and myStructType will be included when the binding files
process. In addition, an interface declaration for myOtherClass is defined as a forward
reference, so that an instance of that class can be used within the definition of
myCurrentClass. The passthru statement also #includes the binding file for
myOtherClass:

typedef somToken myRealType;
typedef somToken myStructType;

interface myOtherClass;

interface myCurrentClass : SOMObject ({
implementation ({

myRealType myInstVar;
attribute myStructType stl;
passthru C_h =

"#include <myTypes.h>”

"#include <myOtherClass.h>"

mu o,
7

148 Programmer’s Guide for SOM and DSOM

Vi
Vi
See Using tk_foreign TypeCode on page 350.

Comments within a SOM IDL File

SOM IDL supports both C and C++ comment styles. The characters “//” start a line
comment, which finishes at the end of the current line. The characters “/*” start a block
comment that finishes with “*/”. Block comments do not nest. The two comment styles can
be used interchangeably.

Comments in a SOM IDL specification must be strictly associated with particular syntactic
elements, so that the SOM Compiler can put them at the appropriate place in the header
and implementation files it generates. Therefore, comments may appear only in these
locations (in general, following the syntactic unit being commented):

* At the beginning of the IDL specification
* After a semicolon

« Before or after the opening brace of a module, interface statement, implementation
statement, structure definition, or union definition

» After a comma that separates parameter declarations or enumeration members

» After the last parameter in a prototype (before the closing parenthesis)

» After the last enumeration name in an enumeration definition (before the closing brace)
» After the colon following a case label of a union definition

« After the closing brace of an interface statement

Numerous examples of the use of comments can be found in Chapter 3, Tutorial for
Implementing SOM Classes on page 49.

Because comments appearing in a SOM IDL specification are transferred to the files that
the SOM Compiler generates, and because these files are often used as input to a
programming language compiler, avoid using characters that are not generally allowed in
comments of most programming languages. For example, the C language does not allow */
to occur within a comment, so its use is to be avoided, even when using C++ style
comments in the .idl file.

SOM IDL also supports throw-away comments. They may appear anywhere in an IDL
specification, because they are ignored by the SOM Compiler and are not transferred to
any file it generates. Throw-away comments start with the string “//#" and end at the end of
the line. Use throw-away comments to comment out portions of an IDL specification.

To disable comment processing (that is, to prevent the SOM Compiler from transferring
comments from the IDL specification to the binding files it generates), use the -c option of
the sc command when running the SOM Compiler (See Chapter 6, The SOM Compiler on
page 155). When comment processing is disabled, comment placement is not restricted,
and comments can appear anywhere in the IDL specification.

Designating Private Methods and Attributes

To designate methods or attributes within an IDL specification as private, the declaration of
the method or attribute must be surrounded with the preprocessor commands
#ifdef _ PRIVATE _ (with two leading underscores and two following underscores) and

SOM Interface Definition Language 149

#endif. For example, to declare a method foo as a private method, place the following
declaration in the interface statement:

#ifdef PRIVATE
void foo();
#endif

Any number of methods and attributes can be designated as private, either within a single
#ifdef or in separate ones.

When compiling a .idl file, the SOM Compiler normally recognizes only public (nonprivate)
methods and attributes, as that is generally all that is needed. To generate header files for
client programs that do need to access private methods and attributes, or for use when
implementing a class library containing private methods, the -p option should be included
when running the SOM Compiler. The resulting header files will then include bindings for
private, as well as public, methods and attributes. Both the implementation bindings (.ih or
.xih file) and the usage bindings to be #included in the implementation (.h or .xh file)
should be generated under the -p option. The -p option is described in Running the SOM
Compiler on page 161.

The SOMobjects Toolkit also provides a pdl (Public Definition Language) emitter that can
be used with the SOM Compiler to generate a copy of a .idl file which has the portions
designated as private removed. The next main section of this chapter describes how to
invoke the SOM Compiler and the various emitters.

Defining Multiple Interfaces in a .idl File

150

A single .idl file can define multiple interfaces. This allows, for example, a class and its
metaclass to be defined in the same file. When a file defines two or more interfaces that
reference one another, forward declarations can be used to declare the name of an
interface before it is defined. This is done as follows:

interface className ;
The actual definition of the interface for className must appear later in the same .idl file.

If multiple interfaces are defined in the same .idl file, and the classes are not a class-
metaclass pair, they can be grouped into modules, by using the following syntax:

module moduleName { definition+ };

where each definition is a type declaration, constant declaration, exception declaration,
interface statement or nested module statement. Modules are used to scope identifiers.

Alternatively, multiple interfaces can be defined in a single .idl file without using a module
to group the interfaces. Whether a module is used for grouping multiple interfaces, the
languages bindings produced from the .idl file will include support for all of the defined
interfaces.

When multiple interfaces are defined in a single .idl file and a module statement is not used
for grouping these interfaces, it is necessary to use the functionprefix modifier to assure
that different names exist for functions that provide different implementations for a method.
In general, it is a good idea to always use the functionprefix modifier, but in this case it is
essential.

Programmer’s Guide for SOM and DSOM

Scoping and Name Resolution

A .idl file forms a naming scope (or scope). Modules, interface statements, structures,
unions, methods, and exceptions form nested scopes. An identifier can only be defined
once in a particular scope. Identifiers can be redefined in nested scopes.

Names can be used in an unqualified form within a scope, and the name will be resolved by
successively searching the enclosing scopes. Once an unqualified name is defined in an
enclosing scope, that name cannot be redefined.

Fully qualified names are of the form:
scope-name: :identifier

For example, method name meth defined within interface Test of module M1 would have
the fully qualified name:

Ml::Test::meth

A qualified name is resolved by first resolving the scope-name to a particular scope, S, and
then locating the definition of identifier within that scope. Enclosing scopes of S are not
searched.

Qualified names can also take the form:
::identifier

These names are resolved by locating the definition of identifier within the smallest
enclosing module.

Every name defined in an IDL specification is given a global name, constructed as follows:

» Before the SOM Compiler scans a .idl file, the name of the current root and the name
of the current scope are empty. As each module is encountered, the string “::” and the
module name are appended to the name of the current root. At the end of the module,
they are removed.

* As each interface, struct, union, or exception definition is encountered, the string “::
and the associated name are appended to the name of the current scope. At the end of
the definition, they are removed. While parameters of a method declaration are
processed, a new unnamed scope is entered so that parameter names can duplicate
other identifiers.

» The global name of an IDL definition is then the concatenation of the current root, the
current scope, a “::”, and the local name for the definition.

The names of types, constants and exceptions defined by the parents of a class are
accessible in the child class. References to these names must be unambiguous.
Ambiguities can be resolved by using a scoped name (prefacing the name with the name of
the class that defines it and the characters “::”, as in parent-class::identifier). Scope names
can also be used to refer to a constant, type or exception name defined by a parent class
but redefined by the child class.

Name Usage in Client Programs

Within a C or C++ program, the global name for a type, constant or exception corresponding
to an IDL scoped name is derived by converting the string “::" to an underscore (*_") and
removing the leading underscore. Such names are referred to as C-scoped names. This
means that types, constants, and exceptions defined within the interface statement for a
class can be referenced in a C/C++ program by prepending the class name to the name of
the type, constant or exception. For example, consider the types defined in the following
IDL specification:

SOM Interface Definition Language 151

typedef sequence<long, 10> mySeq;
interface myClass : SOMObject
{

enum color {red, white, blue};

typedef string<l00> longString;

}
These types could be accessed within a C or C++ program with the following global names:
mySedq,
myClass_color,
myClass_red,
myClass white,
myClass_blue, and
myClass longString

Type, constant, and exception names defined within modules similarly have the module
name prepended. When using SOM’s C/C++ bindings, the short form of type, constant, and
exception names (such as, color, longString) can also be used where unambiguous,
except that enumeration names must be referred to using the long form (for example:
myClass_ red and not simply red).

Because replacing “::” with an underscore to create global names can lead to ambiguity if
an IDL identifier contains underscores, it is best to avoid the use of underscores when
defining IDL identifiers.

Extensions to CORBA IDL permitted by SOM IDL

152

The following topics describe several SOM-unique extensions of the standard CORBA
syntax that are permitted by SOM IDL for convenience. These constructs can be used in a
.idl file without generating a SOM Compiler error.

If you want to verify that an IDL file contains only standard CORBA specifications, the SOM
Compiler option -mcorba turns off each of these extensions and produces compiler errors

wherever non-CORBA specifications are used. (The SOM Compiler command and options
are described in Running the SOM Compiler on page 161.)

Pointer ** Types

In addition to the base CORBA types, SOM IDL permits the use of pointer types (**). As
well as increasing the range of base types available to the SOM IDL programmer, using
pointer types also permits the construction of more complex data types, including
self-referential and mutually recursive structures and unions.

If self-referential structures and unions are required, then, instead of using the CORBA
approach for IDL sequences, such as the following:

struct X {

sequence <X> sgself;

Programmer’s Guide for SOM and DSOM

it is possible to use the more typical C/C++ approach. For example:

struct X {
X *gelf;

bi
SOM IDL does not permit an explicit **' in sequence declarations. If a sequence is required
for a pointer type, then it is necessary to typedef the pointer type before use. For example:

sequence <long *> long star seq; // error.
typedef long * long star;

sequence <long star> long star_ seq; // OK.

Unsigned Types

SOM IDL permits the syntax “unsigned type”, where type is a previously declared type
mapping onto short or long. (CORBA permits only unsigned short and unsigned long.

Implementation Section

SOM IDL permits an implementation section in an IDL interface specification to allow the
addition of instance variables, method overrides, metaclass information, passthru
information and pragma-like information, called modifiers, for the emitters. See
Implementation Statements on page 132.

Comment Processing

The SOM IDL Compiler by default does not remove comments in the input source; instead,
it attaches them to the nearest preceding IDL statement. This facility is useful, since it
allows comments to be emitted in header files, C template files, documentation files, and so
forth. However, if this capability is desired, this does mean that comments cannot be placed
with quite as much freedom as with an ordinary IDL compiler. To turn off comment
processing so that you can compile .idl files containing comments placed anywhere, you
can use the compiler option -c or use throw-away comments throughout the .idl file (that is,
comments preceded by //#); as a result, no comments will be included in the output files.

Generated Header Files

CORBA expects one header file, file.h, to be generated from file.idl. However, SOM IDL
permits use of a class modifier, filestem, that changes this default output file name. (See
Running the SOM Compiler on page 161.)

SOM Interface Definition Language 153

154 Programmer's Guide for SOM and DSOM

Chapter 6. The SOM Compiler

The SOM Compiler translates the IDL of a SOM class into a set of binding files for the
language that implement the class’s methods and the languages that use the class. These
bindings make it more convenient to implement and use SOM classes. The SOM Compiler
produces binding files for the C and C++ languages. However, C and C++ bindings cannot
both be generated during the same execution of the SOM compiler.

Generating Binding Files

The SOM Compiler operates in two phases:
* A precompile phase that analyzes an OIDL or IDL class definition.
e An emission phase where one or more emitter programs produce binding files.

An emitter program generates each binding file. Setting the SMEMIT environment variable
determines the emitters.

Note: In binding files, the filestem is determined by default from the name of the source
.idl file with the “.idl” extension removed. Otherwise, a filestem modifier can be
defined in the .idl file to specify another file name (see Modifier Statements on
page 133).

When changes to definitions in the .idl file become necessary, rerun the SOM Compiler to
update the current implementation template file. The ¢ or xc emitter must be specified
either with the -s option or the SMEMIT environment variable. Additional information on
generating updates is in Running Incremental Updates of the Implementation Template
File on page 193.

Binding Files Created By The C Emitters

The emitters for the C language produce the following binding files:

filestem.c
(produced by the ¢ emitter)

This is a template for a C source program that implements a class’s methods. This will
become the primary source file for the class. (The other binding files can be generated
from the .idl file as needed.) This template implementation file contains stub
procedures for each method introduced or overridden by the class. The stub
procedures are empty of code except for required initialization and debugging
statements.

After the class implementor has supplied the code for the method procedures, running
the ¢ emitter again updates the implementation file to reflect changes made to the class
definition (in the .idl file). These updates include adding new stub procedures, adding
comments, and changing method prototypes to reflect changes made to the method
definitions in the IDL specification. Existing code within method procedures is not
disturbed. The .c file contains an #include directive for the .ih file, described below.

The content of the C source template is controlled by the Emitter Framework file
<SOMBASE>/include/ctm.efw. This file can be customized to change the template
produced. For information on changing the template file see Emitter Framework Guide
and Reference.

filestem.h
(produced by the h emitter)

The SOM Compiler 155

This is the header file to be included by C client programs (programs that use the
class). It contains the C usage bindings for the class, including macros for accessing
the class’s methods and a macro for creating new instances of the class. This header
file includes the header files for the class’s parent classes and its metaclass, as well as
the header file that defines SOM’s generic C bindings, som.h.

filestem.ih

(produced by the ih emitter)

This is the header file to be included in the implementation file (the file that implements
the class’s methods, the .c file). It contains the implementation bindings for the class,
including:

- astruct defining the class’s instance variables
- macros for accessing instance variables
- macros for invoking parent methods the class overrides

- the classNameGetData macro used by the method procedures in the filestem.c
file. See Stub Procedures for Methods on page 189.

- aclassNameNewClass procedure for constructing the class object at run time
- any IDL types and constants defined in the IDL interface

Binding Files Created By The C++ Emitters

156

The emitters for the C++ language produce the following binding files:
filestem.C (for AIX) or filestem.cpp (for OS/2 and Windows NT)

(produced by the xc emitter)

This is a template for a C++ source program that implements a class’s methods. This
becomes the primary source file for the class. (The other binding files can be generated
from the .idl file as needed.) This template implementation file contains stub
procedures for each method introduced or overridden by the class. (The stub
procedures are empty of code except for required initialization and debugging
statements.)

After the class implementor has supplied the code for the method procedures, running
the xc emitter again will update this file to reflect changes made to the class definition
(in the .idl file). These updates include adding new stub procedures, adding comments,
and changing method prototypes to reflect changes made to the method definitions in
the IDL specification. Existing code within method procedures is not disturbed.

The C++ implementation file contains an #include directive for the .xih file, described
below.

The content of the C++ source template is controlled by the Emitter Framework file
<SOMBASE>/include/ctm.efw. This file can be customized to change the template
produced. For detailed information on changing the template file see Emitter
Framework Guide and Reference.

filestem.xh

(produced by the xh emitter)

Programmer’s Guide for SOM and DSOM

This is the header file to be included by C++ client programs that use the class. It
contains the usage bindings for the class, including a C++ definition of the class,
macros for accessing the class’s methods, and the new operator for creating new
instances of the class. This header file includes the header files for the class’s parent
classes and its metaclass, as well as the header file that defines SOM’s generic C++
bindings, som.xh.

filestem.xih
(produced by the xih emitter)

This is the header file to be included in the implementation file. It contains the
implementation bindings for the class, including:

- astruct defining the class’s instance variables
- macros for accessing instance variables

- macros for invoking parent methods the class overrides, the classNameGetData
macro. See Stub Procedures for Methods on page 189.

- aclassNameNewClass procedure for constructing the class object at run time
- any IDL types and constants defined in the IDL interface

Other Files the SOM Compiler Generates

filestem.pdl
(produced by the pdl emitter)

This file is the same as the .idl file from which it is produced except that all items within
the .idl file that are marked as private are removed. (An item is marked as private by
surrounding it with #ifdef __ PRIVATE__ and #endif directives.) Thus, the Public
Definition Language (pdl) emitter can generate a “public” version of a .idl file. See The
pdl Facility on page 167 for information about the pdl emitter.

filestem.def
(produced by the def emitter) (for OS/2)

This file is used by the linker to package a class as a library. You can combine several
classes into a single .def file by running the def emitter for each of the .idl files that
contain classes in the library. Each interface in the .idl files should contain the same
dliname maodifier in its implementation section. Or, you can specify the .def file’'s name
with the global dIl modifier on the SOM Compiler command line using the -m option.
See the dliname modifier under Modifier Statements on page 133. For additional
information of the dll modifier and the -m option, see Running the SOM Compiler on
page 161.

When packaging multiple classes in a single library, you must also have a C procedure
named SOMInitModule to initialize the class library. This procedure should call the
routine classNameNewClass for each class packaged in the library. The
SOMiInitModule procedure can be generated automatically with the imod emitter.
SOMInitModule is called by the SOM Class Manager when the library is dynamically
loaded.

filestem.exp
(produced by the exp emitter) (for AlX)
This file is used by the linker to package a class as a library. You can combine several
classes into a single .exp file by running the exp emitter for each of the .idl files that
contain classes in the library. Each interface in the .idl files should contain the same
dliname modifier in its implementation section. Or, you can specify the .exp file’s name

The SOM Compiler 157

158

with the global dll modifier on the SOM compiler command line using the -m option.
See the dliname modifier under Modifier Statements on page 133. For additional
information on the dIl modifer and the -m option, see Running the SOM Compiler on
page 161.

When packaging multiple classes in a single library, you must also have a C procedure
named SOMInitModule to initialize the class library. This procedure must be exported
and should call the routine classNameNewClass for each class packaged in the library.
The SOMInitModule procedure can be generated automatically with the imod emitter.
SOMiInitModule is called by the SOM Class Manager when the library is dynamically
loaded.

filestem.nid

(produced by the def emitter) (for Windows NT)

This file is used by the linker to package a class as a library. You can combine several
classes into a single .nid file by running the def emitter for each of the .idl files that
contain classes in the library. Each interface in the .idl files should contain the same
dliname modifier in its implementation section. Or, you can specify the .nid file’s name
with the global dIl modifier on the SOM compiler command line using the -m option.
See the dliname modifier under Modifier Statements on page 133. For additional
information on the dIl modifer and the -m option, see Running the SOM Compiler on
page 161.

When packaging multiple classes in a single library, you must also have a C procedure
named SOMInitModule to initialize the class library. This procedure must be exported
and should call the routine classNameNewClass for each class packaged in the library.
The SOMInitModule procedure can be generated automatically with the imod emitter.
SOMInitModule is called by the SOM Class Manager when the library is dynamically
loaded.

filestemi.c

(produced by the imod emitter)

This is a C source program that implements a class library’s initialization and
termination function. This source file should be compiled and linked along with all the
class implementation source files. The contents of this file are described in more detail
in Specifying the Initialization and Termination Function on page 215.

The output source file is named based on the value of the dlilname modifier in the
implementation section of the .idl file. Otherwise, the output source file is the value of
the .idl file’s filestem by default. The global modifier dll specified with the SOM
Compiler’s -m option can also be used to set the output source file name. See the
dliname modifier under Modifier Statements on page 133. For additional information
on the dll modifier and the -m option, see Running the SOM Compiler on page 161.

When you run the imod emitter again for the same set of .idl files, any additional
classes that have been defined are added to the output source file. Any existing
information in the output source file is not disturbed.

The content of the C source program is controlled by the Emitter Framework file:
<SOMBASE>/include/imod.efw

This file can be customized to change the initialization and termination function
produced by the emitter. For detailed information on changing the .efw file, see Emitter
Framework Guide and Reference.

The Interface Repository

(produced by the ir emitter)

Programmer’s Guide for SOM and DSOM

See Chapter 9, The Interface Repository Framework on page 337 for a discussion
on the Interface Repository and the ir emitter.

The C/C++ bindings generated by the SOM Compiler have the following limitation: If
two classes named ClassName and ClassNameC are defined, the bindings for these
two classes will clash. That is, if a client program uses the C/C++ bindings (includes the
.h/.xh header file) for both classes, a name conflict will occur. Thus, class
implementors should keep this limitation in mind when naming their classes.

SOM users can extend the SOM Compiler to generate additional files by writing their
own emitters. To assist users in extending the SOM Compiler, SOM provides an
Emitter Framework: a collection of classes and methods useful for writing object-
oriented emitters that the SOM Compiler can invoke. For more information, see the
Programmer’s Reference for SOM and DSOM.

Porting SOM Classes

The header files (binding files) that the SOM Compiler generates will only work on the
platform (operating system) on which they were generated. Thus, when porting SOM
classes from the platform where they were developed to another platform, the header files
must be regenerated from the .idl file by the SOM Compiler on that target platform.

Environment Variables Affecting the SOM Compiler

To execute the SOM Compiler on one or more files that contain IDL specifications for one
or more classes, use the SOM Compiler command, as follows:

sc [-options] files

where files specifies one or more .idl files.

Available options for the command are detailed in the next topic. The operation of the SOM
Compiler (whether it produces C binding files or C++ binding files, for example) is also
controlled by certain environment variables that can be set before the sc command is
issued. The applicable environment variables are as follows:

SMEMIT

Determines which output files the SOM Compiler produces. Its value consists of a list of
items separated by semicolons for OS/2 and Windows NT, or by semicolons or colons
for AIX. Each item designates an emitter to execute. For example, the statement:

SET SMEMIT=c;h;ih (for 0S/2 and Windows NT)

export SMEMIT="c;h;ih” (for AIX)
directs the SOM Compiler to produce the C binding files hello.c, hello.h, and hello.ih
from the hello.idl input specification. By comparison,

SET SMEMIT=xc;xh;xih (for 0S/2 and Windows NT)

export SMEMIT="xc;xh;xih” (for AIX)
directs the SOM Compiler to produce C++ binding files hello. ¢ (for AIX) or

hello.cpp (for OS/2 and Windows NT), hello.xh and hello.xih from the
hello. id1 input specification.

By default, all output files are placed in the same directory as the input file. If the
SMEMIT environment variable is not set, then a default value of "h; ih" is assumed.

