
The Python Library Reference
Release 2.6.9

Guido van Rossum
Fred L. Drake, Jr., editor

October 29, 2013

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3

2 Built-in Functions 5

3 Non-essential Built-in Functions 23

4 Built-in Constants 25
4.1 Constants added by the site module . 25

5 Built-in Types 27
5.1 Truth Value Testing . 27
5.2 Boolean Operations — and, or, not . 27
5.3 Comparisons . 28
5.4 Numeric Types — int, float, long, complex . 28
5.5 Iterator Types . 31
5.6 Sequence Types — str, unicode, list, tuple, buffer, xrange 32
5.7 Set Types — set, frozenset . 42
5.8 Mapping Types — dict . 44
5.9 File Objects . 47
5.10 Context Manager Types . 50
5.11 Other Built-in Types . 51
5.12 Special Attributes . 53

6 Built-in Exceptions 55
6.1 Exception hierarchy . 59

7 String Services 61
7.1 string — Common string operations . 61
7.2 re — Regular expression operations . 72
7.3 struct — Interpret strings as packed binary data . 88
7.4 difflib — Helpers for computing deltas . 92
7.5 StringIO — Read and write strings as files . 102
7.6 cStringIO — Faster version of StringIO . 103
7.7 textwrap — Text wrapping and filling . 103
7.8 codecs — Codec registry and base classes . 106
7.9 unicodedata — Unicode Database . 119
7.10 stringprep — Internet String Preparation . 121
7.11 fpformat — Floating point conversions . 122

8 Data Types 125

i

8.1 datetime — Basic date and time types . 125
8.2 calendar — General calendar-related functions . 148
8.3 collections — High-performance container datatypes . 151
8.4 heapq — Heap queue algorithm . 160
8.5 bisect — Array bisection algorithm . 163
8.6 array — Efficient arrays of numeric values . 164
8.7 sets — Unordered collections of unique elements . 167
8.8 sched — Event scheduler . 170
8.9 mutex — Mutual exclusion support . 172
8.10 queue — A synchronized queue class . 173
8.11 weakref — Weak references . 175
8.12 UserDict — Class wrapper for dictionary objects . 178
8.13 UserList — Class wrapper for list objects . 179
8.14 UserString — Class wrapper for string objects . 180
8.15 types — Names for built-in types . 181
8.16 new — Creation of runtime internal objects . 183
8.17 copy — Shallow and deep copy operations . 184
8.18 pprint — Data pretty printer . 185
8.19 repr — Alternate repr() implementation . 187

9 Numeric and Mathematical Modules 191
9.1 numbers — Numeric abstract base classes . 191
9.2 math — Mathematical functions . 194
9.3 cmath — Mathematical functions for complex numbers . 197
9.4 decimal — Decimal fixed point and floating point arithmetic . 200
9.5 fractions — Rational numbers . 224
9.6 random — Generate pseudo-random numbers . 225
9.7 itertools — Functions creating iterators for efficient looping 228
9.8 functools — Higher order functions and operations on callable objects 241
9.9 operator — Standard operators as functions . 243

10 File and Directory Access 251
10.1 os.path — Common pathname manipulations . 251
10.2 fileinput — Iterate over lines from multiple input streams . 254
10.3 stat — Interpreting stat() results . 256
10.4 statvfs — Constants used with os.statvfs() . 259
10.5 filecmp — File and Directory Comparisons . 260
10.6 tempfile — Generate temporary files and directories . 262
10.7 glob — Unix style pathname pattern expansion . 264
10.8 fnmatch — Unix filename pattern matching . 265
10.9 linecache — Random access to text lines . 266
10.10 shutil — High-level file operations . 266
10.11 dircache — Cached directory listings . 269
10.12 macpath — Mac OS 9 path manipulation functions . 270

11 Data Persistence 271
11.1 pickle — Python object serialization . 271
11.2 cPickle — A faster pickle . 281
11.3 copy_reg — Register pickle support functions . 281
11.4 shelve — Python object persistence . 282
11.5 marshal — Internal Python object serialization . 284
11.6 anydbm — Generic access to DBM-style databases . 285
11.7 whichdb — Guess which DBM module created a database . 286
11.8 dbm — Simple “database” interface . 287

ii

11.9 gdbm — GNU’s reinterpretation of dbm . 288
11.10 dbhash — DBM-style interface to the BSD database library . 289
11.11 bsddb — Interface to Berkeley DB library . 290
11.12 dumbdbm — Portable DBM implementation . 292
11.13 sqlite3 — DB-API 2.0 interface for SQLite databases . 293

12 Data Compression and Archiving 311
12.1 zlib — Compression compatible with gzip . 311
12.2 gzip — Support for gzip files . 313
12.3 bz2 — Compression compatible with bzip2 . 315
12.4 zipfile — Work with ZIP archives . 317
12.5 tarfile — Read and write tar archive files . 321

13 File Formats 329
13.1 csv — CSV File Reading and Writing . 329
13.2 ConfigParser — Configuration file parser . 336
13.3 robotparser — Parser for robots.txt . 341
13.4 netrc — netrc file processing . 342
13.5 xdrlib — Encode and decode XDR data . 343
13.6 plistlib — Generate and parse Mac OS X .plist files . 346

14 Cryptographic Services 349
14.1 hashlib — Secure hashes and message digests . 349
14.2 hmac — Keyed-Hashing for Message Authentication . 350
14.3 md5 — MD5 message digest algorithm . 351
14.4 sha — SHA-1 message digest algorithm . 352

15 Generic Operating System Services 355
15.1 os — Miscellaneous operating system interfaces . 355
15.2 io — Core tools for working with streams . 379
15.3 time — Time access and conversions . 387
15.4 optparse — More powerful command line option parser . 392
15.5 getopt — Parser for command line options . 417
15.6 logging — Logging facility for Python . 419
15.7 getpass — Portable password input . 456
15.8 curses — Terminal handling for character-cell displays . 456
15.9 curses.textpad — Text input widget for curses programs . 471
15.10 curses.wrapper — Terminal handler for curses programs . 473
15.11 curses.ascii — Utilities for ASCII characters . 473
15.12 curses.panel — A panel stack extension for curses . 475
15.13 platform — Access to underlying platform’s identifying data . 476
15.14 errno — Standard errno system symbols . 479
15.15 ctypes — A foreign function library for Python . 485

16 Optional Operating System Services 519
16.1 select — Waiting for I/O completion . 519
16.2 threading — Higher-level threading interface . 523
16.3 thread — Multiple threads of control . 532
16.4 dummy_threading — Drop-in replacement for the threading module 534
16.5 dummy_thread — Drop-in replacement for the thread module 534
16.6 multiprocessing — Process-based “threading” interface . 535
16.7 mmap — Memory-mapped file support . 583
16.8 readline — GNU readline interface . 586
16.9 rlcompleter — Completion function for GNU readline . 589

iii

17 Interprocess Communication and Networking 591
17.1 subprocess — Subprocess management . 591
17.2 socket — Low-level networking interface . 598
17.3 ssl — SSL wrapper for socket objects . 609
17.4 signal — Set handlers for asynchronous events . 616
17.5 popen2 — Subprocesses with accessible I/O streams . 619
17.6 asyncore — Asynchronous socket handler . 621
17.7 asynchat — Asynchronous socket command/response handler 624

18 Internet Data Handling 629
18.1 email — An email and MIME handling package . 629
18.2 json — JSON encoder and decoder . 659
18.3 mailcap — Mailcap file handling . 664
18.4 mailbox — Manipulate mailboxes in various formats . 665
18.5 mhlib — Access to MH mailboxes . 683
18.6 mimetools — Tools for parsing MIME messages . 685
18.7 mimetypes — Map filenames to MIME types . 686
18.8 MimeWriter — Generic MIME file writer . 688
18.9 mimify — MIME processing of mail messages . 689
18.10 multifile — Support for files containing distinct parts . 690
18.11 rfc822 — Parse RFC 2822 mail headers . 692
18.12 base64 — RFC 3548: Base16, Base32, Base64 Data Encodings 696
18.13 binhex — Encode and decode binhex4 files . 698
18.14 binascii — Convert between binary and ASCII . 699
18.15 quopri — Encode and decode MIME quoted-printable data . 700
18.16 uu — Encode and decode uuencode files . 701

19 Structured Markup Processing Tools 703
19.1 HTMLParser — Simple HTML and XHTML parser . 703
19.2 sgmllib — Simple SGML parser . 705
19.3 htmllib — A parser for HTML documents . 708
19.4 htmlentitydefs — Definitions of HTML general entities . 709
19.5 xml.parsers.expat — Fast XML parsing using Expat . 710
19.6 xml.dom — The Document Object Model API . 718
19.7 xml.dom.minidom — Lightweight DOM implementation . 728
19.8 xml.dom.pulldom — Support for building partial DOM trees 732
19.9 xml.sax — Support for SAX2 parsers . 733
19.10 xml.sax.handler — Base classes for SAX handlers . 734
19.11 xml.sax.saxutils — SAX Utilities . 739
19.12 xml.sax.xmlreader — Interface for XML parsers . 739
19.13 xml.etree.ElementTree — The ElementTree XML API . 743

20 Internet Protocols and Support 751
20.1 webbrowser — Convenient Web-browser controller . 751
20.2 cgi — Common Gateway Interface support . 753
20.3 cgitb — Traceback manager for CGI scripts . 759
20.4 wsgiref — WSGI Utilities and Reference Implementation . 760
20.5 urllib — Open arbitrary resources by URL . 769
20.6 urllib2 — extensible library for opening URLs . 774
20.7 httplib — HTTP protocol client . 785
20.8 ftplib — FTP protocol client . 790
20.9 poplib — POP3 protocol client . 793
20.10 imaplib — IMAP4 protocol client . 795
20.11 nntplib — NNTP protocol client . 800

iv

20.12 smtplib — SMTP protocol client . 804
20.13 smtpd — SMTP Server . 808
20.14 telnetlib — Telnet client . 809
20.15 uuid — UUID objects according to RFC 4122 . 812
20.16 urlparse — Parse URLs into components . 815
20.17 SocketServer — A framework for network servers . 818
20.18 BaseHTTPServer — Basic HTTP server . 826
20.19 SimpleHTTPServer — Simple HTTP request handler . 829
20.20 CGIHTTPServer — CGI-capable HTTP request handler . 830
20.21 cookielib — Cookie handling for HTTP clients . 831
20.22 Cookie — HTTP state management . 839
20.23 xmlrpclib — XML-RPC client access . 843
20.24 SimpleXMLRPCServer — Basic XML-RPC server . 850
20.25 DocXMLRPCServer — Self-documenting XML-RPC server . 853

21 Multimedia Services 855
21.1 audioop — Manipulate raw audio data . 855
21.2 imageop — Manipulate raw image data . 858
21.3 aifc — Read and write AIFF and AIFC files . 859
21.4 sunau — Read and write Sun AU files . 861
21.5 wave — Read and write WAV files . 864
21.6 chunk — Read IFF chunked data . 866
21.7 colorsys — Conversions between color systems . 867
21.8 imghdr — Determine the type of an image . 867
21.9 sndhdr — Determine type of sound file . 868
21.10 ossaudiodev — Access to OSS-compatible audio devices . 869

22 Internationalization 875
22.1 gettext — Multilingual internationalization services . 875
22.2 locale — Internationalization services . 884

23 Program Frameworks 891
23.1 cmd — Support for line-oriented command interpreters . 891
23.2 shlex — Simple lexical analysis . 893

24 Graphical User Interfaces with Tk 897
24.1 Tkinter — Python interface to Tcl/Tk . 897
24.2 Tix — Extension widgets for Tk . 907
24.3 ScrolledText — Scrolled Text Widget . 912
24.4 turtle — Turtle graphics for Tk . 912
24.5 IDLE . 942
24.6 Other Graphical User Interface Packages . 945

25 Development Tools 947
25.1 pydoc — Documentation generator and online help system . 947
25.2 doctest — Test interactive Python examples . 948
25.3 unittest — Unit testing framework . 970
25.4 2to3 - Automated Python 2 to 3 code translation . 982
25.5 test — Regression tests package for Python . 986
25.6 test.test_support — Utility functions for tests . 988

26 Debugging and Profiling 993
26.1 bdb — Debugger framework . 993
26.2 pdb — The Python Debugger . 997
26.3 Debugger Commands . 999

v

26.4 The Python Profilers . 1001
26.5 hotshot — High performance logging profiler . 1008
26.6 timeit — Measure execution time of small code snippets . 1009
26.7 trace — Trace or track Python statement execution . 1012

27 Python Runtime Services 1017
27.1 sys — System-specific parameters and functions . 1017
27.2 __builtin__ — Built-in objects . 1027
27.3 future_builtins — Python 3 builtins . 1027
27.4 __main__ — Top-level script environment . 1028
27.5 warnings — Warning control . 1028
27.6 contextlib — Utilities for with-statement contexts . 1032
27.7 abc — Abstract Base Classes . 1034
27.8 atexit — Exit handlers . 1036
27.9 traceback — Print or retrieve a stack traceback . 1038
27.10 __future__ — Future statement definitions . 1041
27.11 gc — Garbage Collector interface . 1042
27.12 inspect — Inspect live objects . 1045
27.13 site — Site-specific configuration hook . 1050
27.14 user — User-specific configuration hook . 1051
27.15 fpectl — Floating point exception control . 1052
27.16 distutils — Building and installing Python modules . 1053

28 Custom Python Interpreters 1055
28.1 code — Interpreter base classes . 1055
28.2 codeop — Compile Python code . 1057

29 Restricted Execution 1059
29.1 rexec — Restricted execution framework . 1059
29.2 Bastion — Restricting access to objects . 1062

30 Importing Modules 1065
30.1 imp — Access the import internals . 1065
30.2 imputil — Import utilities . 1068
30.3 zipimport — Import modules from Zip archives . 1072
30.4 pkgutil — Package extension utility . 1074
30.5 modulefinder — Find modules used by a script . 1074
30.6 runpy — Locating and executing Python modules . 1076

31 Python Language Services 1079
31.1 parser — Access Python parse trees . 1079
31.2 Abstract Syntax Trees . 1088
31.3 symtable — Access to the compiler’s symbol tables . 1093
31.4 symbol — Constants used with Python parse trees . 1095
31.5 token — Constants used with Python parse trees . 1095
31.6 keyword — Testing for Python keywords . 1096
31.7 tokenize — Tokenizer for Python source . 1096
31.8 tabnanny — Detection of ambiguous indentation . 1097
31.9 pyclbr — Python class browser support . 1098
31.10 py_compile — Compile Python source files . 1099
31.11 compileall — Byte-compile Python libraries . 1099
31.12 dis — Disassembler for Python bytecode . 1100
31.13 pickletools — Tools for pickle developers . 1108

32 Python compiler package 1111

vi

32.1 The basic interface . 1111
32.2 Limitations . 1112
32.3 Python Abstract Syntax . 1112
32.4 Using Visitors to Walk ASTs . 1117
32.5 Bytecode Generation . 1117

33 Miscellaneous Services 1119
33.1 formatter — Generic output formatting . 1119

34 MS Windows Specific Services 1123
34.1 msilib — Read and write Microsoft Installer files . 1123
34.2 msvcrt – Useful routines from the MS VC++ runtime . 1128
34.3 _winreg – Windows registry access . 1130
34.4 winsound — Sound-playing interface for Windows . 1137

35 Unix Specific Services 1139
35.1 posix — The most common POSIX system calls . 1139
35.2 pwd — The password database . 1140
35.3 spwd — The shadow password database . 1141
35.4 grp — The group database . 1141
35.5 crypt — Function to check Unix passwords . 1142
35.6 dl — Call C functions in shared objects . 1142
35.7 termios — POSIX style tty control . 1144
35.8 tty — Terminal control functions . 1145
35.9 pty — Pseudo-terminal utilities . 1145
35.10 fcntl — The fcntl() and ioctl() system calls . 1146
35.11 pipes — Interface to shell pipelines . 1148
35.12 posixfile — File-like objects with locking support . 1149
35.13 resource — Resource usage information . 1151
35.14 nis — Interface to Sun’s NIS (Yellow Pages) . 1153
35.15 syslog — Unix syslog library routines . 1154
35.16 commands — Utilities for running commands . 1155

36 Mac OS X specific services 1157
36.1 ic — Access to the Mac OS X Internet Config . 1157
36.2 MacOS — Access to Mac OS interpreter features . 1158
36.3 macostools — Convenience routines for file manipulation . 1160
36.4 findertools — The finder‘s Apple Events interface . 1160
36.5 EasyDialogs — Basic Macintosh dialogs . 1161
36.6 FrameWork — Interactive application framework . 1163
36.7 autoGIL — Global Interpreter Lock handling in event loops . 1167
36.8 Mac OS Toolbox Modules . 1167
36.9 ColorPicker — Color selection dialog . 1173

37 MacPython OSA Modules 1175
37.1 gensuitemodule — Generate OSA stub packages . 1176
37.2 aetools — OSA client support . 1177
37.3 aepack — Conversion between Python variables and AppleEvent data containers 1178
37.4 aetypes — AppleEvent objects . 1179
37.5 MiniAEFrame — Open Scripting Architecture server support . 1180

38 SGI IRIX Specific Services 1183
38.1 al — Audio functions on the SGI . 1183
38.2 AL — Constants used with the al module . 1185
38.3 cd — CD-ROM access on SGI systems . 1185

vii

38.4 fl — FORMS library for graphical user interfaces . 1188
38.5 FL — Constants used with the fl module . 1193
38.6 flp — Functions for loading stored FORMS designs . 1193
38.7 fm — Font Manager interface . 1193
38.8 gl — Graphics Library interface . 1194
38.9 DEVICE — Constants used with the gl module . 1196
38.10 GL — Constants used with the gl module . 1196
38.11 imgfile — Support for SGI imglib files . 1196
38.12 jpeg — Read and write JPEG files . 1197

39 SunOS Specific Services 1199
39.1 sunaudiodev — Access to Sun audio hardware . 1199
39.2 SUNAUDIODEV — Constants used with sunaudiodev . 1200

40 Undocumented Modules 1201
40.1 Miscellaneous useful utilities . 1201
40.2 Platform specific modules . 1201
40.3 Multimedia . 1201
40.4 Undocumented Mac OS modules . 1202
40.5 Obsolete . 1203
40.6 SGI-specific Extension modules . 1203

A Glossary 1205

Bibliography 1211

B About these documents 1213
B.1 Contributors to the Python Documentation . 1213

C History and License 1215
C.1 History of the software . 1215
C.2 Terms and conditions for accessing or otherwise using Python . 1216
C.3 Licenses and Acknowledgements for Incorporated Software . 1218

D Copyright 1227

Module Index 1229

Index 1235

viii

The Python Library Reference, Release 2.6.9

Release 2.6

Date October 29, 2013

While The Python Language Reference (in The Python Language Reference) describes the exact syntax and semantics
of the Python language, this library reference manual describes the standard library that is distributed with Python. It
also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 2.6.9

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

3

The Python Library Reference, Release 2.6.9

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

abs(x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

all(iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:

if not element:
return False

return True

New in version 2.5.

any(iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:

if element:
return True

return False

New in version 2.5.

basestring()
This abstract type is the superclass for str and unicode. It cannot be called or instantiated, but it can be
used to test whether an object is an instance of str or unicode. isinstance(obj, basestring) is
equivalent to isinstance(obj, (str, unicode)). New in version 2.3.

bin(x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python int
object, it has to define an __index__() method that returns an integer. New in version 2.6.

bool([x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot be
subclassed further. Its only instances are False and True. New in version 2.2.1.Changed in version 2.3: If no
argument is given, this function returns False.

5

The Python Library Reference, Release 2.6.9

callable(object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible that a
call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns
a new instance); class instances are callable if they have a __call__() method.

chr(i)
Return a string of one character whose ASCII code is the integer i. For example, chr(97) returns the string
’a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive; ValueError will
be raised if i is outside that range. See also unichr().

classmethod(function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, arg1, arg2, ...): ...

The @classmethod form is a function decorator – see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod() in this
section.

For more information on class methods, consult the documentation on the standard type hierarchy in The stan-
dard type hierarchy (in The Python Language Reference). New in version 2.2.Changed in version 2.4: Function
decorator syntax added.

cmp(x, y)
Compare the two objects x and y and return an integer according to the outcome. The return value is negative if
x < y, zero if x == y and strictly positive if x > y.

compile(source, filename, mode, [flags, [dont_inherit]])
Compile the source into a code or AST object. Code objects can be executed by an exec statement or evaluated
by a call to eval(). source can either be a string or an AST object. Refer to the ast module documentation
for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (’<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ’exec’ if source consists of a
sequence of statements, ’eval’ if it consists of a single expression, or ’single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compi-
lation of source. If neither is present (or both are zero) the code is compiled with those future statements that are
in effect in the code that is calling compile. If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it – the future statements in effect around the call
to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature

6 Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.6.9

instance in the __future__ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

Note: When compiling a string with multi-line code, line endings must be represented by a single newline
character (’\n’), and the input must be terminated by at least one newline character. If line endings are
represented by ’\r\n’, use str.replace() to change them into ’\n’. Changed in version 2.3: The flags
and dont_inherit arguments were added.Changed in version 2.6: Support for compiling AST objects.

complex([real, [imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion
function like int(), long() and float(). If both arguments are omitted, returns 0j.

The complex type is described in Numeric Types — int, float, long, complex.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ’foobar’) is equivalent to del x.foobar.

dict([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in Mapping
Types — dict.

For other containers see the built in list, set, and tuple classes, and the collections module.

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__(), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__() or __getattribute__() function to cus-
tomize the way dir() reports their attributes.

If the object does not provide __dir__(), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__().

The default dir() mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

•If the object is a module object, the list contains the names of the module’s attributes.

•If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

•Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir() # doctest: +SKIP
[’__builtins__’, ’__doc__’, ’__name__’, ’struct’]
>>> dir(struct) # doctest: +NORMALIZE_WHITESPACE
[’Struct’, ’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’_clearcache’, ’calcsize’, ’error’, ’pack’, ’pack_into’,

7

The Python Library Reference, Release 2.6.9

’unpack’, ’unpack_from’]
>>> class Foo(object):
... def __dir__(self):
... return ["kan", "ga", "roo"]
...
>>> f = Foo()
>>> dir(f)
[’ga’, ’kan’, ’roo’]

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the same as (a // b, a % b). For floating point numbers the
result is (q, a % b), where q is usually math.floor(a / b) but may be 1 less than that. In any case q
* b + a % b is very close to a, if a % b is non-zero it has the same sign as b, and 0 <= abs(a % b)
< abs(b). Changed in version 2.3: Using divmod() with complex numbers is deprecated.

enumerate(sequence, [start=0])
Return an enumerate object. sequence must be a sequence, an iterator, or some other object which supports iter-
ation. The next() method of the iterator returned by enumerate() returns a tuple containing a count (from
start which defaults to 0) and the corresponding value obtained from iterating over iterable. enumerate() is
useful for obtaining an indexed series: (0, seq[0]), (1, seq[1]), (2, seq[2]), For example:

>>> for i, season in enumerate([’Spring’, ’Summer’, ’Fall’, ’Winter’]):
... print i, season
0 Spring
1 Summer
2 Fall
3 Winter

New in version 2.3.New in version 2.6: The start parameter.

eval(expression, [globals, [locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object. Changed in version 2.4: formerly locals was required to be a dictionary. The
expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present
and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard __builtin__ module and restricted environments
are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval() is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created by compile()). In
this case pass a code object instead of a string. If the code object has been compiled with ’exec’ as the mode
argument, eval()‘s return value will be None.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.9

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from
a file is supported by the execfile() function. The globals() and locals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use by eval() or
execfile().

execfile(filename, [globals, [locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module. 1

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using the globals and locals dictionaries as global and local names-
pace. If provided, locals can be any mapping object. Changed in version 2.4: formerly locals was required
to be a dictionary. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries
are omitted, the expression is executed in the environment where execfile() is called. The return value is
None.

Note: The default locals act as described for function locals() below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code
on locals after function execfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file(filename, [mode, [bufsize]])
Constructor function for the file type, described further in section File Objects. The constructor’s arguments
are the same as those of the open() built-in function described below.

When opening a file, it’s preferable to use open() instead of invoking this constructor directly. file is more
suited to type testing (for example, writing isinstance(f, file)). New in version 2.2.

filter(function, iterable)
Construct a list from those elements of iterable for which function returns true. iterable may be either a se-
quence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the result also has
that type; otherwise it is always a list. If function is None, the identity function is assumed, that is, all elements
of iterable that are false are removed.

Note that filter(function, iterable) is equivalent to [item for item in iterable if
function(item)] if function is not None and [item for item in iterable if item] if func-
tion is None.

See itertools.ifilter() and itertools.ifilterfalse() for iterator versions of this function,
including a variation that filters for elements where the function returns false.

float([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. The argument may also be [+|-]nan or
[+|-]inf. Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point
number with the same value (within Python’s floating point precision) is returned. If no argument is given,
returns 0.0.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and a
leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity as nan,
inf or -inf.

The float type is described in Numeric Types — int, float, long, complex.

format(value, [format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec

1 It is used relatively rarely so does not warrant being made into a statement.

9

The Python Library Reference, Release 2.6.9

will depend on the type of the value argument, however there is a standard formatting syntax that is used by
most built-in types: Format Specification Mini-Language.

Note: format(value, format_spec) merely calls value.__format__(format_spec). New
in version 2.6.

frozenset([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in Set
Types — set, frozenset.

For other containers see the built in dict, list, and tuple classes, and the collections module. New
in version 2.4.

getattr(object, name, [default])
Return the value of the named attributed of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr(x, ’foobar’)
is equivalent to x.foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr(object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr(object, name) and seeing whether it
raises an exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module. New in version 2.2.

hex(x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.

Note: To obtain a hexadecimal string representation for a float, use the float.hex() method. Changed in
version 2.4: Formerly only returned an unsigned literal.

id(object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id() value.

CPython implementation detail: This is the address of the object.

input([prompt])
Equivalent to eval(raw_input(prompt)).

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.9

Warning: This function is not safe from user errors! It expects a valid Python expression as input; if the
input is not syntactically valid, a SyntaxError will be raised. Other exceptions may be raised if there
is an error during evaluation. (On the other hand, sometimes this is exactly what you need when writing a
quick script for expert use.)

If the readline module was loaded, then input() will use it to provide elaborate line editing and history
features.

Consider using the raw_input() function for general input from users.

int([x, [base]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace. The base parameter gives
the base for the conversion (which is 10 by default) and may be any integer in the range [2, 36], or zero. If
base is zero, the proper radix is determined based on the contents of string; the interpretation is the same as
for integer literals. (See Numeric literals (in The Python Language Reference).) If base is specified and x is
not a string, TypeError is raised. Otherwise, the argument may be a plain or long integer or a floating point
number. Conversion of floating point numbers to integers truncates (towards zero). If the argument is outside
the integer range a long object will be returned instead. If no arguments are given, returns 0.

The integer type is described in Numeric Types — int, float, long, complex.

isinstance(object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. Also return true if classinfo is a type object (new-style class) and object is an object of that type or of a
(direct or indirect) subclass thereof. If object is not a class instance or an object of the given type, the function
always returns false. If classinfo is neither a class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence types are not accepted). If classinfo is not
a class, type, or tuple of classes, types, and such tuples, a TypeError exception is raised. Changed in version
2.2: Support for a tuple of type information was added.

issubclass(class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised. Changed in version 2.3: Support for a tuple of type information was
added.

iter(o, [sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, o must be a collection object which supports the iteration protocol
(the __iter__() method), or it must support the sequence protocol (the __getitem__() method with
integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then o must be a callable object. The iterator created in this case
will call o with no arguments for each call to its next() method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter() is to read lines of a file until a certain line is reached. The
following example reads a file until "STOP" is reached:

with open("mydata.txt") as fp:
for line in iter(fp.readline, "STOP"):

process_line(line)

New in version 2.2.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or

11

The Python Library Reference, Release 2.6.9

a mapping (dictionary).

list([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and
returned, similar to iterable[:]. For instance, list(’abc’) returns [’a’, ’b’, ’c’] and list(
(1, 2, 3)) returns [1, 2, 3]. If no argument is given, returns a new empty list, [].

list is a mutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, buffer, xrange.
For other containers see the built in dict, set, and tuple classes, and the collections module.

locals()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals() when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

long([x, [base]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace. The base argument is interpreted in the same way as for
int(), and may only be given when x is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers truncates (towards zero). If no arguments are given, returns 0L.

The long type is described in Numeric Types — int, float, long, complex.

map(function, iterable, ...)
Apply function to every item of iterable and return a list of the results. If additional iterable arguments are
passed, function must take that many arguments and is applied to the items from all iterables in parallel. If one
iterable is shorter than another it is assumed to be extended with None items. If function is None, the identity
function is assumed; if there are multiple arguments, map() returns a list consisting of tuples containing the
corresponding items from all iterables (a kind of transpose operation). The iterable arguments may be a sequence
or any iterable object; the result is always a list.

max(iterable, [args...], [key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for list.sort(). The
key argument, if supplied, must be in keyword form (for example, max(a,b,c,key=func)). Changed in
version 2.5: Added support for the optional key argument.

min(iterable, [args...], [key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for list.sort(). The
key argument, if supplied, must be in keyword form (for example, min(a,b,c,key=func)). Changed in
version 2.5: Added support for the optional key argument.

next(iterator, [default])
Retrieve the next item from the iterator by calling its next() method. If default is given, it is returned if the
iterator is exhausted, otherwise StopIteration is raised. New in version 2.6.

object()
Return a new featureless object. object is a base for all new style classes. It has the methods that are common
to all instances of new style classes. New in version 2.2.Changed in version 2.3: This function does not accept
any arguments. Formerly, it accepted arguments but ignored them.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.9

oct(x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed in
version 2.4: Formerly only returned an unsigned literal.

open(filename, [mode, [bufsize]])
Open a file, returning an object of the file type described in section File Objects. If the file cannot be opened,
IOError is raised. When opening a file, it’s preferable to use open() instead of invoking the file construc-
tor directly.

The first two arguments are the same as for stdio‘s fopen(): filename is the file name to be opened, and
mode is a string indicating how the file is to be opened.

The most commonly-used values of mode are ’r’ for reading, ’w’ for writing (truncating the file if it already
exists), and ’a’ for appending (which on some Unix systems means that all writes append to the end of the file
regardless of the current seek position). If mode is omitted, it defaults to ’r’. The default is to use text mode,
which may convert ’\n’ characters to a platform-specific representation on writing and back on reading. Thus,
when opening a binary file, you should append ’b’ to the mode value to open the file in binary mode, which will
improve portability. (Appending ’b’ is useful even on systems that don’t treat binary and text files differently,
where it serves as documentation.) See below for more possible values of mode. The optional bufsize argument
specifies the file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default, which is usually
line buffered for tty devices and fully buffered for other files. If omitted, the system default is used. 2

Modes ’r+’, ’w+’ and ’a+’ open the file for updating (note that ’w+’ truncates the file). Append ’b’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files; on systems
that don’t have this distinction, adding the ’b’ has no effect.

In addition to the standard fopen() values mode may be ’U’ or ’rU’. Python is usually built with universal
newline support; supplying ’U’ opens the file as a text file, but lines may be terminated by any of the following:
the Unix end-of-line convention ’\n’, the Macintosh convention ’\r’, or the Windows convention ’\r\n’.
All of these external representations are seen as ’\n’ by the Python program. If Python is built without
universal newline support a mode with ’U’ is the same as normal text mode. Note that file objects so opened
also have an attribute called newlines which has a value of None (if no newlines have yet been seen), ’\n’,
’\r’, ’\r\n’, or a tuple containing all the newline types seen.

Python enforces that the mode, after stripping ’U’, begins with ’r’, ’w’ or ’a’.

Python provides many file handling modules including fileinput, os, os.path, tempfile, and
shutil. Changed in version 2.5: Restriction on first letter of mode string introduced.

ord(c)
Given a string of length one, return an integer representing the Unicode code point of the character when the
argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord(’a’) returns the integer 97, ord(u’\u2020’) returns 8224. This is the inverse of chr() for 8-bit
strings and of unichr() for unicode objects. If a unicode argument is given and Python was built with UCS2
Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise the string length
is two, and a TypeError will be raised.

pow(x, y, [z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than
pow(x, y) % z). The two-argument form pow(x, y) is equivalent to using the power operator: x**y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are converted to float and a float result is
delivered. For example, 10**2 returns 100, but 10**-2 returns 0.01. (This last feature was added in

2 Specifying a buffer size currently has no effect on systems that don’t have setvbuf(). The interface to specify the buffer size is not done
using a method that calls setvbuf(), because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

13

The Python Library Reference, Release 2.6.9

Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted. If z
is present, x and y must be of integer types, and y must be non-negative. (This restriction was added in Python
2.2. In Python 2.1 and before, floating 3-argument pow() returned platform-dependent results depending on
floating-point rounding accidents.)

print([object, ...], [sep=’ ’], [end=’\n’], [file=sys.stdout])
Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like str() does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no object is given, print() will just write end.

The file argument must be an object with a write(string) method; if it is not present or None,
sys.stdout will be used.

Note: This function is not normally available as a built-in since the name print is recognized as the print
statement. To disable the statement and use the print() function, use this future statement at the top of your
module:

from __future__ import print_function

New in version 2.6.

property([fget, [fset, [fdel, [doc]]]])
Return a property attribute for new-style classes (classes that derive from object).

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def __init__(self):

self._x = None

def getx(self):
return self._x

def setx(self, value):
self._x = value

def delx(self):
del self._x

x = property(getx, setx, delx, "I’m the ’x’ property.")

If then c is an instance of C, c.x will invoke the getter, c.x = value will invoke the setter and del c.x
the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property() as a decorator:

class Parrot(object):
def __init__(self):

self._voltage = 100000

@property
def voltage(self):

"""Get the current voltage."""
return self._voltage

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.9

turns the voltage() method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C(object):
def __init__(self):

self._x = None

@property
def x(self):

"""I’m the ’x’ property."""
return self._x

@x.setter
def x(self, value):

self._x = value

@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor argu-
ments. New in version 2.2.Changed in version 2.5: Use fget‘s docstring if no doc given.Changed in version 2.6:
The getter, setter, and deleter attributes were added.

range([start], stop, [step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used in for loops.
The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. The full form returns a list of plain integers [start, start + step, start
+ 2 * step, ...]. If step is positive, the last element is the largest start + i * step less than stop;
if step is negative, the last element is the smallest start + i * step greater than stop. step must not be
zero (or else ValueError is raised). Example:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]

raw_input([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then

15

The Python Library Reference, Release 2.6.9

reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = raw_input(’--> ’)
--> Monty Python’s Flying Circus
>>> s
"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input() will use it to provide elaborate line editing and
history features.

reduce(function, iterable, [initializer])
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the
iterable to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calcu-
lates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the
update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in
the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains
only one item, the first item is returned.

reload(module)
Reload a previously imported module. The argument must be a module object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to try
out the new version without leaving the Python interpreter. The return value is the module object (the same as
the module argument).

When reload(module) is executed:

•Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects
which are bound to names in the module’s dictionary. The init function of extension modules is not
called a second time.

•As with all other objects in Python the old objects are only reclaimed after their reference counts drop to
zero.

•The names in the module namespace are updated to point to any new or changed objects.

•Other references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys.modules. To reload the module
you must first import it again (this will bind the name to the partially initialized module object) before you
can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with a try statement it can test
for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for sys,
__main__ and __builtin__. In many cases, however, extension modules are not designed to be initialized

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.9

more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute the from
statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr(object)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed to eval(), otherwise the representation is a string enclosed in angle brackets that contains the name of
the type of the object together with additional information often including the name and address of the object.
A class can control what this function returns for its instances by defining a __repr__() method.

reversed(seq)
Return a reverse iterator. seq must be an object which has a __reversed__() method or supports the
sequence protocol (the __len__()method and the __getitem__()method with integer arguments starting
at 0). New in version 2.4.Changed in version 2.6: Added the possibility to write a custom __reversed__()
method.

round(x, [n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus n;
if two multiples are equally close, rounding is done away from 0 (so. for example, round(0.5) is 1.0 and
round(-0.5) is -1.0).

set([iterable])
Return a new set, optionally with elements taken from iterable. The set type is described in Set Types — set,
frozenset.

For other containers see the built in dict, list, and tuple classes, and the collections module. New
in version 2.4.

setattr(object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr(x, ’foobar’, 123) is equivalent to x.foobar = 123.

slice([start], stop, [step])
Return a slice object representing the set of indices specified by range(start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i]. See
itertools.islice() for an alternate version that returns an iterator.

sorted(iterable, [cmp, [key, [reverse]]])
Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the list.sort() method
(described in section Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return a nega-
tive, zero or positive number depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The default
value is None.

17

The Python Library Reference, Release 2.6.9

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function.
This is because cmp is called multiple times for each list element while key and reverse touch each element only
once. To convert an old-style cmp function to a key function, see the CmpToKey recipe in the ASPN cookbook.

For sorting examples and a brief sorting tutorial, see Sorting HowTo. New in version 2.4.

staticmethod(function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(arg1, arg2, ...): ...

The @staticmethod form is a function decorator – see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C.f()) or on an instance (such as C().f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod() in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in The stan-
dard type hierarchy (in The Python Language Reference). New in version 2.2.Changed in version 2.4: Function
decorator syntax added.

str([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string itself.
The difference with repr(object) is that str(object) does not always attempt to return a string that is
acceptable to eval(); its goal is to return a printable string. If no argument is given, returns the empty string,
”.

For more information on strings see Sequence Types — str, unicode, list, tuple, buffer, xrange which describes
sequence functionality (strings are sequences), and also the string-specific methods described in the String
Methods section. To output formatted strings use template strings or the % operator described in the String
Formatting Operations section. In addition see the String Services section. See also unicode().

sum(iterable, [start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The iter-
able‘s items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
a sequence of strings is by calling ”.join(sequence). Note that sum(range(n), m) is equivalent
to reduce(operator.add, range(n), m) To add floating point values with extended precision, see
math.fsum(). New in version 2.3.

super(type, [object-or-type])
Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr()
except that the type itself is skipped.

The __mro__ attribute of the type lists the method resolution search order used by both getattr() and
super(). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

18 Chapter 2. Built-in Functions

http://code.activestate.com/recipes/576653/
http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 2.6.9

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance(obj, type) must be true. If the second argument is a type, issubclass(type2,
type) must be true (this is useful for classmethods).

Note: super() only works for new-style classes.

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):

super(C, self).method(arg)

Note that super() is implemented as part of the binding process for explicit dotted attribute lookups such as
super().__getitem__(name). It does so by implementing its own __getattribute__() method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super() is undefined for implicit lookups using statements or operators such as super()[name].

Also note that super() is not limited to use inside methods. The two argument form specifies the arguments
exactly and makes the appropriate references. New in version 2.2.

tuple([iterable])
Return a tuple whose items are the same and in the same order as iterable‘s items. iterable may be a sequence, a
container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For
instance, tuple(’abc’) returns (’a’, ’b’, ’c’) and tuple([1, 2, 3]) returns (1, 2, 3). If
no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, buffer,
xrange. For other containers see the built in dict, list, and set classes, and the collections module.

type(object)
Return the type of an object. The return value is a type object. The isinstance() built-in function is

recommended for testing the type of an object.

With three arguments, type() functions as a constructor as detailed below.

type(name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name__ attribute; the bases tuple itemizes the base classes and becomes
the __bases__ attribute; and the dict dictionary is the namespace containing definitions for class body and
becomes the __dict__ attribute. For example, the following two statements create identical type objects:

>>> class X(object):
... a = 1
...
>>> X = type(’X’, (object,), dict(a=1))

New in version 2.2.

19

The Python Library Reference, Release 2.6.9

unichr(i)
Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr(97)
returns the string u’a’. This is the inverse of ord() for Unicode strings. The valid range for the argument de-
pends how Python was configured – it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF]. ValueError
is raised otherwise. For ASCII and 8-bit strings see chr(). New in version 2.0.

unicode([object, [encoding, [errors]]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name of an
encoding; if the encoding is not known, LookupError is raised. Error handling is done according to errors;
this specifies the treatment of characters which are invalid in the input encoding. If errors is ’strict’ (the
default), a ValueError is raised on errors, while a value of ’ignore’ causes errors to be silently ignored,
and a value of ’replace’ causes the official Unicode replacement character, U+FFFD, to be used to replace
input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode() will mimic the behaviour of str() except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a __unicode__() method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encoding in ’strict’ mode.

For more information on Unicode strings see Sequence Types — str, unicode, list, tuple, buffer, xrange which
describes sequence functionality (Unicode strings are sequences), and also the string-specific methods described
in the String Methods section. To output formatted strings use template strings or the % operator described in
the String Formatting Operations section. In addition see the String Services section. See also str(). New in
version 2.0.Changed in version 2.2: Support for __unicode__() added.

vars([object])
Without an argument, act like locals().

With a module, class or class instance object as argument (or anything else that has a __dict__ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined. 3

xrange([start], stop, [step])
This function is very similar to range(), but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage of xrange() over range() is minimal (since xrange() still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminated with break).

CPython implementation detail: xrange() is intended to be simple and fast. Implementations may impose
restrictions to achieve this. The C implementation of Python restricts all arguments to native C longs (“short”
Python integers), and also requires that the number of elements fit in a native C long. If a larger range is needed,
an alternate version can be crafted using the itertools module: takewhile(lambda x: x<stop,
(start+i*step for i in count())).

zip([iterable, ...])
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The returned list is truncated in length to the length of the shortest argument sequence.
When there are multiple arguments which are all of the same length, zip() is similar to map() with an initial

3 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.9

argument of None. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip(*[iter(s)]*n).

zip() in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> zipped
[(1, 4), (2, 5), (3, 6)]
>>> x2, y2 = zip(*zipped)
>>> x == list(x2) and y == list(y2)
True

New in version 2.0.Changed in version 2.4: Formerly, zip() required at least one argument and zip() raised
a TypeError instead of returning an empty list.

__import__(name, [globals, [locals, [fromlist, [level]]]])

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by the import statement. It can be replaced (by importing the __builtin__module
and assigning to __builtin__.__import__) in order to change semantics of the import statement, but
nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of __import__() is rare,
except in cases where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all,
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. The default is -1 which indicates both absolute and
relative imports will be attempted. 0 means only perform absolute imports. Positive values for level indicate the
number of parent directories to search relative to the directory of the module calling __import__().

When the name variable is of the form package.module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__(’spam’, globals(), locals(), [], -1)

The statement import spam.ham results in this call:

spam = __import__(’spam.ham’, globals(), locals(), [], -1)

Note how __import__() returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus results in

_temp = __import__(’spam.ham’, globals(), locals(), [’eggs’, ’sausage’], -1)
eggs = _temp.eggs
saus = _temp.sausage

21

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

Here, the spam.ham module is returned from __import__(). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can call __import__()
and then look it up in sys.modules:

>>> import sys
>>> name = ’foo.bar.baz’
>>> __import__(name)
<module ’foo’ from ...>
>>> baz = sys.modules[name]
>>> baz
<module ’foo.bar.baz’ from ...>

Changed in version 2.5: The level parameter was added.Changed in version 2.5: Keyword support for parameters
was added.

22 Chapter 2. Built-in Functions

CHAPTER

THREE

NON-ESSENTIAL BUILT-IN FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without concerns
about missing something important.

apply(function, args, [keywords])
The function argument must be a callable object (a user-defined or built-in function or method, or a class object)
and the args argument must be a sequence. The function is called with args as the argument list; the number of
arguments is the length of the tuple. If the optional keywords argument is present, it must be a dictionary whose
keys are strings. It specifies keyword arguments to be added to the end of the argument list. Calling apply()
is different from just calling function(args), since in that case there is always exactly one argument. The
use of apply() is equivalent to function(*args, **keywords). Deprecated since version 2.3: Use
the extended call syntax with *args and **keywords instead.

buffer(object, [offset, [size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which references the object argument. The buffer object will be a slice from
the beginning of object (or from the specified offset). The slice will extend to the end of object (or will have a
length given by the size argument).

coerce(x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations. If coercion is not possible, raise TypeError.

intern(string)
Enter string in the table of “interned” strings and return the interned string – which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup – if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and
the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value of intern() around to benefit from it.

23

The Python Library Reference, Release 2.6.9

24 Chapter 3. Non-essential Built-in Functions

CHAPTER

FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. New in version 2.3.

True
The true value of the bool type. New in version 2.3.

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Changed in version 2.4: Assignments to None are illegal and
raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__(), __lt__(), and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug__
This constant is true if Python was not started with an -O option. It cannot be reassigned. See also the assert
statement.

Note: The name None cannot be reassigned (assignments to it, even as an attribute name, raise SyntaxError), so
it can be considered a “true” constant.

4.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the -S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.

quit
exit

Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemExit with the specified exit code.

copyright
license
credits

Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

25

The Python Library Reference, Release 2.6.9

26 Chapter 4. Built-in Constants

CHAPTER

FIVE

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because it was not
possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists. The
principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions. Some operations
are supported by several object types; in particular, practically all objects can be compared, tested for truth value,
and converted to a string (with the repr() function or the slightly different str() function). The latter function is
implicitly used when an object is written by the print() function.

5.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean operations
below. The following values are considered false:

• None

• False

• zero of any numeric type, for example, 0, 0L, 0.0, 0j.

• any empty sequence, for example, ”, (), [].

• any empty mapping, for example, {}.

• instances of user-defined classes, if the class defines a __nonzero__() or __len__() method, when that
method returns the integer zero or bool value False. 1

All other values are considered true — so objects of many types are always true. Operations and built-in functions that
have a Boolean result always return 0 or False for false and 1 or True for true, unless otherwise stated. (Important
exception: the Boolean operations or and and always return one of their operands.)

5.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

1 Additional information on these special methods may be found in the Python Reference Manual (Basic customization (in The Python Language
Reference)).

27

The Python Library Reference, Release 2.6.9

Operation Result Notes
x or y if x is false, then y, else x (1)
x and y if x is false, then x, else y (2)
not x if x is false, then True, else False (3)

Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.

2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b), and
a == not b is a syntax error.

5.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y
and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found
to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
!= not equal (1)
is object identity
is not negated object identity

Notes:

1. != can also be written <>, but this is an obsolete usage kept for backwards compatibility only. New code should
always use !=.

Objects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently. The <, <=, > and >= operators will raise
a TypeError exception when any operand is a complex number. Instances of a class normally compare as non-equal
unless the class defines the __cmp__() method. Refer to Basic customization (in The Python Language Reference))
for information on the use of this method to effect object comparisons.

CPython implementation detail: Objects of different types except numbers are ordered by their type names; objects
of the same types that don’t support proper comparison are ordered by their address. Two more operations with the
same syntactic priority, in and not in, are supported only by sequence types (below).

5.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex numbers.
In addition, Booleans are a subtype of plain integers. Plain integers (also just called integers) are implemented using
long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the maximum plain integer
value for the current platform, the minimum value is -sys.maxint - 1). Long integers have unlimited precision.

28 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

Floating point numbers are implemented using double in C. All bets on their precision are off unless you happen to
know the machine you are working with.

Complex numbers have a real and imaginary part, which are each implemented using double in C. To extract these
parts from a complex number z, use z.real and z.imag. Numbers are created by numeric literals or as the result
of built-in functions and operators. Unadorned integer literals (including binary, hex, and octal numbers) yield plain
integers unless the value they denote is too large to be represented as a plain integer, in which case they yield a long
integer. Integer literals with an ’L’ or ’l’ suffix yield long integers (’L’ is preferred because 1l looks too much
like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating point numbers. Appending
’j’ or ’J’ to a numeric literal yields a complex number with a zero real part. A complex numeric literal is the sum of
a real and an imaginary part. Python fully supports mixed arithmetic: when a binary arithmetic operator has operands
of different numeric types, the operand with the “narrower” type is widened to that of the other, where plain integer is
narrower than long integer is narrower than floating point is narrower than complex. Comparisons between numbers
of mixed type use the same rule. 2 The constructors int(), long(), float(), and complex() can be used to
produce numbers of a specific type.

All built-in numeric types support the following operations. See The power operator (in The Python Language Refer-
ence) and later sections for the operators’ priorities.

Operation Result Notes
x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y (1)
x // y (floored) quotient of x and y (4)(5)
x % y remainder of x / y (4)
-x x negated
+x x unchanged
abs(x) absolute value or magnitude of x (3)
int(x) x converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point (6)
complex(re,im) a complex number with real part re, imaginary part im. im defaults to zero.
c.conjugate() conjugate of the complex number c. (Identity on real numbers)
divmod(x, y) the pair (x // y, x % y) (3)(4)
pow(x, y) x to the power y (3)(7)
x ** y x to the power y (7)

Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

2. Conversion from floats using int() or long() truncates toward zero like the related function,
math.trunc(). Use the function math.floor() to round downward and math.ceil() to round up-
ward.

3. See Built-in Functions for a full description.

4. Complex floor division operator, modulo operator, and divmod(). Deprecated since version 2.3: Instead
convert to float using abs() if appropriate.

5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

2 As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples.

5.4. Numeric Types — int, float, long, complex 29

The Python Library Reference, Release 2.6.9

6. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity. New in version 2.6.

7. Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.

All numbers.Real types (int, long, and float) also include the following operations:

Operation Result Notes
math.trunc(x) x truncated to Integral
round(x[, n]) x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor(x) the greatest integral float <= x
math.ceil(x) the least integral float >= x

5.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).

This table lists the bit-string operations sorted in ascending priority:

Operation Result Notes
x | y bitwise or of x and y
x ^ y bitwise exclusive or of x and y
x & y bitwise and of x and y
x << n x shifted left by n bits (1)(2)
x >> n x shifted right by n bits (1)(3)
~x the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.

2. A left shift by n bits is equivalent to multiplication by pow(2, n). A long integer is returned if the result
exceeds the range of plain integers.

3. A right shift by n bits is equivalent to division by pow(2, n).

5.4.2 Additional Methods on Float

The float type has some additional methods.

as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs. New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading 0x and a trailing p and exponent. New in version 2.6.

30 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

fromhex(s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace. New in version 2.6.

Note that float.hex() is an instance method, while float.fromhex() is a class method.

A hexadecimal string takes the form:

[sign] [’0x’] integer [’.’ fraction] [’p’ exponent]

where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex() is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s %a format
character or Java’s Double.toHexString are accepted by float.fromhex().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10, or 3740.0:

>>> float.fromhex(’0x3.a7p10’)
3740.0

Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
’0x1.d380000000000p+11’

5.5 Iterator Types

New in version 2.2. Python supports a concept of iteration over containers. This is implemented using two distinct
methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter__()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

__iter__()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C API.

next()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

5.5. Iterator Types 31

The Python Library Reference, Release 2.6.9

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’s next() method raises StopIteration, it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

5.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter__() and next() methods. More information about generators can be found in the docu-
mentation for the yield expression (in The Python Language Reference).

5.6 Sequence Types — str, unicode, list, tuple, buffer, xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

For other containers see the built in dict and set classes, and the collections module. String literals are
written in single or double quotes: ’xyzzy’, "frobozz". See String literals (in The Python Language Reference)
for more about string literals. Unicode strings are much like strings, but are specified in the syntax using a preceding
’u’ character: u’abc’, u"def". In addition to the functionality described here, there are also string-specific
methods described in the String Methods section. Lists are constructed with square brackets, separating items with
commas: [a, b, c]. Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as a, b, c or (). A single
item tuple must have a trailing comma, such as (d,).

Buffer objects are not directly supported by Python syntax, but can be created by calling the built-in function
buffer(). They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created using
the xrange() function. They don’t support slicing, concatenation or repetition, and using in, not in, min() or
max() on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities as
the comparison operations. The + and * operations have the same priority as the corresponding numeric operations. 3

Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table, s and t are sequences of the same type; n, i and j are integers:

Operation Result Notes
x in s True if an item of s is equal to x, else False (1)
x not in s False if an item of s is equal to x, else True (1)
s + t the concatenation of s and t (6)
s * n, n * s n shallow copies of s concatenated (2)
s[i] i‘th item of s, origin 0 (3)
s[i:j] slice of s from i to j (3)(4)
s[i:j:k] slice of s from i to j with step k (3)(5)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s

3 They must have since the parser can’t tell the type of the operands.

32 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by comparing
corresponding elements. This means that to compare equal, every element must compare equal and the two sequences
must be of the same type and have the same length. (For full details see Comparisons (in The Python Language
Reference) in the language reference.) Notes:

1. When s is a string or Unicode string object the in and not in operations act like a substring test. In Python
versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a string of any length.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also that
the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are (pointers to) this single empty list. Modifying any of the elements of lists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]

3. If i or j is negative, the index is relative to the end of the string: len(s) + i or len(s) + j is substituted.
But note that -0 is still 0.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If i or j is
greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s). If i
is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such that
0 <= n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j is
reached (but never including j). If i or j is greater than len(s), use len(s). If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

6. CPython implementation detail: If s and t are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the form s = s + t or s += t. When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version and
implementation dependent. For performance sensitive code, it is preferable to use the str.join() method
which assures consistent linear concatenation performance across versions and implementations. Changed in
version 2.4: Formerly, string concatenation never occurred in-place.

5.6.1 String Methods

Below are listed the string methods which both 8-bit strings and Unicode objects support. Note that none of these
methods take keyword arguments.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, unicode, list,
tuple, buffer, xrange section. To output formatted strings use template strings or the % operator described in the String
Formatting Operations section. Also, see the re module for string functions based on regular expressions.

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 33

The Python Library Reference, Release 2.6.9

capitalize()
Return a copy of the string with its first character capitalized and the rest lowercased.

For 8-bit strings, this method is locale-dependent.

center(width, [fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is a space).
Changed in version 2.4: Support for the fillchar argument.

count(sub, [start, [end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

decode([encoding, [errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding.
errors may be given to set a different error handling scheme. The default is ’strict’, meaning that encoding
errors raise UnicodeError. Other possible values are ’ignore’, ’replace’ and any other name regis-
tered via codecs.register_error(), see section Codec Base Classes. New in version 2.2.Changed in
version 2.3: Support for other error handling schemes added.

encode([encoding, [errors]])
Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The default for errors is
’strict’, meaning that encoding errors raise a UnicodeError. Other possible values are ’ignore’,
’replace’, ’xmlcharrefreplace’, ’backslashreplace’ and any other name registered via
codecs.register_error(), see section Codec Base Classes. For a list of possible encodings, see section
Standard Encodings. New in version 2.0.Changed in version 2.3: Support for ’xmlcharrefreplace’ and
’backslashreplace’ and other error handling schemes added.

endswith(suffix, [start, [end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position. Changed in version 2.5: Accept tuples as suffix.

expandtabs([tabsize])
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. The column number is reset to zero after each newline occurring in the string. If
tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other non-printing characters
or escape sequences.

find(sub, [start, [end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

format(*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces {}. Each replacement field contains either the numeric index of a posi-
tional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field
is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format(1+2)
’The sum of 1 + 2 is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

This method of string formatting is the new standard in Python 3.0, and should be preferred to the % formatting
described in String Formatting Operations in new code. New in version 2.6.

34 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

index(sub, [start, [end]])
Like find(), but raise ValueError when the substring is not found.

isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isdigit()
Return true if all characters in the string are digits and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

islower()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join(iterable)
Return a string which is the concatenation of the strings in the iterable iterable. The separator between elements
is the string providing this method.

ljust(width, [fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is
a space). The original string is returned if width is less than len(s). Changed in version 2.4: Support for the
fillchar argument.

lower()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

lstrip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> ’ spacious ’.lstrip()
’spacious ’

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 35

The Python Library Reference, Release 2.6.9

>>> ’www.example.com’.lstrip(’cmowz.’)
’example.com’

Changed in version 2.2.2: Support for the chars argument.

partition(sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings. New in version 2.5.

replace(old, new, [count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

rfind(sub, [start, [end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

rindex(sub, [start, [end]])
Like rfind() but raises ValueError when the substring sub is not found.

rjust(width, [fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than len(s). Changed in version 2.4: Support for
the fillchar argument.

rpartition(sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself. New in version 2.5.

rsplit([sep, [maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit() behaves like split() which is described in detail below. New in
version 2.4.

rstrip([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> ’ spacious ’.rstrip()
’ spacious’
>>> ’mississippi’.rstrip(’ipz’)
’mississ’

Changed in version 2.2.2: Support for the chars argument.

split([sep, [maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then there
is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, ’1„2’.split(’,’) returns [’1’, ”, ’2’]). The sep argument may consist of multiple char-
acters (for example, ’1<>2<>3’.split(’<>’) returns [’1’, ’2’, ’3’]). Splitting an empty string
with a specified separator returns [”].

36 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example, ’ 1 2 3 ’.split() returns [’1’, ’2’, ’3’], and ’ 1 2 3 ’.split(None, 1)
returns [’1’, ’2 3 ’].

splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

startswith(prefix, [start, [end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string at
that position. Changed in version 2.5: Accept tuples as prefix.

strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ’ spacious ’.strip()
’spacious’
>>> ’www.example.com’.strip(’cmowz.’)
’example’

Changed in version 2.2.2: Support for the chars argument.

swapcase()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

title()
Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):

return re.sub(r"[A-Za-z]+(’[A-Za-z]+)?",
lambda mo: mo.group(0)[0].upper() +

mo.group(0)[1:].lower(),
s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

For 8-bit strings, this method is locale-dependent.

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 37

The Python Library Reference, Release 2.6.9

translate(table, [deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars are removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

You can use the maketrans() helper function in the string module to create a translation table. For string
objects, set the table argument to None for translations that only delete characters:

>>> ’read this short text’.translate(None, ’aeiou’)
’rd ths shrt txt’

New in version 2.6: Support for a None table argument. For Unicode objects, the translate() method does
not accept the optional deletechars argument. Instead, it returns a copy of the s where all characters have been
mapped through the given translation table which must be a mapping of Unicode ordinals to Unicode ordinals,
Unicode strings or None. Unmapped characters are left untouched. Characters mapped to None are deleted.
Note, a more flexible approach is to create a custom character mapping codec using the codecs module (see
encodings.cp1251 for an example).

upper()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

zfill(width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than len(s). New in version 2.2.2.

The following methods are present only on unicode objects:

isnumeric()
Return True if there are only numeric characters in S, False otherwise. Numeric characters include digit char-
acters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR FRACTION
ONE FIFTH.

isdecimal()
Return True if there are only decimal characters in S, False otherwise. Decimal characters include digit
characters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO.

5.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also known as the
string formatting or interpolation operator. Given format % values (where format is a string or Unicode object),
% conversion specifications in format are replaced with zero or more elements of values. The effect is similar to the
using sprintf() in the C language. If format is a Unicode object, or if any of the objects being converted using the
%s conversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argument, values may be a single non-tuple object. 4 Otherwise, values must be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The ’%’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

38 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

4. Minimum field width (optional). If specified as an ’*’ (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ’.’ (dot) followed by the precision. If specified as ’*’ (an asterisk), the actual
width is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a paren-
thesised mapping key into that dictionary inserted immediately after the ’%’ character. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print ’%(language)s has %(#)03d quote types.’ % \
... {’language’: "Python", "#": 2}
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning
’#’ The value conversion will use the “alternate form” (where defined below).
’0’ The conversion will be zero padded for numeric values.
’-’ The converted value is left adjusted (overrides the ’0’ conversion if both are given).
’ ’ (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
’+’ A sign character (’+’ or ’-’) will precede the conversion (overrides a “space” flag).

A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld is identical
to %d.

The conversion types are:

Conver-
sion

Meaning Notes

’d’ Signed integer decimal.
’i’ Signed integer decimal.
’o’ Signed octal value. (1)
’u’ Obsolete type – it is identical to ’d’. (7)
’x’ Signed hexadecimal (lowercase). (2)
’X’ Signed hexadecimal (uppercase). (2)
’e’ Floating point exponential format (lowercase). (3)
’E’ Floating point exponential format (uppercase). (3)
’f’ Floating point decimal format. (3)
’F’ Floating point decimal format. (3)
’g’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not

less than precision, decimal format otherwise.
(4)

’G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not
less than precision, decimal format otherwise.

(4)

’c’ Single character (accepts integer or single character string).
’r’ String (converts any Python object using repr()). (5)
’s’ String (converts any Python object using str()). (6)
’%’ No argument is converted, results in a ’%’ character in the result.

Notes:

1. The alternate form causes a leading zero (’0’) to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 39

The Python Library Reference, Release 2.6.9

2. The alternate form causes a leading ’0x’ or ’0X’ (depending on whether the ’x’ or ’X’ format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

5. The %r conversion was added in Python 2.0.

The precision determines the maximal number of characters used.

6. If the object or format provided is a unicode string, the resulting string will also be unicode.

The precision determines the maximal number of characters used.

7. See PEP 237.

Since Python strings have an explicit length, %s conversions do not assume that ’\0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute value is
over 1e50 are replaced by %g conversions. 5 All other errors raise exceptions. Additional string operations are defined
in standard modules string and re.

5.6.3 XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type
is that an xrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the len() function.

5.6.4 Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence types
(when added to the language) should also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are defined on mutable sequence types (where
x is an arbitrary object):

5 These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use
and without having to know the exact precision of floating point values on a particular machine.

40 Chapter 5. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.6.9

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:j] = t slice of s from i to j is replaced by the contents of the

iterable t
del s[i:j] same as s[i:j] = []
s[i:j:k] = t the elements of s[i:j:k] are replaced by those of t (1)
del s[i:j:k] removes the elements of s[i:j:k] from the list
s.append(x) same as s[len(s):len(s)] = [x] (2)
s.extend(x) same as s[len(s):len(s)] = x (3)
s.count(x) return number of i‘s for which s[i] == x
s.index(x[, i[, j]]) return smallest k such that s[k] == x and i <= k

< j
(4)

s.insert(i, x) same as s[i:i] = [x] (5)
s.pop([i]) same as x = s[i]; del s[i]; return x (6)
s.remove(x) same as del s[s.index(x)] (4)
s.reverse() reverses the items of s in place (7)
s.sort([cmp[, key[,
reverse]]])

sort the items of s in place (7)(8)(9)(10)

Notes:

1. t must have the same length as the slice it is replacing.

2. The C implementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

3. x can be any iterable object.

4. Raises ValueErrorwhen x is not found in s. When a negative index is passed as the second or third parameter
to the index() method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previously, index() didn’t have arguments for specifying start
and stop positions.

5. When a negative index is passed as the first parameter to the insert() method, the list length is added, as for
slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

6. The pop() method is only supported by the list and array types. The optional argument i defaults to -1, so
that by default the last item is removed and returned.

7. The sort() and reverse()methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed list.

8. The sort() method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a negative, zero or
positive number depending on whether the first argument is considered smaller than, equal to, or larger than the
second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The default value is None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function.
This is because cmp is called multiple times for each list element while key and reverse touch each element
only once. Changed in version 2.3: Support for None as an equivalent to omitting cmp was added.Changed in
version 2.4: Support for key and reverse was added.

9. Starting with Python 2.3, the sort() method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 41

The Python Library Reference, Release 2.6.9

example, sort by department, then by salary grade).

10. CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python 2.3 and newer makes the list appear empty for
the duration, and raises ValueError if it can detect that the list has been mutated during a sort.

5.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, remov-
ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the built in dict, list, and tuple classes, and the collections
module.) New in version 2.4. Like other collections, sets support x in set, len(set), and for x in set.
Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not
support indexing, slicing, or other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

The constructors for both classes work the same:

class set([iterable])
class frozenset([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)
Return the cardinality of set s.

x in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint(other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersec-
tion is the empty set. New in version 2.6.

issubset(other)
set <= other()

Test whether every element in the set is in other.

set < other()
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset(other)
set >= other()

Test whether every element in other is in the set.

set > other()
Test whether the set is a true superset of other, that is, set >= other and set != other.

union(other, ...)

