
A Tour around MlBibTEX and Its Implementation(s)

Jean-Michel HUFFLEN

LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
hufflen@lifc.univ-fcomte.fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

This article describes the components of MlBibTEX, a new implementation of
BibTEX including multilingual features. We justify our choices and show why
our use of xml eases most operations performed by MlBibTEX. Besides, there
are two implementations of MlBibTEX, a prototype developed in Scheme, and a
more robust program written in C. We also explain how we take advantage of
this approach.
Keywords Bibliographies, bibliography styles, BibTEX, MlBibTEX, xml process-
ing.

Streszczenie

Ten artikuł opisuje składniki MlBibTEX-a — nowej implementacji BibTEX-
a, zawierającej obsługę wielojęzyczności. Uzasadniamy nasz wybór i pokazu-
jemy dlaczego użycie xml-a ułatwia większość operacji wykonywanych przez
MlBibTEX. Istnieją dwie implementacje MlBibTEX-a — prototyp rozwijany w
Scheme oraz bardziej funkcjonaly program napisany w C. Jednocześnie wyjaśni-
amy w jaki sposób można odnieść korzyści przy powyższym podejściu.

Słowa kluczowe Bibliographie, style bibliographiczne, BibTEX, MlBibTEX,
xml.

Introduction

This article aims to give the broad outlines of the
present implementation of MlBibTEX (for ‘Multilin-
gual BibTEX’), that we have developed since Decem-
ber 2002. Like its predecessor BibTEX [31], this pro-
gram is a bibliography processor that uses keys
cited throughout a document, searches bibliography
data bases for these keys, and builds the ‘References’
section of the document. So authors do not have to
type such a section themselves, they just have to
ensure that the keys they use point to actual items
within their bibliography data bases.

Let us give a first example of using MlBibTEX
in association with the LATEX word processor [26]:
if an end-user of LATEX cites an item by using the
command \cite{prus1897} within a document (a
.tex file), MlBibTEX can search files containing bib-
liographical entries (.bib files). These files are
specified by the \bibliography command and such
entries are expressed using this format:

@BOOK{pruss1897,

AUTHOR = {Boles{\l}aw Prus},

TITLE = {Faraon},

PUBLISHER = {Oficyna Wydawnicza

GMP},

ADDRESS = {Pozna\’{n}},

EDITION = 1,

NOTE = {[Title of the English

translation: “The

Pharaoh”] ! english},

YEAR = 1897,

LANGUAGE = polish}

The result of MlBibTEX is a file containing informa-
tion about the items cited throughout a document
(.bbl file). When LATEX runs again, this file is used to
build the ‘References’ section of the document: that
yields a list of bibliographical references like:

[1] Bolesław Prus. Faraon. Oficyna Wydaw-
nicza GMP, Poznań, first edition, 1897.

XII Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 21

Polska Grupa Użytkowników Systemu TEX, 2004 (http://www.GUST.org.pl)



Jean-Michel HUFFLEN

Title of the English translation: “The
Pharaoh”.

In [11], we showed how we extended BibTEX’s syntax
by new features related to multilinguism:

• [...] ! 〈idf〉—‘!’ being for ‘only’—is used
for strings that are put when the language of
the reference is idf ;

• [...] * 〈idf〉 is analogous, but a sequence of
*-tags is for information that should never be
empty, whatever the language of the reference
is;

• [...] : 〈idf〉 is a language change and is
used when foreign words—w.r.t. the value of the
LANGUAGE field—occur within a bibliographical
entry.

As the previous example shows it, MlBibTEX con-
siders the language of an entry, but can generate
a reference for another language. For example, the
reference given above is for a document written in
English and the source processed by LATEX is:

\bibitem{pruss1897}

\begin{otherlanguage*}{polish}

Boles{\l}aw Prus. \emph{Faraon}. Oficyna

Wydawnicza GMP, Pozna\’{n},

\foreignlanguage{english}{first edition},

1897. \foreignlanguage{english}{Title of

the English translation:

\begin{bblquotedtitle}The Pharaoh

\end{bblquotedtitle}}.

