Nativel

Win32 Native Launcher Generator for Java

Version 1.0.5

Table of Contents

R F g 1o (1o ' o OO P PP PP TOPROP 1
L1 OVEIVIEW. ...ttt ettt ettt e et et e s ab e e be e e b e et e e nnb e e nreenes 1
L2 FEALUNES. ...ttt ettt e ket e s sb et e e sa b et e e sab et e e e be e e e e bbe e e e anre e e e anreeaeas 1
1.3 SyStemM REQUITEMENTS......c.ueieiiieiie ettt 1

2USING NGV, ...ttt ae e bt e be e et e et e e st e e sane e nne e e 2
2 L INSEAHELIION. ...ttt r e e e 2
2.2 Generating aConsole LaUNCHEN..........cooiiiiiieii e 2
2.3 Generating a GraphiCal LaUNCNEScoiuiiiiiiiie et 4
2.4 Generating @ SerViCe LAUNCENcccueiiiie it 7
2.5 Generating aLauncher fOr TOMCAL..........cuuviieierieeiiee et 11

S AAVANCED TOPICS. .. euveeeuteeeniee et sttt ettt ettt e st et e et e et e e et e et e e s b e e snteesnneennns 16
3.1 Bundling aParticular Java RUNTIME...........cociiiiiieiieie e 16
3.2 Passing Arguments to the Java RUNTIME............ccuioiiiiiiiie e 18
3.3 An Alternative Approach to Classpath............coocviiiiiiiiiiiei e 20
3.4 AVOIdiNg SYSIEMLEXIT()...ceivveeereeiieeiie e 21

3.5 Implementing a Generic Start/Stop MeChaniSM............evvveeriieiiieeeee e 24

INTRODUCTION

1.1 OverviIEwW

Native] is a new product by CTech Software (http://ctech-software.hypermart.net) that
generates Win32 native launchers for your Java applications. No more ugly batch files! The
launchers generated by Nativel look and behave exactly like native Win32 programs. They
possess their own custom icons when viewed in Explorer, and they do not appear as another
“javaexe’ or “javaw.ex€’ in the process list. You can generate launchers that behave like
console programs, or graphical programs, or even Win32 services.

Besides looking and fedling like native apps, these launchers also have another advantage:
speed. Executing a batch file requires first loading up the command processor, which steps
through each line of the batch file before it encounters the line which calls the Java frontend
java.exe or javaw.exe. This frontend imposes further overhead as it parses the command-line
arguments before loading the VM with the proper parameters. The native launchers generated
by Native] eliminates all these overhead and load the VM directly, resulting in snappier
program loading.

Native] is extremely easy to use. Simply specify the launcher type, the program icon, the VM
parameters, the Java application parameters etc. and Nativel will generate a custom .EXE file

for you that will launch your Java application. There is no need to write custom C code, or
wrestle with a C compiler. Just click-and-go! It's that easy!

Degspite its simplicity and ease-of-use, Nativel is aso extremely flexible. There are many
parameters you can tweak and tune. You can choose to use the JRE ingtalled on the target
meachine, or you can choose to bundle a specific VM with your application. You can specify
the baseline version of the VM you need to work with. You can pass both the VM and the
Java application custom parameters. In short, you will find Nativel an extremely capable
assistant for your needs.

1.2 FeATURES

Some features of Nativel are:

+ Generates console and graphical launchers, as well as Win32 services.
+ Simple click-and-go interface with no need to write custom code.

+ Powerful and flexible, with many parameters to tweak and tune.

1.3 SysteM REQUIREMENTS

+ Windows NT/2000/XP is required for running Nativel. However, launchers generated by
NativeJ will run on Windows 9x/ME as well.

¥+ Supports Sun JRE 1.2/1.3/1.4, aswell asIBM JRE 1.2/1.3.

Using NATIVE]

2.1 INSTALLATION

Double-click on the SETUP.EXE file provided in the distribution media and follow the
instructions on-screen to install Nativel to a directory of your choice.

2.2 GENERATING A ConsoLE LAUNCHER

Note: The following example assumes you have the Java Runtime Environment (1.2 and
above) installed on your machine.

In this example, we are going to learn how to generate a console launcher i.e. a Win32
executable that behaves just like another command-line program.

The Java program that we are going to create a launcher for is a smple “Hello, World”
program. This program is called Console.java, and can be found in the examples/ subdirectory.

Fil e: Console.java

1 package exanpl es;

2:

3: public class Consol e

4:

5: public static void main(String[] args) throws Exception
6:

7: if (args.length == 0)

8: Systemout.println("Hello World!");

9: el se

10: Systemout.println("Hello " + args[0] + "!I");
11: }

12: }

This simple program prints out “Hello, World!” when run without any parameters.

C.\Program Fi | es\ Nati veJ> java exanpl es. Consol e
Hel | o, Worl d!

However, when supplied with a name as a parameter, it will print out “Hello, <name>!".

C. \Program Fi | es\ Nati veJ> java exanpl es. Consol e John
Hel | o, John!

Let's see how we can create a launcher cdled console.exe, which will run the
examples.Consol e program.

The Console.java file has been compiled and packaged in launchers/examplesjar, aong with
the other examples. In this subdirectory, you will aso find console.prj, along with other .prj
files.

Run Nativel. Then, click on “File... Open...”, and open “launchers\console.prj” . This is the
project file for examples.Console, and it has the following parameters:

Name Value REINETE]

Main

Application type Consol e The launcher generated will run as a console program.
Allow as service <unchecked> The launcher generated will not run as a Win32 service.

Application icon

consol e.ico

The application icon.

Target executable

consol e. exe

The filename of the generated launcher.

Java Runtime

Required version

The minimum required runtime version is 1.2. This

1.2 argument only applies if the JVM DLL is left blank.

JVM DLL <bl ank> When left blank, the launcher will look for a suitable JRE
on the target system. If you are bundling a JRE with your
application, you can specify the path of your JVM DLL eg.
jre\bin\hotspot\jvm.dll.