The SOM Compiler 159

160

SMINCLUDE

Specifies where the SOM Compiler should look for .idl files #included by the .idl file
being compiled. Its value should be one or more directory names separated by a
semicolon when using OS/2, or separated by a semicolon or colon when using AlX.
Directory names can be specified with absolute or relative pathnames. For example:

SET SMINCLUDE=.;..\MYSCDIR;C:\TOOLKT20\C\INCLUDE;
(for OS/2 and Windows NT)

export SMINCLUDE=.:myscdir:/u/som/include
(for AIX)

The default value of the SMINCLUDE environment variable is the include
subdirectory of the directory into which SOM has been installed.

SMTMP

Specifies the directory that the SOM Compiler should use to hold intermediate output
files. This directory should not coincide with the directory of the input or output files. For
AlX, the default setting of SMTMP is /tmp; for OS/2 and Windows NT, the default setting
of SMTMP is the root directory of the current drive.

SET SMTMP=. .\MYSCDIR\GARBAGE
tells the SOM Compiler to place the temporary files in the GARBAGE directory.
SET SMTMP=%TMP% (0S/2 and Windows NT)

tells the SOM Compiler to use the same directory for temporary files as given by the
setting of the TMP environment variable (the default location for temporary system
files).

AIX examples:

export SMTMP=S$TMP
export SMTMP=../myscdir/garbage

SMKNOWNEXTS

Specifies additional emitters to which the SOM Compiler should add a header. For
example, if you were to write a new emitter for Pascal, called emitpas, then by default
the SOM Compiler would not add any header comments to it. However, by setting
SMKNOWNEXTS=pas, as shown:

set SMKNOWNEXTS=pas (for 0S/2 and Windows NT)

export SMKNOWNEXTS=pas (for AIX)
the SOM Compiler will add a header to files generated with the emitpas emitter. The
“header” added is a SOM Compiler-generated message plus any comments, such as

copyright statements, that appear at the head of your .idl input file. For details on
writing your own emitter, see the Emitter Framework Guide and Reference.

SOMIR

Specifies the name or list of names of the Interface Repository file. The ir emitter, if
run, creates the Interface Repository, or checks it for consistency if it already exists. If
the -u option is specified when invoking the SOM Compiler, the ir emitter also updates
an existing Interface Repository. For additional information on the -u option, see
Running the SOM Compiler on page 161.

SMADDSTAR

When defined, causes all interface references to have a “*” added to them for the C
bindings. The command line SOM Compiler options -maddstar and -mnoaddstar
supercede and override the SMADDSTAR setting, however.

Programmer’s Guide for SOM and DSOM

Environment variables that affect the SOM Compiler can be set for any -m options of
the SOM Compiler command. The -E option can be used to set an environment
variable. For additional information on the -maddstar and -mnomaddstar option and
the -m and -E options, see Running the SOM Compiler on page 161.

Running the SOM Compiler

The syntax of the command for running the SOM Compiler takes the forms:
sc [-options] files

The files specified in the sc command denote one or more files containing the IDL class
definitions to be compiled. If no extension is specified, .idl is assumed. By default, the
filestem of the .idl file determines the filestem of each emitted file. Otherwise, a filestem
modifier can be defined in the .idl file to specify another name. For additional information
on the filestem modifier, see Modifier Statements on page 133.

Selected -options can be specified individually, as a string of option characters, or as a
combination of both. Any option that takes an argument either must be specified individually
or must appear as the final option in a string of option characters. Available options and
their purposes are as follows:

-Cn
Sets the maximum allowable size for a simple comment in the .idl file (default: 32767).
This is only needed for very large single comments.

-D name[=def]
Same as in a #define directive. The default def is 1. This option is the same as the -D
option for the C compiler. Note: This option can be used to define _ PRIVATE__ so
that the SOM Compiler will also compile any methods and attributes that have been
defined as private using the directive #ifdef _ PRIVATE__; however, the -p option
does the same thing more easily. When a class contains private methods or attributes,
both the implementation bindings and the usage bindings to be #included in the
implementation should be generated using the -p or -D _ PRIVATE__ option.

-E variable=value
Sets an environment variable. For additional information on the environment variables:
SMEMIT, SMINCLUDE, SMTMP, SMKNOWNEXTS, SOMIR and SMADDSTAR, see
Environment Variables Affecting the SOM Compiler on page 159.

-1 dir
When looking for #included files, looks first in dir, then in the standard directories
(same as the C compiler -1 option).

-Sn
Sets the total allowable amount of unique string space used in the IDL specification for
names and passthru lines (default: 32767). This is only needed for very large .idl files.

-U name

Removes any initial definition (via a #define preprocessor directive) of symbol name.
-V

Displays version information about the SOM Compiler.

Turns off comment processing. This allows comments to appear anywhere within an
IDL specification (rather than in restricted places), and it causes comments not to be
transferred to the output files that the SOM Compiler produces.

The SOM Compiler 161

162

-d directory
Specifies a directory where all output files should be placed. If the -d option is not used,
all output files are placed in the same directory as the input file.

-h or -?
Produces a listing of this option list. This option is typically used in an sc or somc
command that does not include a .idl file name.

-i filename
Specifies the name of the class definition file. Use this option to override the built-in
assumption that the input file will have a .idl extension. Any filename supplied with the -
i option is used exactly as it is specified.

-m name[=value]
Adds a global modifier. (See also the following Note about the -m option, which
explains how to convert any “-m name” modifier to an environment variable.)

All command-line -m modifier options can be specified in the environment by changing
them to UPPERCASE and prepending “SM” to them. For example, if you want to always
set the option -maddstar, set corresponding environment variables as follows:

set SMADDSTAR=1
On AIX:

export SMNOTC=1
export SMADDSTAR=1

Currently Supported -m name[=value] modifier options:

addcmt This option directs the ir emitter to emit IDL comments into the
Interface Repository file. For example, a method in an IDL file may be
immediately followed by a comment that describes what the method
does. When the addcmt modifier is used, any IDL comments are
added as modifiers for the IR objects to which the comments are
related. The modifier name is comment, and the value of the modifier
is the comment string, including line breaks. For example, assume an
operation is defined in an IDL file as follows:

void testMethod (in string arg) ;
// This is a comment.

Specifying addcmt creates an OperationDef Class object in the
Interface Repository with a comment modifier equal to the string
This is a comment.

addprefixes Adds a functionprefix to the method procedure prototypes
during an incremental update of the implementation template file. This
option applies only when rerunning the ¢ or xc emitter on an IDL file
that previously did not specify a functionprefix modifier. A class
implementor who later decides to use prefixes should add a line in the
implementation section of the .idl file containing the specification:

functionprefix = prefix

and then rerun the ¢ or xc emitter using the -maddprefixes option.
The method procedure prototypes in the implementation file will then
be updated so that each method name includes the assigned prefix.
(This option does not support changes to existing prefix names, nor
does it apply for OIDL files.) For additional information onf the
functionprefix modifier, see Modifier Statements on page 133

Programmer’s Guide for SOM and DSOM

addstar This option causes all interface references to have a ‘*’ added to
them for the C bindings. See Object Types on page 124 for further
details.

comment=comment string

where comment string can be either of the designations: “/*” or “//".
This option indicates that comments marked in the designated manner
in the .idl file are to be completely ignored by the SOM Compiler and
will not be included in the output files. Comments on lines beginning
with “//#" are always ignored by the SOM Compiler.

corba This option directs the SOM Compiler to compile the input definition
according to strict CORBA-defined IDL syntax. This means, for
example, that comments may appear anywhere and that pointers are
not allowed. When the -mcorba option is used, parts of a .idl file
surrounded by #ifdef __SOMIDL__ and #endif directives are ignored.
This option can be used to determine whether all nonstandard
constructs (those specific to SOM IDL) are properly protected by #ifdef
__SOMIDL___ and #endif directives.

csc This option forces the OIDL compiler to be run. This is required only if
you want to compile an OIDL file that does not have an extension of
.CSC Or .sc.

dll=filestem

Warning: Do not use this modifier on the Windows NT

platform. Due to the pecularities of the Windows NT,

you must rely on the dllname modifier to be in the idl file

itself.
This option specifies the name of the class library DLL to the exp
emitter, the def emitter and the imod emitter. In each case, the
filestem value defines the filestem name of the output file. In addition,
for the imod emitter only, the C output file has an “i” appended to the
filestem. For example, consider the following SOM Compiler command,
which runs both the def and imod emitters:

sc -s”def;imod” -mdll=abc a.idl b.idl c.idl

The def emitter produces a .def file named abc . def that contains the
exports for the classes defined in the three IDL files a.idl, b.idl and
c.idl. The imod emitter produces a C file named abci . c that
contains the class library initialization code for the classes in a.1d1,
b.idl and c¢.idl.

Under the exp, def or imod emitter, the dll modifier overrides the
value of any dliname modifier specified in the implementation section
of an IDL file. Thus, for example, if the a. 1d1 file contains an interface
specifying dl1name="test .d11”, the def emitter would still output
the exports of a class defined in a. 1d1 into file abc.def. (For
additional information on the dliname modifier, see Modifier
Statements on page 133.)

The DLL name specified with the dIl modifier is also used within the
source file that is generated by an imod emitter. (For full information
on the imod emitter, see Specifying the Initialization and
Termination Function on page 215. As described in Generating
Binding Files on page 155, the linker uses the def emitter on OS/2
and the exp emitter on AlX to package a class as a library.)

The SOM Compiler 163

164

emitappend This option causes emitted files to be appended at the end of

existing files of the same name.

imod This option specifies the name of the output C file that will contain

the class library initialization code produced by the imod emitter. For
example, the following SOM Compiler command directs the imod
emitter to produce a C file with the name initterm.c:

sc -simod -mimod=initterm a.idl b.idl c.idl
The file name given with the imod modifier is always used as the
output file name, even when the dll modifier is used at the same time.

For full information on the imod emitter, see Specifying the
Initialization and Termination Function on page 215.

noaccessors This option turns off the automatic creation of OperationDef

entries in the Interface Repository for attribute accessors (that is, for an
attribute’s _set and _get methods).

noaddstar This option ensures that interface references will not have a

“*" added to them for the C bindings. This is the default setting; it is the
opposite of the -m compiler option addstar.

noannot This option specifies to the ir emitter that no file, line and emit

modifiers should be added to the output Interface Repository file. This
option is used to save some space in the IR file.

By default, the ir emitter automatically generates several modifiers:
file, line and emit — for the objects contained in an Interface
Repository. For example, for any given InterfaceDef in an IR,
modifiers are automatically associated with it, to define the file
containing the interface and the line number on which the interface is
defined. The emit modifier indicates whether a globally defined
typedef, struct, exception, enum, union, or constant is to be emitted.
Including an emit modifier means that one of these data types has
been defined within a #pragma somemittypes section of the IDL file.

noimod This option specifies to the AlX exp emitter that the imod emitter

was not used to create the class library initialization function and exp
should therefore not export an initialization function named
dil_stem_nameSOMiInitTerm. By default, the exp emitter generates
the dll_stem_nameSOMiInitTerm function name into the exports file.
For full information on the imod emitter, see Specifying the
Initialization and Termination Function on page 215.

noint This option directs the SOM Compiler not to warn about the

portability problems of using int’s in the source.

nolock This option causes the Interface Repository Emitter emitir to leave

the IR unlocked when updates are made that can improve performance
on networked file systems. By not locking the IR, however, there is the
risk of multiple processes attempting to write to the same IR, with
unpredictable results. This option should only be used when you know
that only one process is updating an IR at once. For additional
information, see Chapter 9, The Interface Repository Framework on
page 337.

nomplans Directs the SOM Compiler not to generate a marshal plan for

any method of the current class in any emitted .ih or .xih file.

sc -sh;ih -mnomplans xidl

Programmer’s Guide for SOM and DSOM

Note, somcsr.his still included in x. ih, but no marshal plans are
emitted.

Specifying nomplans has the same effect as specifying mplan=none
as a method modifier on every method introduced by the class. For
more information, see the mplan modifier and see Registering Class
Interfaces on page 30.

nopp This option directs the SOM Compiler not to run the SOM
preprocessor on the .idl input file.

notc A value of 2 must be specified (that is, -mnotc=2) to direct the
compiler not to generate typecode information. This option is only used
when compiling converted .csc files (that is, OIDL files originally) that
have not had typing information added.

nouseshort This option directs the SOM Compiler not to generate short
forms for type names in the .h and .xh public header files. This can be
useful to save disk space.

pass This option directs the ir emitter to emit passthru statements into the
IR file. Passthrus are added to InterfaceDef objects in the IR as
modifiers whose value equals the passthru string, including line breaks.
The modifiers are:

passthruC.h, passthruC.ih
passthruC.xh, passthruC.xih
passthruC.h_after, passthruC.ih_after
passthruC.xh_after, passthruC.xih_after

pbl This option directs the SOM Compiler that, in declarations containing a
linkage specifier, the "*" will appear before the linkage specifier. This is
required when using any C++ compiler (Watcom is a known example)
that cannot handle declarations in the default format where the "*"
follows the linkage specifier. A default example is the declaration:

typedef void (SOMLINK * somTD_ SOMObject somFree)
(SOMObject *somSelf) ;

Under the -mpbl option of the SOM Compiler command, the same
example would be declared as:

typedef void (* SOMLINK somTD_ SOMObject somFree)
(SOMObject *somSelf) ;

pp=preprocessor This option directs the SOM Compiler to use the
specified preprocessor as the SOM preprocessor, rather than the
default “somcpp”. Any standard C/C++ preprocessor can be used as a
preprocessor for IDL specifications.

tcconsts This option directs the SOM Compiler to generate TypeCode
constants in the .h and .xh public header files. See TypeCode
Constants on page 351 for additional information on TypeCode
constraints.

updateir[=filestem] This option specifies that the Interface Repository data
file will be updated when the ir emitter is run. The updateir modifier
can include a filestem value to designate the IR file that will be
updated. For example, the following command updates the IR file
test.ir in the current directory:

The SOM Compiler 165

166

P

-r

sc -sir -mupdateir=test.ir a.idl

Using the -sir option and the updateir modifier without a value is
equivalent to using the -u flag on the SOM Compiler command. Thus,
there is no need to use both the -u flag and the -mupdateir flag
together; simply choose one or the other, as convenient.

Causes the private sections of the IDL file to be included in the compilation (that is,
sections preceded by #ifdef __ PRIVATE__ that contain private methods and
attributes). If -p is used, it must be applied for both the implementation bindings (.ih or
xih file) and the usage bindings (.h or .xh file) to be #included in the implementation.

Checks that all names specified in the release order statement are valid method names
(default: FALSE).

-s "string"

-u

'

-W

Substitutes string in place of the contents of the SMEMIT environment variable for the
duration of the current SOM Compiler command. This determines which emitters will be
run and, hence, which output files will be produced.

The -s option is a convenient way to override the SMEMIT environment variable. In OS/
2 and Windows NT, for example, the command:

> SC -s"h;c" EXAMPLE
is equivalent to the following sequence of commands:

> SET OLDSMEMIT=%SMEMIT$

> SET SMEMIT=H;C

> SC EXAMPLE

> SET SMEMIT=%OLDSMEMIT%
For additional information on the SMEMIT environment variable, see Environment
Variables Affecting the SOM Compiler on page 159.
Similarly, in AIX the command:

> sc -sh”;”c example
is equivalent to the following sequence of commands:

export OLDSMEMIT=$SMEMIT
export SMEMIT=h";”c

sc example

export SMEMIT=$OLDSMEMIT

V V VvV V

Updates the Interface Repository (default: no update). With this option, the Interface
Repository will be updated even if the ir emitter is not explicitly requested in the
SMEMIT environment variable or the -s option. For additional information on SMEMIT,
see Environment Variables Affecting the SOM Compiler on page 159.

Uses verbose mode to display information messages (default: FALSE). This option is
primarily intended for debugging purposes and for writers of emitters.

Suppresses warning messages (default: FALSE).

The following sample commands illustrate various options for the SOM Compiler command:

sc -sc hello.idl Generates file hello.c.

sc -h

Programmer’s Guide for SOM and DSOM

Generates a help message and displays the version of the SOM
Compiler currently available.
sc -vsh”;”ih hello.idl
Generates hello.h and hello.ih with informational messages.
sc -sxc -doutdir hello.idl

Generates hello.xc in directory outdir.

The pdlI Facility

The SOM Compiler provides a Public Definition Language pdl emitter that generates a file
equivalent to the .idl file from which it is produced, except that it removes all items within
the .idl file that are marked as private. To mark an item as private surround it with

#ifdef _ PRIVATE__ and #endif directives. You can use the pdl emitter to generate a
public version of a .idl file. Generally, client programs need only the public methods and
attributes of an interface.

The SOMobjects Toolkit also provides a stand-alone program, pdl, capable of generating
not just a public version of a .idl file, but also arbitrary, user-defined versions. For example,
pdl can generate release-specific versions of a .idl file, a version with legacy support, and
so on. Using pdl can simplify the management of .idl source files by generating multiple
versions of the file from a common source, rather than maintaining multiple copies.

Using pdl To Maintain Common Versions of an IDL File

For example, assume that the file window.idl contains the interface to a window class, and
that maintenance of the current version 1.1 of the class is to be overlapped with
development of extensions for the 2.0 version. To support these concurrent activities you
could maintain independent copies of window.idl, one with version 1.1, the other with 2.0.
This approach is error prone and you must make changes to common code in two separate
files.

Here’s how to use pdl to generate two versions from a common source file. If extensions
for version 2.0 of the window class are made in window.idl:

#if VERSION >= 200
//extensions specific to version 2.0 and higher
#endif
then you can generate the version you want by invoking:
pdl -DVERSION=num window.idl

where num is 110 for version 1.1 or 200 for version 2.0. Changes to common code are
made in only one file, minimizing the likelihood of error.

The pdl program is somewhat similar to somcpp, the preprocessor invoked by the SOM
compiler. pdl, however, preprocesses a .idl file only partially, resolving some preprocessor
directives, while deferring others to somcpp which completely resolves all preprocessor
directives.

pdl examines all #if, #ifdef, and #ifndef directives in an input .idl file and evaluates the
associated conditional expressions to determine if subsequent text up to the matching
#endif or #else should be emitted or skipped. For example:

#ifdef ABC

void op() ;

The SOM Compiler 167

#else
void op (in long arg);
#endif
pdl could produce the following results:

» If ABC were defined on the pdl command line with -DABC then void op () ; would be
emitted into the output file.

» If aBC were explicitly undefined with -UABC, then void op (in long arg) ; would
be emitted.

e If ABC were unknown by being neither explicitly defined or undefined on the command
line, then all five lines would be emitted. somcpp and standard C or C++ processors
would handle this case differently, emitting void op (in long arg) ; instead of all
five lines.

pdl Simplification of Conditional Expressions

If possible, pdl simplifies a conditional expression whose value is unknown before it is
emitted. Consider a variation of the previous example:

#if defined (ABC) && defined (DEF)
void op() ;
#else
void op(in long arg) ;
#endif
If ABC were defined with -DABC and DEF is unknown by being neither explicitly defined or
undefined, then pdl would emit the following:
#if defined (DEF)
void op() ;
#telse
void op(in long arg) ;
#endif
because defined (ABC) && defined (DEF) can be simplified to
TRUE && defined (DEF) which can be further simplified to defined (DEF).

pdl resolves as many conditional compilation directives as possible, based on identifier
definitions and undefinitions specified on the command line with the -D and -U options. An
identifier can be defined or undefined only on the command line, and not by #define or
#undef directives in the .idl file. This gives you fine control over which conditional
compilation directives get resolved in a specific invocation of pdl, and which ones get
deferred to subsequent preprocessing.

Syntax of the pdl Command

168

The syntax for the pdl command is:
pdl [-c cmd] [-d dir] [-f] [-h] [-s smemit] [-D id [=val]] [-U id] [-/ id] files

The pdl command supports the following options. Options can be specified individually, as
a string of option characters, or as a combination of both. Any option that takes an
argument either must be specified individually or must appear as the final option in a string
of option characters.

Programmer’s Guide for SOM and DSOM

-c cmd

Specifies that the pdl program is to run the specified system command for each .idl
file. This command may contain a single occurrence of the string $s, which will be
replaced with the source file name before the command is executed. For example, the
option -c sc -sh %s has the same effect as issuing the sc command with the -sh
option.

-d dir

Specifies a directory in which the output files are to be placed. The output files are
given the same name as the input files. If no directory is specified, the output files are
named fileStem.pdl where fileStem is the file stem of the input file and are placed in the
current working directory.

Displays this description of the pdl command syntax and options.

Specifies that output files are to replace existing files with the same name, even if the
existing files are read-only. By default, files are replaced only if they have write access.

-S smemit

-/ id

files

Specifies that pdl is to invoke the SOM Compiler with the SMEMIT variable.

See -U option.

Specifies one or more .idl files to be processed. Filenames must be completely
specified with the .idl extension.

-Did[=val]

Defines id to val, if specified, or 1 otherwise.

-Uid

Undefined id.

If no -/, -U or -D options are specified, then -U __ PRIVATE__ is assumed.

For example, to install public versions of the .idl files in the directory pubinclude, type:

pdl -d pubinclude *.idl

The SOM Compiler 169

170 Programmer's Guide for SOM and DSOM

Chapter 7. Implementing Classes in SOM

This chapter is a more in-depth discussion of SOM concepts and the SOM run-time
environment than Chapter 3, Tutorial for Implementing SOM Classes on page 49.
Subsequent sections provide information about completing an implementation template file,
updating the template file, compiling and linking, packaging classes in libraries, and other
useful topics for class implementors. Refer to Chapter 5, SOM Interface Definition
Language on page 115 for reference information or the full syntax of topics discussed in
this chapter. This chapter also describes customizing SOMobjects.

SOM Run-Time Environment

The SOMobjects Developer Toolkit provides:
* The SOM Compiler, used when creating SOM class libraries.
e« The SOM run-time library, for using SOM classes at execution time.

The SOM run-time library provides a set of functions used primarily for creating objects and
invoking methods on them. The data structures and objects that are created, maintained,
and used by the functions in the SOM run-time library constitute the SOM run-time
environment.