42 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

set | other | ...()
Return a new set with elements from the set and all others. Changed in version 2.6: Accepts multiple input
iterables.

intersection(other, ...)
set & other & ...()

Return a new set with elements common to the set and all others. Changed in version 2.6: Accepts multiple
input iterables.

difference(other, ...)
set - other - ...()

Return a new set with elements in the set that are not in the others. Changed in version 2.6: Accepts
multiple input iterables.

symmetric_difference(other)
set ^ other()

Return a new set with elements in either the set or other but not both.

copy()
Return a new set with a shallow copy of s.

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference(), issubset(), and issuperset() methods will accept any iter-
able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set(’abc’) & ’cbs’ in favor of the more readable
set(’abc’).intersection(’cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For
example, set(’abc’) == frozenset(’abc’) returns True and so does set(’abc’) in
set([frozenset(’abc’)]).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b,
or a>b. Accordingly, sets do not implement the __cmp__() method.

Since sets only define partial ordering (subset relationships), the output of the list.sort() method is unde-
fined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset(’ab’) | set(’bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update(other, ...)
set |= other | ...()

Update the set, adding elements from all others. Changed in version 2.6: Accepts multiple input iterables.

intersection_update(other, ...)
set &= other & ...()

Update the set, keeping only elements found in it and all others. Changed in version 2.6: Accepts multiple
input iterables.

difference_update(other, ...)

5.7. Set Types — set, frozenset 43

The Python Library Reference, Release 2.6.9

set -= other | ...()
Update the set, removing elements found in others. Changed in version 2.6: Accepts multiple input iter-
ables.

symmetric_difference_update(other)
set ^= other()

Update the set, keeping only elements found in either set, but not in both.

add(elem)
Add element elem to the set.

remove(elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard(elem)
Remove element elem from the set if it is present.

pop()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear()
Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update(),
difference_update(), and symmetric_difference_update() methods will accept any
iterable as an argument.

Note, the elem argument to the __contains__(), remove(), and discard() methods may be a set. To
support searching for an equivalent frozenset, the elem set is temporarily mutated during the search and then
restored. During the search, the elem set should not be read or mutated since it does not have a meaningful
value.

See Also:

Comparison to the built-in set types Differences between the sets module and the built-in set types.

5.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built in list, set, and tuple classes, and
the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as 1 and 1.0)
then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}, or by the dict
constructor.

class dict([arg])
Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments. If
no arguments are given, return a new empty dictionary. If the positional argument arg is a mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first

44 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary equal to {"one":
2, "two": 3}:

•dict(one=2, two=3)

•dict({’one’: 2, ’two’: 3})

•dict(zip((’one’, ’two’), (2, 3)))

•dict([[’two’, 3], [’one’, 2]])

The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
New in version 2.2.Changed in version 2.3: Support for building a dictionary from keyword arguments added.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map. New in version 2.5:
If a subclass of dict defines a method __missing__(), if the key key is not present, the d[key]
operation calls that method with the key key as argument. The d[key] operation then returns or raises
whatever is returned or raised by the __missing__(key) call if the key is not present. No other
operations or methods invoke __missing__(). If __missing__() is not defined, KeyError is
raised. __missing__() must be a method; it cannot be an instance variable. For an example, see
collections.defaultdict.

d[key] = value
Set d[key] to value.

del d[key]
Remove d[key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False. New in version 2.2.

key not in d
Equivalent to not key in d. New in version 2.2.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iterkeys().

clear()
Remove all items from the dictionary.

copy()
Return a shallow copy of the dictionary.

fromkeys(seq, [value])
Create a new dictionary with keys from seq and values set to value.

fromkeys() is a class method that returns a new dictionary. value defaults to None. New in version
2.3.

get(key, [default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

5.8. Mapping Types — dict 45

The Python Library Reference, Release 2.6.9

has_key(key)
Test for the presence of key in the dictionary. has_key() is deprecated in favor of key in d.

items()
Return a copy of the dictionary’s list of (key, value) pairs.

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random,
varies across Python implementations, and depends on the dictionary’s history of insertions and deletions.

If items(), keys(), values(), iteritems(), iterkeys(), and itervalues() are called
with no intervening modifications to the dictionary, the lists will directly correspond. This allows
the creation of (value, key) pairs using zip(): pairs = zip(d.values(), d.keys()).
The same relationship holds for the iterkeys() and itervalues() methods: pairs =
zip(d.itervalues(), d.iterkeys()) provides the same value for pairs. Another way to
create the same list is pairs = [(v, k) for (k, v) in d.iteritems()].

iteritems()
Return an iterator over the dictionary’s (key, value) pairs. See the note for dict.items().

Using iteritems() while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries. New in version 2.2.

iterkeys()
Return an iterator over the dictionary’s keys. See the note for dict.items().

Using iterkeys() while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries. New in version 2.2.

itervalues()
Return an iterator over the dictionary’s values. See the note for dict.items().

Using itervalues() while adding or deleting entries in the dictionary may raise a RuntimeError
or fail to iterate over all entries. New in version 2.2.

keys()
Return a copy of the dictionary’s list of keys. See the note for dict.items().

pop(key, [default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key
is not in the dictionary, a KeyError is raised. New in version 2.3.

popitem()
Remove and return an arbitrary (key, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem() raises a KeyError.

setdefault(key, [default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update() accepts either another dictionary object or an iterable of key/value pairs (as a tuple or other
iterable of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update(red=1, blue=2). Changed in version 2.4: Allowed the argument to be
an iterable of key/value pairs and allowed keyword arguments.

values()
Return a copy of the dictionary’s list of values. See the note for dict.items().

46 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

5.9 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in open() function. File
objects are also returned by some other built-in functions and methods, such as os.popen() and os.fdopen()
and the makefile() method of socket objects. Temporary files can be created using the tempfile module, and
high-level file operations such as copying, moving, and deleting files and directories can be achieved with the shutil
module.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations where
the operation is not defined for some reason, like seek() on a tty device or writing a file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise a ValueError after the file has been closed. Calling close() more than once is allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you use the with statement. For
example, the following code will automatically close f when the with block is exited:

from __future__ import with_statement # This isn’t required in Python 2.6

with open("hello.txt") as f:
for line in f:

print line

In older versions of Python, you would have needed to do this to get the same effect:

f = open("hello.txt")
try:

for line in f:
print line

finally:
f.close()

Note: Not all “file-like” types in Python support use as a context manager for the with statement. If your code
is intended to work with any file-like object, you can use the function contextlib.closing() instead of
using the object directly.

flush()
Flush the internal buffer, like stdio‘s fflush(). This may be a no-op on some file-like objects.

Note: flush() does not necessarily write the file’s data to disk. Use flush() followed by os.fsync()
to ensure this behavior.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fcntl module or os.read() and friends.

Note: File-like objects which do not have a real file descriptor should not provide this method!

isatty()
Return True if the file is connected to a tty(-like) device, else False.

Note: If a file-like object is not associated with a real file, this method should not be implemented.

5.9. File Objects 47

The Python Library Reference, Release 2.6.9

next()
A file object is its own iterator, for example iter(f) returns f (unless f is closed). When a file is used as an
iterator, typically in a for loop (for example, for line in f: print line), the next() method is
called repeatedly. This method returns the next input line, or raises StopIteration when EOF is hit when
the file is open for reading (behavior is undefined when the file is open for writing). In order to make a for loop
the most efficient way of looping over the lines of a file (a very common operation), the next() method uses
a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, combining next() with other file
methods (like readline()) does not work right. However, using seek() to reposition the file to an absolute
position will flush the read-ahead buffer. New in version 2.3.

read([size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the size argument
is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object. An empty
string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after an EOF is hit.) Note that this method may call the underlying C function fread() more than
once in an effort to acquire as close to size bytes as possible. Also note that when in non-blocking mode, less
data than was requested may be returned, even if no size parameter was given.

Note: This function is simply a wrapper for the underlying fread() C function, and will behave the same in
corner cases, such as whether the EOF value is cached.

readline([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete line). 6 If the size argument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned only
when EOF is encountered immediately.

Note: Unlike stdio‘s fgets(), the returned string contains null characters (’\0’) if they occurred in the
input.

readlines([sizehint])
Read until EOF using readline() and return a list containing the lines thus read. If the optional sizehint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

xreadlines()
This method returns the same thing as iter(f). New in version 2.1.Deprecated since version 2.3: Use for
line in file instead.

seek(offset, [whence])
Set the file’s current position, like stdio‘s fseek(). The whence argument is optional and defaults to
os.SEEK_SET or 0 (absolute file positioning); other values are os.SEEK_CUR or 1 (seek relative to the
current position) and os.SEEK_END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek(2, os.SEEK_CUR) advances the position by two and f.seek(-3,
os.SEEK_END) sets the position to the third to last.

Note that if the file is opened for appending (mode ’a’ or ’a+’), any seek() operations will be undone at
the next write. If the file is only opened for writing in append mode (mode ’a’), this method is essentially
a no-op, but it remains useful for files opened in append mode with reading enabled (mode ’a+’). If the file
is opened in text mode (without ’b’), only offsets returned by tell() are legal. Use of other offsets causes
undefined behavior.

Note that not all file objects are seekable. Changed in version 2.6: Passing float values as offset has been
deprecated.

6 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended
in a newline or not (yes this happens!).

48 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

tell()
Return the file’s current position, like stdio‘s ftell().

Note: On Windows, tell() can return illegal values (after an fgets()) when reading files with Unix-style
line-endings. Use binary mode (’rb’) to circumvent this problem.

truncate([size])
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many Unix variants.

write(str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until the flush() or close() method is called.

writelines(sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to match readlines(); writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as file.readline(), and iteration ends
when the readline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attribute; the close() method changes
the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may also be None, in which case the file
uses the system default encoding for converting Unicode strings. New in version 2.3.

errors
The Unicode error handler used along with the encoding. New in version 2.6.

mode
The I/O mode for the file. If the file was created using the open() built-in function, this will be the value of
the mode parameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created using open(), the name of the file. Otherwise, some string that indicates the
source of the file object, of the form <...>. This is a read-only attribute and may not be present on all file-like
objects.

newlines
If Python was built with the --with-universal-newlines option to configure (the default) this read-
only attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can take are ’\r’, ’\n’, ’\r\n’, None (unknown, no
newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conventions
were encountered. For files not opened in universal newline read mode the value of this attribute will be None.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the print

5.9. File Objects 49

The Python Library Reference, Release 2.6.9

statement. Classes that are trying to simulate a file object should also have a writable softspace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute.

Note: This attribute is not used to control the print statement, but to allow the implementation of print to
keep track of its internal state.

5.10 Context Manager Types

New in version 2.5. Python’s with statement supports the concept of a runtime context defined by a context manager.
This is implemented using two separate methods that allow user-defined classes to define a runtime context that is
entered before the statement body is executed and exited when the statement ends.

The context management protocol consists of a pair of methods that need to be provided for a context manager object
to define a runtime context:

__enter__()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open() to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext(). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context in
the body of the with statement without affecting code outside the with statement.

__exit__(exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code (such as contextlib.nested) to easily detect whether or not an __exit__()
method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the contextlib module for some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__() and __exit__() methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API.
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

50 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

5.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

5.11.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __dict__
attribute is not possible (you can write m.__dict__[’a’] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>.

5.11.2 Classes and Class Instances

See Objects, values and types (in The Python Language Reference) and Class definitions (in The Python Language
Reference) for these.

5.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See Function definitions (in The Python Language Reference) for more information.

5.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the object
on which the method operates, and m.im_func is the function implementing the method. Calling m(arg-1,
arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self, arg-1, arg-2,
..., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed through an instance
or a class, respectively. When a method is unbound, its im_self attribute will be None and if called, an explicit
self object must be passed as the first argument. In this case, self must be an instance of the unbound method’s
class (or a subclass of that class), otherwise a TypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results in a TypeError being raised. In order
to set a method attribute, you need to explicitly set it on the underlying function object:

5.11. Other Built-in Types 51

The Python Library Reference, Release 2.6.9

class C:
def method(self):

pass

c = C()
c.method.im_func.whoami = ’my name is c’

See The standard type hierarchy (in The Python Language Reference) for more information.

5.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-in compile() function and can be extracted from function objects
through their func_code attribute. See also the code module. A code object can be executed or evaluated by
passing it (instead of a source string) to the exec statement or the built-in eval() function.

See The standard type hierarchy (in The Python Language Reference) for more information.

5.11.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function type(). There
are no special operations on types. The standard module types defines names for all standard built-in types.

Types are written like this: <type ’int’>.

5.11.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It is written as None.

5.11.8 The Ellipsis Object

This object is used by extended slice notation (see Slicings (in The Python Language Reference)). It supports no
special operations. There is exactly one ellipsis object, named Ellipsis (a built-in name).

It is written as Ellipsis.

5.11.9 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool() can be used to
cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).
They are written as False and True, respectively.

5.11.10 Internal Objects

See The standard type hierarchy (in The Python Language Reference) for this information. It describes stack frame
objects, traceback objects, and slice objects.

52 Chapter 5. Built-in Types

The Python Library Reference, Release 2.6.9

5.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir() built-in function.

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods__
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes. This attribute
is no longer available.

__members__
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes. This attribute
is no longer available.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object.

__name__
The name of the class or type.

The following attributes are only supported by new-style classes.

__mro__
This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

mro()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in __mro__.

__subclasses__()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list of
all those references still alive. Example:

>>> int.__subclasses__()
[<type ’bool’>]

5.12. Special Attributes 53

The Python Library Reference, Release 2.6.9

54 Chapter 5. Built-in Types

CHAPTER

SIX

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the module exceptions. This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as the exceptions
module. For class exceptions, in a try statement with an except clause that mentions a particular class, that clause
also handles any exception classes derived from that class (but not exception classes from which it is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name. The
built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to the raise statement. If the exception class is derived from the standard root class BaseException,
the associated value is present as the exception instance’s args attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Exception class and not BaseException. More information on defining excep-
tions is available in the Python Tutorial under User-defined Exceptions (in Python Tutorial).

The following exceptions are only used as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that
use Exception). If str() or unicode() is called on an instance of this class, the representation of the
argument(s) to the instance are returned or the empty string when there were no arguments. All arguments are
stored in args as a tuple. New in version 2.5.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class. Changed in version 2.5: Changed to inherit from BaseException.

exception StandardError
The base class for all built-in exceptions except StopIteration, GeneratorExit,
KeyboardInterrupt and SystemExit. StandardError itself is derived from Exception.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs.lookup().

55

The Python Library Reference, Release 2.6.9

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When exceptions
of this type are created with a 2-tuple, the first item is available on the instance’s errno attribute (it is assumed
to be an error number), and the second item is available on the strerror attribute (it is usually the associated
error message). The tuple itself is also available on the args attribute. New in version 1.5.2. When an
EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as above, while
the third item is available on the filename attribute. However, for backwards compatibility, the args attribute
contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The errno and
strerror attributes are also None when the instance was created with other than 2 or 3 arguments. In this
last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see Attribute references (in The Python Language Reference)) or assignment
fails. (When an object does not support attribute references or attribute assignments at all, TypeError is
raised.)

exception EOFError
Raised when one of the built-in functions (input() or raw_input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the file.read() and file.readline()methods return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the --with-fpectl option, or the WANT_SIGFPE_HANDLER symbol is defined
in the pyconfig.h file.

exception GeneratorExit
Raise when a generator‘s close() method is called. It directly inherits from BaseException instead of
StandardError since it is technically not an error. New in version 2.5.Changed in version 2.6: Changed to
inherit from BaseException.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on exception
instance attributes. Changed in version 2.6: Changed socket.error to use this as a base class.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails
to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in function input() or raw_input() is waiting
for input also raise this exception. The exception inherits from BaseException so as to not be accidentally

56 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.6.9

caught by code that catches Exception and thus prevent the interpreter from exiting. Changed in version 2.5:
Changed to inherit from BaseException.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exception OSError
This exception is derived from EnvironmentError. It is raised when a function returns a system-related

error (not for illegal argument types or other incidental errors). The errno attribute is a numeric error code
from errno, and the strerror attribute is the corresponding string, as would be printed by the C function
perror(). See the module errno, which contains names for the error codes defined by the underlying
operating system.

For exceptions that involve a file system path (such as chdir() or unlink()), the exception instance will
contain a third attribute, filename, which is the file name passed to the function. New in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raise MemoryError than give up) and for most operations with plain integers,
which return a long integer instead. Because of the lack of standardization of floating point exception handling
in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref.proxy() function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module. New in version 2.2: Previously known as the weakref.ReferenceError
exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator‘s next() method to signal that there are no further values. This is derived from
Exception rather than StandardError, since this is not considered an error in its normal application.
New in version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an exec
statement, in a call to the built-in function eval() or input(), or when reading the initial script or standard
input (also interactively).

Instances of this class have attributes filename, lineno, offset and text for easier access to the details.
str() of the exception instance returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to

57

The Python Library Reference, Release 2.6.9

abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of
the Python interpreter (sys.version; it is also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exception SystemExit
This exception is raised by the sys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C’s exit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to None).
Also, this exception derives directly from BaseException and not StandardError, since it is not techni-
cally an error.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit() function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to fork()).

The exception inherits from BaseException instead of StandardError or Exception so that it is not
accidentally caught by code that catches Exception. This allows the exception to properly propagate up and
cause the interpreter to exit. Changed in version 2.5: Changed to inherit from BaseException.

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError. New in
version 2.0.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError. New in
version 2.3.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception VMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an errno
value. The winerror and strerror values are created from the return values of the GetLastError()
and FormatMessage() functions from the Windows Platform API. The errno value maps the winerror

58 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.6.9

value to corresponding errno.h values. This is a subclass of OSError. New in version 2.0.Changed in
version 2.5: Previous versions put the GetLastError() codes into errno.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports. New in version 2.5.

exception UnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

6.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StandardError
| +-- BufferError
| +-- ArithmeticError
| | +-- FloatingPointError
| | +-- OverflowError
| | +-- ZeroDivisionError
| +-- AssertionError
| +-- AttributeError
| +-- EnvironmentError
| | +-- IOError
| | +-- OSError
| | +-- WindowsError (Windows)

6.1. Exception hierarchy 59

The Python Library Reference, Release 2.6.9

| | +-- VMSError (VMS)
| +-- EOFError
| +-- ImportError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- MemoryError
| +-- NameError
| | +-- UnboundLocalError
| +-- ReferenceError
| +-- RuntimeError
| | +-- NotImplementedError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- SystemError
| +-- TypeError
| +-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning

60 Chapter 6. Built-in Exceptions

CHAPTER

SEVEN

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods described in the Sequence Types — str,
unicode, list, tuple, buffer, xrange section, and also the string-specific methods described in the String Methods section.
To output formatted strings use template strings or the % operator described in the String Formatting Operations
section. Also, see the re module for string functions based on regular expressions.

7.1 string — Common string operations

The string module contains a number of useful constants and classes, as well as some deprecated legacy functions
that are also available as methods on strings. In addition, Python’s built-in string classes support the sequence type
methods described in the Sequence Types — str, unicode, list, tuple, buffer, xrange section, and also the string-specific
methods described in the String Methods section. To output formatted strings use template strings or the % operator
described in the String Formatting Operations section. Also, see the re module for string functions based on regular
expressions.

7.1.1 String constants

The constants defined in this module are:

ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

ascii_lowercase
The lowercase letters ’abcdefghijklmnopqrstuvwxyz’. This value is not locale-dependent and will not
change.

ascii_uppercase
The uppercase letters ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. This value is not locale-dependent and will not
change.

digits
The string ’0123456789’.

hexdigits
The string ’0123456789abcdefABCDEF’.

letters
The concatenation of the strings lowercase and uppercase described below. The specific value is locale-
dependent, and will be updated when locale.setlocale() is called.

61

The Python Library Reference, Release 2.6.9

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
’abcdefghijklmnopqrstuvwxyz’. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

octdigits
The string ’01234567’.

punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab.

7.1.2 String Formatting

New in version 2.6. The built-in str and unicode classes provide the ability to do complex variable substitutions and
value formatting via the str.format() method described in PEP 3101. The Formatter class in the string
module allows you to create and customize your own string formatting behaviors using the same implementation as
the built-in format() method.

class Formatter()
The Formatter class has the following public methods:

format(format_string, *args, *kwargs)
format() is the primary API method. It takes a format template string, and an arbitrary set of positional
and keyword argument. format() is just a wrapper that calls vformat().

vformat(format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the *args and **kwds syntax. vformat() does the work of breaking up
the format template string into character data and replacement fields. It calls the various methods described
below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

parse(format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conver-
sion). This is used by vformat() to break the string in to either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec
and conversion will be None.

get_field(field_name, args, kwargs)
Given field_name as returned by parse() (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as

62 Chapter 7. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.6.9

“0[name]” or “label.title”. args and kwargs are as passed in to vformat(). The return value used_key
has the same meaning as the key parameter to get_value().

get_value(key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to vformat(), and the kwargs parameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value() to be called with a key ar-
gument of 0. The name attribute will be looked up after get_value() returns by calling the built-in
getattr() function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError should
be raised.

check_unused_args(used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The set
of unused args can be calculated from these parameters. check_unused_args() is assumed to throw
an exception if the check fails.

format_field(value, format_spec)
format_field() simply calls the global format() built-in. The method is provided so that sub-
classes can override it.

convert_field(value, conversion)
Converts the value (returned by get_field()) given a conversion type (as in the tuple returned by the
parse() method). The default version understands ‘r’ (repr) and ‘s’ (str) conversion types.

7.1.3 Format String Syntax

The str.format() method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces {}. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: {{ and }}.

The grammar for a replacement field is as follows:

replacement_field ::= “{” field_name [”!” conversion] [”:” format_spec] “}”
field_name ::= (identifier | integer) (“.” attribute_name | “[” element_index “]”)*
attribute_name ::= identifier
element_index ::= integer | index_string
index_string ::= <any source character except “]”> +
conversion ::= “r” | “s”
format_spec ::= <described in the next section>

In less formal terms, the replacement field starts with a field_name, which can either be a number (for a positional
argument), or an identifier (for keyword arguments). Following this is an optional conversion field, which is preceded
by an exclamation point ’!’, and a format_spec, which is preceded by a colon ’:’.

7.1. string — Common string operations 63

The Python Library Reference, Release 2.6.9

See also the Format Specification Mini-Language section.

The field_name itself begins with either a number or a keyword. If it’s a number, it refers to a positional argument,
and if it’s a keyword it refers to a named keyword argument. This can be followed by any number of index or attribute
expressions. An expression of the form ’.name’ selects the named attribute using getattr(), while an expression
of the form ’[index]’ does an index lookup using __getitem__().

Some simple format string examples:

"First, thou shalt count to {0}" # References first positional argument
"My quest is {name}" # References keyword argument ’name’
"Weight in tons {0.weight}" # ’weight’ attribute of first positional arg
"Units destroyed: {players[0]}" # First element of keyword argument ’players’.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format__() method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __format__(),
the normal formatting logic is bypassed.

Two conversion flags are currently supported: ’!s’which calls str() on the value, and ’!r’which calls repr().

Some examples:

"Harold’s a clever {0!s}" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can contain
only a field name; conversion flags and format specifications are not allowed. The replacement fields within the
format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax). They can also be passed directly to the built-in format() function.
Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format string ("") produces the same result as if you had called str() on the
value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

format_spec ::= [[fill]align][sign][#][0][width][.precision][type]
fill ::= <a character other than ‘}’>
align ::= “<” | “>” | “=” | “^”
sign ::= “+” | “-” | ” “
width ::= integer
precision ::= integer
type ::= “b” | “c” | “d” | “e” | “E” | “f” | “F” | “g” | “G” | “n” | “o” | “s” | “x” | “X” | “%”

64 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

The fill character can be any character other than ‘}’ (which signifies the end of the field). The presence of a fill
character is signaled by the next character, which must be one of the alignment options. If the second character of
format_spec is not a valid alignment option, then it is assumed that both the fill character and the alignment option are
absent.

The meaning of the various alignment options is as follows:

Op-
tion

Meaning

’<’ Forces the field to be left-aligned within the available space (this is the default).
’>’ Forces the field to be right-aligned within the available space.
’=’ Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields

in the form ‘+000000120’. This alignment option is only valid for numeric types.
’^’ Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Option Meaning
’+’ indicates that a sign should be used for both positive as well as negative numbers.
’-’ indicates that a sign should be used only for negative numbers (this is the default behavior).
space indicates that a leading space should be used on positive numbers, and a minus sign on negative

numbers.

The ’#’ option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies that
the output will be prefixed by ’0b’, ’0o’, or ’0x’, respectively.

width is a decimal integer defining the minimum field width. If not specified, then the field width will be determined
by the content.

If the width field is preceded by a zero (’0’) character, this enables zero-padding. This is equivalent to an alignment
type of ’=’ and a fill character of ’0’.

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with ’f’ and ’F’, or before and after the decimal point for a floating point value formatted with
’g’ or ’G’. For non-number types the field indicates the maximum field size - in other words, how many characters
will be used from the field content. The precision is not allowed for integer values.

Finally, the type determines how the data should be presented.

The available string presentation types are:

Type Meaning
’s’ String format. This is the default type for strings and may be omitted.
None The same as ’s’.

The available integer presentation types are:

Type Meaning
’b’ Binary format. Outputs the number in base 2.
’c’ Character. Converts the integer to the corresponding unicode character before printing.
’d’ Decimal Integer. Outputs the number in base 10.
’o’ Octal format. Outputs the number in base 8.
’x’ Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.
’X’ Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.
’n’ Number. This is the same as ’d’, except that it uses the current locale setting to insert the appropriate

number separator characters.
None The same as ’d’.

7.1. string — Common string operations 65

The Python Library Reference, Release 2.6.9

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed
below (except ’n’ and None). When doing so, float() is used to convert the integer to a floating point number
before formatting.

The available presentation types for floating point and decimal values are:

Type Meaning
’e’ Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exponent.
’E’ Exponent notation. Same as ’e’ except it uses an upper case ‘E’ as the separator character.
’f’ Fixed point. Displays the number as a fixed-point number.
’F’ Fixed point. Same as ’f’.
’g’ General format. For a given precision p >= 1, this rounds the number to p significant digits and then

formats the result in either fixed-point format or in scientific notation, depending on its magnitude.
The precise rules are as follows: suppose that the result formatted with presentation type ’e’ and
precision p-1 would have exponent exp. Then if -4 <= exp < p, the number is formatted with
presentation type ’f’ and precision p-1-exp. Otherwise, the number is formatted with presentation type
’e’ and precision p-1. In both cases insignificant trailing zeros are removed from the significand, and the
decimal point is also removed if there are no remaining digits following it.
Postive and negative infinity, positive and negative zero, and nans, are formatted as inf, -inf, 0, -0 and
nan respectively, regardless of the precision.
A precision of 0 is treated as equivalent to a precision of 1.

’G’ General format. Same as ’g’ except switches to ’E’ if the number gets too large. The representations of
infinity and NaN are uppercased, too.

’n’ Number. This is the same as ’g’, except that it uses the current locale setting to insert the appropriate
number separator characters.

’%’ Percentage. Multiplies the number by 100 and displays in fixed (’f’) format, followed by a percent sign.
None The same as ’g’.

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old %-formatting, with the addition of the {} and with : used instead
of %. For example, ’%03.2f’ can be translated to ’{0:03.2f}’.

The new format syntax also supports new and different options, shown in the follow examples.

Accessing arguments by position:

>>> ’{0}, {1}, {2}’.format(’a’, ’b’, ’c’)
’a, b, c’
>>> ’{2}, {1}, {0}’.format(’a’, ’b’, ’c’)
’c, b, a’
>>> ’{2}, {1}, {0}’.format(*’abc’) # unpacking argument sequence
’c, b, a’
>>> ’{0}{1}{0}’.format(’abra’, ’cad’) # arguments’ indices can be repeated
’abracadabra’

Accessing arguments by name:

>>> ’Coordinates: {latitude}, {longitude}’.format(latitude=’37.24N’, longitude=’-115.81W’)
’Coordinates: 37.24N, -115.81W’
>>> coord = {’latitude’: ’37.24N’, ’longitude’: ’-115.81W’}
>>> ’Coordinates: {latitude}, {longitude}’.format(**coord)
’Coordinates: 37.24N, -115.81W’

Accessing arguments’ attributes:

66 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

>>> c = 3-5j
>>> (’The complex number {0} is formed from the real part {0.real} ’
... ’and the imaginary part {0.imag}.’).format(c)
’The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.’
>>> class Point(object):
... def __init__(self, x, y):
... self.x, self.y = x, y
... def __str__(self):
... return ’Point({self.x}, {self.y})’.format(self=self)
...
>>> str(Point(4, 2))
’Point(4, 2)’

Accessing arguments’ items:

>>> coord = (3, 5)
>>> ’X: {0[0]}; Y: {0[1]}’.format(coord)
’X: 3; Y: 5’

Replacing %s and %r:

>>> "repr() shows quotes: {0!r}; str() doesn’t: {1!s}".format(’test1’, ’test2’)
"repr() shows quotes: ’test1’; str() doesn’t: test2"

Aligning the text and specifying a width:

>>> ’{0:<30}’.format(’left aligned’)
’left aligned ’
>>> ’{0:>30}’.format(’right aligned’)
’ right aligned’
>>> ’{0:^30}’.format(’centered’)
’ centered ’
>>> ’{0:*^30}’.format(’centered’) # use ’*’ as a fill char
’***********centered***********’

Replacing %+f, %-f, and % f and specifying a sign:

>>> ’{0:+f}; {0:+f}’.format(3.14, -3.14) # show it always
’+3.140000; -3.140000’
>>> ’{0: f}; {0: f}’.format(3.14, -3.14) # show a space for positive numbers
’ 3.140000; -3.140000’
>>> ’{0:-f}; {0:-f}’.format(3.14, -3.14) # show only the minus -- same as ’{0:f}; {0:f}’
’3.140000; -3.140000’

Replacing %x and %o and converting the value to different bases:

>>> # format also supports binary numbers
>>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)
’int: 42; hex: 2a; oct: 52; bin: 101010’
>>> # with 0x, 0o, or 0b as prefix:
>>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)
’int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010’

Expressing a percentage:

>>> points = 19.5
>>> total = 22
>>> ’Correct answers: {0:.2%}.’.format(points/total)
’Correct answers: 88.64%’

7.1. string — Common string operations 67

The Python Library Reference, Release 2.6.9

Using type-specific formatting:

>>> import datetime
>>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)
>>> ’{0:%Y-%m-%d %H:%M:%S}’.format(d)
’2010-07-04 12:15:58’

Nesting arguments and more complex examples:

>>> for align, text in zip(’<^>’, [’left’, ’center’, ’right’]):
... ’{0:{align}{fill}16}’.format(text, fill=align, align=align)
...
’left<<<<<<<<<<<<’
’^^^^^center^^^^^’
’>>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> ’{0:02X}{1:02X}{2:02X}{3:02X}’.format(*octets)
’C0A80001’
>>> int(_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range(5,12):
... for base in ’dXob’:
... print ’{0:{width}{base}}’.format(num, base=base, width=width),
... print
...

5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

7.1.4 Template strings

New in version 2.4. Templates provide simpler string substitutions as described in PEP 292. Instead of the normal
%-based substitutions, Templates support $-based substitutions, using the following rules:

• $$ is an escape; it is replaced with a single $.

• $identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" must spell a Python identifier. The first non-identifier character after the $ character termi-
nates this placeholder specification.

• ${identifier} is equivalent to $identifier. It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.

The string module provides a Template class that implements these rules. The methods of Template are:

class Template(template)
The constructor takes a single argument which is the template string.

68 Chapter 7. String Services

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 2.6.9

substitute(mapping, [**kws])
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kws are given and there are duplicates, the
placeholders from kws take precedence.

safe_substitute(mapping, [**kws])
Like substitute(), except that if placeholders are missing from mapping and kws, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute(), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another sense, safe_substitute() may be
anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template
>>> s = Template(’$who likes $what’)
>>> s.substitute(who=’tim’, what=’kung pao’)
’tim likes kung pao’
>>> d = dict(who=’tim’)
>>> Template(’Give $who $100’).substitute(d)
Traceback (most recent call last):
[...]
ValueError: Invalid placeholder in string: line 1, col 10
>>> Template(’$who likes $what’).substitute(d)
Traceback (most recent call last):
[...]
KeyError: ’what’
>>> Template(’$who likes $what’).safe_substitute(d)
’tim likes $what’

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

• delimiter – This is the literal string describing a placeholder introducing delimiter. The default value $. Note
that this should not be a regular expression, as the implementation will call re.escape() on this string as
needed.

• idpattern – This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular expression [_a-z][_a-z0-9]*.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

• escaped – This group matches the escape sequence, e.g. $$, in the default pattern.

• named – This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

7.1. string — Common string operations 69

The Python Library Reference, Release 2.6.9

• braced – This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

• invalid – This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

7.1.5 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

capwords(s, [sep])
Split the argument into words using str.split(), capitalize each word using str.capitalize(), and
join the capitalized words using str.join(). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

maketrans(from, to)
Return a translation table suitable for passing to translate(), that will map each character in from into the
character at the same position in to; from and to must have the same length.

Note: Don’t use strings derived from lowercase and uppercase as arguments; in some locales, these
don’t have the same length. For case conversions, always use str.lower() and str.upper().

7.1.6 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see section String Methods
for more information on those. You should consider these functions as deprecated, although they will not be removed
until Python 3.0. The functions defined in this module are:

atof(s)
Deprecated since version 2.0: Use the float() built-in function. Convert a string to a floating point number.
The string must have the standard syntax for a floating point literal in Python, optionally preceded by a sign (+
or -). Note that this behaves identical to the built-in function float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi(s, [base])
Deprecated since version 2.0: Use the int() built-in function. Convert string s to an integer in the given base.
The string must consist of one or more digits, optionally preceded by a sign (+ or -). The base defaults to 10. If
it is 0, a default base is chosen depending on the leading characters of the string (after stripping the sign): 0x or
0X means 16, 0 means 8, anything else means 10. If base is 16, a leading 0x or 0X is always accepted, though
not required. This behaves identically to the built-in function int() when passed a string. (Also note: for a
more flexible interpretation of numeric literals, use the built-in function eval().)

atol(s, [base])
Deprecated since version 2.0: Use the long() built-in function. Convert string s to a long integer in the given
base. The string must consist of one or more digits, optionally preceded by a sign (+ or -). The base argument
has the same meaning as for atoi(). A trailing l or L is not allowed, except if the base is 0. Note that when
invoked without base or with base set to 10, this behaves identical to the built-in function long() when passed
a string.

capitalize(word)
Return a copy of word with only its first character capitalized.

70 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

expandtabs(s, [tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find(s, sub, [start, [end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained in
s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative values is
the same as for slices.

rfind(s, sub, [start, [end]])
Like find() but find the highest index.

index(s, sub, [start, [end]])
Like find() but raise ValueError when the substring is not found.

rindex(s, sub, [start, [end]])
Like rfind() but raise ValueError when the substring is not found.

count(s, sub, [start, [end]])
Return the number of (non-overlapping) occurrences of substring sub in string s[start:end]. Defaults for
start and end and interpretation of negative values are the same as for slices.

lower(s)
Return a copy of s, but with upper case letters converted to lower case.

split(s, [sep, [maxsplit]])
Return a list of the words of the string s. If the optional second argument sep is absent or None, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argument sep is present and not None, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string. The
optional third argument maxsplit defaults to 0. If it is nonzero, at most maxsplit number of splits occur, and the
remainder of the string is returned as the final element of the list (thus, the list will have at most maxsplit+1
elements).

The behavior of split on an empty string depends on the value of sep. If sep is not specified, or specified as
None, the result will be an empty list. If sep is specified as any string, the result will be a list containing one
element which is an empty string.

rsplit(s, [sep, [maxsplit]])
Return a list of the words of the string s, scanning s from the end. To all intents and purposes, the resulting list
of words is the same as returned by split(), except when the optional third argument maxsplit is explicitly
specified and nonzero. When maxsplit is nonzero, at most maxsplit number of splits – the rightmost ones –
occur, and the remainder of the string is returned as the first element of the list (thus, the list will have at most
maxsplit+1 elements). New in version 2.4.

splitfields(s, [sep, [maxsplit]])
This function behaves identically to split(). (In the past, split() was only used with one argument, while
splitfields() was only used with two arguments.)

join(words, [sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep is a single
space character. It is always true that string.join(string.split(s, sep), sep) equals s.

joinfields(words, [sep])
This function behaves identically to join(). (In the past, join() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there is no joinfields() method on string
objects; use the join() method instead.

7.1. string — Common string operations 71

The Python Library Reference, Release 2.6.9

lstrip(s, [chars])
Return a copy of the string with leading characters removed. If chars is omitted or None, whitespace characters
are removed. If given and not None, chars must be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.3: The chars parameter was added.
The chars parameter cannot be passed in earlier 2.2 versions.

rstrip(s, [chars])
Return a copy of the string with trailing characters removed. If chars is omitted or None, whitespace characters
are removed. If given and not None, chars must be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.3: The chars parameter was added. The
chars parameter cannot be passed in earlier 2.2 versions.

strip(s, [chars])
Return a copy of the string with leading and trailing characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.3: The chars parameter
was added. The chars parameter cannot be passed in earlier 2.2 versions.

swapcase(s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate(s, table, [deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters using table,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal. If
table is None, then only the character deletion step is performed.

upper(s)
Return a copy of s, but with lower case letters converted to upper case.

ljust(s, width, [fillchar])
rjust(s, width, [fillchar])
center(s, width, [fillchar])

These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at least width characters wide, created by padding the string s with the character fillchar (default is
a space) until the given width on the right, left or both sides. The string is never truncated.

zfill(s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace(str, old, new, [maxreplace])
Return a copy of string str with all occurrences of substring old replaced by new. If the optional argument
maxreplace is given, the first maxreplace occurrences are replaced.

7.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns and strings
to be searched can be Unicode strings as well as 8-bit strings.

Regular expressions use the backslash character (’\’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write ’\\\\’ as the pattern
string, because the regular expression must be \\, and each backslash must be expressed as \\ inside a regular Python
string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ’r’. So r"\n" is a two-character string containing ’\’ and ’n’, while

72 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and
RegexObject methods. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See Also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second
edition of the book no longer covers Python at all, but the first edition covered writing good regular expression
patterns in great detail.

7.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string q matches B, the string
pq will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO (in).

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like ’A’, ’a’, or
’0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
last matches the string ’last’. (In the rest of this section, we’ll write RE’s in this special style, usually
without quotes, and strings to be matched ’in single quotes’.)

Some characters, like ’|’ or ’(’, are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted. Regular expression pattern strings may not contain
null bytes, but can specify the null byte using the \number notation, e.g., ’\x00’.

The special characters are:

’.’ (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

’^’ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

’$’ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode also
matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in ’foo1\nfoo2\n’ matches ‘foo2’ normally, but
‘foo1’ in MULTILINE mode; searching for a single $ in ’foo\n’ will find two (empty) matches: one just
before the newline, and one at the end of the string.

’*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

’+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

’?’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

?, +?, ?? The ’’, ’+’, and ’?’ qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <.*> is matched against ’<H1>title</H1>’, it will match the entire

7.2. re — Regular expression operations 73

The Python Library Reference, Release 2.6.9

string, and not just ’<H1>’. Adding ’?’ after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using .*? in the previous expression will
match only ’<H1>’.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example, a{6} will match exactly six ’a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3,5} will match from 3 to 5 ’a’ characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4,}b will match
aaaab or a thousand ’a’ characters followed by a b, but not aaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string ’aaaaaa’, a{3,5} will match 5 ’a’ characters, while a{3,5}? will only match 3 characters.

’\’ Either escapes special characters (permitting you to match characters like ’*’, ’?’, and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be indicated
by giving two characters and separating them by a ’-’. Special characters are not active inside sets. For
example, [akm$] will match any of the characters ’a’, ’k’, ’m’, or ’$’; [a-z] will match any lowercase
letter, and [a-zA-Z0-9] matches any letter or digit. Character classes such as \w or \S (defined below) are
also acceptable inside a range, although the characters they match depends on whether LOCALE or UNICODE
mode is in force. If you want to include a ’]’ or a ’-’ inside a set, precede it with a backslash, or place it as
the first character. The pattern []] will match ’]’, for example.

You can match the characters not within a range by complementing the set. This is indicated by including a ’^’
as the first character of the set; ’^’ elsewhere will simply match the ’^’ character. For example, [^5] will
match any character except ’5’, and [^^] will match any character except ’^’.

Note that inside [] the special forms and special characters lose their meanings and only the syntaxes described
here are valid. For example, +, *, (,), and so on are treated as literals inside [], and backreferences cannot be
used inside [].

’|’ A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ’|’ in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ’|’ are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the ’|’ operator is never greedy. To match a literal ’|’, use
\|, or enclose it inside a character class, as in [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the literals ’(’ or ’)’, use \(or \), or
enclose them inside a character class: [(] [)].

(?...) This is an extension notation (a ’?’ following a ’(’ is not meaningful otherwise). The first character
after the ’?’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group; (?P<name>...) is the only exception to this rule. Following are the currently supported
extensions.

74 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

(?iLmsux) (One or more letters from the set ’i’, ’L’, ’m’, ’s’, ’u’, ’x’.) The group matches the empty
string; the letters set the corresponding flags: re.I (ignore case), re.L (locale dependent), re.M (multi-line),
re.S (dot matches all), re.U (Unicode dependent), and re.X (verbose), for the entire regular expression.
(The flags are described in Module Contents.) This is useful if you wish to include the flags as part of the
regular expression, instead of passing a flag argument to the re.compile() function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression string, or
after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible within the rest
of the regular expression via the symbolic group name name. Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A symbolic group is also a numbered
group, just as if the group were not named. So the group named id in the example below can also be referenced
as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\w*), the group can be referenced by its name in argu-
ments to methods of match objects, such as m.group(’id’) or m.end(’id’), and also by name in the
regular expression itself (using (?P=id)) and replacement text given to .sub() (using \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Isaac (?=Asimov) will match ’Isaac ’ only if it’s followed by ’Asimov’.

(?!...) Matches if ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac
(?!Asimov) will match ’Isaac ’ only if it’s not followed by ’Asimov’.

(?<=...) Matches if the current position in the string is preceded by a match for ... that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc)def will find a match in abcdef, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning that abc or a|b are allowed, but a* and a{3,4} are not.
Note that patterns which start with positive lookbehind assertions will never match at the beginning of the string
being searched; you will most likely want to use the search() function rather than the match() function:

>>> import re
>>> m = re.search(’(?<=abc)def’, ’abcdef’)
>>> m.group(0)
’def’

This example looks for a word following a hyphen:

>>> m = re.search(’(?<=-)\w+’, ’spam-egg’)
>>> m.group(0)
’egg’

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(?(id/name)yes-pattern|no-pattern) Will try to match with yes-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no-pattern is optional and can be omitted. For
example, (<)?(\w+@\w+(?:\.\w+)+)(?(1)>) is a poor email matching pattern, which will match with

7.2. re — Regular expression operations 75

The Python Library Reference, Release 2.6.9

’<user@host.com>’ as well as ’user@host.com’, but not with ’<user@host.com’. New in ver-
sion 2.4.

The special sequences consist of ’\’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, \$ matches the character ’$’.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1 matches ’the the’ or ’55 55’, but not ’the end’ (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal value number.
Inside the ’[’ and ’]’ of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note that \b is defined as the boundary between \w and \W, so the precise set of
characters deemed to be alphanumeric depends on the values of the UNICODE and LOCALE flags. Inside a
character range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This is just the opposite of
\b, so is also subject to the settings of LOCALE and UNICODE.

\d When the UNICODE flag is not specified, matches any decimal digit; this is equivalent to the set [0-9]. With
UNICODE, it will match whatever is classified as a digit in the Unicode character properties database.

\D When the UNICODE flag is not specified, matches any non-digit character; this is equivalent to the set [^0-9].
With UNICODE, it will match anything other than character marked as digits in the Unicode character properties
database.

\s When the LOCALE and UNICODE flags are not specified, matches any whitespace character; this is equivalent to
the set [\t\n\r\f\v]. With LOCALE, it will match this set plus whatever characters are defined as space
for the current locale. If UNICODE is set, this will match the characters [\t\n\r\f\v] plus whatever is
classified as space in the Unicode character properties database.

\S When the LOCALE and UNICODE flags are not specified, matches any non-whitespace character; this is equivalent
to the set [^ \t\n\r\f\v]With LOCALE, it will match any character not in this set, and not defined as space
in the current locale. If UNICODE is set, this will match anything other than [\t\n\r\f\v] and characters
marked as space in the Unicode character properties database.

\w When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character and the underscore;
this is equivalent to the set [a-zA-Z0-9_]. With LOCALE, it will match the set [0-9_] plus whatever
characters are defined as alphanumeric for the current locale. If UNICODE is set, this will match the characters
[0-9_] plus whatever is classified as alphanumeric in the Unicode character properties database.

\W When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric character; this is equiv-
alent to the set [^a-zA-Z0-9_]. With LOCALE, it will match any character not in the set [0-9_], and not
defined as alphanumeric for the current locale. If UNICODE is set, this will match anything other than [0-9_]
and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
\\

Octal escapes are included in a limited form: If the first digit is a 0, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

76 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

7.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match checks for a match only at the
beginning of the string, while search checks for a match anywhere in the string (this is what Perl does by default).

Note that match may differ from search even when using a regular expression beginning with ’^’: ’^’ matches
only at the start of the string, or in MULTILINE mode also immediately following a newline. The “match” operation
succeeds only if the pattern matches at the start of the string regardless of mode, or at the starting position given by
the optional pos argument regardless of whether a newline precedes it.

>>> re.match("c", "abcdef") # No match
>>> re.search("c", "abcdef") # Match
<_sre.SRE_Match object at ...>

7.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile(pattern, [flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile(pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re.compile() and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re.match(), re.search() or
re.compile() are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

I
IGNORECASE

Perform case-insensitive matching; expressions like [A-Z] will match lowercase letters, too. This is not af-
fected by the current locale.

L
LOCALE

Make \w, \W, \b, \B, \s and \S dependent on the current locale.

M
MULTILINE

When specified, the pattern character ’^’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ’$’ matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ’^’ matches only at the beginning

7.2. re — Regular expression operations 77

The Python Library Reference, Release 2.6.9

of the string, and ’$’ only at the end of the string and immediately before the newline (if any) at the end of the
string.

S
DOTALL

Make the ’.’ special character match any character at all, including a newline; without this flag, ’.’ will
match anything except a newline.

U
UNICODE

Make \w, \W, \b, \B, \d, \D, \s and \S dependent on the Unicode character properties database. New in
version 2.0.

X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored, except
when in a character class or preceded by an unescaped backslash, and, when a line contains a ’#’ neither in a
character class or preceded by an unescaped backslash, all characters from the leftmost such ’#’ through the
end of the line are ignored.

That means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)

b = re.compile(r"\d+\.\d*")

search(pattern, string, [flags])
Scan through string looking for a location where the regular expression pattern produces a match, and return a
corresponding MatchObject instance. Return None if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match(pattern, string, [flags])
If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
MatchObject instance. Return None if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere in string, use search() instead.

split(pattern, string, [maxsplit=0])
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups
in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 release, maxsplit was ignored. This has been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]
>>> re.split(’(\W+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]
>>> re.split(’\W+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

78 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

>>> re.split(’(\W+)’, ’...words, words...’)
[’’, ’...’, ’words’, ’, ’, ’words’, ’...’, ’’]

That way, separator components are always found at the same relative indices within the result list (e.g., if there’s
one capturing group in the separator, the 0th, the 2nd and so forth).

Note that split will never split a string on an empty pattern match. For example:

>>> re.split(’x*’, ’foo’)
[’foo’]
>>> re.split("(?m)^$", "foo\n\nbar\n")
[’foo\n\nbar\n’]

findall(pattern, string, [flags])
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of
groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the
result unless they touch the beginning of another match. New in version 1.5.2.Changed in version 2.4: Added
the optional flags argument.

finditer(pattern, string, [flags])
Return an iterator yielding MatchObject instances over all non-overlapping matches for the RE pattern in
string. The string is scanned left-to-right, and matches are returned in the order found. Empty matches are
included in the result unless they touch the beginning of another match. New in version 2.2.Changed in version
2.4: Added the optional flags argument.

sub(pattern, repl, string, [count])
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\r is converted to a linefeed, and so forth. Unknown escapes such as \j are left alone. Backreferences, such as
\6, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r’def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):’,
... r’static PyObject*\npy_\1(void)\n{’,
... ’def myfunc():’)
’static PyObject*\npy_myfunc(void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
... if matchobj.group(0) == ’-’: return ’ ’
... else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a
RE object, or use embedded modifiers in a pattern; for example, sub("(?i)b+", "x", "bbbb BBBB")
returns ’x x’.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous match, so sub(’x*’, ’-’, ’abc’) returns ’-a-b-c-’.

7.2. re — Regular expression operations 79

The Python Library Reference, Release 2.6.9

In addition to character escapes and backreferences as described above, \g<name> will use the substring
matched by the group named name, as defined by the (?P<name>...) syntax. \g<number> uses the
corresponding group number; \g<2> is therefore equivalent to \2, but isn’t ambiguous in a replacement such
as \g<2>0. \20 would be interpreted as a reference to group 20, not a reference to group 2 followed by the
literal character ’0’. The backreference \g<0> substitutes in the entire substring matched by the RE.

subn(pattern, repl, string, [count])
Perform the same operation as sub(), but return a tuple (new_string, number_of_subs_made).

escape(string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

purge()
Clear the regular expression cache.

exception error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

7.2.4 Regular Expression Objects

class RegexObject()
The RegexObject class supports the following methods and attributes:

search(string, [pos, [endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a
corresponding MatchObject instance. Return None if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to
0. This is not completely equivalent to slicing the string; the ’^’ pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the
search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is
endpos characters long, so only the characters from pos to endpos - 1 will be searched for a match. If
endpos is less than pos, no match will be found, otherwise, if rx is a compiled regular expression object,
rx.search(string, 0, 50) is equivalent to rx.search(string[:50], 0).

>>> pattern = re.compile("d")
>>> pattern.search("dog") # Match at index 0
<_sre.SRE_Match object at ...>
>>> pattern.search("dog", 1) # No match; search doesn’t include the "d"

match(string, [pos, [endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
MatchObject instance. Return None if the string does not match the pattern; note that this is different
from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search() method.

Note: If you want to locate a match anywhere in string, use search() instead.

>>> pattern = re.compile("o")
>>> pattern.match("dog") # No match as "o" is not at the start of "dog".

80 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

>>> pattern.match("dog", 1) # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object at ...>

split(string, [maxsplit=0])
Identical to the split() function, using the compiled pattern.

findall(string, [pos, [endpos]])
Similar to the findall() function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for match().

finditer(string, [pos, [endpos]])
Similar to the finditer() function, using the compiled pattern, but also accepts optional pos and end-
pos parameters that limit the search region like for match().

sub(repl, string, [count=0])
Identical to the sub() function, using the compiled pattern.

subn(repl, string, [count=0])
Identical to the subn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compiled, or 0 if no flags were provided.

groups
The number of capturing groups in the pattern.

groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

7.2.5 Match Objects

class MatchObject()
Match Objects always have a boolean value of True, so that you can test whether e.g. match() resulted in a
match with a simple if statement. They support the following methods and attributes:

expand(template)
Return the string obtained by doing backslash substitution on the template string template, as done by the
sub() method. Escapes such as \n are converted to the appropriate characters, and numeric backref-
erences (\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the
corresponding group.

group([group1, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string;
if there are multiple arguments, the result is a tuple with one item per argument. Without arguments,
group1 defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding
return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching
the corresponding parenthesized group. If a group number is negative or larger than the number of groups
defined in the pattern, an IndexError exception is raised. If a group is contained in a part of the pattern
that did not match, the corresponding result is None. If a group is contained in a part of the pattern that
matched multiple times, the last match is returned.

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group(0) # The entire match
’Isaac Newton’

7.2. re — Regular expression operations 81

The Python Library Reference, Release 2.6.9

>>> m.group(1) # The first parenthesized subgroup.
’Isaac’
>>> m.group(2) # The second parenthesized subgroup.
’Newton’
>>> m.group(1, 2) # Multiple arguments give us a tuple.
(’Isaac’, ’Newton’)

If the regular expression uses the (?P<name>...) syntax, the groupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group(’first_name’)
’Malcolm’
>>> m.group(’last_name’)
’Reynolds’

Named groups can also be referred to by their index:

>>> m.group(1)
’Malcolm’
>>> m.group(2)
’Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r"(..)+", "a1b2c3") # Matches 3 times.
>>> m.group(1) # Returns only the last match.
’c3’

groups([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. The default argument is used for groups that did not participate in the match; it defaults to None.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

For example:

>>> m = re.match(r"(\d+)\.(\d+)", "24.1632")
>>> m.groups()
(’24’, ’1632’)

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match(r"(\d+)\.?(\d+)?", "24")
>>> m.groups() # Second group defaults to None.
(’24’, None)
>>> m.groups(’0’) # Now, the second group defaults to ’0’.
(’24’, ’0’)

82 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

groupdict([default])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The
default argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict()
{’first_name’: ’Malcolm’, ’last_name’: ’Reynolds’}

start([group])
end([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning
the whole matched substring). Return -1 if group exists but did not contribute to the match. For a match
object m, and a group g that did contribute to the match, the substring matched by group g (equivalent to
m.group(g)) is

m.string[m.start(g):m.end(g)]

Note that m.start(group) will equal m.end(group) if group matched a null string. For example,
after m = re.search(’b(c?)’, ’cba’), m.start(0) is 1, m.end(0) is 2, m.start(1)
and m.end(1) are both 2, and m.start(2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start()] + email[m.end():]
’tony@tiger.net’

span([group])
For MatchObject m, return the 2-tuple (m.start(group), m.end(group)). Note that if group
did not contribute to the match, this is (-1, -1). group defaults to zero, the entire match.

pos
The value of pos which was passed to the search() or match() method of the RegexObject. This
is the index into the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search() or match() method of the RegexObject.
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For
example, the expressions (a)b, ((a)(b)), and ((ab)) will have lastindex == 1 if applied to
the string ’ab’, while the expression (a)(b) will have lastindex == 2, if applied to the same
string.

lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group
was matched at all.

re
The regular expression object whose match() or search() method produced this MatchObject
instance.

string
The string passed to match() or search().

7.2. re — Regular expression operations 83

The Python Library Reference, Release 2.6.9

7.2.6 Examples

Checking For a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch(match):
if match is None:

return None
return ’<Match: %r, groups=%r>’ % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each
character representing a card, “a” for ace, “k” for king, “q” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r"[0-9akqj]{5}$")
>>> displaymatch(valid.match("ak05q")) # Valid.
"<Match: ’ak05q’, groups=()>"
>>> displaymatch(valid.match("ak05e")) # Invalid.
>>> displaymatch(valid.match("ak0")) # Invalid.
>>> displaymatch(valid.match("727ak")) # Valid.
"<Match: ’727ak’, groups=()>"

That last hand, "727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(r".*(.).*\1")
>>> displaymatch(pair.match("717ak")) # Pair of 7s.
"<Match: ’717’, groups=(’7’,)>"
>>> displaymatch(pair.match("718ak")) # No pairs.
>>> displaymatch(pair.match("354aa")) # Pair of aces.
"<Match: ’354aa’, groups=(’a’,)>"

To find out what card the pair consists of, one could use the group() method of MatchObject in the following
manner:

>>> pair.match("717ak").group(1)
’7’

Error because re.match() returns None, which doesn’t have a group() method:
>>> pair.match("718ak").group(1)
Traceback (most recent call last):

File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak").group(1)

AttributeError: ’NoneType’ object has no attribute ’group’

>>> pair.match("354aa").group(1)
’a’

Simulating scanf()

Python does not currently have an equivalent to scanf(). Regular expressions are generally more powerful, though
also more verbose, than scanf() format strings. The table below offers some more-or-less equivalent mappings
between scanf() format tokens and regular expressions.

84 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

scanf() Token Regular Expression
%c .
%5c .{5}
%d [-+]?\d+
%e, %E, %f, %g [-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?
%i [-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+)
%o 0[0-7]*
%s \S+
%u \d+
%x, %X 0[xX][\dA-Fa-f]+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the message maximum recursion limit exceeded. For example,

>>> s = ’Begin ’ + 1000*’a very long string ’ + ’end’
>>> re.match(’Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "/usr/local/lib/python2.5/re.py", line 132, in match

return _compile(pattern, flags).match(string)
RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of the *? pattern are special-cased to avoid recursion. Thus, the above regular
expression can avoid recursion by being recast as Begin [a-zA-Z0-9_]*?end. As a further benefit, such
regular expressions will run faster than their recursive equivalents.

search() vs. match()

In a nutshell, match() only attempts to match a pattern at the beginning of a string where search() will match a
pattern anywhere in a string. For example:

>>> re.match("o", "dog") # No match as "o" is not the first letter of "dog".
>>> re.search("o", "dog") # Match as search() looks everywhere in the string.
<_sre.SRE_Match object at ...>

Note: The following applies only to regular expression objects like those created
with re.compile("pattern"), not the primitives re.match(pattern, string) or
re.search(pattern, string).

match() has an optional second parameter that gives an index in the string where the search is to start:

>>> pattern = re.compile("o")
>>> pattern.match("dog") # No match as "o" is not at the start of "dog."

7.2. re — Regular expression operations 85

The Python Library Reference, Release 2.6.9

Equivalent to the above expression as 0 is the default starting index:
>>> pattern.match("dog", 0)

Match as "o" is the 2nd character of "dog" (index 0 is the first):
>>> pattern.match("dog", 1)
<_sre.SRE_Match object at ...>
>>> pattern.match("dog", 2) # No match as "o" is not the 3rd character of "dog."

Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example that
creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> input = """Ross McFluff: 834.345.1254 155 Elm Street
...
... Ronald Heathmore: 892.345.3428 436 Finley Avenue
... Frank Burger: 925.541.7625 662 South Dogwood Way
...
...
... Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split("\n+", input)
>>> entries
[’Ross McFluff: 834.345.1254 155 Elm Street’,
’Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
’Frank Burger: 925.541.7625 662 South Dogwood Way’,
’Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split() because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[[’Ross’, ’McFluff’, ’834.345.1254’, ’155 Elm Street’],
[’Ronald’, ’Heathmore’, ’892.345.3428’, ’436 Finley Avenue’],
[’Frank’, ’Burger’, ’925.541.7625’, ’662 South Dogwood Way’],
[’Heather’, ’Albrecht’, ’548.326.4584’, ’919 Park Place’]]

The :? pattern matches the colon after the last name, so that it does not occur in the result list. With a maxsplit of
4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]
[[’Ross’, ’McFluff’, ’834.345.1254’, ’155’, ’Elm Street’],
[’Ronald’, ’Heathmore’, ’892.345.3428’, ’436’, ’Finley Avenue’],
[’Frank’, ’Burger’, ’925.541.7625’, ’662’, ’South Dogwood Way’],
[’Heather’, ’Albrecht’, ’548.326.4584’, ’919’, ’Park Place’]]

Text Munging

sub() replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub() with a function to “munge” text, or randomize the order of all the characters in each word of a sentence

86 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

except for the first and last characters:

>>> def repl(m):
... inner_word = list(m.group(2))
... random.shuffle(inner_word)
... return m.group(1) + "".join(inner_word) + m.group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
’Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
’Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.’

Finding all Adverbs

findall() matches all occurrences of a pattern, not just the first one as search() does. For example, if one was
a writer and wanted to find all of the adverbs in some text, he or she might use findall() in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall(r"\w+ly", text)
[’carefully’, ’quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer() is useful as it
provides instances of MatchObject instead of strings. Continuing with the previous example, if one was a writer
who wanted to find all of the adverbs and their positions in some text, he or she would use finditer() in the
following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer(r"\w+ly", text):
... print ’%02d-%02d: %s’ % (m.start(), m.end(), m.group(0))
07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash (’\’) in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match(r"\W(.)\1\W", " ff ")
<_sre.SRE_Match object at ...>
>>> re.match("\\W(.)\\1\\W", " ff ")
<_sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
means r"\\". Without raw string notation, one must use "\\\\", making the following lines of code functionally
identical:

>>> re.match(r"\\", r"\\")
<_sre.SRE_Match object at ...>
>>> re.match("\\\\", r"\\")
<_sre.SRE_Match object at ...>

7.2. re — Regular expression operations 87

The Python Library Reference, Release 2.6.9

7.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. This can be
used in handling binary data stored in files or from network connections, among other sources. It uses Format Strings
as compact descriptions of the layout of the C structs and the intended conversion to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so that
the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To handle
platform-independent data formats or omit implicit pad bytes, use standard size and alignment instead of native size
and alignment: see Byte Order, Size, and Alignment for details.

7.3.1 Functions and Exceptions

The module defines the following exception and functions:

exception error
Exception raised on various occasions; argument is a string describing what is wrong.

pack(fmt, v1, v2, ...)
Return a string containing the values v1, v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

pack_into(fmt, buffer, offset, v1, v2, ...)
Pack the values v1, v2, ... according to the given format, write the packed bytes into the writable buffer
starting at offset. Note that the offset is a required argument. New in version 2.5.

unpack(fmt, string)
Unpack the string (presumably packed by pack(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (len(string) must equal calcsize(fmt)).

unpack_from(fmt, buffer, [offset=0])
Unpack the buffer according to the given format. The result is a tuple even if it contains exactly one item. The
buffer must contain at least the amount of data required by the format (len(buffer[offset:]) must be
at least calcsize(fmt)). New in version 2.5.

calcsize(fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

7.3.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They are
built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are special
characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment

By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

88 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

Character Byte order Size Alignment
@ native native native
= native standard none
< little-endian standard none
> big-endian standard none
! network (= big-endian) standard none

If the first character is not one of these, ’@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature switchable
endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between ’@’ and ’=’: both use native byte order, but the size and alignment of the latter is
standardized.

The form ’!’ is available for those poor souls who claim they can’t remember whether network byte order is big-
endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of ’<’ or ’>’.

Notes:

1. Padding is only automatically added between successive structure members. No padding is added at the begin-
ning or the end of the encoded struct.

2. No padding is added when using non-native size and alignment, e.g. with ‘<’, ‘>’, ‘=’, and ‘!’.

3. To align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts with one of ’<’, ’>’, ’!’ or ’=’. When using native size, the size of the packed
value is platform-dependent.

7.3. struct — Interpret strings as packed binary data 89

The Python Library Reference, Release 2.6.9

Format C Type Python type Standard size Notes
x pad byte no value
c char string of length 1 1
b signed char integer 1
B unsigned char integer 1
? _Bool bool 1 (1)
h short integer 2
H unsigned short integer 2
i int integer 4
I unsigned int integer 4
l long integer 4
L unsigned long integer 4
q long long integer 8 (2)
Q unsigned long long integer 8 (2)
f float float 4 (3)
d double float 8 (3)
s char[] string
p char[] string
P void * integer (4)

Notes:

1. The ’?’ conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte. New in version 2.6.

2. The ’q’ and ’Q’ conversion codes are available in native mode only if the platform C compiler supports C
long long, or, on Windows, __int64. They are always available in standard modes. New in version 2.2.

3. For the ’f’ and ’d’ conversion codes, the packed representation uses the IEEE 754 binary32 (for ’f’) or
binary64 (for ’d’) format, regardless of the floating-point format used by the platform.

4. The ’P’ format character is only available for the native byte ordering (selected as the default or with the ’@’
byte order character). The byte order character ’=’ chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the ’P’ format is not available.

A format character may be preceded by an integral repeat count. For example, the format string ’4h’ means exactly
the same as ’hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ’s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for example, ’10s’means a single 10-byte string, while ’10c’means 10 characters. For packing,
the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special case, ’0s’ means a single, empty string (while ’0c’ means
0 characters).

The ’p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever
is smaller. The bytes of the string follow. If the string passed in to pack() is too long (longer than the count minus
1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null
bytes so that exactly count bytes in all are used. Note that for unpack(), the ’p’ format character consumes count
bytes, but that the string returned can never contain more than 255 characters.