\end{otherlanguage*}

provided that the babel package [3] is loaded with
the english and polish options when the whole doc-
ument is processed. (Let us notice that MlBibTEX
users are encouraged to use this package, but do not
have to: see [18] for more details about other pos-
sible solutions.) If the reference to Entry prus1897

is to be put at the end of a book written in Pol-
ish, ‘first edition’ will be replaced by ‘1. wydanie’
and the value of the NOTE field will not appear,
because it is to be put only in documents in En-
glish. When a complete ‘References’ section is to
be generated, there are two approaches to do that:
document-dependent and reference-dependent; see
[13] for more details.

Concerning the layout of the references to be
generated, MlBibTEX—like BibTEX—uses bibliog-
raphy styles, a style being specified for a docu-
ment by the LATEX command \bibliographystyle.
Here and in the bibliography of this article, we use
a ‘plain’ style, that is, references are labelled with
numbers. Other choices are possible: a ‘long’ style,
where labels are the last name of the first author,
followed by the year of the item (‘[Prus 1897]’ for

the example above), or an ‘alpha’ style, where last
names are abbreviated by retaining only the first
three letters (‘[Pru1897]’). The description of other
BibTEX styles can be found in [8, § 13.2].

As we explained in [16], the use of the bst lan-
guage, originating from BibTEX [30], for our bibli-
ography styles would have led to heavy and com-
plicated style files, hard to maintain. As a matter
of fact, this language, based on handling a stack, is
old and not modular. So, MlBibTEX’s Version 1.3
uses a new language for bibliography styles, so-called
nbst (for ‘new bibliography style language’), close
to xslt1 [42] and described in [16, 17]. If users de-
veloped some personal bibliography styles, they can
use them within the new framework, as shown in
[15].

This paper does not focus on particular techni-
cal details, but aims to describe the implementation
of MlBibTEX’s Version 1.3. As abovementioned, this
version uses some features related to xml2 and xslt,
so this tour around MlBibTEX’s modules allows us
to show that xml eases our implementation. In ad-
dition, we show how a tool, first designed to work
using LATEX-like syntax, has been enlarged in order
to take advantage of xml features.

Reading this paper requires only a basic knowl-
edge of xml, given by an introductory document
such as [34]. We describe the role of each module in
the first section. Then Section ‘Discussion’ explains
our choices. Section ‘Future Directions’ mentions
some possible evolutions for our architecture.

Architecture of our implementation

Here we describe the modules of MlBibTEX’s imple-
mentation. MlBibTEX has been written using the
C and Scheme programming languages—we will go
thoroughly into this point in next section (Section
‘Discussion’)—so this notion of modules is especially
important from a point of view related to concep-
tion, but not only: our programs follow strict con-
ventions for naming types and functions, prefixed by
the module’s name. So we can consider that this no-
tion of modules is directly reflected at the program-
ming level, even if programming languages such as
C and Scheme do not include this notion of modules.

Looking for files To look for the files MlBibTEX
needs, it uses functions provided by the kpathsea

library [35]. This library—now provided with TEX—
uses databases (ls-R files) to locate files throughout
a set of directories. Search rules can be extended by

1 eXtensible Stylesheet Language Transformations.
2 eXtensible Markup Language.

22 Bachotek, 30 kwietnia – 2 maja 2004

Polska Grupa Użytkowników Systemu TEX, 2004 (http://www.GUST.org.pl)



A Tour around MlBibTEX and Its Implementation(s)

means of environment variables: for example, the
following statement expressed using the bash3 shell :

export MLBIBINPUTS=:/.../my-bibliography

—the value of this variable is a directory list whose
items are separated by ‘:’, the corresponding state-
ment in the Windows operating system being:

set MLBIBINPUTS=;/.../my-bibliography

—tells MlBibTEX how to search for bibliography
files. Other environment variables are used to search
for bibliography style files, according to what is to
be generated: output suitable for LATEX, of for an-
other word processor. . .