JVM arguments <bl ank> The arguments to be passed to the JVM. You should only

pass the -X arguments to the JVM eg. -Xms64m
-Xmx128m.

Classpath

exanpl es. j ar

This contains required class files i.e. examples.Console.

Console

Application class

exanpl es. Consol e

The name of the Java class we wish to run. This class
should have a main() method.

Application arguments

<bl ank>

The default arguments we want to pass to main().

Native] - C:\ Program Files\Nativel'launchers'console.prj

Fil= Help

Application type:
Application icon;

Target executable;

e

=10l]

ICnnsoIe

vI [~ Allow as service

Iconsole.ico

Browse |

Icnnsole.exe

Java Furtime Console |

Application class:

Browze |

Ie:-tamples.[lnnsole

Application arguments; I

Now, click on “File... Generate...” to generate the launcher. If everything goes well, you will
have receive a naotification that “ console.exe” has been generated.

Run console.exe without any parameters:

C.\ Program Fi | es\ Nati veJ\| auncher s> consol e
Hel | o, Worl d!

Now, run console.exe with a name:

C.\Program Fi | es\ Nati veJ\| auncher s> consol e John
Hel | o, John!

You can aso supply some default arguments to examples.Console. Enter “John” in
“ Application arguments’, then generate the launcher again. Now, run console.exe without any
parameters:

C.\ Program Fi | es\ Nati veJ\| auncher s> consol e
Hel | o, John!

Run consol e.exe with another name besides John:

C:\Program Fi | es\ Nati veJ\| aunchers> consol e Mary
Hel |l o, Mary!

As you can see, the launcher will use the default arguments if none are available. If the user
supplies the arguments, then these are used instead of the defaullt.

In this example, the JVM DLL parameter is left blank so that when console.exe is run, it will
automatically detect and load a suitable VM (in this case, any VM version >= 1.2) on the
target system. You can aso bundle a specific VM with your application and force the
launcher to use that JVM. To find out how, please refer to 3.1 Bundling a Particular Java
Runtime.

2.3 GENERATING A GRAPHICAL LAUNCHER

In this example, we are going to learn how to generate a graphical launcher i.e. a native
executable that behaves like aWin32 GUI program.

The Java program that we are going to create a launcher for is a smple “Hello, World” type
AWT program. This program is caled Gui.java, and can be found in the examples/
subdirectory.

File: Gui.java

1 package exanpl es;

2:

3: inport java.awt.*;

4. inport java.awt.event.?*;

5:

6: public class Cui

7: {

8: public static void main(String[] args)

9: {

10: // Create the main wi ndow and conponents used by this app
11: Frame frane = new Frane("GQui");

12: String neg = "Hello World!'";

13: if (args.length > 0) nsg = "Hello " + args[0] + "!";
14: Label |abel = new Label (nmsg, Label.CENTER);

16: /1 Handl e the exit event for the nain w ndow
17: f rame. addW ndowlLi st ener (new W ndowAdapt er ()
18: {

19: public void w ndowCl osi ng(W ndowEvent e)
20: {

21: System exit(0);

22: }

23: 1)

24:

25: /1 Position the conponents within the nmain w ndow
26: f rame. set Layout (new Bor der Layout ());

27: frame. add(| abel , Border Layout . CENTER) ;

28:

29: /! Resize and show nmai n wi ndow

30: frame. pack() ;

31: frame. set Si ze(320, 240);

32: frame. show() ;

33: }

34: }

When run without any parameters, this program displays a “Hello, World!” message. When
run with a name as the parameter eg. java examples.Gui John, it will display “Hello,
<name>!" instead.

=10l x|

=101 x|

Hello Wiorld! Hello John!

Let's see how we can create a launcher caled gui.exe, which will run the examples.Gui
program.

The Gui.java file has been compiled and packaged in launchers/examples.jar, dong with the
other examples. In this subdirectory, you will aso find gui.prj, aong with other .prj files.

Run NativeJ and open the gui.prj project. Confirm that it defines the following parameters:

Name Value Remarks

Main

Application type G aphi cal The launcher generated will run as a GUI program.
Allow as service <unchecked> The launcher generated will not run as a Win32 service.
Application icon gui .ico The application icon.

Target executable gui . exe The filename of the generated launcher.

Java Runtime

Required version The minimum required runtime version is 1.2. This
1.2 argument only applies if the JVM DLL is left blank.
JVM DLL <bl ank> When left blank, the launcher will look for a suitable JRE

on the target system. If you are bundling a JRE with your
application, you can specify the path of your JVM DLL eg.
jre\bin\hotspot\jvm.dll.

JVM arguments <bl ank> The arguments to be passed to the JVM. You should only
pass the -X arguments to the JVM eg. -Xms64m
-Xmx128m.

Classpath exanpl es. j ar This contains required class files i.e. examples.Gui.

Graphical

Application class exanpl es. Qui The name of the Java class we wish to run. This class
should have a main() method.

Application arguments <bl ank> The default arguments we want to pass to main().

Allow multiple instances <checked> Whether to allow multiple instances of the launcher. In the

default case, yes.

Native] - C:\ Program Files\MNativel'launchers' gui.prj - |EI|5|
Fil= Help

Application bpe: IGraphicaI ﬂ [~ Allow as service

Application icon; Ilgui.ico Browsze |
Target executable; Igui.exe Bronze | =

Java Runtime: | G[aphica||

Reguired wergion; 12 =

JyM DLL: |

Juhd arguments; I

Clazzpath: examples.jar

Now, click on “File... Generate...” to generate the launcher. If everything goes well, you will
have receive a naotification that “gui.exe” has been generated.

Run gui.exe without any parameters, and with the name “John”. Y ou should observe the same
output as when running the program using java.

Now, run gui.exe twice without quitting. You should see two instances of the program.
Uncheck the Allow multiple instances option, and generate gui.exe again. This time, you
should get the following error if you try to run gui.exe twice.