For the ’P’ format character, the return value is a Python integer or long integer, depending on the size needed to
hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned as the Python integer
0. When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha
and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

90 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

For the ’?’ format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *
>>> pack(’hhl’, 1, 2, 3)
’\x00\x01\x00\x02\x00\x00\x00\x03’
>>> unpack(’hhl’, ’\x00\x01\x00\x02\x00\x00\x00\x03’)
(1, 2, 3)
>>> calcsize(’hhl’)
8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = ’raymond \x32\x12\x08\x01\x08’
>>> name, serialnum, school, gradelevel = unpack(’<10sHHb’, record)

>>> from collections import namedtuple
>>> Student = namedtuple(’Student’, ’name serialnum school gradelevel’)
>>> Student._make(unpack(’<10sHHb’, s))
Student(name=’raymond ’, serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment require-
ments is different:

>>> pack(’ci’, ’*’, 0x12131415)
’*\x00\x00\x00\x12\x13\x14\x15’
>>> pack(’ic’, 0x12131415, ’*’)
’\x12\x13\x14\x15*’
>>> calcsize(’ci’)
8
>>> calcsize(’ic’)
5

The following format ’llh0l’ specifies two pad bytes at the end, assuming longs are aligned on 4-byte boundaries:

>>> pack(’llh0l’, 1, 2, 3)
’\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00’

This only works when native size and alignment are in effect; standard size and alignment does not enforce any
alignment.

See Also:

Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

7.3.3 Classes

The struct module also defines the following type:

7.3. struct — Interpret strings as packed binary data 91

The Python Library Reference, Release 2.6.9

class Struct(format)
Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling the struct functions with the same
format since the format string only needs to be compiled once. New in version 2.5. Compiled Struct objects
support the following methods and attributes:

pack(v1, v2, ...)
Identical to the pack() function, using the compiled format. (len(result) will equal self.size.)

pack_into(buffer, offset, v1, v2, ...)
Identical to the pack_into() function, using the compiled format.

unpack(string)
Identical to the unpack() function, using the compiled format. (len(string) must equal
self.size).

unpack_from(buffer, [offset=0])
Identical to the unpack_from() function, using the compiled format. (len(buffer[offset:])
must be at least self.size).

format
The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the string) corresponding to format.

7.4 difflib — Helpers for computing deltas

New in version 2.1. This module provides classes and functions for comparing sequences. It can be used for example,
for comparing files, and can produce difference information in various formats, including HTML and context and
unified diffs. For comparing directories and files, see also, the filecmp module.

class SequenceMatcher()
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

Heuristic: To speed-up matching, items that appear more than 1% of the time in sequences of at least 200 items
are treated as junk. This has the unfortunate side-effect of giving bad results for sequences constructed from a
small set of items. An option to turn off the heuristic will be added to a future version.

class Differ()
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:

92 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

Code Meaning
’- ’ line unique to sequence 1
’+ ’ line unique to sequence 2
’ ’ line common to both sequences
’? ’ line not present in either input sequence

Lines beginning with ‘?‘ attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class HtmlDiff()
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__([tabsize], [wrapcolumn], [linejunk], [charjunk])
Initializes instance of HtmlDiff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped, de-
faults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff() (used by HtmlDiff to
generate the side by side HTML differences). See ndiff() documentation for argument default values
and descriptions.

The following methods are public:

make_file(fromlines, tolines, [fromdesc], [todesc], [context], [numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual differ-
ences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

make_table(fromlines, tolines, [fromdesc], [todesc], [context], [numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file() method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use. New in version 2.4.

context_diff(a, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with *** or ---) are created with a trailing newline. This is
helpful so that inputs created from file.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

7.4. difflib — Helpers for computing deltas 93

The Python Library Reference, Release 2.6.9

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the format returned by time.ctime(). If not specified, the strings default to blanks.

>>> s1 = [’bacon\n’, ’eggs\n’, ’ham\n’, ’guido\n’]
>>> s2 = [’python\n’, ’eggy\n’, ’hamster\n’, ’guido\n’]
>>> for line in context_diff(s1, s2, fromfile=’before.py’, tofile=’after.py’):
... sys.stdout.write(line) # doctest: +NORMALIZE_WHITESPACE

*** before.py
--- after.py

*** 1,4 ****
! bacon
! eggs
! ham

guido
--- 1,4 ----
! python
! eggy
! hamster

guido

See A command-line interface to difflib for a more detailed example. New in version 2.3.

get_close_matches(word, possibilities, [n], [cutoff])
Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches(’appel’, [’ape’, ’apple’, ’peach’, ’puppy’])
[’apple’, ’ape’]
>>> import keyword
>>> get_close_matches(’wheel’, keyword.kwlist)
[’while’]
>>> get_close_matches(’apple’, keyword.kwlist)
[]
>>> get_close_matches(’accept’, keyword.kwlist)
[’except’]

ndiff(a, b, [linejunk], [charjunk])
Compare a and b (lists of strings); return a Differ-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default is (None), starting with Python 2.3. Before then, the default was the module-level function

94 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

IS_LINE_JUNK(), which filters out lines without visible characters, except for at most one pound character
(’#’). As of Python 2.3, the underlying SequenceMatcher class does a dynamic analysis of which lines
are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level function IS_CHARACTER_JUNK(), which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff(’one\ntwo\nthree\n’.splitlines(1),
... ’ore\ntree\nemu\n’.splitlines(1))
>>> print ’’.join(diff),
- one
? ^
+ ore
? ^
- two
- three
? -
+ tree
+ emu

restore(sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare() or ndiff(), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff(’one\ntwo\nthree\n’.splitlines(1),
... ’ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ’’.join(restore(diff, 1)),
one
two
three
>>> print ’’.join(restore(diff, 2)),
ore
tree
emu

unified_diff(a, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with ---, +++, or @@) are created with a trailing newline. This
is helpful so that inputs created from file.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be uniformly
newline free.

7.4. difflib — Helpers for computing deltas 95

The Python Library Reference, Release 2.6.9

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the format returned by time.ctime(). If not specified, the strings default to blanks.

>>> s1 = [’bacon\n’, ’eggs\n’, ’ham\n’, ’guido\n’]
>>> s2 = [’python\n’, ’eggy\n’, ’hamster\n’, ’guido\n’]
>>> for line in unified_diff(s1, s2, fromfile=’before.py’, tofile=’after.py’):
... sys.stdout.write(line) # doctest: +NORMALIZE_WHITESPACE
--- before.py
+++ after.py
@@ -1,4 +1,4 @@
-bacon
-eggs
-ham
+python
+eggy
+hamster
guido

See A command-line interface to difflib for a more detailed example. New in version 2.3.

IS_LINE_JUNK(line)
Return true for ignorable lines. The line line is ignorable if line is blank or contains a single ’#’, otherwise it
is not ignorable. Used as a default for parameter linejunk in ndiff() before Python 2.3.

IS_CHARACTER_JUNK(ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff().

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

7.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class SequenceMatcher([isjunk, [a, [b]]])
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: 0; in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

SequenceMatcher objects have the following methods:

set_seqs(a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_seq2() to set the commonly used sequence once
and call set_seq1() repeatedly, once for each of the other sequences.

96 Chapter 7. String Services

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 2.6.9

set_seq1(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2(b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match(alo, ahi, blo, bhi)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find_longest_match() returns (i, j, k) such that a[i:i+k]
is equal to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <= j+k <= bhi. For
all (i’, j’, k’) meeting those conditions, the additional conditions k >= k’, i <= i’, and if i
== i’, j <= j’ are also met. In other words, of all maximal matching blocks, return one that starts
earliest in a, and of all those maximal matching blocks that start earliest in a, return the one that starts
earliest in b.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ’ abcd’ from
matching the ’ abcd’ at the tail end of the second sequence directly. Instead only the ’abcd’ can
match, and matches the leftmost ’abcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match(a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0). Changed in version 2.6: This method returns a named
tuple Match(a, b, size).

get_matching_blocks()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and
means that a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with n
== 0. If (i, j, n) and (i’, j’, n’) are adjacent triples in the list, and the second is not the
last triple in the list, then i+n != i’ or j+n != j’; in other words, adjacent triples always describe
non-adjacent equal blocks. Changed in version 2.5: The guarantee that adjacent triples always describe
non-adjacent blocks was implemented.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2,
j1, j2). The first tuple has i1 == j1 == 0, and remaining tuples have i1 equal to the i2 from the
preceding tuple, and, likewise, j1 equal to the previous j2.

The tag values are strings, with these meanings:

7.4. difflib — Helpers for computing deltas 97

The Python Library Reference, Release 2.6.9

Value Meaning
’replace’ a[i1:i2] should be replaced by b[j1:j2].
’delete’ a[i1:i2] should be deleted. Note that j1 == j2 in this case.
’insert’ b[j1:j2] should be inserted at a[i1:i1]. Note that i1 == i2 in this case.
’equal’ a[i1:i2] == b[j1:j2] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
... print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2]))
delete a[0:1] (q) b[0:0] ()
equal a[1:3] (ab) b[0:2] (ab)

replace a[3:4] (x) b[2:3] (y)
equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

get_grouped_opcodes([n])
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes(), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes(). New in version 2.3.

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/ T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in common.

This is expensive to compute if get_matching_blocks() or get_opcodes() hasn’t already been
called, in which case you may want to try quick_ratio() or real_quick_ratio() first to get an
upper bound.

quick_ratio()
Return an upper bound on ratio() relatively quickly.

This isn’t defined beyond that it is an upper bound on ratio(), and is faster to compute.

real_quick_ratio()
Return an upper bound on ratio() very quickly.

This isn’t defined beyond that it is an upper bound on ratio(), and is faster to compute than either
ratio() or quick_ratio().

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, although quick_ratio() and real_quick_ratio() are always at least as large as ratio():

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()
0.75
>>> s.quick_ratio()
0.75
>>> s.real_quick_ratio()
1.0

98 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

7.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
... "private Thread currentThread;",
... "private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio() value
over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you’re only interested in where the sequences match, get_matching_blocks() is handy:

>>> for block in s.get_matching_blocks():
... print "a[%d] and b[%d] match for %d elements" % block
a[0] and b[0] match for 8 elements
a[8] and b[17] match for 21 elements
a[29] and b[38] match for 0 elements

Note that the last tuple returned by get_matching_blocks() is always a dummy, (len(a), len(b), 0),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes():

>>> for opcode in s.get_opcodes():
... print "%6s a[%d:%d] b[%d:%d]" % opcode
equal a[0:8] b[0:8]

insert a[8:8] b[8:17]
equal a[8:29] b[17:38]

See Also:

• The get_close_matches() function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

• Simple version control recipe for a small application built with SequenceMatcher.

7.4.3 Differ Objects

Note that Differ-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The Differ class has this constructor:

class Differ([linejunk, [charjunk]])
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

7.4. difflib — Helpers for computing deltas 99

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 2.6.9

compare(a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines() method of file-like objects. The delta generated also consists of
newline-terminated strings, ready to be printed as-is via the writelines() method of a file-like object.

7.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines() method of file-like objects):

>>> text1 = ’’’ 1. Beautiful is better than ugly.
... 2. Explicit is better than implicit.
... 3. Simple is better than complex.
... 4. Complex is better than complicated.
... ’’’.splitlines(1)
>>> len(text1)
4
>>> text1[0][-1]
’\n’
>>> text2 = ’’’ 1. Beautiful is better than ugly.
... 3. Simple is better than complex.
... 4. Complicated is better than complex.
... 5. Flat is better than nested.
... ’’’.splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Differ object we may pass functions to filter out line and character “junk.” See the
Differ() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(text1, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[’ 1. Beautiful is better than ugly.\n’,
’- 2. Explicit is better than implicit.\n’,
’- 3. Simple is better than complex.\n’,
’+ 3. Simple is better than complex.\n’,
’? ++\n’,
’- 4. Complex is better than complicated.\n’,
’? ^ ---- ^\n’,
’+ 4. Complicated is better than complex.\n’,
’? ++++ ^ ^\n’,
’+ 5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.
- 2. Explicit is better than implicit.

100 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

- 3. Simple is better than complex.
+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
? ^ ---- ^
+ 4. Complicated is better than complex.
? ++++ ^ ^
+ 5. Flat is better than nested.

7.4.5 A command-line interface to difflib

This example shows how to use difflib to create a diff-like utility. It is also contained in the Python source distribu-
tion, as Tools/scripts/diff.py.

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.

* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

"""

import sys, os, time, difflib, optparse

def main():
Configure the option parser

usage = "usage: %prog [options] fromfile tofile"
parser = optparse.OptionParser(usage)
parser.add_option("-c", action="store_true", default=False,

help=’Produce a context format diff (default)’)
parser.add_option("-u", action="store_true", default=False,

help=’Produce a unified format diff’)
hlp = ’Produce HTML side by side diff (can use -c and -l in conjunction)’
parser.add_option("-m", action="store_true", default=False, help=hlp)
parser.add_option("-n", action="store_true", default=False,

help=’Produce a ndiff format diff’)
parser.add_option("-l", "--lines", type="int", default=3,

help=’Set number of context lines (default 3)’)
(options, args) = parser.parse_args()

if len(args) == 0:
parser.print_help()
sys.exit(1)

if len(args) != 2:
parser.error("need to specify both a fromfile and tofile")

n = options.lines
fromfile, tofile = args # as specified in the usage string

we’re passing these as arguments to the diff function
fromdate = time.ctime(os.stat(fromfile).st_mtime)
todate = time.ctime(os.stat(tofile).st_mtime)
fromlines = open(fromfile, ’U’).readlines()

7.4. difflib — Helpers for computing deltas 101

The Python Library Reference, Release 2.6.9

tolines = open(tofile, ’U’).readlines()

if options.u:
diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile,

fromdate, todate, n=n)
elif options.n:

diff = difflib.ndiff(fromlines, tolines)
elif options.m:

diff = difflib.HtmlDiff().make_file(fromlines, tolines, fromfile,
tofile, context=options.c,
numlines=n)

else:
diff = difflib.context_diff(fromlines, tolines, fromfile, tofile,

fromdate, todate, n=n)

we’re using writelines because diff is a generator
sys.stdout.writelines(diff)

if __name__ == ’__main__’:
main()

7.5 StringIO — Read and write strings as files

This module implements a file-like class, StringIO, that reads and writes a string buffer (also known as memory
files). See the description of file objects for operations (section File Objects). (For standard strings, see str and
unicode.)

class StringIO([buffer])
When a StringIO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, the StringIO will start empty. In both cases, the initial file position starts at
zero.

The StringIO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause a
UnicodeError to be raised when getvalue() is called.

The following methods of StringIO objects require special mention:

getvalue()
Retrieve the entire contents of the “file” at any time before the StringIO object’s close() method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
to raise UnicodeError.

close()
Free the memory buffer. Attempting to do further operations with a closed StringIO object will raise a
ValueError.

Example usage:

import StringIO

output = StringIO.StringIO()
output.write(’First line.\n’)
print >>output, ’Second line.’

Retrieve file contents -- this will be

102 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

’First line.\nSecond line.\n’
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close()

7.6 cStringIO — Faster version of StringIO

The module cStringIO provides an interface similar to that of the StringIO module. Heavy use of
StringIO.StringIO objects can be made more efficient by using the function StringIO() from this mod-
ule instead.

StringIO([s])
Return a StringIO-like stream for reading or writing.

Since this is a factory function which returns objects of built-in types, there’s no way to build your own version
using subclassing. It’s not possible to set attributes on it. Use the original StringIO module in those cases.

Unlike the StringIO module, this module is not able to accept Unicode strings that cannot be encoded as
plain ASCII strings. Calling StringIO() with a Unicode string parameter populates the object with the
buffer representation of the Unicode string instead of encoding the string.

Another difference from the StringIO module is that calling StringIO() with a string parameter creates
a read-only object. Unlike an object created without a string parameter, it does not have write methods. These
objects are not generally visible. They turn up in tracebacks as StringI and StringO.

The following data objects are provided as well:

InputType
The type object of the objects created by calling StringIO() with a string parameter.

OutputType
The type object of the objects returned by calling StringIO() with no parameters.

There is a C API to the module as well; refer to the module source for more information.

Example usage:

import cStringIO

output = cStringIO.StringIO()
output.write(’First line.\n’)
print >>output, ’Second line.’

Retrieve file contents -- this will be
’First line.\nSecond line.\n’
contents = output.getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output.close()

7.7 textwrap — Text wrapping and filling

7.6. cStringIO — Faster version of StringIO 103

The Python Library Reference, Release 2.6.9

New in version 2.3. The textwrap module provides two convenience functions, wrap() and fill(), as well as
TextWrapper, the class that does all the work, and a utility function dedent(). If you’re just wrapping or filling
one or two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

wrap(text, [width, [...]])
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. width
defaults to 70.

fill(text, [width, [...]])
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph. fill() is
shorthand for

"\n".join(wrap(text, ...))

In particular, fill() accepts exactly the same keyword arguments as wrap().

Both wrap() and fill() work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextWrapper.break_long_words is set to false.

An additional utility function, dedent(), is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

dedent(text)
Remove any common leading whitespace from every line in text.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace. (This behaviour is new in Python 2.5;
older versions of this module incorrectly expanded tabs before searching for common leading whitespace.)

For example:

def test():
end first line with \ to avoid the empty line!
s = ’’’\
hello

world
’’’
print repr(s) # prints ’ hello\n world\n ’
print repr(dedent(s)) # prints ’hello\n world\n’

class TextWrapper(...)
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corresponds
to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

104 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs() method of text.

replace_whitespace
(default: True) If true, each whitespace character (as defined by string.whitespace) remaining
after tab expansion will be replaced by a single space.

Note: If expand_tabs is false and replace_whitespace is true, each tab character will be re-
placed by a single space, which is not the same as tab expansion.

drop_whitespace
(default: True) If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (leading whitespace in the first line is always preserved, though). New in version 2.6:
Whitespace was always dropped in earlier versions.

initial_indent
(default: ”) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent_indent
(default: ”) String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by one of ’.’, ’!’, or ’?’, possibly followed by one of ’"’ or "’", followed
by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on string.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than

7.7. textwrap — Text wrapping and filling 105

The Python Library Reference, Release 2.6.9

width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need to set break_long_words to false if you want truly insecable
words. Default behaviour in previous versions was to always allow breaking hyphenated words. New in
version 2.6.

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap(text)
Wraps the single paragraph in text (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines.

fill(text)
Wraps the single paragraph in text, and returns a single string containing the wrapped paragraph.

7.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register(search_function)
Register a codec search function. Search functions are expected to take one argument, the encoding name in all
lower case letters, and return a CodecInfo object having the following attributes:

•name The name of the encoding;

•encode The stateless encoding function;

•decode The stateless decoding function;

•incrementalencoder An incremental encoder class or factory function;

•incrementaldecoder An incremental decoder class or factory function;

•streamwriter A stream writer class or factory function;

•streamreader A stream reader class or factory function.

The various functions or classes take the following arguments:

encode and decode: These must be functions or methods which have the same interface as the
encode()/decode() methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

incrementalencoder and incrementaldecoder: These have to be factory functions providing the following inter-
face:

factory(errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder and IncrementalDecoder, respectively. Incremental codecs can maintain state.

streamreader and streamwriter: These have to be factory functions providing the following interface:

factory(stream, errors=’strict’)

106 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

The factory functions must return objects providing the interfaces defined by the base classes StreamWriter
and StreamReader, respectively. Stream codecs can maintain state.

Possible values for errors are

•’strict’: raise an exception in case of an encoding error

•’replace’: replace malformed data with a suitable replacement marker, such as ’?’ or ’\ufffd’

•’ignore’: ignore malformed data and continue without further notice

•’xmlcharrefreplace’: replace with the appropriate XML character reference (for encoding only)

•’backslashreplace’: replace with backslashed escape sequences (for encoding only)

as well as any other error handling name defined via register_error().

In case a search function cannot find a given encoding, it should return None.

lookup(encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no CodecInfo object is found, a LookupError is raised. Otherwise, the CodecInfo object is
stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use lookup() for
the codec lookup:

getencoder(encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

getdecoder(encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

getincrementalencoder(encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder. New in version 2.5.

getincrementaldecoder(encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder. New in version 2.5.

getreader(encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

getwriter(encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

register_error(name, error_handler)
Register the error handling function error_handler under the name name. error_handler will be called during
encoding and decoding in case of an error, when name is specified as the errors parameter.

7.8. codecs — Codec registry and base classes 107

The Python Library Reference, Release 2.6.9

For encoding error_handler will be called with a UnicodeEncodeError instance, which contains informa-
tion about the location of the error. The error handler must either raise this or a different exception or return a
tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

lookup_error(name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.

strict_errors(exception)
Implements the strict error handling: each encoding or decoding error raises a UnicodeError.

replace_errors(exception)
Implements the replace error handling: malformed data is replaced with a suitable replacement character
such as ’?’ in bytestrings and ’\ufffd’ in Unicode strings.

ignore_errors(exception)
Implements the ignore error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

xmlcharrefreplace_errors(exception)
Implements the xmlcharrefreplace error handling (for encoding only): the unencodable character is re-
placed by an appropriate XML character reference.

backslashreplace_errors(exception)
Implements the backslashreplace error handling (for encoding only): the unencodable character is re-
placed by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these utility functions:

open(filename, mode, [encoding, [errors, [buffering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent encod-
ing/decoding. The default file mode is ’r’ meaning to open the file in read mode.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid data
loss due to encodings using 8-bit values. This means that no automatic conversion of ’\n’ is done on reading
and writing.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to ’strict’ which causes a ValueError to be
raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It defaults to line buffered.

EncodedFile(file, input, [output, [errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the given input encoding and then written to
the original file as strings using the output encoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If output is not given, it defaults to input.

108 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

errors may be given to define the error handling. It defaults to ’strict’, which causes ValueError to be
raised in case an encoding error occurs.

iterencode(iterable, encoding, [errors])
Uses an incremental encoder to iteratively encode the input provided by iterable. This function is a generator.
errors (as well as any other keyword argument) is passed through to the incremental encoder. New in version
2.5.

iterdecode(iterable, encoding, [errors])
Uses an incremental decoder to iteratively decode the input provided by iterable. This function is a generator.
errors (as well as any other keyword argument) is passed through to the incremental decoder. New in version
2.5.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM
BOM_BE
BOM_LE
BOM_UTF8
BOM_UTF16
BOM_UTF16_BE
BOM_UTF16_LE
BOM_UTF32
BOM_UTF32_BE
BOM_UTF32_LE

These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte order,
BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

7.8.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily write your
own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode() and decode() methods may implement different error
handling schemes by providing the errors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning
’strict’ Raise UnicodeError (or a subclass); this is the default.
’ignore’ Ignore the character and continue with the next.
’replace’ Replace with a suitable replacement character; Python will use the official U+FFFD

REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?’ on
encoding.

’xmlcharrefreplace’Replace with the appropriate XML character reference (only for encoding).
’backslashreplace’Replace with backslashed escape sequences (only for encoding).

The set of allowed values can be extended via register_error().

7.8. codecs — Codec registry and base classes 109

The Python Library Reference, Release 2.6.9

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode(input, [errors])
Encodes the object input and returns a tuple (output object, length consumed). While codecs are not restricted to
use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string using a particular
character set encoding (e.g., cp1252 or iso-8859-1).

errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode(input, [errors])
Decodes the object input and returns a tuple (output object, length consumed). In a Unicode context, decoding
converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides the bf_getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,
but with multiple calls to the encode()/decode() method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode()/decode() method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

New in version 2.5. The IncrementalEncoder class is used for encoding an input in multiple steps. It defines
the following methods which every incremental encoder must define in order to be compatible with the Python codec
registry.

class IncrementalEncoder([errors])
Constructor for an IncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. These parameters are predefined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character

110 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

•’xmlcharrefreplace’ Replace with the appropriate XML character reference

•’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime of the IncrementalEncoder
object.

The set of allowed values for the errors argument can be extended with register_error().

encode(object, [final])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode() final must be true (the default is false).

reset()
Reset the encoder to the initial state.

IncrementalDecoder Objects

The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class IncrementalDecoder([errors])
Constructor for an IncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. These parameters are predefined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime of the IncrementalDecoder
object.

The set of allowed values for the errors argument can be extended with register_error().

decode(object, [final])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode() final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset()
Reset the decoder to the initial state.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to imple-
ment new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

7.8. codecs — Codec registry and base classes 111

The Python Library Reference, Release 2.6.9

class StreamWriter(stream, [errors])
Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing binary data.

The StreamWriter may implement different error handling schemes by providing the errors keyword argu-
ment. These parameters are predefined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character

•’xmlcharrefreplace’ Replace with the appropriate XML character reference

•’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the StreamWriter object.

The set of allowed values for the errors argument can be extended with register_error().

write(object)
Writes the object’s contents encoded to the stream.

writelines(list)
Writes the concatenated list of strings to the stream (possibly by reusing the write() method).

reset()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class StreamReader(stream, [errors])
Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providing the errors keyword argu-
ment. These parameters are defined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character.

112 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the StreamReader object.

The set of allowed values for the errors argument can be extended with register_error().

read([size, [chars, [firstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read() will never return more than
chars characters, but it might return less, if there are not enough characters available.

size indicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possible. size is intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later
lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too. Changed in version 2.4: chars argument added.Changed
in version 2.4.2: firstline argument added.

readline([size, [keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s readline() method.

If keepends is false line-endings will be stripped from the lines returned. Changed in version 2.4: keepends
argument added.

readlines([sizehint, [keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read() method.

reset()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, the StreamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the lookup() function to construct the instance.

class StreamReaderWriter(stream, Reader, Writer, errors)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer must be fac-
tory functions or classes providing the StreamReader and StreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

7.8. codecs — Codec registry and base classes 113

The Python Library Reference, Release 2.6.9

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by the lookup() function to construct the instance.

class StreamRecoder(stream, encode, decode, Reader, Writer, errors)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend (the input to read() and output of write()) while Reader and Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.

stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the StreamReader and StreamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and StreamWriter classes. They
inherit all other methods and attributes from the underlying stream.

7.8.2 Encodings and Unicode

Unicode strings are stored internally as sequences of codepoints (to be precise as Py_UNICODE arrays). Depending
on the way Python is compiled (either via --enable-unicode=ucs2 or --enable-unicode=ucs4, with the
former being the default) Py_UNICODE is either a 16-bit or 32-bit data type. Once a Unicode object is used outside
of CPU and memory, CPU endianness and how these arrays are stored as bytes become an issue. Transforming
a unicode object into a sequence of bytes is called encoding and recreating the unicode object from the sequence
of bytes is known as decoding. There are many different methods for how this transformation can be done (these
methods are also called encodings). The simplest method is to map the codepoints 0-255 to the bytes 0x0-0xff.
This means that a unicode object that contains codepoints above U+00FF can’t be encoded with this method (which is
called ’latin-1’ or ’iso-8859-1’). unicode.encode() will raise a UnicodeEncodeError that looks
like this: UnicodeEncodeError: ’latin-1’ codec can’t encode character u’\u1234’ in
position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all unicode
code points and how these codepoints are mapped to the bytes 0x0-0xff. To see how this is done simply open e.g.
encodings/cp1252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive bytes.
There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings are called
UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a little endian
machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem: Bytes will
always be in natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have

114 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so called BOM
(the “Byte Order Mark”). This is the Unicode character U+FEFF. This character will be prepended to every UTF-16
byte sequence. The byte swapped version of this character (0xFFFE) is an illegal character that may not appear in
a Unicode text. So when the first character in an UTF-16 byte sequence appears to be a U+FFFE the bytes have to
be swapped on decoding. Unfortunately upto Unicode 4.0 the character U+FEFF had a second purpose as a ZERO
WIDTH NO-BREAK SPACE: A character that has no width and doesn’t allow a word to be split. It can e.g. be used
to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK SPACE has
been deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software still must be
able to handle U+FEFF in both roles: As a BOM it’s a device to determine the storage layout of the encoded bytes, and
vanishes once the byte sequence has been decoded into a Unicode string; as a ZERO WIDTH NO-BREAK SPACE
it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists of
two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to six 1 bits
followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when concatenated
give the Unicode character):

Range Encoding
U-00000000 ... U-0000007F 0xxxxxxx
U-00000080 ... U-000007FF 110xxxxx 10xxxxxx
U-00000800 ... U-0000FFFF 1110xxxx 10xxxxxx 10xxxxxx
U-00010000 ... U-001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
U-00200000 ... U-03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
U-04000000 ... U-7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded Unicode string (even if
it’s the first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a Uni-
code string. Each charmap encoding can decode any random byte sequence. However that’s not possible with
UTF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the re-
liability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls
"utf-8-sig") for its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 en-
coded BOM (which looks like this as a byte sequence: 0xef, 0xbb, 0xbf) is written. As it’s rather improbable that
any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in iso-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte sequence.
So here the BOM is not used to be able to determine the byte order used for generating the byte sequence, but as a
signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write 0xef, 0xbb, 0xbf as the
first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they appear as the first three bytes in
the file.

7.8.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. ’utf-8’ is a valid alias for the ’utf_8’ codec.

7.8. codecs — Codec registry and base classes 115

The Python Library Reference, Release 2.6.9

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

• an ISO 8859 codeset

• a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

• an IBM EBCDIC code page

• an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5hkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europe
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedonian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cp1006 Urdu
cp1026 ibm1026 Turkish
cp1140 ibm1140 Western Europe
cp1250 windows-1250 Central and Eastern Europe
cp1251 windows-1251 Bulgarian, Byelorussian, Macedonian, Russian, Serbian
cp1252 windows-1252 Western Europe
cp1253 windows-1253 Greek
cp1254 windows-1254 Turkish
cp1255 windows-1255 Hebrew
cp1256 windows-1256 Arabic
cp1257 windows-1257 Baltic languages
cp1258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese

Continued on next page

116 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

Table 7.1 – continued from previous page
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001 Korean
gb2312 chinese, csiso58gb231280, euc- cn, euccn, eucgb2312-cn, gb2312-1980, gb2312-80, iso- ir-58 Simplified Chinese
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
iso2022_jp csiso2022jp, iso2022jp, iso-2022-jp Japanese
iso2022_jp_1 iso2022jp-1, iso-2022-jp-1 Japanese
iso2022_jp_2 iso2022jp-2, iso-2022-jp-2 Japanese, Korean, Simplified Chinese, Western Europe, Greek
iso2022_jp_2004 iso2022jp-2004, iso-2022-jp-2004 Japanese
iso2022_jp_3 iso2022jp-3, iso-2022-jp-3 Japanese
iso2022_jp_ext iso2022jp-ext, iso-2022-jp-ext Japanese
iso2022_kr csiso2022kr, iso2022kr, iso-2022-kr Korean
latin_1 iso-8859-1, iso8859-1, 8859, cp819, latin, latin1, L1 West Europe
iso8859_2 iso-8859-2, latin2, L2 Central and Eastern Europe
iso8859_3 iso-8859-3, latin3, L3 Esperanto, Maltese
iso8859_4 iso-8859-4, latin4, L4 Baltic languages
iso8859_5 iso-8859-5, cyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbian
iso8859_6 iso-8859-6, arabic Arabic
iso8859_7 iso-8859-7, greek, greek8 Greek
iso8859_8 iso-8859-8, hebrew Hebrew
iso8859_9 iso-8859-9, latin5, L5 Turkish
iso8859_10 iso-8859-10, latin6, L6 Nordic languages
iso8859_13 iso-8859-13, latin7, L7 Baltic languages
iso8859_14 iso-8859-14, latin8, L8 Celtic languages
iso8859_15 iso-8859-15, latin9, L9 Western Europe
iso8859_16 iso-8859-16, latin10, L10 South-Eastern Europe
johab cp1361, ms1361 Korean
koi8_r Russian
koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbian
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Eastern Europe
mac_roman macroman Western Europe
mac_turkish macturkish Turkish
ptcp154 csptcp154, pt154, cp154, cyrillic-asian Kazakh
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, s_jisx0213 Japanese
utf_32 U32, utf32 all languages
utf_32_be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 U16, utf16 all languages
utf_16_be UTF-16BE all languages (BMP only)
utf_16_le UTF-16LE all languages (BMP only)
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8 all languages
utf_8_sig all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don’t convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery that

7.8. codecs — Codec registry and base classes 117

The Python Library Reference, Release 2.6.9

any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the “decoding”
direction is listed as operand type in the table.

Codec Aliases Operand
type

Purpose

base64_codecbase64, base-64 byte
string

Convert operand to MIME base64

bz2_codec bz2 byte
string

Compress the operand using bz2

hex_codec hex byte
string

Convert operand to hexadecimal representation, with two digits per
byte

idna Uni-
code
string

Implements RFC 3490, see also encodings.idna

mbcs dbcs Uni-
code
string

Windows only: Encode operand according to the ANSI codepage
(CP_ACP)

palmos Uni-
code
string

Encoding of PalmOS 3.5

punycode Uni-
code
string

Implements RFC 3492

quo-
pri_codec

quopri,
quoted-printable,
quotedprintable

byte
string

Convert operand to MIME quoted printable

raw_unicode_escape Uni-
code
string

Produce a string that is suitable as raw Unicode literal in Python
source code

rot_13 rot13 Uni-
code
string

Returns the Caesar-cypher encryption of the operand

string_escape byte
string

Produce a string that is suitable as string literal in Python source
code

unde-
fined

any Raise an exception for all conversions. Can be used as the system
encoding if no automatic coercion between byte and Unicode
strings is desired.

uni-
code_escape

Uni-
code
string

Produce a string that is suitable as Unicode literal in Python source
code

uni-
code_internal

Uni-
code
string

Return the internal representation of the operand

uu_codec uu byte
string

Convert the operand using uuencode

zlib_codec zip, zlib byte
string

Compress the operand using gzip

New in version 2.3: The idna and punycode encodings.

7.8.4 encodings.idna — Internationalized Domain Names in Applications

118 Chapter 7. String Services

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 2.6.9

New in version 2.3. This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC
3492 (Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode
encoding and stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name containing
non-ASCII characters (such as www.Alliancefrançaise.nu) is converted into an ASCII-compatible encoding
(ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host fields, and so on.
This conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: The idna codec allows to convert between Unicode and the ACE.
Furthermore, the socket module transparently converts Unicode host names to ACE, so that applications need not
be concerned about converting host names themselves when they pass them to the socket module. On top of that,
modules that have host names as function parameters, such as httplib and ftplib, accept Unicode host names
(httplib then also transparently sends an IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings.idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

nameprep(label)
Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

ToASCII(label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

ToUnicode(label)
Convert a label to Unicode, as specified in RFC 3490.

7.8.5 encodings.utf_8_sig — UTF-8 codec with BOM signature

New in version 2.5. This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will
be prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte
stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

7.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based on the UnicodeData.txt file version 5.1.0 which is publicly available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 5.1.0 (see
http://www.unicode.org/Public/5.1.0/ucd/UCD.html). It defines the following functions:

lookup(name)
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found, KeyError is raised.

7.9. unicodedata — Unicode Database 119

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
ftp://ftp.unicode.org/
http://www.unicode.org/Public/5.1.0/ucd/UCD.html

The Python Library Reference, Release 2.6.9

name(unichr, [default])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined, default is returned,
or, if not given, ValueError is raised.

decimal(unichr, [default])
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

digit(unichr, [default])
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is defined, default
is returned, or, if not given, ValueError is raised.

numeric(unichr, [default])
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is defined, default
is returned, or, if not given, ValueError is raised.

category(unichr)
Returns the general category assigned to the Unicode character unichr as string.

bidirectional(unichr)
Returns the bidirectional category assigned to the Unicode character unichr as string. If no such value is defined,
an empty string is returned.

combining(unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns 0 if no
combining class is defined.

east_asian_width(unichr)
Returns the east asian width assigned to the Unicode character unichr as string. New in version 2.4.

mirrored(unichr)
Returns the mirrored property assigned to the Unicode character unichr as integer. Returns 1 if the character
has been identified as a “mirrored” character in bidirectional text, 0 otherwise.

decomposition(unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string. An empty
string is returned in case no such mapping is defined.

normalize(form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL LETTER C).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

120 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn’t, they may not compare equal. New in version 2.3.

In addition, the module exposes the following constant:

unidata_version
The version of the Unicode database used in this module. New in version 2.3.

ucd_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA). New in
version 2.5.

Examples:

>>> import unicodedata
>>> unicodedata.lookup(’LEFT CURLY BRACKET’)
u’{’
>>> unicodedata.name(u’/’)
’SOLIDUS’
>>> unicodedata.decimal(u’9’)
9
>>> unicodedata.decimal(u’a’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: not a decimal
>>> unicodedata.category(u’A’) # ’L’etter, ’u’ppercase
’Lu’
>>> unicodedata.bidirectional(u’\u0660’) # ’A’rabic, ’N’umber
’AN’

7.10 stringprep — Internet String Preparation

New in version 2.3. When identifying things (such as host names) in the internet, it is often necessary to compare such
identifications for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g.
whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow
only identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the stringprep procedure are part of the profile. One example of a stringprep profile is
nameprep, which is used for internationalized domain names.

The module stringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, stringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

in_table_a1(code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

7.10. stringprep — Internet String Preparation 121

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 2.6.9

in_table_b1(code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

map_table_b2(code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

map_table_b3(code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

in_table_c11(code)
Determine whether code is in tableC.1.1 (ASCII space characters).

in_table_c12(code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

in_table_c11_c12(code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in_table_c21(code)
Determine whether code is in tableC.2.1 (ASCII control characters).

in_table_c22(code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

in_table_c21_c22(code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in_table_c3(code)
Determine whether code is in tableC.3 (Private use).

in_table_c4(code)
Determine whether code is in tableC.4 (Non-character code points).

in_table_c5(code)
Determine whether code is in tableC.5 (Surrogate codes).

in_table_c6(code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

in_table_c7(code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

in_table_c8(code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

in_table_c9(code)
Determine whether code is in tableC.9 (Tagging characters).

in_table_d1(code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

in_table_d2(code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

7.11 fpformat — Floating point conversions

Deprecated since version 2.6: The fpformat module has been removed in Python 3.0. The fpformat module
defines functions for dealing with floating point numbers representations in 100% pure Python.

Note: This module is unnecessary: everything here can be done using the % string interpolation operator described in
the String Formatting Operations section.

122 Chapter 7. String Services

The Python Library Reference, Release 2.6.9

The fpformat module defines the following functions and an exception:

fix(x, digs)
Format x as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.

Return value is a string.

sci(x, digs)
Format x as [-]d.dddE[+-]ddd with digs digits after the point and exactly one digit before. If digs <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one. digs is an integer.

Return value is a string.

exception NotANumber
Exception raised when a string passed to fix() or sci() as the x parameter does not look like a number. This
is a subclass of ValueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
’1.2’

7.11. fpformat — Floating point conversions 123

The Python Library Reference, Release 2.6.9

124 Chapter 7. String Services

CHAPTER

EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, dict, list, set (which along with frozenset,
replaces the deprecated sets module), and tuple. The str class can be used to handle binary data and 8-bit text,
and the unicode class to handle Unicode text.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

New in version 2.3. The datetime module supplies classes for manipulating dates and times in both simple and
complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient member
extraction for output formatting and manipulation. For related functionality, see also the time and calendar
modules.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object has
any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment. Whether a
naive datetime object represents Coordinated Universal Time (UTC), local time, or time in some other timezone
is purely up to the program, just like it’s up to the program whether a particular number represents metres, miles, or
mass. Naive datetime objects are easy to understand and to work with, at the cost of ignoring some aspects of
reality.

For applications requiring more, datetime and time objects have an optional time zone information member,
tzinfo, that can contain an instance of a subclass of the abstract tzinfo class. These tzinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect. Note
that no concrete tzinfo classes are supplied by the datetime module. Supporting timezones at whatever level
of detail is required is up to the application. The rules for time adjustment across the world are more political than
rational, and there is no standard suitable for every application.

The datetime module exports the following constants:

MINYEAR
The smallest year number allowed in a date or datetime object. MINYEAR is 1.

MAXYEAR
The largest year number allowed in a date or datetime object. MAXYEAR is 9999.

See Also:

Module calendar General calendar related functions.

Module time Time access and conversions.

125

The Python Library Reference, Release 2.6.9

8.1.1 Available Types

class date()
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class time()
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 sec-
onds (there is no notion of “leap seconds” here). Attributes: hour, minute, second, microsecond,
and tzinfo.

class datetime()
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond, and tzinfo.

class timedelta()
A duration expressing the difference between two date, time, or datetime instances to microsecond reso-
lution.

class tzinfo()
An abstract base class for time zone information objects. These are used by the datetime and time classes to
provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight saving
time).

Objects of these types are immutable.

Objects of the date type are always naive.

An object d of type time or datetime may be naive or aware. d is aware if d.tzinfo is not None and
d.tzinfo.utcoffset(d) does not return None. If d.tzinfo is None, or if d.tzinfo is not None but
d.tzinfo.utcoffset(d) returns None, d is naive.

The distinction between naive and aware doesn’t apply to timedelta objects.

Subclass relationships:

object
timedelta
tzinfo
time
date

datetime

8.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class timedelta([days, [seconds, [microseconds, [milliseconds, [minutes, [hours, [weeks]]]]]]])
All arguments are optional and default to 0. Arguments may be ints, longs, or floats, and may be positive or
negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

•A millisecond is converted to 1000 microseconds.

•A minute is converted to 60 seconds.

•An hour is converted to 3600 seconds.

•A week is converted to 7 days.

126 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

and days, seconds and microseconds are then normalized so that the representation is unique, with

•0 <= microseconds < 1000000

•0 <= seconds < 3600*24 (the number of seconds in one day)

•-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from all
arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float, the
conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example,

>>> from datetime import timedelta
>>> d = timedelta(microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:

min
The most negative timedelta object, timedelta(-999999999).

max
The most positive timedelta object, timedelta(days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999).

resolution
The smallest possible difference between non-equal timedelta objects,
timedelta(microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. -timedelta.max is not repre-
sentable as a timedelta object.

Instance attributes (read-only):

Attribute Value
days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive

Supported operations:

Operation Result
t1 = t2 + t3 Sum of t2 and t3. Afterwards t1-t2 == t3 and t1-t3 == t2 are true. (1)
t1 = t2 - t3 Difference of t2 and t3. Afterwards t1 == t2 - t3 and t2 == t1 + t3 are true. (1)
t1 = t2 * i or t1
= i * t2

Delta multiplied by an integer or long. Afterwards t1 // i == t2 is true, provided i
!= 0.
In general, t1 * i == t1 * (i-1) + t1 is true. (1)

t1 = t2 // i The floor is computed and the remainder (if any) is thrown away. (3)
+t1 Returns a timedelta object with the same value. (2)
-t1 equivalent to timedelta(-t1.days, -t1.seconds, -t1.microseconds), and to t1* -1.

(1)(4)
abs(t) equivalent to +t when t.days >= 0, and to -t when t.days < 0. (2)
str(t) Returns a string in the form [D day[s],][H]H:MM:SS[.UUUUUU], where

D is negative for negative t. (5)
repr(t) Returns a string in the form datetime.timedelta(D[, S[, U]]), where

D is negative for negative t. (5)

8.1. datetime — Basic date and time types 127

The Python Library Reference, Release 2.6.9

Notes:

1. This is exact, but may overflow.

2. This is exact, and cannot overflow.

3. Division by 0 raises ZeroDivisionError.

4. -timedelta.max is not representable as a timedelta object.

5. String representations of timedelta objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta(hours=-5)
datetime.timedelta(-1, 68400)
>>> print(_)
-1 day, 19:00:00

In addition to the operations listed above timedelta objects support certain additions and subtractions with date
and datetime objects (see below).

Comparisons of timedelta objects are supported with the timedelta object representing the smaller duration
considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the default
comparison by object address, when a timedelta object is compared to an object of a different type, TypeError
is raised unless the comparison is == or !=. The latter cases return False or True, respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts, a
timedelta object is considered to be true if and only if it isn’t equal to timedelta(0).

Example usage:

>>> from datetime import timedelta
>>> year = timedelta(days=365)
>>> another_year = timedelta(weeks=40, days=84, hours=23,
... minutes=50, seconds=600) # adds up to 365 days
>>> year == another_year
True
>>> ten_years = 10 * year
>>> ten_years, ten_years.days // 365
(datetime.timedelta(3650), 10)
>>> nine_years = ten_years - year
>>> nine_years, nine_years.days // 365
(datetime.timedelta(3285), 9)
>>> three_years = nine_years // 3;
>>> three_years, three_years.days // 365
(datetime.timedelta(1095), 3)
>>> abs(three_years - ten_years) == 2 * three_years + year
True

8.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day
number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s
book Calendrical Calculations, where it’s the base calendar for all computations. See the book for algorithms for
converting between proleptic Gregorian ordinals and many other calendar systems.

class date(year, month, day)
All arguments are required. Arguments may be ints or longs, in the following ranges:

128 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

class today()
Return the current local date. This is equivalent to date.fromtimestamp(time.time()).

class fromtimestamp(timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by time.time(). This may
raise ValueError, if the timestamp is out of the range of values supported by the platform C localtime()
function. It’s common for this to be restricted to years from 1970 through 2038. Note that on non-POSIX sys-
tems that include leap seconds in their notion of a timestamp, leap seconds are ignored by fromtimestamp().

class fromordinal(ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal(). For any date d,
date.fromordinal(d.toordinal()) == d.

Class attributes:

min
The earliest representable date, date(MINYEAR, 1, 1).

max
The latest representable date, date(MAXYEAR, 12, 31).

resolution
The smallest possible difference between non-equal date objects, timedelta(days=1).

Instance attributes (read-only):

year
Between MINYEAR and MAXYEAR inclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = date1 + timedelta date2 is timedelta.days days removed from date1. (1)
date2 = date1 - timedelta Computes date2 such that date2 + timedelta == date1. (2)
timedelta = date1 - date2 (3)
date1 < date2 date1 is considered less than date2 when date1 precedes date2 in time. (4)

Notes:

1. date2 is moved forward in time if timedelta.days > 0, or backward if timedelta.days
< 0. Afterward date2 - date1 == timedelta.days. timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised if date2.year would be
smaller than MINYEAR or larger than MAXYEAR.

2. This isn’t quite equivalent to date1 + (-timedelta), because -timedelta in isolation can overflow in cases where
date1 - timedelta does not. timedelta.seconds and timedelta.microseconds are ignored.

8.1. datetime — Basic date and time types 129

The Python Library Reference, Release 2.6.9

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== date1 after.

4. In other words, date1 < date2 if and only if date1.toordinal() < date2.toordinal(). In
order to stop comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raises TypeError if the other comparand isn’t also a date object. However, NotImplemented
is returned instead if the other comparand has a timetuple() attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, when a date object is compared to an object
of a different type, TypeError is raised unless the comparison is == or !=. The latter cases return False or
True, respectively.

Dates can be used as dictionary keys. In Boolean contexts, all date objects are considered to be true.

Instance methods:

replace(year, month, day)
Return a date with the same value, except for those members given new values by whichever keyword ar-
guments are specified. For example, if d == date(2002, 12, 31), then d.replace(day=26) ==
date(2002, 12, 26).

timetuple()
Return a time.struct_time such as returned by time.localtime(). The hours, minutes and seconds
are 0, and the DST flag is -1. d.timetuple() is equivalent to time.struct_time((d.year,
d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() - date(d.year, 1,
1).toordinal() + 1, -1))

toordinal()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date object
d, date.fromordinal(d.toordinal()) == d.

weekday()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date(2002,
12, 4).weekday() == 2, a Wednesday. See also isoweekday().

isoweekday()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date(2002,
12, 4).isoweekday() == 3, a Wednesday. See also weekday(), isocalendar().

isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so that date(2003, 12, 29).isocalendar() == (2004, 1,
1) and date(2004, 1, 4).isocalendar() == (2004, 1, 7).

isoformat()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD’. For example, date(2002, 12,
4).isoformat() == ’2002-12-04’.

__str__()
For a date d, str(d) is equivalent to d.isoformat().

ctime()
Return a string representing the date, for example date(2002, 12, 4).ctime() == ’Wed Dec 4

130 Chapter 8. Data Types

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm

The Python Library Reference, Release 2.6.9

00:00:00 2002’. d.ctime() is equivalent to time.ctime(time.mktime(d.timetuple()))
on platforms where the native C ctime() function (which time.ctime() invokes, but which
date.ctime() does not invoke) conforms to the C standard.

strftime(format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. See section strftime() and strptime() Behavior.

Example of counting days to an event:

>>> import time
>>> from datetime import date
>>> today = date.today()
>>> today
datetime.date(2007, 12, 5)
>>> today == date.fromtimestamp(time.time())
True
>>> my_birthday = date(today.year, 6, 24)
>>> if my_birthday < today:
... my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday
datetime.date(2008, 6, 24)
>>> time_to_birthday = abs(my_birthday - today)
>>> time_to_birthday.days
202

Example of working with date:

>>> from datetime import date
>>> d = date.fromordinal(730920) # 730920th day after 1. 1. 0001
>>> d
datetime.date(2002, 3, 11)
>>> t = d.timetuple()
>>> for i in t:
... print i
2002 # year
3 # month
11 # day
0
0
0
0 # weekday (0 = Monday)
70 # 70th day in the year
-1
>>> ic = d.isocalendar()
>>> for i in ic:
... print i
2002 # ISO year
11 # ISO week number
1 # ISO day number (1 = Monday)
>>> d.isoformat()
’2002-03-11’
>>> d.strftime("%d/%m/%y")
’11/03/02’
>>> d.strftime("%A %d. %B %Y")
’Monday 11. March 2002’

8.1. datetime — Basic date and time types 131

The Python Library Reference, Release 2.6.9

8.1.4 datetime Objects

A datetime object is a single object containing all the information from a date object and a time object. Like
a date object, datetime assumes the current Gregorian calendar extended in both directions; like a time object,
datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime(year, month, day, [hour, [minute, [second, [microsecond, [tzinfo]]]]])
The year, month and day arguments are required. tzinfo may be None, or an instance of a tzinfo subclass.
The remaining arguments may be ints or longs, in the following ranges:

•MINYEAR <= year <= MAXYEAR

•1 <= month <= 12

•1 <= day <= number of days in the given month and year

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond < 1000000

If an argument outside those ranges is given, ValueError is raised.

Other constructors, all class methods:

class today()
Return the current local datetime, with tzinfo None. This is equivalent to
datetime.fromtimestamp(time.time()). See also now(), fromtimestamp().

class now([tz])
Return the current local date and time. If optional argument tz is None or not specified, this is like today(),
but, if possible, supplies more precision than can be gotten from going through a time.time() timestamp
(for example, this may be possible on platforms supplying the C gettimeofday() function).

Else tz must be an instance of a class tzinfo subclass, and the current date
and time are converted to tz‘s time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcnow().replace(tzinfo=tz)). See also today(), utcnow().

class utcnow()
Return the current UTC date and time, with tzinfo None. This is like now(), but returns the current UTC
date and time, as a naive datetime object. See also now().

class fromtimestamp(timestamp, [tz])
Return the local date and time corresponding to the POSIX timestamp, such as is returned by time.time().
If optional argument tz is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned datetime object is naive.

Else tz must be an instance of a class tzinfo subclass, and the times-
tamp is converted to tz‘s time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz)).

fromtimestamp() may raise ValueError, if the timestamp is out of the range of values supported by
the platform C localtime() or gmtime() functions. It’s common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap
seconds are ignored by fromtimestamp(), and then it’s possible to have two timestamps differing by a
second that yield identical datetime objects. See also utcfromtimestamp().

132 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

class utcfromtimestamp(timestamp)
Return the UTC datetime corresponding to the POSIX timestamp, with tzinfo None. This may raise
ValueError, if the timestamp is out of the range of values supported by the platform C gmtime() function.
It’s common for this to be restricted to years in 1970 through 2038. See also fromtimestamp().

class fromordinal(ordinal)
Return the datetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal(). The hour, minute,
second and microsecond of the result are all 0, and tzinfo is None.

class combine(date, time)
Return a new datetime object whose date members are equal to the given date object’s, and whose
time and tzinfo members are equal to the given time object’s. For any datetime object d, d ==
datetime.combine(d.date(), d.timetz()). If date is a datetime object, its time and tzinfo
members are ignored.

class strptime(date_string, format)
Return a datetime corresponding to date_string, parsed according to format. This is equivalent to
datetime(*(time.strptime(date_string, format)[0:6])). ValueError is raised if the
date_string and format can’t be parsed by time.strptime() or if it returns a value which isn’t a time tuple.
See section strftime() and strptime() Behavior. New in version 2.5.

Class attributes:

min
The earliest representable datetime, datetime(MINYEAR, 1, 1, tzinfo=None).

max
The latest representable datetime, datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

resolution
The smallest possible difference between non-equal datetime objects, timedelta(microseconds=1).

Instance attributes (read-only):

year
Between MINYEAR and MAXYEAR inclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24).

minute
In range(60).

second
In range(60).

microsecond
In range(1000000).

tzinfo
The object passed as the tzinfo argument to the datetime constructor, or None if none was passed.

Supported operations:

8.1. datetime — Basic date and time types 133

The Python Library Reference, Release 2.6.9

Operation Result
datetime2 = datetime1 + timedelta (1)
datetime2 = datetime1 - timedelta (2)
timedelta = datetime1 - datetime2 (3)
datetime1 < datetime2 Compares datetime to datetime. (4)

1. datetime2 is a duration of timedelta removed from datetime1, moving forward in time if timedelta.days >
0, or backward if timedelta.days < 0. The result has the same tzinfo member as the input datetime, and
datetime2 - datetime1 == timedelta after. OverflowError is raised if datetime2.year would be smaller than
MINYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an aware
object.

2. Computes the datetime2 such that datetime2 + timedelta == datetime1. As for addition, the result has the same
tzinfo member as the input datetime, and no time zone adjustments are done even if the input is aware. This
isn’t quite equivalent to datetime1 + (-timedelta), because -timedelta in isolation can overflow in cases where
datetime1 - timedelta does not.

3. Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same tzinfo member, the tzinfo members are ignored, and
the result is a timedelta object t such that datetime2 + t == datetime1. No time zone adjustments
are done in this case.

If both are aware and have different tzinfo members, a-b acts as if a and b were first converted
to naive UTC datetimes first. The result is (a.replace(tzinfo=None) - a.utcoffset()) -
(b.replace(tzinfo=None) - b.utcoffset()) except that the implementation never overflows.

4. datetime1 is considered less than datetime2 when datetime1 precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised. If both comparands are aware, and
have the same tzinfo member, the common tzinfo member is ignored and the base datetimes are com-
pared. If both comparands are aware and have different tzinfo members, the comparands are first adjusted by
subtracting their UTC offsets (obtained from self.utcoffset()).

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses, date-
time comparison normally raises TypeError if the other comparand isn’t also a datetime object. However,
NotImplemented is returned instead if the other comparand has a timetuple() attribute. This hook gives
other kinds of date objects a chance at implementing mixed-type comparison. If not, when a datetime object
is compared to an object of a different type, TypeError is raised unless the comparison is == or !=. The
latter cases return False or True, respectively.

datetime objects can be used as dictionary keys. In Boolean contexts, all datetime objects are considered to be
true.

Instance methods:

date()
Return date object with same year, month and day.

time()
Return time object with same hour, minute, second and microsecond. tzinfo is None. See also method
timetz().

timetz()
Return time object with same hour, minute, second, microsecond, and tzinfo members. See also method
time().

replace([year, [month, [day, [hour, [minute, [second, [microsecond, [tzinfo]]]]]]]])
Return a datetime with the same members, except for those members given new values by whichever keyword

134 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

arguments are specified. Note that tzinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time members.

astimezone(tz)
Return a datetime object with new tzinfo member tz, adjusting the date and time members so the result is
the same UTC time as self, but in tz‘s local time.

tz must be an instance of a tzinfo subclass, and its utcoffset() and dst() methods must not return
None. self must be aware (self.tzinfo must not be None, and self.utcoffset() must not return
None).

If self.tzinfo is tz, self.astimezone(tz) is equal to self : no adjustment of date or time members is
performed. Else the result is local time in time zone tz, representing the same UTC time as self : after astz =
dt.astimezone(tz), astz - astz.utcoffset()will usually have the same date and time members
as dt - dt.utcoffset(). The discussion of class tzinfo explains the cases at Daylight Saving Time
transition boundaries where this cannot be achieved (an issue only if tz models both standard and daylight time).

If you merely want to attach a time zone object tz to a datetime dt without adjustment of date and time members,
use dt.replace(tzinfo=tz). If you merely want to remove the time zone object from an aware datetime
dt without conversion of date and time members, use dt.replace(tzinfo=None).

Note that the default tzinfo.fromutc() method can be overridden in a tzinfo subclass to affect the
result returned by astimezone(). Ignoring error cases, astimezone() acts like:

def astimezone(self, tz):
if self.tzinfo is tz:

return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz’s local time.
return tz.fromutc(utc)

utcoffset()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(self), and raises an excep-
tion if the latter doesn’t return None, or a timedelta object representing a whole number of minutes with
magnitude less than one day.

dst()
If tzinfo is None, returns None, else returns self.tzinfo.dst(self), and raises an exception if the
latter doesn’t return None, or a timedelta object representing a whole number of minutes with magnitude
less than one day.

tzname()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(self), raises an exception if the
latter doesn’t return None or a string object,

timetuple()
Return a time.struct_time such as returned by time.localtime(). d.timetuple() is equiva-
lent to time.struct_time((d.year, d.month, d.day, d.hour, d.minute, d.second,
d.weekday(), d.toordinal() - date(d.year, 1, 1).toordinal() + 1, dst)) The
tm_isdst flag of the result is set according to the dst() method: tzinfo is None or dst() returns None,
tm_isdst is set to -1; else if dst() returns a non-zero value, tm_isdst is set to 1; else tm_isdst is set
to 0.

utctimetuple()
If datetime instance d is naive, this is the same as d.timetuple() except that tm_isdst is forced to 0
regardless of what d.dst() returns. DST is never in effect for a UTC time.

8.1. datetime — Basic date and time types 135

The Python Library Reference, Release 2.6.9

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset(), and a time.struct_time
for the normalized time is returned. tm_isdst is forced to 0. Note that the result’s tm_year member may
be MINYEAR-1 or MAXYEAR+1, if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year
boundary.

toordinal()
Return the proleptic Gregorian ordinal of the date. The same as self.date().toordinal().

weekday()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date().weekday(). See also isoweekday().

isoweekday()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date().isoweekday(). See also weekday(), isocalendar().

isocalendar()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as
self.date().isocalendar().

isoformat([sep])
Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:MM:SS.mmmmmm
or, if microsecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not return None, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM or, if microsecond is 0 YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argument sep (default ’T’) is a one-character separator, placed between the date and time portions
of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
... def utcoffset(self, dt): return timedelta(minutes=-399)
...
>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(’ ’)
’2002-12-25 00:00:00-06:39’

__str__()
For a datetime instance d, str(d) is equivalent to d.isoformat(’ ’).

ctime()
Return a string representing the date and time, for example datetime(2002, 12, 4, 20,
30, 40).ctime() == ’Wed Dec 4 20:30:40 2002’. d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native C ctime() function
(which time.ctime() invokes, but which datetime.ctime() does not invoke) conforms to the C
standard.

strftime(format)
Return a string representing the date and time, controlled by an explicit format string. See section strftime() and
strptime() Behavior.

Examples of working with datetime objects:

>>> from datetime import datetime, date, time
>>> # Using datetime.combine()
>>> d = date(2005, 7, 14)
>>> t = time(12, 30)
>>> datetime.combine(d, t)

136 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

datetime.datetime(2005, 7, 14, 12, 30)
>>> # Using datetime.now() or datetime.utcnow()
>>> datetime.now()
datetime.datetime(2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime.utcnow()
datetime.datetime(2007, 12, 6, 15, 29, 43, 79060)
>>> # Using datetime.strptime()
>>> dt = datetime.strptime("21/11/06 16:30", "%d/%m/%y %H:%M")
>>> dt
datetime.datetime(2006, 11, 21, 16, 30)
>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt.timetuple()
>>> for it in tt:
... print it
...
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1st January
-1 # dst - method tzinfo.dst() returned None
>>> # Date in ISO format
>>> ic = dt.isocalendar()
>>> for it in ic:
... print it
...
2006 # ISO year
47 # ISO week
2 # ISO weekday
>>> # Formatting datetime
>>> dt.strftime("%A, %d. %B %Y %I:%M%p")
’Tuesday, 21. November 2006 04:30PM’

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT1(tzinfo):
... def __init__(self): # DST starts last Sunday in March
... d = datetime(dt.year, 4, 1) # ends last Sunday in October
... self.dston = d - timedelta(days=d.weekday() + 1)
... d = datetime(dt.year, 11, 1)
... self.dstoff = d - timedelta(days=d.weekday() + 1)
... def utcoffset(self, dt):
... return timedelta(hours=1) + self.dst(dt)
... def dst(self, dt):
... if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
... return timedelta(hours=1)
... else:
... return timedelta(0)
... def tzname(self,dt):
... return "GMT +1"
...

8.1. datetime — Basic date and time types 137

The Python Library Reference, Release 2.6.9

>>> class GMT2(tzinfo):
... def __init__(self):
... d = datetime(dt.year, 4, 1)
... self.dston = d - timedelta(days=d.weekday() + 1)
... d = datetime(dt.year, 11, 1)
... self.dstoff = d - timedelta(days=d.weekday() + 1)
... def utcoffset(self, dt):
... return timedelta(hours=1) + self.dst(dt)
... def dst(self, dt):
... if self.dston <= dt.replace(tzinfo=None) < self.dstoff:
... return timedelta(hours=2)
... else:
... return timedelta(0)
... def tzname(self,dt):
... return "GMT +2"
...
>>> gmt1 = GMT1()
>>> # Daylight Saving Time
>>> dt1 = datetime(2006, 11, 21, 16, 30, tzinfo=gmt1)
>>> dt1.dst()
datetime.timedelta(0)
>>> dt1.utcoffset()
datetime.timedelta(0, 3600)
>>> dt2 = datetime(2006, 6, 14, 13, 0, tzinfo=gmt1)
>>> dt2.dst()
datetime.timedelta(0, 3600)
>>> dt2.utcoffset()
datetime.timedelta(0, 7200)
>>> # Convert datetime to another time zone
>>> dt3 = dt2.astimezone(GMT2())
>>> dt3 # doctest: +ELLIPSIS
datetime.datetime(2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2 # doctest: +ELLIPSIS
datetime.datetime(2006, 6, 14, 13, 0, tzinfo=<GMT1 object at 0x...>)
>>> dt2.utctimetuple() == dt3.utctimetuple()
True

8.1.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class time(hour, [minute, [second, [microsecond, [tzinfo]]]])
All arguments are optional. tzinfo may be None, or an instance of a tzinfo subclass. The remaining arguments
may be ints or longs, in the following ranges:

•0 <= hour < 24

•0 <= minute < 60

•0 <= second < 60

•0 <= microsecond < 1000000.

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

138 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

Class attributes:

min
The earliest representable time, time(0, 0, 0, 0).

max
The latest representable time, time(23, 59, 59, 999999).

resolution
The smallest possible difference between non-equal time objects, timedelta(microseconds=1), al-
though note that arithmetic on time objects is not supported.

Instance attributes (read-only):

hour
In range(24).

minute
In range(60).

second
In range(60).

microsecond
In range(1000000).

tzinfo
The object passed as the tzinfo argument to the time constructor, or None if none was passed.

Supported operations:

• comparison of time to time, where a is considered less than b when a precedes b in time. If one comparand is
naive and the other is aware, TypeError is raised. If both comparands are aware, and have the same tzinfo
member, the common tzinfo member is ignored and the base times are compared. If both comparands
are aware and have different tzinfo members, the comparands are first adjusted by subtracting their UTC
offsets (obtained from self.utcoffset()). In order to stop mixed-type comparisons from falling back to
the default comparison by object address, when a time object is compared to an object of a different type,
TypeError is raised unless the comparison is == or !=. The latter cases return False or True, respectively.