A distinguishing characteristic of the SOM run-time environment is that SOM classes are
represented by run-time objects; these objects are called class objects. By contrast, other
object-oriented languages such as C++ treat classes strictly as compile-time structures that
have no properties at run time. In SOM, however, each class has a corresponding run-time
object. This has the following advantages:

» Application programs can access information about a class at run time, including its
relationships with other classes, the methods it supports and the size of its instances.

* Much of the information about a class is established at run-time.

» Class objects can be instances of user-defined classes in SOM, users can adapt the
techniques for subclassing and inheritance in order to build object-oriented solutions to
problems that are otherwise not easily addressed within an OOP context.

Run-Time Environment Initialization

When the SOM run-time environment is initialized, four primitive SOM objects are
automatically created. Three of these are class objects (SOMObject, SOMClass and
SOMClassMgr), and one is an instance of SOMClassMgr, called the
SOMClassMgrObject. Once loaded, application programs can invoke methods on these
class objects to perform tasks such as creating other objects, printing the contents of an
object, freeing objects and the like.

In addition to creating the four primitive SOM objects, initialization of the SOM run-time
environment also involves initializing global variables to hold data structures that maintain
the state of the environment. Other functions in the SOM run-time library rely on these
global variables.

For application programs written in C or C++ that use the language-specific bindings
provided by SOM, the SOM run-time environment is automatically initialized the first time
any object is created. Programmers using other languages must initialize the run-time
environment explicitly by calling the somEnvironmentNew function provided by the SOM
run-time library before using any other SOM functions or methods.

Implementing Classes in SOM 171

172

SOMObject Class Object

SOMObject is the root class for all SOM classes. It defines the behavior common to all
SOM obijects. All user-defined SOM classes are derived, directly or indirectly, from this
class. Every SOM class is a subclass or derived subclass of SOMObject and has no
instance variables. Objects that inherit from SOMObject incur no size increase. They do
inherit a suite of methods that provide the behavior required of all SOM objects.

SOMClass Class Object

Because SOM classes are run-time objects and all run-time objects are instances of some
class, it follows that a SOM class object must be an instance of some class. The class of a
class is called a metaclass. Hence, the instances of an ordinary class are individuals
(nonclasses), while the instances of a metaclass are class objects.

In the same way that the class of an object defines the instance methods that the object
can perform, the metaclass of a class defines the class methods that the class itself can
perform. Class methods, also called factory methods or constructors, are performed by
class objects. Class methods perform tasks such as creating new instances of a class,
maintaining a count of the number of instances of the class, and other supervisory
operations. Also, class methods facilitate inheritance of instance methods from parent
classes.

See Figure 4 for the distinction between instance methods and class methods, as well as
that between objects, classes, and metaclasses. For the distinction between parent classes
and metaclasses, see Parent Class versus Metaclass on page 174.

SOMClass._is the root class for all SOM metaclasses. All SOM metaclasses must be
subclasses or derived metaclasses of SOMClass that defines the essential behavior
common to all SOM class objects. SOMClass provides:

» Class methods for creating new class instances: somNew, somNewNolnit,
somRenew, somRenewNolnit, somRenewNoZero and somRenewNolnitNoZero.

» Class methods that dynamically obtain or update information about a class and its
methods at run time, including:

- somAddDynamicMethod Method to introduce new dynamic methods
- somGetinstanceSize Method to obtain the size of an instance of this class
- somDescendedFrom Method to test if a specified class is derived from this class

Programmer’s Guide for SOM and DSOM

T,
Metaclass "M"

7%
Class Methoos ~ -
dedined In metaclass >

™" mre perfarmed by /_-“\

tlass ' o produns Class "C'

instances. ___/’
-

Irstanee Methods ™
defined in class -
'C* are parformesd by
0.0, Objact "0,/

Legend

metaclass
@ cloes
O obiect

——+ |5 an Instance of

Figure 4. Class methods versus instance methods.

SOMClass is a subclass of SOMObject. Hence, SOM class objects can perform the same
set of basic instance methods common to all SOM objects. Instance methods allows SOM
classes to be real objects in the SOM run-time environment. SOMClass has the distinction
of being its own metaclass.

A user-defined class can designate as its metaclass either SOMClass or another
user-written metaclass descended from SOMClass. If a metaclass is not explicitly
specified, SOM determines one automatically.

SOMClassMgr Class Object and SOMClassMgrObject

The third primitive SOM class is SOMClassMgr. An instance of the SOMClassMgr class is
created during SOM initialization. This instance is the SOMClassMgrObject because it is
pointed to by that global variable. The object SOMClassMgrObject:

* Maintains a registry, or run-time directory, of all SOM classes within the current process
e Assists in the dynamic loading and unloading of class libraries

Implementing Classes in SOM 173

Primitive classes supplied with S0M {bjects created during SOM initialization
v

7N N
SO0MOb]ect SOMClass
class class object

,

S0OMObjsct SOMClassMyr
class object class abject
'
SOMClazs Mgr Ohject
abject
Legsnd

mataciags
@ class
O objact

— Inherlks from

——=+ iz aninstance of

Figure 5. The SOM run-time environment provides four primitive objects, three of them class objects.

SOM classes can be defined locally within a program or can be packaged in a class library.
For a class located in a class library, SOMClassMgr provides a method, somFindClass
Method, for directing the SOMClassMgrObject to load the library file for the class and to
create its class object. However, programs that use the C/C++ language bindings to create
and invoke methods are linked so that the operating system will automatically load the
appropriate libraries when the program is loaded.

Relationships among the four primitive SOM run-time objects are illustrated in Figure 5.
The primitive classes supplied with SOM are SOMObject, SOMClass and SOMClassMgr
with the latter class generating an instance called SOMClassMgrObject. The left-hand side
of Figure 5 shows parent-class relationships among the built-in SOM classes, and the
right-hand side shows instance/class relationships. That is, on the left SOMODbject is the
parent class of SOMClass and SOMClassMgr. On the right, SOMClass is the metaclass
of itself, SOMObject and SOMClassMgr, which are all class objects at run time.
SOMClassMgr is the class of SOMClassMgrObject.

Parent Class versus Metaclass

There is a distinct difference between the notions of parent class and metaclass. Both
notions are related to the fact that a class defines the methods and variables of its
instances which become instance methods and instance variables.

A parent of a given class is a class from which the given class is derived. Thus, the given
class is the child or subclass of the parent. A parent class is a class from which instance
methods and instance variables are inherited. For example, the parent of class Dog might
be class Animal. Hence, the instance methods and variables introduced by Animal (such
as methods for breathing and eating, or a variable for storing an animal’s weight) would

174 Programmer's Guide for SOM and DSOM

also apply to instances of Dog, because Dog inherits these from Animal. As a result, any
given Dog instance would be able to breath and eat and would have a weight.

A metaclass is a class whose instances are class objects and whose instance methods and
instance variables are the methods and variables of class objects. For this reason, a
metaclass defines class methods: the methods a class object performs. For example, the
metaclass Animal might be AnimalMClass which defines the methods that can be
invoked on class Animal (such as, to create Animal instances: objects that are not
classes, like an individual pig or cat or elephant or dog).

It is important to distinguish the methods of a class object from the methods that the class
defines for its instances.

To summarize, the parent of a class provides inherited methods that the class instances
can perform. The metaclass of a class provides class methods that the class itself can
perform. The distinctions between parent class and metaclass are illustrated in Figure 6.

7N 7N

Parsnt class "P" Metaclazs "M"
A N

S
w,

Object "0," S

— Inharits fram

——+ igan instance of

Figure 6. Characteristics of Parent Class versus Metaclass.

To summarize Figure 6 any class C has both a metaclass and one or more parent classes.

* The parent classes of C provide the inherited instance methods that individual
instances (objects 01) of class C can perform. Instance methods that an instance 01
performs might include:

- initializing itself

- performing computations using its instance variables
- printing its instance variables

- returning its size

* The metaclass M defines the class methods that class C can perform. For example,
class methods defined by metaclass M include those that allow C to

- inherit its parents’s instance methods and instance variables
- tellits own name
- create new instances

- tell how many instance methods it supports

Implementing Classes in SOM 175

These methods are inherited from SOMClass. Additional methods supported by M
might allow C to count how many instances it creates.

» Each class C has one or more parent classes and exactly one metaclass. The single
exception is SOMObject, which has no parent class. Parent classes must be explicitly
identified in the IDL declaration of a class. SOMObiject is given as a parent if no
subsequently-derived class applies. If a metaclass is not explicitly listed, the SOM run
time will determine an applicable metaclass.

» Aninstance of a metaclass is always another class object. For example, class C is an
instance of metaclass M. SOMClass is the SOM-provided metaclass from which all
subsequent metaclasses are derived.

A metaclass has its own inheritance hierarchy through its parent classes that is
independent of its instances’ inheritance hierarchies. In Figure 7, a sequence of classes is
defined, stemming from SOMObject. The or subclass at the end of this line, c2 inherits
instance methods from all of its ancestor classes (here, SOMObject and C1). An instance
created by c2 can perform any of these instance methods.

7N

SOMClass
N
£
f

Nt S =
/ﬁ\ Legend

w @ metaclase

@ class

1 1
N/

— inherits fram
U ——+ iz an instance of

Figure 7. Derivation of Parent Classes and Metaclasses

In an analogous manner, a line of metaclasses is defined, stemming from SOMClass. Just
as a new class is derived from an existing class, a new metaclass is derived from an
existing metaclass. In this example, both SOMObject and class C1 are instances of the
SOMClass metaclass, whereas class C2 is an instance of metaclass M2, which inherits
from SOMClass.

Inheritance

176

One of the defining aspects of an object model is its support for inheritance. This section
describes SOM’s model for inheritance and explains how this relates to subclassing.

A class in SOM defines an implementation for objects that support a specific interface:

e The interface defines the methods supported by objects of the class, and is specified
using SOM IDL.

« The implementation defines the instance variables that implement an object’s state and
the procedures that implement its methods.

Programmer’s Guide for SOM and DSOM

Techniques for Deriving Subclasses

New classes are derived (by subclassing) from previously existing classes through
inheritance, specialization (or overriding), and addition, as follows.

Deriving Classes through Inheritance

Subclasses always inherit interface from their parent classes: any method available on
instances of a class is also available on instances of any class derived from it (either
directly or indirectly). In addition, subclasses generally inherit implementation (that is,
method procedures that implement inherited methods, and instance data that supports
these procedures).

Deriving Classes through Specialization

Inherited method procedures can be overridden (or redefined). This is often characterized
as specializing the implementation of an inherited method so that it is appropriate for
objects of the new subclass. With this technique, the class implementor can either
completely replace the inherited implementation or (by using parent-method calls) invoke
the inherited implementation (method procedures) as part of the overall behavior of the new
implementation.

Deriving Classes through Addition

Finally, a subclass can introduce new methods and new instance variables. New instance
variables are generally introduced only when necessary to support the implementation of
newly introduced methods or of overridden inherited methods. These new additions will, in
turn, be inherited by any subclasses of the current class (along with methods and instance
data inherited from more distant parents).

Multiple Inheritance

SOM supports multiple inheritance. That is, a class may be derived from (and may inherit
interface and implementation from) multiple parent classes. Multiple inheritance is not
available in SOM'’s earlier interface definition language, OIDL. See Appendix B,
Converting OIDL Files to IDL on page 417 for information on how to automatically convert
existing OIDL files to IDL.

Resolving Problems with Multiple Inheritance

It is possible under multiple inheritance to encounter potential conflicts or ambiguities. All
multiple inheritance models must face these issues and resolve them in some way. The
following topics discuss some of these problems and describe SOM'’s solutions.

Problem 1: Having alternative meanings for the same name:

One conflict that may arise with multiple inheritance occurs when two ancestors of a class
define different methods (in general, with different signatures) using the same name. For
example, consider Figure 8, “Multiple Inheritance can Create Naming Conflicts.” . Class X
defines a method bar with type T1, and class Y defines a method bar with type T2. Class
Z is derived from both X and Y and z does not override method bar.

This example illustrates a method name that is overloaded: that is, used to name two
entirely different methods (note that overloading is completely unrelated to overriding). This
is not necessarily a difficult problem to handle. Indeed, the run-time SOM API allows the

Implementing Classes in SOM 177

178

construction of a class that supports the two different bar methods illustrated in Figure 8.
(They are implemented using two different method-table entries, each of which is
associated with its introducing class.)

bar {of bypea T1} bar {of bype T2}

Legend

class
— inheritz from

Figure 8. Multiple Inheritance can Create Naming Conflicts.

However, the interface to instances of such classes cannot be defined using IDL. IDL
specifically forbids the definition of interfaces in which method names are overloaded.
Furthermore, within SOM itself, the use of such classes can lead to anomalous behavior
from name-lookup method resolution (discussed in Method Resolution on page 183),
since, in this case, a method name alone does not identify a unique method. For these
reasons, statically declared multiple-inheritance classes in SOM are restricted to those
whose interfaces can be defined using IDL. Thus, the preceding example cannot be
constructed with the aid of the SOM Compiler.

This kind of problem can be very irritating when it prevents programmers from using
multiple inheritance to combine the functionality from different classes. A good guideline for
preventing this problem is that, when introducing new methods in a class, you should try to
avoid using method names that other classes might use independently. For example, you
can use method names that have identifying prefixes not likely to be used by other classes.
All methods introduced by the SOM kernel classes have “som” as a prefix.

Problem 2: Using alternative implementations for the same inherited method:

When multiple inheritance is used to define a class, the class may inherit the same method
or instance variable from different parents (because each of these parents has some
common ancestor that introduces the method or instance variable). In this situation, a SOM
subclass inherits only one implementation of the method or instance variable. The
implementation of an instance variable is basically the location within an object where it is
stored. There is no ambiguity here, since classes cannot override the layout of inherited
instance data. But classes do override method procedures, so different parents might have
different implementations for the same method. The following illustration addresses the
guestion of which method procedure would be inherited when there is an ambiguity with
respect to an inherited method implementation.

Consider the situation in Figure 9. Class w defines a method foo, implemented by
procedure procl. Class W has two subclasses, X and Y. Subclass Y overrides the
implementation of £oo with procedure proc2. Subclass X does not override “£o0”. In
addition, classes X and Y share a common subclass, z. That is, the IDL interface statement
for class z lists its parents as X and Y in that order.

Programmer’s Guide for SOM and DSOM

foo {praet}

class™y"
N/

100 {prac2}

N/

foo {praci}

clags™Z" | foo {77}

Legend

class

— inherits from
A ig implemarted by (B}

Figure 9. Resolution of Multiple-Inheritance Ambiguities.

Which implementation of method foo does class z inherit: procedure proc1 defined by
class w, or procedure proc2 defined by class Y? The procedure for performing inheritance
that is defined by the SOMClass class resolves this ambiguity by using the left path
precedence rule: When the same method is inherited from multiple ancestors, the
procedure used to support the method is the one used by the leftmost ancestor from which
the method is inherited.

This ordering of parent classes is determined by the order in which the class implementor
lists the parents in the IDL specification for the class.

In Figure 9, then, class z inherits the implementation of method foo defined by class w
(procedure proc1), rather than the implementation defined by class Y (procedure proc?2),
because X is the leftmost ancestor of z from which the method foo is inherited. This rule
may be interpreted as giving priority to classes whose instance interfaces are mentioned
first in IDL interface definitions.

If a class implementor decides that the default inherited implementation is not appropriate
(for example, procedure proc2 is desired), then SOM IDL allows the class designer to
select the parent whose implementation is desired. For more information concerning this
approach. For additional information on the select modifier, see Modifier Statements on
page 133.

To summarize, defining a multiple-inheritance class requires a class designer to be aware
of the potential for alternative inherited implementations of a method. When this happens,
the class designer can explicitly choose the desired inherited implementation. The next
multiple-inheritance issue deals with problems that may arise when overriding a method
whose implementation is inherited from multiple parents.

Problem 3: Making multiple parent-method calls:
In a common OOP paradigm, subclasses override an inherited method with code that:
» provides specialized handling of the method invocation appropriate to the subclass

» performs parent-method calls to allow ancestor classes to participate in the execution
of the method. Whether this is appropriate depends on the method involved.

When documenting newly introduced methods, you should always indicate whether the
implementation of a method is intended to be shared among different classes. For such
shared methods, however, multiple inheritance can pose serious questions.

Implementing Classes in SOM 179

To illustrate, imagine that class z in the preceding example overrides the f£oo method to
provide a specialized implementation. When an overridden method such as foo is inherited
from multiple parents, the SOMobjects implementation bindings define multiple parent-call
macros: one for each (non-abstract) parent from which the method is inherited.
Unfortunately, however, calling more than one of these macros normally causes the
implementations at and above the “diamond top” (for example, class W in the previous
example) to be executed multiple times. Depending on the particular method involved, this
may or may not create a problem. But it should always be cause for concern.

Given the different ways that multiple inheritance can be used in SOM, there is no good,
overall solution to this problem. One way to handle it (assuming you have control over all
the classes involved), is to only make parent-method calls to the diamond top from one of
its subclasses. This may be possible in special cases, but it is not a general solution. In
other situations, it may be appropriate to make only one parent-method call from a
multiple-inheritance class, even though the method is inherited from more than one parent.

More fundamentally, however, you can avoid creating diamond tops in the first place. The
SOMObject class is often a diamond top above multiple inheritance classes, but this is not
a problem. Only a few of SOMObject’s methods are intended to be overridden with
implementations that make parent-method calls. The somInit and somUninit methods
originally fell into this category, but these methods now execute under the overall control of
the somDefaultinit Method and somDestruct Method, which are specially designed to
avoid multiple executions at diamond tops. The only other SOMObject method that is
meant to be overridden with implementations that make parent-method calls to all parents
is somDumpSelfint Method. This method causes no problems because SOMObject
implementation of the method does nothing.

The best approach is to avoid multiple inheritance when it would create more than one
inheritance path to any class other than SOMObject.

Multiple inheritance requires careful thought. If you create a multiple-inheritance class, and
if you override a method that is inherited from multiple parents, you should give careful
consideration before making parent-method calls to more than one of these parents, if they
have a common ancestor other than SOMODbject.

Although multiple inheritance can be problematic, it is nevertheless a valuable and
important part of SOM. Multiple inheritance is essential in order to provide reliable support
for explicit metaclasses.

SOM-Derived Metaclasses

180

As discussed in Parent Class versus Metaclass a class object can perform any of the
class methods that its metaclass defines. New metaclasses are typically created to modify
existing class methods or to introduce new class methods. Chapter 10, The Metaclass
Framework on page 357 discusses metaclass programming.

The following factors are essential for effective use of metaclasses in SOM:
* Every class in SOM is an object that is implemented by a metaclass.

* You can define and name new metaclasses and can use these metaclasses when
defining new SOM classes.

Metaclasses cannot interfere with the fundamental guarantee required of every OOP
system: specifically, any code that executes without method-resolution error on instances of
a given class also will execute without method-resolution errors on instances of any
subclass of this class.

Programmer’s Guide for SOM and DSOM

Surprisingly, SOM is currently the only OOP system that can make this final guarantee
while also allowing programmers to explicitly define and use named metaclasses. This is
possible because SOM automatically determines an appropriate metaclass that supports
this guarantee, automatically deriving new metaclasses by subclassing at run time when
this is necessary.

To better understand this concept, consider the situation in Figure 10. Here, class A is an
instance of metaclass AMeta. Assume that AMeta supports a method bar and that A
supports a method foo that uses the expression:

_bar(somGetClass(somSelf))

That is, method foo invokes bar on the class of the object on which foo is invoked. For
example, when method foo is invoked on an instance of class A (say, object 01), this in
turn invokes bar on class a itself.

Afl;'l-;t\a b m interface B:A {

S, ... implamsntion {
|
- o
|

metaclass = BMeta:

};...
}:

Legend

mstaclass

@ olass
O abyject

— inhwerits from

——+ |5 an Instance of

Figure 10. Example of Metaclass Incompatibility

Now consider what happens when A is subclassed by B, a class that has the explicit
metaclass BMeta declared in its SOM IDL source file, as shown by the code in Figure 10.
If the class hierarchy were formed as in Figure 10, then an invocation of £oo on 02 would
fail, because metaclass BMeta does not support the bar method introduced by AMeta.

There is only one way that BMeta can support this specific method — by inheriting it from
AMeta (BMeta could introduce another method named bar, but this would be a different
method from the one introduced by AMeta). Therefore, in this example, because BMeta is
not a subclass of AMeta, BMeta cannot be allowed to be the metaclass of B. That is,
BMeta is not compatible with the requirements placed on B by the fundamental guarantee
of OOP referred to above. This situation is referred to as metaclass incompatibility.

SOM does not allow hierarchies with metaclass incompatibilities. Instead, SOM
automatically builds derived metaclasses when this is necessary. The resulting class
hierarchy in this example is depicted in Figure 11, where SOM has automatically built the
metaclass DerivedMetaclass. This ensures that the invocation of method foo on
instances of class B will not fail, and also ensures that the desired class methods provided
by BMeta will be available on class B.

Implementing Classes in SOM 181

182

——+ |5 an Instance of

Figure 11. Example of a Derived Metaclass.

There are three important aspects of SOM’s approach to derived metaclasses:

1. The creation of SOM-derived metaclasses is integrated with programmer-specified
metaclasses. If a programmer-specified metaclass already supports all the class
methods and variables needed by a new class, then the programmer-specified
metaclass will be used as is.

2. If SOM must derive a different metaclass than the one explicitly indicated by the
programmer (in order to support all the necessary class methods and variables), then
the SOM-derived metaclass inherits from the explicitly indicated metaclass first. As a
result, the method procedures defined by the specified metaclass take precedence
over other possibilities (see the following section on inheritance and the discussion of
resolution of ambiguity in the case of multiple inheritance).

3. The class methods defined by the derived metaclass invoke the appropriate
initialization methods of its parents to ensure that the class variables of its instances
are correctly initialized.