Notice that in line 21 of Gui.java, the program executes System.exit(0) to terminate the
program. This practice is typical of AWT or Swing programs, and widely used in Sun's own
sample codes. However, this has the effect of terminating the launcher prematurely as well,
which might not be desirable in certain cases (for example, when your program is doubling as a
Win32 service). For more details on why this happens and how to workaround this behaviour,
please refer to 3.4 Avoiding System.Exit().

2.4 GENERATING A SERVICE LAUNCHER

In this example, we are going to learn how to generate a service launcher i.e. an executable that
could be installed as a service and started/stopped using the Services control pand applet.
Noted that services are only available on Windows NT/2K/XP, and not on the Win9x
platforms.

The Java program that we are going to use is a smple console program that continually logs
the date/time to afile called servicelog at 5 seconds interval. The main() method takes a -start
argument to start the logging activity, and a -stop argument to stop the logging.

File: Service.java

1 package exanpl es;

2:

3: inport java.io.?*;

4: import java.util.*;

5:

6: public class Service

7: {

8: static bool ean stop = fal se;

9: public static void main(String[] args) throws Exception
10: {

11: /1l Start the service

12: if (args[0].equal s("-start"))

13:

14: whi | e(true)

15: {

16: /1l Append current date/tinme to log file
17: log("Current date/tinme is " + new Date());
18:

}

/1l Sleep for 5 secs
Thr ead. current Thread() . sl eep(5000);

[/ Check for term nation

if (stop)
| og(" Servi ce stopped.");
br eak;
}
}
}
el se

/1l Stop the service
if (args[0].equal s("-stop"))

/1 Set the termination flag
stop = true;

}

/**

* Log given string to file "service.log".

*/

static void log(String nmsg) throws | OException

PrintWiter pw = new PrintWiter(

new FileWiter("service.log", true));
pw. println(nsg);
pw. cl ose();

Let's generate alauncher called service.exe, which will run our examples.Service program.

The Servicejava file has been compiled and packaged in launchers/examples,jar, aong with
the other examples. In this subdirectory, you will also find service.prj, aong with other .prj

files.

Run NativeJ and open the service.prj project. The project defines the following parameters:

Name Value Remarks

Main

Application type Consol e The launcher generated will run in the console mode.
Allow as service <checked> The launcher generated will run as a Win32 service.
Application icon service.ico The application icon.

Target executable servi ce. exe The filename of the generated launcher.

Java Runtime

Required version The minimum required runtime version is 1.2. This
1.2 argument only applies if the JVM DLL is left blank.
JVM DLL <bl ank> When left blank, the launcher will look for a suitable JRE

on the target system. If you are bundling a JRE with your
application, you can specify the path of your JVM DLL eg.
jre\bin\hotspot\jvm.dll.

JVM arguments <bl ank> The arguments to be passed to the JVM. You should only
pass the -X arguments to the JVM eg. -Xms64m
-Xmx128m.

Classpath exanpl es. j ar This contains required class files i.e. examples.Service.

Console

Application class exanpl es. Service The name of the Java class we wish to run. This class
should have a main() method.

Application arguments <bl ank> The default arguments we want to pass to main().

Service

Service Name Test Service The service name which will appear in Services when
installed.

Start arguments -start The argument(s) to be passed to the main() method to

start the program.

Stop arguments -stop The argument(s) to be passed to the main() method to
stop the program.

Native] - C:\ Program Files'\Nativel'launchers'service.prj - |EI|5|

Fil= Help

at¢

Application bpe: ICnnsoIe ﬂ v Allow as service
Application icon: ILSEWiCE-iCD Bramese | ﬁ
Target executable: Iservice.exe Browse |

Java Runtime | Console | Servics |

Reguired wergion; 12 =

JyM DLL: |

Juhd arguments; I

Clazzpath: examples.jar

Now, click on “File... Generate...” to generate the launcher. If everything goes well, you will
have receive a notification that “service.exe” has been generated.

Now use “service -install” to ingtall the service. Y ou should see the following message:

C.\Program Fi | es\ Nati veJ\| aunchers>service -install
Service installed: Test Service

Check the services list using the Services control panel applet. You should also see a new entry
called Test Service.

"4, Services - 0| x|
| action view |J4--h| |||§|J>lll n |
Tree I Mame / | Stakus I Skartup Twpe I Log Cn As I il
% Services (Local) %Task Scheduler Started Automatic LocalSyskem
%TCPJ’IP MetBIOS Hel... Started Automatic LocalSwstem
%Telephuny Skarted Manual LocalSystem
Manual LocalSystem
< %Test Service Aukomatic LocalSystem
iy Fersonal Firewall Skarted Aukormatic LocalSystem
%Trayrﬂan Skarted Aukormatic LocalSystem J
%Uninterruptible Pow, ., Manual LocalSystem
%Utility Manager Manual LocalSystem j

Now start Test Service using Services. You should find afile called service.log written to the
same directory where services.exe resides. The file contains the date/time logged approximately
every 5 seconds.

Current date/tinme is Sat Jun 01 22:20:04 GMr+08: 00 2002
Current date/tine is Sat Jun 01 22:20: 09 GUr+08: 00 2002
Current date/tinme is Sat Jun 01 22:20:14 GMIr+08: 00 2002
Current date/tinme is Sat Jun 01 22:20:19 GMr+08: 00 2002
Current date/tinme is Sat Jun 01 22:20:24 GMr+08: 00 2002

Now, stop the service. Thelast line of service.log should contain the words “ Service stopped.”,
logged by line 25 of Servicejava.

If you encounter any errors while starting or stopping the service, launch Event Viewer and
look under Application Log for messages attributed to Test Service.

Use “service -uninstall” to uninstall Test Service.

If you run examples.Service directly using “java examples.Service -start”, you won't be able to
stop it using “java examples.Service -stop”. That's because they will be running under two
different VM instances, which means the stop flags set to true in line 35 of Servicejava will
not be reflected in the first VM instance. The NativeJ-generated launcher has no problems
with this approach because it actualy calls main() with the -stop argument through a thread
within the same JVM ingtance, but you won't be able to do so when running using java or
javaw.