• hash, use as dict key

• efficient pickling

• in Boolean contexts, a time object is considered to be true if and only if, after converting it to minutes and
subtracting utcoffset() (or 0 if that’s None), the result is non-zero.

Instance methods:

replace([hour, [minute, [second, [microsecond, [tzinfo]]]]])
Return a time with the same value, except for those members given new values by whichever keyword argu-
ments are specified. Note that tzinfo=None can be specified to create a naive time from an aware time,
without conversion of the time members.

isoformat()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not return None, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

__str__()
For a time t, str(t) is equivalent to t.isoformat().

8.1. datetime — Basic date and time types 139

The Python Library Reference, Release 2.6.9

strftime(format)
Return a string representing the time, controlled by an explicit format string. See section strftime() and strptime()
Behavior.

utcoffset()
If tzinfo is None, returns None, else returns self.tzinfo.utcoffset(None), and raises an excep-
tion if the latter doesn’t return None or a timedelta object representing a whole number of minutes with
magnitude less than one day.

dst()
If tzinfo is None, returns None, else returns self.tzinfo.dst(None), and raises an exception if the
latter doesn’t return None, or a timedelta object representing a whole number of minutes with magnitude
less than one day.

tzname()
If tzinfo is None, returns None, else returns self.tzinfo.tzname(None), or raises an exception if
the latter doesn’t return None or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT1(tzinfo):
... def utcoffset(self, dt):
... return timedelta(hours=1)
... def dst(self, dt):
... return timedelta(0)
... def tzname(self,dt):
... return "Europe/Prague"
...
>>> t = time(12, 10, 30, tzinfo=GMT1())
>>> t # doctest: +ELLIPSIS
datetime.time(12, 10, 30, tzinfo=<GMT1 object at 0x...>)
>>> gmt = GMT1()
>>> t.isoformat()
’12:10:30+01:00’
>>> t.dst()
datetime.timedelta(0)
>>> t.tzname()
’Europe/Prague’
>>> t.strftime("%H:%M:%S %Z")
’12:10:30 Europe/Prague’

8.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to derive a
concrete subclass, and (at least) supply implementations of the standard tzinfo methods needed by the datetime
methods you use. The datetime module does not supply any concrete subclasses of tzinfo.

An instance of (a concrete subclass of) tzinfo can be passed to the constructors for datetime and time objects.
The latter objects view their members as being in local time, and the tzinfo object supports methods revealing offset
of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time object passed to them.

Special requirement for pickling: A tzinfo subclass must have an __init__() method that can be called with no
arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be relaxed
in the future.

140 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

A concrete subclass of tzinfo may need to implement the following methods. Exactly which methods are needed
depends on the uses made of aware datetime objects. If in doubt, simply implement all of them.

utcoffset(self, dt)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should be
negative. Note that this is intended to be the total offset from UTC; for example, if a tzinfo object represents
both time zone and DST adjustments, utcoffset() should return their sum. If the UTC offset isn’t known,
return None. Else the value returned must be a timedelta object specifying a whole number of minutes in
the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less than one day). Most
implementations of utcoffset() will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not return None, dst() should not return None either.

The default implementation of utcoffset() raises NotImplementedError.

dst(self, dt)
Return the daylight saving time (DST) adjustment, in minutes east of UTC, or None if DST information isn’t
known. Return timedelta(0) if DST is not in effect. If DST is in effect, return the offset as a timedelta
object (see utcoffset() for details). Note that DST offset, if applicable, has already been added to the UTC
offset returned by utcoffset(), so there’s no need to consult dst() unless you’re interested in obtaining
DST info separately. For example, datetime.timetuple() calls its tzinfo member’s dst() method
to determine how the tm_isdst flag should be set, and tzinfo.fromutc() calls dst() to account for
DST changes when crossing time zones.

An instance tz of a tzinfo subclass that models both standard and daylight times must be consistent in this
sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for every datetime dt with dt.tzinfo == tz For sane tzinfo subclasses,
this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datetime.astimezone() relies on this, but cannot
detect violations; it’s the programmer’s responsibility to ensure it. If a tzinfo subclass cannot guarantee
this, it may be able to override the default implementation of tzinfo.fromutc() to work correctly with
astimezone() regardless.

Most implementations of dst() will probably look like one of these two:

def dst(self):
a fixed-offset class: doesn’t account for DST
return timedelta(0)

or

def dst(self):
Code to set dston and dstoff to the time zone’s DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours=1)

else:
return timedelta(0)

8.1. datetime — Basic date and time types 141

The Python Library Reference, Release 2.6.9

The default implementation of dst() raises NotImplementedError.

tzname(self, dt)
Return the time zone name corresponding to the datetime object dt, as a string. Nothing about string names is
defined by the datetime module, and there’s no requirement that it mean anything in particular. For example,
“GMT”, “UTC”, “-500”, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid replies. Return
None if a string name isn’t known. Note that this is a method rather than a fixed string primarily because some
tzinfo subclasses will wish to return different names depending on the specific value of dt passed, especially
if the tzinfo class is accounting for daylight time.

The default implementation of tzname() raises NotImplementedError.

These methods are called by a datetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a time object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a dt argument of None, or of class datetime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the tzinfo protocols. It may be more
useful for utcoffset(None) to return the standard UTC offset, as there is no other convention for discovering the
standard offset.

When a datetime object is passed in response to a datetime method, dt.tzinfo is the same object as self.
tzinfo methods can rely on this, unless user code calls tzinfo methods directly. The intent is that the tzinfo
methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more tzinfo method that a subclass may wish to override:

fromutc(self, dt)
This is called from the default datetime.astimezone() implementation. When called from that,
dt.tzinfo is self, and dt‘s date and time members are to be viewed as expressing a UTC time. The pur-
pose of fromutc() is to adjust the date and time members, returning an equivalent datetime in self ‘s local
time.

Most tzinfo subclasses should be able to inherit the default fromutc() implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc() implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations of astimezone() and fromutc() may not produce the result you want if the result is one
of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc() implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset()
dtdst = dt.dst()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self’s standard offset
if delta:

dt += delta # convert to standard local time
dtdst = dt.dst()
raise ValueError if dtdst is None

if dtdst:
return dt + dtdst

else:
return dt

142 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

Example tzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR = timedelta(hours=1)

A UTC class.

class UTC(tzinfo):
"""UTC"""

def utcoffset(self, dt):
return ZERO

def tzname(self, dt):
return "UTC"

def dst(self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset(tzinfo):
"""Fixed offset in minutes east from UTC."""

def __init__(self, offset, name):
self.__offset = timedelta(minutes = offset)
self.__name = name

def utcoffset(self, dt):
return self.__offset

def tzname(self, dt):
return self.__name

def dst(self, dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = -_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = -_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET

8.1. datetime — Basic date and time types 143

The Python Library Reference, Release 2.6.9

class LocalTimezone(tzinfo):

def utcoffset(self, dt):
if self._isdst(dt):

return DSTOFFSET
else:

return STDOFFSET

def dst(self, dt):
if self._isdst(dt):

return DSTDIFF
else:

return ZERO

def tzname(self, dt):
return _time.tzname[self._isdst(dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,

dt.hour, dt.minute, dt.second,
dt.weekday(), 0, -1)

stamp = _time.mktime(tt)
tt = _time.localtime(stamp)
return tt.tm_isdst > 0

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days_to_go = 6 - dt.weekday()
if days_to_go:

dt += timedelta(days_to_go)
return dt

US DST Rules
#
This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-link.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)
#
In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime(1, 3, 8, 2)
and ends at 2am (DST time; 1am standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)
From 1987 to 2006, DST used to start at 2am (standard time) on the first
Sunday in April and to end at 2am (DST time; 1am standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.

144 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

DSTSTART_1987_2006 = datetime(1, 4, 1, 2)
DSTEND_1987_2006 = datetime(1, 10, 25, 1)
From 1967 to 1986, DST used to start at 2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time;
1am standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.
DSTSTART_1967_1986 = datetime(1, 4, 24, 2)
DSTEND_1967_1986 = DSTEND_1987_2006

class USTimeZone(tzinfo):

def __init__(self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta(hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

def __repr__(self):
return self.reprname

def tzname(self, dt):
if self.dst(dt):

return self.dstname
else:

return self.stdname

def utcoffset(self, dt):
return self.stdoffset + self.dst(dt)

def dst(self, dt):
if dt is None or dt.tzinfo is None:

An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:

dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:

dststart, dstend = DSTSTART_1987_2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else:

return ZERO

start = first_sunday_on_or_after(dststart.replace(year=dt.year))
end = first_sunday_on_or_after(dstend.replace(year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.

8.1. datetime — Basic date and time types 145

The Python Library Reference, Release 2.6.9

if start <= dt.replace(tzinfo=None) < end:
return HOUR

else:
return ZERO

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
Central = USTimeZone(-6, "Central", "CST", "CDT")
Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per year in a tzinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the first Sunday
in November:

UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM
EDT 23:MM 0:MM 1:MM 2:MM 3:MM 4:MM

start 22:MM 23:MM 0:MM 1:MM 3:MM 4:MM

end 23:MM 0:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM doesn’t
really make sense on that day, so astimezone(Eastern) won’t deliver a result with hour == 2 on the day
DST begins. In order for astimezone() to make this guarantee, the rzinfo.dst() method must consider times
in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unambigu-
ously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the day
daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again. Local
times of the form 1:MM are ambiguous. astimezone()mimics the local clock’s behavior by mapping two adjacent
UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM both map
to 1:MM when converted to Eastern. In order for astimezone() to make this guarantee, the tzinfo.dst()
method must consider times in the “repeated hour” to be in standard time. This is easily arranged, as in the example,
by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybrid tzinfo subclasses; there are no ambiguities
when using UTC, or any other fixed-offset tzinfo subclass (such as a class representing only EST (fixed offset -5
hours), or only EDT (fixed offset -4 hours)).

8.1.7 strftime() and strptime() Behavior

date, datetime, and time objects all support a strftime(format) method, to create a string representing the
time under the control of an explicit format string. Broadly speaking, d.strftime(fmt) acts like the time mod-
ule’s time.strftime(fmt, d.timetuple()) although not all objects support a timetuple() method.

Conversely, the datetime.strptime() class method creates a datetime object from a string representing a
date and time and a corresponding format string. datetime.strptime(date_string, format) is equiva-
lent to datetime(*(time.strptime(date_string, format)[0:6])).

For time objects, the format codes for year, month, and day should not be used, as time objects have no such values.
If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date objects
have no such values. If they’re used anyway, 0 is substituted for them. New in version 2.6: time and datetime

146 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

objects support a %f format code which expands to the number of microseconds in the object, zero-padded on the left
to six places. For a naive object, the %z and %Z format codes are replaced by empty strings.

For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a 2-
digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, if utcoffset() returns timedelta(hours=-3, minutes=-30), %z is
replaced with the string ’-0330’.

%Z If tzname() returns None, %Z is replaced by an empty string. Otherwise %Z is replaced by the returned value,
which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

The exact range of years for which strftime() works also varies across platforms. Regardless of platform, years
before 1900 cannot be used.

Di-
rec-
tive

Meaning Notes

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%f Microsecond as a decimal number [0,999999], zero-padded on the left (1)
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. (2)
%S Second as a decimal number [00,61]. (3)
%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All

days in a new year preceding the first Sunday are considered to be in week 0.
(4)

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All

days in a new year preceding the first Monday are considered to be in week 0.
(4)

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). (5)
%Z Time zone name (empty string if the object is naive).
%% A literal ’%’ character.

Notes:

1. When used with the strptime() method, the %f directive accepts from one to six digits and zero pads on
the right. %f is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

8.1. datetime — Basic date and time types 147

The Python Library Reference, Release 2.6.9

2. When used with the strptime()method, the %p directive only affects the output hour field if the %I directive
is used to parse the hour.

3. The range really is 0 to 61; according to the Posix standard this accounts for leap seconds and the (very rare)
double leap seconds. The timemodule may produce and does accept leap seconds since it is based on the Posix
standard, but the datetime module does not accept leap seconds in strptime() input nor will it produce
them in strftime() output.

4. When used with the strptime() method, %U and %W are only used in calculations when the day of the week
and the year are specified.

5. For example, if utcoffset() returns timedelta(hours=-3, minutes=-30), %z is replaced with
the string ’-0330’.

8.2 calendar — General calendar-related functions

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use setfirstweekday() to set the first day of the week to Sunday (6) or to any other
weekday. Parameters that specify dates are given as integers. For related functionality, see also the datetime and
time modules.

Most of these functions and classses rely on the datetime module which uses an idealized calendar, the current
Gregorian calendar indefinitely extended in both directions. This matches the definition of the “proleptic Gregorian”
calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computa-
tions.

class Calendar([firstweekday])
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. 0 is Monday (the
default), 6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses. New in version 2.5. Calendar
instances have the following methods:

iterweekdays()
Return an iterator for the week day numbers that will be used for one week. The first value from the iterator
will be the same as the value of the firstweekday property.

itermonthdates(year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end of the
month that are required to get a complete week.

itermonthdays2(year, month)
Return an iterator for the month month in the year year similar to itermonthdates(). Days returned
will be tuples consisting of a day number and a week day number.

itermonthdays(year, month)
Return an iterator for the month month in the year year similar to itermonthdates(). Days returned
will simply be day numbers.

monthdatescalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

148 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

monthdays2calendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples of
day numbers and weekday numbers.

monthdayscalendar(year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar(year, [width])
Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1–7 days. Days are datetime.date objects.

yeardays2calendar(year, [width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). Entries
in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this month are
zero.

yeardayscalendar(year, [width])
Return the data for the specified year ready for formatting (similar to yeardatescalendar()). Entries
in the week lists are day numbers. Day numbers outside this month are zero.

class TextCalendar([firstweekday])
This class can be used to generate plain text calendars. New in version 2.5. TextCalendar instances have
the following methods:

formatmonth(theyear, themonth, [w, [l]])
Return a month’s calendar in a multi-line string. If w is provided, it specifies the width of the date columns,
which are centered. If l is given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set by the setfirstweekday() method.

prmonth(theyear, themonth, [w, [l]])
Print a month’s calendar as returned by formatmonth().

formatyear(theyear, [w, [l, [c, [m]]]])
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, l, and c are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends
on the first weekday as specified in the constructor or set by the setfirstweekday() method. The
earliest year for which a calendar can be generated is platform-dependent.

pryear(theyear, [w, [l, [c, [m]]]])
Print the calendar for an entire year as returned by formatyear().

class HTMLCalendar([firstweekday])
This class can be used to generate HTML calendars. New in version 2.5. HTMLCalendar instances have the
following methods:

formatmonth(theyear, themonth, [withyear])
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear(theyear, [width])
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per
row.

formatyearpage(theyear, [width, [css, [encoding]]])
Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of months
per row. css is the name for the cascading style sheet to be used. None can be passed if no style sheet
should be used. encoding specifies the encoding to be used for the output (defaulting to the system default
encoding).

8.2. calendar — General calendar-related functions 149

The Python Library Reference, Release 2.6.9

class LocaleTextCalendar([firstweekday, [locale]])
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

class LocaleHTMLCalendar([firstweekday, [locale]])
This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

For simple text calendars this module provides the following functions.

setfirstweekday(weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

New in version 2.0.

firstweekday()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap(year)
Returns True if year is a leap year, otherwise False.

leapdays(y1, y2)
Returns the number of leap years in the range from y1 to y2 (exclusive), where y1 and y2 are years. Changed in
version 2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday(year, month, day)
Returns the day of the week (0 is Monday) for year (1970–...), month (1–12), day (1–31).

weekheader(n)
Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

monthrange(year, month)
Returns weekday of first day of the month and number of days in month, for the specified year and month.

monthcalendar(year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set by setfirstweekday().

prmonth(theyear, themonth, [w, [l]])
Prints a month’s calendar as returned by month().

month(theyear, themonth, [w, [l]])
Returns a month’s calendar in a multi-line string using the formatmonth() of the TextCalendar class.
New in version 2.0.

prcal(year, [w, [l, [c]]])
Prints the calendar for an entire year as returned by calendar().

calendar(year, [w, [l, [c]]])
Returns a 3-column calendar for an entire year as a multi-line string using the formatyear() of the
TextCalendar class. New in version 2.0.

timegm(tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime() function in the

150 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

timemodule, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX
encoding. In fact, time.gmtime() and timegm() are each others’ inverse. New in version 2.0.

The calendar module exports the following data attributes:

day_name
An array that represents the days of the week in the current locale.

day_abbr
An array that represents the abbreviated days of the week in the current locale.

month_name
An array that represents the months of the year in the current locale. This follows normal convention of January
being month number 1, so it has a length of 13 and month_name[0] is the empty string.

month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal convention
of January being month number 1, so it has a length of 13 and month_abbr[0] is the empty string.

See Also:

Module datetime Object-oriented interface to dates and times with similar functionality to the time module.

Module time Low-level time related functions.

8.3 collections — High-performance container datatypes

New in version 2.4. This module implements high-performance container datatypes. Currently, there are two
datatypes, deque and defaultdict, and one datatype factory function, namedtuple(). Changed in version
2.5: Added defaultdict.Changed in version 2.6: Added namedtuple(). The specialized containers provided
in this module provide alternatives to Python’s general purpose built-in containers, dict, list, set, and tuple.

Besides the containers provided here, the optional bsddb module offers the ability to create in-memory or file based
ordered dictionaries with string keys using the bsddb.btopen() method.

In addition to containers, the collections module provides some ABCs (abstract base classes) that can be used to test
whether a class provides a particular interface, for example, is it hashable or a mapping. Changed in version 2.6:
Added abstract base classes.

8.3.1 ABCs - abstract base classes

The collections module offers the following ABCs:

8.3. collections — High-performance container datatypes 151

The Python Library Reference, Release 2.6.9

ABC Inherits Abstract Methods Mixin Methods
Container __contains__
Hashable __hash__
Iterable __iter__
Iterator Iterable next __iter__
Sized __len__
Callable __call__
Sequence Sized,

Iterable,
Container

__getitem__ __contains__. __iter__, __reversed__.
index, and count

MutableSequenceSequence __setitem__
__delitem__, and
insert

Inherited Sequence methods and append, reverse,
extend, pop, remove, and __iadd__

Set Sized,
Iterable,
Container

__le__, __lt__, __eq__, __ne__, __gt__,
__ge__, __and__, __or__ __sub__, __xor__,
and isdisjoint

MutableSetSet add and discard Inherited Set methods and clear, pop, remove,
__ior__, __iand__, __ixor__, and __isub__

Mapping Sized,
Iterable,
Container

__getitem__ __contains__, keys, items, values, get,
__eq__, and __ne__

MutableMappingMapping __setitem__ and
__delitem__

Inherited Mapping methods and pop, popitem,
clear, update, and setdefault

MappingViewSized __len__
KeysView MappingView,

Set
__contains__, __iter__

ItemsViewMappingView,
Set

__contains__, __iter__

ValuesViewMappingView __contains__, __iter__

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance(myvar, collections.Sized):

size = len(myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it only necessary to supply the three underlying abstract meth-
ods: __contains__(), __iter__(), and __len__(). The ABC supplies the remaining methods such as
__and__() and isdisjoint()

class ListBasedSet(collections.Set):
’’’ Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. ’’’
def __init__(self, iterable):

self.elements = lst = []
for value in iterable:

if value not in lst:
lst.append(value)

def __iter__(self):
return iter(self.elements)

def __contains__(self, value):
return value in self.elements

def __len__(self):
return len(self.elements)

152 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

s1 = ListBasedSet(’abcdef’)
s2 = ListBasedSet(’defghi’)
overlap = s1 & s2 # The __and__() method is supported automatically

Notes on using Set and MutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new instances from
an iterable. The class constructor is assumed to have a signature in the form ClassName(iterable).
That assumption is factored-out to an internal classmethod called _from_iterable() which calls
cls(iterable) to produce a new set. If the Set mixin is being used in a class with a different constructor
signature, you will need to override from_iterable() with a classmethod that can construct new instances
from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__() and then
the other operations will automatically follow suit.

3. The Set mixin provides a _hash() method to compute a hash value for the set; however, __hash__() is
not defined because not all sets are hashable or immutable. To add set hashabilty using mixins, inherit from both
Set() and Hashable(), then define __hash__ = Set._hash.

See Also:

• OrderedSet recipe for an example built on MutableSet.

• For more about ABCs, see the abc module and PEP 3119.

8.3.2 deque objects

class deque([iterable, [maxlen]])
Returns a new deque object initialized left-to-right (using append()) with data from iterable. If iterable is not
specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs for pop(0) and insert(0, v) operations which change both the size and
position of the underlying data representation. New in version 2.4. If maxlen is not specified or is None, deques
may grow to an arbitrary length. Otherwise, the deque is bounded to the specified maximum length. Once a
bounded length deque is full, when new items are added, a corresponding number of items are discarded from
the opposite end. Bounded length deques provide functionality similar to the tail filter in Unix. They are
also useful for tracking transactions and other pools of data where only the most recent activity is of interest.
Changed in version 2.6: Added maxlen parameter. Deque objects support the following methods:

append(x)
Add x to the right side of the deque.

appendleft(x)
Add x to the left side of the deque.

clear()
Remove all elements from the deque leaving it with length 0.

extend(iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft(iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

8.3. collections — High-performance container datatypes 153

http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119

The Python Library Reference, Release 2.6.9

pop()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove(value)
Removed the first occurrence of value. If not found, raises a ValueError. New in version 2.5.

rotate(n)
Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to the right is
equivalent to: d.appendleft(d.pop()).

In addition to the above, deques support iteration, pickling, len(d), reversed(d), copy.copy(d),
copy.deepcopy(d), membership testing with the in operator, and subscript references such as d[-1]. Indexed
access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Example:

>>> from collections import deque
>>> d = deque(’ghi’) # make a new deque with three items
>>> for elem in d: # iterate over the deque’s elements
... print elem.upper()
G
H
I

>>> d.append(’j’) # add a new entry to the right side
>>> d.appendleft(’f’) # add a new entry to the left side
>>> d # show the representation of the deque
deque([’f’, ’g’, ’h’, ’i’, ’j’])

>>> d.pop() # return and remove the rightmost item
’j’
>>> d.popleft() # return and remove the leftmost item
’f’
>>> list(d) # list the contents of the deque
[’g’, ’h’, ’i’]
>>> d[0] # peek at leftmost item
’g’
>>> d[-1] # peek at rightmost item
’i’

>>> list(reversed(d)) # list the contents of a deque in reverse
[’i’, ’h’, ’g’]
>>> ’h’ in d # search the deque
True
>>> d.extend(’jkl’) # add multiple elements at once
>>> d
deque([’g’, ’h’, ’i’, ’j’, ’k’, ’l’])
>>> d.rotate(1) # right rotation
>>> d
deque([’l’, ’g’, ’h’, ’i’, ’j’, ’k’])
>>> d.rotate(-1) # left rotation
>>> d

154 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

deque([’g’, ’h’, ’i’, ’j’, ’k’, ’l’])

>>> deque(reversed(d)) # make a new deque in reverse order
deque([’l’, ’k’, ’j’, ’i’, ’h’, ’g’])
>>> d.clear() # empty the deque
>>> d.pop() # cannot pop from an empty deque
Traceback (most recent call last):

File "<pyshell#6>", line 1, in -toplevel-
d.pop()

IndexError: pop from an empty deque

>>> d.extendleft(’abc’) # extendleft() reverses the input order
>>> d
deque([’c’, ’b’, ’a’])

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail(filename, n=10):
’Return the last n lines of a file’
return deque(open(filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and
popping to the left:

def moving_average(iterable, n=3):
moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving_average
it = iter(iterable)
d = deque(itertools.islice(it, n-1))
d.appendleft(0)
s = sum(d)
for elem in it:

s += elem - d.popleft()
d.append(elem)
yield s / float(n)

The rotate() method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate() method to position elements to be popped:

def delete_nth(d, n):
d.rotate(-n)
d.popleft()
d.rotate(n)

To implement deque slicing, use a similar approach applying rotate() to bring a target element to the left side
of the deque. Remove old entries with popleft(), add new entries with extend(), and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap, over, pick, rot, and roll.

8.3. collections — High-performance container datatypes 155

The Python Library Reference, Release 2.6.9

8.3.3 defaultdict objects

class defaultdict([default_factory, [...]])
Returns a new dictionary-like object. defaultdict is a subclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same as for the dict class
and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword ar-
guments. New in version 2.5. defaultdict objects support the following method in addition to the standard
dict operations:

__missing__(key)
If the default_factory attribute is None, this raises a KeyError exception with the key as argu-
ment.

If default_factory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__() method of the dict class when the requested key is not
found; whatever it returns or raises is then returned or raised by __getitem__().

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the __missing__() method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

defaultdict Examples

Using list as the default_factory, it is easy to group a sequence of key-value pairs into a dictionary of lists:

>>> s = [(’yellow’, 1), (’blue’, 2), (’yellow’, 3), (’blue’, 4), (’red’, 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
... d[k].append(v)
...
>>> d.items()
[(’blue’, [2, 4]), (’red’, [1]), (’yellow’, [1, 3])]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_factory function which returns an empty list. The list.append() operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list
for that key) and the list.append() operation adds another value to the list. This technique is simpler and faster
than an equivalent technique using dict.setdefault():

>>> d = {}
>>> for k, v in s:
... d.setdefault(k, []).append(v)
...
>>> d.items()
[(’blue’, [2, 4]), (’red’, [1]), (’yellow’, [1, 3])]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset in
other languages):

156 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

>>> s = ’mississippi’
>>> d = defaultdict(int)
>>> for k in s:
... d[k] += 1
...
>>> d.items()
[(’i’, 4), (’p’, 2), (’s’, 4), (’m’, 1)]

When a letter is first encountered, it is missing from the mapping, so the default_factory function calls int()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int() which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use itertools.repeat() which can supply any constant value (not just
zero):

>>> def constant_factory(value):
... return itertools.repeat(value).next
>>> d = defaultdict(constant_factory(’<missing>’))
>>> d.update(name=’John’, action=’ran’)
>>> ’%(name)s %(action)s to %(object)s’ % d
’John ran to <missing>’

Setting the default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [(’red’, 1), (’blue’, 2), (’red’, 3), (’blue’, 4), (’red’, 1), (’blue’, 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
... d[k].add(v)
...
>>> d.items()
[(’blue’, set([2, 4])), (’red’, set([1, 3]))]

8.3.4 namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

namedtuple(typename, field_names, [verbose])
Returns a new tuple subclass named typename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr__() method which lists the tuple
contents in a name=value format.

The field_names are a single string with each fieldname separated by whitespace and/or commas, for example
’x y’ or ’x, y’. Alternatively, field_names can be a sequence of strings such as [’x’, ’y’].

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, print, or raise.

If verbose is true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more mem-
ory than regular tuples. New in version 2.6.

Example:

8.3. collections — High-performance container datatypes 157

The Python Library Reference, Release 2.6.9

>>> Point = namedtuple(’Point’, ’x y’)
>>> p = Point(11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + p[1] # indexable like the plain tuple (11, 22)
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> p # readable __repr__ with a name=value style
Point(x=11, y=22)

>>> Point = namedtuple(’Point’, ’x y’, verbose=True) # show the class definition
class Point(tuple):

’Point(x, y)’

__slots__ = ()

_fields = (’x’, ’y’)

def __new__(_cls, x, y):
return _tuple.__new__(_cls, (x, y))

@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):

’Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) != 2:

raise TypeError(’Expected 2 arguments, got %d’ % len(result))
return result

def __repr__(self):
return ’Point(x=%r, y=%r)’ % self

def _asdict(t):
’Return a new dict which maps field names to their values’
return {’x’: t[0], ’y’: t[1]}

def _replace(_self, **kwds):
’Return a new Point object replacing specified fields with new values’
result = _self._make(map(kwds.pop, (’x’, ’y’), _self))
if kwds:

raise ValueError(’Got unexpected field names: %r’ % kwds.keys())
return result

def __getnewargs__(self):
return tuple(self)

x = _property(_itemgetter(0))
y = _property(_itemgetter(1))

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sqlite3 mod-
ules:

158 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

EmployeeRecord = namedtuple(’EmployeeRecord’, ’name, age, title, department, paygrade’)

import csv
for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):

print emp.name, emp.title

import sqlite3
conn = sqlite3.connect(’/companydata’)
cursor = conn.cursor()
cursor.execute(’SELECT name, age, title, department, paygrade FROM employees’)
for emp in map(EmployeeRecord._make, cursor.fetchall()):

print emp.name, emp.title

In addition to the methods inherited from tuples, named tuples support three additional methods and one attribute. To
prevent conflicts with field names, the method and attribute names start with an underscore.

class _make(iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make(t)
Point(x=11, y=22)

_asdict()
Return a new dict which maps field names to their corresponding values:

>>> p._asdict()
{’x’: 11, ’y’: 22}

_replace(kwargs)
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point(x=11, y=22)
>>> p._replace(x=33)
Point(x=33, y=22)

>>> for partnum, record in inventory.items():
... inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())

_fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p._fields # view the field names
(’x’, ’y’)

>>> Color = namedtuple(’Color’, ’red green blue’)
>>> Pixel = namedtuple(’Pixel’, Point._fields + Color._fields)
>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, use the getattr() function:

>>> getattr(p, ’x’)
11

8.3. collections — High-performance container datatypes 159

The Python Library Reference, Release 2.6.9

To convert a dictionary to a named tuple, use the double-star-operator (as described in Unpacking Argument Lists (in
Python Tutorial)):

>>> d = {’x’: 11, ’y’: 22}
>>> Point(**d)
Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how to
add a calculated field and a fixed-width print format:

>>> class Point(namedtuple(’Point’, ’x y’)):
... __slots__ = ()
... @property
... def hypot(self):
... return (self.x ** 2 + self.y ** 2) ** 0.5
... def __str__(self):
... return ’Point: x=%6.3f y=%6.3f hypot=%6.3f’ % (self.x, self.y, self.hypot)

>>> for p in Point(3, 4), Point(14, 5/7.):
... print p
Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 y= 0.714 hypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low by pre-
venting the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_fields attribute:

>>> Point3D = namedtuple(’Point3D’, Point._fields + (’z’,))

Default values can be implemented by using _replace() to customize a prototype instance:

>>> Account = namedtuple(’Account’, ’owner balance transaction_count’)
>>> default_account = Account(’<owner name>’, 0.0, 0)
>>> johns_account = default_account._replace(owner=’John’)

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple class
declaration:

>>> Status = namedtuple(’Status’, ’open pending closed’)._make(range(3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)
>>> class Status:
... open, pending, closed = range(3)

See Also:

Named tuple recipe adapted for Python 2.4.

8.4 heapq — Heap queue algorithm

New in version 2.3. This module provides an implementation of the heap queue algorithm, also known as the priority
queue algorithm.

Heaps are arrays for which heap[k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k, counting
elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is that heap[0] is always its smallest element.

160 Chapter 8. Data Types

http://code.activestate.com/recipes/500261/

The Python Library Reference, Release 2.6.9

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes the
relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap[0] is the smallest item,
and heap.sort() maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function heapify().

The following functions are provided:

heappush(heap, item)
Push the value item onto the heap, maintaining the heap invariant.

heappop(heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heappushpop(heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush() followed by a separate call to heappop(). New in version 2.6.

heapify(x)
Transform list x into a heap, in-place, in linear time.

heapreplace(heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If the
heap is empty, IndexError is raised. This is more efficient than heappop() followed by heappush(),
and can be more appropriate when using a fixed-size heap. Note that the value returned may be larger than item!
That constrains reasonable uses of this routine unless written as part of a conditional replacement:

if item > heap[0]:
item = heapreplace(heap, item)

Example of use:

>>> from heapq import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:
... heappush(heap, item)
...
>>> ordered = []
>>> while heap:
... ordered.append(heappop(heap))
...
>>> print ordered
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> data.sort()
>>> print data == ordered
True

Using a heap to insert items at the correct place in a priority queue:

>>> heap = []
>>> data = [(1, ’J’), (4, ’N’), (3, ’H’), (2, ’O’)]
>>> for item in data:
... heappush(heap, item)

8.4. heapq — Heap queue algorithm 161

The Python Library Reference, Release 2.6.9

...
>>> while heap:
... print heappop(heap)[1]
J
O
H
N

The module also offers three general purpose functions based on heaps.

merge(*iterables)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns an iterator over the sorted values.

Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest). New
in version 2.6.

nlargest(n, iterable, [key])
Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a function
of one argument that is used to extract a comparison key from each element in the iterable: key=str.lower
Equivalent to: sorted(iterable, key=key, reverse=True)[:n] New in version 2.4.Changed in
version 2.5: Added the optional key argument.

nsmallest(n, iterable, [key])
Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, speci-
fies a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to: sorted(iterable, key=key)[:n] New in version 2.4.Changed in
version 2.5: Added the optional key argument.

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted() function. Also, when n==1, it is more efficient to use the built-in min() and max() functions.

8.4.1 Theory

(This explanation is due to François Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all k, counting elements from 0.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is
that a[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k, not a[k]:

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be
more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule

162 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two topped
cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the 0 position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap
is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly organised 1. It is very important that the initial sort produces
the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament,
you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice the size of the
memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because the
value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate
the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and
quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to keep
a ‘heap’ module around. :-)

8.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is called bisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect_left(list, item, [lo, [hi]])
Locate the proper insertion point for item in list to maintain sorted order. The parameters lo and hi may be used
to specify a subset of the list which should be considered; by default the entire list is used. If item is already
present in list, the insertion point will be before (to the left of) any existing entries. The return value is suitable
for use as the first parameter to list.insert(). This assumes that list is already sorted. New in version 2.1.

bisect_right(list, item, [lo, [hi]])
Similar to bisect_left(), but returns an insertion point which comes after (to the right of) any existing
entries of item in list. New in version 2.1.

1 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities
of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance)
that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes were even able
to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all
times, sorting has always been a Great Art! :-)

8.5. bisect — Array bisection algorithm 163

The Python Library Reference, Release 2.6.9

bisect(...)
Alias for bisect_right().

insort_left(list, item, [lo, [hi]])
Insert item in list in sorted order. This is equivalent to list.insert(bisect.bisect_left(list,
item, lo, hi), item). This assumes that list is already sorted. New in version 2.1.

insort_right(list, item, [lo, [hi]])
Similar to insort_left(), but inserting item in list after any existing entries of item. New in version 2.1.

insort(...)
Alias for insort_right().

8.5.1 Examples

The bisect() function is generally useful for categorizing numeric data. This example uses bisect() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A’, 75..84 is a
‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
... return grades[bisect(breakpoints, total)]
...
>>> grade(66)
’C’
>>> map(grade, [33, 99, 77, 44, 12, 88])
[’E’, ’A’, ’B’, ’D’, ’F’, ’A’]

Unlike the sorted() function, it does not make sense for the bisect() functions to have key or reversed arguments
because that would lead to an inefficent design (successive calls to bisect functions would not “remember” all of the
previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [(’red’, 5), (’blue’, 1), (’yellow’, 8), (’black’, 0)]
>>> data.sort(key=lambda r: r[1])
>>> keys = [r[1] for r in data] # precomputed list of keys
>>> data[bisect_left(keys, 0)]
(’black’, 0)
>>> data[bisect_left(keys, 1)]
(’blue’, 1)
>>> data[bisect_left(keys, 5)]
(’red’, 5)
>>> data[bisect_left(keys, 8)]
(’yellow’, 8)

8.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

164 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

Type code C Type Python Type Minimum size in bytes
’c’ char character 1
’b’ signed char int 1
’B’ unsigned char int 1
’u’ Py_UNICODE Unicode character 2 (see note)
’h’ signed short int 2
’H’ unsigned short int 2
’i’ signed int int 2
’I’ unsigned int long 2
’l’ signed long int 4
’L’ unsigned long long 4
’f’ float float 4
’d’ double float 8

Note: The ’u’ typecode corresponds to Python’s unicode character. On narrow Unicode builds this is 2-bytes, on
wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the itemsize attribute. The values stored for ’L’ and ’I’ items
will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following type:

class array(typecode, [initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value, which
must be a list, string, or iterable over elements of the appropriate type. Changed in version 2.4: Formerly, only
lists or strings were accepted. If given a list or string, the initializer is passed to the new array’s fromlist(),
fromstring(), or fromunicode() method (see below) to add initial items to the array. Otherwise, the
iterable initializer is passed to the extend() method.

ArrayType
Obsolete alias for array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases,
TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer objects
are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append(x)
Append a new item with value x to the end of the array.

buffer_info()
Return a tuple (address, length) giving the current memory address and the length in elements of
the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info()[1] * array.itemsize. This is occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl() operations.
The returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is

8.6. array — Efficient arrays of numeric values 165

The Python Library Reference, Release 2.6.9

maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in Buffer Objects (in The Python/C API).

byteswap()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of values, RuntimeError is raised. It is useful when reading data from a file written on a machine with
a different byte order.

count(x)
Return the number of occurrences of x in the array.

extend(iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array. Changed in version 2.4: Formerly, the argument could only
be another array.

fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array. f
must be a real built-in file object; something else with a read() method won’t do.

fromlist(list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if there is
a type error, the array is unchanged.

fromstring(s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read from
a file using the fromfile() method).

fromunicode(s)
Extends this array with data from the given unicode string. The array must be a type ’u’ array; otherwise a
ValueError is raised. Use array.fromstring(unicodestring.encode(enc)) to append Uni-
code data to an array of some other type.

index(x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

insert(i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to the
end of the array.

pop([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1, so that
by default the last item is removed and returned.

read(f, n)
Deprecated since version 1.5.1: Use the fromfile() method. Read n items (as machine values) from the file
object f and append them to the end of the array. If less than n items are available, EOFError is raised, but the
items that were available are still inserted into the array. f must be a real built-in file object; something else with
a read() method won’t do.

remove(x)
Remove the first occurrence of x from the array.

reverse()
Reverse the order of the items in the array.

tofile(f)
Write all items (as machine values) to the file object f.

166 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

tolist()
Convert the array to an ordinary list with the same items.

tostring()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by the tofile() method.)

tounicode()
Convert the array to a unicode string. The array must be a type ’u’ array; otherwise a ValueError is raised.
Use array.tostring().decode(enc) to obtain a unicode string from an array of some other type.

write(f)
Deprecated since version 1.5.1: Use the tofile() method. Write all items (as machine values) to the file
object f.

When an array object is printed or converted to a string, it is represented as array(typecode, initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ’c’, otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
eval(), so long as the array() function has been imported using from array import array. Examples:

array(’l’)
array(’c’, ’hello world’)
array(’u’, u’hello \u2641’)
array(’l’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14])

See Also:

Module struct Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote pro-
cedure call systems.

The Numerical Python Manual The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python. (A PDF version of the NumPy
manual is available at http://numpy.sourceforge.net/numdoc/numdoc.pdf).

8.7 sets — Unordered collections of unique elements

New in version 2.3.Deprecated since version 2.6: The built-in set/frozenset types replace this module. The sets
module provides classes for constructing and manipulating unordered collections of unique elements. Common uses
include membership testing, removing duplicates from a sequence, and computing standard math operations on sets
such as intersection, union, difference, and symmetric difference.

Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

Most set applications use the Set class which provides every set method except for __hash__(). For advanced
applications requiring a hash method, the ImmutableSet class adds a __hash__() method but omits methods
which alter the contents of the set. Both Set and ImmutableSet derive from BaseSet, an abstract class useful
for determining whether something is a set: isinstance(obj, BaseSet).

The set classes are implemented using dictionaries. Accordingly, the requirements for set elements are the same
as those for dictionary keys; namely, that the element defines both __eq__() and __hash__(). As a re-
sult, sets cannot contain mutable elements such as lists or dictionaries. However, they can contain immutable
collections such as tuples or instances of ImmutableSet. For convenience in implementing sets of sets, inner

8.7. sets — Unordered collections of unique elements 167

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf

The Python Library Reference, Release 2.6.9

sets are automatically converted to immutable form, for example, Set([Set([’dog’])]) is transformed to
Set([ImmutableSet([’dog’])]).

class Set([iterable])
Constructs a new empty Set object. If the optional iterable parameter is supplied, updates the set with elements
obtained from iteration. All of the elements in iterable should be immutable or be transformable to an immutable
using the protocol described in section Protocol for automatic conversion to immutable.

class ImmutableSet([iterable])
Constructs a new empty ImmutableSet object. If the optional iterable parameter is supplied, updates the set
with elements obtained from iteration. All of the elements in iterable should be immutable or be transformable
to an immutable using the protocol described in section Protocol for automatic conversion to immutable.

Because ImmutableSet objects provide a __hash__() method, they can be used as set elements or as
dictionary keys. ImmutableSet objects do not have methods for adding or removing elements, so all of the
elements must be known when the constructor is called.

8.7.1 Set Objects

Instances of Set and ImmutableSet both provide the following operations:

Operation Equivalent Result
len(s) cardinality of set s
x in s test x for membership in s
x not in s test x for non-membership in s
s.issubset(t) s <= t test whether every element in s is in t
s.issuperset(t) s >= t test whether every element in t is in s
s.union(t) s | t new set with elements from both s and t
s.intersection(t) s & t new set with elements common to s and t
s.difference(t) s - t new set with elements in s but not in t
s.symmetric_difference(t) s ^ t new set with elements in either s or t but not both
s.copy() new set with a shallow copy of s

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference() will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructions like Set(’abc’) &
’cbs’ in favor of the more readable Set(’abc’).intersection(’cbs’). Changed in version 2.3.1:
Formerly all arguments were required to be sets. In addition, both Set and ImmutableSet support set to set
comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset
of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a subset,
but is not equal). A set is greater than another set if and only if the first set is a proper superset of the second set (is a
superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint
sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or a>b.
Accordingly, sets do not implement the __cmp__() method.

Since sets only define partial ordering (subset relationships), the output of the list.sort() method is undefined
for lists of sets.

The following table lists operations available in ImmutableSet but not found in Set:

Operation Result
hash(s) returns a hash value for s

The following table lists operations available in Set but not found in ImmutableSet:

168 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

Operation Equiva-
lent

Result

s.update(t) s |= t return set s with elements added from t
s.intersection_update(t) s &= t return set s keeping only elements also found in t
s.difference_update(t) s -= t return set s after removing elements found in t
s.symmetric_difference_update(t)s ^= t return set s with elements from s or t but not both
s.add(x) add element x to set s
s.remove(x) remove x from set s; raises KeyError if not present
s.discard(x) removes x from set s if present
s.pop() remove and return an arbitrary element from s; raises

KeyError if empty
s.clear() remove all elements from set s

Note, the non-operator versions of update(), intersection_update(), difference_update(), and
symmetric_difference_update() will accept any iterable as an argument. Changed in version 2.3.1: For-
merly all arguments were required to be sets. Also note, the module also includes a union_update() method
which is an alias for update(). The method is included for backwards compatibility. Programmers should prefer
the update() method because it is supported by the built-in set() and frozenset() types.

8.7.2 Example

>>> from sets import Set
>>> engineers = Set([’John’, ’Jane’, ’Jack’, ’Janice’])
>>> programmers = Set([’Jack’, ’Sam’, ’Susan’, ’Janice’])
>>> managers = Set([’Jane’, ’Jack’, ’Susan’, ’Zack’])
>>> employees = engineers | programmers | managers # union
>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers.add(’Marvin’) # add element
>>> print engineers # doctest: +SKIP
Set([’Jane’, ’Marvin’, ’Janice’, ’John’, ’Jack’])
>>> employees.issuperset(engineers) # superset test
False
>>> employees.update(engineers) # update from another set
>>> employees.issuperset(engineers)
True
>>> for group in [engineers, programmers, managers, employees]: # doctest: +SKIP
... group.discard(’Susan’) # unconditionally remove element
... print group
...
Set([’Jane’, ’Marvin’, ’Janice’, ’John’, ’Jack’])
Set([’Janice’, ’Jack’, ’Sam’])
Set([’Jane’, ’Zack’, ’Jack’])
Set([’Jack’, ’Sam’, ’Jane’, ’Marvin’, ’Janice’, ’John’, ’Zack’])

8.7.3 Protocol for automatic conversion to immutable

Sets can only contain immutable elements. For convenience, mutable Set objects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has an
__as_immutable__() method which returns an immutable equivalent.

8.7. sets — Unordered collections of unique elements 169

The Python Library Reference, Release 2.6.9

Since Set objects have a __as_immutable__() method returning an instance of ImmutableSet, it is possible
to construct sets of sets.

A similar mechanism is needed by the __contains__() and remove() methods which need to hash an ele-
ment to check for membership in a set. Those methods check an element for hashability and, if not, check for a
__as_temporarily_immutable__() method which returns the element wrapped by a class that provides tem-
porary methods for __hash__(), __eq__(), and __ne__().

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the __as_temporarily_immutable__() method which returns the Set object
wrapped by a new class _TemporarilyImmutableSet.

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyImmutableSet. In other words, sets of mutable sets are not thread-safe.

8.7.4 Comparison to the built-in set types

The built-in set and frozenset types were designed based on lessons learned from the sets module. The key
differences are:

• Set and ImmutableSet were renamed to set and frozenset.

• There is no equivalent to BaseSet. Instead, use isinstance(x, (set, frozenset)).

• The hash algorithm for the built-ins performs significantly better (fewer collisions) for most datasets.

• The built-in versions have more space efficient pickles.

• The built-in versions do not have a union_update() method. Instead, use the update() method which is
equivalent.

• The built-in versions do not have a _repr(sorted=True) method. Instead, use the built-in repr() and
sorted() functions: repr(sorted(s)).

• The built-in version does not have a protocol for automatic conversion to immutable. Many found this feature
to be confusing and no one in the community reported having found real uses for it.

8.8 sched — Event scheduler

The sched module defines a class which implements a general purpose event scheduler:

class scheduler(timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” — timefunc should be callable without arguments, and return a number (the “time”,
in any units whatsoever). The delayfunc function should be callable with one argument, compatible with the
output of timefunc, and should delay that many time units. delayfunc will also be called with the argument 0
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s = sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()
...
>>> def print_some_times():
... print time.time()

170 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

... s.enter(5, 1, print_time, ())

... s.enter(10, 1, print_time, ())

... s.run()

... print time.time()

...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343700.276

In multi-threaded environments, the scheduler class has limitations with respect to thread-safety, inability to insert
a new task before the one currently pending in a running scheduler, and holding up the main thread until the event
queue is empty. Instead, the preferred approach is to use the threading.Timer class instead.

Example:

>>> import time
>>> from threading import Timer
>>> def print_time():
... print "From print_time", time.time()
...
>>> def print_some_times():
... print time.time()
... Timer(5, print_time, ()).start()
... Timer(10, print_time, ()).start()
... time.sleep(11) # sleep while time-delay events execute
... print time.time()
...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343701.301

8.8.1 Scheduler Objects

scheduler instances have the following methods and attributes:

enterabs(time, priority, action, argument)
Schedule a new event. The time argument should be a numeric type compatible with the return value of the
timefunc function passed to the constructor. Events scheduled for the same time will be executed in the order of
their priority.

Executing the event means executing action(*argument). argument must be a sequence holding the
parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel()).

enter(delay, priority, action, argument)
Schedule an event for delay more time units. Other then the relative time, the other arguments, the effect and
the return value are the same as those for enterabs().

cancel(event)
Remove the event from the queue. If event is not an event currently in the queue, this method will raise a
ValueError.

8.8. sched — Event scheduler 171

The Python Library Reference, Release 2.6.9

empty()
Return true if the event queue is empty.

run()
Run all scheduled events. This function will wait (using the delayfunc() function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raised by action, the event will not be attempted in future calls
to run().

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as a
named tuple with the following fields: time, priority, action, argument. New in version 2.6.

8.9 mutex — Mutual exclusion support

Deprecated since version 2.6: The mutex module has been removed in Python 3.0. The mutex module defines a
class that allows mutual-exclusion via acquiring and releasing locks. It does not require (or imply) threading or
multi-tasking, though it could be useful for those purposes.

The mutex module defines the following class:

class mutex()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or more (function, argument) pairs representing functions
(or methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first
queue entry is removed and its function(argument) pair called, implying it now has the lock.

Of course, no multi-threading is implied – hence the funny interface for lock(), where a function is called
once the lock is acquired.

8.9.1 Mutex Objects

mutex objects have following methods:

test()
Check whether the mutex is locked.

testandset()
“Atomic” test-and-set, grab the lock if it is not set, and return True, otherwise, return False.

lock(function, argument)
Execute function(argument), unless the mutex is locked. In the case it is locked, place the function and
argument on the queue. See unlock() for explanation of when function(argument) is executed in that
case.

unlock()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

172 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

8.10 queue — A synchronized queue class

Note: The Queue module has been renamed to queue in Python 3.0. The 2to3 tool will automatically adapt imports
when converting your sources to 3.0.

The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple threads. The Queue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python; see the
threading module.

Implements three types of queue whose only difference is the order that the entries are retrieved. In a FIFO queue, the
first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first retrieved (operating
like a stack). With a priority queue, the entries are kept sorted (using the heapq module) and the lowest valued entry
is retrieved first.

The Queue module defines the following classes and exceptions:

class Queue(maxsize=0)
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite.

class LifoQueue(maxsize=0)
Constructor for a LIFO queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite. New in version 2.6.

class PriorityQueue(maxsize=0)
Constructor for a priority queue. maxsize is an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned by
sorted(list(entries))[0]). A typical pattern for entries is a tuple in the form:
(priority_number, data). New in version 2.6.

exception Empty
Exception raised when non-blocking get() (or get_nowait()) is called on a Queue object which is empty.

exception Full
Exception raised when non-blocking put() (or put_nowait()) is called on a Queue object which is full.

See Also:

collections.deque is an alternative implementation of unbounded queues with fast atomic append() and
popleft() operations that do not require locking.

8.10.1 Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

qsize()
Return the approximate size of the queue. Note, qsize() > 0 doesn’t guarantee that a subsequent get() will not
block, nor will qsize() < maxsize guarantee that put() will not block.

empty()
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that a sub-
sequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a subsequent
call to get() will not block.

8.10. queue — A synchronized queue class 173

The Python Library Reference, Release 2.6.9

full()
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a subsequent
call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent call to put()
will not block.

put(item, [block, [timeout]])
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary until
a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Full
exception if no free slot was available within that time. Otherwise (block is false), put an item on the queue
if a free slot is immediately available, else raise the Full exception (timeout is ignored in that case). New in
version 2.3: The timeout parameter.

put_nowait(item)
Equivalent to put(item, False).

get([block, [timeout]])
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds
and raises the Empty exception if no item was available within that time. Otherwise (block is false), return an
item if one is immediately available, else raise the Empty exception (timeout is ignored in that case). New in
version 2.3: The timeout parameter.

get_nowait()
Equivalent to get(False).

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon consumer
threads.

task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get() used to
fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue. New in version 2.5.

join()
Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever
a consumer thread calls task_done() to indicate that the item was retrieved and all work on it is complete.
When the count of unfinished tasks drops to zero, join() unblocks. New in version 2.5.

Example of how to wait for enqueued tasks to be completed:

def worker():
while True:

item = q.get()
do_work(item)
q.task_done()

q = Queue()
for i in range(num_worker_threads):

t = Thread(target=worker)
t.setDaemon(True)
t.start()

for item in source():
q.put(item)

174 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

q.join() # block until all tasks are done

8.11 weakref — Weak references

New in version 2.1. The weakref module allows the Python programmer to create weak references to objects.

In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. A
primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that a
large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and
WeakValueDictionary classes supplied by the weakref module are an alternative, using weak references to
construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for example,
an image object is a value in a WeakValueDictionary, then when the last remaining references to that image ob-
ject are the weak references held by weak mappings, garbage collection can reclaim the object, and its corresponding
entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. Most programs should find that using one of these weak dictionary types is all they need – it’s not
usually necessary to create your own weak references directly. The low-level machinery used by the weak dictionary
implementations is exposed by the weakref module for the benefit of advanced uses.

Note: Weak references to an object are cleared before the object’s __del__() is called, to ensure that the weak
reference callback (if any) finds the object still alive.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in Python
(but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type objects, DBcursor
objects from the bsddb module, sockets, arrays, deques, and regular expression pattern objects. Changed in version
2.4: Added support for files, sockets, arrays, and patterns. Several built-in types such as list and dict do not
directly support weak references but can add support through subclassing:

class Dict(dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referenceable

CPython implementation detail: Other built-in types such as tuple and long do not support weak references even
when subclassed.

Extension types can easily be made to support weak references; see Weak Reference Support (in Extending and Em-
bedding Python).

class ref(object, [callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, and the returned weakref object is still alive, the callback will
be called when the object is about to be finalized; the weak reference object will be passed as the only parameter
to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

8.11. weakref — Weak references 175

The Python Library Reference, Release 2.6.9

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an object’s __del__() method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the object
was deleted. If hash() is called the first time only after the object was deleted, the call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object. Changed in version 2.4: This is now a
subclassable type rather than a factory function; it derives from object.

proxy(object, [callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects are
not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary keys. callback is the same as the parameter of the same name to the
ref() function.

getweakrefcount(object)
Return the number of weak references and proxies which refer to object.

getweakrefs(object)
Return a list of all weak reference and proxy objects which refer to object.

class WeakKeyDictionary([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note: Caution: Because a WeakKeyDictionary is built on top of a Python dictionary, it must not change
size when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because actions per-
formed by the program during iteration may cause items in the dictionary to vanish “by magic” (as a side effect
of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references directly.
The references are not guaranteed to be “live” at the time they are used, so the result of calling the references needs
to be checked before being used. This can be used to avoid creating references that will cause the garbage collector to
keep the keys around longer than needed.

iterkeyrefs()
Return an iterator that yields the weak references to the keys. New in version 2.5.

keyrefs()
Return a list of weak references to the keys. New in version 2.5.

class WeakValueDictionary([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic” (as a
side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues as the
iterkeyrefs() and keyrefs() methods of WeakKeyDictionary objects.

itervaluerefs()
Return an iterator that yields the weak references to the values. New in version 2.5.

176 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

valuerefs()
Return a list of weak references to the values. New in version 2.5.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standard ReferenceError exception.

See Also:

PEP 0205 - Weak References The proposal and rationale for this feature, including links to earlier implementations
and information about similar features in other languages.

8.11.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
... pass
...
>>> o = Object()
>>> r = weakref.ref(o)
>>> o2 = r()
>>> o is o2
True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2
>>> print r()
None

Testing that a weak reference object is still live should be done using the expression ref() is not None. Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:

referent has been garbage collected
print "Object has been deallocated; can’t frobnicate."

else:
print "Object is still live!"
o.do_something_useful()

8.11. weakref — Weak references 177

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 2.6.9

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

import weakref

class ExtendedRef(weakref.ref):
def __init__(self, ob, callback=None, **annotations):

super(ExtendedRef, self).__init__(ob, callback)
self.__counter = 0
for k, v in annotations.iteritems():

setattr(self, k, v)

def __call__(self):
"""Return a pair containing the referent and the number of
times the reference has been called.
"""
ob = super(ExtendedRef, self).__call__()
if ob is not None:

self.__counter += 1
ob = (ob, self.__counter)

return ob

8.11.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref

_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

8.12 UserDict — Class wrapper for dictionary objects

The module defines a mixin, DictMixin, defining all dictionary methods for classes that already have a minimum
mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the

178 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

shelve module).

This module also defines a class, UserDict, that acts as a wrapper around dictionary objects. The need for this class
has been largely supplanted by the ability to subclass directly from dict (a feature that became available starting
with Python version 2.2). Prior to the introduction of dict, the UserDict class was used to create dictionary-like
sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

The UserDict module defines the UserDict class and DictMixin:

class UserDict([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it be used for other purposes.

Note: For backward compatibility, instances of UserDict are not iterable.

class IterableUserDict([initialdata])
Subclass of UserDict that supports direct iteration (e.g. for key in myDict).

In addition to supporting the methods and operations of mappings (see section Mapping Types — dict), UserDict
and IterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

class DictMixin()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem__(), __setitem__(), __delitem__(), and keys().

This mixin should be used as a superclass. Adding each of the above methods adds progressively more func-
tionality. For instance, defining all but __delitem__() will preclude only pop() and popitem() from
the full interface.

In addition to the four base methods, progressively more efficiency comes with defining __contains__(),
__iter__(), and iteritems().

Since the mixin has no knowledge of the subclass constructor, it does not define __init__() or copy().

Starting with Python version 2.6, it is recommended to use collections.MutableMapping instead of
DictMixin.

8.13 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from the built-in list type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

The UserList module defines the UserList class:

class UserList([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be any iterable, e.g. a real Python list or a UserList object.

Note: The UserList class has been moved to the collections module in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0.

8.13. UserList — Class wrapper for list objects 179

The Python Library Reference, Release 2.6.9

In addition to supporting the methods and operations of mutable sequences (see section Sequence Types — str, unicode,
list, tuple, buffer, xrange), UserList instances provide the following attribute:

data
A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class
will need to be overridden; please consult the sources for information about the methods which need to be provided in
that case. Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutable data attribute. Earlier versions of Python did not attempt to create instances of the
derived class.

8.14 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-in str type instead of using UserString (there is no built-in equivalent to MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case for MutableString.

The UserString module defines the following classes:

class UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via the data attribute of UserString instances. The instance’s
contents are initially set to a copy of sequence. sequence can be either a regular Python string or Unicode string,
an instance of UserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-in str() function.

Note: The UserString class has been moved to the collections module in Python 3.0. The 2to3 tool
will automatically adapt imports when converting your sources to 3.0.

class MutableString([sequence])
This class is derived from the UserString above and redefines strings to be mutable. Mutable strings can’t
be used as dictionary keys, because dictionaries require immutable objects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (override) the __hash__()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down. Deprecated since version 2.6: The MutableString class has been removed in
Python 3.0.

In addition to supporting the methods and operations of string and Unicode objects (see section String Methods),
UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of the UserString class.

180 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

8.15 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. Also, it does not include some of the types that arise during processing such
as the listiterator type. It is safe to use from types import * — the module does not export any names
besides the ones listed here. New names exported by future versions of this module will all end in Type.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(mylist, item):

if type(item) is IntType:
del mylist[item]

else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions such as int() and str() are also names for the corresponding
types. This is now the preferred way to access the type instead of using the types module. Accordingly, the example
above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):

del mylist[item]
else:

mylist.remove(item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type()); alias of the built-in type.

BooleanType
The type of the bool values True and False; alias of the built-in bool. New in version 2.3.

IntType
The type of integers (e.g. 1); alias of the built-in int.

LongType
The type of long integers (e.g. 1L); alias of the built-in long.

FloatType
The type of floating point numbers (e.g. 1.0); alias of the built-in float.

ComplexType
The type of complex numbers (e.g. 1.0j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e.g. ’Spam’); alias of the built-in str.

UnicodeType
The type of Unicode character strings (e.g. u’Spam’). This is not defined if Python was built without Unicode
support. It’s an alias of the built-in unicode.

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’)); alias of the built-in tuple.

8.15. types — Names for built-in types 181

The Python Library Reference, Release 2.6.9

ListType
The type of lists (e.g. [0, 1, 2, 3]); alias of the built-in list.

DictType
The type of dictionaries (e.g. {’Bacon’: 1, ’Ham’: 0}); alias of the built-in dict.

DictionaryType
An alternate name for DictType.

FunctionType
LambdaType

The type of user-defined functions and functions created by lambda expressions.

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returned by compile().

ClassType
The type of user-defined old-style classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType
BuiltinMethodType

The type of built-in functions like len() or sys.exit(), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout; alias of the built-in file.

XRangeType
The type of range objects returned by xrange(); alias of the built-in xrange.

SliceType
The type of objects returned by slice(); alias of the built-in slice.

EllipsisType
The type of Ellipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer() function.

DictProxyType
The type of dict proxies, such as TypeType.__dict__.

182 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

NotImplementedType
The type of NotImplemented

GetSetDescriptorType
The type of objects defined in extension modules with PyGetSetDef, such as FrameType.f_locals or
array.array.typecode. This type is used as descriptor for object attributes; it has the same purpose as
the property type, but for classes defined in extension modules. New in version 2.5.

MemberDescriptorType
The type of objects defined in extension modules with PyMemberDef, such as
datetime.timedelta.days. This type is used as descriptor for simple C data members which use
standard conversion functions; it has the same purpose as the property type, but for classes defined in
extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType. New in version 2.5.

StringTypes
A sequence containing StringType and UnicodeType used to facilitate easier checking for any string ob-
ject. Using this is more portable than using a sequence of the two string types constructed elsewhere since it only
contains UnicodeType if it has been built in the running version of Python. For example: isinstance(s,
types.StringTypes). New in version 2.2.

8.16 new — Creation of runtime internal objects

Deprecated since version 2.6: The new module has been removed in Python 3.0. Use the types module’s classes
instead. The new module allows an interface to the interpreter object creation functions. This is for use primarily
in marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module. It is possible to supply non-sensical arguments which crash the interpreter when the object is used.

The new module defines the following functions:

instance(class, [dict])
This function creates an instance of class with dictionary dict without calling the __init__() constructor.
If dict is omitted or None, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod(function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None. function must be
callable.

function(code, globals, [name, [argdefs, [closure]]])
Returns a (Python) function with the given code and globals. If name is given, it must be a string or None.
If it is a string, the function will have the given name, otherwise the function name will be taken from
code.co_name. If argdefs is given, it must be a tuple and will be used to determine the default values of
parameters. If closure is given, it must be None or a tuple of cell objects containing objects to bind to the names
in code.co_freevars.

code(argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, lno-
tab)

This function is an interface to the PyCode_New() C function.

module(name, [doc])
This function returns a new module object with name name. name must be a string. The optional doc argument
can have any type.

8.16. new — Creation of runtime internal objects 183

The Python Library Reference, Release 2.6.9

classobj(name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should be a tuple of
classes) and with namespace dict.

8.17 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

copy(x)
Return a shallow copy of x.

deepcopy(x)
Return a deep copy of x.

exception error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

• A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to
the objects found in the original.

• A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

• Because deep copy copies everything it may copy too much, e.g., administrative data structures that should be
shared even between copies.

The deepcopy() function avoids these problems by:

• keeping a “memo” dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or any
similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged;
this is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict.copy(), and of lists by assigning a slice of the entire list, for
example, copied_list = original_list[:]. Changed in version 2.5: Added copying functions. Classes
can use the same interfaces to control copying that they use to control pickling. See the description of module pickle
for information on these methods. The copy module does not use the copy_reg registration module. In order for
a class to define its own copy implementation, it can define special methods __copy__() and __deepcopy__().
The former is called to implement the shallow copy operation; no additional arguments are passed. The latter is called
to implement the deep copy operation; it is passed one argument, the memo dictionary. If the __deepcopy__() im-
plementation needs to make a deep copy of a component, it should call the deepcopy() function with the component
as first argument and the memo dictionary as second argument.

See Also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

184 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

8.18 pprint — Data pretty printer

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other built-in objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width constraint.
Changed in version 2.5: Dictionaries are sorted by key before the display is computed; before 2.5, a dictionary was
sorted only if its display required more than one line, although that wasn’t documented.Changed in version 2.6: Added
support for set and frozenset. The pprint module defines one class:

class PrettyPrinter(...)
Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using the stream keyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, the PrettyPrinter adopts sys.stdout. Three additional parameters
may be used to control the formatted representation. The keywords are indent, depth, and width. The amount
of indentation added for each recursive level is specified by indent; the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled by depth; if the data structure being printed is too deep, the next contained level is replaced by
.... By default, there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is 80 characters. If a structure cannot be formatted within the
constrained width, a best effort will be made.