As further explanation for the automatic derivation of metaclasses, consider the following
multiple-inheritance example. In Figure 12, class C does not have an explicit metaclass
declaration in its SOM IDL, yet its parents do. As a result, class C requires a derived
metaclass. If you still have trouble following the reasoning behind derived metaclasses, ask
yourself the following question: What class should ¢ be an instance of? After a bit of
reflection, you will conclude that if SOM did not build the derived metaclass, you would
have to do so yourself.

Programmer’s Guide for SOM and DSOM

Legend

retaciass
@ class
O chijoct

— inheriks from

——— Iz an Instance of

Figure 12. Multiple inheritance in SOM requires derived metaclasses.

In summary, SOM allows and encourages the definition and explicit use of named
metaclasses. With named metaclasses, programmers can not only affect the behavior of
class instances by choosing the parents of classes, but they can also affect the behavior of
the classes themselves by choosing their metaclasses. Because the behavior of classes in
SOM includes the implementation of inheritance itself, metaclasses in SOM provide an
extremely flexible and powerful capability allowing classes to package solutions to
problems that are otherwise very difficult to address within an OOP context.

At the same time, SOM is unigue in that it relieves programmers of the responsibility for
avoiding metaclass incompatibility when defining a new class. At first glance, this might
seem to be merely a useful (though very important) convenience. But, in fact, it is
absolutely essential, because SOM is predicated on binary compatibility with respect to
changes in class implementations.

A programmer might know the metaclasses of all ancestor classes of a new subclass and
be able to explicitly derive an appropriate metaclass for the new class. Nevertheless, SOM
must guarantee that this new class will still execute and perform correctly when any of its
ancestor class implementations are changed. Derived metaclasses allow SOM to make this
guarantee. A SOM programmer doesn’t have to worry about metaclass incompatibility.
Instead, explicit metaclasses can be used to “add in” whatever behavior is desired for a
new class. SOM handles anything else that is needed. Chapter 10, The Metaclass
Framework on page 357 provides useful examples of metaclasses. A SOM programmer
can find uses for the techniques illustrated there.

Method Resolution

Method resolution is the step of determining which procedure to execute in response to a
method invocation. For example, consider this scenario:

» Class Dog introduces a method bark.
e A subclass of Dog, called Bigbog, overrides bark.

e Aclient program creates an instance of either Dog or BigDog (depending on some
run-time criteria) and invokes method bark on that instance.

Implementing Classes in SOM 183

Method resolution is the process of determining, at run time, which method procedure to
execute in response to the method invocation (either the method procedure for bark
defined by Dog, or the method procedure for bark defined by BigDog). This determination
depends on whether the receiver of the method is an instance of Dog or BigDog.

SOM allows class implementors and client programs considerable flexibility in deciding how
SOM performs method resolution. In particular, SOM supports three mechanisms for
method resolution, described in order of increased flexibility and increased computational
cost: offset resolution, name-lookup resolution, and dispatch-function resolution. These
different kinds of method resolution are described after first introducing the four different
kinds of methods in SOMobjects.

Four kinds of SOM Methods

184

SOM supports four different kinds of methods: static, nonstatic, dynamic and direct-call.
The following paragraphs explain these four method categories and the kinds of method
resolution available for each.

Static Methods

These are similar in concept to C++ virtual functions. Static methods are normally invoked
using offset resolution via a method table, as described in Offset Resolution on page 185,
but all three kinds of method resolution are applicable to static methods. Each different
static method available on an object is given a different slot in the object’s method table.
When SOMobijects Toolkit language bindings are used to implement a class, the SOM IDL
method modifier can be specified to indicate that a given method is static; however, this
modifier is rarely used since it is the default for SOM methods.

Static methods introduced by a class can be overridden (redefined) by any descendant
classes of the class. When SOMobijects language bindings are used to implement a class,
the SOM IDL override modifier is specified to indicate that a class overrides a given
inherited method. When a static method is resolved using offset resolution, it is not
important which interface is accessing the method: the actual class of the object on which
the method is invoked determines the method procedure that is selected.

Nonstatic Methods

These methods are similar in concept to C++ nonstatic member functions (that is, C++
functions that are not virtual member functions and are not static member functions).
Nonstatic methods are normally invoked using offset resolution, but all three kinds of
method resolution are applicable to nonstatic methods. When the SOMobjects language
bindings are used to implement a class, the SOM IDL nonstatic modifier is used to indicate
that a given method is nonstatic.

Like static methods, nonstatic methods are given individual positions in method tables.
However, nonstatic methods cannot be overridden. Instead, descendants of a class that
introduces a nonstatic method can use the SOM IDL reintroduce modifier to hide the
original nonstatic method with another (nonstatic or static) method of the same name.
When a nonstatic method is resolved, selection of the specific method procedure is
determined by the interface that is used to access the method.

Dynamic Methods

These methods are not declared when specifying an object interface using IDL. Instead,
they are registered with a class object at run time using somAddDynamicMethod Method.

Programmer’s Guide for SOM and DSOM

Because there is no way for SOM to know about dynamic methods before run time, offset
resolution is not available for dynamic methods. Only name-lookup or dispatch-function
resolution can be used to invoke dynamic methods.

Dynamic methods are not overridden in subclasses but are hidden by subclasses in which
a dynamic method of the same name is added. This provides much the same effect that
overriding provides for static methods. Specifically, method resolution for dynamic methods
typically begins with the class of the object on which the method is invoked, and works
upward in the class hierarchy searching for a class that supports the indicated method. See
Name-Lookup Resolution on page 186 for a description of the search order.

Direct-Call Procedures

These are similar in concept to C++ static member functions. Direct-call procedures are
not given positions in SOM method tables and are not known to SOM class objects.
Instead, language bindings are generated to call them directly without method resolution.

Strictly speaking, none of the previous method-resolution approaches (offset resolution,
name-lookup resolution, or dispatch-function resolution) applies for invoking a direct-call
procedure, although SOMobjects language bindings provide the same invocation syntax for
direct-call procedures as for static or nonstatic methods. Direct-call procedures cannot be
overridden, but they can be reintroduced. When SOMobjects language bindings are used to
implement a class, the SOM IDL procedure modifier is used to indicate that a given
method is a direct-call procedure.

Offset Resolution

When using SOM’s C and C++ language bindings, offset resolution is the default way of
resolving static and nonstatic methods, because it is the fastest. For those familiar with C++,
this is roughly equivalent to the C++ virtual function concept. Offset resolution cannot be
used to resolve dynamic methods or direct-call procedures.

Although offset resolution is the fastest technique for method resolution, it is also the most
constrained. Specifically, using offset resolution requires these constraints:

* The name of the method to be invoked must be known at compile time

* The name of the class that introduces the method must be known at compile time
although not necessarily by the programmer

* The method to be invoked must be part of the introducing class static interface definition

To perform offset method resolution, SOM first obtains a method token. The method token
is then used as an index into the receiver’'s method table, to access the appropriate method
procedure. Because it is known at compile time which class introduces the method and
where the method’s token is stored, offset resolution is quite efficient.

An object’s method table is a table of pointers to the procedures that implement the
methods that the object supports. This table is constructed by the object’s class and is
shared among the class instances. The method table built by class (for its instances) is
referred to as the class’s instance method table. This is useful terminology, since, in SOM,
a class is itself an object with a method table (created by its metaclass) used to support
method calls on the class.

Usually, offset method resolution is sufficient; however, in some cases, the more flexible
name-lookup resolution is required.

Implementing Classes in SOM 185

Name-Lookup Resolution

186

Name-lookup resolution is similar to the method resolution techniques employed by
Objective-C and Smalltalk, and it can be used for all but direct-call procedures. Name-
lookup resolution is considerably slower than offset resolution. It is more flexible, however.
In particular, name-lookup resolution, unlike offset resolution, can be used when:

* The name of the method to be invoked isn’t known until run time.
« The method is added to the class interface at run time.
e The name of the class introducing the method isn’t known until run time.

For example, a client program may use two classes that define two different methods of the
same name, and it might not be known until run time which of the two methods should be
invoked (because, for example, it will not be known until run time which class’s instance the
method will be applied to).

Name-lookup resolution is performed by a class, so it requires a method call. (Offset
resolution, by contrast, requires no method calls.) To perform name-lookup method
resolution, the class of the intended receiver object obtains a method procedure pointer for
the desired method that is appropriate for its instances. In general, this will require a
name-based search through various data structures maintained by ancestor classes.
Figure 13 illustrates this search order.

Lagsnd

dass
— Inharits from

Figure 13. Search Order for Name-Lookup Resolution.

For static and nonstatic methods, offset and name-lookup resolution achieve the same net
effect (that is, they select the same method procedure); they just achieve it differently (via
different mechanisms for locating the method’s method token). Offset resolution is faster,
because it does not require searching for the method token, but name-lookup resolution is
more flexible.

When defining (in SOM IDL) the interface to a class of objects, the class implementor can
decide, for each method, whether the SOM Compiler will generate usage bindings that
support name-lookup resolution for invoking the method. Regardless of whether this is
done, however, application programs using the class can have SOM use either technique,

Programmer’s Guide for SOM and DSOM

on a per-method-call basis. Chapter 4, Using SOM Classes in Client Programs on page
69 describes how client programs invoke methods.

Dispatch-Function Resolution

Dispatch-function resolution is the slowest, but most flexible, of the three method-
resolution techniques. Dispatch functions permit method resolution to be based on arbitrary
rules associated with the class of which the receiving object is an instance. Thus, a class
implementor has complete freedom in determining how methods invoked on its instances
are resolved.

With both offset and name-lookup resolution, the net effect is the same: the method
procedure that is ultimately selected is the one supported by the class of which the receiver
is an instance. For example, if the receiver is an instance of class Dog, then Dog’s method
procedure will be selected; but if the receiver is an instance of class BigDog, then BigDog'’s
method procedure will be selected.

By contrast, dispatch-function resolution allows a class of instances to be defined such that
the method procedure is selected using some other criteria. For example, the method
procedure could be selected on the basis of the arguments to the method call, rather than
on the receiver. The use of dispatch-function resolution requires customizing techniques.

Customizing Method Resolution

Customizing method resolution requires the use of metaclasses that override SOMClass
methods. This is not recommended without use of a Cooperation Framework that
guarantees correct operation of SOMobjects in conjunction with such metaclasses.
SOMobijects users who require this functionality should request access to the experimental
Cooperation Framework used to implement the SOMobjects Metaclass Framework.
Metaclasses implemented using the Cooperation Framework may have to be
reprogrammed in the future when SOMobijects introduces an officially supported
Cooperation Framework.

Implementing SOM Classes

The interface to a class of objects contains the information that a client must know to use
an object — namely, the signatures of its methods and the names of its attributes. The
interface is described in a formal language independent of the programming language used
to implement the object’s methods. In SOM, the formal language used to define object
interfaces is the Interface Definition Language.

The implementation of a class of objects (that is, the procedures that implement the
methods and the instance variables that store an object’s state) is written in the
implementor’s preferred programming language. This language can be object-oriented (for
instance, C++) or procedural (for instance, C).

A completely implemented class definition, then, consists of two main files:

* An IDL specification of the interface to instances of the class — the interface definition
file (or .idl file) and

e Method procedures written in the implementor’s language of choice: the
implementation file.

The SOM Compiler provides the link between those two files: To assist users in
implementing classes, the SOM Compiler produces a template implementation file: a

Implementing Classes in SOM 187

type-correct guide for how the implementation of a class should look. Then, the class
implementor modifies this template file to fully implement the class’s methods. That process
is the subject of the remainder of this chapter.

The SOM Compiler can also update the implementation file to reflect changes subsequently
made to a class’s interface definition file (the .idl file). These incremental updates include
adding new methods, adding comments, and changing method prototypes to reflect
changes made to the method declarations in the IDL specification. These updates to the
implementation file, however, do not disturb existing code in the method procedures. These
updates are discussed further in Running Incremental Updates of the Implementation
Template File on page 193.

For C programmers, the SOM Compiler generates a .c file. For C++ programmers, the SOM
Compiler generates a .C file (for AIX) or a .cpp file. To specify whether the SOM Compiler
should generate a C or C++ implementation template, set the value of the SMEMIT
environment variable, or use the -s option when running the SOM Compiler. (See Chapter
6, The SOM Compiler on page 155.) Be aware that bindings for both C and C++ cannot be
produced by the same compiler execution

As this chapter describes, a SOM class can be implemented by using C++ to define the
instance variables introduced by the class and to define the procedures that implement the
overridden and introduced methods of the class. Be aware, that the C++ class defined by
the C++ usage bindings for a SOM class cannot be subclassed in C++ to create new C++
or SOM classes.

Implementation Template

188

Consider the following IDL description of the Hel1lo class:

#include <somobj.idls>

interface Hello : SOMObject

{

void sayHello() ;
// This method outputs the string “Hello, World!”.

bi
From this IDL description, the SOM Compiler generates the following C implementation
template, hello. c (a C++ implementation template, hello.C or hello. cpp, is identical
except that the #included file is hello.xih rather than hello.ih):

#define Hello Class_Source

#include <hello.ih>

/*
* This method outputs the string “Hello, World!”.

*/

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

{

Programmer’s Guide for SOM and DSOM

/* HelloData *somThis = HelloGetData (somSelf); */
HelloMethodDebug (“*Hello”, “sayHello”) ;

}

The first line defines the Hello Class_Source symbol, which is used in the
SOM-generated implementation header files for C to determine when to define various
functions, such as HelloNewClass. For interfaces defined within a module, the directive
“#define className_Class_Source” is replaced by the directive

“#define SOM_Module_moduleName_Source”.

The second line (#include <hello.ih> for C, or #include <hello.xih> for C++)
includes the SOM-generated implementation header file. This file defines a struct holding
the class’s instance variables, macros for accessing instance variables, macros for
invoking parent methods, and so forth.

Stub Procedures for Methods

For each method introduced or overridden by the class, the implementation template

includes a stub procedure: a procedure that is empty except for an initialization statement,
a debugging statement, and possibly a return statement. The stub procedure for a method
is preceded by any comments that follow the method’s declaration in the IDL specification.

For method sayHello” above, the SOM Compiler generates the following prototype of the
stub procedure:

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

Unless it is already defined, the “SOM_Scope” symbol is defined in the implementation
header file as static. The term “void” signifies the return type of method sayHello. The
SOMLINK symbol is defined by SOM,; it represents the keyword needed to specify a
function-linkage convention to the C or C++ compiler, and its value is system-specific. Using
the “SOMLINK” symbol allows the code to work with a variety of compilers without
modification.

Following the SOMLINK symbol is the name of the procedure that implements the method.
If no functionprefix modifier has been specified for the class, then the procedure name is
the same as the method name. If a functionprefix modifier is in effect, then the procedure
name is generated by prepending the specified prefix to the method name. For example, if
the class definition contained the following statement:

functionprefix = xx_;
then the prototype of the stub procedure for method “sayHello” would be:

SOM_Scope void SOMLINK xx sayHello(Hello somSelf, Environment *ev)
The functionprefix cannot be

<classname>
since this is used in method invocation macros defined by the C usage bindings.
Following the procedure name is the formal parameter list for the method procedure.
Because each SOM method always receives at least one argument (a pointer to the SOM
object that responds to the method), the first parameter name in the prototype of each stub
procedure is called somSelf. (The macros defined in the implementation header file rely on

this convention.) The somSelf parameter is a pointer to an object that is an instance of the
class being implemented (here, class Hel1lo) or an instance of a class derived from it.

Unless the IDL specification of the class included the callstyle = oidl modifier, then the
formal parameter list will include one or two additional parameters before the parameters
declared in the IDL specification: an (Environment *ev) input/output parameter, which

Implementing Classes in SOM 189

190

permits the return of exception information, and, if the IDL specification of the method
includes a context specification, a (Context *ctx) input parameter. These parameters are
prescribed by the CORBA standard. For more information on using the Environment and
Context parameters, see Exceptions and Error Handling on page 100.

The first statement in the stub procedure for method “sayHello” is the statement:
/* HelloData *somThis = HelloGetData (somSelf); */

This statement is enclosed in comments only when the class does not introduce any
instance variables. The purpose of this statement, for classes that do introduce instance
variables, is to initialize a local variable (somThis) that points to a structure representing
the instance variables introduced by the class. The somThis pointer is used by the macros
defined in the Hel1lo implementation header file to access those instance variables. (These
macros are described below.) In this example, the Hel1lo class introduces no instance
variables, so the statement is commented out. If instance variables are later added to a
class that initially had none, then the comment characters can be removed by the
programmer if access to the variable is required.

The HelloData type and the HelloGetData macro used to initialize the somThis pointer
are defined in the implementation header file. Within a method procedure, class
implementors can use the somThis pointer to access instance data, or they can use the
convenience macros defined for accessing each instance variable, as described below.
These macros also use somThis.

To implement a method so that it can modify a local copy of an object’s instance data
without affecting the object’s real instance data, declare a variable of type classNameData
(for example, HelloData) and assign to it the structure that somThis points to; then make
the somThis pointer point to the copy. For example:

HelloData myCopy = *somThis;
somThis = &myCopy;

Next in the stub procedure for method “sayHello” is the statement:
HelloMethodDebug (“*Hello”, “sayHello”) ;

This statement facilitates debugging. The HelloMethodDebug macro is defined in the
implementation header file. It takes two arguments, a class name and a method name. If
debugging is turned on (that is, if global variable SOM_TraceLevel is set to 1 in the calling
program), the macro produces a message each time the method procedure is entered.
(See Chapter 4, Using SOM Classes in Client Programs on page 69 for information on
debugging with SOM.)

Debugging can be permanently disabled (regardless of the SOM_TracelLevel setting in the
calling program) by redefining the classNameMethodDebug macro following the #include
directive for the implementation header file, as illustrated below. (This can yield a slight
performance improvement.) For example, to permanently disable debugging for the Hello
class, insert the following lines in the hello. c implementation file following the line
#include hello.ih (or #include hello.xih, for classes implemented in C++):

#undef HelloMethodDebug
#define HelloMethodDebug (c,m)

Alternatively, using -DRETAIL as a C/C++ compiler option when compiling a class
implementation achieves the same effect.

The way in which the stub procedure ends is determined by whether the method is a new
or an overriding method:

* For non-overriding methods, the stub procedure ends with a return statement. The
class implementor should customize this return statement.

Programmer’s Guide for SOM and DSOM

e For overriding methods, the stub procedure ends by making a “parent method call” for
each of the class parent classes. If the method has a return type that is not void, the
last of these parent method calls is returned as the result of the method procedure. The
class implementor can customize this return statement. See Making Parent Method
Calls on page 192.

If a classinit modifier was specified to designate a user-defined procedure that will initialize
the Hello class object, as in the statement:

classinit = HInit;
then the implementation template file would include the following stub procedure for “Hinit”,
in addition to the stub procedures for Hello’s methods:

SOM_Scope void SOMLINK HInit (SOMClass *cls)

{
}

For a direct-call procedure, the stub appears as follows:
SOMEXTERN <rettype> SOMLINK

somp_<className> <procedureNames>(...);

{
}

This stub procedure is then filled in by the class implementor. If the class definition
specifies a functionprefix modifier, the classinit procedure name is generated by
prepending the specified prefix to the specified classinit name, as with other stub
procedures.

Extending the Implementation Template

To implement a method, add code to the body of the stub procedure. In addition to
standard C or C++ code, class implementors can also use any of the functions, methods
and macros SOM provides for manipulating classes and objects. Chapter 4, Using SOM
Classes in Client Programs on page 69 discusses these functions, methods and macros.

In addition to the functions, methods, and macros SOM provides for both class clients and
class implementors, SOM provides two facilities especially for class implementors. They
are for accessing instance variables of the object responding to the method and making
parent method calls.

Accessing Internal Instance Variables

To access internal instance variables, class implementors can use either of the following
forms:

_variableName
somThis->variableName

To access internal instance variables “a”, “b”, and “c”, for example, the class implementor
could use either _a, b, and _c, or somThis->a, somThis->b, and somThis->c. These
expressions can appear on either side of an assignment statement. The somThis pointer
must be properly initialized in advance using the classNameGetData procedure, as shown
above.

Implementing Classes in SOM 191

192

Note: For C++programmers, the variableName form is available only if the macro
VARIABLE MACROS is defined (that is, #define VARIABLE MACROS) in the
implementation file prior to including the .xih file for the class.

Instance variables can be accessed only within the implementation file of the class that
introduces the instance variable, and not within the implementation of subclasses or within
client programs. (To allow access to instance data from a subclass or from client programs,
use an attribute rather than an instance variable to represent the instance data.)

Making Parent Method Calls

In addition to macros for accessing instance variables, the implementation header file
contains definitions of macros for making parent method calls. When a class overrides a
method defined by one or more of its parent classes, often the new implementation needs
to augment the functionality of the existing implementations. Rather than completely
re-implementing the method, the overriding method procedure can conveniently invoke the
procedure that one or more of the parent classes uses to implement that method, then
perform additional computation as needed. The parent method call can occur anywhere
within the overriding method. See Example 3. Overriding an Inherited Method on page
60.

The SOM-generated implementation header file defines the following two macros for
making parent-method calls from within an overriding method:

className_parent_parentClassName_methodName and
className_parents_methodName

A macro of the first kind is defined for each parent class of the class overriding the method.
For example, given class Hello with parents File and Printer and overriding method
sominit (the SOM method that initializes each object), the SOM Compiler defines the
following macros in the implementation header file for Hello:

Hello parent Printer somInit
Hello_parent_File somInit
Hello parents somInit

Each macro takes the same number and type of arguments as methodName. The
className_parent_parentClassName_methodName macro invokes the implementation of
methodName inherited from parentClassName. Hence, using the macro

Hello parent File somInit invokes File’s implementation of sominit.