If you wish to implement a start/stop mechanism that is generic and works under java/javaw
(in fact, across al Javaenabled platforms), please refer to 3.5 Implementing a Generic
Sart/Sop Mechanism.

2.5 GENERATING A LAUNCHER FOR ToMCAT

In this example, we are going to generate a launcher for Tomcat. Tomcat is a open-source
reference serviet container developed by the Apache Group. It is widely used and is chosen as
an example to show how easy it is to generate alauncher for a non-trivial Java application.

Since Tomcat is rather large and is constantly being improved, we chose not to bundle it with
Nativel. Instead, you can download the latest source/binary builds from the following URL:
http: //jakarta.apache.org/tomcat/index.html. This example applies to Tomcat 4.0.x, though it
can be easily adopted for other version of Tomcat..

The downloaded binary distribution should be in the form jakarta-tomcat-4.0.x.zip. Unzip it
into the launchers/ subdirectory. The base directory is jakarta-tomcat-4.0.3/. For simplicity,
rename it to tomcat/. When you are done, the directory structure should look like this:

C.\Program Fi | es\ Nati veJ\
| auncher s\
t ontat\

Now let'stest if Tomcat isworking properly.

> cd C\Program Fi | es\ Nati veJ\ | auncher s\t ontat
> set JAVA HOVE=C: JDK

> set CATALI NA HOVE=C: \ Program Fi | es\ Nati veJ\| auncher s\t ontat
> bin\startup. bat

If all goeswell, a separate command window will pop up:

Starting service Tomcat—-Standalone
Apache Tomcatrs4.8.3
Starting zervice Tomcat—Apache

Apache Tomcat/4.@.3

Y ou should now be able to access the Tomcat homepage at http://localhost: 8080/.

Jakarta Project - Tomcat - Mozilla {Build ID: 2002031104 } ol x|
' File Edit View Search Go Bookmarks Tasks Help Debug QA |
x
C T . e - < . [l
Bl .- Reload iop | & http: {{localhost: 8080/index. htrl J 22 _Search | =D m
pre|
Tomcat - M
% Version 4.0.3 ' e
/‘& The Jakarta Project
http://jakarta.apache.org
Web Applications If you're seeing this page via aweb browser, it means you've

JSP Examples
Servlet Examples
WebDAY capabilities

Documentation

Tomcat Documentation

Misceflaneous

Sun's Java Server Pages Site

e £ 2 EE & | Document: Done (3,165 secs) |

setup Tomcat successfully. Congratulations! |
As yol may have guessed by now, this is the default Tomcat home
page. It can be found on the local filesystem at:

SCATALINA_ HOME/webapps/ROOT/index. html

where "$SCATALINA_HOME" is the root of the Tomcat installation
directory. If you're seeing this page, and you don't think you should
be, then either you're either a user who has arrived at new
installation of Tomcat, or you're an administrator who hasn't got
hisfher setup guite right. Providing the latter is the case, please
refer to the Tomcat Documentation for more detailed setup and
administration information than is found in the INSTALL file.

=
=i

Use bin/shutdown.bat to stop Tomcat.

Now, launch NativeJ, and populate the new project with the following parameters:

Name Value Remarks

Main

Application type Consol e The launcher generated will run
as a console program.

Allow as service <checked> The launcher generated will run
as a Win32 service as well.

Application icon tontat.ico The application icon.

Target executable

tontat\tontat. exe

The filename of the generated
launcher.

Java Runtime

Name Value

Required version 1.2

Remarks

The minimum required runtime
version is 1.2. This argument
only applies if the JVM DLL is
left blank.

JVM DLL <bl ank>

When left blank, the launcher
will look for a suitable JRE on
the target system. If you are
bundling a JRE with your
application, you can specify the
path of your JVM DLL eg.
jre\bin\hotspot\jvm.dll.

JVM arguments <bl ank>

The arguments to be passed to
the JVM. You should only pass
the -X arguments to the JVM
eg. -Xms64m -Xmx128m.

Classpath bi n\ boot strap.jar;
server\lib\catalina.jar;
server\lib\jakarta-regexp-1.2.jar;
server\lib\servl ets-comon.jar;
server\lib\servlets-default.jar;
server\lib\servlets-invoker.jar;
server\lib\servl ets-nmanager.jar;
server\lib\servl ets-snoop.jar;
server\lib\servl ets-webdav.jar;
server\lib\tontat-ajp.jar;
server\lib\tontat-util.jar;
server\lib\warp.jar;
common\l i b\activation.jar;
common\ | i b\jdbc2_0-stdext.jar;
common\lib\jndi.jar;
common\lib\jta-specl 0_1.jar;
common\lib\mail.jar;
common\ | i b\ nam ng- comon. j ar;
common\ | i b\ nam ng-resources.jar;
common\lib\servlet.jar;
common\lib\tyrex-0.9.7.0.jar;
common\ | i b\ xerces.jar

The required .jar files.

Console
Application class org. apache. catal i na. startup. Boot strap

The name of the Java class we
wish to run. This class should
have a main() method.

Application arguments ~ start

The default arguments we want
to pass to main().

Service

Service name Tontat The service name which will
appear in Services when
installed.

Start arguments start The argument(s) to be passed
to the main() method to start
the program.

Stop arguments stop The argument(s) to be passed

to the main() method to stop
the program.

Native] - C:% Program Files\Natived'laun: -|O ﬂ

Fil= Help
"’ 7]
T/
ative N/
o
Application bype: |Cnnsole ﬂ v &llow az service
Application ican: |l0mcat.ico Browse

=l

Target executable; |l0mcat\tomcal.e:¢e Bronze

Janva Runtirme l Eonsnle] Servicel

Reguired wergion; 12 =

JM DLL: |

Juhd arguments; |

Clazzpath: binboatstrap. jar:
serverlibhcataling. jar;
zerverilibhjakartaregesp-1.2 jar;
serverlibhzervlets-comman jar;

Now, click on “File... Generate...” to generate the launcher. If everything goes well, you will
have receive a natification that “tomcat.exe” has been generated.