Parsing bibliographical entries Within the first
version of MlBibTEX [12], the scanner and parser for
bibliography files were built using flex and bison, the
two gnu 4 tools equivalent to lex and yacc [27], well-
known since the first versions of the Unix operating
system. For sake of efficency, the scanner and parser
of the present version have been rebuilt from scratch
and now use an LL(1)-grammar5. Parsing bibliogra-
phy files results in a dom6 tree, but entries not cited
by users are skipped. So this approach can be re-
lated to a sax7 parser, since all the entries included
in bibliographical files are not necessarily processed.
In addition, the characters for the text nodes belong-
ing to our dom trees are encoded w.r.t. Unicode [36].
In other words, the TEX or LATEX commands used
for letters with diacritical signs are replaced by the
Unicode value of these letters: for example, when
Entry prus1897 is processed, the ‘{\l}’ sequence
(see the value associated with the AUTHOR field) is
replaced by the Unicode value for the ‘ł’ Polish let-
ter. Likewise, groups surrounded by double quotes
(‘ " ’) are implemented by elements8.

Dealing with languages Using multilingual fea-
tures included in bibliographical entries should not

3
Bourne Again SHell.That is the shell most commonly

used with the Linux operating system. See [29] for more de-
tails.

4
gnu’s Not Unix.

5 Readers unfamiliar with this terminology related to
compiling can refer to [1] for more details.

6
Document Object Model. This is a w3c recommenda-

tion for a standard tree-based programming [34, p. 306–308],
very often used to implement xml trees.

7 Simple api (Application Programming Interface) for
xml. This kind of parser calls functions users have to fill
in (callbacks). So it is easier, within this approach, to retain
only some particular subtrees from an xml file [34, p. 289–
292]. Other applications can use a dom parser, but this term
means that the whole xml tree is implemented by a dom tree.

8 When we generate a reference for LATEX, such groups
use the bblquotedtitle environment, as shown in the intro-
duction. The expansion of this environment depends on the
language used [18].

cause errors when the text is input by a word proces-
sor. This is not a problem if you generate a bibliog-
raphy for a document written in DocBook, an xml-
based system for writing structured documents [46],
or ConTEXt, a format built out of TEX9, defined by
Hans Hagen [10]: in these cases, all the languages,
specified by means of a two-letter language code, op-
tionally followed by a two-letter country code [2]—
for example, ‘de’, ‘en-UK’, ‘en-US’, ‘po’—are sup-
posed to be known. This is not always the case: for
example, the use of the babel package [3] of LATEX to
write in particular languages is static: all the lan-
guages wished by an user must be selected at the
beginning of processing a document. For example:

\usepackage[%

french,german,polish,english]{babel}

means that a document whose defaut language is
English (the last option of the babel package) can
include parts written in French, German or Polish
(in which case LATEX will be able to switch to ac-
curate hyphenation patterns, in particular). Lan-
guages allowed for a LATEX document cannot be ex-
tended dynamically. So finding the languages whose
texts can be actually input by a word processor may
be a non-trivial task: we have to look into the source
files expressed using LATEX’s syntax10. Likewise, the
language of a document can be difficult to deter-
mine: in fact, it defaults to English, unless a multi-
lingual package (babel, french [7], german [33], polski

[6, § F7]) is used. Another way to specify the lan-
guage of a document consists of using an option of
MlBibTEX:

mlbibtex faraon --language=polish

although we advise users against this feature when
MlBibTEX works in association with LATEX: multi-
lingual functions are not used, so some parts of the
resulting text can be processed incorrectly.

Handling bibliography styles Here we explain
how bibliography style files are organised for out-
puts suitable for LATEX. That is the same for out-
puts usable by other word processors, except that
different environment variables are used (cf. Subsec-
tion ‘Looking for files’). Let us recall that MlBibTEX
tries to determine which languages can be used (see
the previous subsection). So, let L1, . . . , Ln be
these languages, If the bibliography style chosen is
S, MlBibTEX may use the following files if they exist:

9 TEX, defined by Donald E. Knuth [24], provides a gen-
eral framework to format texts. To be fit for use, the defi-
nitions of this framework need to be organised in a format.
Such a format is LATEX, others are plain TEX and ConTEXt.

10 This is the case presently. But we think that this point
could be improved, in connection with a new version of the
babel package.We go thoroughly into that in [19].

XII Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 23

Polska Grupa Użytkowników Systemu TEX, 2004 (http://www.GUST.org.pl)



Jean-Michel HUFFLEN

<nbst:template name="format.day.month">

<nbst:if test="month">

<nbst:if test="day">

<nbst:value-of select="day"/>

<nbst:text> </nbst:text>

</nbst:if>

<nbst:apply-templates select="month"/>

</nbst:if>

</nbst:template>

Figure 1: Putting a day number and a month
name with nbst.