>>> import pprint
>>> stuff = [’spam’, ’eggs’, ’lumberjack’, ’knights’, ’ni’]
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
[[’spam’, ’eggs’, ’lumberjack’, ’knights’, ’ni’],

’spam’,
’eggs’,
’lumberjack’,
’knights’,
’ni’]

>>> tup = (’spam’, (’eggs’, (’lumberjack’, (’knights’, (’ni’, (’dead’,
... (’parrot’, (’fresh fruit’,))))))))
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
(’spam’, (’eggs’, (’lumberjack’, (’knights’, (’ni’, (’dead’, (...)))))))

The PrettyPrinter class supports several derivative functions:

pformat(object, [indent, [width, [depth]]])
Return the formatted representation of object as a string. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The parameters indent, width
and depth were added.

pprint(object, [stream, [indent, [width, [depth]]]])
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement for in-
specting values. indent, width and depth will be passed to the PrettyPrinter constructor as formatting
parameters.

8.18. pprint — Data pretty printer 185

The Python Library Reference, Release 2.6.9

>>> import pprint
>>> stuff = [’spam’, ’eggs’, ’lumberjack’, ’knights’, ’ni’]
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=...>,
’spam’,
’eggs’,
’lumberjack’,
’knights’,
’ni’]

Changed in version 2.4: The parameters indent, width and depth were added.

isreadable(object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value using
eval(). This always returns False for recursive objects.

>>> pprint.isreadable(stuff)
False

isrecursive(object)
Determine if object requires a recursive representation.

One more support function is also defined:

saferepr(object)
Return a string representation of object, protected against recursive data structures. If the representation of
object exposes a recursive entry, the recursive reference will be represented as <Recursion on typename
with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=...>, ’spam’, ’eggs’, ’lumberjack’, ’knights’, ’ni’]"

8.18.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat(object)
Return the formatted representation of object. This takes into account the options passed to the
PrettyPrinter constructor.

pprint(object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be created.

isreadable(object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the

value using eval(). Note that this returns False for recursive objects. If the depth parameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns False.

isrecursive(object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of the saferepr() implementation.

186 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

format(object, context, maxlevels, level)
Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains the id() of objects that are part of the current presentation context
(direct and indirect containers for object that are affecting the presentation) as the keys; if an object needs to
be presented which is already represented in context, the third return value should be True. Recursive calls
to the format() method should add additional entries for containers to this dictionary. The third argument,
maxlevels, gives the requested limit to recursion; this will be 0 if there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argument, level, gives the current level; recursive
calls should be passed a value less than that of the current call. New in version 2.3.

8.18.2 pprint Example

This example demonstrates several uses of the pprint() function and its parameters.

>>> import pprint
>>> tup = (’spam’, (’eggs’, (’lumberjack’, (’knights’, (’ni’, (’dead’,
... (’parrot’, (’fresh fruit’,))))))))
>>> stuff = [’a’ * 10, tup, [’a’ * 30, ’b’ * 30], [’c’ * 20, ’d’ * 20]]
>>> pprint.pprint(stuff)
[’aaaaaaaaaa’,
(’spam’,
(’eggs’,
(’lumberjack’,
(’knights’, (’ni’, (’dead’, (’parrot’, (’fresh fruit’,)))))))),

[’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[’cccccccccccccccccccc’, ’dddddddddddddddddddd’]]

>>> pprint.pprint(stuff, depth=3)
[’aaaaaaaaaa’,
(’spam’, (’eggs’, (...))),
[’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, ’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[’cccccccccccccccccccc’, ’dddddddddddddddddddd’]]

>>> pprint.pprint(stuff, width=60)
[’aaaaaaaaaa’,
(’spam’,
(’eggs’,
(’lumberjack’,
(’knights’,
(’ni’, (’dead’, (’parrot’, (’fresh fruit’,)))))))),

[’aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’,
’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[’cccccccccccccccccccc’, ’dddddddddddddddddddd’]]

8.19 repr — Alternate repr() implementation

Note: The repr module has been renamed to reprlib in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0.

The reprmodule provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

8.19. repr — Alternate repr() implementation 187

The Python Library Reference, Release 2.6.9

class Repr()
Class which provides formatting services useful in implementing functions similar to the built-in repr(); size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance of Repr which is used to provide the repr() function described below. Changing the
attributes of this object will affect the size limits used by repr() and the Python debugger.

repr(obj)
This is the repr() method of aRepr. It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

8.19.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict
maxlist
maxtuple
maxset
maxfrozenset
maxdeque
maxarray

Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray, and 6 for the others. New in version 2.4: maxset, maxfrozenset, and set.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxstring. The default is 20.

repr(obj)
The equivalent to the built-in repr() that uses the formatting imposed by the instance.

repr1(obj, level)
Recursive implementation used by repr(). This uses the type of obj to determine which formatting method to
call, passing it obj and level. The type-specific methods should call repr1() to perform recursive formatting,
with level - 1 for the value of level in the recursive call.

repr_TYPE(obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method name, TYPE is replaced by string.join(string.split(type(obj).__name__,
’_’)). Dispatch to these methods is handled by repr1(). Type-specific methods which need to recursively
format a value should call self.repr1(subobj, level - 1).

188 Chapter 8. Data Types

The Python Library Reference, Release 2.6.9

8.19.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repr1() allows subclasses of Repr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import repr as reprlib
import sys

class MyRepr(reprlib.Repr):
def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name

else:
return repr(obj)

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

8.19. repr — Alternate repr() implementation 189

The Python Library Reference, Release 2.6.9

190 Chapter 8. Data Types

CHAPTER

NINE

NUMERIC AND MATHEMATICAL
MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmath modules contain various mathematical
functions for floating-point and complex numbers. For users more interested in decimal accuracy than in speed, the
decimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

9.1 numbers — Numeric abstract base classes

New in version 2.6. The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which
progressively define more operations. None of the types defined in this module can be instantiated.

class Number()
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what
kind, use isinstance(x, Number).

9.1.1 The numeric tower

class Complex()
Subclasses of this type describe complex numbers and include the operations that work on the built-in complex
type. These are: conversions to complex and bool, real, imag, +, -, *, /, abs(), conjugate(), ==,
and !=. All except - and != are abstract.

real
Abstract. Retrieves the real component of this number.

imag
Abstract. Retrieves the imaginary component of this number.

conjugate()
Abstract. Returns the complex conjugate. For example, (1+3j).conjugate() == (1-3j).

class Real()
To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, trunc(), round(), math.floor(), math.ceil(),
divmod(), //, %, <, <=, >, and >=.

Real also provides defaults for complex(), real, imag, and conjugate().

191

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 2.6.9

class Rational()
Subtypes Real and adds numerator and denominator properties, which should be in lowest terms. With
these, it provides a default for float().

numerator
Abstract.

denominator
Abstract.

class Integral()
Subtypes Rational and adds a conversion to int. Provides defaults for float(), numerator, and
denominator, and bit-string operations: <<, >>, &, ^, |, ~.

9.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be subtle if
there are two different extensions of the real numbers. For example, fractions.Fraction implements hash()
as follows:

def __hash__(self):
if self.denominator == 1:

Get integers right.
return hash(self.numerator)

Expensive check, but definitely correct.
if self == float(self):

return hash(float(self))
else:

Use tuple’s hash to avoid a high collision rate on
simple fractions.
return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the possibility
of adding those. You can add MyFoo between Complex and Real with:

class MyFoo(Complex): ...
MyFoo.register(Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes of Integral, this means that __add__() and __radd__() should be defined as:

class MyIntegral(Integral):

def __add__(self, other):
if isinstance(other, MyIntegral):

return do_my_adding_stuff(self, other)
elif isinstance(other, OtherTypeIKnowAbout):

return do_my_other_adding_stuff(self, other)
else:

return NotImplemented

192 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

def __radd__(self, other):
if isinstance(other, MyIntegral):

return do_my_adding_stuff(other, self)
elif isinstance(other, OtherTypeIKnowAbout):

return do_my_other_adding_stuff(other, self)
elif isinstance(other, Integral):

return int(other) + int(self)
elif isinstance(other, Real):

return float(other) + float(self)
elif isinstance(other, Complex):

return complex(other) + complex(self)
else:

return NotImplemented

There are 5 different cases for a mixed-type operation on subclasses of Complex. I’ll refer to all of the above code
that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. awill be an instance of A, which
is a subtype of Complex (a : A <: Complex), and b : B <: Complex. I’ll consider a + b:

1. If A defines an __add__() which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add__(), we’d miss the possibility
that B defines a more intelligent __radd__(), so the boilerplate should return NotImplemented from
__add__(). (Or A may not implement __add__() at all.)

3. Then B‘s __radd__() gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default imple-
mentation should live.

5. If B <: A, Python tries B.__radd__ before A.__add__. This is ok, because it was implemented with
knowledge of A, so it can handle those instances before delegating to Complex.

If A <: Complex and B <: Real without sharing any other knowledge, then the appropriate shared operation
is the one involving the built in complex, and both __radd__() s land there, so a+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function which
generates the forward and reverse instances of any given operator. For example, fractions.Fraction uses:

def _operator_fallbacks(monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance(b, (int, long, Fraction)):
return monomorphic_operator(a, b)

elif isinstance(b, float):
return fallback_operator(float(a), b)

elif isinstance(b, complex):
return fallback_operator(complex(a), b)

else:
return NotImplemented

forward.__name__ = ’__’ + fallback_operator.__name__ + ’__’
forward.__doc__ = monomorphic_operator.__doc__

def reverse(b, a):
if isinstance(a, Rational):

Includes ints.
return monomorphic_operator(a, b)

elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))

9.1. numbers — Numeric abstract base classes 193

The Python Library Reference, Release 2.6.9

elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))

else:
return NotImplemented

reverse.__name__ = ’__r’ + fallback_operator.__name__ + ’__’
reverse.__doc__ = monomorphic_operator.__doc__

return forward, reverse

def _add(a, b):
"""a + b"""
return Fraction(a.numerator * b.denominator +

b.numerator * a.denominator,
a.denominator * b.denominator)

__add__, __radd__ = _operator_fallbacks(_add, operator.add)

...

9.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

9.2.1 Number-theoretic and representation functions

ceil(x)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

copysign(x, y)
Return x with the sign of y. On a platform that supports signed zeros, copysign(1.0, -0.0) returns -1.0.
New in version 2.6.

fabs(x)
Return the absolute value of x.

factorial(x)
Return x factorial. Raises ValueError if x is not integral or is negative. New in version 2.6.

floor(x)
Return the floor of x as a float, the largest integer value less than or equal to x.

fmod(x, y)
Return fmod(x, y), as defined by the platform C library. Note that the Python expression x % y may not
return the same result. The intent of the C standard is that fmod(x, y) be exactly (mathematically; to infinite
precision) equal to x - n*y for some integer n such that the result has the same sign as x and magnitude less

194 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

than abs(y). Python’s x % y returns a result with the sign of y instead, and may not be exactly computable for
float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but the result of Python’s -1e-100
% 1e100 is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising
1e100. For this reason, function fmod() is generally preferred when working with floats, while Python’s x
% y is preferred when working with integers.

frexp(x)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such that x == m

* 2**e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1. This is used to “pick
apart” the internal representation of a float in a portable way.

fsum(iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.99999999999999989
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition and
may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation. New in version 2.6.

isinf(x)
Check if the float x is positive or negative infinity. New in version 2.6.

isnan(x)
Check if the float x is a NaN (not a number). For more information on NaNs, see the IEEE 754 standards. New
in version 2.6.

ldexp(x, i)
Return x * (2**i). This is essentially the inverse of function frexp().

modf(x)
Return the fractional and integer parts of x. Both results carry the sign of x and are floats.

trunc(x)
Return the Real value x truncated to an Integral (usually a long integer). Uses the __trunc__ method.
New in version 2.6.

Note that frexp() and modf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil(), floor(), and modf() functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any float x with abs(x) >= 2**52 necessarily has no fractional bits.

9.2.2 Power and logarithmic functions

exp(x)
Return e**x.

log(x, [base])
With one argument, return the natural logarithm of x (to base e).

9.2. math — Mathematical functions 195

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/

The Python Library Reference, Release 2.6.9

With two arguments, return the logarithm of x to the given base, calculated as log(x)/log(base). Changed
in version 2.3: base argument added.

log1p(x)
Return the natural logarithm of 1+x (base e). The result is calculated in a way which is accurate for x near zero.
New in version 2.6.

log10(x)
Return the base-10 logarithm of x. This is usually more accurate than log(x, 10).

pow(x, y)
Return x raised to the power y. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible. In
particular, pow(1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x
and y are finite, x is negative, and y is not an integer then pow(x, y) is undefined, and raises ValueError.
Changed in version 2.6: The outcome of 1**nan and nan**0 was undefined.

sqrt(x)
Return the square root of x.

9.2.3 Trigonometric functions

acos(x)
Return the arc cosine of x, in radians.

asin(x)
Return the arc sine of x, in radians.

atan(x)
Return the arc tangent of x, in radians.

atan2(y, x)
Return atan(y / x), in radians. The result is between -pi and pi. The vector in the plane from the origin to
point (x, y) makes this angle with the positive X axis. The point of atan2() is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For example, atan(1) and atan2(1,
1) are both pi/4, but atan2(-1, -1) is -3*pi/4.

cos(x)
Return the cosine of x radians.

hypot(x, y)
Return the Euclidean norm, sqrt(x*x + y*y). This is the length of the vector from the origin to point (x,
y).

sin(x)
Return the sine of x radians.

tan(x)
Return the tangent of x radians.

9.2.4 Angular conversion

degrees(x)
Converts angle x from radians to degrees.

radians(x)
Converts angle x from degrees to radians.

196 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

9.2.5 Hyperbolic functions

acosh(x)
Return the inverse hyperbolic cosine of x. New in version 2.6.

asinh(x)
Return the inverse hyperbolic sine of x. New in version 2.6.

atanh(x)
Return the inverse hyperbolic tangent of x. New in version 2.6.

cosh(x)
Return the hyperbolic cosine of x.

sinh(x)
Return the hyperbolic sine of x.

tanh(x)
Return the hyperbolic tangent of x.

9.2.6 Constants

pi
The mathematical constant π = 3.141592..., to available precision.

e
The mathematical constant e = 2.718281..., to available precision.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise ValueError for invalid operations like sqrt(-1.0) or log(0.0) (where C99 Annex
F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that overflow (for
example, exp(1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex F)
there are some exceptions to this rule, for example pow(float(’nan’), 0.0) or hypot(float(’nan’),
float(’inf’)).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet. Changed in version 2.6: Behavior
in special cases now aims to follow C99 Annex F. In earlier versions of Python the behavior in special cases was loosely
specified.

See Also:

Module cmath Complex number versions of many of these functions.

9.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accept any
Python object that has either a __complex__() or a __float__() method: these methods are used to convert
the object to a complex or floating-point number, respectively, and the function is then applied to the result of the
conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the other.
On platforms that do not support signed zeros the continuity is as specified below.

9.3. cmath — Mathematical functions for complex numbers 197

The Python Library Reference, Release 2.6.9

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z.real and its imaginary part z.imag. In other words:

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number z
is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

phase(x)
Return the phase of x (also known as the argument of x), as a float. phase(x) is equivalent to
math.atan2(x.imag, x.real). The result lies in the range [-π, π], and the branch cut for this oper-
ation lies along the negative real axis, continuous from above. On systems with support for signed zeros (which
includes most systems in current use), this means that the sign of the result is the same as the sign of x.imag,
even when x.imag is zero:

>>> phase(complex(-1.0, 0.0))
3.1415926535897931
>>> phase(complex(-1.0, -0.0))
-3.1415926535897931

New in version 2.6.

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs() function.
There is no separate cmath module function for this operation.

polar(x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x and
phi is the phase of x. polar(x) is equivalent to (abs(x), phase(x)). New in version 2.6.

rect(r, phi)
Return the complex number x with polar coordinates r and phi. Equivalent to r * (math.cos(phi) +
math.sin(phi)*1j). New in version 2.6.

9.3.2 Power and logarithmic functions

exp(x)
Return the exponential value e**x.

log(x, [base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x. There
is one branch cut, from 0 along the negative real axis to -∞, continuous from above. Changed in version 2.4:
base argument added.

log10(x)
Return the base-10 logarithm of x. This has the same branch cut as log().

sqrt(x)
Return the square root of x. This has the same branch cut as log().

198 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

9.3.3 Trigonometric functions

acos(x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to ∞,
continuous from below. The other extends left from -1 along the real axis to -∞, continuous from above.

asin(x)
Return the arc sine of x. This has the same branch cuts as acos().

atan(x)
Return the arc tangent of x. There are two branch cuts: One extends from 1j along the imaginary axis to∞j,
continuous from the right. The other extends from -1j along the imaginary axis to -∞j, continuous from the
left. Changed in version 2.6: direction of continuity of upper cut reversed

cos(x)
Return the cosine of x.

sin(x)
Return the sine of x.

tan(x)
Return the tangent of x.

9.3.4 Hyperbolic functions

acosh(x)
Return the hyperbolic arc cosine of x. There is one branch cut, extending left from 1 along the real axis to -∞,
continuous from above.

asinh(x)
Return the hyperbolic arc sine of x. There are two branch cuts: One extends from 1j along the imaginary axis
to∞j, continuous from the right. The other extends from -1j along the imaginary axis to -∞j, continuous
from the left. Changed in version 2.6: branch cuts moved to match those recommended by the C99 standard

atanh(x)
Return the hyperbolic arc tangent of x. There are two branch cuts: One extends from 1 along the real axis to∞,
continuous from below. The other extends from -1 along the real axis to -∞, continuous from above. Changed
in version 2.6: direction of continuity of right cut reversed

cosh(x)
Return the hyperbolic cosine of x.

sinh(x)
Return the hyperbolic sine of x.

tanh(x)
Return the hyperbolic tangent of x.

9.3.5 Classification functions

isinf(x)
Return True if the real or the imaginary part of x is positive or negative infinity. New in version 2.6.

isnan(x)
Return True if the real or imaginary part of x is not a number (NaN). New in version 2.6.

9.3. cmath — Mathematical functions for complex numbers 199

The Python Library Reference, Release 2.6.9

9.3.6 Constants

pi
The mathematical constant π, as a float.

e
The mathematical constant e, as a float.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined in cmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

9.4 decimal — Decimal fixed point and floating point arithmetic

New in version 2.4. The decimal module provides support for decimal floating point arithmetic. It offers several
advantages over the float datatype:

• Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle – computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” – excerpt from the decimal arithmetic specification.

• Decimal numbers can be represented exactly. In contrast, numbers like 1.1 do not have an exact representation
in binary floating point. End users typically would not expect 1.1 to display as 1.1000000000000001 as
it does with binary floating point.

• The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 is exactly
equal to zero. In binary floating point, the result is 5.5511151231257827e-017. While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal is preferred
in accounting applications which have strict equality invariants.

• The decimal module incorporates a notion of significant places so that 1.30 + 1.20 is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multi-
plication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2 gives
1.56 while 1.30 * 1.20 gives 1.5600.

• Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to 28
places) which can be as large as needed for a given problem:

>>> getcontext().prec = 6
>>> Decimal(1) / Decimal(7)
Decimal(’0.142857’)
>>> getcontext().prec = 28
>>> Decimal(1) / Decimal(7)
Decimal(’0.1428571428571428571428571429’)

200 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

• Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of the
standard. When needed, the programmer has full control over rounding and signal handling. This includes an
option to enforce exact arithmetic by using exceptions to block any inexact operations.

• The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” – excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity, -Infinity,
and NaN. The standard also differentiates -0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicating
the results of operations, and trap enablers which determine whether signals are treated as exceptions. Rounding
options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
ROUND_HALF_UP, ROUND_UP, and ROUND_05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the
decimal module are: Clamped, InvalidOperation, DivisionByZero, Inexact, Rounded, Subnormal,
Overflow, and Underflow.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap
enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a
calculation.

See Also:

• IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

• IEEE standard 854-1987, Unofficial IEEE 854 Text.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with getcontext() and, if
necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,

capitals=1, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext().prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, or tuples. To create a Decimal from a float, first
convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values such as NaN which stands for “Not a number”, positive and negative
Infinity, and -0.

>>> getcontext().prec = 28
>>> Decimal(10)
Decimal(’10’)
>>> Decimal(’3.14’)
Decimal(’3.14’)
>>> Decimal((0, (3, 1, 4), -2))

9.4. decimal — Decimal fixed point and floating point arithmetic 201

http://speleotrove.com/decimal/
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 2.6.9

Decimal(’3.14’)
>>> Decimal(str(2.0 ** 0.5))
Decimal(’1.41421356237’)
>>> Decimal(2) ** Decimal(’0.5’)
Decimal(’1.414213562373095048801688724’)
>>> Decimal(’NaN’)
Decimal(’NaN’)
>>> Decimal(’-Infinity’)
Decimal(’-Infinity’)

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext().prec = 6
>>> Decimal(’3.0’)
Decimal(’3.0’)
>>> Decimal(’3.1415926535’)
Decimal(’3.1415926535’)
>>> Decimal(’3.1415926535’) + Decimal(’2.7182818285’)
Decimal(’5.85987’)
>>> getcontext().rounding = ROUND_UP
>>> Decimal(’3.1415926535’) + Decimal(’2.7182818285’)
Decimal(’5.85988’)

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = map(Decimal, ’1.34 1.87 3.45 2.35 1.00 0.03 9.25’.split())
>>> max(data)
Decimal(’9.25’)
>>> min(data)
Decimal(’0.03’)
>>> sorted(data)
[Decimal(’0.03’), Decimal(’1.00’), Decimal(’1.34’), Decimal(’1.87’),
Decimal(’2.35’), Decimal(’3.45’), Decimal(’9.25’)]

>>> sum(data)
Decimal(’19.29’)
>>> a,b,c = data[:3]
>>> str(a)
’1.34’
>>> float(a)
1.3400000000000001
>>> round(a, 1) # round() first converts to binary floating point
1.3
>>> int(a)
1
>>> a * 5
Decimal(’6.70’)
>>> a * b
Decimal(’2.5058’)
>>> c % a
Decimal(’0.77’)

And some mathematical functions are also available to Decimal:

>>> getcontext().prec = 28
>>> Decimal(2).sqrt()
Decimal(’1.414213562373095048801688724’)

202 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

>>> Decimal(1).exp()
Decimal(’2.718281828459045235360287471’)
>>> Decimal(’10’).ln()
Decimal(’2.302585092994045684017991455’)
>>> Decimal(’10’).log10()
Decimal(’1’)

The quantize() method rounds a number to a fixed exponent. This method is useful for monetary applications that
often round results to a fixed number of places:

>>> Decimal(’7.325’).quantize(Decimal(’.01’), rounding=ROUND_DOWN)
Decimal(’7.32’)
>>> Decimal(’7.325’).quantize(Decimal(’1.’), rounding=ROUND_UP)
Decimal(’8’)

As shown above, the getcontext() function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the setcontext() function.

In accordance with the standard, the Decimalmodule provides two ready to use standard contexts, BasicContext
and ExtendedContext. The former is especially useful for debugging because many of the traps are enabled:

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal(’0.142857142857142857142857142857142857142857142857142857142857’)

>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,

capitals=1, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal(’0.142857143’)
>>> Decimal(42) / Decimal(0)
Decimal(’Infinity’)

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):

File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)

DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
the clear_flags() method.

>>> setcontext(ExtendedContext)
>>> getcontext().clear_flags()
>>> Decimal(355) / Decimal(113)
Decimal(’3.14159292’)
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,

capitals=1, flags=[Rounded, Inexact], traps=[])

9.4. decimal — Decimal fixed point and floating point arithmetic 203

The Python Library Reference, Release 2.6.9

The flags entry shows that the rational approximation to Pi was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the traps field of a context:

>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal(’Infinity’)
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):

File "<pyshell#112>", line 1, in -toplevel-
Decimal(1) / Decimal(0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of the
program manipulates the data no differently than with other Python numeric types.

9.4.2 Decimal objects

class Decimal([value, [context]])
Construct a new Decimal object based from value.

value can be an integer, string, tuple, or another Decimal object. If no value is given, returns Decimal(’0’).
If value is a string, it should conform to the decimal numeric string syntax after leading and trailing whitespace
characters are removed:

sign ::= ’+’ | ’-’
digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’
indicator ::= ’e’ | ’E’
digits ::= digit [digit]...
decimal-part ::= digits ’.’ [digits] | [’.’] digits
exponent-part ::= indicator [sign] digits
infinity ::= ’Infinity’ | ’Inf’
nan ::= ’NaN’ [digits] | ’sNaN’ [digits]
numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

If value is a unicode string then other Unicode decimal digits are also permitted where digit appears above.
These include decimal digits from various other alphabets (for example, Arabic-Indic and Devanāgarı̄ digits)
along with the fullwidth digits u’\uff10’ through u’\uff19’.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a
tuple of digits, and an integer exponent. For example, Decimal((0, (1, 4, 1, 4), -3)) returns
Decimal(’1.414’).

The context precision does not affect how many digits are stored. That is determined exclusively by the number
of digits in value. For example, Decimal(’3.00000’) records all five zeros even if the context precision is
only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with the
value of NaN.

Once constructed, Decimal objects are immutable. Changed in version 2.6: leading and trailing whitespace
characters are permitted when creating a Decimal instance from a string. Decimal floating point objects share

204 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

many properties with the other built-in numeric types such as float and int. All of the usual math operations
and special methods apply. Likewise, decimal objects can be copied, pickled, printed, used as dictionary keys,
used as set elements, compared, sorted, and coerced to another type (such as float or long).

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized
methods:

adjusted()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal(’321e+5’).adjusted() returns seven. Used for determining the position of
the most significant digit with respect to the decimal point.

as_tuple()
Return a named tuple representation of the number: DecimalTuple(sign, digits,
exponent). Changed in version 2.6: Use a named tuple.

canonical()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always
canonical, so this operation returns its argument unchanged. New in version 2.6.

compare(other, [context])
Compare the values of two Decimal instances. This operation behaves in the same way as the usual
comparison method __cmp__(), except that compare() returns a Decimal instance rather than an
integer, and if either operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal(’NaN’)
a < b ==> Decimal(’-1’)
a == b ==> Decimal(’0’)
a > b ==> Decimal(’1’)

compare_signal(other, [context])
This operation is identical to the compare() method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN. New
in version 2.6.

compare_total(other)
Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal(’12.0’).compare_total(Decimal(’12’))
Decimal(’-1’)

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal(’0’) if both operands have the same representation, Decimal(’-1’) if the first operand
is lower in the total order than the second, and Decimal(’1’) if the first operand is higher in the total
order than the second operand. See the specification for details of the total order. New in version 2.6.

compare_total_mag(other)
Compare two operands using their abstract representation rather than their value as in
compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is
equivalent to x.copy_abs().compare_total(y.copy_abs()). New in version 2.6.

conjugate()
Just returns self, this method is only to comply with the Decimal Specification. New in version 2.6.

9.4. decimal — Decimal fixed point and floating point arithmetic 205

The Python Library Reference, Release 2.6.9

copy_abs()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed. New in version 2.6.

copy_negate()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags are
changed and no rounding is performed. New in version 2.6.

copy_sign(other)
Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For
example:

>>> Decimal(’2.3’).copy_sign(Decimal(’-1.5’))
Decimal(’-2.3’)

This operation is unaffected by the context and is quiet: no flags are changed and no rounding is performed.
New in version 2.6.

exp([context])
Return the value of the (natural) exponential function e**x at the given number. The result is correctly
rounded using the ROUND_HALF_EVEN rounding mode.

>>> Decimal(1).exp()
Decimal(’2.718281828459045235360287471’)
>>> Decimal(321).exp()
Decimal(’2.561702493119680037517373933E+139’)

New in version 2.6.

fma(other, third, [context])
Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal(2).fma(3, 5)
Decimal(’11’)

New in version 2.6.

is_canonical()
Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always
canonical, so this operation always returns True. New in version 2.6.

is_finite()
Return True if the argument is a finite number, and False if the argument is an infinity or a NaN. New
in version 2.6.

is_infinite()
Return True if the argument is either positive or negative infinity and False otherwise. New in version
2.6.

is_nan()
Return True if the argument is a (quiet or signaling) NaN and False otherwise. New in version 2.6.

is_normal()
Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or
equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. Note, the term normal
is used here in a different sense with the normalize() method which is used to create canonical values.
New in version 2.6.

206 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

is_qnan()
Return True if the argument is a quiet NaN, and False otherwise. New in version 2.6.

is_signed()
Return True if the argument has a negative sign and False otherwise. Note that zeros and NaNs can
both carry signs. New in version 2.6.

is_snan()
Return True if the argument is a signaling NaN and False otherwise. New in version 2.6.

is_subnormal()
Return True if the argument is subnormal, and False otherwise. A number is subnormal is if it is
nonzero, finite, and has an adjusted exponent less than Emin. New in version 2.6.

is_zero()
Return True if the argument is a (positive or negative) zero and False otherwise. New in version 2.6.

ln([context])
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode. New in version 2.6.

log10([context])
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode. New in version 2.6.

logb([context])
For a nonzero number, return the adjusted exponent of its operand as a Decimal instance. If the operand
is a zero then Decimal(’-Infinity’) is returned and the DivisionByZero flag is raised. If the
operand is an infinity then Decimal(’Infinity’) is returned. New in version 2.6.

logical_and(other, [context])
logical_and() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise and of the two operands. New in version 2.6.

logical_invert([context])
logical_invert() is a logical operation. The result is the digit-wise inversion of the operand. New
in version 2.6.

logical_or(other, [context])
logical_or() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands. New in version 2.6.

logical_xor(other, [context])
logical_xor() is a logical operation which takes two logical operands (see Logical operands). The
result is the digit-wise exclusive or of the two operands. New in version 2.6.

max(other, [context])
Like max(self, other) except that the context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

max_mag(other, [context])
Similar to the max() method, but the comparison is done using the absolute values of the operands. New
in version 2.6.

min(other, [context])
Like min(self, other) except that the context rounding rule is applied before returning and that NaN
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

min_mag(other, [context])
Similar to the min() method, but the comparison is done using the absolute values of the operands. New
in version 2.6.

9.4. decimal — Decimal fixed point and floating point arithmetic 207

The Python Library Reference, Release 2.6.9

next_minus([context])
Return the largest number representable in the given context (or in the current thread’s context if no context
is given) that is smaller than the given operand. New in version 2.6.

next_plus([context])
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand. New in version 2.6.

next_toward(other, [context])
If the two operands are unequal, return the number closest to the first operand in the direction of the second
operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be
the same as the sign of the second operand. New in version 2.6.

normalize([context])
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to
Decimal(’0’) to Decimal(’0e0’). Used for producing canonical values for members of an equiv-
alence class. For example, Decimal(’32.100’) and Decimal(’0.321000e+2’) both normalize
to the equivalent value Decimal(’32.1’).

number_class([context])
Return a string describing the class of the operand. The returned value is one of the following ten strings.

•"-Infinity", indicating that the operand is negative infinity.

•"-Normal", indicating that the operand is a negative normal number.

•"-Subnormal", indicating that the operand is negative and subnormal.

•"-Zero", indicating that the operand is a negative zero.

•"+Zero", indicating that the operand is a positive zero.

•"+Subnormal", indicating that the operand is positive and subnormal.

•"+Normal", indicating that the operand is a positive normal number.

•"+Infinity", indicating that the operand is positive infinity.

•"NaN", indicating that the operand is a quiet NaN (Not a Number).

•"sNaN", indicating that the operand is a signaling NaN.

New in version 2.6.

quantize(exp, [rounding, [context, [watchexp]]])
Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal(’1.41421356’).quantize(Decimal(’1.000’))
Decimal(’1.414’)

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than
precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condi-
tion, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary. In this
case, the rounding mode is determined by the rounding argument if given, else by the given context
argument; if neither argument is given the rounding mode of the current thread’s context is used.

If watchexp is set (default), then an error is returned whenever the resulting exponent is greater than Emax
or less than Etiny.

208 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

radix()
Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for
compatibility with the specification. New in version 2.6.

remainder_near(other, [context])
Compute the modulo as either a positive or negative value depending on which is closest to zero. For
instance, Decimal(10).remainder_near(6) returns Decimal(’-2’) which is closer to zero
than Decimal(’4’).

If both are equally close, the one chosen will have the same sign as self.

rotate(other, [context])
Return the result of rotating the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to rotate. If the second operand is positive then rotation is
to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with
zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. New in
version 2.6.

same_quantum(other, [context])
Test whether self and other have the same exponent or whether both are NaN.

scaleb(other, [context])
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10**other. The second operand must be an integer. New in version 2.6.

shift(other, [context])
Return the result of shifting the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to shift. If the second operand is positive then the shift is
to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged. New in version 2.6.

sqrt([context])
Return the square root of the argument to full precision.

to_eng_string([context])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, converts Decimal(’123E+1’) to Decimal(’1.23E+3’)

to_integral([rounding, [context]])
Identical to the to_integral_value() method. The to_integral name has been kept for com-
patibility with older versions.

to_integral_exact([rounding, [context]])
Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used. New in version 2.6.

to_integral_value([rounding, [context]])
Round to the nearest integer without signaling Inexact or Rounded. If given, applies rounding; other-
wise, uses the rounding method in either the supplied context or the current context. Changed in version
2.6: renamed from to_integral to to_integral_value. The old name remains valid for compat-
ibility.

9.4. decimal — Decimal fixed point and floating point arithmetic 209

The Python Library Reference, Release 2.6.9

Logical operands

The logical_and(), logical_invert(), logical_or(), and logical_xor() methods expect their
arguments to be logical operands. A logical operand is a Decimal instance whose exponent and sign are both zero,
and whose digits are all either 0 or 1.

9.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext() and
setcontext() functions:

getcontext()
Return the current context for the active thread.

setcontext(c)
Set the current context for the active thread to c.

Beginning with Python 2.5, you can also use the with statement and the localcontext() function to temporarily
change the active context.

localcontext([c])
Return a context manager that will set the current context for the active thread to a copy of c on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified, a
copy of the current context is used. New in version 2.5. For example, the following code sets the current decimal
precision to 42 places, performs a calculation, and then automatically restores the previous context:

from decimal import localcontext

with localcontext() as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()

s = +s # Round the final result back to the default precision

New contexts can also be created using the Context constructor described below. In addition, the module provides
three pre-made contexts:

class BasicContext()
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions) except
Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class ExtendedContext()
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are not
raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

class DefaultContext()
This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the Context constructor.

210 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

This context is most useful in multi-threaded environments. Changing one of the fields before threads are started
has the effect of setting system-wide defaults. Changing the fields after threads have started is not recommended
as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow, Invali-
dOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultContext. If the flags field is not specified or is None, all flags are cleared.

The prec field is a positive integer that sets the precision for arithmetic operations in the context.

The rounding option is one of:

•ROUND_CEILING (towards Infinity),

•ROUND_DOWN (towards zero),

•ROUND_FLOOR (towards -Infinity),

•ROUND_HALF_DOWN (to nearest with ties going towards zero),

•ROUND_HALF_EVEN (to nearest with ties going to nearest even integer),

•ROUND_HALF_UP (to nearest with ties going away from zero), or

•ROUND_UP (away from zero).

•ROUND_05UP (away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise
towards zero)

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents.

The capitals field is either 0 or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise, a
lowercase e is used: Decimal(’6.02e+23’). Changed in version 2.6: The ROUND_05UP rounding mode
was added. The Context class defines several general purpose methods as well as a large number of methods
for doing arithmetic directly in a given context. In addition, for each of the Decimal methods described above
(with the exception of the adjusted() and as_tuple() methods) there is a corresponding Context
method. For example, C.exp(x) is equivalent to x.exp(context=C).

clear_flags()
Resets all of the flags to 0.

copy()
Return a duplicate of the context.

copy_decimal(num)
Return a copy of the Decimal instance num.

create_decimal(num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current

9.4. decimal — Decimal fixed point and floating point arithmetic 211

The Python Library Reference, Release 2.6.9

precision. In the following example, using unrounded inputs means that adding zero to a sum can change
the result:

>>> getcontext().prec = 3
>>> Decimal(’3.4445’) + Decimal(’1.0023’)
Decimal(’4.45’)
>>> Decimal(’3.4445’) + Decimal(0) + Decimal(’1.0023’)
Decimal(’4.44’)

This method implements the to-number operation of the IBM specification. If the argument is a string, no
leading or trailing whitespace is permitted.

Etiny()
Returns a value equal to Emin - prec + 1 which is the minimum exponent value for subnormal re-
sults. When underflow occurs, the exponent is set to Etiny.

Etop()
Returns a value equal to Emax - prec + 1.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic opera-
tions which take place within the current context for the active thread. An alternative approach is to use context
methods for calculating within a specific context. The methods are similar to those for the Decimal class and
are only briefly recounted here.

abs(x)
Returns the absolute value of x.

add(x, y)
Return the sum of x and y.

canonical(x)
Returns the same Decimal object x.

compare(x, y)
Compares x and y numerically.

compare_signal(x, y)
Compares the values of the two operands numerically.

compare_total(x, y)
Compares two operands using their abstract representation.

compare_total_mag(x, y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs(x)
Returns a copy of x with the sign set to 0.

copy_negate(x)
Returns a copy of x with the sign inverted.

copy_sign(x, y)
Copies the sign from y to x.

divide(x, y)
Return x divided by y.

divide_int(x, y)
Return x divided by y, truncated to an integer.

divmod(x, y)
Divides two numbers and returns the integer part of the result.

212 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

exp(x)
Returns e ** x.

fma(x, y, z)
Returns x multiplied by y, plus z.

is_canonical(x)
Returns True if x is canonical; otherwise returns False.

is_finite(x)
Returns True if x is finite; otherwise returns False.

is_infinite(x)
Returns True if x is infinite; otherwise returns False.

is_nan(x)
Returns True if x is a qNaN or sNaN; otherwise returns False.

is_normal(x)
Returns True if x is a normal number; otherwise returns False.

is_qnan(x)
Returns True if x is a quiet NaN; otherwise returns False.

is_signed(x)
Returns True if x is negative; otherwise returns False.

is_snan(x)
Returns True if x is a signaling NaN; otherwise returns False.

is_subnormal(x)
Returns True if x is subnormal; otherwise returns False.

is_zero(x)
Returns True if x is a zero; otherwise returns False.

ln(x)
Returns the natural (base e) logarithm of x.

log10(x)
Returns the base 10 logarithm of x.

logb(x)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and(x, y)
Applies the logical operation and between each operand’s digits.

logical_invert(x)
Invert all the digits in x.

logical_or(x, y)
Applies the logical operation or between each operand’s digits.

logical_xor(x, y)
Applies the logical operation xor between each operand’s digits.

max(x, y)
Compares two values numerically and returns the maximum.

max_mag(x, y)
Compares the values numerically with their sign ignored.

9.4. decimal — Decimal fixed point and floating point arithmetic 213

The Python Library Reference, Release 2.6.9

min(x, y)
Compares two values numerically and returns the minimum.

min_mag(x, y)
Compares the values numerically with their sign ignored.

minus(x)
Minus corresponds to the unary prefix minus operator in Python.

multiply(x, y)
Return the product of x and y.

next_minus(x)
Returns the largest representable number smaller than x.

next_plus(x)
Returns the smallest representable number larger than x.

next_toward(x, y)
Returns the number closest to x, in direction towards y.

normalize(x)
Reduces x to its simplest form.

number_class(x)
Returns an indication of the class of x.

plus(x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it is not an identity operation.

power(x, y, [modulo])
Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x**y. If x is negative then y must be integral. The result will be inexact
unless y is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The result
should always be correctly rounded, using the rounding mode of the current thread’s context.

With three arguments, compute (x**y) % modulo. For the three argument form, the following restric-
tions on the arguments hold:

•all three arguments must be integral

•y must be nonnegative

•at least one of x or y must be nonzero

•modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context.power(x, y, modulo) is equal to the value that would be ob-
tained by computing (x**y) % modulo with unbounded precision, but is computed more efficiently.
The exponent of the result is zero, regardless of the exponents of x, y and modulo. The result is al-
ways exact. Changed in version 2.6: y may now be nonintegral in x**y. Stricter requirements for the
three-argument version.

quantize(x, y)
Returns a value equal to x (rounded), having the exponent of y.

radix()
Just returns 10, as this is Decimal, :)

remainder(x, y)
Returns the remainder from integer division.

214 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near(x, y)
Returns x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its
sign will be the sign of x).

rotate(x, y)
Returns a rotated copy of x, y times.

same_quantum(x, y)
Returns True if the two operands have the same exponent.

scaleb(x, y)
Returns the first operand after adding the second value its exp.

shift(x, y)
Returns a shifted copy of x, y times.

sqrt(x)
Square root of a non-negative number to context precision.

subtract(x, y)
Return the difference between x and y.

to_eng_string(x)
Converts a number to a string, using scientific notation.

to_integral_exact(x)
Rounds to an integer.

to_sci_string(x)
Converts a number to a string using scientific notation.

9.4.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For example,
if the DivisionByZero trap is set, then a DivisionByZero exception is raised upon encountering the condition.

class Clamped()
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible, the
exponent is reduced to fit by adding zeros to the coefficient.

class DecimalException()
Base class for other signals and a subclass of ArithmeticError.

class DivisionByZero()
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returns Infinity or -Infinity with the sign determined by the inputs to the calculation.

9.4. decimal — Decimal fixed point and floating point arithmetic 215

The Python Library Reference, Release 2.6.9

class Inexact()
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

class InvalidOperation()
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible causes
include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0
Infinity % x
x._rescale(non-integer)
sqrt(-x) and x > 0
0 ** 0
x ** (non-integer)
x ** Infinity

class Overflow()
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends on
the rounding mode, either pulling inward to the largest representable finite number or rounding outward to
Infinity. In either case, Inexact and Rounded are also signaled.

class Rounded()
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class Subnormal()
Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class Underflow()
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.StandardError)
DecimalException

Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact

Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)

InvalidOperation
Rounded
Subnormal

216 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

9.4.5 Floating Point Notes

Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0.1 exactly);
however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111’)
>>> (u + v) + w
Decimal(’9.5111111’)
>>> u + (v + w)
Decimal(’10’)

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (u*w)
Decimal(’0.01’)
>>> u * (v+w)
Decimal(’0.0060000’)

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

>>> getcontext().prec = 20
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111’)
>>> (u + v) + w
Decimal(’9.51111111’)
>>> u + (v + w)
Decimal(’9.51111111’)
>>>
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (u*w)
Decimal(’0.0060000’)
>>> u * (v+w)
Decimal(’0.0060000’)

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity,
Infinity, and two zeros, +0 and -0.

Infinities can be constructed directly with: Decimal(’Infinity’). Also, they can arise from dividing by zero
when the DivisionByZero signal is not trapped. Likewise, when the Overflow signal is not trapped, infinity can
result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, indeter-
minate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the InvalidOperation signal is trapped, raise an excep-
tion. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once created, will

9.4. decimal — Decimal fixed point and floating point arithmetic 217

The Python Library Reference, Release 2.6.9

flow through other computations always resulting in another NaN. This behavior can be useful for a series of compu-
tations that occasionally have missing inputs — it allows the calculation to proceed while flagging specific results as
invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test
for equality where one of the operands is a quiet or signaling NaN always returns False (even when doing
Decimal(’NaN’)==Decimal(’NaN’)), while a test for inequality always returns True. An attempt to compare
two Decimals using any of the <, <=, > or >= operators will raise the InvalidOperation signal if either operand
is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic specification
does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN were taken from
the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use the compare() and
compare-signal() methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal(’Infinity’)
Decimal(’0E-1000000026’)

9.4.6 Working with threads

The getcontext() function accesses a different Context object for each thread. Having separate thread contexts
means that threads may make changes (such as getcontext.prec=10) without interfering with other threads.

Likewise, the setcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called before getcontext(), then getcontext() will automatically create a
new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread
will use the same values throughout the application, directly modify the DefaultContext object. This should be done
before any threads are started so that there won’t be a race condition between threads calling getcontext(). For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12
DefaultContext.rounding = ROUND_DOWN
DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1
setcontext(DefaultContext)

Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()
. . .

218 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

9.4.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

def moneyfmt(value, places=2, curr=’’, sep=’,’, dp=’.’,
pos=’’, neg=’-’, trailneg=’’):

"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for positive numbers: ’+’, space or blank
neg: optional sign for negative numbers: ’-’, ’(’, space or blank
trailneg:optional trailing minus indicator: ’-’, ’)’, space or blank

>>> d = Decimal(’-1234567.8901’)
>>> moneyfmt(d, curr=’$’)
’-$1,234,567.89’
>>> moneyfmt(d, places=0, sep=’.’, dp=’’, neg=’’, trailneg=’-’)
’1.234.568-’
>>> moneyfmt(d, curr=’$’, neg=’(’, trailneg=’)’)
’($1,234,567.89)’
>>> moneyfmt(Decimal(123456789), sep=’ ’)
’123 456 789.00’
>>> moneyfmt(Decimal(’-0.02’), neg=’<’, trailneg=’>’)
’<0.02>’

"""
q = Decimal(10) ** -places # 2 places --> ’0.01’
sign, digits, exp = value.quantize(q).as_tuple()
result = []
digits = map(str, digits)
build, next = result.append, digits.pop
if sign:

build(trailneg)
for i in range(places):

build(next() if digits else ’0’)
build(dp)
if not digits:

build(’0’)
i = 0
while digits:

build(next())
i += 1
if i == 3 and digits:

i = 0
build(sep)

build(curr)
build(neg if sign else pos)
return ’’.join(reversed(result))

def pi():

9.4. decimal — Decimal fixed point and floating point arithmetic 219

The Python Library Reference, Release 2.6.9

"""Compute Pi to the current precision.

>>> print pi()
3.141592653589793238462643383

"""
getcontext().prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:

lasts = s
n, na = n+na, na+8
d, da = d+da, da+32
t = (t * n) / d
s += t

getcontext().prec -= 2
return +s # unary plus applies the new precision

def exp(x):
"""Return e raised to the power of x. Result type matches input type.

>>> print exp(Decimal(1))
2.718281828459045235360287471
>>> print exp(Decimal(2))
7.389056098930650227230427461
>>> print exp(2.0)
7.38905609893
>>> print exp(2+0j)
(7.38905609893+0j)

"""
getcontext().prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1
while s != lasts:

lasts = s
i += 1
fact *= i
num *= x
s += num / fact

getcontext().prec -= 2
return +s

def cos(x):
"""Return the cosine of x as measured in radians.

>>> print cos(Decimal(’0.5’))
0.8775825618903727161162815826
>>> print cos(0.5)
0.87758256189
>>> print cos(0.5+0j)
(0.87758256189+0j)

"""
getcontext().prec += 2

220 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
while s != lasts:

lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign

getcontext().prec -= 2
return +s

def sin(x):
"""Return the sine of x as measured in radians.

>>> print sin(Decimal(’0.5’))
0.4794255386042030002732879352
>>> print sin(0.5)
0.479425538604
>>> print sin(0.5+0j)
(0.479425538604+0j)

"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
while s != lasts:

lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign

getcontext().prec -= 2
return +s

9.4.8 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal(’1234.5’). Is there a way to minimize typing when using the
interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D(’1.23’) + D(’3.45’)
Decimal(’4.68’)

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others
are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize() method rounds to a fixed number of decimal places. If the Inexact trap is set, it is also useful
for validation:

>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal(’0.01’)

>>> # Round to two places
>>> Decimal(’3.214’).quantize(TWOPLACES)
Decimal(’3.21’)

9.4. decimal — Decimal fixed point and floating point arithmetic 221

The Python Library Reference, Release 2.6.9

>>> # Validate that a number does not exceed two places
>>> Decimal(’3.21’).quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal(’3.21’)

>>> Decimal(’3.214’).quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):

...
Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed point.
Others operations, like division and non-integer multiplication, will change the number of decimal places and need to
be followed-up with a quantize() step:

>>> a = Decimal(’102.72’) # Initial fixed-point values
>>> b = Decimal(’3.17’)
>>> a + b # Addition preserves fixed-point
Decimal(’105.89’)
>>> a - b
Decimal(’99.55’)
>>> a * 42 # So does integer multiplication
Decimal(’4314.24’)
>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal(’325.62’)
>>> (b / a).quantize(TWOPLACES) # And quantize division
Decimal(’0.03’)

In developing fixed-point applications, it is convenient to define functions to handle the quantize() step:

>>> def mul(x, y, fp=TWOPLACES):
... return (x * y).quantize(fp)
>>> def div(x, y, fp=TWOPLACES):
... return (x / y).quantize(fp)

>>> mul(a, b) # Automatically preserve fixed-point
Decimal(’325.62’)
>>> div(b, a)
Decimal(’0.03’)

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the same
value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize() method maps all equivalent values to a single representative:

>>> values = map(Decimal, ’200 200.000 2E2 .02E+4’.split())
>>> [v.normalize() for v in values]
[Decimal(’2E+2’), Decimal(’2E+2’), Decimal(’2E+2’), Decimal(’2E+2’)]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s two-place
significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes, losing
significance, but keeping the value unchanged:

>>> def remove_exponent(d):
... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()

222 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

>>> remove_exponent(Decimal(’5E+3’))
Decimal(’5000’)

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, all binary floating point numbers can be exactly expressed as a Decimal. An exact conversion may take more
precision than intuition would suggest, so we trap Inexact to signal a need for more precision:

def float_to_decimal(f):
"Convert a floating point number to a Decimal with no loss of information"
n, d = f.as_integer_ratio()
numerator, denominator = Decimal(n), Decimal(d)
ctx = Context(prec=60)
result = ctx.divide(numerator, denominator)
while ctx.flags[Inexact]:

ctx.flags[Inexact] = False
ctx.prec *= 2
result = ctx.divide(numerator, denominator)

return result

>>> float_to_decimal(math.pi)
Decimal(’3.141592653589793115997963468544185161590576171875’)

Q. Why isn’t the float_to_decimal() routine included in the module?

A. There is some question about whether it is advisable to mix binary and decimal floating point. Also, its use requires
some care to avoid the representation issues associated with binary floating point:

>>> float_to_decimal(1.1)
Decimal(’1.100000000000000088817841970012523233890533447265625’)

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the
results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that the results
can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext().prec = 3
>>> Decimal(’3.104’) + Decimal(’2.104’)
Decimal(’5.21’)
>>> Decimal(’3.104’) + Decimal(’0.000’) + Decimal(’2.104’)
Decimal(’5.20’)

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext().prec = 3
>>> +Decimal(’1.23456789’) # unary plus triggers rounding
Decimal(’1.23’)

Alternatively, inputs can be rounded upon creation using the Context.create_decimal() method:

>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal(’1.2345678’)
Decimal(’1.2345’)

9.4. decimal — Decimal fixed point and floating point arithmetic 223

The Python Library Reference, Release 2.6.9

9.5 fractions — Rational numbers

New in version 2.6. The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class Fraction(numerator=0, denominator=1)
class Fraction(other_fraction)
class Fraction(string)

The first version requires that numerator and denominator are instances of numbers.Integral and
returns a new Fraction instance with value numerator/denominator. If denominator is 0, it
raises a ZeroDivisionError. The second version requires that other_fraction is an instance of
numbers.Rational and returns an Fraction instance with the same value. The last version of the con-
structor expects a string or unicode instance in one of two possible forms. The first form is:

[sign] numerator [’/’ denominator]

where the optional sign may be either ‘+’ or ‘-‘ and numerator and denominator (if present) are strings
of decimal digits. The second permitted form is that of a number containing a decimal point:

[sign] integer ’.’ [fraction] | [sign] ’.’ fraction

where integer and fraction are strings of digits. In either form the input string may also have leading
and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)
>>> Fraction(123)
Fraction(123, 1)
>>> Fraction()
Fraction(0, 1)
>>> Fraction(’3/7’)
Fraction(3, 7)
[40794 refs]
>>> Fraction(’ -3/7 ’)
Fraction(-3, 7)
>>> Fraction(’1.414213 \t\n’)
Fraction(1414213, 1000000)
>>> Fraction(’-.125’)
Fraction(-1, 8)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of the
methods and operations from that class. Fraction instances are hashable, and should be treated as immutable.
In addition, Fraction has the following methods:

from_float(flt)
This class method constructs a Fraction representing the exact value of flt, which must be a float.
Beware that Fraction.from_float(0.3) is not the same value as Fraction(3, 10)

from_decimal(dec)
This class method constructs a Fraction representing the exact value of dec, which must be a
decimal.Decimal.

224 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

limit_denominator(max_denominator=1000000)
Finds and returns the closest Fraction to self that has denominator at most max_denominator. This
method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction(’3.1415926535897932’).limit_denominator(1000)
Fraction(355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos
>>> Fraction.from_float(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction.from_float(cos(pi/3)).limit_denominator()
Fraction(1, 2)

gcd(a, b)
Return the greatest common divisor of the integers a and b. If either a or b is nonzero, then the absolute value of
gcd(a, b) is the largest integer that divides both a and b. gcd(a,b) has the same sign as b if b is nonzero;
otherwise it takes the sign of a. gcd(0, 0) returns 0.

See Also:

Module numbers The abstract base classes making up the numeric tower.

9.6 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random(), which generates a random float uniformly in
the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne
Twister is one of the most extensively tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random.Random class.
You can instantiate your own instances of Random to get generators that don’t share state. This is especially useful
for multi-threaded programs, creating a different instance of Random for each thread, and using the jumpahead()
method to make it likely that the generated sequences seen by each thread don’t overlap.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that case,
override the random(), seed(), getstate(), setstate() and jumpahead() methods. Optionally, a new
generator can supply a getrandbits() method — this allows randrange() to produce selections over an arbi-
trarily large range. New in version 2.4: the getrandbits() method. As an example of subclassing, the random
module provides the WichmannHill class that implements an alternative generator in pure Python. The class pro-
vides a backward compatible way to reproduce results from earlier versions of Python, which used the Wichmann-Hill
algorithm as the core generator. Note that this Wichmann-Hill generator can no longer be recommended: its period is
too short by contemporary standards, and the sequence generated is known to fail some stringent randomness tests. See
the references below for a recent variant that repairs these flaws. Changed in version 2.3: MersenneTwister replaced

9.6. random — Generate pseudo-random numbers 225

The Python Library Reference, Release 2.6.9

Wichmann-Hill as the default generator. The random module also provides the SystemRandom class which uses
the system function os.urandom() to generate random numbers from sources provided by the operating system.

Bookkeeping functions:

seed([x])
Initialize the basic random number generator. Optional argument x can be any hashable object. If x is omitted or
None, current system time is used; current system time is also used to initialize the generator when the module
is first imported. If randomness sources are provided by the operating system, they are used instead of the
system time (see the os.urandom() function for details on availability). Changed in version 2.4: formerly,
operating system resources were not used. If x is not None or an int or long, hash(x) is used instead. If x is
an int or long, x is used directly.

getstate()
Return an object capturing the current internal state of the generator. This object can be passed to setstate()
to restore the state. New in version 2.1.Changed in version 2.6: State values produced in Python 2.6 cannot be
loaded into earlier versions.

setstate(state)
state should have been obtained from a previous call to getstate(), and setstate() restores the internal
state of the generator to what it was at the time setstate() was called. New in version 2.1.

jumpahead(n)
Change the internal state to one different from and likely far away from the current state. n is a non-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in
conjunction with multiple instances of the Random class: setstate() or seed() can be used to force
all instances into the same internal state, and then jumpahead() can be used to force the instances’ states
far apart. New in version 2.1.Changed in version 2.3: Instead of jumping to a specific state, n steps ahead,
jumpahead(n) jumps to another state likely to be separated by many steps.

getrandbits(k)
Returns a python long int with k random bits. This method is supplied with the MersenneTwister generator and
some other generators may also provide it as an optional part of the API. When available, getrandbits()
enables randrange() to handle arbitrarily large ranges. New in version 2.4.

Functions for integers:

randrange([start], stop, [step])
Return a randomly selected element from range(start, stop, step). This is equivalent to
choice(range(start, stop, step)), but doesn’t actually build a range object. New in version 1.5.2.

randint(a, b)
Return a random integer N such that a <= N <= b.

Functions for sequences:

choice(seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

shuffle(x, [random])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the function random().

Note that for even rather small len(x), the total number of permutations of x is larger than the period of most
random number generators; this implies that most permutations of a long sequence can never be generated.

sample(population, k)
Return a k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3. Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also

226 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second
place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an xrange() object as an argument. This is especially fast
and space efficient for sampling from a large population: sample(xrange(10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random()
Return the next random floating point number in the range [0.0, 1.0).

uniform(a, b)
Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for b <
a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
equation a + (b-a) * random().

triangular(low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode between
those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint
between the bounds, giving a symmetric distribution. New in version 2.6.

betavariate(alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

expovariate(lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would
be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity if
lambd is positive, and from negative infinity to 0 if lambd is negative.

gammavariate(alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta >
0.

gauss(mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate(mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

normalvariate(mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate(mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which
must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random
angle over the range 0 to 2*pi.

paretovariate(alpha)
Pareto distribution. alpha is the shape parameter.

weibullvariate(alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

9.6. random — Generate pseudo-random numbers 227

The Python Library Reference, Release 2.6.9

Alternative Generators:

class WichmannHill([seed])
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Random plus the whseed() method described below. Because this class is implemented in pure Python, it is
not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644 which is
small enough to require care that two independent random sequences do not overlap.

whseed([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed() for
details. whseed() does not guarantee that distinct integer arguments yield distinct internal states, and can
yield no more than about 2**24 distinct internal states in all.

class SystemRandom([seed])
Class that uses the os.urandom() function for generating random numbers from sources provided by the op-
erating system. Not available on all systems. Does not rely on software state and sequences are not reproducible.
Accordingly, the seed() and jumpahead() methods have no effect and are ignored. The getstate()
and setstate() methods raise NotImplementedError if called. New in version 2.4.

Examples of basic usage:

>>> random.random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523
>>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random.choice(’abcdefghij’) # Choose a random element
’c’

>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1]

>>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
[4, 1, 5]

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics 31 (1982) 188-190.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long period
and comparatively simple update operations.

9.7 itertools — Functions creating iterators for efficient looping

New in version 2.3. This module implements a number of iterator building blocks inspired by constructs from APL,
Haskell, and SML. Each has been recast in a form suitable for Python.

228 Chapter 9. Numeric and Mathematical Modules

http://code.activestate.com/recipes/576707/

The Python Library Reference, Release 2.6.9

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently in
pure Python.

For instance, SML provides a tabulation tool: tabulate(f) which produces a sequence f(0), f(1),
The same effect can be achieved in Python by combining imap() and count() to form imap(f, count()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator mod-
ule. For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product:
sum(imap(operator.mul, vector1, vector2)).

Infinite Iterators:
Iterator Argu-

ments
Results Example

count() start start, start+1, start+2, ... count(10) --> 10 11 12 13 14
...

cycle() p p0, p1, ... plast, p0, p1, ... cycle(’ABCD’) --> A B C D A B
C D ...

repeat() elem [,n] elem, elem, elem, ... endlessly or up
to n times

repeat(10, 3) --> 10 10 10

Iterators terminating on the shortest input sequence:

Iterator Arguments Results Example
chain() p, q, ... p0, p1, ... plast, q0, q1, ... chain(’ABC’, ’DEF’) --> A B C D E

F
dropwhile()pred, seq seq[n], seq[n+1], starting

when pred fails
dropwhile(lambda x: x<5,
[1,4,6,4,1]) --> 6 4 1

groupby() iterable[,
keyfunc]

sub-iterators grouped by
value of keyfunc(v)

ifilter() pred, seq elements of seq where
pred(elem) is True

ifilter(lambda x: x%2, range(10))
--> 1 3 5 7 9

ifilterfalse()pred, seq elements of seq where
pred(elem) is False

ifilterfalse(lambda x: x%2,
range(10)) --> 0 2 4 6 8

islice() seq, [start,]
stop [, step]

elements from
seq[start:stop:step]

islice(’ABCDEFG’, 2, None) --> C D
E F G

imap() func, p, q, ... func(p0, q0), func(p1, q1),
...

imap(pow, (2,3,10), (5,2,3)) -->
32 9 1000

starmap() func, seq func(*seq[0]),
func(*seq[1]), ...

starmap(pow, [(2,5), (3,2),
(10,3)]) --> 32 9 1000

tee() it, n it1, it2 , ... itn splits one
iterator into n

takewhile()pred, seq seq[0], seq[1], until pred
fails

takewhile(lambda x: x<5,
[1,4,6,4,1]) --> 1 4

izip() p, q, ... (p[0], q[0]), (p[1], q[1]), ... izip(’ABCD’, ’xy’) --> Ax By
izip_longest()p, q, ... (p[0], q[0]), (p[1], q[1]), ... izip_longest(’ABCD’, ’xy’,

fillvalue=’-’) --> Ax By C- D-

Combinatoric generators:

9.7. itertools — Functions creating iterators for efficient looping 229

The Python Library Reference, Release 2.6.9

Iterator Arguments Results
product() p, q, ...

[repeat=1]
cartesian product, equivalent to a nested for-loop

permutations() p[, r] r-length tuples, all possible orderings, no repeated elements
combinations() p, r r-length tuples, in sorted order, no repeated elements

product(’ABCD’,
repeat=2)

AA AB AC AD BA BB BC BD CA CB CC CD DA
DB DC DD

permutations(’ABCD’,
2)

AB AC AD BA BC BD CA CB CD DA DB DC

combinations(’ABCD’,
2)

AB AC AD BC BD CD

9.7.1 Itertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain(*iterables)
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the next
iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single sequence.
Equivalent to:

def chain(*iterables):
chain(’ABC’, ’DEF’) --> A B C D E F
for it in iterables:

for element in it:
yield element

class from_iterable(iterable)
Alternate constructor for chain(). Gets chained inputs from a single iterable argument that is evaluated lazily.
Equivalent to:

@classmethod
def from_iterable(iterables):

chain.from_iterable([’ABC’, ’DEF’]) --> A B C D E F
for it in iterables:

for element in it:
yield element

New in version 2.6.

combinations(iterable, r)
Return r length subsequences of elements from the input iterable.

Combinations are emitted in lexicographic sort order. So, if the input iterable is sorted, the combination tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
there will be no repeat values in each combination.

Equivalent to:

def combinations(iterable, r):
combinations(’ABCD’, 2) --> AB AC AD BC BD CD
combinations(range(4), 3) --> 012 013 023 123

230 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

pool = tuple(iterable)
n = len(pool)
if r > n:

return
indices = range(r)
yield tuple(pool[i] for i in indices)
while True:

for i in reversed(range(r)):
if indices[i] != i + n - r:

break
else:

return
indices[i] += 1
for j in range(i+1, r):

indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

The code for combinations() can be also expressed as a subsequence of permutations() after filtering
entries where the elements are not in sorted order (according to their position in the input pool):

def combinations(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in permutations(range(n), r):

if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)

The number of items returned is n! / r! / (n-r)! when 0 <= r <= n or zero when r > n. New
in version 2.6.

count([n])
Make an iterator that returns consecutive integers starting with n. If not specified n defaults to zero. Often
used as an argument to imap() to generate consecutive data points. Also, used with izip() to add sequence
numbers. Equivalent to:

def count(n=0):
count(10) --> 10 11 12 13 14 ...
while True:

yield n
n += 1

cycle(iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted,
return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable):
cycle(’ABCD’) --> A B C D A B C D A B C D ...
saved = []
for element in iterable:

yield element
saved.append(element)

while saved:
for element in saved:

yield element

9.7. itertools — Functions creating iterators for efficient looping 231

The Python Library Reference, Release 2.6.9

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the iter-
able).

dropwhile(predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every
element. Note, the iterator does not produce any output until the predicate first becomes false, so it may have a
lengthy start-up time. Equivalent to:

def dropwhile(predicate, iterable):
dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1
iterable = iter(iterable)
for x in iterable:

if not predicate(x):
yield x
break

for x in iterable:
yield x

groupby(iterable, [key])
Make an iterator that returns consecutive keys and groups from the iterable. The key is a function computing
a key value for each element. If not specified or is None, key defaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The operation of groupby() is similar to the uniq filter in Unix. It generates a break or new group every
time the value of the key function changes (which is why it is usually necessary to have sorted the data using
the same key function). That behavior differs from SQL’s GROUP BY which aggregates common elements
regardless of their input order.