The Tomcat launcher can function both as a console program, as well as a Win32 service.

To start Tomcat from the command line, type:

C:\Program Fi | es\ Nati veJ\| aunchers\tonctat> start toncat

" Program Files'MNativel' launchers' tomcat' tomcat.e;

Starting service Tomcat—Standalone
Apache Tomcat-s4.8.3

Starting service Tomcat—Apache
Apache Tomcat~s4.8.3

To stop Tomcat from the command line, type:

C:\Program Fi | es\ Nati veJ\| aunchers\tontat > tontat stop

Toinstall Tomcat as a service, type:

C. \Program Fi | es\ Nati veJ\| aunchers> tontat -install
Service installed: Tontat

To uninstall the Tomcat service, type:

C.\Program Fi | es\ Nati veJ\| aunchers> tontat -uninstall
Service uninstall ed: Tontat

Note that to execute JSP scripts when running Tomcat in this way, make sure you copy the
\jdk\lib\tools.jar file to \jdk\jre\lib\ext. That's because by default the JRE does not contain the
compiler class com.sun.tools.javac.Main (contained in \jdk\lib\tools.jar). But executing JSP
scripts require the Java compiler class to be present, so you will need to copy this .jar file to
the JRE subdirectory ext\, which is reserved for extension libraries.

ADVANCED ToPics

3.1 BunbpLiNGg A PArRTICULAR JAvA RuNTIME

All the examples given in 2 Using NativeJ generate launchers that detects and use the default
JRE installed on the target machine. This is done by leaving the JVM DLL blank. The
generated launcher will find and use the first JRE installed on the target machine which meets
the VM version requirement.

It is aso possible for you to bundle a particular JRE with your application, and generate a
launcher that uses the bundled JRE regardiess of other JREs are installed on the target
machine.

There are afew advantages to bundling a specific JRE with your application.

+ Since one can never be certain of which make and version of JRE is installed on the target
machine (if indeed one is installed at al), the safest bet is to bundle your own JRE so that
you can be sure the application will work flawlesdy, since you have ultimate control of
which make or version of JRE to bundle with your application.

@ |If the user does not aready have a JRE installed on the target machine, bundling a JRE
spares him the inconvenience of downloading a JRE himsdlf. This is especidly true if the
user might not have broadband access to the Internet.

@+ You can aso choose to include the JRE ingtaler with your distribution. However, this
requires the user to run another installer, which might pose an inconvenience to the user.
You can of course choose to run the JRE ingtaller automatically with your application
installer by detecting if a JRE is aready present on the target machine. However this makes
the application much more complexinstaller. The installer needs to detect whether a JRE is
aready available on the target system, whether the make and version is up to the mark, and
whether it is aright to overwrite the current JRE etc.

@ You might also be forced to bundle a JRE with your application if your application depends
on an older JRE (or a particular make/version of a JRE) to work. Since there is always the
possibility that the user adready has the latest JRE installed on his machine, it will be
unacceptable to expect him to replace his JRE with an older version just so that he can run
your application.

The primary concern with bundling your own JRE is the footprint of your application.
Bundling your own JRE potentialy increases your distribution and installation footprint by
tens of megabytes. If the application needs to be delivered via the Internet, or the target system
has diskspace constraints, then bundling your own JRE might not be acceptable.

The decision of whether to bundle or not to bundle your own JRE depends on the few factors
mentioned above. However, if you do choose to bundle your own JRE, it is very simple to do
so with Nativel.

Let's say we decide to bundle a particular JRE for our first example program,
examples.Console. Originaly, the application directory contains only the launcher .exefile and

examples,jar.

appr oot \
consol e. exe
exanpl es. j ar

Let's copy the JRE from an existing JDK installed on your machine. The directory structure of
the JDK should look like this:

j dk\
bi n\
hel p\
i ncl ude\
jre\
li b\

The JRE is found in the jre/ subdirectory. Copy the jre\ subdirectory to your application
directory. The directory structure of your application directory should now look like:

appr oot \
jre\
bi n\
cl assi c\
jvmdl |
hot spot \
jvmdl |
server\
jvmdl |
li b\
consol e. exe
exanpl es. j ar

The jvm.dll under jre\bin\classic), jre\bin\hotspot\ and jre\bin\server\) represents the different
JVMs which you can use. The classic VM refers to the non-JIT, interpreted VM. The
hotspot VM uses Sun's HotSpot JI T technology, and is optimized for client applications. The
server VM isaso aHotSpot-J T VM, but is optimized for server applications.

Note that the structure above varies according to the make and version of the JRE. For
example, in Sun's DK 1.2, the classic VM refersto a T VM licensed from Symantec. The
Hotspot JVMs were only introduced in in JDK 1.3. Similarly, the structure for IBM's JDK, or
JDK from other vendors could be different.

Once you have copied the jre/ subdirectory from the JDK instalation directory to your
application directory, you can generate a launcher that will make use of that particular JRE.
Just specify the relative path to the desired WM DLL file in Nativel, and generate the
launcher. For example, if you specify jre\bin\hotspot\jvm.dll in the JVM DLL parameter box, it
means you want to use the client-optmized HotSpot VM for your application.

Filz Help

Mative] - C:' Program Files'\NativeJ'ilaunchers' console.p - |EI|5|
atve

l. i
Q“"-- Py
Application type: IEDnsoIe vI [~ Allow as service

Application icon: Icunsule.icn Browse |
T arget executable: Icunsule.e:-ce Emwse

Java Runtirne I EDnSDIEI

R equired verzion: 12 =

Juit DLL: Iire\bin'xhntspu:ut'\ivm.dll

JWb arguments: I

Clazzpath: examples.jar

3.2 Passing ARGUMENTS TO THE JAVA RUNTIME

For certain situations, you may need to pass some arguments to the VM. For example, to
increase the maximum amount of memory available to the VM, we typically use:

java -nms64m - nx128m exanpl es. Consol e

This means the initial memory available to the VM is 64MB, while the maximum amount of
memory available to the VM is 128MB. This is frequently necessary when running complex
server applications.