• S.nbst,

• -L1.nbst, . . . , -Ln.nbst: these bibliography style
files contain general definitions suitable for the
languages L1, . . . , Ln,

• S-L1.nbst, . . . , S-Ln.nbst: they are used to store
redefinitions for the S bibliography style, when
it is used within the languages L1, . . . , Ln.

An example using the nbst language for bibli-
ography styles is given in Figure 1. As abovemen-
tioned, this language is close to xlst. The given
template processes the day number (supposed to be
the value of a so-called DAY field11) and the month
name within a date. Using xml-based syntax, an
example could be:

...<month><apr/></month><day>7</day>...

The day number may be absent, in which case, only
the month name is put down. The template given in
Figure 1 is fine. . . in English (and in French), where
month names are always written the same, whether
or not a day number is present:

7 April April

but not in Polish:

7 kwietnia kwiecień

because of declensions : if a month name follows a
day number, we have to use the genitive case.

As explained in [16], the nbst language allows
bibliography style writers to refine some operations
for a particular language, an example being given
in Figure 2. The language attribute of a template
is inherited when other templates are invoked and a
template with this attribute has higher priority than
a template without it. In addition, this example
shows how modes (like in xslt [42, § 5.7]) can be

11 This field does not belong to the ‘standard’ fields of
BibTEX. In [19], we explain why it is easy to add new fields
in MlBibTEX. Let us remark that if we cite an article from a
daily, this information is relevant.

<nbst:template name="format.day.month"

language="polish">

<nbst:if test="month">

<nbst:choose>

<nbst:when test="day">

<nbst:value-of select="day"/>

<nbst:text> </nbst:text>

<nbst:apply-templates

select="month"

mode="genitive"/>

</nbst:when>

<nbst:otherwise>

<nbst:apply-templates

select="month"/>

</nbst:otherwise>

</nbst:choose>

</nbst:if>

</nbst:template>

Figure 2: Putting a day number and a month
name in Polish with nbst.

used. The template given in Figure 2 will work with
definitions for month names such as:

<nbst:template match="apr"

language="polish">

<nbst:text>kwiecień</nbst:text>

</nbst:template>

<nbst:template match="apr"

language="polish"

mode="genitive">

<nbst:text>kwietnia</nbst:text>

</nbst:template>

As it can be seen in Figures 1 and 2, our ex-
pressions selecting parts of a bibliographical item
are close to XPath’s expressions [41]. We added some
functions for operations difficult to perform with the
functions provided by the first version of XPath12,
all these functions being documented in [17]. A few
functions used within nbst texts are implemented by
means of calling external functions written using the
implementation’s language.

Discussion

History LATEX is widely used in the world and,
as abovementioned, ‘old’ BibTEX is the bibliogra-
phy program most commonly used with LATEX. So
BibTEX has succeeded but, as a consequence, many

12 Dealing with string and types should be easier in
XPath 2.0 [44], so a future version of MlBibTEX might be
fully conformant with path expressions used in xml.

24 Bachotek, 30 kwietnia – 2 maja 2004

Polska Grupa Użytkowników Systemu TEX, 2004 (http://www.GUST.org.pl)



A Tour around MlBibTEX and Its Implementation(s)

end-users have a huge number of bibliography files
according to the .bib format and they wish to be
still able to use them. Since the beginning of our
project, we have been aware of this point: when we
personally talked to some people about our reim-
plementation, they immediately asked us to know if
their .bib files would be reusable. So even if there
exists another—more user-friendly—syntax, a bib-
liography tool that aims to do better than BibTEX
must process the .bib format.

A workaround would consist of using converters
to xml-like syntax. such tools exist [9, 47] but, from
our viewpoint, there are two drawbacks:

• such tools are designed for a transitional pe-
riod of time, before xml’s syntax becomes well-
known: this is a defensible position within the
world of computer scientists, but this transi-
tional period might be longer for other people;