The returned group is itself an iterator that shares the underlying iterable with groupby(). Because the source
is shared, when the groupby() object is advanced, the previous group is no longer visible. So, if that data is
needed later, it should be stored as a list:

groups = []
uniquekeys = []
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):

groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)

groupby() is equivalent to:

class groupby(object):
[k for k, g in groupby(’AAAABBBCCDAABBB’)] --> A B C D A B
[list(g) for k, g in groupby(’AAAABBBCCD’)] --> AAAA BBB CC D
def __init__(self, iterable, key=None):

if key is None:
key = lambda x: x

self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = object()

def __iter__(self):
return self

def next(self):
while self.currkey == self.tgtkey:

self.currvalue = next(self.it) # Exit on StopIteration

232 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

self.currkey = self.keyfunc(self.currvalue)
self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey))

def _grouper(self, tgtkey):
while self.currkey == tgtkey:

yield self.currvalue
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)

New in version 2.4.

ifilter(predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is True. If
predicate is None, return the items that are true. Equivalent to:

def ifilter(predicate, iterable):
ifilter(lambda x: x%2, range(10)) --> 1 3 5 7 9
if predicate is None:

predicate = bool
for x in iterable:

if predicate(x):
yield x

ifilterfalse(predicate, iterable)
Make an iterator that filters elements from iterable returning only those for which the predicate is False. If
predicate is None, return the items that are false. Equivalent to:

def ifilterfalse(predicate, iterable):
ifilterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
if predicate is None:

predicate = bool
for x in iterable:

if not predicate(x):
yield x

imap(function, *iterables)
Make an iterator that computes the function using arguments from each of the iterables. If function is set to
None, then imap() returns the arguments as a tuple. Like map() but stops when the shortest iterable is
exhausted instead of filling in None for shorter iterables. The reason for the difference is that infinite iterator
arguments are typically an error for map() (because the output is fully evaluated) but represent a common and
useful way of supplying arguments to imap(). Equivalent to:

def imap(function, *iterables):
imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000
iterables = map(iter, iterables)
while True:

args = [next(it) for it in iterables]
if function is None:

yield tuple(args)
else:

yield function(*args)

islice(iterable, [start], stop, [step])
Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from the

9.7. itertools — Functions creating iterators for efficient looping 233

The Python Library Reference, Release 2.6.9

iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is set
higher than one which results in items being skipped. If stop is None, then iteration continues until the iterator
is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slicing, islice() does
not support negative values for start, stop, or step. Can be used to extract related fields from data where the
internal structure has been flattened (for example, a multi-line report may list a name field on every third line).
Equivalent to:

def islice(iterable, *args):
islice(’ABCDEFG’, 2) --> A B
islice(’ABCDEFG’, 2, 4) --> C D
islice(’ABCDEFG’, 2, None) --> C D E F G
islice(’ABCDEFG’, 0, None, 2) --> A C E G
s = slice(*args)
it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
nexti = next(it)
for i, element in enumerate(iterable):

if i == nexti:
yield element
nexti = next(it)

If start is None, then iteration starts at zero. If step is None, then the step defaults to one. Changed in version
2.5: accept None values for default start and step.

izip(*iterables)
Make an iterator that aggregates elements from each of the iterables. Like zip() except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip(*iterables):
izip(’ABCD’, ’xy’) --> Ax By
iterables = map(iter, iterables)
while iterables:

yield tuple(map(next, iterables))

Changed in version 2.4: When no iterables are specified, returns a zero length iterator instead of raising a
TypeError exception. The left-to-right evaluation order of the iterables is guaranteed. This makes possible
an idiom for clustering a data series into n-length groups using izip(*[iter(s)]*n).

izip() should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use izip_longest() instead.

izip_longest(*iterables, [fillvalue])
Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in with fillvalue. Iteration continues until the longest iterable is exhausted. Equivalent
to:

def izip_longest(*args, **kwds):
izip_longest(’ABCD’, ’xy’, fillvalue=’-’) --> Ax By C- D-
fillvalue = kwds.get(’fillvalue’)
def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):

yield counter() # yields the fillvalue, or raises IndexError
fillers = repeat(fillvalue)
iters = [chain(it, sentinel(), fillers) for it in args]
try:

for tup in izip(*iters):
yield tup

234 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

except IndexError:
pass

If one of the iterables is potentially infinite, then the izip_longest() function should be wrapped with
something that limits the number of calls (for example islice() or takewhile()). If not specified, fill-
value defaults to None. New in version 2.6.

permutations(iterable, [r])
Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length permuta-
tions are generated.

Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
there will be no repeat values in each permutation.

Equivalent to:

def permutations(iterable, r=None):
permutations(’ABCD’, 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:

return
indices = range(n)
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
while n:

for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:

indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i

else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break

else:
return

The code for permutations() can be also expressed as a subsequence of product(), filtered to exclude
entries with repeated elements (those from the same position in the input pool):

def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):

if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)

9.7. itertools — Functions creating iterators for efficient looping 235

The Python Library Reference, Release 2.6.9

The number of items returned is n! / (n-r)! when 0 <= r <= n or zero when r > n. New in version
2.6.

product(*iterables, [repeat])
Cartesian product of input iterables.

Equivalent to nested for-loops in a generator expression. For example, product(A, B) returns the same as
((x,y) for x in A for y in B).

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This pattern
creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples are emitted in sorted
order.

To compute the product of an iterable with itself, specify the number of repetitions with the optional repeat
keyword argument. For example, product(A, repeat=4) means the same as product(A, A, A,
A).

This function is equivalent to the following code, except that the actual implementation does not build up inter-
mediate results in memory:

def product(*args, **kwds):
product(’ABCD’, ’xy’) --> Ax Ay Bx By Cx Cy Dx Dy
product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = map(tuple, args) * kwds.get(’repeat’, 1)
result = [[]]
for pool in pools:

result = [x+[y] for x in result for y in pool]
for prod in result:

yield tuple(prod)

New in version 2.6.

repeat(object, [times])
Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is specified.
Used as argument to imap() for invariant function parameters. Also used with izip() to create constant
fields in a tuple record. Equivalent to:

def repeat(object, times=None):
repeat(10, 3) --> 10 10 10
if times is None:

while True:
yield object

else:
for i in xrange(times):

yield object

starmap(function, iterable)
Make an iterator that computes the function using arguments obtained from the iterable. Used instead
of imap() when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference between imap() and starmap() parallels the distinction between
function(a,b) and function(*c). Equivalent to:

def starmap(function, iterable):
starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
for args in iterable:

yield function(*args)

236 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

Changed in version 2.6: Previously, starmap() required the function arguments to be tuples. Now, any
iterable is allowed.

takewhile(predicate, iterable)
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile(predicate, iterable):
takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
for x in iterable:

if predicate(x):
yield x

else:
break

tee(iterable, [n=2])
Return n independent iterators from a single iterable. Equivalent to:

def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):

while True:
if not mydeque: # when the local deque is empty

newval = next(it) # fetch a new value and
for d in deques: # load it to all the deques

d.append(newval)
yield mydeque.popleft()

return tuple(gen(d) for d in deques)

Once tee() has made a split, the original iterable should not be used anywhere else; otherwise, the iterable
could get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be
stored). In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use
list() instead of tee(). New in version 2.4.

9.7.2 Examples

The following examples show common uses for each tool and demonstrate ways they can be combined.

>>> # Show a dictionary sorted and grouped by value
>>> from operator import itemgetter
>>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
>>> di = sorted(d.iteritems(), key=itemgetter(1))
>>> for k, g in groupby(di, key=itemgetter(1)):
... print k, map(itemgetter(0), g)
...
1 [’a’, ’c’, ’e’]
2 [’b’, ’d’, ’f’]
3 [’g’]

>>> # Find runs of consecutive numbers using groupby. The key to the solution
>>> # is differencing with a range so that consecutive numbers all appear in
>>> # same group.
>>> data = [1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]

9.7. itertools — Functions creating iterators for efficient looping 237

The Python Library Reference, Release 2.6.9

>>> for k, g in groupby(enumerate(data), lambda (i,x):i-x):
... print map(itemgetter(1), g)
...
[1]
[4, 5, 6]
[10]
[15, 16, 17, 18]
[22]
[25, 26, 27, 28]

9.7.3 Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory performance
is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code
volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables.
High speed is retained by preferring “vectorized” building blocks over the use of for-loops and generators which incur
interpreter overhead.

def take(n, iterable):
"Return first n items of the iterable as a list"
return list(islice(iterable, n))

def tabulate(function, start=0):
"Return function(0), function(1), ..."
return imap(function, count(start))

def consume(iterator, n):
"Advance the iterator n-steps ahead. If n is none, consume entirely."
The technique uses objects that consume iterators at C speed.
if n is None:

feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)

else:
advance to the emtpy slice starting at position n
next(islice(iterator, n, n), None)

def nth(iterable, n, default=None):
"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)

def quantify(iterable, pred=bool):
"Count how many times the predicate is true"
return sum(imap(pred, iterable))

def padnone(iterable):
"""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.
"""
return chain(iterable, repeat(None))

def ncycles(iterable, n):

238 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

"Returns the sequence elements n times"
return chain.from_iterable(repeat(tuple(iterable), n))

def dotproduct(vec1, vec2):
return sum(imap(operator.mul, vec1, vec2))

def flatten(listOfLists):
"Flatten one level of nesting"
return chain.from_iterable(listOfLists)

def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.

Example: repeatfunc(random.random)
"""
if times is None:

return starmap(func, repeat(args))
return starmap(func, repeat(args, times))

def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return izip(a, b)

def grouper(n, iterable, fillvalue=None):
"grouper(3, ’ABCDEFG’, ’x’) --> ABC DEF Gxx"
args = [iter(iterable)] * n
return izip_longest(fillvalue=fillvalue, *args)

def roundrobin(*iterables):
"roundrobin(’ABC’, ’D’, ’EF’) --> A D E B F C"
Recipe credited to George Sakkis
pending = len(iterables)
nexts = cycle(iter(it).next for it in iterables)
while pending:

try:
for next in nexts:

yield next()
except StopIteration:

pending -= 1
nexts = cycle(islice(nexts, pending))

def compress(data, selectors):
"compress(’ABCDEF’, [1,0,1,0,1,1]) --> A C E F"
return (d for d, s in izip(data, selectors) if s)

def combinations_with_replacement(iterable, r):
"combinations_with_replacement(’ABC’, 2) --> AA AB AC BB BC CC"
number items returned: (n+r-1)! / r! / (n-1)!
pool = tuple(iterable)
n = len(pool)
if not n and r:

return

9.7. itertools — Functions creating iterators for efficient looping 239

The Python Library Reference, Release 2.6.9

indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:

for i in reversed(range(r)):
if indices[i] != n - 1:

break
else:

return
indices[i:] = [indices[i] + 1] * (r - i)
yield tuple(pool[i] for i in indices)

def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
unique_everseen(’AAAABBBCCDAABBB’) --> A B C D
unique_everseen(’ABBCcAD’, str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:

for element in ifilterfalse(seen.__contains__, iterable):
seen_add(element)
yield element

else:
for element in iterable:

k = key(element)
if k not in seen:

seen_add(k)
yield element

def unique_justseen(iterable, key=None):
"List unique elements, preserving order. Remember only the element just seen."
unique_justseen(’AAAABBBCCDAABBB’) --> A B C D A B
unique_justseen(’ABBCcAD’, str.lower) --> A B C A D
return imap(next, imap(itemgetter(1), groupby(iterable, key)))

def iter_except(func, exception, first=None):
""" Call a function repeatedly until an exception is raised.

Converts a call-until-exception interface to an iterator interface.
Like __builtin__.iter(func, sentinel) but uses an exception instead
of a sentinel to end the loop.

Examples:
bsddbiter = iter_except(db.next, bsddb.error, db.first)
heapiter = iter_except(functools.partial(heappop, h), IndexError)
dictiter = iter_except(d.popitem, KeyError)
dequeiter = iter_except(d.popleft, IndexError)
queueiter = iter_except(q.get_nowait, Queue.Empty)
setiter = iter_except(s.pop, KeyError)

240 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

"""
try:

if first is not None:
yield first()

while 1:
yield func()

except exception:
pass

def random_product(*args, **kwds):
"Random selection from itertools.product(*args, **kwds)"
pools = map(tuple, args) * kwds.get(’repeat’, 1)
return tuple(random.choice(pool) for pool in pools)

def random_permutation(iterable, r=None):
"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))

def random_combination(iterable, r):
"Random selection from itertools.combinations(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample(xrange(n), r))
return tuple(pool[i] for i in indices)

def random_combination_with_replacement(iterable, r):
"Random selection from itertools.combinations_with_replacement(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.randrange(n) for i in xrange(r))
return tuple(pool[i] for i in indices)

Note, many of the above recipes can be optimized by replacing global lookups with local variables defined as default
values. For example, the dotproduct recipe can be written as:

def dotproduct(vec1, vec2, sum=sum, imap=imap, mul=operator.mul):
return sum(imap(mul, vec1, vec2))

9.8 functools — Higher order functions and operations on callable
objects

New in version 2.5. The functools module is for higher-order functions: functions that act on or return other
functions. In general, any callable object can be treated as a function for the purposes of this module.

The functools module defines the following functions:

reduce(function, iterable, [initializer])
This is the same function as reduce(). It is made available in this module to allow writing code more forward-
compatible with Python 3. New in version 2.6.

partial(func, [*args], [**keywords])
Return a new partial object which when called will behave like func called with the positional arguments

9.8. functools — Higher order functions and operations on callable objects 241

The Python Library Reference, Release 2.6.9

args and keyword arguments keywords. If more arguments are supplied to the call, they are appended to args.
If additional keyword arguments are supplied, they extend and override keywords. Roughly equivalent to:

def partial(func, *args, **keywords):
def newfunc(*fargs, **fkeywords):

newkeywords = keywords.copy()
newkeywords.update(fkeywords)
return func(*(args + fargs), **newkeywords)

newfunc.func = func
newfunc.args = args
newfunc.keywords = keywords
return newfunc

The partial() is used for partial function application which “freezes” some portion of a function’s arguments
and/or keywords resulting in a new object with a simplified signature. For example, partial() can be used
to create a callable that behaves like the int() function where the base argument defaults to two:

>>> from functools import partial
>>> basetwo = partial(int, base=2)
>>> basetwo.__doc__ = ’Convert base 2 string to an int.’
>>> basetwo(’10010’)
18

update_wrapper(wrapper, wrapped, [assigned], [updated])
Update a wrapper function to look like the wrapped function. The optional arguments are tuples to specify
which attributes of the original function are assigned directly to the matching attributes on the wrapper function
and which attributes of the wrapper function are updated with the corresponding attributes from the original
function. The default values for these arguments are the module level constants WRAPPER_ASSIGNMENTS
(which assigns to the wrapper function’s __name__, __module__ and __doc__, the documentation string) and
WRAPPER_UPDATES (which updates the wrapper function’s __dict__, i.e. the instance dictionary).

The main intended use for this function is in decorator functions which wrap the decorated function and return
the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect the wrapper
definition rather than the original function definition, which is typically less than helpful.

wraps(wrapped, [assigned], [updated])
This is a convenience function for invoking partial(update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated) as a function decorator when defining a wrapper function.
For example:

>>> from functools import wraps
>>> def my_decorator(f):
... @wraps(f)
... def wrapper(*args, **kwds):
... print ’Calling decorated function’
... return f(*args, **kwds)
... return wrapper
...
>>> @my_decorator
... def example():
... """Docstring"""
... print ’Called example function’
...
>>> example()
Calling decorated function

242 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

Called example function
>>> example.__name__
’example’
>>> example.__doc__
’Docstring’

Without the use of this decorator factory, the name of the example function would have been ’wrapper’, and
the docstring of the original example() would have been lost.

9.8.1 partial Objects

partial objects are callable objects created by partial(). They have three read-only attributes:

func
A callable object or function. Calls to the partial object will be forwarded to func with new arguments and
keywords.

args
The leftmost positional arguments that will be prepended to the positional arguments provided to a partial
object call.

keywords
The keyword arguments that will be supplied when the partial object is called.

partial objects are like function objects in that they are callable, weak referencable, and can have attributes.
There are some important differences. For instance, the __name__ and __doc__ attributes are not created automat-
ically. Also, partial objects defined in classes behave like static methods and do not transform into bound methods
during instance attribute look-up.

9.9 operator — Standard operators as functions

The operatormodule exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For example, operator.add(x, y) is equivalent to the expression x+y. The function names are those used for
special class methods; variants without leading and trailing __ are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, se-
quence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

lt(a, b)
le(a, b)
eq(a, b)
ne(a, b)
ge(a, b)
gt(a, b)
__lt__(a, b)
__le__(a, b)
__eq__(a, b)
__ne__(a, b)
__ge__(a, b)
__gt__(a, b)

Perform “rich comparisons” between a and b. Specifically, lt(a, b) is equivalent to a < b, le(a, b)
is equivalent to a <= b, eq(a, b) is equivalent to a == b, ne(a, b) is equivalent to a != b, gt(a,

9.9. operator — Standard operators as functions 243

The Python Library Reference, Release 2.6.9

b) is equivalent to a > b and ge(a, b) is equivalent to a >= b. Note that unlike the built-in cmp(), these
functions can return any value, which may or may not be interpretable as a Boolean value. See Comparisons (in
The Python Language Reference) for more information about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean
operations:

not_(obj)
__not__(obj)

Return the outcome of not obj. (Note that there is no __not__() method for object instances; only the inter-
preter core defines this operation. The result is affected by the __nonzero__() and __len__() methods.)

truth(obj)
Return True if obj is true, and False otherwise. This is equivalent to using the bool constructor.

is_(a, b)
Return a is b. Tests object identity. New in version 2.3.

is_not(a, b)
Return a is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs(obj)
__abs__(obj)

Return the absolute value of obj.

add(a, b)
__add__(a, b)

Return a + b, for a and b numbers.

and_(a, b)
__and__(a, b)

Return the bitwise and of a and b.

div(a, b)
__div__(a, b)

Return a / b when __future__.division is not in effect. This is also known as “classic” division.

floordiv(a, b)
__floordiv__(a, b)

Return a // b. New in version 2.2.

index(a)
__index__(a)

Return a converted to an integer. Equivalent to a.__index__(). New in version 2.5.

inv(obj)
invert(obj)
__inv__(obj)
__invert__(obj)

Return the bitwise inverse of the number obj. This is equivalent to ~obj. New in version 2.0: The names
invert() and __invert__().

lshift(a, b)
__lshift__(a, b)

Return a shifted left by b.

mod(a, b)
__mod__(a, b)

Return a % b.

244 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

mul(a, b)
__mul__(a, b)

Return a * b, for a and b numbers.

neg(obj)
__neg__(obj)

Return obj negated (-obj).

or_(a, b)
__or__(a, b)

Return the bitwise or of a and b.

pos(obj)
__pos__(obj)

Return obj positive (+obj).

pow(a, b)
__pow__(a, b)

Return a ** b, for a and b numbers. New in version 2.3.

rshift(a, b)
__rshift__(a, b)

Return a shifted right by b.

sub(a, b)
__sub__(a, b)

Return a - b.

truediv(a, b)
__truediv__(a, b)

Return a / b when __future__.division is in effect. This is also known as “true” division. New in
version 2.2.

xor(a, b)
__xor__(a, b)

Return the bitwise exclusive or of a and b.

Operations which work with sequences (some of them with mappings too) include:

concat(a, b)
__concat__(a, b)

Return a + b for a and b sequences.

contains(a, b)
__contains__(a, b)

Return the outcome of the test b in a. Note the reversed operands. New in version 2.0: The name
__contains__().

countOf(a, b)
Return the number of occurrences of b in a.

delitem(a, b)
__delitem__(a, b)

Remove the value of a at index b.

delslice(a, b, c)
__delslice__(a, b, c)

Delete the slice of a from index b to index c-1. Deprecated since version 2.6: This function is removed in Python
3.0. Use delitem() with a slice index.

getitem(a, b)

9.9. operator — Standard operators as functions 245

The Python Library Reference, Release 2.6.9

__getitem__(a, b)
Return the value of a at index b.

getslice(a, b, c)
__getslice__(a, b, c)

Return the slice of a from index b to index c-1. Deprecated since version 2.6: This function is removed in
Python 3.0. Use getitem() with a slice index.

indexOf(a, b)
Return the index of the first of occurrence of b in a.

repeat(a, b)
__repeat__(a, b)

Deprecated since version 2.6: This function is removed in Python 3.0. Use __mul__() instead. Return a *
b where a is a sequence and b is an integer.

sequenceIncludes(...)
Deprecated since version 2.0: Use contains() instead. Alias for contains().

setitem(a, b, c)
__setitem__(a, b, c)

Set the value of a at index b to c.

setslice(a, b, c, v)
__setslice__(a, b, c, v)

Set the slice of a from index b to index c-1 to the sequence v. Deprecated since version 2.6: This function is
removed in Python 3.0. Use setitem() with a slice index.

Example use of operator functions:

>>> # Elementwise multiplication
>>> map(mul, [0, 1, 2, 3], [10, 20, 30, 40])
[0, 20, 60, 120]

>>> # Dot product
>>> sum(map(mul, [0, 1, 2, 3], [10, 20, 30, 40]))
200

Many operations have an “in-place” version. The following functions provide a more primitive access to in-place op-
erators than the usual syntax does; for example, the statement x += y is equivalent to x = operator.iadd(x,
y). Another way to put it is to say that z = operator.iadd(x, y) is equivalent to the compound statement z
= x; z += y.

iadd(a, b)
__iadd__(a, b)

a = iadd(a, b) is equivalent to a += b. New in version 2.5.

iand(a, b)
__iand__(a, b)

a = iand(a, b) is equivalent to a &= b. New in version 2.5.

iconcat(a, b)
__iconcat__(a, b)

a = iconcat(a, b) is equivalent to a += b for a and b sequences. New in version 2.5.

idiv(a, b)
__idiv__(a, b)

a = idiv(a, b) is equivalent to a /= b when __future__.division is not in effect. New in ver-
sion 2.5.

ifloordiv(a, b)

246 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

__ifloordiv__(a, b)
a = ifloordiv(a, b) is equivalent to a //= b. New in version 2.5.

ilshift(a, b)
__ilshift__(a, b)

a = ilshift(a, b) is equivalent to a <<= b. New in version 2.5.

imod(a, b)
__imod__(a, b)

a = imod(a, b) is equivalent to a %= b. New in version 2.5.

imul(a, b)
__imul__(a, b)

a = imul(a, b) is equivalent to a *= b. New in version 2.5.

ior(a, b)
__ior__(a, b)

a = ior(a, b) is equivalent to a |= b. New in version 2.5.

ipow(a, b)
__ipow__(a, b)

a = ipow(a, b) is equivalent to a **= b. New in version 2.5.

irepeat(a, b)
__irepeat__(a, b)

Deprecated since version 2.6: This function is removed in Python 3.0. Use __imul__() instead. a =
irepeat(a, b) is equivalent to a *= b where a is a sequence and b is an integer. New in version 2.5.

irshift(a, b)
__irshift__(a, b)

a = irshift(a, b) is equivalent to a >>= b. New in version 2.5.

isub(a, b)
__isub__(a, b)

a = isub(a, b) is equivalent to a -= b. New in version 2.5.

itruediv(a, b)
__itruediv__(a, b)

a = itruediv(a, b) is equivalent to a /= b when __future__.division is in effect. New in
version 2.5.

ixor(a, b)
__ixor__(a, b)

a = ixor(a, b) is equivalent to a ^= b. New in version 2.5.

The operator module also defines a few predicates to test the type of objects; however, these are not all reliable. It
is preferable to test abstract base classes instead (see collections and numbers for details).

isCallable(obj)
Deprecated since version 2.0: Use isinstance(x, collections.Callable) instead. Returns true if
the object obj can be called like a function, otherwise it returns false. True is returned for functions, bound and
unbound methods, class objects, and instance objects which support the __call__() method.

isMappingType(obj)
Deprecated since version 2.6: This function is removed in Python 3.0. Use isinstance(x,
collections.Mapping) instead. Returns true if the object obj supports the mapping interface. This is
true for dictionaries and all instance objects defining __getitem__().

isNumberType(obj)
Deprecated since version 2.6: This function is removed in Python 3.0. Use isinstance(x,

9.9. operator — Standard operators as functions 247

The Python Library Reference, Release 2.6.9

numbers.Number) instead. Returns true if the object obj represents a number. This is true for all numeric
types implemented in C.

isSequenceType(obj)
Deprecated since version 2.6: This function is removed in Python 3.0. Use isinstance(x,
collections.Sequence) instead. Returns true if the object obj supports the sequence protocol. This
returns true for all objects which define sequence methods in C, and for all instance objects defining
__getitem__().

The operator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments for map(), sorted(), itertools.groupby(), or other functions that expect
a function argument.

attrgetter(attr, [args...])
Return a callable object that fetches attr from its operand. If more than one attribute is requested, returns
a tuple of attributes. After, f = attrgetter(’name’), the call f(b) returns b.name. After, f =
attrgetter(’name’, ’date’), the call f(b) returns (b.name, b.date).

The attribute names can also contain dots; after f = attrgetter(’date.month’), the call f(b) returns
b.date.month. New in version 2.4.Changed in version 2.5: Added support for multiple attributes.Changed
in version 2.6: Added support for dotted attributes.

itemgetter(item, [args...])
Return a callable object that fetches item from its operand using the operand’s __getitem__() method. If
multiple items are specified, returns a tuple of lookup values. Equivalent to:

def itemgetter(*items):
if len(items) == 1:

item = items[0]
def g(obj):

return obj[item]
else:

def g(obj):
return tuple(obj[item] for item in items)

return g

The items can be any type accepted by the operand’s __getitem__() method. Dictionaries accept any
hashable value. Lists, tuples, and strings accept an index or a slice:

>>> itemgetter(1)(’ABCDEFG’)
’B’
>>> itemgetter(1,3,5)(’ABCDEFG’)
(’B’, ’D’, ’F’)
>>> itemgetter(slice(2,None))(’ABCDEFG’)
’CDEFG’

New in version 2.4.Changed in version 2.5: Added support for multiple item extraction. Example of using
itemgetter() to retrieve specific fields from a tuple record:

>>> inventory = [(’apple’, 3), (’banana’, 2), (’pear’, 5), (’orange’, 1)]
>>> getcount = itemgetter(1)
>>> map(getcount, inventory)
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[(’orange’, 1), (’banana’, 2), (’apple’, 3), (’pear’, 5)]

248 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.9

methodcaller(name, [args...])
Return a callable object that calls the method name on its operand. If additional arguments and/or keyword
arguments are given, they will be given to the method as well. After f = methodcaller(’name’), the
call f(b) returns b.name(). After f = methodcaller(’name’, ’foo’, bar=1), the call f(b)
returns b.name(’foo’, bar=1). New in version 2.6.

9.9.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the
operator module.

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test obj in seq contains(seq, obj)
Division a / b div(a, b) (without __future__.division)
Division a / b truediv(a, b) (with __future__.division)
Division a // b floordiv(a, b)
Bitwise And a & b and_(a, b)
Bitwise Exclusive Or a ^ b xor(a, b)
Bitwise Inversion ~ a invert(a)
Bitwise Or a | b or_(a, b)
Exponentiation a ** b pow(a, b)
Identity a is b is_(a, b)
Identity a is not b is_not(a, b)
Indexed Assignment obj[k] = v setitem(obj, k, v)
Indexed Deletion del obj[k] delitem(obj, k)
Indexing obj[k] getitem(obj, k)
Left Shift a << b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not_(a)
Positive + a pos(a)
Right Shift a >> b rshift(a, b)
Sequence Repetition seq * i repeat(seq, i)
Slice Assignment seq[i:j] = values setitem(seq, slice(i, j), values)
Slice Deletion del seq[i:j] delitem(seq, slice(i, j))
Slicing seq[i:j] getitem(seq, slice(i, j))
String Formatting s % obj mod(s, obj)
Subtraction a - b sub(a, b)
Truth Test obj truth(obj)
Ordering a < b lt(a, b)
Ordering a <= b le(a, b)
Equality a == b eq(a, b)
Difference a != b ne(a, b)
Ordering a >= b ge(a, b)
Ordering a > b gt(a, b)

9.9. operator — Standard operators as functions 249

The Python Library Reference, Release 2.6.9

250 Chapter 9. Numeric and Mathematical Modules

CHAPTER

TEN

FILE AND DIRECTORY ACCESS

The modules described in this chapter deal with disk files and directories. For example, there are modules for reading
the properties of files, manipulating paths in a portable way, and creating temporary files. The full list of modules in
this chapter is:

10.1 os.path — Common pathname manipulations

This module implements some useful functions on pathnames. To read or write files see open(), and for accessing
the filesystem see the os module.

Note: On Windows, many of these functions do not properly support UNC pathnames. splitunc() and
ismount() do handle them correctly.

Note: Since different operating systems have different path name conventions, there are several versions of this
module in the standard library. The os.path module is always the path module suitable for the operating system
Python is running on, and therefore usable for local paths. However, you can also import and use the individual
modules if you want to manipulate a path that is always in one of the different formats. They all have the same
interface:

• posixpath for UNIX-style paths

• ntpath for Windows paths

• macpath for old-style MacOS paths

• os2emxpath for OS/2 EMX paths

abspath(path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equivalent to
normpath(join(os.getcwd(), path)). New in version 1.5.2.

basename(path)
Return the base name of pathname path. This is the second half of the pair returned by split(path).
Note that the result of this function is different from the Unix basename program; where basename for
’/foo/bar/’ returns ’bar’, the basename() function returns an empty string (”).

commonprefix(list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list. If list is empty,
return the empty string (”). Note that this may return invalid paths because it works a character at a time.

dirname(path)
Return the directory name of pathname path. This is the first half of the pair returned by split(path).

251

The Python Library Reference, Release 2.6.9

exists(path)
Return True if path refers to an existing path. Returns False for broken symbolic links. On some platforms,
this function may return False if permission is not granted to execute os.stat() on the requested file, even
if the path physically exists.

lexists(path)
Return True if path refers to an existing path. Returns True for broken symbolic links. Equivalent to
exists() on platforms lacking os.lstat(). New in version 2.4.

expanduser(path)
On Unix and Windows, return the argument with an initial component of ~ or ~user replaced by that user‘s
home directory. On Unix, an initial ~ is replaced by the environment variable HOME if it is set; otherwise
the current user’s home directory is looked up in the password directory through the built-in module pwd. An
initial ~user is looked up directly in the password directory.

On Windows, HOME and USERPROFILE will be used if set, otherwise a combination of HOMEPATH and
HOMEDRIVE will be used. An initial ~user is handled by stripping the last directory component from the
created user path derived above.

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.

expandvars(path)
Return the argument with environment variables expanded. Substrings of the form $name or ${name} are
replaced by the value of environment variable name. Malformed variable names and references to non-existing
variables are left unchanged.

On Windows, %name% expansions are supported in addition to $name and ${name}.

getatime(path)
Return the time of last access of path. The return value is a number giving the number of seconds since the
epoch (see the time module). Raise os.error if the file does not exist or is inaccessible. New in ver-
sion 1.5.2.Changed in version 2.3: If os.stat_float_times() returns True, the result is a floating point
number.

getmtime(path)
Return the time of last modification of path. The return value is a number giving the number of seconds since
the epoch (see the time module). Raise os.error if the file does not exist or is inaccessible. New in
version 1.5.2.Changed in version 2.3: If os.stat_float_times() returns True, the result is a floating
point number.

getctime(path)
Return the system’s ctime which, on some systems (like Unix) is the time of the last change, and, on others (like
Windows), is the creation time for path. The return value is a number giving the number of seconds since the
epoch (see the time module). Raise os.error if the file does not exist or is inaccessible. New in version 2.3.

getsize(path)
Return the size, in bytes, of path. Raise os.error if the file does not exist or is inaccessible. New in version
1.5.2.

isabs(path)
Return True if path is an absolute pathname. On Unix, that means it begins with a slash, on Windows that it
begins with a (back)slash after chopping off a potential drive letter.

isfile(path)
Return True if path is an existing regular file. This follows symbolic links, so both islink() and isfile()
can be true for the same path.

isdir(path)
Return True if path is an existing directory. This follows symbolic links, so both islink() and isdir()
can be true for the same path.

252 Chapter 10. File and Directory Access

The Python Library Reference, Release 2.6.9

islink(path)
Return True if path refers to a directory entry that is a symbolic link. Always False if symbolic links are not
supported.

ismount(path)
Return True if pathname path is a mount point: a point in a file system where a different file system has been
mounted. The function checks whether path‘s parent, path/.., is on a different device than path, or whether
path/.. and path point to the same i-node on the same device — this should detect mount points for all Unix
and POSIX variants.

join(path1, [path2, [...]])
Join one or more path components intelligently. If any component is an absolute path, all previous components
(on Windows, including the previous drive letter, if there was one) are thrown away, and joining continues.
The return value is the concatenation of path1, and optionally path2, etc., with exactly one directory separator
(os.sep) inserted between components, unless path2 is empty. Note that on Windows, since there is a current
directory for each drive, os.path.join("c:", "foo") represents a path relative to the current directory
on drive C: (c:foo), not c:\foo.

normcase(path)
Normalize the case of a pathname. On Unix and Mac OS X, this returns the path unchanged; on case-insensitive
filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath(path)
Normalize a pathname. This collapses redundant separators and up-level references so that A//B, A/B/,
A/./B and A/foo/../B all become A/B.

It does not normalize the case (use normcase() for that). On Windows, it converts forward slashes to back-
ward slashes. It should be understood that this may change the meaning of the path if it contains symbolic
links!

realpath(path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path (if
they are supported by the operating system). New in version 2.2.

relpath(path, [start])
Return a relative filepath to path either from the current directory or from an optional start point.

start defaults to os.curdir.

Availability: Windows, Unix. New in version 2.6.

samefile(path1, path2)
Return True if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception if a os.stat() call on either pathname fails.

Availability: Unix.

sameopenfile(fp1, fp2)
Return True if the file descriptors fp1 and fp2 refer to the same file.

Availability: Unix.

samestat(stat1, stat2)
Return True if the stat tuples stat1 and stat2 refer to the same file. These structures may have been re-
turned by fstat(), lstat(), or stat(). This function implements the underlying comparison used by
samefile() and sameopenfile().

Availability: Unix.

split(path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head is
everything leading up to that. The tail part will never contain a slash; if path ends in a slash, tail will be empty. If

10.1. os.path — Common pathname manipulations 253

The Python Library Reference, Release 2.6.9

there is no slash in path, head will be empty. If path is empty, both head and tail are empty. Trailing slashes are
stripped from head unless it is the root (one or more slashes only). In nearly all cases, join(head, tail)
equals path (the only exception being when there were multiple slashes separating head from tail).

splitdrive(path)
Split the pathname path into a pair (drive, tail) where drive is either a drive specification or the empty
string. On systems which do not use drive specifications, drive will always be the empty string. In all cases,
drive + tail will be the same as path. New in version 1.3.

splitext(path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ext is empty
or begins with a period and contains at most one period. Leading periods on the basename are ignored;
splitext(’.cshrc’) returns (’.cshrc’, ”). Changed in version 2.6: Earlier versions could produce
an empty root when the only period was the first character.

splitunc(path)
Split the pathname path into a pair (unc, rest) so that unc is the UNC mount point (such as
r’\\host\mount’), if present, and rest the rest of the path (such as r’\path\file.ext’). For paths
containing drive letters, unc will always be the empty string.

Availability: Windows.

walk(path, visit, arg)
Calls the function visit with arguments (arg, dirname, names) for each directory in the directory tree
rooted at path (including path itself, if it is a directory). The argument dirname specifies the visited directory,
the argument names lists the files in the directory (gotten from os.listdir(dirname)). The visit function
may modify names to influence the set of directories visited below dirname, e.g. to avoid visiting certain parts
of the tree. (The object referred to by names must be modified in place, using del or slice assignment.)

Note: Symbolic links to directories are not treated as subdirectories, and that walk() therefore will
not visit them. To visit linked directories you must identify them with os.path.islink(file) and
os.path.isdir(file), and invoke walk() as necessary.

Note: This function is deprecated and has been removed in 3.0 in favor of os.walk().

supports_unicode_filenames
True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system), and
if os.listdir() returns Unicode strings for a Unicode argument. New in version 2.3.

10.2 fileinput — Iterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files. If
you just want to read or write one file see open().

The typical use is:

import fileinput
for line in fileinput.input():

process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty. If
a filename is ’-’, it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it as the first
argument to input(). A single file name is also allowed.

All files are opened in text mode by default, but you can override this by specifying the mode parameter in the call to
input() or FileInput(). If an I/O error occurs during opening or reading a file, IOError is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

254 Chapter 10. File and Directory Access

The Python Library Reference, Release 2.6.9

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

Lines are returned with any newlines intact, which means that the last line in a file may not have one.

You can control how files are opened by providing an opening hook via the openhook parameter to
fileinput.input() or FileInput(). The hook must be a function that takes two arguments, filename and
mode, and returns an accordingly opened file-like object. Two useful hooks are already provided by this module.

The following function is the primary interface of this module:

input([files, [inplace, [backup, [mode, [openhook]]]]])
Create an instance of the FileInput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration. The parameters to this function will be passed along to the
constructor of the FileInput class. Changed in version 2.5: Added the mode and openhook parameters.

The following functions use the global state created by fileinput.input(); if there is no active state,
RuntimeError is raised.

filename()
Return the name of the file currently being read. Before the first line has been read, returns None.

fileno()
Return the integer “file descriptor” for the current file. When no file is opened (before the first line and between
files), returns -1. New in version 2.5.

lineno()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno()
Return the line number in the current file. Before the first line has been read, returns 0. After the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline()
Returns true if the line just read is the first line of its file, otherwise returns false.

isstdin()
Returns true if the last line was read from sys.stdin, otherwise returns false.

nextfile()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

class FileInput([files, [inplace, [backup, [mode, [openhook]]]]])
Class FileInput is the implementation; its methods filename(), fileno(), lineno(),
filelineno(), isfirstline(), isstdin(), nextfile() and close() correspond to the func-
tions of the same name in the module. In addition it has a readline() method which returns the next input
line, and a __getitem__() method which implements the sequence behavior. The sequence must be ac-
cessed in strictly sequential order; random access and readline() cannot be mixed.

With mode you can specify which file mode will be passed to open(). It must be one of ’r’, ’rU’, ’U’ and
’rb’.

10.2. fileinput — Iterate over lines from multiple input streams 255

The Python Library Reference, Release 2.6.9

The openhook, when given, must be a function that takes two arguments, filename and mode, and returns an
accordingly opened file-like object. You cannot use inplace and openhook together. Changed in version 2.5:
Added the mode and openhook parameters.

Optional in-place filtering: if the keyword argument inplace=1 is passed to fileinput.input() or to the
FileInput constructor, the file is moved to a backup file and standard output is directed to the input file (if a file of
the same name as the backup file already exists, it will be replaced silently). This makes it possible to write a filter that
rewrites its input file in place. If the backup parameter is given (typically as backup=’.<some extension>’),
it specifies the extension for the backup file, and the backup file remains around; by default, the extension is ’.bak’
and it is deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Note: The current implementation does not work for MS-DOS 8+3 filesystems.

The two following opening hooks are provided by this module:

hook_compressed(filename, mode)
Transparently opens files compressed with gzip and bzip2 (recognized by the extensions ’.gz’ and ’.bz2’)
using the gzip and bz2 modules. If the filename extension is not ’.gz’ or ’.bz2’, the file is opened
normally (ie, using open() without any decompression).

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_compressed)
New in version 2.5.

hook_encoded(encoding)
Returns a hook which opens each file with codecs.open(), using the given encoding to read the file.

Usage example: fi = fileinput.FileInput(openhook=fileinput.hook_encoded("iso-8859-1"))

Note: With this hook, FileInput might return Unicode strings depending on the specified encoding. New
in version 2.5.

10.3 stat — Interpreting stat() results

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat() and
os.lstat() (if they exist). For complete details about the stat(), fstat() and lstat() calls, consult the
documentation for your system.

The stat module defines the following functions to test for specific file types:

S_ISDIR(mode)
Return non-zero if the mode is from a directory.

S_ISCHR(mode)
Return non-zero if the mode is from a character special device file.

S_ISBLK(mode)
Return non-zero if the mode is from a block special device file.

S_ISREG(mode)
Return non-zero if the mode is from a regular file.

S_ISFIFO(mode)
Return non-zero if the mode is from a FIFO (named pipe).

S_ISLNK(mode)
Return non-zero if the mode is from a symbolic link.

S_ISSOCK(mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

256 Chapter 10. File and Directory Access

The Python Library Reference, Release 2.6.9

S_IMODE(mode)
Return the portion of the file’s mode that can be set by os.chmod()—that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by the S_IS*() functions above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overhead of the stat() system call for each
test. These are also useful when checking for information about a file that isn’t handled by os.path, like the tests
for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat(), os.fstat() or
os.lstat().

ST_MODE
Inode protection mode.

ST_INO
Inode number.

ST_DEV
Device inode resides on.

ST_NLINK
Number of links to the inode.

ST_UID
User id of the owner.

ST_GID
Group id of the owner.

ST_SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

ST_ATIME
Time of last access.

ST_MTIME
Time of last modification.

ST_CTIME
The “ctime” as reported by the operating system. On some systems (like Unix) is the time of the last metadata
change, and, on others (like Windows), is the creation time (see platform documentation for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in bytes.
For FIFOs and sockets under most flavors of Unix (including Linux in particular), the “size” is the number of bytes
waiting to be read at the time of the call to os.stat(), os.fstat(), or os.lstat(); this can sometimes be
useful, especially for polling one of these special files after a non-blocking open. The meaning of the size field for
other character and block devices varies more, depending on the implementation of the underlying system call.

The variables below define the flags used in the ST_MODE field.

Use of the functions above is more portable than use of the first set of flags:

S_IFMT
Bit mask for the file type bit fields.

S_IFSOCK
Socket.

10.3. stat — Interpreting stat() results 257

The Python Library Reference, Release 2.6.9

S_IFLNK
Symbolic link.

S_IFREG
Regular file.

S_IFBLK
Block device.

S_IFDIR
Directory.

S_IFCHR
Character device.

S_IFIFO
FIFO.

The following flags can also be used in the mode argument of os.chmod():

S_ISUID
Set UID bit.

S_ISGID
Set-group-ID bit. This bit has several special uses. For a directory it indicates that BSD semantics is to be used
for that directory: files created there inherit their group ID from the directory, not from the effective group ID
of the creating process, and directories created there will also get the S_ISGID bit set. For a file that does not
have the group execution bit (S_IXGRP) set, the set-group-ID bit indicates mandatory file/record locking (see
also S_ENFMT).

S_ISVTX
Sticky bit. When this bit is set on a directory it means that a file in that directory can be renamed or deleted only
by the owner of the file, by the owner of the directory, or by a privileged process.

S_IRWXU
Mask for file owner permissions.

S_IRUSR
Owner has read permission.

S_IWUSR
Owner has write permission.

S_IXUSR
Owner has execute permission.

S_IRWXG
Mask for group permissions.

S_IRGRP
Group has read permission.

S_IWGRP
Group has write permission.

S_IXGRP
Group has execute permission.

S_IRWXO
Mask for permissions for others (not in group).

S_IROTH
Others have read permission.

258 Chapter 10. File and Directory Access

The Python Library Reference, Release 2.6.9

S_IWOTH
Others have write permission.

S_IXOTH
Others have execute permission.

S_ENFMT
System V file locking enforcement. This flag is shared with S_ISGID: file/record locking is enforced on files
that do not have the group execution bit (S_IXGRP) set.

S_IREAD
Unix V7 synonym for S_IRUSR.

S_IWRITE
Unix V7 synonym for S_IWUSR.

S_IEXEC
Unix V7 synonym for S_IXUSR.

Example:

import os, sys
from stat import *

def walktree(top, callback):
’’’recursively descend the directory tree rooted at top,

calling the callback function for each regular file’’’

for f in os.listdir(top):
pathname = os.path.join(top, f)
mode = os.stat(pathname)[ST_MODE]
if S_ISDIR(mode):

It’s a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It’s a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print ’Skipping %s’ % pathname

def visitfile(file):
print ’visiting’, file

if __name__ == ’__main__’:
walktree(sys.argv[1], visitfile)

10.4 statvfs — Constants used with os.statvfs()

Deprecated since version 2.6: The statvfs module has been deprecated for removal in Python 3.0. The statvfs
module defines constants so interpreting the result if os.statvfs(), which returns a tuple, can be made without
remembering “magic numbers.” Each of the constants defined in this module is the index of the entry in the tuple
returned by os.statvfs() that contains the specified information.

F_BSIZE
Preferred file system block size.

10.4. statvfs — Constants used with os.statvfs() 259

The Python Library Reference, Release 2.6.9

F_FRSIZE
Fundamental file system block size.

F_BLOCKS
Total number of blocks in the filesystem.

F_BFREE
Total number of free blocks.

F_BAVAIL
Free blocks available to non-super user.

F_FILES
Total number of file nodes.

F_FFREE
Total number of free file nodes.

F_FAVAIL
Free nodes available to non-super user.

F_FLAG
Flags. System dependent: see statvfs() man page.

F_NAMEMAX
Maximum file name length.

10.5 filecmp — File and Directory Comparisons

The filecmp module defines functions to compare files and directories, with various optional time/correctness trade-
offs. For comparing files, see also the difflib module.

The filecmp module defines the following functions:

cmp(f1, f2, [shallow])
Compare the files named f1 and f2, returning True if they seem equal, False otherwise.

Unless shallow is given and is false, files with identical os.stat() signatures are taken to be equal.

Files that were compared using this function will not be compared again unless their os.stat() signature
changes.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles(dir1, dir2, common, [shallow])
Compare the files in the two directories dir1 and dir2 whose names are given by common.

Returns three lists of file names: match, mismatch, errors. match contains the list of files that match, mismatch
contains the names of those that don’t, and errors lists the names of files which could not be compared. Files
are listed in errors if they don’t exist in one of the directories, the user lacks permission to read them or if the
comparison could not be done for some other reason.

The shallow parameter has the same meaning and default value as for filecmp.cmp().

For example, cmpfiles(’a’, ’b’, [’c’, ’d/e’]) will compare a/c with b/c and a/d/e with
b/d/e. ’c’ and ’d/e’ will each be in one of the three returned lists.

Example:

>>> import filecmp
>>> filecmp.cmp(’undoc.rst’, ’undoc.rst’)
True

260 Chapter 10. File and Directory Access

The Python Library Reference, Release 2.6.9

>>> filecmp.cmp(’undoc.rst’, ’index.rst’)
False

10.5.1 The dircmp class

dircmp instances are built using this constructor:

class dircmp(a, b, [ignore, [hide]])
Construct a new directory comparison object, to compare the directories a and b. ignore is a list of names
to ignore, and defaults to [’RCS’, ’CVS’, ’tags’]. hide is a list of names to hide, and defaults to
[os.curdir, os.pardir].

The dircmp class provides the following methods:

report()
Print (to sys.stdout) a comparison between a and b.

report_partial_closure()
Print a comparison between a and b and common immediate subdirectories.

report_full_closure()
Print a comparison between a and b and common subdirectories (recursively).

The dircmp offers a number of interesting attributes that may be used to get various bits of information about
the directory trees being compared.

Note that via __getattr__() hooks, all attributes are computed lazily, so there is no speed penalty if only
those attributes which are lightweight to compute are used.

left_list
Files and subdirectories in a, filtered by hide and ignore.

right_list
Files and subdirectories in b, filtered by hide and ignore.

common
Files and subdirectories in both a and b.

left_only
Files and subdirectories only in a.

right_only
Files and subdirectories only in b.

common_dirs
Subdirectories in both a and b.

common_files
Files in both a and b

common_funny
Names in both a and b, such that the type differs between the directories, or names for which os.stat()
reports an error.

same_files
Files which are identical in both a and b.

diff_files
Files which are in both a and b, whose contents differ.

funny_files
Files which are in both a and b, but could not be compared.

10.5. filecmp — File and Directory Comparisons 261

The Python Library Reference, Release 2.6.9

subdirs
A dictionary mapping names in common_dirs to dircmp objects.

10.6 tempfile — Generate temporary files and directories

This module generates temporary files and directories. It works on all supported platforms.

In version 2.3 of Python, this module was overhauled for enhanced security. It now provides three new functions,
NamedTemporaryFile(), mkstemp(), and mkdtemp(), which should eliminate all remaining need to use the
insecure mktemp() function. Temporary file names created by this module no longer contain the process ID; instead
a string of six random characters is used.

Also, all the user-callable functions now take additional arguments which allow direct control over the location and
name of temporary files. It is no longer necessary to use the global tempdir and template variables. To maintain
backward compatibility, the argument order is somewhat odd; it is recommended to use keyword arguments for clarity.

The module defines the following user-callable functions:

TemporaryFile([mode=’w+b’, [bufsize=-1, [suffix=”, [prefix=’tmp’, [dir=None]]]]])
Return a file-like object that can be used as a temporary storage area. The file is created using mkstemp().
It will be destroyed as soon as it is closed (including an implicit close when the object is garbage collected).
Under Unix, the directory entry for the file is removed immediately after the file is created. Other platforms do
not support this; your code should not rely on a temporary file created using this function having or not having
a visible name in the file system.

The mode parameter defaults to ’w+b’ so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
bufsize defaults to -1, meaning that the operating system default is used.

The dir, prefix and suffix parameters are passed to mkstemp().

The returned object is a true file object on POSIX platforms. On other platforms, it is a file-like object whose
file attribute is the underlying true file object. This file-like object can be used in a with statement, just like
a normal file.

NamedTemporaryFile([mode=’w+b’, [bufsize=-1, [suffix=”, [prefix=’tmp’, [dir=None, [delete=True]]]]]])
This function operates exactly as TemporaryFile() does, except that the file is guaranteed to have a visible
name in the file system (on Unix, the directory entry is not unlinked). That name can be retrieved from the
name member of the file object. Whether the name can be used to open the file a second time, while the named
temporary file is still open, varies across platforms (it can be so used on Unix; it cannot on Windows NT or
later). If delete is true (the default), the file is deleted as soon as it is closed.

The returned object is always a file-like object whose file attribute is the underlying true file object. This
file-like object can be used in a with statement, just like a normal file. New in version 2.3.New in version 2.6:
The delete parameter.

SpooledTemporaryFile([max_size=0, [mode=’w+b’, [bufsize=-1, [suffix=”, [prefix=’tmp’, [dir=None]]]]]])
This function operates exactly as TemporaryFile() does, except that data is spooled in memory until the
file size exceeds max_size, or until the file’s fileno()method is called, at which point the contents are written
to disk and operation proceeds as with TemporaryFile().

The resulting file has one additional method, rollover(), which causes the file to roll over to an on-disk file
regardless of its size.

The returned object is a file-like object whose _file attribute is either a StringIO object or a true file object,
depending on whether rollover() has been called. This file-like object can be used in a with statement,
just like a normal file. New in version 2.6.

262 Chapter 10. File and Directory Access

The Python Library Reference, Release 2.6.9

mkstemp([suffix=”, [prefix=’tmp’, [dir=None, [text=False]]]])
Creates a temporary file in the most secure manner possible. There are no race conditions in the file’s creation,
assuming that the platform properly implements the os.O_EXCL flag for os.open(). The file is readable and
writable only by the creating user ID. If the platform uses permission bits to indicate whether a file is executable,
the file is executable by no one. The file descriptor is not inherited by child processes.

Unlike TemporaryFile(), the user of mkstemp() is responsible for deleting the temporary file when done
with it.

If suffix is specified, the file name will end with that suffix, otherwise there will be no suffix. mkstemp() does
not put a dot between the file name and the suffix; if you need one, put it at the beginning of suffix.

If prefix is specified, the file name will begin with that prefix; otherwise, a default prefix is used.

If dir is specified, the file will be created in that directory; otherwise, a default directory is used. The default di-
rectory is chosen from a platform-dependent list, but the user of the application can control the directory location
by setting the TMPDIR, TEMP or TMP environment variables. There is thus no guarantee that the generated
filename will have any nice properties, such as not requiring quoting when passed to external commands via
os.popen().

If text is specified, it indicates whether to open the file in binary mode (the default) or text mode. On some
platforms, this makes no difference.

mkstemp() returns a tuple containing an OS-level handle to an open file (as would be returned by
os.open()) and the absolute pathname of that file, in that order. New in version 2.3.

mkdtemp([suffix=”, [prefix=’tmp’, [dir=None]]])
Creates a temporary directory in the most secure manner possible. There are no race conditions in the directory’s
creation. The directory is readable, writable, and searchable only by the creating user ID.

The user of mkdtemp() is responsible for deleting the temporary directory and its contents when done with it.

The prefix, suffix, and dir arguments are the same as for mkstemp().

mkdtemp() returns the absolute pathname of the new directory. New in version 2.3.

mktemp([suffix=”, [prefix=’tmp’, [dir=None]]])
Deprecated since version 2.3: Use mkstemp() instead. Return an absolute pathname of a file that did not exist
at the time the call is made. The prefix, suffix, and dir arguments are the same as for mkstemp().

Warning: Use of this function may introduce a security hole in your program. By the time you get around
to doing anything with the file name it returns, someone else may have beaten you to the punch. mktemp()
usage can be replaced easily with NamedTemporaryFile(), passing it the delete=False parameter:

>>> f = NamedTemporaryFile(delete=False)
>>> f
<open file ’<fdopen>’, mode ’w+b’ at 0x384698>
>>> f.name
’/var/folders/5q/5qTPn6xq2RaWqk+1Ytw3-U+++TI/-Tmp-/tmpG7V1Y0’
>>> f.write("Hello World!\n")
>>> f.close()
>>> os.unlink(f.name)
>>> os.path.exists(f.name)
False

The module uses two global variables that tell it how to construct a temporary name. They are initialized at the first
call to any of the functions above. The caller may change them, but this is discouraged; use the appropriate function
arguments, instead.

10.6. tempfile — Generate temporary files and directories 263

The Python Library Reference, Release 2.6.9

tempdir
When set to a value other than None, this variable defines the default value for the dir argument to all the
functions defined in this module.

If tempdir is unset or None at any call to any of the above functions, Python searches a standard list of
directories and sets tempdir to the first one which the calling user can create files in. The list is:

1.The directory named by the TMPDIR environment variable.

2.The directory named by the TEMP environment variable.

3.The directory named by the TMP environment variable.

4.A platform-specific location:

•On RiscOS, the directory named by the Wimp$ScrapDir environment variable.

•On Windows, the directories C:\TEMP, C:\TMP, \TEMP, and \TMP, in that order.

•On all other platforms, the directories /tmp, /var/tmp, and /usr/tmp, in that order.

5.As a last resort, the current working directory.

gettempdir()
Return the directory currently selected to create temporary files in. If tempdir is not None, this simply returns
its contents; otherwise, the search described above is performed, and the result returned. New in version 2.3.

template
Deprecated since version 2.0: Use gettempprefix() instead. When set to a value other than None, this
variable defines the prefix of the final component of the filenames returned by mktemp(). A string of six
random letters and digits is appended to the prefix to make the filename unique. The default prefix is tmp.

Older versions of this module used to require that template be set to None after a call to os.fork(); this
has not been necessary since version 1.5.2.

gettempprefix()
Return the filename prefix used to create temporary files. This does not contain the directory component. Using
this function is preferred over reading the template variable directly. New in version 1.5.2.

10.7 glob — Unix style pathname pattern expansion

The glob module finds all the pathnames matching a specified pattern according to the rules used by the Unix shell.
No tilde expansion is done, but *, ?, and character ranges expressed with []will be correctly matched. This is done by
using the os.listdir() and fnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, use os.path.expanduser() and os.path.expandvars().)

glob(pathname)
Return a possibly-empty list of path names that match pathname, which must be a string containing a path
specification. pathname can be either absolute (like /usr/src/Python-1.5/Makefile) or relative (like
../../Tools/*/*.gif), and can contain shell-style wildcards. Broken symlinks are included in the results
(as in the shell).

iglob(pathname)
Return an iterator which yields the same values as glob() without actually storing them all simultaneously.
New in version 2.5.

For example, consider a directory containing only the following files: 1.gif, 2.txt, and card.gif. glob()
will produce the following results. Notice how any leading components of the path are preserved.

264 Chapter 10. File and Directory Access

The Python Library Reference, Release 2.6.9

>>> import glob
>>> glob.glob(’./[0-9].*’)
[’./1.gif’, ’./2.txt’]
>>> glob.glob(’*.gif’)
[’1.gif’, ’card.gif’]
>>> glob.glob(’?.gif’)
[’1.gif’]

See Also:

Module fnmatch Shell-style filename (not path) expansion

10.8 fnmatch — Unix filename pattern matching

This module provides support for Unix shell-style wildcards, which are not the same as regular expressions (which are
documented in the re module). The special characters used in shell-style wildcards are:

Pattern Meaning
* matches everything
? matches any single character
[seq] matches any character in seq
[!seq] matches any character not in seq

Note that the filename separator (’/’ on Unix) is not special to this module. See module glob for pathname ex-
pansion (glob uses fnmatch() to match pathname segments). Similarly, filenames starting with a period are not
special for this module, and are matched by the * and ? patterns.

fnmatch(filename, pattern)
Test whether the filename string matches the pattern string, returning True or False. If the operating system
is case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparison is
performed. fnmatchcase() can be used to perform a case-sensitive comparison, regardless of whether that’s
standard for the operating system.

This example will print all file names in the current directory with the extension .txt:

import fnmatch
import os

for file in os.listdir(’.’):
if fnmatch.fnmatch(file, ’*.txt’):

print file

fnmatchcase(filename, pattern)
Test whether filename matches pattern, returning True or False; the comparison is case-sensitive.

filter(names, pattern)
Return the subset of the list of names that match pattern. It is the same as [n for n in names if
fnmatch(n, pattern)], but implemented more efficiently. New in version 2.2.

translate(pattern)
Return the shell-style pattern converted to a regular expression.

Example:

>>> import fnmatch, re
>>>
>>> regex = fnmatch.translate(’*.txt’)

10.8. fnmatch — Unix filename pattern matching 265

The Python Library Reference, Release 2.6.9

>>> regex
’.*\\.txt$’
>>> reobj = re.compile(regex)
>>> reobj.match(’foobar.txt’)
<_sre.SRE_Match object at 0x...>

See Also:

Module glob Unix shell-style path expansion.

10.9 linecache — Random access to text lines

The linecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is used by the traceback module to
retrieve source lines for inclusion in the formatted traceback.

The linecache module defines the following functions:

getline(filename, lineno, [module_globals])
Get line lineno from file named filename. This function will never throw an exception — it will return ” on
errors (the terminating newline character will be included for lines that are found). If a file named filename is
not found, the function will look for it in the module search path, sys.path, after first checking for a PEP
302 __loader__ in module_globals, in case the module was imported from a zipfile or other non-filesystem
import source. New in version 2.5: The module_globals parameter was added.

clearcache()
Clear the cache. Use this function if you no longer need lines from files previously read using getline().

checkcache([filename])
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version. If filename is omitted, it will check all the entries in the cache.

Example:

>>> import linecache
>>> linecache.getline(’/etc/passwd’, 4)
’sys:x:3:3:sys:/dev:/bin/sh\n’

10.10 shutil — High-level file operations

The shutil module offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal. For operations on individual files, see also the os module.

Warning: Even the higher-level file copying functions (copy(), copy2()) can’t copy all file metadata.
On POSIX platforms, this means that file owner and group are lost as well as ACLs. On Mac OS, the resource
fork and other metadata are not used. This means that resources will be lost and file type and creator codes will
not be correct. On Windows, file owners, ACLs and alternate data streams are not copied.

copyfileobj(fsrc, fdst, [length])
Copy the contents of the file-like object fsrc to the file-like object fdst. The integer length, if given, is the buffer
size. In particular, a negative length value means to copy the data without looping over the source data in chunks;
by default the data is read in chunks to avoid uncontrolled memory consumption. Note that if the current file
position of the fsrc object is not 0, only the contents from the current file position to the end of the file will be
copied.

266 Chapter 10. File and Directory Access

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

copyfile(src, dst)
Copy the contents (no metadata) of the file named src to a file named dst. dst must be the complete target file
name; look at copy() for a copy that accepts a target directory path. If src and dst are the same files, Error
is raised. The destination location must be writable; otherwise, an IOError exception will be raised. If dst
already exists, it will be replaced. Special files such as character or block devices and pipes cannot be copied
with this function. src and dst are path names given as strings.

copymode(src, dst)
Copy the permission bits from src to dst. The file contents, owner, and group are unaffected. src and dst are
path names given as strings.

copystat(src, dst)
Copy the permission bits, last access time, last modification time, and flags from src to dst. The file contents,
owner, and group are unaffected. src and dst are path names given as strings.

copy(src, dst)
Copy the file src to the file or directory dst. If dst is a directory, a file with the same basename as src is created (or
overwritten) in the directory specified. Permission bits are copied. src and dst are path names given as strings.

copy2(src, dst)
Similar to copy(), but metadata is copied as well – in fact, this is just copy() followed by copystat().
This is similar to the Unix command cp -p.

ignore_patterns(*patterns)
This factory function creates a function that can be used as a callable for copytree()‘s ignore argument,
ignoring files and directories that match one of the glob-style patterns provided. See the example below. New
in version 2.6.

copytree(src, dst, [symlinks=False, [ignore=None]])
Recursively copy an entire directory tree rooted at src. The destination directory, named by dst, must not already
exist; it will be created as well as missing parent directories. Permissions and times of directories are copied
with copystat(), individual files are copied using copy2().

If symlinks is true, symbolic links in the source tree are represented as symbolic links in the new tree; if false or
omitted, the contents of the linked files are copied to the new tree.

If ignore is given, it must be a callable that will receive as its arguments the directory being visited by
copytree(), and a list of its contents, as returned by os.listdir(). Since copytree() is called
recursively, the ignore callable will be called once for each directory that is copied. The callable must return
a sequence of directory and file names relative to the current directory (i.e. a subset of the items in its second
argument); these names will then be ignored in the copy process. ignore_patterns() can be used to create
such a callable that ignores names based on glob-style patterns.

If exception(s) occur, an Error is raised with a list of reasons.

The source code for this should be considered an example rather than the ultimate tool. Changed in version 2.3:
Error is raised if any exceptions occur during copying, rather than printing a message.Changed in version 2.5:
Create intermediate directories needed to create dst, rather than raising an error. Copy permissions and times
of directories using copystat().Changed in version 2.6: Added the ignore argument to be able to influence
what is being copied.

rmtree(path, [ignore_errors, [onerror]])
Delete an entire directory tree; path must point to a directory (but not a symbolic link to a directory). If
ignore_errors is true, errors resulting from failed removals will be ignored; if false or omitted, such errors are
handled by calling a handler specified by onerror or, if that is omitted, they raise an exception.

If onerror is provided, it must be a callable that accepts three parameters: function, path, and excinfo.
The first parameter, function, is the function which raised the exception; it will be os.path.islink(),
os.listdir(), os.remove() or os.rmdir(). The second parameter, path, will be the path
name passed to function. The third parameter, excinfo, will be the exception information return by

10.10. shutil — High-level file operations 267

The Python Library Reference, Release 2.6.9

sys.exc_info(). Exceptions raised by onerror will not be caught. Changed in version 2.6: Explicitly
check for path being a symbolic link and raise OSError in that case.

move(src, dst)
Recursively move a file or directory to another location.

If the destination is on the current filesystem, then simply use rename. Otherwise, copy src (with copy2()) to
the dst and then remove src. New in version 2.3.

exception Error
This exception collects exceptions that raised during a multi-file operation. For copytree(), the exception
argument is a list of 3-tuples (srcname, dstname, exception). New in version 2.3.