The typical options available in java.exe are as follows:

C\java -h
Usage: java [-options] class [args...]
(to execute a cl ass)
or java -jar [-options] jarfile [args...]
(to execute a jar file)

wher e options include:

-client to select the "client" VM
-server to select the "server" VM
- hot spot is a synonymfor the "client”" VM [deprecated]

The default VMis client.
-cp -classpath <directories and zip/jar files separated by ;>

set search path for application classes and resources
- D<nane>=<val ue>

set

a system property

-verbose[: cl ass| gc|j ni]
enabl e verbose out put

-version print product version and exit

-showersion print product version and continue

-? -help print this hel p nmessage

- X print hel p on non-standard options

- ea[: <packagenane>. . .| : <cl assnanme>]

- enabl easserti ons[: <packagenane>. . .| : <cl assnanme>]
enabl e assertions

- da[: <packagenane>. . .| : <cl assnanme>]

- di sabl easserti ons[: <packagenane>. .. |: <cl assnhanme>]
di sabl e assertions

-esa | -enabl esystenassertions
enabl e system assertions

-dsa | -disabl esystenmassertions

di sabl e system assertions

However, because NativeJs launcher operate as a lower level than java.exe, you cannot use the
standard options such as -ms, -mx, -cp etc. Instead, you will need to use non-standard options

prefix by -X.

C\java -X
- Xm xed
- Xi nt

nm xed nmode execution (default)
interpreted node execution only

- Xboot cl asspat h: <di rectories and zip/jar files separated by ;>

- Xboot cl asspat h/ a:
- Xboot cl asspat h/ p:

- Xnocl assgc

- Xi ncgc

- Xl oggc: <fil e>
- Xbat ch

- Xne<si ze>

- Xnx<si ze>

- Xss<si ze>

- Xpr of

- Xrunhprof [: hel p] |

- Xdebug
-Xfuture
-Xrs

- Xcheck: j ni

set search path for bootstrap classes and resources
<directories and zip/jar files separated by ;>
append to end of bootstrap class path

<directories and zip/jar files separated by ;>
prepend in front of bootstrap class path

di sabl e cl ass garbage coll ection

enabl e i ncrenmental garbage coll ection

log GC status to a file with tine stanps

di sabl e background conpil ation

set initial Java heap size

set maxi num Java heap size

set java thread stack size

out put cpu profiling data

[: <option>=<val ue>, ...]

perform JVMPI heap, cpu, or nonitor profiling
enabl e renot e debuggi ng

enabl e strictest checks, anticipating future default
reduce use of OS signals by Java/ VM
perform addi ti onal checks for JNI functions

The - X options are non-standard and subject to change w t hout notice.

Hence, to increase the maximum amount of memory available to an application under Nativel,
you need to specify -Xms64m -Xmx128m under the JVM arguments parameter box.

Mative] - C:%Program Files' MativeYilaunchers' console.prj* - |EI|5|
File Help

Application type: IEonsole j [~ Allow as service

Application icon: I-:-:-ns-:ule.ic:-: Browse |
T arget executable: Iconsole.exe Browse

Java Runtime | E.;.nsc.lel

Fequired version: 12 =

M DLL: |

JYM argurnents: I-XmsE-'-im e 28m|
Claszpath: examples.jar

Since the -X arguments are non-standard arguments and vary across different makes and
versons of JVMs, this approach works best if you are bundling a particular JRE so that you
can be sure that the -X arguments that you supply will work with the bundied VM.

3.3 AN ALTERNATIVE APPROACH TO CLASSPATH

If you are bundling a particular JRE with your application, it may not be necessary for you to
specify the .jar files your application uses in the Classpath parameter box.The JRE provides a
repositoty in jrelliblext where these files can resde so that they can be automatically
recognized and loaded by the runtime.

In the directory structure below, examplesjar has been moved to jrellib\ext. Hence thereis no
longer any need to specify it in the Classpath parameter box.

approot\
jre\
bi n\
cl assi c\
jvmdl |
hot spot \
jvmdl |
server\
jvmdl |
I'i b\
ext\
exanpl es. j ar
consol e. exe

3.4 Avoiping System.Exit()

In atypical Java graphical app wherethe AWT (Abstract Windowing Toolkit) is involved, the
program amost always calls System.exit() to terminate the program. This applies aso to Swing
apps, since Swing is based on the AWT. Why is this s0?

Java programs are based heavily on threads. Some threads are user-created, while other threads
are system-created. Regardless of who creates these threads, they can be divided into two broad
categories: daemon and non-daemon. The VM will terminate when al non-deamon threads in
the virtual machine has terminated i.e. even if there are threads ill running, as long as these
threads are all daemon threads, and all non-daemon threads have died, the VM will terminate.

Let'slook at asimple console app such as examples.Console.

Fil e: Console.java

1 package exanpl es;

2:

3: [**

4. * This is a sanple Java programthat runs in consol e node.
5: */

6: public class Consol e

7: {

8: public static void main(String[] args) throws Exception
9:

10: if (args.length == 0)

11: Systemout.println("Hello World!");

12: el se

13: Systemout.println("Hello " + args[0] + "!I");
14: }

15: }

There is only one non-daemon thread in this program, which is the one running the main()
method. When the main() method terminates, that non-daemon thread dies, which means the
JVM terminates thereafter, even though thereis no explicit System.exit() statement.

Let us now examine our sample graphical app: examples.Gui.