The className_parents_methodName macro invokes the parent method for each parent
of the child class that supports methodName. That is, Hello parents somInit would
invoke File’s implementation of sominit, followed by Printer’'s implementation of sominit.
The className_parents_methodName macro is redefined in the binding file each time the
class interface is modified, so that if a parent class is added or removed from the class
definition, or if methodName is added to one of the existing parents, the macro
className_parents_methodName will be redefined appropriately.

Converting C++ Classes to SOM Classes

For C++ programmers implementing SOM classes, SOM provides a macro that simplifies
the process of converting C++ classes to SOM classes. This macro allows the
implementation of one method of a class to invoke another new or overriding method of the
same class on the same receiving object by using the following shorthand syntax:

_methodName (argl, arg2, ...)

Programmer’s Guide for SOM and DSOM

For example, if class X introduces or overrides methods m1 and m2, then the C++
implementation of method m1 can invoke method m2 on its somSelf argument using
_m2(argl, arg2, ...), rather than somSelf->m2(arg1, arg2, ...), as would otherwise be
required. (The longer form is also available.) Before the shorthand form in the
implementation file is used, the macro METHOD MACROS must be defined (that is, use
#define METHOD MACROS) prior to including the .xih file for the class.

Running Incremental Updates of the Implementation
Template File

Refining the .idl file for a class is typically an iterative process. For example, after running
the IDL source file through the SOM Compiler and writing some code in the implementation
template file, the class implementor realizes that the IDL class interface needs another
method or attribute, a method needs a different parameter, or any such changes.

As mentioned earlier, the SOM Compiler (when run using the ¢ or xc emitter) assists in this
development by reprocessing the .idl file and making incremental updates to the current
implementation file. This modify-and-update process may in fact be repeated several times
before the class declaration becomes final. Importantly, these updates do not disturb
existing code for the method procedures. Included in the incremental update are these
changes:

e Stub procedures are inserted into the implementation file for any new methods added
to the .idl file.

 New comments in the .idl file are transferred to the implementation file, reformatted
appropriately.

» If the interface to a method has changed, a new method procedure prototype is placed
in the implementation file. As a precaution, however, the old prototype is also
preserved within comments. The body of the method procedure is left untouched.

» Similarly left intact are preprocessor directives, data declarations, constant
declarations, non-method functions, and additional comments: in essence, everything
else in the implementation file.

Some changes to the .idl file are not reflected automatically in the implementation file after
an incremental update. The class implementor must manually edit the implementation file
after changes such as these in the .idl file:

e Changing the name of a class or a method.

« Changing the parents of a class (see If you change the parents of a class on page
194).

* Changing a functionprefix class modifier statement.

» Changing the content of a passthru statement directed to the implementation (.c, .C or
.cpp) file. As previously emphasized, however, passthru statements are primarily
recommended only for placing #include statements in a binding file (.ih, .xih, .h or .xh
file) used as a header file in the implementation file or in a client program.

» If the class implementor has placed forward declarations of the method procedures in
the implementation file, those are not updated. Updates occur only for method
prototypes that are part of the method procedures themselves.

Considerations to ensure that updates work: To ensure that the SOM Compiler
properly updates method procedure prototypes in the implementation file, class
implementors should avoid the following:

* A method procedure name should not be enclosed in parentheses in the prototype.

Implementing Classes in SOM 193

194

e A method procedure name must appear in the first line of the prototype, excluding
comments and whitespace.

Error messages occur while updating an existing implementation file if it contains non-ANSI
C syntax. For example, “old” method definitions below generate errors:

Invalid “old” syntax Required ANSI C

void foo (x) void foo (short x) {

short x;

{ }

}

Similarly, error messages occur if anything in the .idl file would produce an implementation
file that is not syntactically valid for C/C++. If update errors occur, either the .idl file or the
implementation file may be at fault. To track down the problem, run the implementation file
through the C/C++ compiler. Another option is to move the existing implementation file to
another directory, generate a new one from the .idl file, and then run it through the C/C++
compiler. One of these steps should pinpoint the error, if the compiler is strict ANSI.

Conditional compilation in the implementation file can be another source of errors. The
SOM Compiler does not invoke the preprocessor. The programmer should be careful when
using conditional compilation, such as in the situation below:

Invalid syntax Required matching braces
#ifdef FOOBAR #ifdef FOOBAR

{ {
#telse 1

{ #else

{

#endif

} }

#endif

With two open braces and one closing brace, the emitter reports an unexpected end-of-file.

If you change the parents of a class: The implementation-file emitters never change
code in a generated implementation file, changing the parents of a class requires extremely
careful attention by the programmer. For example for overridden methods, changing a class
parents may invalidate previous parent-method calls provided by the template and require
new calls. Neither issue is addressed by the incremental update of previously generated
method-procedure templates.

The greatest danger from changing the parents of a class, however, concerns the ancestor-
initializer calls provided in the stub procedures. For details on ancestor initializer calls, see
Initializing and Uninitializing Objects on page 195. Unlike parent- method calls,
ancestor-initializer calls are not optional: they must be made to all classes specified in a
directinitclasses modifier, and these calls should always include the parents of the class.
When the parents of a class are changed, the ancestor-initializer calls are not updated.

The easiest way to deal with this problem is to change the method name of the previously
generated initializer stub procedure in the implementation template file. Then, the SOM
Compiler can correctly generate a completely new initializer stub procedure (while ignoring
the renamed procedure). Once this is done, your customization code from the renamed

Programmer’s Guide for SOM and DSOM

initializer procedure can be merged into the newly generated one, after which the renamed
initializer procedure can be deleted.

Compiling and Linking

After you fill in the method stub procedures, the implementation template file can be
compiled and linked with a client program as shown below. In these examples, the
environment variable SOMBASE represents the directory in which SOM has been installed.
Each example provides code where the client program and implementation file is in C and
C++.

Note: If you are building an application that uses a combination of C and C++ compiled
object modules, you must use the C++ linker.

AIXinC: > xlc -I. -I$SOMBASE/include -o hello main.c hello.c \
-L$SOMBASE/lib -1lsomtk

AIXin C++: > x1C -I. -I$SOMBASE/include -o hello main.C hello.C \
-L$SOMBASE/lib -1lsomtk

0S/2 and WIindows NT in C: > set LIB=%SOMBASE%\lib;%LIB%
> icc -I. -I%SOMBASE%\include -Fe hello \
main.c hello.c somtk.lib
0S/2 and Windows NT in C++: > set LIB=%SOMBASE%\lib;%LIB%
> icc -I. -I%SOMBASE%\include -Fe hello \
main.cpp hello.cpp somtk.lib

If the class definition in the .idl file changes, re-run the SOM Compiler to generate new
header files and update the implementation file to include:

* New comments
e Stub procedures for any new methods

» Revised method procedure prototypes for methods whose signatures changed in the
.idl file

After rerunning the SOM Compiler, add to the implementation file the code for any newly
added method procedures, and recompile the implementation file with the client program.

Initializing and Uninitializing Objects

This section discusses the initialization and uninitialization of SOM objects. Subsequent
topics introduce the methods and capabilities that the SOMobjects Developer Toolkit
provides to facilitate this.

Object creation is the act that enables the execution of methods on an object. In SOM, this
means storing a pointer to a method table into a word of memory. This single act converts
raw memory into an (uninitialized) SOM object that starts at the location of the method table
pointer.

Object initialization, on the other hand, is a separate activity from object creation in SOM.
Initialization is a capability supported by certain methods available on an object. An object’s
class determines the implementation of the methods available on the object, and thus
determines its initialization behavior.

The instance variables encapsulated by a newly created object must be brought into
a consistent state before the object can be used. This is the purpose of initializer methods.

Implementing Classes in SOM 195

Because, in general, every ancestor of an object’s class contributes instance data to an
object, it is appropriate that each of these ancestors contribute to the initialization of the
object.

SOM thus recognizes initializers as a special kind of method. One advantage of this
approach is that special metaclasses are not required for defining constructors (class
methods) that take arguments. Furthermore, a class can define multiple initializer methods,
thus enabling its different objects to be initialized supporting different characteristics or
capabilities. This results in simpler designs and more efficient programs.

The SOMobjects Toolkit provides an overall framework that class designers can easily
exploit in order to implement default or customized initialization of SOM objects. This
framework is fully supported by the SOM Toolkit emitters that produce the implementation
template file. The following sections describe the declaration, implementation, and use of
initializer (and uninitializer) methods.

Note: All code written prior to SOMobjects Release 2.x using documented guidelines for
the earlier initialization approach based on the somlInit method (as well as all
existing class binaries) continues to be fully supported and useful.

Initializer Methods

196

As noted above, in the SOMobjects Toolkit each ancestor of an object contributes to the
initialization of that object. Initialization of an object involves a chain of ancestor-method
calls that, by default, are automatically determined by the SOM Compiler emitters. The
SOMobijects framework for initialization of objects is based on the following approach:

1. SOMobijects recognizes initializers as a special kind of method, and supports a special
mechanism for ordering the execution of ancestor-initializer method procedures. The
SOMObject class introduces an initializer method, somDefaultInit, that uses this
execution mechanism.

2. The SOM Compiler's emitters provide special support for methods that are declared as
initializers in the .idl file. To supplement the somDefaultinit method, SOM class
designers can also declare additional initializers in their own classes.

Two SOM IDL modifiers are provided for declaring initializer methods and controlling their
execution, init and directinitclasses:

» The init modifier is required in order to designate a given method is an initializer; that
is, to indicate that the method both uses and supports the object-initialization protocol
described here.

» The directinitclasses modifier can be used to control the order of execution of
initializer method procedures provided by the different ancestors of the class of an
object.

Every SOM class has a list that defines (in sequential order) the ancestor classes whose
initializer method procedures the class should invoke. If a class’s IDL does not specify an
explicit directinitclasses modifier, the default for this list is simply the class’s parents: in
left-to-right order.

Using the directinitclasses list and the actual run-time class hierarchy above itself, each
class inherits from SOMClass the ability to create a data structure of type somInitCtrl. This
structure is used to control the execution of initializers. Moreover, it represents a particular
visit-ordering that reaches each class in the transitive closure of the directinitclasses list
exactly once. To initialize a given object, this visit-ordering occurs as follows: while
recursively visiting each ancestor class whose initializer method procedure should be run,
SOMobijects first runs the initializer method procedures of all of that class’s

Programmer’s Guide for SOM and DSOM

directinitclasses if they have not already been run by another class initializers, with
ancestor classes always taken in left-to-right order.

The somInitCtrl structure solves a problem originally created by the addition of multiple
inheritance to SOMobjects 2.0. With multiple inheritance, any class can appear at the top of
a multiple inheritance diamond. Previously, whenever this happened, the class could easily
receive multiple initialization calls. In the current version of SOMobjects Developer Toolkit,
however, the somInitCtrl structure prevents this from happening.

For example, Figure 14 shows an inheritance hierarchy along with the ordering produced
when an instance of the class numbered 7 is initialized, assuming that each class simply
uses its parents as its directinitclasses. The class numbered 3 is at the top of a diamond.

Legend

@ class

— inherita from

Q
O
o

Figure 14. A Default Initializer Ordering of a Class’s Inheritance Hierarchy.

In this example, the somInitCtrl data structure for class 7 is what tells node 6 in Figure 14
not to invoke node 3’s initializer code (because it has already been executed). The code
that deals with the somInitCtrl data structure is generated automatically within the
implementation bindings for a class, and need not concern a class implementor.

As illustrated by this example, when an instance of a given class (or some descendant
class) is initialized, only one of the given class’s initializers will be executed, and this will
happen exactly once (under control of the ordering determined by the class of the object
being initialized).

Declaring New Initializers in SOM IDL

When defining SOMobjects classes, programmers can declare and implement new
initializers. Classes can have as many initializers as desired and subclasses can invoke
whichever they want. When introducing new initializers, developers must adhere to the
following rules:

« Allinitializer methods take a somInitCtrl data structure as an initial inout parameter.
* Allinitializers return void.

Accordingly, the somDefaultlnit initializer introduced by SOMObject takes a somInitCtrl
structure as its only argument. Following is the IDL syntax for this method:

void somDefaultInit (inout somInitCtrl ctrl);

Implementing Classes in SOM 197

198

When introducing a new initializer, it is necessary to specify the init modifier in the
implementation section. The modifier tells emitters the method is an initializer, so the
method can be supported from the language bindings. This support includes the generation
of special initializer stub procedures in the implementation template file and bindings
containing ancestor-initialization macros and object constructors that invoke the class
implementor’s new initializers.

You should begin the names of initializer methods with the name of the class. All initializers
available on a class must be newly introduced by that class. That is, you cannot override
initializers: except for somDefaultlnit. Using a class-unique name means that subclasses
will not be unnecessarily constrained in their choice of initializer names.

Here are two classes that introduce new initializers:
interface Examplel : SOMObject
{
void Examplel withName (inout somInitCtrl ctrl, in string name) ;
void Examplel withSize (inout somInitCtrl ctrl, in long size);
void Examplel withNandS (inout somInitCtrl ctrl, in string name,
in long size);
implementation ({
releaseorder: Examplel withName,
Examplel withSize,
Examplel withNandS;
somDefaultInit: override, init;
somDestruct: override;
Examplel withName: init;
Examplel withSize: init;
Examplel withNandS: init;
}i
}i
interface Example2 : Examplel
{
void Example2 withName (inout somInitCtrl ctrl, in string name) ;
void Example2 withSize (inout somInitCtrl ctrl, in long size);
implementation {
releaseorder: Example2 withName,
Example2 withSize;
somDefaultInit: override, init;
somDestruct: override;
Example2 withName: init;
Example2 withSize: init;
}i
}i
Interface Examplel declares three new initializers. Notice the use of inout somInitCtrl as
the first argument of each initializer and that the init modifier. Both are mandatory to

declare initializers. A class can declare any number of initializers. Example2 declares two
initializers.

Programmer’s Guide for SOM and DSOM

Examplel and Example2 both override the somDefaultInit initializer. This initializer
method is introduced by SOMObject and is special for two reasons:

« sombDefaultlnit is the only initializer that you can override.
» SOMobjects arranges that this initializer will be available on any class.

Historically in SOMobjects Developer Toolkit, object-initialization methods by default have
invoked the somInit method, which class implementors could override to customize
initialization as appropriate. SOMobjects continues to support this approach, so that
existing code (and class binaries) will execute correctly. However, the somDefaultInit
method is the preferred form of initialization because it offers improved efficiency.

Even if no specialized initialization is requisite for a class, you should override the
somDefaultlnit method for efficiency. If you do not override somDefaultlnit, then a generic
and less efficient somDefaultinit method procedure will be used for your class.

When you override somDefaultInit, the emitter’'s implementation template file will include a
stub procedure similar to those used for other initializers. You can fill it in as appropriate.
Default initialization for your class will run much faster than with the generic method
procedure. Examples of initializer stub procedures and customizations are below.

In summary, the initializers available for any class of objects are somDefaultInit, which you
should always override, plus any new initializers explicitly declared by the class designer.
Thus, “Examplel” objects may be initialized using any of four different initializers (the three
that are explicitly declared, plus somDefaultInit). Likewise, there are three initializers for
the “Example2” objects. Some examples of using initializers are provided below.

Considerations sominit Initialization from Earlier SOM
Releases

All code before SOMobjects Release 2.1 using documented guidelines for the earlier
initialization based on the sominit method and all class binaries are fully supported.

Prior to SOMobjects 2.1, initializer methods chained parent-method calls upward, thereby
allowing the execution of initializer method procedures contributed by all ancestors of an
object’s class. This chaining of initializer calls was not supported in any special way by the
SOM API. Parent-method calls are one of the idioms available to OOP users in SOM.

SOM did not constrain initialization any particular way or require the use of any particular
ordering of the method procedures of ancestor classes. SOM did provide an overall
framework that class designers could easily use to implement default initialization of SOM
objects. This framework is provided by the somInit object-initialization method introduced
by the SOMObject class and supported by the SOM Toolkit emitters. The emitters create
an implementation template file with stub procedures for overridden methods that chain
parent-method calls upward through parent classes. Many class methods that perform
object creation automatically called sominit.

Note: These will call somDefaultinit which call somlInit for legacy code.

Because it takes no arguments, sominit served the purpose of a default initializer. SOM
programmers had the option of introducing additional “non-default” initialization methods
that took arguments. By using metaclasses, they could introduce new class methods as
object constructors that first create an object, generally using somNewNolnit, and then
invoke some non-default initializer on the new object.

For a number of reasons, the somlInit framework has been augmented by recognizing
initializers as a special kind of method in SOMobjects. One advantage of this approach is
that special metaclasses are no longer required for defining constructors that take

Implementing Classes in SOM 199

200

arguments. Because the init modifier identifies initializers, usage-binding emitters can now
provide these constructors resulting in simpler designs and more efficient programs.

Although somDefaultlnit replaces sominit as the no-argument initializer used for SOM
objects, all previous use of somlnit is still supported by the SOMobjects Developers
Toolkit. You can use somlnit on these systems, although this is less efficient than using
somDefaultlInit.

However, you cannot use both methods. In particular, if a class overrides somDefaultInit
and somlnit, its somInit code will never be executed. You should always override
somDefaultlnit for object initialization. It is likely that when SOMobjects is ported to new
systems, somlnit and somUninit may not be supported on those systems. Code written
using these obsolete methods will be less portable.

Implementing Initializers

When new initializers are introduced by a class the implementation template file generated
by the SOM Toolkit C and C++ emitters contains an appropriate stub procedure for each
initializer method for the class implementor’s use. The body of an initializer stub procedure
consists of two main sections:

» The first section performs calls to ancestors of the class to invoke their initializers.

* The second section is used by the programmer to perform any “local” initializations
appropriate to the instance data of the class being defined.

In the first section the parents of the new class are the ancestors whose initializers are
called. When something else is desired, the ID directinitclasses modifier can be used to
explicitly designate the ancestors whose initializer methods should be invoked by a new
class’s initializers.

You should not change the number or the ordering of ancestor initializer calls in the first
section of an initializer stub procedure. The control masks used by initializers are based on
these orderings. (If you want to change the number or ordering of ancestor initializer calls,
you must use the directinitclasses modifier and re-emit the implementation template with
a new initializer stub.) The ancestor initializer calls can be modified.

Each call to an ancestor initializer is made using a special macro, much like a parent call,
that is defined for this purpose within the implementation bindings. These macros are
defined for all possible ancestor initialization calls. Initially, an initializer stub procedure
invokes the default ancestor initializers provided by somDefaultinit. However, a class
implementor can replace any of these calls with a different initializer call, as long as it calls
the same ancestor. Non-default initializer calls generally take other arguments in addition to
the control argument.

In the second section of an initializer stub procedure, the programmer provides any class-
specific code that may be needed for initialization. For example, the “Example2_withName”
stub procedure is shown below. As with all stub procedures produced by the SOMobjects
implementation-template emitters, this code requires no modification to run correctly.

SOM_Scope void SOMLINK Example2 withName (Example2 *somSelf,
Environment *ev,
somInitCtrl* ctrl,

string name)

Example2Data *somThis; /* set by BeginInitializer */

somInitCtrl globalCtrl;

Programmer’s Guide for SOM and DSOM

somBooleanVector myMask;
Example2MethodDebug (”Example2” , ”withName”)
/*
* first section -- calls to ancestor initializers
*/
Example2 BeginInitializer Example2 withName;
Example2 Init Examplel somDefaultInit (somSelf, ctrl)
/*
* gecond section -- local Example2 initialization code
*/

In this example, notice that the “Example2_withName” initializer is an IDL callstyle method,
S0 it receives an Environment argument. In contrast, somDefaultInit is introduced by the
SOMObject class (so it has an OIDL callstyle initializer, without an environment).

If a class is defined where multiple initializers have exactly the same signature, then the
C++ usage bindings will not be able to differentiate among them. That is, if there are
multiple initializers defined with environment and long arguments, for example, then C++
clients would not be able to make a call using only the class name and arguments, such as:

new Example2 (env, 123);

Rather, C++ users would be forced to first invoke the somNewNolInit method on the class
to create an uninitialized object, and then separately invoke the desired initializer method
on the object. This call would pass a zero for the control argument, in addition to passing
values for the other arguments. For further discussion of client usage, see Using
Initializers when Creating New Objects on page 201.

Selecting non-Default Ancestor Initializer Calls

Often, it will be appropriate in the first section of an initializer stub procedure to change the
invocation of an ancestor's somDefaultInit initializer to some other initializer available on
the same class. The rule for making this change is simple; replace somDefaultInit with the
name of the desired ancestor initializer and add any new arguments required by the
replacement initializer. Under no circumstances should you change anything else in the first
section. If the parents or the directinitclasses are changed, then a new implementation
stub should be generated.

The example below shows how to change an ancestor-initializer call correctly. Since there
is a known “Examplel_withName” initializer, the following default ancestor-initializer call,
produced within the stub procedure for “Example2_withName”, can be changed from

Example2 Init Examplel somDefaultInit (somSelf, ctrl);
to
Example2 Init Examplel Examplel withName (somSelf, ev, ctrl,name);

Notice that the revised ancestor-initializer call includes arguments for an Environment and
a name, as defined by the “Examplel_withname” initializer.

Using Initializers when Creating New Objects

There are several ways that client programs can take advantage of object initialization.
Clients can use the SOM API directly rather than using the usage bindings). The general

Implementing Classes in SOM 201

object constructor, somNew, can always be invoked on a class to create and initialize
objects. This call creates a new object and then invokes somDefaultInit on it.)

To use the SOM API directly, the client code should first invoke the somNewNolnit method
on the desired class object to create a new, uninitialized object. Then, the desired initializer
is invoked on the new object, passing a null (that is, 0) control argument in addition to
whatever other arguments may be required by the initializer. For example:

/* first make sure the Example2 class object exists */

Example2NewClass (Example2 MajorVersion, Example2 MinorVersion) ;

/* then create a new, uninitialized Example2 object */

myObject = somNewNoInit (Example2) ;

/* then initialize it with the desired initializer */

Example2 withName (myObject, env, 0, “MyName”) ;
Usage bindings hide the details associated with initializer use in various ways and make
calls more convenient for the client. For example, the C usage bindings for any given class
already provide a convenience macro, classNameNew, that first assures existence of the

class object, and then calls somNew on it to create and initialize a new object. As
explained above, somNew will use somDefaultlnit to initialize the new object.