• let us agree for a direct processing of bibliogra-
phy files using xml-like syntax, this processing
should include a validation step. But with re-
spect to what? Presently, we can consider that
the organisation of our trees for bibliographical
entries can be modelled by a dtd13. But this
approach is poor about types. In addition, it
is rigid: for example, it is difficult for the de-
signer of a new style to add a bibliographical
field, as we did with the DAY field, processed by
the templates given in Figures 1 and 2. Since
it should be possible to define types and con-
straints for the fields of bibliographical entries,
we are presently working on expressing such en-
tries with schemas14. When this work reaches
maturity, we plan to allow users to specify bib-
liographical entries using xml-like syntax, and
users will be able to validate their entries. Be-
sides, if end-users can access the xml version of
bibliographical items directly, they could also
use an XQuery-like language [40] to search bib-
liographical data bases.

nbst vs xslt We think that users knowing xslt

should learn nbst without difficulty, because most
elements have the same behaviour, most attributes
have the same meaning. Roughly speaking, the dif-
ferences are:

13 Document Type Definition. A dtd defines a document
markup model [34, Ch.5].

14 Schemas have more expressive power than dtds, in the
sense that they are more modular, they allow users to define
types precisely, which makes more precise the validation of a
xml text with respect to a schema. In addition, this approach
is more homogeneous since schemas are xml texts, whereas
dtds are not. There are four ways to specify schemas: Re-

lax NG [5], Schematron [20], Examplotron [39], xml Schema

[45].

(i) implicit rules for files associated with a style
(cf. Subsection ‘Handling bibliography styles’);

(ii) the use of the language attribute when a tem-
plate is selected;

(iii) a slightly different library of functions associ-
ated with our path expressions.

Of course, the main difference is (ii). No one
can claim to know all the languages, so it is impor-
tant that other people than MlBibTEX’s program-
mers can write adaptations of styles to a particular
language. Besides, such adaptation should be mod-
ular in the sense that a refinement for a language
should be written separately. That would not be
the case if we wrote:

<nbst:template name="format.day.month">

<nbst:choose>

<nbst:when test="language = ’polish’">

...

</nbst:when>

...

<nbst:otherwise>...</nbst:otherwise>

</nbst:choose>

</nbst:template>

In addition, the use of modes, like in xslt [41,
§ 5.7], would be tedious for implementing multi-
lingual features because a template without mode
could not be instantiated if there is no refinement
for a particular language. Besides, modes can be
used for declensions, as we showed it in Figure 2.
In fact, nbst uses xslt-like templates according to
an object-oriented approach for languages: general
methods that can be redefined. Likewise, splitting
a bibliography style into several files with implicit
search rules should ease the adaptation of such a
style for non-computer scientists.

Other languages for bibliography styles Other
projects aiming to replace BibTEX use programming
languages: [25] uses Common Lisp, BibTEX++ [21]
uses Java, Bibulus [47] uses Perl. We think that these
languages are better than bst, the language used by
‘old’ BibTEX. . . but from the viewpoint of a com-
puter scientist. Editors of proceedings or book se-
ries, that is, litterary people, may have to write own
bibliography styles. Even if there is lack of back-
ground about using xslt, we think that a language
that allows pattern-matching should be better for
non-computer scientists.

Language(s) for implementation(s) In [12], we
explained why we programmed MlBibTEX in C: for
sake of efficiency and portability. The implementa-
tion of MlBibTEX’s Version 1.3 uses functions of the

XII Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 25

Polska Grupa Użytkowników Systemu TEX, 2004 (http://www.GUST.org.pl)



Jean-Michel HUFFLEN

<nbst:template match="foreigngroup">

<nbst:value-of select="call(language_open_change,@language)"/>

<!-- If the babel package is used and an accurate option has been selected, this external function puts

the \foreignlanguage command. . .
-->

<nbst:apply-templates use-language="@language"/>

<nbst:value-of select="call(language_close_change,@language)"/>

<!-- . . . and this external one puts a closing brace. -->

</nbst:template>

Figure 3: Example of calling an external function.

libxml2 [37] and gdome215 [4] libraries, both written
using C. In particular, we directly use the functions
related to the dom trees, and the dom parser of
libxml2 for nbst files.