File: Gui.java

1 package exanpl es;

2:

3: inport java.awt.*;

4. inport java.awt.event.?*;

5:

6: public class Cui

7: {

8: public static void main(String[] args)

9: {

10: // Create the main wi ndow and conponents used by this app
11: Frame frane = new Frane("GQui");

12: String neg = "Hello World!'";

13: if (args.length > 0) nsg = "Hello " + args[0] + "I"
14: Label | abel = new Label (nmsg, Label.CENTER);
15:

16: // Handl e the exit event for the main w ndow
17: f rame. addW ndowlLi st ener (new W ndowAdapt er ()
18: {

19: public void w ndowCl osi ng(W ndowEvent e)
20: {

21: System exit(0);

23: 1)

24:

25: /1 Position the conponents within the nmain w ndow
26: frame. set Layout (new Bor der Layout ());
27: frame. add(| abel , Border Layout . CENTER) ;
28:

29: /!l Resize and show mai n wi ndow

30: frame. pack() ;

31: frame. set Si ze(320, 240);

32: frame. show() ;

33: }

34: }

Notice that the main() method exits at line 34, which means the non-daemon thread running
main() also terminates. Why is it that the program is till running and keeping the main
window dive until the user hits on the [x] button to close the window?

The reason is because the VM creates an AWT thread for event procesisng whenever AWT
components are created in a method. There is only one instance of the AWT thread, so it is
instantiated at the first creation of an AWT component. It does not matter if the component is
ultimately displayed on-screen or not. As long as an AWT component is created, the AWT
thread comes diveif it does not aready exist.

The thing to note is that whether the AWT thread is daemon or non-daemon depends on the
origina thread running the method that creates the AWT component. In the example above,
this happens in the main() method, which is run by a non-daemon thread. Hence the AWT
thread also becomes non-daemon. When the main() method terminates, the AWT thread is still
alive, and since it is non-daemon, the VM does not terminate.

What is the problem with using System.exit()? Calling this function terminates the program
immediately, with no ifs or buts. However, this also terminates the NativeJ-generated launcher
there and then, and all the housekeeping logic in the launcher for program termination does not
get executed.

If your Java GUI program is running as a standalone application, this is mostly aright. The
housekeeping logic will smple unload the VM DLL and release any allocated memory.
Terminating the launcher program achieves the same purpose under modern Win32 OSes.

However, if your Java GUI program is doubling as a Win32 service, this will pose a problem,
since the housekeeping logic that interacts with the Service Manager will not get run. As a
result, the status of the service is not accurately reflected when the service is stopped.

It is rather easy to modify Gui.java to avoid caling System.exit(). The trick is to make the
AWT thread a daemon thread, and to prevent the main() method from terminating until the the
exit event is received. These changes are shown in Gui2.java.

File: Gui2.java

package exanpl es;

inport java.awt.*;
inport java.awt.event.?*;

public class Gui 2 extends Thread

{

Lo =@ NS> LI 1=

/**

* The main() nethod del egates the configuration and displ ay of
* main window to the "setup" thread. It waits for the "setup”
* thread to termnate by doing a join().
*/
public static void main(String[] args)
{
Qui 2 setup = new CQui 2(args);
setup.start();
try { setup.join(); } catch(lnterruptedException e) {}
}
/**
* This is our only chance to set this thread to daenon node
* j.e. before the thread is started.
*/
String nsg;
public Gui2(String[] args)
{
set Daenmon(true);
nsg = "Hello World!";
if (args.length > 0) nmsg = "Hello " + args[0] + "!";
}
/**
* When the thread is started, configure and display the
* main window. Then it calls join() and waits to be
* interrupted when the exit event for the nain wi ndow is
* triggeered.
*/
Frame franme = null;
public void run()
{
// Create the main wi ndow and conponents used by this app
frame = new Frane("Gui 2");
Label | abel = new Label (nmsg, Label.CENTER);

/1 Handl e the exit event for the nain w ndow
frame. addW ndowLi st ener (new W ndowAdapt er ()

public void wi ndowCl osi ng(W ndowEvent e)
{

frame. di spose();

Gui 2.this.interrupt();

1)

/1 Position the conponents within the nmain w ndow
f rame. set Layout (new Bor der Layout ());
frame. add(| abel , Border Layout. CENTER) ;

/! Resize and show nai n wi ndow
frame. pack() ;

frame. set Si ze(320, 240);

frame. show() ;

/[l Wait for thread to be interrupted
try { join(); } catch(lnterruptedException e) {}

Notice how the Gui2 class is now a thread, and al the AWT setup logic is moved to the
Gui2.run() method (line 39). The first thing that happens in the Gui2 constructor is to set the
thread to daemon mode (line 27). Once a thread starts running, it is no longer possible to
change its daemon status.

So main() instantiates a Gui2 thread (line 15), and cdls start() to run the thread. (line 16).

Then it issuesajoin() on the thread (line 17) to wait for the thread to terminate.

The run() method Gui2 does al the AWT setup and causes the main window to appear in line
62. Since Gui2 is a daemon thread, the AWT thread also becomes a daemon thread. Once this
is done, the Gui2 thread cdls join() to suspend itself (line 65) and wait for an
InterruptedException, which israised when the interrupt() method is called on the thread.

There are now three threads in the system:
+ The main() thread (non-daemon)

+ The Gui2 thread (daemon)

+ The AWT thread (daemon)

The main() thread is the only thread preventing the VM from terminating, and it is waiting for
Gui2 to terminate. On the other hand, Gui2 is waiting for an InterruptedException, which will
only beissued in line 51 when the exit event for the main window is triggered.

Now, when the user clicks on the [x] button in the main window to terminate the program, the
main frame will be disposed, causing it to disappear from view (line 50). Then an interrupted()
is issued (line 51), which causes the Gui2 thread to come out of its join() in line 65 and
terminate. When this happens, the main() thread exits from its join() at line 17 and terminates
too.

This leaves the AWT thread as the only surviving thread in the VM. Since it is a daemon
thread, and al the non-daemon threads have terminated, the JVM will terminate. No
System.exit() calls!

3.5 ImpPLEMENTING A GENERIC START/STOP MECHANISM

In Servicejava, the main() method accepts two arguments -start and -stop. The -start
argument activates a loop which continualy logs the current date/time to a log file caled
service.log. On the other hand, the -stop argument smply sets a stop flag to true at line 35.
When the main program loop “sees’ the stop flag, it will terminate (line 23-27).

File: Service.java

1 package exanpl es;

2.