Also, the C usage bindings provide object-construction macros that use somNewNolnit
and then invoke non-default initializers. These macros are named using the form
classNameNew _initializerName. For example, the C usage bindings for Example2 allow
using the following expression to create, initialize, and return a new Example2 object:

Example2New Example2 withName (env, “AnyName”) ;

In the C++ bindings, initializers are represented as overloaded C++ constructors. As a result,
there is no need to specify the name of the initializer method. For example, using the C++
bindings, the following expressions could be used to create a new Example2 object:

new Example2; // will use somDefaultInit
new Example2 () ; // will use somDefaultInit
new Example2 (env, “A.B.Normal”); // will use Example2 withName
new Example2 (env,123) ; // will use Example2 withSize

Observe that if multiple initializers in a class have exactly the same signatures, the C++
usage bindings would be unable to differentiate among the calls, if made using the forms
illustrated above. In this case, a client could use somNewNolnit first, and then invoke the
specific initializer, as described in the preceding paragraphs.

Uninitialization

202

An object should always be uninitialized before its storage is freed. This is important
because it also allows releasing resources and freeing storage not contained within the
body of the object. SOMobjects handles uninitialization in much the same way as for
initializers: An uninitializer takes a control argument and is supported with stub procedures
in the implementation template file in a manner similar to initializers.

Only a single uninitialization method is needed, so SOMObject introduces the method that
provides this function, somDestruct. As with the default initializer method, a class designer
who requires nothing special in the way of uninitialization need not be concerned about
modifying the default somDestruct method procedure. However, your code will execute
faster if the .idl file overrides somDestruct so that a non-generic stub-procedure code can
be provided for the class. Note that somDestruct was overridden by Examplel and
Example2 above. No specific IDL modifiers other than override are required for this.

Programmer’s Guide for SOM and DSOM

Like an initializer template, the stub procedure for somDestruct consists of two sections:
The first section is used by the programmer for performing any “local” uninitialization that
may be required. The second section (which consists of a single EndDestructor macro
invocation) invokes somDestruct on ancestors. The second section must not be modified
or removed by the programmer. It must be the final statement executed in the destructor.

Using somDestruct

It is rarely necessary to invoke the somDestruct method explicitly. This is because object
uninitialization is normally done just before freeing an object’s storage, and the
mechanisms provided by SOMobijects for this purpose will automatically invoke
somDestruct. For example, if an object were created using somNew or somNewNolnit,
or by using a convenience macro provided by the C language bindings, then the somFree
method can be invoked on the object to delete the object. This automatically calls
somDestruct before freeing storage.

C++ users can simply use the delete operator provided by the C++ bindings. This destructor
calls somDestruct before the C++ delete operator frees the object’s storage.

On the other hand, if an object is initially created by allocating memory in some special way
and subsequently some somRenew methods are used, somFree (or C++ delete) is
probably not appropriate. Thus, the somDestruct method should be explicitly called to
uninitialize the object before freeing memory.

A Complete Example

The following example illustrates the implementation and use of initializers and destructors
from the C++ bindings. The first part shows the IDL for three classes with initializers. For
variety, some of the classes use callstyle OIDL and others use callstyle IDL.

#include <somobj.idls>
interface A : SOMObject ({
readonly attribute long a;
implementation ({
releaseorder: get a;
functionprefix = A;
somDefaultInit: override, init;
somDestruct: override;
somPrintSelf: override;
Vi
bi
interface B : SOMObject ({
readonly attribute long b;
void BwithInitialValue (inout somInitCtrl ctrl,
in long initialValue) ;
implementation ({
callstyle = oidl;
releaseorder: _get_b, BwithInitialvValue;
functionprefix = B;

BwithInitialValue: init;

Implementing Classes in SOM 203

204

somDefaultInit: override, init;

somDestruct: override;

somPrintSelf: override;

}i

i

interface C¢ : A, B {

readonly attribute long c;

void CwithInitialValue (inout somInitCtrl ctrl,

in long initialvValue) ;
void CwithInitialString(inout somInitCtrl ctrl,
in string initialString) ;

implementation {

releaseorder: get ¢, CwithInitialString,
CwithInitialValue;

functionprefix = C;

CwithInitialString: init;

CwithInitialvValue: init;

somDefaultInit: override;

somDestruct: override;

somPrintSelf: override;

i

Vi

Implementation Code

Based on the foregoing class definitions, the next example illustrates several important
aspects of initializers. The following code is a completed implementation template and an
example client program for the preceding classes. Code added to the original template is
given in bold.
/*
* This file generated by the SOM Compiler and Emitter Framework
* Generated using:
* SOM Emitter emitxtm.dll: 2.22
*/
#define SOM_Module ctorfullexample Source
#define VARIABLE_MACROS
#define METHOD MACROS
#include <ctorFullExample.xihs>
#include <stdio.h>
SOM_Scope void SOMLINK AsomDefaultInit (A *somSelf,somInitCtrl* ctrl)
{
AData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;

AMethodDebug ("A” , "somDefaultInit”) ;

Programmer’s Guide for SOM and DSOM

A BeginInitializer somDefaultInit;

A Init_SOMObject_sombDefaultInit (somSelf, ctrl);

/*

* local A initialization code added by programmer
*/

a=1;

SOM_Scope void SOMLINK AsomDestruct (A *somSelf, octet doFree,

somDestructCtrl* ctrl)

AData *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;
somBooleanVector myMask;
AMethodDebug ("A” , "somDestruct”) ;
A BeginDestructor;
/*
* local A deinitialization code added by programmer
*/
A EndDestructor;
}
SOM_Scope SOMObject* SOMLINK AsomPrintSelf (A *somSelf)
{
AData *somThis = AGetData (somSelf) ;
AMethodDebug ("A”, "somPrintSelf”) ;
somPrintf (”{an instance of %s at location %X with (a=%d) }\n”,
__somGetClassName (), somSelf,
__get_a((Environment*)0));

return (SOMObject*) ((void*)somSelf) ;

SOM_Scope void SOMLINK BBwithInitialValue (B *somSelf,
somInitCtrl* ctrl,

long initialvValue)

BData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
BMethodDebug (”B” , "BwithInitialvalue”) ;

B BeginInitializer withInitialvValue;

B Init SOMObject somDefaultInit (somSelf, ctrl);

/*
* local B initialization code added by programmer
*/

b = initialValue;

Implementing Classes in SOM 205

}

SOM_Scope void SOMLINK BsomDefaultInit (B *somSelf,

somInitCtrl* ctrl)

BData *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
BMethodDebug (”B”, ”somDefaultInit”) ;

B BeginInitializer somDefaultInit;

B_Init_SOMObject_ somDefaultInit (somSelf, ctrl);

/*

* local B initialization code added by programmer
*/

b = 2;

SOM_Scope void SOMLINK BsomDestruct (B *somSelf, octet doFree,

somDestructCtrl* ctrl)

BData *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;

somBooleanVector myMask;
BMethodDebug (”B”, "somDestruct”) ;
B BeginDestructor;
/*

* local B deinitialization code added by programmer

*/

B_EndDestructor;

}

SOM_Scope SOMObject* SOMLINK BsomPrintSelf (B *somSelf)
{
BData *somThis = BGetData (somSelf) ;
BMethodDebug (”B” , " somPrintSelf”) ;
printf (”{an instance of %s at location %X with (b=%d)}\n”,
__somGetClassName () , somSelf, get b());
return (SOMObject*) ((void*)somSelf) ;

}

The following initializer for a C object accepts a string as an argument, converts this to an
integer, and uses this for ancestor initialization of B. This illustrates how a default ancestor
initializer call is replaced with a non-default ancestor initializer call.

SOM_Scope void SOMLINK CCwithInitialString(
C *somSelf,

206 Programmer’s Guide for SOM and DSOM

Environment *ev,
somInitCtrl* ctrl,

string initialString)

Chata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;

CMethodDebug (“C”,”"CwithInitialString”) ;

C BeginInitializer withInitialString;

C Init A somDefaultInit (somSelf, ctrl);

C Init B BwithInitialValue(somSelf, ctrl,

atoi(initialString) -11);

/*
* local C initialization code added by programmer

*/

¢ = atoi(initialString):;
SOM_Scope void SOMLINK CsomDefaultInit (C *somSelf,

somInitCtrl* ctrl)

Chata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;

somBooleanVector myMask;
CMethodDebug (”C”, "somDefaultInit”) ;

C BeginInitializer somDefaultInit;

C Init A somDefaultInit (somSelf, ctrl);

C Init B somDefaultInit (somSelf, ctrl);

/*

* local C initialization code added by programmer
*/

c = 3;

SOM_Scope void SOMLINK CsomDestruct (C *somSelf, octet doFree,

somDestructCtrl* ctrl)

CDhata *somThis; /* set by BeginDestructor */
somDestructCtrl globalCtrl;
somBooleanVector myMask;

CMethodDebug (”C”, "somDestruct”) ;

Implementing Classes in SOM 207

C_BeginDestructor;

/*
* local C deinitialization code added by programmer

*/

C_EndDestructor;

}

SOM_Scope SOMObject* SOMLINK CsomPrintSelf (C *somSelf)
{
Chata *somThis = CGetData (somSelf) ;
CMethodDebug (“C”, "somPrintSelf”) ;

printf (“{an instance of %s at location %X with”
7 (a=%d, b=%d, c=%d)}\n”,
__somGetClassName () , somSelf,
__get a((Environment*)O0),
__get b(),
__get c((Environment*)O0));
return (SOMObject*) ((void*)somSelf) ;
}
SOM_Scope void SOMLINK CCwithInitialvValue(C *somSelf,
Environment *ev,
somInitCtrl* ctrl,
long initialvValue)
{
Chata *somThis; /* set by BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
CMethodDebug (“C”,”"CwithInitialValue”) ;
C BeginInitializer withInitialValue;
C Init A somDefaultInit (somSelf, ctrl);
C Init B BwithInitialValue(somSelf, ctrl, initialValue-11);

/*
* local C initialization code added by programmer
*/

¢ = initialValue;

}

A C++ program that creates instances of A, B and C using the initializers defined above.

main ()

{

SOM_TraceLevel = 1;

208 Programmer’s Guide for SOM and DSOM

A *a = new A;
a->somPrintSelf () ;
delete a;
printf (“\n") ;
B *b = new B();
b->somPrintSelf () ;
delete Db;
printf (“\n") ;
b = new B(22);
b->somPrintSelf () ;
delete Db;
printf ("\n") ;
C *c = new C;
c->somPrintSelf () ;
delete c;
printf (“\n") ;
¢ = new C((Environment*)0, 44);
c->somPrintSelf () ;
delete c;
printf (“\n") ;
¢ = new C((Environment*)0, "66");
c->somPrintSelf () ;
delete c;

}

The output from the preceding program is as follows:
"ctorFullExample.C”: 18 In A:somDefaultInit
"ctorFullExample.C”: 48: In A:somPrintSelf
" ./ctorFullExample.xih”: 292: In A:A get_a

{an instance of A at location 20063C38 with (a=1)}

"ctorFullExample.C”: 35: In A:somDestruct
"ctorFullExample.C”: 79: In B:somDefaultInit
"ctorFullExample.C”: 110: In B:somPrintSelf

" ./ctorFullExample.xih”: 655: In B:B get b
{an instance of B at location 20064578 with (b=2)}

"ctorFullExample.C”: 97: In B:somDestruct
"ctorFullExample.C”: 62: In B:BwithInitialValue
"ctorFullExample.C”: 110: In B:somPrintSelf

" ./ctorFullExample.xih”: 655: 1In B:B get b
{an instance of B at location 20064578 with (b=22)}

"ctorFullExample.C”: 97: In B:somDestruct
"ctorFullExample.C”: 150: In C:somDefaultInit
"ctorFullExample.C”: 18: In A:somDefaultInit

Implementing Classes in SOM 209

"ctorFullExample.C”: 79: In B:somDefaultInit
"ctorFullExample.C”: 182: In C:somPrintSelf

" ./ctorFullExample.xih”: 292: 1In A:A get a

" ./ctorFullExample.xih”: 655: 1In B:B get b

" ./ctorFullExample.xih”: 1104: In C:C _get c

{an instance of C at location 20065448 with (a=1, b=2, c=3)}

"ctorFullExample.C”: 169: In C:somDestruct
"ctorFullExample.C”: 35: In A:somDestruct
"ctorFullExample.C”: 97: In B:somDestruct
"ctorFullExample.C”: 196: In C:CwithInitialValue
"ctorFullExample.C”: 18: In A:somDefaultInit
"ctorFullExample.C”: 62: In B:BwithInitialValue
"ctorFullExample.C”: 182: In C:somPrintSelf

" ./ctorFullExample.xih”: 292: 1In A:A get a
" ./ctorFullExample.xih”: 655: 1In B:B get b
"./ctorFullExample.xih”: 1104: In C:C_get c
{an instance of C at location 20065448 with (a=1, b=33, c=44)}

"ctorFullExample.C”: 169: In C:somDestruct
"ctorFullExample.C”: 35: In A:somDestruct
"ctorFullExample.C”: 97: In B:somDestruct
"ctorFullExample.C”: 132: In C:CwithInitialString
"ctorFullExample.C”: 18: In A:somDefaultInit
"ctorFullExample.C”: 62: In B:BwithInitialValue
"ctorFullExample.C”: 182: In C:somPrintSelf

" ./ctorFullExample.xih”: 292: 1In A:A get a
" ./ctorFullExample.xih”: 655: 1In B:B get b
" ./ctorFullExample.xih”: 1104: In C:C _get c
{an instance of C at location 20065448 with (a=1, b=55, c=66)}

"ctorFullExample.C”: 169: In C:somDestruct
"ctorFullExample.C”: 35: In A:somDestruct
"ctorFullExample.C”: 97: In B:somDestruct

Customizing the Initialization of Class Objects

As described previously, the somDefaultinit method can be overridden to customize the
initialization of objects. Because classes are objects, somDefaultInit is also invoked on
classes when they are first created (generally by invoking the somNew method on a
metaclass). So, somDefaultlnit can be overridden by metaclasses to initialize class
variables.

Creating SOM Class Libraries

One of the principal advantages of SOM is that it makes “black box” or binary reusability
possible. Consequently, SOM classes are frequently packaged and distributed as class
libraries. A class library holds the actual implementation of one or more classes and can be

210 Programmer's Guide for SOM and DSOM

dynamically loaded and unloaded as needed by applications. Importantly, class libraries
can also be replaced independently of the applications that use them and, provided that the
class implementor observes simple SOM guidelines for preserving binary compatibility, can
evolve and expand over time.

General Guidelines for Class Library Designers

One of the most important features of SOM is that it allows you to build and distribute class
libraries in binary form. Because there is no fragile base class problem in SOM, client
programs that use your libraries (by subclassing your classes or by invoking the methods in
your classes) will not need to be recompiled if you later produce a subsequent version of
the library, provided you adhere to some simple restrictions.

1. You should always maintain the syntax and the semantics of your existing interfaces.
This means that you cannot take away any exposed capabilities, nor add or remove
arguments for any of your public methods.

2. Always maintain the releaseorder list, so that it never changes except for additions to
the end. The releaseorder should contain all of your public methods, the one or two
methods that correspond to each public attribute, and a placeholder for each private
method (or private attribute method).

3. Assign a higher minorversion number for each subsequent release of a class that
adds new interfaces, so that client programmers can determine whether a new feature
is present or not. Change the majorversion number only when you deliberately wish to
break binary compatibility. (See Modifier Statements on page 133 for explanations of
the releaseorder, minorversion and majorversion modifiers.)

4. With each new release of your class library, you have significant degrees of freedom to
change much of the implementation detail. You can add to or reorganize your instance
variables, add new public or private methods, inject new base classes into your class
hierarchies, change metaclasses to more derived ones, and relocate the
implementation of methods upward in your class hierarchies. Provided you always
retain the same capabilities and semantics that were present in your first release, none
of these changes will break the client programs that use your libraries.

Types of Class Libraries

Since class libraries are not programs, users cannot execute them directly. To enable users
to make direct use of your classes, you must also provide one or more programs that
create the classes and objects that the user will need. This section describes how to
package your classes in a SOM class library and what you must do to make the contents of
the library accessible to other programs.

On AlX, class libraries are actually produced as AIX shared libraries, where on Windows
they appear as dynamically-linked libraries (or DLLS). The term “DLL” is sometimes used to
refer to any form of class library, and (by convention only) the file suffix .dll is used for SOM
class libraries on all platforms.

A program can use a class library containing a given class or classes in one of two ways:

1. If the programmer employs the SOM bindings to instantiate the class and invoke its
methods, the resulting client program contains static references to the class. The
operating system will automatically resolve those references when the program is
loaded, by also loading the appropriate class library.

Implementing Classes in SOM 211

2. If the programmer uses only the dynamic SOM mechanisms for finding the class and
invoking its methods (for example, by invoking somFindClass, somFindMethod,
somLookupMethod, somDispatch, somResolveByName and so forth), the resulting
client program does not contain any static references to the class library. Thus, SOM
will load the class library dynamically during execution of the program. Note: For SOM
to be able to load the class library, the dliname modifier must be set in the .idl file.
(See Modifier Statements on page 133.)

It is also important to note that, whereas a client program may have been written to use
only the static SOM bindings, it may in fact use SOM frameworks like DSOM which employ
dynamic SOM mechanisms for finding classes and invoking methods.

Because the provider of a class library cannot predict which of these ways a class will be
used, SOM class libraries must be built such that either usage is possible. The first case
above requires the class library to export the entry points needed by the SOM bindings,
whereas the second case requires the library to provide an initialization/termination function
to create and destroy the classes it contains. The following topics discuss each case.

Building Export Files

212

The SOM Compiler provides an exp emitter for AIX and a def emitter for OS/2 and
Windows NT to produce the necessary exported symbols for each class. For example, to
generate the necessary exports for a class “A”, issue the sc command with one of the
following -s options. (For a discussion of the sc command and options, see Running the
SOM Compiler on page 161.)

For AlX, this command generates an “a.exp” file:
sc -sexp a.idl

For OS/2, this command generates an “a.def” file:
sc -sdef a.idl

For Windows NT, this command generates an “a.nid” file:
sc -sdef a.idl

Typically, a class library contains multiple classes. To produce an appropriate export file for
all the classes that the library will contain, you should set the dliname modifier of each
class equal to the name of the loadable library file (.dll file), and then run the SOM
Compiler with the -s option, as shown above, for each IDL file containing a class in the
class library. The exp and def emitters will update the export file with the same filestem
name as the given dliname. These emitters can sense whether an export file already
exists, and, if one does exist, the classes in the given IDL file are added to the existing
export file.

To illustrate, assume that the SOM Compiler command shown above invokes the exp and
def emitters on the following IDL file:

#include <somobj.idls>
interface A : SOMObject
{
void methodA() ;
#ifdef _ SOMIDL
implementation {

dllname = “abc.dll”;

Vi

Programmer’s Guide for SOM and DSOM

#endif /* _ SOMIDL _ */
Vi
The SOM Compiler command creates the following output files:
AlX abc . exp file:

#! abc.dll
ACClassDhata
AClassData
ANewClass
abcSOMInitTerm

0S/2 abce. def file:
LIBRARY abc INITINSTANCE
DESCRIPTION ‘A Class Library’
PROTMODE
DATA MULTIPLE NONSHARED LOADONCALL
SEGMENTS
SOMCONST CLASS ‘DATA’ SHARED READONLY
EXPORTS
AClassData
ACClassData
ANewClass
Windows NT adc.nid file:
LIBRARY abc
EXPORTS
_AClassData
_ACClassbData
_ANewClass@8

The name of the output file that is created or modified by the exp and def emitters is
determined by the dliname modifier specified in the implementation section of the IDL file.
Therefore, in the example above, the output file name is abc . exp (on AlX). If the dliname
is not specified for a class, the output file created by the emitter is the same as the IDL
filestem. So, if the dliname had not been specified in the preceding example, the resulting
file would have been a.exp (on AIX).

To add additional classes to the class library export file, run the SOM Compiler with the exp
or def emitter for the IDL files containing the additional classes. For example, to add the
following classes B and C to the class library, first make sure each additional class specifies
the same dliname modifier as shown:

#include <somobj.idls>
interface B : SOMObject

{

void methodB() ;
#ifdef SOMIDL
implementation {
dllname = “abc.dll”;
Vi

#endif /* _ SOMIDL__ */

Implementing Classes in SOM 213

i
#include <somobj.idls
interface C : SOMObject
{
void methodcC() ;
#ifdef _ SOMIDL
implementation {
dllname = “abc.dll”;
i
#endif /* _ SOMIDL _ */
i
Then, run the SOM Compiler and emitter again, specifying the additional IDL files:
For AIX, this command updates the abc . exp file:
sc -sexp b.idl c.idl
For OS/2, this command updates the abc . def file:
sc -sdef b.idl c.idl
For Windows NT, this command updates the abc.nid file:
sc -sdef b.idl c.idl
The modified output file now appears as follows:
AlX abc . exp file:

#! abc.dll
ACClassDhata
AClassData
ANewClass
abcSOMInitTerm
BClassData
BCClassData
BNewClass
CClassData
CCClassDhata
CNewClass

0S/2 abce . def file:

LIBRARY abc INITINSTANCE
DESCRIPTION ‘A Class Library’
PROTMODE
DATA MULTIPLE NONSHARED LOADONCALL
SEGMENTS

SOMCONST CLASS ‘DATA’ SHARED READONLY
EXPORTS

AClassData

ACClassData

ANewClass

BClassData

BCClassData

BNewClass

CClassData

214 Programmer's Guide for SOM and DSOM

CCClassData
CNewClass
Windows NT abc.nid file:
LIBRARY abc
EXPORTS
_AClassData
_ACClassbata
_ANewClass@8
_BClassData
_BCClassData
_BNewClass@8
_CClassData
_CCClassbhata
_CNewClass@8

The recommended way to name the export file is to specify the dliname modifier in IDL
files. There is, however, an optional mechanism that forces a file name to be used. The exp
and def emitters support a command-line modifier, dll. This modifier is specified with the
-m option of the SOM Compiler command, as shown in the example below:

For AIX:

sc -sexp -mdll=abc2 a.idl b.idl c.idl
For OS/2 and NT:

sc -sdef -mdll=abc2 a.idl b.idl c.idl

In the example above, the file abc2.def (or abc2.exp on AlX) is created and the
loadable library named within the file is also abc2. (If the dIl command-line modifier is used
when running the def emitter, it overrides any settings of the dliname maodifier within an
IDL file. For more information on global modifiers, see the -m option in Running the SOM
Compiler on page 161.) Do not use the -mdll modifier on the Windows NT platform.