Programming using C being a long task, we
have also developed prototypes using Scheme. The
first prototype was an interpreter of the bst language
of BibTEX [14]. We are still using it, it was useful to
implement the joint use of nbst and bst, described
in [15]. The second was MlBibTEX’s Version 1.2,
when we experienced an extended syntax for per-
son names [16]. And the first working version of the
present version (1.3) has been written using Scheme,
too. The features related to xml have been imple-
mented by means of ssax16 [22], and SXPath17 [23],
a sax parser and an implementation of XPath using
sxml18, an implementation of xml trees by means
of Scheme expressions. The only drawback of this
prototype: we cannot mix functions written using
C and Scheme, even if an interface between these
two languages is available, because sxml is compa-
rable with dom, but is not dom. The only non-
portable point of this implementation is the search
of files (cf. Subsection ‘Looking for files’), which uses
non-standard functions for calling commands of the
kpathsea library.

Even if these Scheme are not as efficient as a
C program, they allowed us to get much experience
with some real-sized cases. We began to write bibli-
ography styles using xslt, in order to study the ex-
pressive power of this language. Then we were able
to develop an nbst processor quickly, so we were able
to appreciate how accurate our choices about nbst

were.
On another point, some people can argue that

C is not a high-level programming language in com-

15
gnome (gnu Network Object Model Environment) dom

Engine.
16 Scheme implementation of sax.
17 Scheme implementation of XPath.
18 Scheme implementation of xml.

parison with other languages like Scheme, caml
19,

Common Lisp, Java, Perl 20, Python, Standard ml21,
Ruby, or others. . . but we noticed that the functions
of libxml2 and gdome2 are more efficient than the
corresponding tools written using Java, often used
to deal with xml texts. We wrote our own imple-
mentation of nbst using C, after having got much
experience by studying the implementation of xslt

given by the libxslt library [38], written using C and
built out of libxml2.

From our personal viewpoint, the only trou-
ble caused by programming in C is about the ex-
ternal functions called when nbst templates are in-
stantiated. (Of course, the external functions we
call are written using Scheme when we use our ver-
sion in Scheme.) An example of using such func-
tions is given in Figure 3: a template that processes
language changes, expressed by ‘[...] : 〈idf〉’
within a bibliographical entry, and implemented as:

<foreigngroup language=〈idf〉>
...

</foreigngroup>

in our representation in xml. Let us remark that all
the operations performed this way are low-level: for
example, determining which languages can be pro-
cessed when the babel package is used with LATEX
(cf. Subsection ‘Dealing with languages’). All the
operations that actually rule the layout of a bibli-
ography can be easily expressed using nbst. And let
us remark that even if xslt is as powerful as the
Turing machine [28], its conceptors of xslt provide
a possible use of external functions22. So our use of
external functions does not seem to us to be hereti-
cal, especially if we have to deal with a formalism
other than xml, that is, LATEX.

19 Categorical Abstract Machine Language.
20 Practical Extraction Report Language.
21 Metalanguage.
22 By means of the extension-result-prefixes attribute

of the root element xsl:stylesheet.

26 Bachotek, 30 kwietnia – 2 maja 2004

Polska Grupa Użytkowników Systemu TEX, 2004 (http://www.GUST.org.pl)



A Tour around MlBibTEX and Its Implementation(s)

Future Directions

Even if MlBibTEX was originally designed to work
with LATEX, introducing some xml processing in-
side it makes easier the generation of references ac-
cording to other markup languages, some examples
being xhtml

23, DocBook, xsl-fo
24 [43], . . . This

direction has reached some results, and we plan to
go on. More generally, we think that MlBibTEX can
become a central platform for communications be-
tween bibliographical databases and bibliographies
for documents. A second step will be done when the
specification of bibliographical entries using xml-
like syntax is possible: we go thoroughly into these
points in [19].

Conclusion

When we programmed MlBibTEX’s first version, we
were obviously interested in putting into action such
a program. And when we demonstrated it, we re-
alised that many people were interested in such a
multilingual tool for bibliographies. More precisely,
we became aware that many people would adapt it
to particular languages. That is why we were care-
ful about the definition of precise architecture. Un-
til now, our approach seems to us to be robust, and
ready to be publicly used.

Acknowledgements

Many thanks to Paweł D. Mogielnicki, who has writ-
ten the Polish translation of the abstract.

References

[1] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ull-

man: Compilers, Principles, Techniques and
Tools. Addison-Wesley Publishing Company.
1986.

[2] Harald Tveit Alvestrand: Request for Com-
ments: 1766. Tags for the Identification of Lan-
guages. uninett, Network Working Group.
March 1995. http://www.cis.ohio-state.

edu/cgi-bin/rfc/rfc1766.html.