3: inport java.io.?*;

4: import java.util.*;

5:

6: public class Service

7: {

8: static bool ean stop = fal se;

9: public static void main(String[] args) throws Exception
10:

11: /1l Start the service

12: if (args[0].equal s("-start"))

13:

14: whi | e(true)

15: {

16: /1l Append current date/tinme to log file
17: log("Current date/tinme is " + new Date());

19: /1l Sleep for 5 secs

20: Thr ead. current Thread() . sl eep(5000);
21:

22: /1 Check for term nation

23: if (stop)

24:

25: | og(" Servi ce stopped.");
26: br eak;

27: }

28: }

29: }

30: el se

31: /1l Stop the service

32: if (args[0].equal s("-stop"))

33:

34: /1 Set the termination flag

35: stop = true;

36: }

37: }

38:

39: [**

40: * Log given string to file "service.log".
41: */

42: static void log(String nmsg) throws | OException
43: {

44: PrintWiter pw = new PrintWiter(

45: new FileWiter("service.log", true));
46: pw. println(nmsg);

a47: pw. cl ose();

48: }

49: 1}

This approach works with NativeJ-generated launchers, but it will not work when moved to
another platform such as Solaris, where shell scripts are the norm. This is because the -start
and -stop arguments will be passed to different VM instances, which means they will be
executing in different address space.

A more platform-independent way of terminating a Java program that is meant to run
continuoudly as a service (Win32) or daemon (Unix) is to implement some form of IPC (inter-
process communication). An example is given in Service2.java, which uses IP datagrams to
communicate the intent for program termination.

File: Service2.java

1 package exanpl es;

2:

3: inport java.io.?*;

4. inport java.net.*;

5: inport java.util.*;

6:

7: public class Service2

8: {

9: [**

10: * This is the port over which the termination signal is sent.
11: */

12: private final static int port = 5678;

13:

14: [**

15: * This is the nessage to be sent to signal terni nation.
16: */

17: private final static String termnator = "QU T";

18:

19:

20: [**

/**

* The main() function accepts one single paraneter:

* "start" or "stop".

* The first paraneter starts the date/tinme | ogging service,
* while the second paraneter stops the service.

*/

public static void main(String[] args) throws Exception

/1l Start the service
if (args[0].equal s("start"))
{

try
{ o _
/! Run the term nation |istener thread
Term nationLi stener t = new Term nati onLi st ener (
port, term nator, Thread. currentThread());
t.start();

[/l Start the |ogging service
whi | e(true)
{

/1l Append current date/tinme to log file
log("Current date/time is " + new Date());

/1l Sleep for 5 secs
Thr ead. current Thread() . sl eep(5000) ;

}

catch(I nterruptedException e)

/'l Exit when thread is interrupted.
| og(" Servi ce stopped.");

}

el se

/1l Stop the service

if (args[0].equal s("stop"))
{

try

/1l Send the term nati on nessage

Dat agr anSocket socket = new Dat agr anSocket () ;

Dat agr anPacket packet = new Dat agr anPacket (
term nator.getBytes(), termnator.|ength(),
I net Addr ess. get Local Host (), port);

socket . send(packet);

}
cat ch(Exception e)

{
e.printStackTrace();
}
}

}
/**
* Log given string to file "service.log".
*/

static void log(String nmsg) throws | OException
{
PrintWiter pw = new PrintWiter(
new FileWiter("service.log", true));
pw. println(nmsg);
pw. cl ose();

* This is a thread that will listen for the term nati on nessage
* over the designated port, then interrupt the parent thread.

90: cl ass Term nati onLi st ener extends Thread

91: {

92: Thread parent;

93: int port;

94: String term nator

95:

96: [**

97: * Set this thread to daenon node so that if for some reason
98: * the main thread exists, this thread will not prevent the
99: * JVM fromterm nating

100: */

101: public Term nati onLi st ener (

102: int port, String term nator, Thread parent)

103: {

104: set Daenon(true);

105: this.port = port;

106: this.term nator = term nator

107: this. parent = parent;

108: }

109:

110: [**

111: * Listen for the term nation signal over the designated port
112: */

113: public void run()

114: {

115: try

116: {

117: /1l Setup datagram socket

118: Dat agr anSocket socket = new Dat agr anSocket (port);
119: Dat agr anPacket packet = new Dat agr anPacket (

120: new byte[termi nator.length()], term nator.length());
121:

122: /1 Stop only when we have received the terninati on nessage
123: whi | e(true)

124: {

125: /1 Wait for a nessage

126: socket . recei ve(packet);

127: String nmeg = new String(packet.getData());

128:

129: /1l Make sure the nessage is coning fromthe sane
130: /1l machine. This is included for additional security
131: /1l so that the program cannot be term nated from an
132: /1 external machine).

133: if (!packet.get Address(). equal s(

134: I net Addr ess. get Local Host ()))

135: conti nue

136:

137: /1 Make sure the nessage is the term nati on nessage
138: if (!nmsg.equal s(term nator)) continue

139:

140: /[l Interrupt parent thread

141: parent.interrupt();

142:

143: /1l Terminate this thread

144 br eak;

145: }

146: }

147: cat ch(Exception e)

148: {

149: }

150: }

151: }

A TerminationListener classis defined in line 90, that runs in the background and waits for an
IP datagram from a predefined port (default: 5678) on the local machine. This is instantiated
and started in lines 34-36 when the -start argument is used. Let's say this runsin VM instance
#1.

When the -stop argument is issued, this runsin VM instance #2. The instructions in lines 61-
65 will send out an IP datagram containing the message “QUIT”. This will be routed over to
the TerminationListener in VM instance #1, logging activities will stop, and VM instance #1
will teminate. Similarly, once VM instance #2 has sent out the “QUIT” message, it will also
terminate.

This approach to graceful termination of a server app will work under NativelJ, as well as al
Java-enabled platforms with TCP/IP capability. Hence, you will have one set of source codes
that can work with both NativeJ-generated Win32 launchers, as well as on other platforms
using more traditional batch files, shell scripts, or just plain “java <class>" .