The data structures and entry points added to the exports file by the exp or def emitter are
required for the correct operation of the SOM run time. On AlX, the emitter also exports the
initialization function of the class library. Other symbols in addition to those generated by
the emitters can be included if needed, but this is not required by SOM. One convenient
feature of SOMobijects is that a class library requires no more than three exports per class.
(By contrast, many OOP systems require externals for every method as well.)

Specifying the Initialization and Termination Function

An initialization and termination function for a class library must be provided to support
dynamic loading of the library by the SOM Class Manager. The SOM Class Manager
expects that, whenever it loads or unloads a class library, the initialization/termination
function will register or unregister all of the classes contained in the library. These classes
are managed as a group (called an affinity group).

One class in the affinity group has a privileged position — namely, the class that was
specifically requested when the library was loaded. If that class (that is, the class that
caused loading to occur) is subsequently unregistered, the SOM Class Manager will
automatically unregister all of the other classes in the affinity group as well, and will unload
the class library. Similarly, if the SOM Class Manager is explicitly asked to unload the class
library, it will also automatically unregister and free all of the classes in the affinity group.

Implementing Classes in SOM 215

216

The SOM initialization and termination functions for a class library must be called when the
class library is loaded and unloaded. How initialization and termination is handled for SOM
libraries is platform specific, because dynamic library loading is unique to an operating
system. On OS/2, an init/term function must be called from the class library DLL’s general
purpose init/term function. When the VisualAge C++ compiler is used, the general DLL init/
term function is named _DLL_InitTerm. On AlX, the initialization function must be specified
as the entry point for the library when the library is linked.

It is the responsibility of the class-library creator to supply the initialization and termination
function. There is, however, an imod emitter provided with the SOM Compiler to construct
a C source file with an appropriate initialization/termination function for your class library. It
is recommended that you use the imod emitter to create the init/term function for your
library rather than constructing one manually.

For AIX: SOMInitModule gets called provided that the SOMInitModule function has been
specified as the entry point when the shared library is linked.

Running the imod Emitter

This topic describes how to run the imod emitter to generate an init/term function for a
class library. This topic also provides a detailed explanation of the contents of the source
file generated by the imod emitter. To illustrate the construction of an init/term function for a
class library, consider the following classes A, B, and C in files a.1d1, b.idl and c. id1l.
Notice that each class contains a dllname modifier to specify the name of the library file
that will contain the class’s implementation.

a.idl:
#include <somobj.idls>
interface A : SOMObject
{
void methodA() ;
#ifdef _ SOMIDL
implementation ({
dllname = “abc.dll”;
Vi
#endif /* _ SOMIDL _ */
Vi
b.idl:
#include <somobj.idls
interface B : SOMObject
{
void methodB() ;
#ifdef _ SOMIDL
implementation {
dllname = “abc.dll”;
}i
#endif /* _ SOMIDL _ */
}i
c.idl:

#include <somobj.idls>

Programmer’s Guide for SOM and DSOM

interface C : SOMObject

{
void methodcC() ;
#ifdef SOMIDL
implementation {
dllname = “abc.dll”;
i
#endif /* _ SOMIDL _ */
i
A SOM class library init/term function can be constructed by running the SOM Compiler for
the IDL files that define the classes in the library. Specify the imod emitter with the -s flag

of the SOM Compiler command. For example, to run the imod emitter for the classes
above, issue the following command:

sc -simod a.idl b.idl c.idl

This command creates (or updates) a source file named dliname_stemi.c. This .c file is
used for a SOM class library programmed either in C or C++. Therefore, in this example the
output source file is abci . ¢, because the dliname modifier is abc.d11. On OS/2 and
Windows NT, the filename stem of the generated source file is limited to 8 characters.
Consequently, if a specified dliname filename stem is 8 characters or more, it will be
truncated to 7 characters to accommodate the “i” that must be appended. Also, if the
generated file name would conflict with another source file name, you should use the imod
global modifier described in the next paragraph.

As an alternative way to run the imod emitter, the SOM Compiler can be run using a
command-line -m global-modifier imod option that explicitly names the output source file
for the initialization routine. For example, running the following command creates (or
updates) a source file named initterm.c. This is useful to consistently name a SOM
class library init/term source file for every class library you build.

sc -simod -mimod=initterm a.idl b.idl c.idl

Creating the Class Library

Here is an example illustrating all of the steps required to create a class library (abc.d11)
that contains the three classes 2, B, and C:

1. Produce an init/term source file for the class library.
For AIX:
sc -simod -mimod=initfunc a.idl b.idl c.idl
For OS/2 and Windows NT:
sc -simod -mimod=initfunc a.idl b.idl c.idl

2. Compile all of the implementation files for the classes that will be included in the library.
Include the initialization source file generated by the imod emitter also.

For AIX written in C:

xlc -I. -I$SOMBASE/include -c a.c
xlc -I. -I$SOMBASE/include -c¢ b.c
xlc -I. -ISSOMBASE/include -c c.c
xlc -I. -I$SOMBASE/include -c initfunc.c

For AIX written in C++:

Implementing Classes in SOM 217

x1C -I. -IS$SSOMBASE/include -c a.
x1C -I. -I$SOMBASE/include -c b.
x1C -I. -I$SOMBASE/include -c c.C

x1C -I. -ISSOMBASE/include -c initfunc.c

For OS/2 written in C:

icc -I. -I%$SOMBASE%\include -Ge- -c a.c

c C
c c

ice -I. -I%SOMBASE%\include -Ge- -c¢ b.c

icc -I. -I%SOMBASE%\include -Ge- -c c.c

ice -I. -I%SOMBASE%\include -Ge- -c¢ initfunc.c
For OS/2 written in C++:

icc -I. -I%SOMBASE%\include -Ge- -c a.cpp

icc -I. -I%SOMBASE%\include -Ge- -c b.cpp

icc -I. -I%SOMBASE%\include -Ge- -c c.cpp

ice -I. -I%SOMBASE%\include -Ge- -c¢ initfunc.c
For Windows NT written in C:

icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c a.c

icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c b.c

icc -DSOM DLL abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c c.c

icc -DSOM _DLL_abc -I. -I%$SOMBASE%\include -Ge- -Gd+ -Gm+ -c initfunc.c
For Windows NT written in C++:

icc -DSOM DLL abc -I. -I%$SOMBASE%\include -Ge- -Gd+ -Gm+ -c a.cpp

icc -DSOM DLL_abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c b.cpp

icc -DSOM _DLL abc -I. -I%$SOMBASE%\include -Ge- -Gd+ -Gm+ -c c.cpp

icc -DSOM_DLL_abc -I. -I%SOMBASE%\include -Ge- -Gd+ -Gm+ -c initfunc.c

Note: For OS/2 and NT, the “-Ge” option is used only with the IBM compiler. It
indicates that the object files will go into a DLL.

Note: When compiling the file produced by the imod emitter on Windows NT, also use
the -IC\IBMCPPW\SDK\WINH option, where C:\IBMCPPW is the root directory of
the VisualAge compiler.

3. Produce an export file for each class.
For AIX:
sc -sexp a.idl b.idl c.idl
For OS/2 and Windows NT:
sc -sdef a.idl b.idl c.idl

Provided the IDL files all include the dliname="abc.d11” modifier in their
implementation section, the above command will generate abc.def on OS/2 and
abc.nid on Windows NT.

If the IDL files do not include the dliname modifier, you can force all the exported
names into the same output file by specifying the -mdll=dll_filestem option along with
the def emitter on the SOM Compiler command line. Do not use the -mdll modifier on
the Windows NT platform.

4. Create an import library that corresponds to the class library, so that programs and
other class libraries can use (import) your classes.

For AIX:

218 Programmer's Guide for SOM and DSOM

ar ruv libabc.a abc.exp < Note the use of the . exp file,
not a .o file
The first filename (1ibabc. a) specifies the name to give to the import library. It should
be of the form lib<x>.a, where <x> represents your class library. The second filename
(abc. exp) specifies the exported symbols to include in the import library. The
SOMiInitModule procedure should not be exported. Instead, the function
<class_library_dllname_stem>SOMInitTerm must be exported.

Caution: Although AIX shared libraries can be placed directly into an archive file
(lib<x>.a), this is not recommended! A SOM class library should have a corresponding
import library constructed directly from the combined export file.

For OS/2:
implib /noi abc.lib abc.def

The first filename (abc . 1ib) specifies the name for the import library and should
always have a suffix of .lib. The second filename (abc . def) specifies the exported
symbols to include in the import library.

For Windows NT:
ilib /geni:abc.lib /DEF:abc.nid

The first filename (abc . 1ib) specifies the name for the import library and should
always have a suffix of .lib. The second filename (abc .nid) specifies the exported
symbols to include in the import library.

5. Using the object files and the export file, produce a binary class library.
For AIX:

1d -o abc.dll -bE:abc.exp -e SOMInitModule -H512 -T512 \
a.o b.o c.o initfunc.o -1lc -L$SOMBASE/lib -1lsomtk
The -0 option assigns a name to the class library (abc.d11). The -bE: option
designates the file with the appropriate export list. The -e option designates
SOMInitModule as the initialization function.

Note: SOMiInitModule is specified as the initialization function with the -e option, even
though the imod emitter is used to generate a <dllname_stem>SOMInitTerm
function. This is done because the <dllname_stem>SOMInitTerm function requires
an initialization flag as input, but the SOM run time — for compatibility with existing
class libraries — calls the class library entry point with two version numbers and a
className string.

The -H and -T options must be supplied as shown; they specify the necessary
alignment information for the text and data portions of your code. The -l options hame
the specific libraries needed by your classes. If your classes make use of classes in
other class libraries, include a -l option for each of these also. The Id command looks
for a library named lib<x>.a, where <x> is the name provided with each -l option. The -
L option specifies the directory where the somtk library resides.

For OS/2:

set LIB=%SOMBASE%\1lib;%LIB%
ilink /dll /noe a.obj b.obj c.obj initfunc.obj \
/OUT:abc.dll somtk.lib abc.def

If your classes make use of classes in other class libraries, also include the names of
their import libraries immediately after somtk (before the next comma).

Implementing Classes in SOM 219

Note: If your class library uses dynamically linked C/C++ runtime libraries, you may
receive a linker error message saying that CRT _term is undefined. Should this
occur, you need to add the option -DDYNA_LINK_C to the compilation of the
initialization source file, recompile and relink. Do not use the -DDYNA_LINK_C
option if your class library uses statically linked C/C++ runtime libraries because
this will cause your class library to operate incorrectly.

For Windows NT:

set LIB=%SOMBASE%\lib;3%LIB%
ilink /dll /noe a.obj b.obj c.obj initfunc.obj \
/OUT:abc.dll somtk.lib abc.exp
If your classes make use of classes in other class libraries, also include the names of
their import libraries immediately after somtk (before the next comma).

Note: If your class library uses dynamically linked C/C++ runtime libraries, you may
receive a linker error message saying that _CRT _term is undefined. Should this
occur, you need to add the option -DDYNA_LINK_C to the compilation of the
initialization source file, recompile and relink. Do not use the -DDYNA_LINK_C
option if your class library uses statically linked C/C++ runtime libraries because
this will cause your class library to operate incorrectly.

Building a SOM Library Implemented with C++ on AIX

On AlX, if you use the somFindClass or somFindClsInFile method or the AIX “load”
system call on shared libraries (that is, on SOM DLLSs) that have been implemented using
C++, this may result in a program crash. (This problem does not appear when the shared
library is linked to the application at compile time.)

If this problem occurs, you can use the command makeC++SharedLib, provided by the AlX
XL C++ Compiler/6000, to correctly build a shared library implemented in C++ on AlX. This
command must be used instead of the Id command when you build a SOM library.

Note: When building a multithreaded shared library, use makeC++SharedLib_r instead
of makeC++SharedLib.

Do the following to build and initialize dynamically loaded SOM libraries that are
implemented using XL C++:

Use the makeC++SharedLib command (a shell script) to create the DLL, as shown in the
sample Makefile commands in the next example. Be aware of the following considerations
when creating a Makefile:

- makeC++SharedLib expects $BIN and $LIB to be set to the “bin” and “lib”
directories for the xIC product. (Or, if BIN and LIB are unset, default paths of /usr/
lpp/x1C/binand /usr/lpp/x1C/1ib are used.) The following Makefile
example shows how to explicitly set BIN and LIB before you call
makeC++SharedLib.

- make on AlX requires a <tab> in front of each line of the makeC++SharedLib
command in the Makefile stanza.

- makeC++SharedLib is sensitive to the order of its parameters. The parameter
order in the sample below is appropriate for xIC Version 3.1.4.

- See the makeC++SharedLib documentation in the AIX XL C++ documentation.

When you use the following sample commands in your Makefile, the values of DLL, EXP,
OBJS, LIBDIRLIST and LIBLIST should be tailored for your application:

220 Programmer's Guide for SOM and DSOM

DLL = foo.dll # DLL file name

EXP = foo.exp # export file name
OBJS = foo.o fooinit.o # object (.o) files
LDFLAGS = -H512 -T512 # 1d flags

LIBDIRLIST = -L. -L$(SOMBASE)/lib # list of library dirs
LIBLIST = -lsomtk # list of libraries
<etc.>

$(DLL) : $(EXP) & (OBJS)

BIN=/usr/lpp/x1C/bin

LIB=/usr/lpp/x1C/1lib

makeC++SharedLib -o $@ \

-n SOMInitModule \
-bhalt:4 \

$ (LIBDIRLIST) $(LIBLIST) \

-p 1024 \

-E $(EXP) -bM:SRE $ (OBJS)

During the link in step 2, you may receive some warnings from the nm command, similar to
those below. These warnings can be ignored.

nm: libsomtk.a[somc.expl: 0654-203 Specify an XCOFF object module.

Exporting Variables on Windows NT

To export a variable outside of the DLL, instead of declaring it as:
SOMEXTERN int SOMLINK varl;
You need to declare it as:

SOMEXTERN int
#if defined(_WIN32) && !defined(SOM_DLL_myLib)
SOMDLLIMPORT
#endif
varl;

Note that SOM_DLL_myLib contains the name of the DLL as the suffix. If you have too
many variables to export, you can save some typing and make your code look more legible
as follows:

#if !defined(SOM_IMPORTEXPORT myLib)

#if defined(_WIN32) && !defined(SOM_DLL myLib)
#define SOM_IMPORTEXPORT_myLib SOMDLLIMPORT

#else

#define SOM_ IMPORTEXPORT myLib

#endif

#endif

SOMEXTERN int SOM IMPORTEXPORT myLib SOMLINK varl;
SOMEXTERN int SOM_IMPORTEXPORT_myLib SOMLINK wvar2;

Here, SOM_IMPORTEXPORT_myLib is a unique symbol that you introduce. You should
make up one that fits the nature of your .h file. Because the emitters also generate their
own unique symbols, use a unique symbol of the form “SOM_IMPORTEXPORT _dllname”,
where dliname is the name of your DLL.

The same technique also applies if you want to export a variable within a “Passthru”
modifier. For example, if you started with the following OS/2 IDL file:

interface foo ({
implementation {
dllname = “myLib.d11l”;
passthru ¢ h after = "%
“SOMEXTERN int SOMLINK var3;”;

Implementing Classes in SOM 221

“SOMEXTERN int SOMLINK var4;”;

}
}i

You would provide the following IDL file for NT:

interface foo ({
implementation {

dllname = “myLib.d1l1l”;

passthru c¢_h after = “"
“#if !defined(SOM_IMPORTEXPORT myLib)”;
“#if defined(WIN32) && !defined(SOM_DLL_myLib)”;
“#define SOM_IMPORTEXPORT myLIb SOMDLLIMPORT” ;
“#else”;
“#define SOM_IMPORTEXPORT myLib”;
“#endif”;
“#endif”;
“SOMEXTERN int SOM IMPORTEXPORT myLib SOMLINK var3;”;
“SOMEXTERN int SOM_IMPORTEXPORT myLib SOMLINK var4;”;

}
Vi

Other Considerations

Do not set the byte alignment to anything other than 8 bytes.

Customizing Memory Management

SOM is designed to be policy free and highly adaptable. Most of the SOM behavior can be
customized by subclassing the built-in classes and overriding their methods, or by replacing
selected functions in the SOM run-time library with application code. This section and
subsequent ones contain advanced topics describing how to customize the various aspects
of SOM behavior. For information on DSOM customization, see Chapter 8, Distributed
SOM on page 229.

The memory management functions used by the SOM run-time environment are a subset
of those supplied in the ANSI C standard library. They have the same calling interface and
return the equivalent types of results as their ANSI C counterparts, but include some
supplemental error checking. Errors detected in these functions result in the invocation of
the error-handling function to which SOMError points.

The correspondence between the SOM memory-management function variables and their
ANSI standard library equivalents is given in Table 2.

SOM Function ANSI Standard C

Variable Library Function Return type Argument types
SOMCalloc calloc() somToken size t, size t
SOMFree free() void somToken
SOMMalloc malloc() somToken size t
SOMRealloc realloc() somToken somToken, size_t

Table 2. Memory-Management Functions.

An application program can replace SOM’s memory management functions with its own
memory management functions to change the way SOM allocates memory. This

222 Programmer's Guide for SOM and DSOM

replacement is possible because SOMCalloc, SOMMalloc, SOMRealloc and SOMFree
are actually global variables that point to SOM’s default memory management functions,
rather than being the names of the functions themselves. Thus, an application program can
replace SOM’s default memory management functions by assigning the entry-point address
of the user-defined memory management function to the appropriate global variable. For
example, to replace the default free procedure with the user-defined function myFree
(which must have the same signature as the ANSI C free function), an application program
would require the following code:

#include <som.h>

/* Define a replacement routine: */

#ifdef 0S2
#pragma linkage (myFree, system)

#endif

void SOMLINK myFree (somToken memPtr)

{

(Customized code goes here)

SOMFree = myFree;

In general, all of these routines should be replaced as a group. For instance, if an
application supplies a customized version of SOMMalloc, it should also supply
corresponding SOMCalloc, SOMFree and SOMRealloc functions that conform to this
same style of memory management.

Customizing Class Loading and Unloading

SOM uses three routines that manage the loading and unloading of class libraries (referred
to here as DLLs). These routines are called by the SOMClassMgrObject as it dynamically
loads and registers classes. If appropriate, the rules that govern the loading and unloading
of DLLs can be madified, by replacing these functions with alternative implementations.

Customizing Class Initialization

The SOMClassInitFuncName Function has the following signature:

string (*SOMClassInitFuncName) ();
This function returns the name of the function that will initialize (create class objects for) all
of the classes that are packaged together in a single class library. (This function name
applies to all class libraries loaded by the SOMClassMgrObject.) The SOM-supplied

version of SOMClassInitFuncName returns the string “SOMInitModule”. The interface
to the library initialization function is described under Creating SOM Class Libraries.

Implementing Classes in SOM 223

Customizing DLL Loading

224

To dynamically load a SOM class, the SOMClassMgrObject calls the function pointed to
by the global variable SOMLoadModule to load the DLL containing the class. The reason
for making public the SOMLoadModule Function (and the following SOMDeleteModule
Function) is to reveal the boundary where SOM touches the operating system. Explicit
invocation of these functions is never required. However, they are provided to allow class
implementors to insert their own code between the operating system and SOM, if desired.
The SOMLoadModule function has the following signature:

long (*SOMLoadModule) (string className,
string fileName,
string functionName,
long majorVersion,
long minorVersion,
somToken *modHandle) ;

This function is responsible for loading the DLL containing the SOM class className and
returning either the value zero (for success) or a nonzero system-specific error code. The
output argument modHandle is used to return a token that can subsequently be used by
the DLL-unloading routine (described below) to unload the DLL. The default DLL-loading
routine returns the DLL’s module handle in this argument. The remaining arguments are
used as follows:

fileName
The file name of the DLL to be loaded, which can be either a simple name or a full path
name.

functionName
The name of the routine to be called after the DLL is successfully loaded by the
SOMClassMgrObject. This routine is responsible for creating the class objects for the
classes contained in the DLL. Typically, this argument has the value
“SOMInitModule”, which is obtained from the function SOMClassInitFuncName
described above. If no SOMInitModule entry exists in the DLL, the default DLL-loading
routine looks in the DLL for a procedure with the name classNameNewClass instead. If
neither entry point can be found, the default DLL-loading routine relies on the library’s
automatic initialization routine to perform the appropriate class construction/registration
function, as described in Specifying the Initialization and Termination Function on
page 215.

majorVersion
The major version number to be passed to the class initialization function in the DLL
(specified by the functionName argument).

minorVersion
The minor version number to be passed to the class initialization function in the DLL
(specified by the functionName argument).