[3] Joannes Braams: Babel, a Multilingual Pack-
age for Use with LATEX’s Standard Document
Classes. Version 3.7. May 2002. CTAN:macros/
latex/required/babel/babel.dvi.

23 eXtensible HyperText Markup Language: that is a
new version of html using xml-like syntax.

24 eXtensible Stylesheet Language—Formatting Objects:
this language aims to describe high-quality print outputs.
Such documents can be processed by the \xmltex command
(resp. the \pdfxmltex command), from PassiveTEX [32, p. 180]
to get .dvi files (resp. .pdf files).

[4] Paolo Casarini and Luca Padovani: “The
gnome dom Engine”. In: Extreme Markup
Languages 2001 Conference. March 2001.

[5] James Clark et al.: Relax NG. http://www.

oasis-open.org/committees/relax-ng/.
2002.

[6] Antoni Diller: LATEX wiersz po wierszu.
Wydawnictwo Helio. Polish translation of LATEX
Line by Line with an additional annex by Jan
Jelowicki. 2001.

[7] Bernard Gaulle : Notice d’utilisation du style
french multilingue pour LATEX. Version pro
V5.01. Janvier 2001. CTAN:loria/language/

french/pro/french/ALIRE.pdf.

[8] Michel Goossens, Frank Mittelbach and
Alexander Samarin: The LATEX Companion.
Addison-Wesley Publishing Company, Read-
ing, Massachusetts. 1994.

[9] Vidar Bronken Gundersen and Zeger W.
Hendrikse: BibTEX as xml Markup. January
2003. http://bibtexml.sourceforge.net.

[10] Hans Hagen: ConTEXt, the Manual. Novem-
ber 2001. http://www.pragma-ade.com.

[11] Jean-Michel Hufflen: “MlBibTEX: a New
Implementation of BibTEX”. In: EuroTEX
2001, (p. 74–94). Kerkrade, The Netherlands.
September 2001.

[12] Jean-Michel Hufflen: “Lessons from a Bib-
liography Program’s Reimplementation”. In:
ldta 2002, Vol. 65.3 of Electronic Notes in
Theoretical Computer Science. Elsevier, Greno-
ble, France. April 2002.

[13] Jean-Michel Hufflen: “Multilingual Features
for Bibliography Programs: from xml to
MlBibTEX”. In: EuroTEX 2002, (p. 46–59). Ba-
chotek, Poland. April 2002.

[14] Jean-Michel Hufflen: Interaktive BibTEX-
Programmierung. dante, Herbsttagung 2002,
Augsburg. Oktober 2002.

[15] Jean-Michel Hufflen: “Mixing Two Bibliog-
raphy Style Languages”. In: ldta 2003, Vol.
82.3 of Electronic Notes in Theoretical Com-
puter Science. Elsevier, Warsaw, Poland. April
2003.

[16] Jean-Michel Hufflen: “European Bibliogra-
phy Styles and MlBibTEX”. TUGboat, Vol. 24,
no. 1. EuroTEX 2003, Brest, France. June 2003.

[17] Jean-Michel Hufflen: MlBibTEX’s Ver-
sion 1.3. tug 2003, Outrigger Waikoloa Beach
Resort, Hawaii. July 2003.

XII Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 27

Polska Grupa Użytkowników Systemu TEX, 2004 (http://www.GUST.org.pl)



Jean-Michel HUFFLEN

[18] Jean-Michel Hufflen: “Making MlBibTEX Fit
for a Particular Language. Example of the Pol-
ish Language”. Biuletyn gust. In print. Pre-
sented at the BachoTEX 2003 conference. 2004.

[19] Jean-Michel Hufflen: MlBibTEX beyond
LATEX. tug 2004, Xanthi, Greece. August 2004.

[20] ISO/IEC 19757: The Schematron. An xml

Structure Validation Language Using Pat-
terns in Trees. http://www.ascc.net/xml/

resource/schematron/schematron.html.
June 2003.

[21] Ronan Keryell: “BibTEX++: Towards
Higher-Order BibTEXing”. In: EuroTEX 2003,
(p. 143). enstb. June 2003.