10.10.1 Example

This example is the implementation of the copytree() function, described above, with the docstring omitted. It
demonstrates many of the other functions provided by this module.

def copytree(src, dst, symlinks=False, ignore=None):
names = os.listdir(src)
if ignore is not None:

ignored_names = ignore(src, names)
else:

ignored_names = set()

os.makedirs(dst)
errors = []
for name in names:

if name in ignored_names:
continue

srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:

if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)

elif os.path.isdir(srcname):
copytree(srcname, dstname, symlinks, ignore)

else:
copy2(srcname, dstname)

XXX What about devices, sockets etc.?
except (IOError, os.error), why:

errors.append((srcname, dstname, str(why)))
catch the Error from the recursive copytree so that we can
continue with other files
except Error, err:

errors.extend(err.args[0])
try:

copystat(src, dst)
except WindowsError:

can’t copy file access times on Windows
pass

except OSError, why:
errors.extend((src, dst, str(why)))

268 Chapter 10. File and Directory Access

The Python Library Reference, Release 2.6.9

if errors:
raise Error(errors)

Another example that uses the ignore_patterns() helper:

from shutil import copytree, ignore_patterns

copytree(source, destination, ignore=ignore_patterns(’*.pyc’, ’tmp*’))

This will copy everything except .pyc files and files or directories whose name starts with tmp.

Another example that uses the ignore argument to add a logging call:

from shutil import copytree
import logging

def _logpath(path, names):
logging.info(’Working in %s’ % path)
return [] # nothing will be ignored

copytree(source, destination, ignore=_logpath)

10.11 dircache — Cached directory listings

Deprecated since version 2.6: The dircache module has been removed in Python 3.0. The dircache module
defines a function for reading directory listing using a cache, and cache invalidation using the mtime of the directory.
Additionally, it defines a function to annotate directories by appending a slash.

The dircache module defines the following functions:

reset()
Resets the directory cache.

listdir(path)
Return a directory listing of path, as gotten from os.listdir(). Note that unless path changes, further call
to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to return
a tuple?)

opendir(path)
Same as listdir(). Defined for backwards compatibility.

annotate(head, list)
Assume list is a list of paths relative to head, and append, in place, a ’/’ to each path which points to a
directory.

>>> import dircache
>>> a = dircache.listdir(’/’)
>>> a = a[:] # Copy the return value so we can change ’a’
>>> a
[’bin’, ’boot’, ’cdrom’, ’dev’, ’etc’, ’floppy’, ’home’, ’initrd’, ’lib’, ’lost+
found’, ’mnt’, ’proc’, ’root’, ’sbin’, ’tmp’, ’usr’, ’var’, ’vmlinuz’]
>>> dircache.annotate(’/’, a)
>>> a
[’bin/’, ’boot/’, ’cdrom/’, ’dev/’, ’etc/’, ’floppy/’, ’home/’, ’initrd/’, ’lib/
’, ’lost+found/’, ’mnt/’, ’proc/’, ’root/’, ’sbin/’, ’tmp/’, ’usr/’, ’var/’, ’vm
linuz’]

10.11. dircache — Cached directory listings 269

The Python Library Reference, Release 2.6.9

10.12 macpath — Mac OS 9 path manipulation functions

This module is the Mac OS 9 (and earlier) implementation of the os.path module. It can be used to manipulate
old-style Macintosh pathnames on Mac OS X (or any other platform).

The following functions are available in this module: normcase(), normpath(), isabs(), join(),
split(), isdir(), isfile(), walk(), exists(). For other functions available in os.path dummy coun-
terparts are available.

See Also:

Section File Objects A description of Python’s built-in file objects.

Module os Operating system interfaces, including functions to work with files at a lower level than the built-in file
object.

270 Chapter 10. File and Directory Access

CHAPTER

ELEVEN

DATA PERSISTENCE

The modules described in this chapter support storing Python data in a persistent form on disk. The pickle and
marshal modules can turn many Python data types into a stream of bytes and then recreate the objects from the
bytes. The various DBM-related modules support a family of hash-based file formats that store a mapping of strings
to other strings. The bsddb module also provides such disk-based string-to-string mappings based on hashing, and
also supports B-Tree and record-based formats.

The list of modules described in this chapter is:

11.1 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy. Pickling (and
unpickling) is alternatively known as “serialization”, “marshalling,” 1 or “flattening”, however, to avoid confusion, the
terms used here are “pickling” and “unpickling”.

This documentation describes both the pickle module and the cPickle module.

11.1.1 Relationship to other Python modules

The pickle module has an optimized cousin called the cPickle module. As its name implies, cPickle is written
in C, so it can be up to 1000 times faster than pickle. However it does not support subclassing of the Pickler()
and Unpickler() classes, because in cPickle these are functions, not classes. Most applications have no need
for this functionality, and can benefit from the improved performance of cPickle. Other than that, the interfaces of
the two modules are nearly identical; the common interface is described in this manual and differences are pointed
out where necessary. In the following discussions, we use the term “pickle” to collectively describe the pickle and
cPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module called marshal, but in general pickle should always be the
preferred way to serialize Python objects. marshal exists primarily to support Python’s .pyc files.

The pickle module differs from marshal several significant ways:

• The pickle module keeps track of the objects it has already serialized, so that later references to the same
object won’t be serialized again. marshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive objects

1 Don’t confuse this with the marshal module

271

The Python Library Reference, Release 2.6.9

will crash your Python interpreter. Object sharing happens when there are multiple references to the same object
in different places in the object hierarchy being serialized. pickle stores such objects only once, and ensures
that all other references point to the master copy. Shared objects remain shared, which can be very important
for mutable objects.

• marshal cannot be used to serialize user-defined classes and their instances. pickle can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

• The marshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support .pyc files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arise. The pickle serialization format is guaranteed to be
backwards compatible across Python releases.

Warning: The pickle module is not intended to be secure against erroneous or maliciously constructed data.
Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; although pickle reads and writes file objects, it
does not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent access
to persistent objects. The pickle module can transform a complex object into a byte stream and it can transform
the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database.
The module shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

11.1.2 Data stream format

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a printable ASCII representation. This is slightly more voluminous than a
binary representation. The big advantage of using printable ASCII (and of some other characteristics of pickle‘s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

• Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of Python.

• Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

• Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.

Refer to PEP 307 for more information.

If a protocol is not specified, protocol 0 is used. If protocol is specified as a negative value or HIGHEST_PROTOCOL,
the highest protocol version available will be used. Changed in version 2.3: Introduced the protocol parameter. A
binary format, which is slightly more efficient, can be chosen by specifying a protocol version >= 1.

11.1.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the pickler’s dump() method. To de-serialize
a data stream, you first create an unpickler, then you call the unpickler’s load() method. The pickle module
provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passed as a protocol value. New in version 2.3.

272 Chapter 11. Data Persistence

http://www.python.org/dev/peps/pep-0307

The Python Library Reference, Release 2.6.9

Note: Be sure to always open pickle files created with protocols >= 1 in binary mode. For the old ASCII-based pickle
protocol 0 you can use either text mode or binary mode as long as you stay consistent.

A pickle file written with protocol 0 in binary mode will contain lone linefeeds as line terminators and therefore will
look “funny” when viewed in Notepad or other editors which do not support this format.

The pickle module provides the following functions to make the pickling process more convenient:

dump(obj, file, [protocol])
Write a pickled representation of obj to the open file object file. This is equivalent to Pickler(file,
protocol).dump(obj).

If the protocol parameter is omitted, protocol 0 is used. If protocol is specified as a negative value or
HIGHEST_PROTOCOL, the highest protocol version will be used. Changed in version 2.3: Introduced the
protocol parameter. file must have a write() method that accepts a single string argument. It can thus be a
file object opened for writing, a StringIO object, or any other custom object that meets this interface.

load(file)
Read a string from the open file object file and interpret it as a pickle data stream, reconstructing and returning
the original object hierarchy. This is equivalent to Unpickler(file).load().

file must have two methods, a read() method that takes an integer argument, and a readline() method that
requires no arguments. Both methods should return a string. Thus file can be a file object opened for reading, a
StringIO object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.

dumps(obj, [protocol])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is omitted, protocol 0 is used. If protocol is specified as a negative value or
HIGHEST_PROTOCOL, the highest protocol version will be used. Changed in version 2.3: The protocol pa-
rameter was added.

loads(string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representation
are ignored.

The pickle module also defines three exceptions:

exception PickleError
A common base class for the other exceptions defined below. This inherits from Exception.

exception PicklingError
This exception is raised when an unpicklable object is passed to the dump() method.

exception UnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may
also be raised during unpickling, including (but not necessarily limited to) AttributeError, EOFError,
ImportError, and IndexError.

The pickle module also exports two callables 2, Pickler and Unpickler:

class Pickler(file, [protocol])
This takes a file-like object to which it will write a pickle data stream.

If the protocol parameter is omitted, protocol 0 is used. If protocol is specified as a negative value or
HIGHEST_PROTOCOL, the highest protocol version will be used. Changed in version 2.3: Introduced the

2 In the pickle module these callables are classes, which you could subclass to customize the behavior. However, in the cPickle module
these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can actually be
unpickled. See section Subclassing Unpicklers for more details.

11.1. pickle — Python object serialization 273

The Python Library Reference, Release 2.6.9

protocol parameter. file must have a write() method that accepts a single string argument. It can thus be an
open file object, a StringIO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(obj)
Write a pickled representation of obj to the open file object given in the constructor. Either the binary or
ASCII format will be used, depending on the value of the protocol argument passed to the constructor.

clear_memo()
Clears the pickler’s “memo”. The memo is the data structure that remembers which objects the pickler
has already seen, so that shared or recursive objects pickled by reference and not by value. This method is
useful when re-using picklers.

Note: Prior to Python 2.3, clear_memo() was only available on the picklers created by cPickle. In
the pickle module, picklers have an instance variable called memo which is a Python dictionary. So to
clear the memo for a pickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simply use clear_memo().

It is possible to make multiple calls to the dump() method of the same Pickler instance. These must then be
matched to the same number of calls to the load() method of the corresponding Unpickler instance. If the same
object is pickled by multiple dump() calls, the load() will all yield references to the same object. 3

Unpickler objects are defined as:

class Unpickler(file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag as in the Pickler factory.

file must have two methods, a read() method that takes an integer argument, and a readline() method that
requires no arguments. Both methods should return a string. Thus file can be a file object opened for reading, a
StringIO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load()
Read a pickled object representation from the open file object given in the constructor, and return the
reconstituted object hierarchy specified therein.

This method automatically determines whether the data stream was written in binary mode or not.

noload()
This is just like load() except that it doesn’t actually create any objects. This is useful primarily for
finding what’s called “persistent ids” that may be referenced in a pickle data stream. See section The
pickle protocol below for more details.

Note: the noload() method is currently only available on Unpickler objects created with the
cPickle module. pickle module Unpicklers do not have the noload() method.

11.1.4 What can be pickled and unpickled?

The following types can be pickled:

3 Warning: this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify an object
and then pickle it again using the same Pickler instance, the object is not pickled again — a reference to it is pickled and the Unpickler
will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a minimal set of changes.
Garbage Collection may also become a problem here.

274 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

• None, True, and False

• integers, long integers, floating point numbers, complex numbers

• normal and Unicode strings

• tuples, lists, sets, and dictionaries containing only picklable objects

• functions defined at the top level of a module

• built-in functions defined at the top level of a module

• classes that are defined at the top level of a module

• instances of such classes whose __dict__ or __setstate__() is picklable (see section The pickle protocol
for details)

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file. Trying to pickle a highly recursive data structure
may exceed the maximum recursion depth, a RuntimeError will be raised in this case. You can carefully raise this
limit with sys.setrecursionlimit().

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the
unpickling environment, and the module must contain the named object, otherwise an exception will be raised. 4

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note
that none of the class’s code or data is pickled, so in the following example the class attribute attr is not restored in
the unpickling environment:

class Foo:
attr = ’a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see
many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s __setstate__() method.

11.1.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the objects
that are being serialized. This protocol provides a standard way for you to define, customize, and control how your
objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations that
you can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see section
Subclassing Unpicklers for more details.

Pickling and unpickling normal class instances

__getinitargs__()
When a pickled class instance is unpickled, its __init__() method is normally not invoked. If it is
desirable that the __init__() method be called on unpickling, an old-style class can define a method

4 The exception raised will likely be an ImportError or an AttributeError but it could be something else.

11.1. pickle — Python object serialization 275

The Python Library Reference, Release 2.6.9

__getinitargs__(), which should return a tuple containing the arguments to be passed to the class con-
structor (__init__() for example). The __getinitargs__() method is called at pickle time; the tuple
it returns is incorporated in the pickle for the instance.

__getnewargs__()
New-style types can provide a __getnewargs__() method that is used for protocol 2. Implementing this
method is needed if the type establishes some internal invariants when the instance is created, or if the memory
allocation is affected by the values passed to the __new__()method for the type (as it is for tuples and strings).
Instances of a new-style class C are created using

obj = C.__new__(C, *args)

where args is the result of calling __getnewargs__() on the original object; if there is no
__getnewargs__(), an empty tuple is assumed.

__getstate__()
Classes can further influence how their instances are pickled; if the class defines the method
__getstate__(), it is called and the return state is pickled as the contents for the instance, instead of
the contents of the instance’s dictionary. If there is no __getstate__() method, the instance’s __dict__
is pickled.

__setstate__()
Upon unpickling, if the class also defines the method __setstate__(), it is called with the unpickled state.
5 If there is no __setstate__() method, the pickled state must be a dictionary and its items are assigned
to the new instance’s dictionary. If a class defines both __getstate__() and __setstate__(), the state
object needn’t be a dictionary and these methods can do what they want. 6

Note: For new-style classes, if __getstate__() returns a false value, the __setstate__() method will
not be called.

Note: At unpickling time, some methods like __getattr__(), __getattribute__(), or __setattr__()
may be called upon the instance. In case those methods rely on some internal invariant being true, the type should im-
plement either __getinitargs__() or __getnewargs__() to establish such an invariant; otherwise, neither
__new__() nor __init__() will be called.

Pickling and unpickling extension types

__reduce__()
When the Pickler encounters an object of a type it knows nothing about — such as an extension type
— it looks in two places for a hint of how to pickle it. One alternative is for the object to implement a
__reduce__() method. If provided, at pickling time __reduce__() will be called with no arguments,
and it must return either a string or a tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. The string returned
by __reduce__() should be the object’s local name relative to its module; the pickle module searches the
module namespace to determine the object’s module.

When a tuple is returned, it must be between two and five elements long. Optional elements can either be
omitted, or None can be provided as their value. The contents of this tuple are pickled as normal and used to
reconstruct the object at unpickling time. The semantics of each element are:

•A callable object that will be called to create the initial version of the object. The next element of the tuple
will provide arguments for this callable, and later elements provide additional state information that will
subsequently be used to fully reconstruct the pickled data.

5 These methods can also be used to implement copying class instances.
6 This protocol is also used by the shallow and deep copying operations defined in the copy module.

276 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

In the unpickling environment this object must be either a class, a callable registered as a “safe constructor”
(see below), or it must have an attribute __safe_for_unpickling__ with a true value. Otherwise,
an UnpicklingError will be raised in the unpickling environment. Note that as usual, the callable
itself is pickled by name.

•A tuple of arguments for the callable object. Changed in version 2.5: Formerly, this argument could also
be None.

•Optionally, the object’s state, which will be passed to the object’s __setstate__() method as de-
scribed in section Pickling and unpickling normal class instances. If the object has no __setstate__()
method, then, as above, the value must be a dictionary and it will be added to the object’s __dict__.

•Optionally, an iterator (and not a sequence) yielding successive list items. These list items will be pickled,
and appended to the object using either obj.append(item) or obj.extend(list_of_items).
This is primarily used for list subclasses, but may be used by other classes as long as they have append()
and extend() methods with the appropriate signature. (Whether append() or extend() is used
depends on which pickle protocol version is used as well as the number of items to append, so both must
be supported.)

•Optionally, an iterator (not a sequence) yielding successive dictionary items, which should be tuples of
the form (key, value). These items will be pickled and stored to the object using obj[key] =
value. This is primarily used for dictionary subclasses, but may be used by other classes as long as they
implement __setitem__().

__reduce_ex__(protocol)
It is sometimes useful to know the protocol version when implementing __reduce__(). This can be done
by implementing a method named __reduce_ex__() instead of __reduce__(). __reduce_ex__(),
when it exists, is called in preference over __reduce__() (you may still provide __reduce__() for back-
wards compatibility). The __reduce_ex__() method will be called with a single integer argument, the
protocol version.

The object class implements both __reduce__() and __reduce_ex__(); however, if a subclass over-
rides __reduce__() but not __reduce_ex__(), the __reduce_ex__() implementation detects this
and calls __reduce__().

An alternative to implementing a __reduce__() method on the object to be pickled, is to register the callable with
the copy_reg module. This module provides a way for programs to register “reduction functions” and constructors
for user-defined types. Reduction functions have the same semantics and interface as the __reduce__() method
described above, except that they are called with a single argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, the pickle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of printable
ASCII characters. The resolution of such names is not defined by the pickle module; it will delegate this resolution
to user defined functions on the pickler and unpickler. 7

To define external persistent id resolution, you need to set the persistent_id attribute of the pickler object and
the persistent_load attribute of the unpickler object.

To pickle objects that have an external persistent id, the pickler must have a custom persistent_id() method that
takes an object as an argument and returns either None or the persistent id for that object. When None is returned, the

7 The actual mechanism for associating these user defined functions is slightly different for pickle and cPickle. The description given
here works the same for both implementations. Users of the pickle module could also use subclassing to effect the same results, overriding the
persistent_id() and persistent_load() methods in the derived classes.

11.1. pickle — Python object serialization 277

The Python Library Reference, Release 2.6.9

pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will pickle that string,
along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a custom persistent_load() function that takes a persis-
tent id string and returns the referenced object.

Here’s a silly example that might shed more light:

import pickle
from cStringIO import StringIO

src = StringIO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, ’x’):

return ’the value %d’ % obj.x
else:

return None

p.persistent_id = persistent_id

class Integer:
def __init__(self, x):

self.x = x
def __str__(self):

return ’My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringIO(datastream)

up = pickle.Unpickler(dst)

class FancyInteger(Integer):
def __str__(self):

return ’I am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith(’the value ’):

value = int(persid.split()[2])
return FancyInteger(value)

else:
raise pickle.UnpicklingError, ’Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j

In the cPickle module, the unpickler’s persistent_load attribute can also be set to a Python list, in which
case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this list. This

278 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

functionality exists so that a pickle data stream can be “sniffed” for object references without actually instantiating all
the objects in a pickle. 8 Setting persistent_load to a list is usually used in conjunction with the noload()
method on the Unpickler.

11.1.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets unpickled
and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different depending on
whether you’re using pickle or cPickle. 9

In the pickle module, you need to derive a subclass from Unpickler, overriding the load_global() method.
load_global() should read two lines from the pickle data stream where the first line will the name of the module
containing the class and the second line will be the name of the instance’s class. It then looks up the class, possibly
importing the module and digging out the attribute, then it appends what it finds to the unpickler’s stack. Later
on, this class will be assigned to the __class__ attribute of an empty class, as a way of magically creating an
instance without calling its class’s __init__(). Your job (should you choose to accept it), would be to have
load_global() push onto the unpickler’s stack, a known safe version of any class you deem safe to unpickle. It is
up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling of instances. If
this sounds like a hack, you’re right. Refer to the source code to make this work.

Things are a little cleaner with cPickle, but not by much. To control what gets unpickled, you can set the unpickler’s
find_global attribute to a function or None. If it is None then any attempts to unpickle instances will raise an
UnpicklingError. If it is a function, then it should accept a module name and a class name, and return the
corresponding class object. It is responsible for looking up the class and performing any necessary imports, and it may
raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

11.1.7 Example

For the simplest code, use the dump() and load() functions. Note that a self-referencing list is pickled and restored
correctly.

import pickle

data1 = {’a’: [1, 2.0, 3, 4+6j],
’b’: (’string’, u’Unicode string’),
’c’: None}

selfref_list = [1, 2, 3]
selfref_list.append(selfref_list)

output = open(’data.pkl’, ’wb’)

Pickle dictionary using protocol 0.
pickle.dump(data1, output)

Pickle the list using the highest protocol available.
pickle.dump(selfref_list, output, -1)

output.close()

8 We’ll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.
9 A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of

Python. We intend to someday provide a common interface for controlling this behavior, which will work in either pickle or cPickle.

11.1. pickle — Python object serialization 279

The Python Library Reference, Release 2.6.9

The following example reads the resulting pickled data. When reading a pickle-containing file, you should open the
file in binary mode because you can’t be sure if the ASCII or binary format was used.

import pprint, pickle

pkl_file = open(’data.pkl’, ’rb’)

data1 = pickle.load(pkl_file)
pprint.pprint(data1)

data2 = pickle.load(pkl_file)
pprint.pprint(data2)

pkl_file.close()

Here’s a larger example that shows how to modify pickling behavior for a class. The TextReader class opens a text
file, and returns the line number and line contents each time its readline() method is called. If a TextReader
instance is pickled, all attributes except the file object member are saved. When the instance is unpickled, the file is
reopened, and reading resumes from the last location. The __setstate__() and __getstate__() methods
are used to implement this behavior.

#!/usr/local/bin/python

class TextReader:
"""Print and number lines in a text file."""
def __init__(self, file):

self.file = file
self.fh = open(file)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:

return None
if line.endswith("\n"):

line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __getstate__(self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict[’fh’] # remove filehandle entry
return odict

def __setstate__(self, dict):
fh = open(dict[’file’]) # reopen file
count = dict[’lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1

self.__dict__.update(dict) # update attributes
self.fh = fh # save the file object

A sample usage might be something like this:

280 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

>>> import TextReader
>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()
’1: #!/usr/local/bin/python’
>>> obj.readline()
’2: ’
>>> obj.readline()
’3: class TextReader:’
>>> import pickle
>>> pickle.dump(obj, open(’save.p’, ’wb’))

If you want to see that pickle works across Python processes, start another Python session, before continuing. What
follows can happen from either the same process or a new process.

>>> import pickle
>>> reader = pickle.load(open(’save.p’, ’rb’))
>>> reader.readline()
’4: """Print and number lines in a text file."""’

See Also:

Module copy_reg Pickle interface constructor registration for extension types.

Module shelve Indexed databases of objects; uses pickle.

Module copy Shallow and deep object copying.

Module marshal High-performance serialization of built-in types.

11.2 cPickle — A faster pickle

The cPickle module supports serialization and de-serialization of Python objects, providing an interface and func-
tionality nearly identical to the pickle module. There are several differences, the most important being performance
and subclassability.

First, cPickle can be up to 1000 times faster than pickle because the former is implemented in C. Second, in
the cPickle module the callables Pickler() and Unpickler() are functions, not classes. This means that
you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance of the cPickle module.

The pickle data stream produced by pickle and cPickle are identical, so it is possible to use pickle and
cPickle interchangeably with existing pickles. 10

There are additional minor differences in API between cPickle and pickle, however for most applications, they
are interchangeable. More documentation is provided in the pickle module documentation, which includes a list of
the documented differences.

11.3 copy_reg — Register pickle support functions

Note: The copy_reg module has been renamed to copyreg in Python 3.0. The 2to3 tool will automatically
adapt imports when converting your sources to 3.0. The copy_reg module provides support for the pickle and
cPickle modules. The copy module is likely to use this in the future as well. It provides configuration information
about object constructors which are not classes. Such constructors may be factory functions or class instances.

10 Since the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will always
be able to read each other’s data streams.

11.2. cPickle — A faster pickle 281

The Python Library Reference, Release 2.6.9

constructor(object)
Declares object to be a valid constructor. If object is not callable (and hence not valid as a constructor), raises
TypeError.

pickle(type, function, [constructor])
Declares that function should be used as a “reduction” function for objects of type type; type must not be a
“classic” class object. (Classic classes are handled differently; see the documentation for the pickle module
for details.) function should return either a string or a tuple containing two or three elements.

The optional constructor parameter, if provided, is a callable object which can be used to reconstruct the object
when called with the tuple of arguments returned by function at pickling time. TypeError will be raised if
object is a class or constructor is not callable.

See the pickle module for more details on the interface expected of function and constructor.

11.4 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything that the pickle module can handle. This includes
most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

open(filename, [flag=’c’, [protocol=None, [writeback=False]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default, the
underlying database file is opened for reading and writing. The optional flag parameter has the same interpreta-
tion as the flag parameter of anydbm.open().

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. Changed in version 2.3: The protocol parameter was added. Because of Python
semantics, a shelf cannot know when a mutable persistent-dictionary entry is modified. By default modified
objects are written only when assigned to the shelf (see Example). If the optional writeback parameter is set
to True, all entries accessed are also cached in memory, and written back on sync() and close(); this can
make it handier to mutate mutable entries in the persistent dictionary, but, if many entries are accessed, it can
consume vast amounts of memory for the cache, and it can make the close operation very slow since all accessed
entries are written back (there is no way to determine which accessed entries are mutable, nor which ones were
actually mutated).

Note: Do not rely on the shelf being closed automatically; always call close() explicitly when you don’t
need it any more, or use a with statement with contextlib.closing().

Shelf objects support all methods supported by dictionaries. This eases the transition from dictionary based scripts to
those requiring persistent storage.

Two additional methods are supported:

sync()
Write back all entries in the cache if the shelf was opened with writeback set to True. Also empty the cache and
synchronize the persistent dictionary on disk, if feasible. This is called automatically when the shelf is closed
with close().

close()
Synchronize and close the persistent dict object. Operations on a closed shelf will fail with a ValueError.

See Also:

Persistent dictionary recipe with widely supported storage formats and having the speed of native dictionaries.

282 Chapter 11. Data Persistence

http://code.activestate.com/recipes/576642/

The Python Library Reference, Release 2.6.9

11.4.1 Restrictions

• The choice of which database package will be used (such as dbm, gdbm or bsddb) depends on which interface
is available. Therefore it is not safe to open the database directly using dbm. The database is also (unfortunately)
subject to the limitations of dbm, if it is used — this means that (the pickled representation of) the objects stored
in the database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

• The shelve module does not support concurrent read/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open for
reading or writing. Unix file locking can be used to solve this, but this differs across Unix versions and requires
knowledge about the database implementation used.

class Shelf(dict, [protocol=None, [writeback=False]])
A subclass of UserDict.DictMixin which stores pickled values in the dict object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified with
the protocol parameter. See the pickle documentation for a discussion of the pickle protocols. Changed in
version 2.3: The protocol parameter was added. If the writeback parameter is True, the object will hold a cache
of all entries accessed and write them back to the dict at sync and close times. This allows natural operations on
mutable entries, but can consume much more memory and make sync and close take a long time.

class BsdDbShelf(dict, [protocol=None, [writeback=False]])
A subclass of Shelf which exposes first(), next(), previous(), last() and set_location()
which are available in the bsddb module but not in other database modules. The dict object passed to the con-
structor must support those methods. This is generally accomplished by calling one of bsddb.hashopen(),
bsddb.btopen() or bsddb.rnopen(). The optional protocol and writeback parameters have the same
interpretation as for the Shelf class.

class DbfilenameShelf(filename, [flag=’c’, [protocol=None, [writeback=False]]])
A subclass of Shelf which accepts a filename instead of a dict-like object. The underlying file will be opened
using anydbm.open(). By default, the file will be created and opened for both read and write. The optional
flag parameter has the same interpretation as for the open() function. The optional protocol and writeback
parameters have the same interpretation as for the Shelf class.

11.4.2 Example

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open -- file may get suffix added by low-level
library

d[key] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists
klist = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:
d[’xx’] = range(4) # this works as expected, but...

11.4. shelve — Python object persistence 283

The Python Library Reference, Release 2.6.9

d[’xx’].append(5) # *this doesn’t!* -- d[’xx’] is STILL range(4)!

having opened d without writeback=True, you need to code carefully:
temp = d[’xx’] # extracts the copy
temp.append(5) # mutates the copy
d[’xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d[’xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Module anydbm Generic interface to dbm-style databases.

Module bsddb BSD db database interface.

Module dbhash Thin layer around the bsddbwhich provides an open() function like the other database modules.

Module dbm Standard Unix database interface.

Module dumbdbm Portable implementation of the dbm interface.

Module gdbm GNU database interface, based on the dbm interface.

Module pickle Object serialization used by shelve.

Module cPickle High-performance version of pickle.

11.5 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely does). 11 This is not a general “persistence” module. For general persistence and
transfer of Python objects through RPC calls, see the modules pickle and shelve. The marshal module exists
mainly to support reading and writing the “pseudo-compiled” code for Python modules of .pyc files. Therefore,
the Python maintainers reserve the right to modify the marshal format in backward incompatible ways should the
need arise. If you’re serializing and de-serializing Python objects, use the pickle module instead – the performance
is comparable, version independence is guaranteed, and pickle supports a substantially wider range of objects than
marshal.

Warning: The marshal module is not intended to be secure against erroneous or maliciously constructed data.
Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular in-
vocation of Python can be written and read by this module. The following types are supported: booleans, integers,
long integers, floating point numbers, complex numbers, strings, Unicode objects, tuples, lists, sets, frozensets, dic-
tionaries, and code objects, where it should be understood that tuples, lists, sets, frozensets and dictionaries are only
supported as long as the values contained therein are themselves supported; and recursive lists, sets and dictionaries
should not be written (they will cause infinite loops). The singletons None, Ellipsis and StopIteration can
also be marshalled and unmarshalled.

11 The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

284 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

Warning: On machines where C’s long int type has more than 32 bits (such as the DEC Alpha), it is possible
to create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a
machine where C’s long int type has only 32 bits, a Python long integer object is returned instead. While of a
different type, the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the
least-significant 32 bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump(value, file, [version])
Write the value on the open file. The value must be a supported type. The file must be an open file object such as
sys.stdout or returned by open() or os.popen(). It must be opened in binary mode (’wb’ or ’w+b’).

If the value has (or contains an object that has) an unsupported type, a ValueError exception is raised —
but garbage data will also be written to the file. The object will not be properly read back by load(). New in
version 2.4: The version argument indicates the data format that dump should use (see below).

load(file)
Read one value from the open file and return it. If no valid value is read (e.g. because the data has a different
Python version’s incompatible marshal format), raise EOFError, ValueError or TypeError. The file
must be an open file object opened in binary mode (’rb’ or ’r+b’).

Note: If an object containing an unsupported type was marshalled with dump(), load() will substitute
None for the unmarshallable type.

dumps(value, [version])
Return the string that would be written to a file by dump(value, file). The value must be a supported
type. Raise a ValueError exception if value has (or contains an object that has) an unsupported type. New
in version 2.4: The version argument indicates the data format that dumps should use (see below).

loads(string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

In addition, the following constants are defined:

version
Indicates the format that the module uses. Version 0 is the historical format, version 1 (added in Python 2.4)
shares interned strings and version 2 (added in Python 2.5) uses a binary format for floating point numbers. The
current version is 2. New in version 2.4.

11.6 anydbm — Generic access to DBM-style databases

Note: The anydbm module has been renamed to dbm in Python 3.0. The 2to3 tool will automatically adapt imports
when converting your sources to 3.0. anydbm is a generic interface to variants of the DBM database — dbhash
(requires bsddb), gdbm, or dbm. If none of these modules is installed, the slow-but-simple implementation in module
dumbdbm will be used.

open(filename, [flag, [mode]])
Open the database file filename and return a corresponding object.

If the database file already exists, the whichdbmodule is used to determine its type and the appropriate module
is used; if it does not exist, the first module listed above that can be imported is used.

The optional flag argument must be one of these values:

11.6. anydbm — Generic access to DBM-style databases 285

The Python Library Reference, Release 2.6.9

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

If not specified, the default value is ’r’.

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 0666 (and will be modified by the prevailing umask).

exception error
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique exception
also named anydbm.error as the first item — the latter is used when anydbm.error is raised.

The object returned by open() supports most of the same functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, and the has_key() and keys() methods are available. Keys and
values must always be strings.

The following example records some hostnames and a corresponding title, and then prints out the contents of the
database:

import anydbm

Open database, creating it if necessary.
db = anydbm.open(’cache’, ’c’)

Record some values
db[’www.python.org’] = ’Python Website’
db[’www.cnn.com’] = ’Cable News Network’

Loop through contents. Other dictionary methods
such as .keys(), .values() also work.
for k, v in db.iteritems():

print k, ’\t’, v

Storing a non-string key or value will raise an exception (most
likely a TypeError).
db[’www.yahoo.com’] = 4

Close when done.
db.close()

See Also:

Module dbhash BSD db database interface.

Module dbm Standard Unix database interface.

Module dumbdbm Portable implementation of the dbm interface.

Module gdbm GNU database interface, based on the dbm interface.

Module shelve General object persistence built on top of the Python dbm interface.

Module whichdb Utility module used to determine the type of an existing database.

11.7 whichdb — Guess which DBM module created a database

286 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

Note: The whichdb module’s only function has been put into the dbm module in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0.

The single function in this module attempts to guess which of the several simple database modules available–dbm,
gdbm, or dbhash–should be used to open a given file.

whichdb(filename)
Returns one of the following values: None if the file can’t be opened because it’s unreadable or doesn’t exist;
the empty string (”) if the file’s format can’t be guessed; or a string containing the required module name, such
as ’dbm’ or ’gdbm’.

11.8 dbm — Simple “database” interface

Platforms: Unix

Note: The dbm module has been renamed to dbm.ndbm in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0.

The dbm module provides an interface to the Unix “(n)dbm” library. Dbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a dbm object doesn’t print the keys and values, and the
items() and values() methods are not supported.

This module can be used with the “classic” ndbm interface, the BSD DB compatibility interface, or the GNU GDBM
compatibility interface. On Unix, the configure script will attempt to locate the appropriate header file to simplify
building this module.

The module defines the following:

exception error
Raised on dbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors like specify-
ing an incorrect key.

library
Name of the ndbm implementation library used.

open(filename, [flag, [mode]])
Open a dbm database and return a dbm object. The filename argument is the name of the database file (without
the .dir or .pag extensions; note that the BSD DB implementation of the interface will append the extension
.db and only create one file).

The optional flag argument must be one of these values:

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 0666 (and will be modified by the prevailing umask).

See Also:

Module anydbm Generic interface to dbm-style databases.

Module gdbm Similar interface to the GNU GDBM library.

Module whichdb Utility module used to determine the type of an existing database.

11.8. dbm — Simple “database” interface 287

The Python Library Reference, Release 2.6.9

11.9 gdbm — GNU’s reinterpretation of dbm

Platforms: Unix

Note: The gdbm module has been renamed to dbm.gnu in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0. This module is quite similar to the dbm module, but uses gdbm instead
to provide some additional functionality. Please note that the file formats created by gdbm and dbm are incompatible.

The gdbm module provides an interface to the GNU DBM library. gdbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a gdbm object doesn’t print the keys and values, and the
items() and values() methods are not supported.

The module defines the following constant and functions:

exception error
Raised on gdbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors like speci-
fying an incorrect key.

open(filename, [flag, [mode]])
Open a gdbm database and return a gdbm object. The filename argument is the name of the database file.

The optional flag argument can be:

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

The following additional characters may be appended to the flag to control how the database is opened:

Value Meaning
’f’ Open the database in fast mode. Writes to the database will not be synchronized.
’s’ Synchronized mode. This will cause changes to the database to be immediately written to the file.
’u’ Do not lock database.

Not all flags are valid for all versions of gdbm. The module constant open_flags is a string of supported flag
characters. The exception error is raised if an invalid flag is specified.

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 0666.

In addition to the dictionary-like methods, gdbm objects have the following methods:

firstkey()
It’s possible to loop over every key in the database using this method and the nextkey() method. The
traversal is ordered by gdbm‘s internal hash values, and won’t be sorted by the key values. This method returns
the starting key.

nextkey(key)
Returns the key that follows key in the traversal. The following code prints every key in the database db, without
having to create a list in memory that contains them all:

k = db.firstkey()
while k != None:

print k
k = db.nextkey(k)

reorganize()
If you have carried out a lot of deletions and would like to shrink the space used by the gdbm file, this routine will

288 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

reorganize the database. gdbm will not shorten the length of a database file except by using this reorganization;
otherwise, deleted file space will be kept and reused as new (key, value) pairs are added.

sync()
When the database has been opened in fast mode, this method forces any unwritten data to be written to the
disk.

See Also:

Module anydbm Generic interface to dbm-style databases.

Module whichdb Utility module used to determine the type of an existing database.

11.10 dbhash — DBM-style interface to the BSD database library

Deprecated since version 2.6: The dbhash module has been deprecated for removal in Python 3.0. The dbhash
module provides a function to open databases using the BSD db library. This module mirrors the interface of the
other Python database modules that provide access to DBM-style databases. The bsddb module is required to use
dbhash.

This module provides an exception and a function:

exception error
Exception raised on database errors other than KeyError. It is a synonym for bsddb.error.

open(path, [flag, [mode]])
Open a db database and return the database object. The path argument is the name of the database file.

The flag argument can be:

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

For platforms on which the BSD db library supports locking, an ’l’ can be appended to indicate that locking
should be used.

The optional mode parameter is used to indicate the Unix permission bits that should be set if a new database
must be created; this will be masked by the current umask value for the process.

See Also:

Module anydbm Generic interface to dbm-style databases.

Module bsddb Lower-level interface to the BSD db library.

Module whichdb Utility module used to determine the type of an existing database.

11.10.1 Database Objects

The database objects returned by open() provide the methods common to all the DBM-style databases and mapping
objects. The following methods are available in addition to the standard methods.

first()
It’s possible to loop over every key/value pair in the database using this method and the next() method. The
traversal is ordered by the databases internal hash values, and won’t be sorted by the key values. This method
returns the starting key.

11.10. dbhash — DBM-style interface to the BSD database library 289

The Python Library Reference, Release 2.6.9

last()
Return the last key/value pair in a database traversal. This may be used to begin a reverse-order traversal; see
previous().

next()
Returns the key next key/value pair in a database traversal. The following code prints every key in the database
db, without having to create a list in memory that contains them all:

print db.first()
for i in xrange(1, len(db)):

print db.next()

previous()
Returns the previous key/value pair in a forward-traversal of the database. In conjunction with last(), this
may be used to implement a reverse-order traversal.

sync()
This method forces any unwritten data to be written to the disk.

11.11 bsddb — Interface to Berkeley DB library

Deprecated since version 2.6: The bsddbmodule has been deprecated for removal in Python 3.0. The bsddbmodule
provides an interface to the Berkeley DB library. Users can create hash, btree or record based library files using the
appropriate open call. Bsddb objects behave generally like dictionaries. Keys and values must be strings, however, so
to use other objects as keys or to store other kinds of objects the user must serialize them somehow, typically using
marshal.dumps() or pickle.dumps().

The bsddb module requires a Berkeley DB library version from 4.0 thru 4.7.

See Also:

http://www.jcea.es/programacion/pybsddb.htm The website with documentation for the bsddb.db Python
Berkeley DB interface that closely mirrors the object oriented interface provided in Berkeley DB 4.x itself.

http://www.oracle.com/database/berkeley-db/ The Berkeley DB library.

A more modern DB, DBEnv and DBSequence object interface is available in the bsddb.db module which closely
matches the Berkeley DB C API documented at the above URLs. Additional features provided by the bsddb.db
API include fine tuning, transactions, logging, and multiprocess concurrent database access.

The following is a description of the legacy bsddb interface compatible with the old Python bsddb module. Starting in
Python 2.5 this interface should be safe for multithreaded access. The bsddb.db API is recommended for threading
users as it provides better control.

The bsddb module defines the following functions that create objects that access the appropriate type of Berkeley
DB file. The first two arguments of each function are the same. For ease of portability, only the first two arguments
should be used in most instances.

hashopen(filename, [flag, [mode, [pgsize, [ffactor, [nelem, [cachesize, [lorder, [hflags]]]]]]]])
Open the hash format file named filename. Files never intended to be preserved on disk may be created by
passing None as the filename. The optional flag identifies the mode used to open the file. It may be ’r’ (read
only), ’w’ (read-write) , ’c’ (read-write - create if necessary; the default) or ’n’ (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-level dbopen() function. Consult
the Berkeley DB documentation for their use and interpretation.

btopen(filename, [flag, [mode, [btflags, [cachesize, [maxkeypage, [minkeypage, [pgsize, [lorder]]]]]]]])
Open the btree format file named filename. Files never intended to be preserved on disk may be created by
passing None as the filename. The optional flag identifies the mode used to open the file. It may be ’r’ (read

290 Chapter 11. Data Persistence

http://www.jcea.es/programacion/pybsddb.htm
http://www.oracle.com/database/berkeley-db/

The Python Library Reference, Release 2.6.9

only), ’w’ (read-write), ’c’ (read-write - create if necessary; the default) or ’n’ (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult the
Berkeley DB documentation for their use and interpretation.

rnopen(filename, [flag, [mode, [rnflags, [cachesize, [pgsize, [lorder, [rlen, [delim, [source, [pad]]]]]]]]]])
Open a DB record format file named filename. Files never intended to be preserved on disk may be created by
passing None as the filename. The optional flag identifies the mode used to open the file. It may be ’r’ (read
only), ’w’ (read-write), ’c’ (read-write - create if necessary; the default) or ’n’ (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult the
Berkeley DB documentation for their use and interpretation.

Note: Beginning in 2.3 some Unix versions of Python may have a bsddb185 module. This is present only to allow
backwards compatibility with systems which ship with the old Berkeley DB 1.85 database library. The bsddb185
module should never be used directly in new code. The module has been removed in Python 3.0. If you find you still
need it look in PyPI.

See Also:

Module dbhash DBM-style interface to the bsddb

11.11.1 Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the same methods as dictionaries. In addition, they support
the methods listed below. Changed in version 2.3.1: Added dictionary methods.

close()
Close the underlying file. The object can no longer be accessed. Since there is no open open() method for
these objects, to open the file again a new bsddb module open function must be called.

keys()
Return the list of keys contained in the DB file. The order of the list is unspecified and should not be relied on.
In particular, the order of the list returned is different for different file formats.

has_key(key)
Return 1 if the DB file contains the argument as a key.

set_location(key)
Set the cursor to the item indicated by key and return a tuple containing the key and its value. For binary tree
databases (opened using btopen()), if key does not actually exist in the database, the cursor will point to the
next item in sorted order and return that key and value. For other databases, KeyError will be raised if key is
not found in the database.

first()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases. This method raises bsddb.error if the database is empty.

next()
Set the cursor to the next item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

previous()
Set the cursor to the previous item in the DB file and return it. The order of keys in the file is unspecified,
except in the case of B-Tree databases. This is not supported on hashtable databases (those opened with
hashopen()).

last()
Set the cursor to the last item in the DB file and return it. The order of keys in the file is unspecified. This is
not supported on hashtable databases (those opened with hashopen()). This method raises bsddb.error
if the database is empty.

11.11. bsddb — Interface to Berkeley DB library 291

The Python Library Reference, Release 2.6.9

sync()
Synchronize the database on disk.

Example:

>>> import bsddb
>>> db = bsddb.btopen(’/tmp/spam.db’, ’c’)
>>> for i in range(10): db[’%d’%i] = ’%d’% (i*i)
...
>>> db[’3’]
’9’
>>> db.keys()
[’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]
>>> db.first()
(’0’, ’0’)
>>> db.next()
(’1’, ’1’)
>>> db.last()
(’9’, ’81’)
>>> db.set_location(’2’)
(’2’, ’4’)
>>> db.previous()
(’1’, ’1’)
>>> for k, v in db.iteritems():
... print k, v
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
>>> ’8’ in db
True
>>> db.sync()
0

11.12 dumbdbm — Portable DBM implementation

Note: The dumbdbm module has been renamed to dbm.dumb in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0.

Note: The dumbdbm module is intended as a last resort fallback for the anydbm module when no more robust
module is available. The dumbdbm module is not written for speed and is not nearly as heavily used as the other
database modules.

The dumbdbm module provides a persistent dictionary-like interface which is written entirely in Python. Unlike other
modules such as gdbm and bsddb, no external library is required. As with other persistent mappings, the keys and
values must always be strings.

The module defines the following:

292 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

exception error
Raised on dumbdbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors like
specifying an incorrect key.

open(filename, [flag, [mode]])
Open a dumbdbm database and return a dumbdbm object. The filename argument is the basename of the
database file (without any specific extensions). When a dumbdbm database is created, files with .dat and
.dir extensions are created.

The optional flag argument is currently ignored; the database is always opened for update, and will be created if
it does not exist.

The optional mode argument is the Unix mode of the file, used only when the database has to be created. It
defaults to octal 0666 (and will be modified by the prevailing umask). Changed in version 2.2: The mode
argument was ignored in earlier versions.

See Also:

Module anydbm Generic interface to dbm-style databases.

Module dbm Similar interface to the DBM/NDBM library.

Module gdbm Similar interface to the GNU GDBM library.

Module shelve Persistence module which stores non-string data.

Module whichdb Utility module used to determine the type of an existing database.

11.12.1 Dumbdbm Objects

In addition to the methods provided by the UserDict.DictMixin class, dumbdbm objects provide the following
methods.

sync()
Synchronize the on-disk directory and data files. This method is called by the sync() method of Shelve
objects.

11.13 sqlite3 — DB-API 2.0 interface for SQLite databases

New in version 2.5. SQLite is a C library that provides a lightweight disk-based database that doesn’t require a
separate server process and allows accessing the database using a nonstandard variant of the SQL query language.
Some applications can use SQLite for internal data storage. It’s also possible to prototype an application using SQLite
and then port the code to a larger database such as PostgreSQL or Oracle.

sqlite3 was written by Gerhard Häring and provides a SQL interface compliant with the DB-API 2.0 specification
described by PEP 249.

To use the module, you must first create a Connection object that represents the database. Here the data will be
stored in the /tmp/example file:

conn = sqlite3.connect(’/tmp/example’)

You can also supply the special name :memory: to create a database in RAM.

Once you have a Connection, you can create a Cursor object and call its execute() method to perform SQL
commands:

c = conn.cursor()

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 293

http://www.python.org/dev/peps/pep-0249

The Python Library Reference, Release 2.6.9

Create table
c.execute(’’’create table stocks
(date text, trans text, symbol text,
qty real, price real)’’’)

Insert a row of data
c.execute("""insert into stocks

values (’2006-01-05’,’BUY’,’RHAT’,100,35.14)""")

Save (commit) the changes
conn.commit()

We can also close the cursor if we are done with it
c.close()

Usually your SQL operations will need to use values from Python variables. You shouldn’t assemble your query using
Python’s string operations because doing so is insecure; it makes your program vulnerable to an SQL injection attack.

Instead, use the DB-API’s parameter substitution. Put ? as a placeholder wherever you want to use a value, and then
provide a tuple of values as the second argument to the cursor’s execute() method. (Other database modules may
use a different placeholder, such as %s or :1.) For example:

Never do this -- insecure!
symbol = ’IBM’
c.execute("... where symbol = ’%s’" % symbol)

Do this instead
t = (symbol,)
c.execute(’select * from stocks where symbol=?’, t)

Larger example
for t in [(’2006-03-28’, ’BUY’, ’IBM’, 1000, 45.00),

(’2006-04-05’, ’BUY’, ’MSOFT’, 1000, 72.00),
(’2006-04-06’, ’SELL’, ’IBM’, 500, 53.00),

]:
c.execute(’insert into stocks values (?,?,?,?,?)’, t)

To retrieve data after executing a SELECT statement, you can either treat the cursor as an iterator, call the cursor’s
fetchone() method to retrieve a single matching row, or call fetchall() to get a list of the matching rows.

This example uses the iterator form:

>>> c = conn.cursor()
>>> c.execute(’select * from stocks order by price’)
>>> for row in c:
... print row
...
(u’2006-01-05’, u’BUY’, u’RHAT’, 100, 35.140000000000001)
(u’2006-03-28’, u’BUY’, u’IBM’, 1000, 45.0)
(u’2006-04-06’, u’SELL’, u’IBM’, 500, 53.0)
(u’2006-04-05’, u’BUY’, u’MSOFT’, 1000, 72.0)
>>>

See Also:

http://code.google.com/p/pysqlite/ The pysqlite web page – sqlite3 is developed externally under the name
“pysqlite”.

294 Chapter 11. Data Persistence

http://code.google.com/p/pysqlite/

The Python Library Reference, Release 2.6.9

http://www.sqlite.org The SQLite web page; the documentation describes the syntax and the available data types for
the supported SQL dialect.

PEP 249 - Database API Specification 2.0 PEP written by Marc-André Lemburg.

11.13.1 Module functions and constants

PARSE_DECLTYPES
This constant is meant to be used with the detect_types parameter of the connect() function.

Setting it makes the sqlite3 module parse the declared type for each column it returns. It will parse out the
first word of the declared type, i. e. for “integer primary key”, it will parse out “integer”, or for “number(10)” it
will parse out “number”. Then for that column, it will look into the converters dictionary and use the converter
function registered for that type there.

PARSE_COLNAMES
This constant is meant to be used with the detect_types parameter of the connect() function.

Setting this makes the SQLite interface parse the column name for each column it returns. It will look for a
string formed [mytype] in there, and then decide that ‘mytype’ is the type of the column. It will try to find an
entry of ‘mytype’ in the converters dictionary and then use the converter function found there to return the value.
The column name found in Cursor.description is only the first word of the column name, i. e. if you use
something like ’as "x [datetime]"’ in your SQL, then we will parse out everything until the first blank
for the column name: the column name would simply be “x”.

connect(database, [timeout, isolation_level, detect_types, factory])
Opens a connection to the SQLite database file database. You can use ":memory:" to open a database
connection to a database that resides in RAM instead of on disk.

When a database is accessed by multiple connections, and one of the processes modifies the database, the SQLite
database is locked until that transaction is committed. The timeout parameter specifies how long the connection
should wait for the lock to go away until raising an exception. The default for the timeout parameter is 5.0 (five
seconds).

For the isolation_level parameter, please see the Connection.isolation_level property of
Connection objects.

SQLite natively supports only the types TEXT, INTEGER, FLOAT, BLOB and NULL. If you want to use other
types you must add support for them yourself. The detect_types parameter and the using custom converters
registered with the module-level register_converter() function allow you to easily do that.

detect_types defaults to 0 (i. e. off, no type detection), you can set it to any combination of
PARSE_DECLTYPES and PARSE_COLNAMES to turn type detection on.

By default, the sqlite3 module uses its Connection class for the connect call. You can, however, subclass
the Connection class and make connect() use your class instead by providing your class for the factory
parameter.

Consult the section SQLite and Python types of this manual for details.

The sqlite3 module internally uses a statement cache to avoid SQL parsing overhead. If you want to ex-
plicitly set the number of statements that are cached for the connection, you can set the cached_statements
parameter. The currently implemented default is to cache 100 statements.

register_converter(typename, callable)
Registers a callable to convert a bytestring from the database into a custom Python type. The callable will
be invoked for all database values that are of the type typename. Confer the parameter detect_types of the
connect() function for how the type detection works. Note that the case of typename and the name of the
type in your query must match!

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 295

http://www.sqlite.org
http://www.python.org/dev/peps/pep-0249

The Python Library Reference, Release 2.6.9

register_adapter(type, callable)
Registers a callable to convert the custom Python type type into one of SQLite’s supported types. The callable
callable accepts as single parameter the Python value, and must return a value of the following types: int, long,
float, str (UTF-8 encoded), unicode or buffer.

complete_statement(sql)
Returns True if the string sql contains one or more complete SQL statements terminated by semicolons. It does
not verify that the SQL is syntactically correct, only that there are no unclosed string literals and the statement
is terminated by a semicolon.

This can be used to build a shell for SQLite, as in the following example:

A minimal SQLite shell for experiments

import sqlite3

con = sqlite3.connect(":memory:")
con.isolation_level = None
cur = con.cursor()

buffer = ""

print "Enter your SQL commands to execute in sqlite3."
print "Enter a blank line to exit."

while True:
line = raw_input()
if line == "":

break
buffer += line
if sqlite3.complete_statement(buffer):

try:
buffer = buffer.strip()
cur.execute(buffer)

if buffer.lstrip().upper().startswith("SELECT"):
print cur.fetchall()

except sqlite3.Error, e:
print "An error occurred:", e.args[0]

buffer = ""

con.close()

enable_callback_tracebacks(flag)
By default you will not get any tracebacks in user-defined functions, aggregates, converters, authorizer callbacks
etc. If you want to debug them, you can call this function with flag as True. Afterwards, you will get tracebacks
from callbacks on sys.stderr. Use False to disable the feature again.

11.13.2 Connection Objects

class Connection()
A SQLite database connection has the following attributes and methods:

isolation_level
Get or set the current isolation level. None for autocommit mode or one of “DEFERRED”, “IMMEDIATE” or

296 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

“EXCLUSIVE”. See section Controlling Transactions for a more detailed explanation.

cursor([cursorClass])
The cursor method accepts a single optional parameter cursorClass. If supplied, this must be a custom cursor
class that extends sqlite3.Cursor.

commit()
This method commits the current transaction. If you don’t call this method, anything you did since the last call
to commit() is not visible from from other database connections. If you wonder why you don’t see the data
you’ve written to the database, please check you didn’t forget to call this method.

rollback()
This method rolls back any changes to the database since the last call to commit().

close()
This closes the database connection. Note that this does not automatically call commit(). If you just close
your database connection without calling commit() first, your changes will be lost!

execute(sql, [parameters])
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then calls
the cursor’s execute method with the parameters given.

executemany(sql, [parameters])
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then calls
the cursor’s executemany method with the parameters given.

executescript(sql_script)
This is a nonstandard shortcut that creates an intermediate cursor object by calling the cursor method, then calls
the cursor’s executescript method with the parameters given.

create_function(name, num_params, func)
Creates a user-defined function that you can later use from within SQL statements under the function name
name. num_params is the number of parameters the function accepts, and func is a Python callable that is called
as the SQL function.

The function can return any of the types supported by SQLite: unicode, str, int, long, float, buffer and None.

Example:

import sqlite3
import md5

def md5sum(t):
return md5.md5(t).hexdigest()

con = sqlite3.connect(":memory:")
con.create_function("md5", 1, md5sum)
cur = con.cursor()
cur.execute("select md5(?)", ("foo",))
print cur.fetchone()[0]

create_aggregate(name, num_params, aggregate_class)
Creates a user-defined aggregate function.

The aggregate class must implement a step method, which accepts the number of parameters num_params,
and a finalize method which will return the final result of the aggregate.

The finalize method can return any of the types supported by SQLite: unicode, str, int, long, float, buffer
and None.

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 297

The Python Library Reference, Release 2.6.9

Example:

import sqlite3

class MySum:
def __init__(self):

self.count = 0

def step(self, value):
self.count += value

def finalize(self):
return self.count

con = sqlite3.connect(":memory:")
con.create_aggregate("mysum", 1, MySum)
cur = con.cursor()
cur.execute("create table test(i)")
cur.execute("insert into test(i) values (1)")
cur.execute("insert into test(i) values (2)")
cur.execute("select mysum(i) from test")
print cur.fetchone()[0]

create_collation(name, callable)
Creates a collation with the specified name and callable. The callable will be passed two string arguments. It
should return -1 if the first is ordered lower than the second, 0 if they are ordered equal and 1 if the first is
ordered higher than the second. Note that this controls sorting (ORDER BY in SQL) so your comparisons don’t
affect other SQL operations.

Note that the callable will get its parameters as Python bytestrings, which will normally be encoded in UTF-8.

The following example shows a custom collation that sorts “the wrong way”:

import sqlite3

def collate_reverse(string1, string2):
return -cmp(string1, string2)

con = sqlite3.connect(":memory:")
con.create_collation("reverse", collate_reverse)

cur = con.cursor()
cur.execute("create table test(x)")
cur.executemany("insert into test(x) values (?)", [("a",), ("b",)])
cur.execute("select x from test order by x collate reverse")
for row in cur:

print row
con.close()

To remove a collation, call create_collation with None as callable:

con.create_collation("reverse", None)

interrupt()
You can call this method from a different thread to abort any queries that might be executing on the connection.

298 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

The query will then abort and the caller will get an exception.

set_authorizer(authorizer_callback)
This routine registers a callback. The callback is invoked for each attempt to access a column of a table in
the database. The callback should return SQLITE_OK if access is allowed, SQLITE_DENY if the entire SQL
statement should be aborted with an error and SQLITE_IGNORE if the column should be treated as a NULL
value. These constants are available in the sqlite3 module.

The first argument to the callback signifies what kind of operation is to be authorized. The second and third
argument will be arguments or None depending on the first argument. The 4th argument is the name of the
database (“main”, “temp”, etc.) if applicable. The 5th argument is the name of the inner-most trigger or view
that is responsible for the access attempt or None if this access attempt is directly from input SQL code.

Please consult the SQLite documentation about the possible values for the first argument and the meaning of the
second and third argument depending on the first one. All necessary constants are available in the sqlite3
module.

set_progress_handler(handler, n)
New in version 2.6. This routine registers a callback. The callback is invoked for every n instructions of the
SQLite virtual machine. This is useful if you want to get called from SQLite during long-running operations,
for example to update a GUI.

If you want to clear any previously installed progress handler, call the method with None for handler.

row_factory
You can change this attribute to a callable that accepts the cursor and the original row as a tuple and will return
the real result row. This way, you can implement more advanced ways of returning results, such as returning an
object that can also access columns by name.

Example:

import sqlite3

def dict_factory(cursor, row):
d = {}
for idx, col in enumerate(cursor.description):

d[col[0]] = row[idx]
return d

con = sqlite3.connect(":memory:")
con.row_factory = dict_factory
cur = con.cursor()
cur.execute("select 1 as a")
print cur.fetchone()["a"]

If returning a tuple doesn’t suffice and you want name-based access to columns, you should consider setting
row_factory to the highly-optimized sqlite3.Row type. Row provides both index-based and case-
insensitive name-based access to columns with almost no memory overhead. It will probably be better than
your own custom dictionary-based approach or even a db_row based solution.

text_factory
Using this attribute you can control what objects are returned for the TEXT data type. By default, this attribute
is set to unicode and the sqlite3 module will return Unicode objects for TEXT. If you want to return
bytestrings instead, you can set it to str.

For efficiency reasons, there’s also a way to return Unicode objects only for non-ASCII data, and bytestrings
otherwise. To activate it, set this attribute to sqlite3.OptimizedUnicode.

You can also set it to any other callable that accepts a single bytestring parameter and returns the resulting object.

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 299

The Python Library Reference, Release 2.6.9

See the following example code for illustration:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()

Create the table
con.execute("create table person(lastname, firstname)")

AUSTRIA = u"\xd6sterreich"

by default, rows are returned as Unicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert row[0] == AUSTRIA

but we can make sqlite3 always return bytestrings ...
con.text_factory = str
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) == str
the bytestrings will be encoded in UTF-8, unless you stored garbage in the
database ...
assert row[0] == AUSTRIA.encode("utf-8")

we can also implement a custom text_factory ...
here we implement one that will ignore Unicode characters that cannot be
decoded from UTF-8
con.text_factory = lambda x: unicode(x, "utf-8", "ignore")
cur.execute("select ?", ("this is latin1 and would normally create errors" +

u"\xe4\xf6\xfc".encode("latin1"),))
row = cur.fetchone()
assert type(row[0]) == unicode

sqlite3 offers a built-in optimized text_factory that will return bytestring
objects, if the data is in ASCII only, and otherwise return unicode objects
con.text_factory = sqlite3.OptimizedUnicode
cur.execute("select ?", (AUSTRIA,))
row = cur.fetchone()
assert type(row[0]) == unicode

cur.execute("select ?", ("Germany",))
row = cur.fetchone()
assert type(row[0]) == str

total_changes
Returns the total number of database rows that have been modified, inserted, or deleted since the database
connection was opened.

iterdump
Returns an iterator to dump the database in an SQL text format. Useful when saving an in-memory database for
later restoration. This function provides the same capabilities as the .dump command in the sqlite3 shell. New
in version 2.6. Example:

300 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

Convert file existing_db.db to SQL dump file dump.sql
import sqlite3, os

con = sqlite3.connect(’existing_db.db’)
with open(’dump.sql’, ’w’) as f:

for line in con.iterdump():
f.write(’%s\n’ % line)

11.13.3 Cursor Objects

class Cursor()
A SQLite database cursor has the following attributes and methods:

execute(sql, [parameters])
Executes an SQL statement. The SQL statement may be parametrized (i. e. placeholders instead of SQL
literals). The sqlite3 module supports two kinds of placeholders: question marks (qmark style) and named
placeholders (named style).

This example shows how to use parameters with qmark style:

import sqlite3

con = sqlite3.connect("mydb")

cur = con.cursor()

who = "Yeltsin"
age = 72

cur.execute("select name_last, age from people where name_last=? and age=?", (who, age))
print cur.fetchone()

This example shows how to use the named style:

import sqlite3

con = sqlite3.connect("mydb")

cur = con.cursor()

who = "Yeltsin"
age = 72

cur.execute("select name_last, age from people where name_last=:who and age=:age",
{"who": who, "age": age})

print cur.fetchone()

execute() will only execute a single SQL statement. If you try to execute more than one statement with it, it
will raise a Warning. Use executescript() if you want to execute multiple SQL statements with one call.

executemany(sql, seq_of_parameters)
Executes an SQL command against all parameter sequences or mappings found in the sequence sql. The
sqlite3 module also allows using an iterator yielding parameters instead of a sequence.

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 301

The Python Library Reference, Release 2.6.9

import sqlite3

class IterChars:
def __init__(self):

self.count = ord(’a’)

def __iter__(self):
return self

def next(self):
if self.count > ord(’z’):

raise StopIteration
self.count += 1
return (chr(self.count - 1),) # this is a 1-tuple

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

theIter = IterChars()
cur.executemany("insert into characters(c) values (?)", theIter)

cur.execute("select c from characters")
print cur.fetchall()

Here’s a shorter example using a generator:

import sqlite3

def char_generator():
import string
for c in string.letters[:26]:

yield (c,)

con = sqlite3.connect(":memory:")
cur = con.cursor()
cur.execute("create table characters(c)")

cur.executemany("insert into characters(c) values (?)", char_generator())

cur.execute("select c from characters")
print cur.fetchall()

executescript(sql_script)
This is a nonstandard convenience method for executing multiple SQL statements at once. It issues a COMMIT
statement first, then executes the SQL script it gets as a parameter.

sql_script can be a bytestring or a Unicode string.

Example:

import sqlite3

con = sqlite3.connect(":memory:")
cur = con.cursor()

302 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

cur.executescript("""
create table person(

firstname,
lastname,
age

);

create table book(
title,
author,
published

);

insert into book(title, author, published)
values (

’Dirk Gently’’s Holistic Detective Agency’,
’Douglas Adams’,
1987

);
""")

fetchone()
Fetches the next row of a query result set, returning a single sequence, or None when no more data is available.

fetchmany([size=cursor.arraysize])
Fetches the next set of rows of a query result, returning a list. An empty list is returned when no more rows are
available.

The number of rows to fetch per call is specified by the size parameter. If it is not given, the cursor’s arraysize
determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the
size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may
be returned.

Note there are performance considerations involved with the size parameter. For optimal performance, it is
usually best to use the arraysize attribute. If the size parameter is used, then it is best for it to retain the same
value from one fetchmany() call to the next.

fetchall()
Fetches all (remaining) rows of a query result, returning a list. Note that the cursor’s arraysize attribute can
affect the performance of this operation. An empty list is returned when no rows are available.

rowcount
Although the Cursor class of the sqlite3 module implements this attribute, the database engine’s own
support for the determination of “rows affected”/”rows selected” is quirky.

For DELETE statements, SQLite reports rowcount as 0 if you make a DELETE FROM table without any
condition.

For executemany() statements, the number of modifications are summed up into rowcount.

As required by the Python DB API Spec, the rowcount attribute “is -1 in case no executeXX() has been
performed on the cursor or the rowcount of the last operation is not determinable by the interface”.