An application program can replace the default DLL-loading routine by assigning the entry
point address of the new DLL-loading function (such as MyLoadModule) to the global
variable SOMLoadModule, as follows:

#include <som.h>
/* Define a replacement routine: */
long myLoadModule (string className, string fileName,

string functionName, long majorVersion,

Programmer’s Guide for SOM and DSOM

long minorVersion, somToken *modHandle)

(Customized code goes here)

SOMLoadModule = MyLoadModule;

Customizing DLL Unloading

To unload a SOM class, the SOMClassMgrObject calls the function pointed to by the
global variable SOMDeleteModule. The SOMDeleteModule Function on page 49 has the
following signature:

long (*SOMDeleteModule) (in somToken modHandle) ;

This function is responsible for unloading the DLL designated by the modHandle parameter
and returning either zero (for success) or a nonzero system-specific error code. The
parameter modHandle contains the value returned by the DLL loading routine when the
DLL was loaded.

An application program can replace the default DLL-unloading routine by assigning the
entry point address of the new DLL-unloading function (such as, MyDeleteModule) to the
global variable SOMDeleteModule, as follows:

#include <som.h>
/* Define a replacement routine: */

long myDeleteModule (somToken modHandle)

{

(Customized code goes here)

SOMDeleteModule = MyDeleteModule;

Customizing Character Output

The SOM character-output function is invoked by all of the SOM error-handling and
debugging macros whenever a character must be generated (see Debugging on page 99
and Exceptions and Error Handling on page 100). The default character-output routine,
pointed to by the global variable SOMOutCharRoutine, simply writes the character to
“stdout,” then returns “1” if successful, or “0” otherwise.

For convenience, SOMOutCharRoutine is supplemented by the somSetOutChar
Function. The somSetOutChar function enables each task to have a customized
character output routine, thus it is often preferred for changing the output routine called by
somPrintf Function (because SOMOutCharRoutine would remain in effect for
subsequent tasks).

An application programmer might wish to supply a customized replacement routine to:
» Direct the output to stderr

* Record the output in a log file

e Collect characters and handle them in larger chunks

e Send the output to a window to display it

Implementing Classes in SOM 225

e Place the output in a clipboard
* Some combination of these

With SOMOutCharRoutine, an application program would use code similar to the following
to install the replacement routine:

#include <som.h>

#pragma linkage (myCharacterOutputRoutine, system)
/* Define a replacement routine: */

int SOMLINK myCharacterOutputRoutine (char c)

{

(Customized code goes here)

/* After the next stmt all output */
/* will be sent to the new routine */
SOMOutCharRoutine = myCharacterOutputRoutine;

With somSetOutChar, an application program would use code similar to the following to
install the replacement routine:

#include <som.h>
static int irOutChar (char c);
static int irOutChar (char c)

(Customized code goes here)

main (...)

somSetOutChar ((somTD_SOMOutCharRoutine *) irOutChar) ;

Customizing Error Handling

When an error occurs within any of the SOM-supplied methods or functions, an error-
handling procedure is invoked. The default error-handling procedure supplied by SOM,
pointed to by the global variable SOMError, has the following signature:

void (*SOMError) (int errorCode, string fileName, int lineNum) ;

The default error-handling procedure inspects the errorCode argument and takes
appropriate action, depending on the last decimal digit of errorCode (see Exceptions and
Error Handling on page 100 for a discussion of error classifications). In the default error
handler, fatal errors terminate the current process. The remaining two arguments (fileName
and lineNum), which indicate the name of the file and the line number within the file where
the error occurred, are used to produce an error message.

An application programmer might wish to replace the default error handler with a
customized error-handling routine to:

* Record errors in a way appropriate to the particular application

» Inform the user through the application’s user interface

226 Programmer's Guide for SOM and DSOM

e Attempt application-level recovery by restarting at a known point
* Shut down the application
An application program would use code similar to the following to install the replacement
routine:
#include <som.h>
/* Define a replacement routine: */
void myErrorHandler (int errorCode, string fileName,

int lineNum)

(Customized code goes here)

/* After the next stmt all errors */
/* will be handled by the new routine */
SOMError = myErrorHandler;

When any error condition originates within the classes supplied with SOM, SOM is left in an
internally consistent state. If appropriate, an application program can trap errors with a
customized error-handling procedure and then resume with other processing. Application
programmers should be aware, however, that all methods within the SOM run-time library
behave atomically. That is, they either succeed or fail; but if they fail, partial effects are
undone wherever possible. This is done so that all SOM methods remain usable and can
be re-executed following an error.

The actual mutex service function prototypes and global variable declarations are found in
file somthrd.h.

Implementing Classes in SOM 227

228 Programmer's Guide for SOM and DSOM

Chapter 8. Distributed SOM

This chapter describes the Distributed SOMobjects framework, called DSOM, that enables
SOMobijects applications to execute across distributed processes or across a network of
machines. The following sections tell how to use DSOM.

DSOM Definition

Whereas the power of SOMobjects technology derives from the fact that SOM insulates the
client of an object from the object’s implementation, the power of DSOM lies in the fact that
DSOM insulates the client of an object from the object’s location.

Distributed SOM (or DSOM) provides a framework that allows application programs to
access objects across address spaces. That is, application programs can access objects in
other processes, even on different machines. Both the location and implementation of an
object are hidden from a client, and the client accesses the object (via method calls) in the
same manner regardless of its location.

DSOM provides support for TCP/IP on AIX and Windows NT. In addition to TCP/IP, DSOM
on OS/2 supports NetBIOS through AnyNet.

DSOM can be viewed as:

* An extension to SOM that allows a program to invoke methods on SOM objects in other
processes

* An Object Request Broker (ORB), a standardized transport for distributed object
interaction. In this respect, DSOM complies with the Common Object Request Broker
Architecture (CORBA) 1.1 specification, published by the Object Management Group
(OMG) and X/Open™

This chapter describes DSOM from both perspectives.

DSOM Features

The following is a quick summary of some of important features of DSOM:

» Uses the standard SOM Compiler, Interface Repository, language bindings, and class
libraries. DSOM provides a growth path for non-distributed SOM applications.

» Allows an application program to access a mix of local and remote objects. The fact
that an object is remote is transparent to the program.

* Provides run-time services for creating, destroying, identifying, locating and dispatching
methods on remote objects. These services can be overridden or augmented to suit the
application.

« Uses existing interprocess communication (IPC) facilities for workstation
communication, and common LAN transport facilities for workgroup communications.

» Provides support for writing multi-threaded servers and event-driven programs.

» Provides a default object server program, which can be easily used to create SOM
objects and make those objects accessible to one or more client programs. If the
default server program is used, SOM class libraries are loaded upon demand, so no
server programming or compiling is necessary.

* Complies with the CORBA 1.1 specification, which is important for portability of
applications to other CORBA-compliant ORBSs.

Distributed SOM 229

Complies with the CORBA Internet Inter-ORB Protocol 1.0 specification, which allows
interoperability with other CORBA-compliant ORBs.

DSOM Usage

DSOM is for applications that require sharing of objects among multiple programs. The
object actually exists in only one process; this process is known as the object’s server. The
other processes, the clients, access the object via remote method invocations, made
transparently by DSOM.

DSOM should be used for applications that require objects to be isolated from the main
program. This is done where reliability is a concern; either to protect the object from failures
in other parts of the application or to protect the application from an object.

Chapter Outline

230

This chapter is divided into logical and functional sections.

DSOM Tutorial
DSOM Tutorial on page 233 shows a complete example of how an existing SOM class
implementation can be used, without modification, with DSOM to create a distributed
application. Using a SOM class implementation as a backdrop, the basic DSOM
interfaces are introduced.

Programming DSOM Applications
All DSOM applications involve three kinds of programming:

- Client programming: writing code that uses objects
- Server programming: writing code that manages objects
- Implementing classes: writing code that implements objects

Basic Client Programming on page 243, Basic Server Programming on page 286
and Implementing Classes on page 304 describe how to create DSOM applications
from these three points of view. In turn, the structure and services of the relevant
DSOM run-time environment are explained. Additional examples are provided in these
sections to illustrate DSOM services.

Running DSOM Applications
Running DSOM Applications on page 308 explains what is hecessary to run a DSOM
application, once it has been built and configured.

Advanced Topics
Advanced Topics on page 310 covers:

- Peer versus Client-Server Processes on page 310 demonstrates how
peer-to-peer object interactions are supported in DSOM.

- Dynamic Invocation Interface on page 311 details DSOM support for the CORBA
dynamic invocation interface to dynamically build and invoke methods on local or
remote objects.

- Building a Client-Only stub DLL on page 318 shows how a programmer can
build a stub DLL for a remote object so that the DSOM runtime can build a proxy
without having access to the remote object’'s complete DLL.

- Creating User-Supplied Proxies on page 319 describes how to override proxy
generation by the DSOM run time and, instead, install a proxy object supplied by
the user.

Programmer’s Guide for SOM and DSOM

- Customizing the Default Base Proxy Class on page 322 discusses how the
SOMDCIlientProxy class can be subclassed to define a customized base class that
DSOM will use during dynamic proxy-class generation.

Error Reporting and Troubleshooting

Error Reporting and Troubleshooting Hints on page 323 discusses facilities to aid in
problem diagnosis.

DSOM and CORBA

Those readers interested in using DSOM as a CORBA-compliant ORB should read
DSOM as a CORBA-Compliant Object Request Broker on page 327. This section
answers the guestion: How are CORBA concepts implemented in DSOM?

Deprecated DSOM Methods

DSOM generally provides backward compatibility for objects and methods supported in
DSOM 2.x or before. However, the programming model evolved to incorporate new
standards and provide greater flexibility and extensibility. See Deprecated DSOM
Objects and Methods on page 335 for details on deprecated methods.

DSOM Overview

A DSOM application typically consists of at least four processes running on a single
machine or across multiple machines:

The client program, written by the application developer.

The server program, which may be the default server program provided by DSOM, or a
customized server program written by the application developer. The default server
program simply runs in a loop, listening for and servicing client requests. It hosts a well-
known server object, which responds to generic methods for loading and instantiating
application-specific class libraries, and it hosts the application objects created in it.

The DSOM location-service daemon, somdd, running on the same machine as the
servers. The daemon establishes the initial connection between client and server, and
starts the server program dynamically on the client’s behalf, if necessary.

The name server providing a Naming Service used by DSOM applications directly and
used by DSOM to provide a Factory Service. The DSOM Factory Service is used by
client programs to create remote objects.

The DSOM application uses the following files at run-time:

The SOMobjects configuration file that defines run-time environment settings for
DSOM. Each of the above DSOM processes can have unique configuration-file
settings, or they can share a common configuration file. SOMobjects provides a default
configuration file, which can be customized using any text editor.

The Interface Repository files that primarily load class libraries dynamically in both
client and server processes. These files are created and updated using the SOM
Compiler. See Registering Class Interfaces on page 30 for more information.

Implementation Repository files that contain information required only on the server
used by the daemon to start servers and by servers to initialize themselves. This
repository is created and updated by registering servers using regimpl. See The
regimpl Registration Utility on page 32 for additional information.

Naming Service files that store information from the Naming Service and the DSOM
Factory Service persistently on disk. This includes information about which application

Distributed SOM 231

classes are supported on each registered server, collected when the servers are
registered. See Naming Service Concepts on page 27 for more information.

The typical sequence of events that occurs when configuring and running a DSOM
application is as follows:

* Customize environment settings by editing the default configuration file.

* Configure the Naming Service and Security Service using the som_cfg utility. This is a
one-time step.

* Update the Interface Repository to include application IDL.

e Start somdd on the server machines.

» Register application servers and classes, using the regimpl tool.
* Run the client application.

At runtime, DSOM clients and servers communicate via proxy objects, a kind of object
reference. A proxy object is a local representative for a remote target object. A proxy
inherits the target object’s interface, so it responds to the same methods. Operations
invoked on the proxy do not execute locally, but are forwarded to the “real” target object for
execution. The client program always has a proxy for each remote target object on which it
operates.

For the most part, a client program treats a proxy object exactly as it would treat a local
object. The proxy takes responsibility for forwarding requests to and yielding results from
the remote object.

Limitations

232

The following list indicates known limitations of DSOM at the time of this release.

1. Objects cannot be moved from one server to another without changing the object
references (that is, deleting the object and creating it anew in another server). This
yields all copies of the previous reference invalid.

2. The change_implementation method is not supported. This method, defined by the
BOA interface, allows an application to change the implementation definition
associated with an object.However, in DSOM, changing the server implementation
definition may render existing object references (which contain the old server id) invalid.

3. DSOM has a single server activation policy, that corresponds to CORBA's shared
activation policy for dynamic activation, and persistent activation policy for manual
activation. Other activation policies, such as server-per-method and unshared are not
directly supported, and must be implemented by the application.

Since the unshared server policy is not directly supported, the obj_is_ready and
deactivate_object methods, defined in the BOA interface, have null implementations.

4. If a server program terminates without calling deactivate_impl, subsequent attempts to
start that server may fail. The DSOM daemon, somdd, believes the server is still
running until it is told it has stopped. Attempts to start a server that is believed to exist
results in an error (SOMDERROR _ServerAlreadyEXists).

5. The OUT_LIST _MEMORY, IN_COPY_VALUE and DEPENDENT_LIST flags used with
the Dynamic Invocation Interface are not supported.

Programmer’s Guide for SOM and DSOM

Other important notes concerning DSOM are documented in the product README file.

DSOM Tutorial

The DSOM tutorial presents a sample stack application as an introduction to DSOM. This
tutorial demonstrates that for simple examples, like stack, the class can be used to
implement remotely accessed distributed objects. The tutorial presents the DSOM
information in these units:

* The application components
» The implementor steps before running the application
e The run-time activity

The source code for this example is provided with the DSOM samples in the SOMobjects
Developer Toolkit.

Application Components

The application components used to illustrate DSOM basics consist of the stack IDL
interface provided by the SOMobjects Developer Toolkit, client coding examples of SOM to
DSOM stack changes, stack server implementation and application compiling.

The Stack Interface

The DSOM example assumes that the class implementor built a SOM class library DLL,
called stack.dl1, in the manner described in Creating SOM Class Libraries on page
210. The DLL implements the following IDL interface.

#include <somobj.idl>
interface Stack: SOMObject
{
const long stackSize = 10;
exception STACK OVERFLOW{};
exception STACK UNDERFLOW{};
boolean full() ;
boolean empty () ;
long top() raises (STACK UNDERFLOW) ;
long pop () raises (STACK UNDERFLOW) ;
void push(in long element) raises (STACK OVERFLOW) ;
#ifdef SOMIDL
implementation
{
releaseorder: full, empty, top, pop, push;

somDefaultInit: override;

long stackTop; // top of stack index
long stackValues [stackSize] ; // stack elements
dllname = “stack.dll”;

Distributed SOM 233

¥
#endif
¥
The class implementor could have built this DLL without knowing it would be accessed
remotely. Some DLLs require changes in the way their classes pass arguments and

manage memory for remote clients. (See Implementation Constraints on page 305 for
additional information.)

The stack class example assumes that all implementation was performed in a reasonable
manner.

Changing a Client Program from a Local to a Remote Stack

The following program uses DSOM to create and access a stack object somewhere in the
system. The location of the object does not matter to the client program; it just wants a
stack object. System configuration determines the location of the object.

In local and remote stacks, the stack operations are identical. The main differences lie in
program initialization and stack creation. The pertinent portions of the program are the
additions and changes required to modify a client program from using a local stack to using
a remote stack. Following the program is an explanation of those portions.

#include <somd.hs>
#include <stack.h>
boolean OperationOK (Environment *ev) ;
int main(int argc, char *argvl([])
{
Environment ev;
Stack stk;
long num = 100;
SOM_InitEnvironment (&ev) ;
SOMD_1Init (&ev) ;
stk = somdCreate (&ev, “Stack”, TRUE) ;
/* Verify successful object creation */
if (OperationOK(&ev))
{
while (! full(stk, &ev))
{
_push(stk, &ev, num);
somPrintf (*Top: %d\n”, _top(stk, &ev));
num += 100;
}
/* Test stack overflow exception */
_push(stk, &ev, num);
OperationOK (&ev) ;
while (! empty(stk, &ev))
{

somPrintf (*Pop: %d\n”, _pop(stk, &ev));

234 Programmer’s Guide for SOM and DSOM

}

/* Test stack underflow exception */

somPrintf (“Top Underflow: %d\n”, top(stk, &ev));
OperationOK (&ev) ;

somPrintf (“Pop Underflow: %d\n”, pop(stk, &ev));
OperationOK (&ev) ;

_push(stk, &ev, -10000);

somPrintf (*Top: %d\n”, top(stk, &ev));
somPrintf (“Pop: %d\n”, top(stk, &ev));

if (OperationOK(&ev))

{

somPrintf (“Stack test successfully completed.\n”);

}

_somFree (stk) ;
SOMD_Uninit (&ev) ;
SOM_UninitEnvironment (&ev) ;
return(0) ;

}

boolean OperationOK (Environment *ev)
char *exID;
switch (ev-> major
case SYSTEM EXCEPTION:
exID = somExceptionId(ev) ;
somPrintf (“System Exception: %$s\n”, exID);
somdExceptionFree (ev) ;

return (FALSE) ;

case USER_EXCEPTION:
exID = somExceptionId(ev) ;
somPrintf (“User Exception: %$s\n”, exID);
somdExceptionFree (ev) ;

return (FALSE) ;

case NO_EXCEPTION:
return (TRUE) ;

default:
somPrintf (“Invalid exception type in Environment.\n”) ;
somdExceptionFree (ev) ;

return (FALSE) ;

Distributed SOM 235

236

}

See Memory-Management Functions on page 256 for more information on allocating and
freeing memory. Stack Example Run-Time Scenario on page 241 describes the run time
operations of the previous application.

Code Differences and Similarities:

« Every DSOM program must #include the file somd.h for C, or somd.xh for C++. This
file defines constants, global variables and run-time interfaces used by DSOM. This file
is sufficient to establish all necessary DSOM definitions.

» DSOM requires its own initialization call.
SOMD_1Init (&ev) ;

The call to SOMD_Init initializes the DSOM run-time environment, including allocation
of global objects. SOMD_Init must be called before any DSOM run-time calls are made.

» The local stack creation statement,
stk = StackNew () ;
is replaced by the remote stack creation statement,
stk = somdCreate (&ev, “Stack”, TRUE) ;

» The somdCreate function creates a remote Stack object in an unspecified server that
implements that class. If no object could be created, NULL is returned and an
exception is raised. Otherwise, the object returned is a Stack proxy. From this point on,
the client program treats the Stack proxy exactly as it would treat a local Stack. The
Stack proxy takes responsibility for forwarding requests to and yielding results from the
remote Stack. For example,

_push(stk, &ev,num) ;

causes a message representing the method call to be sent to the server process
containing the remote object. The DSOM run time in the server process decodes the
message and invokes the method on the target object. The result is then returned to
the client process in a message. The DSOM run time in the client process decodes the
result message and returns any result data to the caller.

At the end of the original client program, the local stack was destroyed by the
statement,

__somFree (stk) ;

This same call is made in the client program above, but is invoked on a Stack proxy.
When invoked on a proxy, somFree will destroy both the proxy object and the remote
target object. If the client only wants to release its use of the remote object, freeing the
proxy, without destroying the remote object, it can call the release method instead of
somFree.

e The client must shut down DSOM, so that any operating system resources acquired by
DSOM for communications or process management can be returned. The
SOMD_Uninit (&ev) ; call must be made at the end of every DSOM program.

Locate and Create Method: Creating a remote object is a two-step process. First, the
client must locate a suitable factory. Once an appropriate factory has been found, the client
must ask the factory to create an instance of the desired class. In the preceding example,
the somdCreate function performed both steps.

somdCreate Function: The somdCreate function places no constraints on how or where
the remote Stack object should be created. Applications can exercise more control over

Programmer’s Guide for SOM and DSOM

the criteria by which a factory is chosen by explicitly selecting the factory and then invoking
an object-creation method, such as somNew.

Naming Service: The Naming Service is a general directory service that allows an object,
along with optional properties, to be bound to a name. The Naming Service supports
searching for an object based on either the name or specific properties. DSOM provides an
extension of the Naming Service, a factory service, for selecting factories by specifying the
selection criteria as property values. When server implementations are registered with
DSOM, information about which classes are associated with each server alias is stored in
the Naming Service.

When the somdCreate function is used, the only property specified to the factory service is
a class name. In general, the client may specify any number of other properties to
determine what kind of factory to use. The preceding client program can be modified to
create a remote Stack object in a specific server whose name, or alias, is StackServer.
The lines below show the changes that were made:

#include <somd.h>

#include <stack.h>

int main(int argc, char *argv([]) {
Stack stk;
Environment e;
ExtendedNaming ExtendedNamingContext enc;

SOMObject factory;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

enc = (ExtendedNaming ExtendedNamingContext)

_resolve_initial references (SOMD_ORBObject, &ev,

“FactoryService”) ;
factory = find any(enc, &ev,

“class == ’'Stack’ and alias == ’'StackServer’”, 0);
stk = somNew(factory) ;

_push (stk, &ev,100) ;

_push(stk, &ev,200) ;

_pop (stk, &ev) ;

if (! empty(stk, &ev)) somPrintf (“Top: %d\n”, _top(stk,&ev));

_somFree (stk) ;
_release(factory, &ev);
_release(enc, &ev);
SOMD_Uninit (&ev) ;

SOM_UninitEnvironment (&ev) ;

return(0) ;

Distributed SOM 237

238

}

This version of the program replaces the somdCreate operation with calls to the methods
resolve_initial_references, find_any, somNew and release. The
resolve_initial_references method is invoked on a global DSOM object created as a side-
effect of calling SOMD_Init. SOMD_ORBObject contains an instance of class ORB that
provides run-time support for both the client and server. The string “FactoryService”
instructs the method resolve_initial_references to return a proxy to the Naming Context
w