[22] Oleg Kiselyov: “A Better xml Parser through
Functional Programming”. In: 4th Inter-
national Symposium on Practical Aspects of
Declarative Languages, Vol. 2257 of Lecture
Notes in Computer Science. Springer-Verlag.
2002.

[23] Oleg Kiselyov and Kirill Lisovsky: “xml,
XPath, xslt Implementations as sxml, SXPath,
and sxslt”. In: International Lisp Conference
2002. October 2002.

[24] Donald Ervin Knuth: Computers & Typeset-
ting. Vol. A: the TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

[25] Matthias Köppe: A BibTEX System in Com-
mon Lisp. January 2003. http://www.nongnu.
org/cl-bibtex.

[26] Leslie Lamport: LATEX. A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[27] John Levine, Tony Mason and Doug Brown:
lex & yacc. 2nd edition. O’Reilly & Associates,
Inc. October 1992.

[28] Bob Lyons: Universal Turing Machine in
xslt. http://www.unidex.com/turing/utm.

htm. March 2001.

[29] Cameron Newham and Bill Rosenblatt:
Learning the bash Shell. 2nd edition. O’Reilly
& Associates, Inc. January 1998.

[30] Oren Patashnik: Designing BibTEX styles.
February 1988. Part of LATEX’ distribution.

[31] Oren Patashnik: BibTEXing. February 1988.
Part of LATEX’ distribution.

[32] Dave Pawson: xsl-fo. O’Reilly & Associates,
Inc. August 2002.

[33] Bernd Raichle: Die Makropakete „german“
und „ngerman“ für LATEX2ε, LATEX 2.09, Plain-
TEX and andere darauf Basierende Formate.
Version 2.5. Juli 1998. Im Software LATEX.

[34] Erik T. Ray: Learning xml. O’Reilly & Asso-
ciates, Inc. January 2001.

[35] tug Working Group on a TEX Directory
Structure: A Directory Structure for TEX
Files. Version 0.9995. CTAN:tex/archive/

tds/standard/tds-0.9995/tds.dvi. January
1998.

[36] The Unicode Standard Version 3.0. Addison-
Wesley. February 2000.

[37] Daniel Veillard: The xml C Parser and
Toolkit of Gnome. libxml. http://xmlsoft.

org. March 2003.

[38] Daniel Veillard: The xml C Parser and
Toolkit of Gnome. xslt. http://xmlsoft.

org/XSLT. March 2003.

[39] Eric van der Vlist: Examplotron. http://

examplotron.org. February 2003.

[40] W3C: XQuery 1.0: an xml Query Language.

[41] W3C: xml Path Language (XPath). Ver-
sion 1.0. w3c

c© Recommendation. Edited by J.
Clark and S. DeRose. November 1999. http://
www.w3.org/TR/1999/REC-xpath-19991116.

[42] W3C: xsl Transformations (xslt). Ver-
sion 1.0. w3c

c© Recommendation. Written
by S. Adler, A. Berglund, J. Caruso, S.
Deach, T. Graham, P. Grosso, E. Gutentag,
A. Milowski, S. Parnell, J. Richman and S.
Zilles. November 1999. http://www.w3.org/

TR/1999/REC-xslt-19991116.

[43] W3C: Extensible Stylesheet Language (xsl).
Version 1.0. w3c

c© Recommendation. Edited
by J. Clark. October 2001. http://www.w3.

org/TR/2001/REC-xsl-20011015/.

[44] W3C: xml Path Language (XPath) 2.0. w3c
c©

Working Draft. Edited by A. Berglund, S.
Boag, D. Chamberlin, M. F. Fernandez,
M. Kay, J. Robie and J. Siméon. Novem-
ber 2002. http://www.w3.org/TR/2002/

WD-xpath20-20021115.

[45] W3C: xml Schema. November 2003. http://

www.w3.org/XML/Schema.

[46] Norman Walsh and Leonard Muellner: Doc-
Book: the Definitive Guide. O’Reilly & Asso-
ciates, Inc. October 1999.

[47] Thomas Widman: “Bibulus—a Perl xml Re-
placement for BibTEX”. In: EuroTEX 2003, (p.
137–141). enstb. June 2003.

28 Bachotek, 30 kwietnia – 2 maja 2004

Polska Grupa Użytkowników Systemu TEX, 2004 (http://www.GUST.org.pl)