This includes SELECT statements because we cannot determine the number of rows a query produced until all
rows were fetched.

lastrowid
This read-only attribute provides the rowid of the last modified row. It is only set if you issued a INSERT

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 303

The Python Library Reference, Release 2.6.9

statement using the execute() method. For operations other than INSERT or when executemany() is
called, lastrowid is set to None.

description
This read-only attribute provides the column names of the last query. To remain compatible with the Python DB
API, it returns a 7-tuple for each column where the last six items of each tuple are None.

It is set for SELECT statements without any matching rows as well.

11.13.4 Row Objects

class Row()
A Row instance serves as a highly optimized row_factory for Connection objects. It tries to mimic a
tuple in most of its features.

It supports mapping access by column name and index, iteration, representation, equality testing and len().

If two Row objects have exactly the same columns and their members are equal, they compare equal. Changed
in version 2.6: Added iteration and equality (hashability).

keys()
This method returns a tuple of column names. Immediately after a query, it is the first member of each
tuple in Cursor.description. New in version 2.6.

Let’s assume we initialize a table as in the example given above:

conn = sqlite3.connect(":memory:")
c = conn.cursor()
c.execute(’’’create table stocks
(date text, trans text, symbol text,
qty real, price real)’’’)

c.execute("""insert into stocks
values (’2006-01-05’,’BUY’,’RHAT’,100,35.14)""")

conn.commit()
c.close()

Now we plug Row in:

>>> conn.row_factory = sqlite3.Row
>>> c = conn.cursor()
>>> c.execute(’select * from stocks’)
<sqlite3.Cursor object at 0x7f4e7dd8fa80>
>>> r = c.fetchone()
>>> type(r)
<type ’sqlite3.Row’>
>>> r
(u’2006-01-05’, u’BUY’, u’RHAT’, 100.0, 35.140000000000001)
>>> len(r)
5
>>> r[2]
u’RHAT’
>>> r.keys()
[’date’, ’trans’, ’symbol’, ’qty’, ’price’]
>>> r[’qty’]
100.0
>>> for member in r: print member
...
2006-01-05

304 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

BUY
RHAT
100.0
35.14

11.13.5 SQLite and Python types

Introduction

SQLite natively supports the following types: NULL, INTEGER, REAL, TEXT, BLOB.

The following Python types can thus be sent to SQLite without any problem:

Python type SQLite type
None NULL
int INTEGER
long INTEGER
float REAL
str (UTF8-encoded) TEXT
unicode TEXT
buffer BLOB

This is how SQLite types are converted to Python types by default:

SQLite type Python type
NULL None
INTEGER int or long, depending on size
REAL float
TEXT depends on text_factory, unicode by default
BLOB buffer

The type system of the sqlite3 module is extensible in two ways: you can store additional Python types in a SQLite
database via object adaptation, and you can let the sqlite3 module convert SQLite types to different Python types
via converters.

Using adapters to store additional Python types in SQLite databases

As described before, SQLite supports only a limited set of types natively. To use other Python types with SQLite, you
must adapt them to one of the sqlite3 module’s supported types for SQLite: one of NoneType, int, long, float, str,
unicode, buffer.

The sqlite3 module uses Python object adaptation, as described in PEP 246 for this. The protocol to use is
PrepareProtocol.

There are two ways to enable the sqlite3 module to adapt a custom Python type to one of the supported ones.

Letting your object adapt itself

This is a good approach if you write the class yourself. Let’s suppose you have a class like this:

class Point(object):
def __init__(self, x, y):

self.x, self.y = x, y

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 305

http://www.python.org/dev/peps/pep-0246

The Python Library Reference, Release 2.6.9

Now you want to store the point in a single SQLite column. First you’ll have to choose one of the supported types
first to be used for representing the point. Let’s just use str and separate the coordinates using a semicolon. Then you
need to give your class a method __conform__(self, protocol) which must return the converted value. The
parameter protocol will be PrepareProtocol.

import sqlite3

class Point(object):
def __init__(self, x, y):

self.x, self.y = x, y

def __conform__(self, protocol):
if protocol is sqlite3.PrepareProtocol:

return "%f;%f" % (self.x, self.y)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print cur.fetchone()[0]

Registering an adapter callable

The other possibility is to create a function that converts the type to the string representation and register the function
with register_adapter().

Note: The type/class to adapt must be a new-style class, i. e. it must have object as one of its bases.

import sqlite3

class Point(object):
def __init__(self, x, y):

self.x, self.y = x, y

def adapt_point(point):
return "%f;%f" % (point.x, point.y)

sqlite3.register_adapter(Point, adapt_point)

con = sqlite3.connect(":memory:")
cur = con.cursor()

p = Point(4.0, -3.2)
cur.execute("select ?", (p,))
print cur.fetchone()[0]

The sqlite3 module has two default adapters for Python’s built-in datetime.date and
datetime.datetime types. Now let’s suppose we want to store datetime.datetime objects not in
ISO representation, but as a Unix timestamp.

import sqlite3
import datetime, time

def adapt_datetime(ts):

306 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

return time.mktime(ts.timetuple())

sqlite3.register_adapter(datetime.datetime, adapt_datetime)

con = sqlite3.connect(":memory:")
cur = con.cursor()

now = datetime.datetime.now()
cur.execute("select ?", (now,))
print cur.fetchone()[0]

Converting SQLite values to custom Python types

Writing an adapter lets you send custom Python types to SQLite. But to make it really useful we need to make the
Python to SQLite to Python roundtrip work.

Enter converters.

Let’s go back to the Point class. We stored the x and y coordinates separated via semicolons as strings in SQLite.

First, we’ll define a converter function that accepts the string as a parameter and constructs a Point object from it.

Note: Converter functions always get called with a string, no matter under which data type you sent the value to
SQLite.

def convert_point(s):
x, y = map(float, s.split(";"))
return Point(x, y)

Now you need to make the sqlite3 module know that what you select from the database is actually a point. There
are two ways of doing this:

• Implicitly via the declared type

• Explicitly via the column name

Both ways are described in section Module functions and constants, in the entries for the constants
PARSE_DECLTYPES and PARSE_COLNAMES.

The following example illustrates both approaches.

import sqlite3

class Point(object):
def __init__(self, x, y):

self.x, self.y = x, y

def __repr__(self):
return "(%f;%f)" % (self.x, self.y)

def adapt_point(point):
return "%f;%f" % (point.x, point.y)

def convert_point(s):
x, y = map(float, s.split(";"))
return Point(x, y)

Register the adapter
sqlite3.register_adapter(Point, adapt_point)

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 307

The Python Library Reference, Release 2.6.9

Register the converter
sqlite3.register_converter("point", convert_point)

p = Point(4.0, -3.2)

#########################
1) Using declared types
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES)
cur = con.cursor()
cur.execute("create table test(p point)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute("select p from test")
print "with declared types:", cur.fetchone()[0]
cur.close()
con.close()

#######################
1) Using column names
con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(p)")

cur.execute("insert into test(p) values (?)", (p,))
cur.execute(’select p as "p [point]" from test’)
print "with column names:", cur.fetchone()[0]
cur.close()
con.close()

Default adapters and converters

There are default adapters for the date and datetime types in the datetime module. They will be sent as ISO dates/ISO
timestamps to SQLite.

The default converters are registered under the name “date” for datetime.date and under the name “timestamp”
for datetime.datetime.

This way, you can use date/timestamps from Python without any additional fiddling in most cases. The format of the
adapters is also compatible with the experimental SQLite date/time functions.

The following example demonstrates this.

import sqlite3
import datetime

con = sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES)
cur = con.cursor()
cur.execute("create table test(d date, ts timestamp)")

today = datetime.date.today()
now = datetime.datetime.now()

cur.execute("insert into test(d, ts) values (?, ?)", (today, now))
cur.execute("select d, ts from test")

308 Chapter 11. Data Persistence

The Python Library Reference, Release 2.6.9

row = cur.fetchone()
print today, "=>", row[0], type(row[0])
print now, "=>", row[1], type(row[1])

cur.execute(’select current_date as "d [date]", current_timestamp as "ts [timestamp]"’)
row = cur.fetchone()
print "current_date", row[0], type(row[0])
print "current_timestamp", row[1], type(row[1])

11.13.6 Controlling Transactions

By default, the sqlite3 module opens transactions implicitly before a Data Modification Language (DML) state-
ment (i.e. INSERT/UPDATE/DELETE/REPLACE), and commits transactions implicitly before a non-DML, non-query
statement (i. e. anything other than SELECT or the aforementioned).

So if you are within a transaction and issue a command like CREATE TABLE ..., VACUUM, PRAGMA, the
sqlite3 module will commit implicitly before executing that command. There are two reasons for doing that.
The first is that some of these commands don’t work within transactions. The other reason is that sqlite3 needs to keep
track of the transaction state (if a transaction is active or not).

You can control which kind of BEGIN statements sqlite3 implicitly executes (or none at all) via the isolation_level
parameter to the connect() call, or via the isolation_level property of connections.

If you want autocommit mode, then set isolation_level to None.

Otherwise leave it at its default, which will result in a plain “BEGIN” statement, or set it to one of SQLite’s supported
isolation levels: “DEFERRED”, “IMMEDIATE” or “EXCLUSIVE”.

11.13.7 Using sqlite3 efficiently

Using shortcut methods

Using the nonstandard execute(), executemany() and executescript() methods of the Connection
object, your code can be written more concisely because you don’t have to create the (often superfluous) Cursor
objects explicitly. Instead, the Cursor objects are created implicitly and these shortcut methods return the cursor
objects. This way, you can execute a SELECT statement and iterate over it directly using only a single call on the
Connection object.

import sqlite3

persons = [
("Hugo", "Boss"),
("Calvin", "Klein")
]

con = sqlite3.connect(":memory:")

Create the table
con.execute("create table person(firstname, lastname)")

Fill the table
con.executemany("insert into person(firstname, lastname) values (?, ?)", persons)

Print the table contents
for row in con.execute("select firstname, lastname from person"):

11.13. sqlite3 — DB-API 2.0 interface for SQLite databases 309

The Python Library Reference, Release 2.6.9

print row

Using a dummy WHERE clause to not let SQLite take the shortcut table deletes.
print "I just deleted", con.execute("delete from person where 1=1").rowcount, "rows"

Accessing columns by name instead of by index

One useful feature of the sqlite3 module is the built-in sqlite3.Row class designed to be used as a row factory.

Rows wrapped with this class can be accessed both by index (like tuples) and case-insensitively by name:

import sqlite3

con = sqlite3.connect("mydb")
con.row_factory = sqlite3.Row

cur = con.cursor()
cur.execute("select name_last, age from people")
for row in cur:

assert row[0] == row["name_last"]
assert row["name_last"] == row["nAmE_lAsT"]
assert row[1] == row["age"]
assert row[1] == row["AgE"]

Using the connection as a context manager

New in version 2.6. Connection objects can be used as context managers that automatically commit or rollback
transactions. In the event of an exception, the transaction is rolled back; otherwise, the transaction is committed:

import sqlite3

con = sqlite3.connect(":memory:")
con.execute("create table person (id integer primary key, firstname varchar unique)")

Successful, con.commit() is called automatically afterwards
with con:

con.execute("insert into person(firstname) values (?)", ("Joe",))

con.rollback() is called after the with block finishes with an exception, the
exception is still raised and must be catched
try:

with con:
con.execute("insert into person(firstname) values (?)", ("Joe",))

except sqlite3.IntegrityError:
print "couldn’t add Joe twice"

310 Chapter 11. Data Persistence

CHAPTER

TWELVE

DATA COMPRESSION AND ARCHIVING

The modules described in this chapter support data compression with the zlib, gzip, and bzip2 algorithms, and the
creation of ZIP- and tar-format archives.

12.1 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home page at http://www.zlib.net. There are known incompatibilities
between the Python module and versions of the zlib library earlier than 1.1.3; 1.1.3 has a security vulnerability, so we
recommend using 1.1.4 or later.

zlib’s functions have many options and often need to be used in a particular order. This documentation doesn’t
attempt to cover all of the permutations; consult the zlib manual at http://www.zlib.net/manual.html for authoritative
information.

For reading and writing .gz files see the gzip module. For other archive formats, see the bz2, zipfile, and
tarfile modules.

The available exception and functions in this module are:

exception error
Exception raised on compression and decompression errors.

adler32(data, [value])
Computes a Adler-32 checksum of data. (An Adler-32 checksum is almost as reliable as a CRC32 but can be
computed much more quickly.) If value is present, it is used as the starting value of the checksum; otherwise, a
fixed default value is used. This allows computing a running checksum over the concatenation of several inputs.
The algorithm is not cryptographically strong, and should not be used for authentication or digital signatures.
Since the algorithm is designed for use as a checksum algorithm, it is not suitable for use as a general hash
algorithm.

This function always returns an integer object.

Note: To generate the same numeric value across all Python versions and platforms use adler32(data) & 0xffffffff. If
you are only using the checksum in packed binary format this is not necessary as the return value is the correct 32bit
binary representation regardless of sign. Changed in version 2.6: The return value is in the range [-2**31, 2**31-1]
regardless of platform. In older versions the value is signed on some platforms and unsigned on others.Changed in
version 3.0: The return value is unsigned and in the range [0, 2**32-1] regardless of platform.

compress(string, [level])
Compresses the data in string, returning a string contained compressed data. level is an integer from 1 to 9
controlling the level of compression; 1 is fastest and produces the least compression, 9 is slowest and produces
the most. The default value is 6. Raises the error exception if any error occurs.

311

http://www.zlib.net
http://www.zlib.net/manual.html

The Python Library Reference, Release 2.6.9

compressobj([level])
Returns a compression object, to be used for compressing data streams that won’t fit into memory at once. level
is an integer from 1 to 9 controlling the level of compression; 1 is fastest and produces the least compression,
9 is slowest and produces the most. The default value is 6.

crc32(data, [value])
Computes a CRC (Cyclic Redundancy Check) checksum of data. If value is present, it is used as the starting

value of the checksum; otherwise, a fixed default value is used. This allows computing a running checksum over
the concatenation of several inputs. The algorithm is not cryptographically strong, and should not be used for
authentication or digital signatures. Since the algorithm is designed for use as a checksum algorithm, it is not
suitable for use as a general hash algorithm.

This function always returns an integer object.

Note: To generate the same numeric value across all Python versions and platforms use crc32(data) & 0xffffffff. If
you are only using the checksum in packed binary format this is not necessary as the return value is the correct 32bit
binary representation regardless of sign. Changed in version 2.6: The return value is in the range [-2**31, 2**31-1]
regardless of platform. In older versions the value would be signed on some platforms and unsigned on others.Changed
in version 3.0: The return value is unsigned and in the range [0, 2**32-1] regardless of platform.

decompress(string, [wbits, [bufsize]])
Decompresses the data in string, returning a string containing the uncompressed data. The wbits parameter
controls the size of the window buffer, and is discussed further below. If bufsize is given, it is used as the initial
size of the output buffer. Raises the error exception if any error occurs.

The absolute value of wbits is the base two logarithm of the size of the history buffer (the “window size”)
used when compressing data. Its absolute value should be between 8 and 15 for the most recent versions of
the zlib library, larger values resulting in better compression at the expense of greater memory usage. When
decompressing a stream, wbits must not be smaller than the size originally used to compress the stream; using a
too-small value will result in an exception. The default value is therefore the highest value, 15. When wbits is
negative, the standard gzip header is suppressed.

bufsize is the initial size of the buffer used to hold decompressed data. If more space is required, the buffer size
will be increased as needed, so you don’t have to get this value exactly right; tuning it will only save a few calls
to malloc(). The default size is 16384.

decompressobj([wbits])
Returns a decompression object, to be used for decompressing data streams that won’t fit into memory at once.
The wbits parameter controls the size of the window buffer.

Compression objects support the following methods:

compress(string)
Compress string, returning a string containing compressed data for at least part of the data in string. This data
should be concatenated to the output produced by any preceding calls to the compress() method. Some input
may be kept in internal buffers for later processing.

flush([mode])
All pending input is processed, and a string containing the remaining compressed output is returned. mode can
be selected from the constants Z_SYNC_FLUSH, Z_FULL_FLUSH, or Z_FINISH, defaulting to Z_FINISH.
Z_SYNC_FLUSH and Z_FULL_FLUSH allow compressing further strings of data, while Z_FINISH finishes
the compressed stream and prevents compressing any more data. After calling flush() with mode set to
Z_FINISH, the compress() method cannot be called again; the only realistic action is to delete the object.

copy()
Returns a copy of the compression object. This can be used to efficiently compress a set of data that share a
common initial prefix. New in version 2.5.

Decompression objects support the following methods, and two attributes:

312 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 2.6.9

unused_data
A string which contains any bytes past the end of the compressed data. That is, this remains "" until the last
byte that contains compression data is available. If the whole string turned out to contain compressed data, this
is "", the empty string.

The only way to determine where a string of compressed data ends is by actually decompressing it. This means
that when compressed data is contained part of a larger file, you can only find the end of it by reading data and
feeding it followed by some non-empty string into a decompression object’s decompress() method until the
unused_data attribute is no longer the empty string.

unconsumed_tail
A string that contains any data that was not consumed by the last decompress() call because it exceeded the
limit for the uncompressed data buffer. This data has not yet been seen by the zlib machinery, so you must feed
it (possibly with further data concatenated to it) back to a subsequent decompress() method call in order to
get correct output.

decompress(string, [max_length])
Decompress string, returning a string containing the uncompressed data corresponding to at least part of
the data in string. This data should be concatenated to the output produced by any preceding calls to the
decompress() method. Some of the input data may be preserved in internal buffers for later processing.

If the optional parameter max_length is supplied then the return value will be no longer than max_length.
This may mean that not all of the compressed input can be processed; and unconsumed data will be stored
in the attribute unconsumed_tail. This string must be passed to a subsequent call to decompress()
if decompression is to continue. If max_length is not supplied then the whole input is decompressed, and
unconsumed_tail is an empty string.

flush([length])
All pending input is processed, and a string containing the remaining uncompressed output is returned. After
calling flush(), the decompress() method cannot be called again; the only realistic action is to delete the
object.

The optional parameter length sets the initial size of the output buffer.

copy()
Returns a copy of the decompression object. This can be used to save the state of the decompressor midway
through the data stream in order to speed up random seeks into the stream at a future point. New in version 2.5.

See Also:

Module gzip Reading and writing gzip-format files.

http://www.zlib.net The zlib library home page.

http://www.zlib.net/manual.html The zlib manual explains the semantics and usage of the library’s many functions.

12.2 gzip — Support for gzip files

This module provides a simple interface to compress and decompress files just like the GNU programs gzip and gunzip
would.

The data compression is provided by the zlib module.

The gzip module provides the GzipFile class which is modeled after Python’s File Object. The GzipFile
class reads and writes gzip-format files, automatically compressing or decompressing the data so that it looks like an
ordinary file object.

Note that additional file formats which can be decompressed by the gzip and gunzip programs, such as those produced
by compress and pack, are not supported by this module.

12.2. gzip — Support for gzip files 313

http://www.zlib.net
http://www.zlib.net/manual.html

The Python Library Reference, Release 2.6.9

For other archive formats, see the bz2, zipfile, and tarfile modules.

The module defines the following items:

class GzipFile([filename, [mode, [compresslevel, [fileobj]]]])
Constructor for the GzipFile class, which simulates most of the methods of a file object, with the exception of
the readinto() and truncate() methods. At least one of fileobj and filename must be given a non-trivial
value.

The new class instance is based on fileobj, which can be a regular file, a StringIO object, or any other object
which simulates a file. It defaults to None, in which case filename is opened to provide a file object.

When fileobj is not None, the filename argument is only used to be included in the gzip file header, which
may includes the original filename of the uncompressed file. It defaults to the filename of fileobj, if discernible;
otherwise, it defaults to the empty string, and in this case the original filename is not included in the header.

The mode argument can be any of ’r’, ’rb’, ’a’, ’ab’, ’w’, or ’wb’, depending on whether the file will
be read or written. The default is the mode of fileobj if discernible; otherwise, the default is ’rb’. If not given,
the ‘b’ flag will be added to the mode to ensure the file is opened in binary mode for cross-platform portability.

The compresslevel argument is an integer from 1 to 9 controlling the level of compression; 1 is fastest and
produces the least compression, and 9 is slowest and produces the most compression. The default is 9.

Calling a GzipFile object’s close() method does not close fileobj, since you might wish to append more
material after the compressed data. This also allows you to pass a StringIO object opened for writing as
fileobj, and retrieve the resulting memory buffer using the StringIO object’s getvalue() method.

GzipFile supports iteration.

open(filename, [mode, [compresslevel]])
This is a shorthand for GzipFile(filename, mode, compresslevel). The filename argument is
required; mode defaults to ’rb’ and compresslevel defaults to 9.

12.2.1 Examples of usage

Example of how to read a compressed file:

import gzip
f = gzip.open(’/home/joe/file.txt.gz’, ’rb’)
file_content = f.read()
f.close()

Example of how to create a compressed GZIP file:

import gzip
content = "Lots of content here"
f = gzip.open(’/home/joe/file.txt.gz’, ’wb’)
f.write(content)
f.close()

Example of how to GZIP compress an existing file:

import gzip
f_in = open(’/home/joe/file.txt’, ’rb’)
f_out = gzip.open(’/home/joe/file.txt.gz’, ’wb’)
f_out.writelines(f_in)
f_out.close()
f_in.close()

See Also:

314 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 2.6.9

Module zlib The basic data compression module needed to support the gzip file format.

12.3 bz2 — Compression compatible with bzip2

New in version 2.3. This module provides a comprehensive interface for the bz2 compression library. It implements a
complete file interface, one-shot (de)compression functions, and types for sequential (de)compression.

For other archive formats, see the gzip, zipfile, and tarfile modules.

Here is a summary of the features offered by the bz2 module:

• BZ2File class implements a complete file interface, including readline(), readlines(),
writelines(), seek(), etc;

• BZ2File class implements emulated seek() support;

• BZ2File class implements universal newline support;

• BZ2File class offers an optimized line iteration using the readahead algorithm borrowed from file objects;

• Sequential (de)compression supported by BZ2Compressor and BZ2Decompressor classes;

• One-shot (de)compression supported by compress() and decompress() functions;

• Thread safety uses individual locking mechanism.

12.3.1 (De)compression of files

Handling of compressed files is offered by the BZ2File class.

class BZ2File(filename, [mode, [buffering, [compresslevel]]])
Open a bz2 file. Mode can be either ’r’ or ’w’, for reading (default) or writing. When opened for writing, the
file will be created if it doesn’t exist, and truncated otherwise. If buffering is given, 0 means unbuffered, and
larger numbers specify the buffer size; the default is 0. If compresslevel is given, it must be a number between
1 and 9; the default is 9. Add a ’U’ to mode to open the file for input with universal newline support. Any line
ending in the input file will be seen as a ’\n’ in Python. Also, a file so opened gains the attribute newlines;
the value for this attribute is one of None (no newline read yet), ’\r’, ’\n’, ’\r\n’ or a tuple containing
all the newline types seen. Universal newlines are available only when reading. Instances support iteration in
the same way as normal file instances.

close()
Close the file. Sets data attribute closed to true. A closed file cannot be used for further I/O operations.
close() may be called more than once without error.

read([size])
Read at most size uncompressed bytes, returned as a string. If the size argument is negative or omitted,
read until EOF is reached.

readline([size])
Return the next line from the file, as a string, retaining newline. A non-negative size argument limits the
maximum number of bytes to return (an incomplete line may be returned then). Return an empty string at
EOF.

readlines([size])
Return a list of lines read. The optional size argument, if given, is an approximate bound on the total
number of bytes in the lines returned.

12.3. bz2 — Compression compatible with bzip2 315

The Python Library Reference, Release 2.6.9

xreadlines()
For backward compatibility. BZ2File objects now include the performance optimizations previously im-
plemented in the xreadlines module. Deprecated since version 2.3: This exists only for compatibility
with the method by this name on file objects, which is deprecated. Use for line in file instead.

seek(offset, [whence])
Move to new file position. Argument offset is a byte count. Optional argument whence defaults to
os.SEEK_SET or 0 (offset from start of file; offset should be >= 0); other values are os.SEEK_CUR
or 1 (move relative to current position; offset can be positive or negative), and os.SEEK_END or 2 (move
relative to end of file; offset is usually negative, although many platforms allow seeking beyond the end of
a file).

Note that seeking of bz2 files is emulated, and depending on the parameters the operation may be extremely
slow.

tell()
Return the current file position, an integer (may be a long integer).

write(data)
Write string data to file. Note that due to buffering, close() may be needed before the file on disk
reflects the data written.

writelines(sequence_of_strings)
Write the sequence of strings to the file. Note that newlines are not added. The sequence can be any
iterable object producing strings. This is equivalent to calling write() for each string.

12.3.2 Sequential (de)compression

Sequential compression and decompression is done using the classes BZ2Compressor and BZ2Decompressor.

class BZ2Compressor([compresslevel])
Create a new compressor object. This object may be used to compress data sequentially. If you want to compress
data in one shot, use the compress() function instead. The compresslevel parameter, if given, must be a
number between 1 and 9; the default is 9.

compress(data)
Provide more data to the compressor object. It will return chunks of compressed data whenever possible.
When you’ve finished providing data to compress, call the flush() method to finish the compression
process, and return what is left in internal buffers.

flush()
Finish the compression process and return what is left in internal buffers. You must not use the compressor
object after calling this method.

class BZ2Decompressor()
Create a new decompressor object. This object may be used to decompress data sequentially. If you want to
decompress data in one shot, use the decompress() function instead.

decompress(data)
Provide more data to the decompressor object. It will return chunks of decompressed data whenever
possible. If you try to decompress data after the end of stream is found, EOFError will be raised. If any
data was found after the end of stream, it’ll be ignored and saved in unused_data attribute.

12.3.3 One-shot (de)compression

One-shot compression and decompression is provided through the compress() and decompress() functions.

316 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 2.6.9

compress(data, [compresslevel])
Compress data in one shot. If you want to compress data sequentially, use an instance of BZ2Compressor
instead. The compresslevel parameter, if given, must be a number between 1 and 9; the default is 9.

decompress(data)
Decompress data in one shot. If you want to decompress data sequentially, use an instance of
BZ2Decompressor instead.

12.4 zipfile — Work with ZIP archives

New in version 1.6. The ZIP file format is a common archive and compression standard. This module provides tools
to create, read, write, append, and list a ZIP file. Any advanced use of this module will require an understanding of
the format, as defined in PKZIP Application Note.

This module does not currently handle multi-disk ZIP files. It can handle ZIP files that use the ZIP64 extensions (that
is ZIP files that are more than 4 GByte in size). It supports decryption of encrypted files in ZIP archives, but it currently
cannot create an encrypted file. Decryption is extremely slow as it is implemented in native Python rather than C.

For other archive formats, see the bz2, gzip, and tarfile modules.

The module defines the following items:

exception BadZipfile
The error raised for bad ZIP files (old name: zipfile.error).

exception LargeZipFile
The error raised when a ZIP file would require ZIP64 functionality but that has not been enabled.

class ZipFile()
The class for reading and writing ZIP files. See section ZipFile Objects for constructor details.

class PyZipFile()
Class for creating ZIP archives containing Python libraries.

class ZipInfo([filename, [date_time]])
Class used to represent information about a member of an archive. Instances of this class are returned by the
getinfo() and infolist() methods of ZipFile objects. Most users of the zipfile module will not
need to create these, but only use those created by this module. filename should be the full name of the archive
member, and date_time should be a tuple containing six fields which describe the time of the last modification
to the file; the fields are described in section ZipInfo Objects.

is_zipfile(filename)
Returns True if filename is a valid ZIP file based on its magic number, otherwise returns False.

ZIP_STORED
The numeric constant for an uncompressed archive member.

ZIP_DEFLATED
The numeric constant for the usual ZIP compression method. This requires the zlib module. No other compres-
sion methods are currently supported.

See Also:

PKZIP Application Note Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms
used.

Info-ZIP Home Page Information about the Info-ZIP project’s ZIP archive programs and development libraries.

12.4. zipfile — Work with ZIP archives 317

http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.info-zip.org/

The Python Library Reference, Release 2.6.9

12.4.1 ZipFile Objects

class ZipFile(file, [mode, [compression, [allowZip64]]])
Open a ZIP file, where file can be either a path to a file (a string) or a file-like object. The mode parameter should
be ’r’ to read an existing file, ’w’ to truncate and write a new file, or ’a’ to append to an existing file. If
mode is ’a’ and file refers to an existing ZIP file, then additional files are added to it. If file does not refer to a
ZIP file, then a new ZIP archive is appended to the file. This is meant for adding a ZIP archive to another file,
such as python.exe. Using

cat myzip.zip >> python.exe

also works, and at least WinZip can read such files. If mode is a and the file does not exist at all, it is created.
compression is the ZIP compression method to use when writing the archive, and should be ZIP_STORED
or ZIP_DEFLATED; unrecognized values will cause RuntimeError to be raised. If ZIP_DEFLATED is
specified but the zlib module is not available, RuntimeError is also raised. The default is ZIP_STORED.
If allowZip64 is True zipfile will create ZIP files that use the ZIP64 extensions when the zipfile is larger
than 2 GB. If it is false (the default) zipfile will raise an exception when the ZIP file would require ZIP64
extensions. ZIP64 extensions are disabled by default because the default zip and unzip commands on Unix (the
InfoZIP utilities) don’t support these extensions. Changed in version 2.6: If the file does not exist, it is created
if the mode is ‘a’.

close()
Close the archive file. You must call close() before exiting your program or essential records will not be
written.

getinfo(name)
Return a ZipInfo object with information about the archive member name. Calling getinfo() for a name
not currently contained in the archive will raise a KeyError.

infolist()
Return a list containing a ZipInfo object for each member of the archive. The objects are in the same order
as their entries in the actual ZIP file on disk if an existing archive was opened.

namelist()
Return a list of archive members by name.

open(name, [mode, [pwd]])
Extract a member from the archive as a file-like object (ZipExtFile). name is the name of the file in the archive,
or a ZipInfo object. The mode parameter, if included, must be one of the following: ’r’ (the default), ’U’,
or ’rU’. Choosing ’U’ or ’rU’ will enable universal newline support in the read-only object. pwd is the
password used for encrypted files. Calling open() on a closed ZipFile will raise a RuntimeError.

Note: The file-like object is read-only and provides the following methods: read(), readline(),
readlines(), __iter__(), next().

Note: If the ZipFile was created by passing in a file-like object as the first argument to the constructor, then the
object returned by open() shares the ZipFile’s file pointer. Under these circumstances, the object returned by
open() should not be used after any additional operations are performed on the ZipFile object. If the ZipFile
was created by passing in a string (the filename) as the first argument to the constructor, then open() will
create a new file object that will be held by the ZipExtFile, allowing it to operate independently of the ZipFile.

Note: The open(), read() and extract() methods can take a filename or a ZipInfo object. You will
appreciate this when trying to read a ZIP file that contains members with duplicate names. New in version 2.6.

extract(member, [path, [pwd]])
Extract a member from the archive to the current working directory; member must be its full name or a ZipInfo
object). Its file information is extracted as accurately as possible. path specifies a different directory to extract

318 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 2.6.9

to. member can be a filename or a ZipInfo object. pwd is the password used for encrypted files. New in
version 2.6.

extractall([path, [members, [pwd]]])
Extract all members from the archive to the current working directory. path specifies a different directory to
extract to. members is optional and must be a subset of the list returned by namelist(). pwd is the password
used for encrypted files.

Warning: Never extract archives from untrusted sources without prior inspection. It is possible that files
are created outside of path, e.g. members that have absolute filenames starting with "/" or filenames with
two dots "..".

New in version 2.6.

printdir()
Print a table of contents for the archive to sys.stdout.

setpassword(pwd)
Set pwd as default password to extract encrypted files. New in version 2.6.

read(name, [pwd])
Return the bytes of the file name in the archive. name is the name of the file in the archive, or a ZipInfo object.
The archive must be open for read or append. pwd is the password used for encrypted files and, if specified, it
will override the default password set with setpassword(). Calling read() on a closed ZipFile will raise
a RuntimeError. Changed in version 2.6: pwd was added, and name can now be a ZipInfo object.

testzip()
Read all the files in the archive and check their CRC’s and file headers. Return the name of the first bad file, or
else return None. Calling testzip() on a closed ZipFile will raise a RuntimeError.

write(filename, [arcname, [compress_type]])
Write the file named filename to the archive, giving it the archive name arcname (by default, this will be the
same as filename, but without a drive letter and with leading path separators removed). If given, compress_type
overrides the value given for the compression parameter to the constructor for the new entry. The archive
must be open with mode ’w’ or ’a’ – calling write() on a ZipFile created with mode ’r’ will raise a
RuntimeError. Calling write() on a closed ZipFile will raise a RuntimeError.

Note: There is no official file name encoding for ZIP files. If you have unicode file names, you must convert
them to byte strings in your desired encoding before passing them to write(). WinZip interprets all file names
as encoded in CP437, also known as DOS Latin.

Note: Archive names should be relative to the archive root, that is, they should not start with a path separator.

Note: If arcname (or filename, if arcname is not given) contains a null byte, the name of the file in the
archive will be truncated at the null byte.

writestr(zinfo_or_arcname, bytes)
Write the string bytes to the archive; zinfo_or_arcname is either the file name it will be given in the archive, or
a ZipInfo instance. If it’s an instance, at least the filename, date, and time must be given. If it’s a name, the
date and time is set to the current date and time. The archive must be opened with mode ’w’ or ’a’ – calling
writestr() on a ZipFile created with mode ’r’ will raise a RuntimeError. Calling writestr() on a
closed ZipFile will raise a RuntimeError.

Note: When passing a ZipInfo instance as the zinfo_or_acrname parameter, the compression method used
will be that specified in the compress_type member of the given ZipInfo instance. By default, the ZipInfo
constructor sets this member to ZIP_STORED.

The following data attributes are also available:

debug
The level of debug output to use. This may be set from 0 (the default, no output) to 3 (the most output).

12.4. zipfile — Work with ZIP archives 319

The Python Library Reference, Release 2.6.9

Debugging information is written to sys.stdout.

comment
The comment text associated with the ZIP file. If assigning a comment to a ZipFile instance created with
mode ‘a’ or ‘w’, this should be a string no longer than 65535 bytes. Comments longer than this will be truncated
in the written archive when ZipFile.close() is called.

12.4.2 PyZipFile Objects

The PyZipFile constructor takes the same parameters as the ZipFile constructor. Instances have one method in
addition to those of ZipFile objects.

writepy(pathname, [basename])
Search for files *.py and add the corresponding file to the archive. The corresponding file is a *.pyo file if
available, else a *.pyc file, compiling if necessary. If the pathname is a file, the filename must end with .py,
and just the (corresponding *.py[co]) file is added at the top level (no path information). If the pathname is a
file that does not end with .py, a RuntimeError will be raised. If it is a directory, and the directory is not a
package directory, then all the files *.py[co] are added at the top level. If the directory is a package directory,
then all *.py[co] are added under the package name as a file path, and if any subdirectories are package
directories, all of these are added recursively. basename is intended for internal use only. The writepy()
method makes archives with file names like this:

string.pyc # Top level name
test/__init__.pyc # Package directory
test/test_support.pyc # Module test.test_support
test/bogus/__init__.pyc # Subpackage directory
test/bogus/myfile.pyc # Submodule test.bogus.myfile

12.4.3 ZipInfo Objects

Instances of the ZipInfo class are returned by the getinfo() and infolist() methods of ZipFile objects.
Each object stores information about a single member of the ZIP archive.

Instances have the following attributes:

filename
Name of the file in the archive.

date_time
The time and date of the last modification to the archive member. This is a tuple of six values:

Index Value
0 Year
1 Month (one-based)
2 Day of month (one-based)
3 Hours (zero-based)
4 Minutes (zero-based)
5 Seconds (zero-based)

compress_type
Type of compression for the archive member.

comment
Comment for the individual archive member.

320 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 2.6.9

extra
Expansion field data. The PKZIP Application Note contains some comments on the internal structure of the
data contained in this string.

create_system
System which created ZIP archive.

create_version
PKZIP version which created ZIP archive.

extract_version
PKZIP version needed to extract archive.

reserved
Must be zero.

flag_bits
ZIP flag bits.

volume
Volume number of file header.

internal_attr
Internal attributes.

external_attr
External file attributes.

header_offset
Byte offset to the file header.

CRC
CRC-32 of the uncompressed file.

compress_size
Size of the compressed data.

file_size
Size of the uncompressed file.

12.5 tarfile — Read and write tar archive files

New in version 2.3. The tarfile module makes it possible to read and write tar archives, including those using gzip
or bz2 compression. (.zip files can be read and written using the zipfile module.)

Some facts and figures:

• reads and writes gzip and bz2 compressed archives.

• read/write support for the POSIX.1-1988 (ustar) format.

• read/write support for the GNU tar format including longname and longlink extensions, read-only support for
the sparse extension.

• read/write support for the POSIX.1-2001 (pax) format. New in version 2.6.

• handles directories, regular files, hardlinks, symbolic links, fifos, character devices and block devices and is able
to acquire and restore file information like timestamp, access permissions and owner.

open(name=None, mode=’r’, fileobj=None, bufsize=10240, **kwargs)
Return a TarFile object for the pathname name. For detailed information on TarFile objects and the
keyword arguments that are allowed, see TarFile Objects.

12.5. tarfile — Read and write tar archive files 321

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

The Python Library Reference, Release 2.6.9

mode has to be a string of the form ’filemode[:compression]’, it defaults to ’r’. Here is a full list of
mode combinations:

mode action
’r’ or ’r:*’ Open for reading with transparent compression (recommended).
’r:’ Open for reading exclusively without compression.
’r:gz’ Open for reading with gzip compression.
’r:bz2’ Open for reading with bzip2 compression.
’a’ or ’a:’ Open for appending with no compression. The file is created if it does not exist.
’w’ or ’w:’ Open for uncompressed writing.
’w:gz’ Open for gzip compressed writing.
’w:bz2’ Open for bzip2 compressed writing.

Note that ’a:gz’ or ’a:bz2’ is not possible. If mode is not suitable to open a certain (compressed) file
for reading, ReadError is raised. Use mode ’r’ to avoid this. If a compression method is not supported,
CompressionError is raised.

If fileobj is specified, it is used as an alternative to a file object opened for name. It is supposed to be at position
0.

For special purposes, there is a second format for mode: ’filemode|[compression]’.
tarfile.open() will return a TarFile object that processes its data as a stream of blocks. No random
seeking will be done on the file. If given, fileobj may be any object that has a read() or write() method
(depending on the mode). bufsize specifies the blocksize and defaults to 20 * 512 bytes. Use this variant in
combination with e.g. sys.stdin, a socket file object or a tape device. However, such a TarFile object is
limited in that it does not allow to be accessed randomly, see Examples. The currently possible modes:

Mode Action
’r|*’ Open a stream of tar blocks for reading with transparent compression.
’r|’ Open a stream of uncompressed tar blocks for reading.
’r|gz’ Open a gzip compressed stream for reading.
’r|bz2’ Open a bzip2 compressed stream for reading.
’w|’ Open an uncompressed stream for writing.
’w|gz’ Open an gzip compressed stream for writing.
’w|bz2’ Open an bzip2 compressed stream for writing.

class TarFile()
Class for reading and writing tar archives. Do not use this class directly, better use tarfile.open() instead.
See TarFile Objects.

is_tarfile(name)
Return True if name is a tar archive file, that the tarfile module can read.

class TarFileCompat(filename, mode=’r’, compression=TAR_PLAIN)
Class for limited access to tar archives with a zipfile-like interface. Please consult the documentation of the
zipfile module for more details. compression must be one of the following constants:

TAR_PLAIN
Constant for an uncompressed tar archive.

TAR_GZIPPED
Constant for a gzip compressed tar archive.

Deprecated since version 2.6: The TarFileCompat class has been deprecated for removal in Python 3.0.

exception TarError
Base class for all tarfile exceptions.

exception ReadError
Is raised when a tar archive is opened, that either cannot be handled by the tarfile module or is somehow
invalid.

322 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 2.6.9

exception CompressionError
Is raised when a compression method is not supported or when the data cannot be decoded properly.

exception StreamError
Is raised for the limitations that are typical for stream-like TarFile objects.

exception ExtractError
Is raised for non-fatal errors when using TarFile.extract(), but only if TarFile.errorlevel==
2.

exception HeaderError
Is raised by TarInfo.frombuf() if the buffer it gets is invalid. New in version 2.6.

Each of the following constants defines a tar archive format that the tarfile module is able to create. See section
Supported tar formats for details.

USTAR_FORMAT
POSIX.1-1988 (ustar) format.

GNU_FORMAT
GNU tar format.

PAX_FORMAT
POSIX.1-2001 (pax) format.

DEFAULT_FORMAT
The default format for creating archives. This is currently GNU_FORMAT.

The following variables are available on module level:

ENCODING
The default character encoding i.e. the value from either sys.getfilesystemencoding() or
sys.getdefaultencoding().

See Also:

Module zipfile Documentation of the zipfile standard module.

GNU tar manual, Basic Tar Format Documentation for tar archive files, including GNU tar extensions.

12.5.1 TarFile Objects

The TarFile object provides an interface to a tar archive. A tar archive is a sequence of blocks. An archive member
(a stored file) is made up of a header block followed by data blocks. It is possible to store a file in a tar archive several
times. Each archive member is represented by a TarInfo object, see TarInfo Objects for details.

class TarFile(name=None, mode=’r’, fileobj=None, format=DEFAULT_FORMAT, tarinfo=TarInfo, derefer-
ence=False, ignore_zeros=False, encoding=ENCODING, errors=None, pax_headers=None, de-
bug=0, errorlevel=0)

All following arguments are optional and can be accessed as instance attributes as well.

name is the pathname of the archive. It can be omitted if fileobj is given. In this case, the file object’s name
attribute is used if it exists.

mode is either ’r’ to read from an existing archive, ’a’ to append data to an existing file or ’w’ to create a
new file overwriting an existing one.

If fileobj is given, it is used for reading or writing data. If it can be determined, mode is overridden by fileobj‘s
mode. fileobj will be used from position 0.

Note: fileobj is not closed, when TarFile is closed.

12.5. tarfile — Read and write tar archive files 323

http://www.gnu.org/software/tar/manual/html_node/Standard.html

The Python Library Reference, Release 2.6.9

format controls the archive format. It must be one of the constants USTAR_FORMAT, GNU_FORMAT or
PAX_FORMAT that are defined at module level. New in version 2.6. The tarinfo argument can be used to
replace the default TarInfo class with a different one. New in version 2.6. If dereference is False, add
symbolic and hard links to the archive. If it is True, add the content of the target files to the archive. This has
no effect on systems that do not support symbolic links.

If ignore_zeros is False, treat an empty block as the end of the archive. If it is True, skip empty (and invalid)
blocks and try to get as many members as possible. This is only useful for reading concatenated or damaged
archives.

debug can be set from 0 (no debug messages) up to 3 (all debug messages). The messages are written to
sys.stderr.

If errorlevel is 0, all errors are ignored when using TarFile.extract(). Nevertheless, they appear as
error messages in the debug output, when debugging is enabled. If 1, all fatal errors are raised as OSError or
IOError exceptions. If 2, all non-fatal errors are raised as TarError exceptions as well.

The encoding and errors arguments control the way strings are converted to unicode objects and vice versa. The
default settings will work for most users. See section Unicode issues for in-depth information. New in version
2.6. The pax_headers argument is an optional dictionary of unicode strings which will be added as a pax global
header if format is PAX_FORMAT. New in version 2.6.

open(...)
Alternative constructor. The tarfile.open() function is actually a shortcut to this classmethod.

getmember(name)
Return a TarInfo object for member name. If name can not be found in the archive, KeyError is raised.

Note: If a member occurs more than once in the archive, its last occurrence is assumed to be the most up-to-date
version.

getmembers()
Return the members of the archive as a list of TarInfo objects. The list has the same order as the members in
the archive.

getnames()
Return the members as a list of their names. It has the same order as the list returned by getmembers().

list(verbose=True)
Print a table of contents to sys.stdout. If verbose is False, only the names of the members are printed. If
it is True, output similar to that of ls -l is produced.

next()
Return the next member of the archive as a TarInfo object, when TarFile is opened for reading. Return
None if there is no more available.

extractall(path=".", members=None)
Extract all members from the archive to the current working directory or directory path. If optional members
is given, it must be a subset of the list returned by getmembers(). Directory information like owner, mod-
ification time and permissions are set after all members have been extracted. This is done to work around
two problems: A directory’s modification time is reset each time a file is created in it. And, if a directory’s
permissions do not allow writing, extracting files to it will fail.

Warning: Never extract archives from untrusted sources without prior inspection. It is possible that files
are created outside of path, e.g. members that have absolute filenames starting with "/" or filenames with
two dots "..".

New in version 2.5.

extract(member, path="")
Extract a member from the archive to the current working directory, using its full name. Its file information

324 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 2.6.9

is extracted as accurately as possible. member may be a filename or a TarInfo object. You can specify a
different directory using path.

Note: The extract() method does not take care of several extraction issues. In most cases you should
consider using the extractall() method.

Warning: See the warning for extractall().

extractfile(member)
Extract a member from the archive as a file object. member may be a filename or a TarInfo object. If member
is a regular file, a file-like object is returned. If member is a link, a file-like object is constructed from the link’s
target. If member is none of the above, None is returned.

Note: The file-like object is read-only. It provides the methods read(), readline(), readlines(),
seek(), tell(), and close(), and also supports iteration over its lines.

add(name, arcname=None, recursive=True, exclude=None)
Add the file name to the archive. name may be any type of file (directory, fifo, symbolic link, etc.). If given,
arcname specifies an alternative name for the file in the archive. Directories are added recursively by default.
This can be avoided by setting recursive to False. If exclude is given it must be a function that takes one
filename argument and returns a boolean value. Depending on this value the respective file is either excluded
(True) or added (False). Changed in version 2.6: Added the exclude parameter.

addfile(tarinfo, fileobj=None)
Add the TarInfo object tarinfo to the archive. If fileobj is given, tarinfo.size bytes are read from it and
added to the archive. You can create TarInfo objects using gettarinfo().

Note: On Windows platforms, fileobj should always be opened with mode ’rb’ to avoid irritation about the
file size.

gettarinfo(name=None, arcname=None, fileobj=None)
Create a TarInfo object for either the file name or the file object fileobj (using os.fstat() on its file
descriptor). You can modify some of the TarInfo‘s attributes before you add it using addfile(). If given,
arcname specifies an alternative name for the file in the archive.

close()
Close the TarFile. In write mode, two finishing zero blocks are appended to the archive.

posix
Setting this to True is equivalent to setting the format attribute to USTAR_FORMAT, False is equivalent
to GNU_FORMAT. Changed in version 2.4: posix defaults to False.Deprecated since version 2.6: Use the
format attribute instead.

pax_headers
A dictionary containing key-value pairs of pax global headers. New in version 2.6.

12.5.2 TarInfo Objects

A TarInfo object represents one member in a TarFile. Aside from storing all required attributes of a file (like file
type, size, time, permissions, owner etc.), it provides some useful methods to determine its type. It does not contain
the file’s data itself.

TarInfo objects are returned by TarFile‘s methods getmember(), getmembers() and gettarinfo().

class TarInfo(name="")
Create a TarInfo object.

12.5. tarfile — Read and write tar archive files 325

The Python Library Reference, Release 2.6.9

frombuf(buf)
Create and return a TarInfo object from string buffer buf. New in version 2.6: Raises HeaderError if the
buffer is invalid..

fromtarfile(tarfile)
Read the next member from the TarFile object tarfile and return it as a TarInfo object. New in version 2.6.

tobuf(format=DEFAULT_FORMAT, encoding=ENCODING, errors=’strict’)
Create a string buffer from a TarInfo object. For information on the arguments see the constructor of the
TarFile class. Changed in version 2.6: The arguments were added.

A TarInfo object has the following public data attributes:

name
Name of the archive member.

size
Size in bytes.

mtime
Time of last modification.

mode
Permission bits.

type
File type. type is usually one of these constants: REGTYPE, AREGTYPE, LNKTYPE, SYMTYPE, DIRTYPE,
FIFOTYPE, CONTTYPE, CHRTYPE, BLKTYPE, GNUTYPE_SPARSE. To determine the type of a TarInfo
object more conveniently, use the is_*() methods below.

linkname
Name of the target file name, which is only present in TarInfo objects of type LNKTYPE and SYMTYPE.

uid
User ID of the user who originally stored this member.

gid
Group ID of the user who originally stored this member.

uname
User name.

gname
Group name.

pax_headers
A dictionary containing key-value pairs of an associated pax extended header. New in version 2.6.

A TarInfo object also provides some convenient query methods:

isfile()
Return True if the Tarinfo object is a regular file.

isreg()
Same as isfile().

isdir()
Return True if it is a directory.

issym()
Return True if it is a symbolic link.

islnk()
Return True if it is a hard link.

326 Chapter 12. Data Compression and Archiving

The Python Library Reference, Release 2.6.9

ischr()
Return True if it is a character device.

isblk()
Return True if it is a block device.

isfifo()
Return True if it is a FIFO.

isdev()
Return True if it is one of character device, block device or FIFO.

12.5.3 Examples

How to extract an entire tar archive to the current working directory:

import tarfile
tar = tarfile.open("sample.tar.gz")
tar.extractall()
tar.close()

How to extract a subset of a tar archive with TarFile.extractall() using a generator function instead of a list:

import os
import tarfile

def py_files(members):
for tarinfo in members:

if os.path.splitext(tarinfo.name)[1] == ".py":
yield tarinfo

tar = tarfile.open("sample.tar.gz")
tar.extractall(members=py_files(tar))
tar.close()

How to create an uncompressed tar archive from a list of filenames:

import tarfile
tar = tarfile.open("sample.tar", "w")
for name in ["foo", "bar", "quux"]:

tar.add(name)
tar.close()

How to read a gzip compressed tar archive and display some member information:

import tarfile
tar = tarfile.open("sample.tar.gz", "r:gz")
for tarinfo in tar:

print tarinfo.name, "is", tarinfo.size, "bytes in size and is",
if tarinfo.isreg():

print "a regular file."
elif tarinfo.isdir():

print "a directory."
else:

print "something else."
tar.close()

12.5. tarfile — Read and write tar archive files 327

The Python Library Reference, Release 2.6.9

12.5.4 Supported tar formats

There are three tar formats that can be created with the tarfile module:

• The POSIX.1-1988 ustar format (USTAR_FORMAT). It supports filenames up to a length of at best 256 charac-
ters and linknames up to 100 characters. The maximum file size is 8 gigabytes. This is an old and limited but
widely supported format.

• The GNU tar format (GNU_FORMAT). It supports long filenames and linknames, files bigger than 8 gigabytes
and sparse files. It is the de facto standard on GNU/Linux systems. tarfile fully supports the GNU tar
extensions for long names, sparse file support is read-only.

• The POSIX.1-2001 pax format (PAX_FORMAT). It is the most flexible format with virtually no limits. It sup-
ports long filenames and linknames, large files and stores pathnames in a portable way. However, not all tar
implementations today are able to handle pax archives properly.

The pax format is an extension to the existing ustar format. It uses extra headers for information that cannot
be stored otherwise. There are two flavours of pax headers: Extended headers only affect the subsequent file
header, global headers are valid for the complete archive and affect all following files. All the data in a pax
header is encoded in UTF-8 for portability reasons.

There are some more variants of the tar format which can be read, but not created:

• The ancient V7 format. This is the first tar format from Unix Seventh Edition, storing only regular files and
directories. Names must not be longer than 100 characters, there is no user/group name information. Some
archives have miscalculated header checksums in case of fields with non-ASCII characters.

• The SunOS tar extended format. This format is a variant of the POSIX.1-2001 pax format, but is not compatible.

12.5.5 Unicode issues

The tar format was originally conceived to make backups on tape drives with the main focus on preserving file system
information. Nowadays tar archives are commonly used for file distribution and exchanging archives over networks.
One problem of the original format (that all other formats are merely variants of) is that there is no concept of sup-
porting different character encodings. For example, an ordinary tar archive created on a UTF-8 system cannot be
read correctly on a Latin-1 system if it contains non-ASCII characters. Names (i.e. filenames, linknames, user/group
names) containing these characters will appear damaged. Unfortunately, there is no way to autodetect the encoding of
an archive.

The pax format was designed to solve this problem. It stores non-ASCII names using the universal character encoding
UTF-8. When a pax archive is read, these UTF-8 names are converted to the encoding of the local file system.

The details of unicode conversion are controlled by the encoding and errors keyword arguments of the TarFile
class.

The default value for encoding is the local character encoding. It is deduced from
sys.getfilesystemencoding() and sys.getdefaultencoding(). In read mode, encoding is
used exclusively to convert unicode names from a pax archive to strings in the local character encoding. In write
mode, the use of encoding depends on the chosen archive format. In case of PAX_FORMAT, input names that contain
non-ASCII characters need to be decoded before being stored as UTF-8 strings. The other formats do not make use
of encoding unless unicode objects are used as input names. These are converted to 8-bit character strings before they
are added to the archive.

The errors argument defines how characters are treated that cannot be converted to or from encoding. Possible values
are listed in section Codec Base Classes. In read mode, there is an additional scheme ’utf-8’ which means that bad
characters are replaced by their UTF-8 representation. This is the default scheme. In write mode the default value for
errors is ’strict’ to ensure that name information is not altered unnoticed.

328 Chapter 12. Data Compression and Archiving

CHAPTER

THIRTEEN

FILE FORMATS

The modules described in this chapter parse various miscellaneous file formats that aren’t markup languages or are
related to e-mail.

13.1 csv — CSV File Reading and Writing

New in version 2.3. The so-called CSV (Comma Separated Values) format is the most common import and export
format for spreadsheets and databases. There is no “CSV standard”, so the format is operationally defined by the
many applications which read and write it. The lack of a standard means that subtle differences often exist in the data
produced and consumed by different applications. These differences can make it annoying to process CSV files from
multiple sources. Still, while the delimiters and quoting characters vary, the overall format is similar enough that it is
possible to write a single module which can efficiently manipulate such data, hiding the details of reading and writing
the data from the programmer.

The csv module implements classes to read and write tabular data in CSV format. It allows programmers to say,
“write this data in the format preferred by Excel,” or “read data from this file which was generated by Excel,” without
knowing the precise details of the CSV format used by Excel. Programmers can also describe the CSV formats
understood by other applications or define their own special-purpose CSV formats.

The csv module’s reader and writer objects read and write sequences. Programmers can also read and write
data in dictionary form using the DictReader and DictWriter classes.

Note: This version of the csv module doesn’t support Unicode input. Also, there are currently some issues regarding
ASCII NUL characters. Accordingly, all input should be UTF-8 or printable ASCII to be safe; see the examples in
section Examples. These restrictions will be removed in the future.

See Also:

PEP 305 - CSV File API The Python Enhancement Proposal which proposed this addition to Python.

13.1.1 Module Contents

The csv module defines the following functions:

reader(csvfile, [dialect=’excel’], [fmtparam])
Return a reader object which will iterate over lines in the given csvfile. csvfile can be any object which supports
the iterator protocol and returns a string each time its next() method is called — file objects and list objects
are both suitable. If csvfile is a file object, it must be opened with the ‘b’ flag on platforms where that makes
a difference. An optional dialect parameter can be given which is used to define a set of parameters specific to
a particular CSV dialect. It may be an instance of a subclass of the Dialect class or one of the strings re-
turned by the list_dialects() function. The other optional fmtparam keyword arguments can be given to

329

http://www.python.org/dev/peps/pep-0305

The Python Library Reference, Release 2.6.9

override individual formatting parameters in the current dialect. For full details about the dialect and formatting
parameters, see section Dialects and Formatting Parameters.

Each row read from the csv file is returned as a list of strings. No automatic data type conversion is performed.

A short usage example:

>>> import csv
>>> spamReader = csv.reader(open(’eggs.csv’, ’rb’), delimiter=’ ’, quotechar=’|’)
>>> for row in spamReader:
... print ’, ’.join(row)
Spam, Spam, Spam, Spam, Spam, Baked Beans
Spam, Lovely Spam, Wonderful Spam

Changed in version 2.5: The parser is now stricter with respect to multi-line quoted fields. Previously, if a
line ended within a quoted field without a terminating newline character, a newline would be inserted into the
returned field. This behavior caused problems when reading files which contained carriage return characters
within fields. The behavior was changed to return the field without inserting newlines. As a consequence, if
newlines embedded within fields are important, the input should be split into lines in a manner which preserves
the newline characters.

writer(csvfile, [dialect=’excel’], [fmtparam])
Return a writer object responsible for converting the user’s data into delimited strings on the given file-like
object. csvfile can be any object with a write() method. If csvfile is a file object, it must be opened with
the ‘b’ flag on platforms where that makes a difference. An optional dialect parameter can be given which is
used to define a set of parameters specific to a particular CSV dialect. It may be an instance of a subclass of
the Dialect class or one of the strings returned by the list_dialects() function. The other optional
fmtparam keyword arguments can be given to override individual formatting parameters in the current dialect.
For full details about the dialect and formatting parameters, see section Dialects and Formatting Parameters. To
make it as easy as possible to interface with modules which implement the DB API, the value None is written
as the empty string. While this isn’t a reversible transformation, it makes it easier to dump SQL NULL data
values to CSV files without preprocessing the data returned from a cursor.fetch* call. All other non-string
data are stringified with str() before being written.

A short usage example:

>>> import csv
>>> spamWriter = csv.writer(open(’eggs.csv’, ’wb’), delimiter=’ ’,
... quotechar=’|’, quoting=csv.QUOTE_MINIMAL)
>>> spamWriter.writerow([’Spam’] * 5 + [’Baked Beans’])
>>> spamWriter.writerow([’Spam’, ’Lovely Spam’, ’Wonderful Spam’])

register_dialect(name, [dialect], [fmtparam])
Associate dialect with name. name must be a string or Unicode object. The dialect can be specified either
by passing a sub-class of Dialect, or by fmtparam keyword arguments, or both, with keyword arguments
overriding parameters of the dialect. For full details about the dialect and formatting parameters, see section
Dialects and Formatting Parameters.

unregister_dialect(name)
Delete the dialect associated with name from the dialect registry. An Error is raised if name is not a registered
dialect name.

get_dialect(name)
Return the dialect associated with name. An Error is raised if name is not a registered dialect name. Changed
in version 2.5: This function now returns an immutable Dialect. Previously an instance of the requested
dialect was returned. Users could modify the underlying class, changing the behavior of active readers and
writers.

330 Chapter 13. File Formats

The Python Library Reference, Release 2.6.9

list_dialects()
Return the names of all registered dialects.

field_size_limit([new_limit])
Returns the current maximum field size allowed by the parser. If new_limit is given, this becomes the new limit.
New in version 2.5.

The csv module defines the following classes:

class DictReader(csvfile, [fieldnames=None, [restkey=None, [restval=None, [dialect=’excel’, [*args,
**kwds]]]]])

Create an object which operates like a regular reader but maps the information read into a dict whose keys are
given by the optional fieldnames parameter. If the fieldnames parameter is omitted, the values in the first row
of the csvfile will be used as the fieldnames. If the row read has more fields than the fieldnames sequence, the
remaining data is added as a sequence keyed by the value of restkey. If the row read has fewer fields than the
fieldnames sequence, the remaining keys take the value of the optional restval parameter. Any other optional or
keyword arguments are passed to the underlying reader instance.

class DictWriter(csvfile, fieldnames, [restval=”, [extrasaction=’raise’, [dialect=’excel’, [*args, **kwds]]]])
Create an object which operates like a regular writer but maps dictionaries onto output rows. The fieldnames
parameter identifies the order in which values in the dictionary passed to the writerow() method are written
to the csvfile. The optional restval parameter specifies the value to be written if the dictionary is missing a key
in fieldnames. If the dictionary passed to the writerow() method contains a key not found in fieldnames, the
optional extrasaction parameter indicates what action to take. If it is set to ’raise’ a ValueError is raised.
If it is set to ’ignore’, extra values in the dictionary are ignored. Any other optional or keyword arguments
are passed to the underlying writer instance.

Note that unlike the DictReader class, the fieldnames parameter of the DictWriter is not optional. Since
Python’s dict objects are not ordered, there is not enough information available to deduce the order in which
the row should be written to the csvfile.

class Dialect()
The Dialect class is a container class relied on primarily for its attributes, which are used to define the
parameters for a specific reader or writer instance.

class excel()
The excel class defines the usual properties of an Excel-generated CSV file. It is registered with the dialect
name ’excel’.

class excel_tab()
The excel_tab class defines the usual properties of an Excel-generated TAB-delimited file. It is registered
with the dialect name ’excel-tab’.

class Sniffer()
The Sniffer class is used to deduce the format of a CSV file.

The Sniffer class provides two methods:

sniff(sample, [delimiters=None])
Analyze the given sample and return a Dialect subclass reflecting the parameters found. If the optional
delimiters parameter is given, it is interpreted as a string containing possible valid delimiter characters.

has_header(sample)
Analyze the sample text (presumed to be in CSV format) and return True if the first row appears to be a
series of column headers.

An example for Sniffer use:

csvfile = open("example.csv", "rb")
dialect = csv.Sniffer().sniff(csvfile.read(1024))
csvfile.seek(0)

13.1. csv — CSV File Reading and Writing 331

The Python Library Reference, Release 2.6.9

reader = csv.reader(csvfile, dialect)
... process CSV file contents here ...

The csv module defines the following constants:

QUOTE_ALL
Instructs writer objects to quote all fields.

QUOTE_MINIMAL
Instructs writer objects to only quote those fields which contain special characters such as delimiter,
quotechar or any of the characters in lineterminator.

QUOTE_NONNUMERIC
Instructs writer objects to quote all non-numeric fields.

Instructs the reader to convert all non-quoted fields to type float.

QUOTE_NONE
Instructs writer objects to never quote fields. When the current delimiter occurs in output data it is preceded
by the current escapechar character. If escapechar is not set, the writer will raise Error if any characters that
require escaping are encountered.

Instructs reader to perform no special processing of quote characters.

The csv module defines the following exception:

exception Error
Raised by any of the functions when an error is detected.

13.1.2 Dialects and Formatting Parameters

To make it easier to specify the format of input and output records, specific formatting parameters are grouped together
into dialects. A dialect is a subclass of the Dialect class having a set of specific methods and a single validate()
method. When creating reader or writer objects, the programmer can specify a string or a subclass of the
Dialect class as the dialect parameter. In addition to, or instead of, the dialect parameter, the programmer can also
specify individual formatting parameters, which have the same names as the attributes defined below for the Dialect
class.

Dialects support the following attributes:

delimiter
A one-character string used to separate fields. It defaults to ’,’.

doublequote
Controls how instances of quotechar appearing inside a field should be themselves be quoted. When True, the
character is doubled. When False, the escapechar is used as a prefix to the quotechar. It defaults to True.

On output, if doublequote is False and no escapechar is set, Error is raised if a quotechar is found in a field.

escapechar
A one-character string used by the writer to escape the delimiter if quoting is set to QUOTE_NONE and the
quotechar if doublequote is False. On reading, the escapechar removes any special meaning from the follow-
ing character. It defaults to None, which disables escaping.

lineterminator
The string used to terminate lines produced by the writer. It defaults to ’\r\n’.

Note: The reader is hard-coded to recognise either ’\r’ or ’\n’ as end-of-line, and ignores lineterminator.
This behavior may change in the future.

332 Chapter 13. File Formats

The Python Library Reference, Release 2.6.9

quotechar
A one-character string used to quote fields containing special characters, such as the delimiter or quotechar, or
which contain new-line characters. It defaults to ’"’.

quoting
Controls when quotes should be generated by the writer and recognised by the reader. It can take on any of the
QUOTE_* constants (see section Module Contents) and defaults to QUOTE_MINIMAL.

skipinitialspace
When True, whitespace immediately following the delimiter is ignored. The default is False.

13.1.3 Reader Objects

Reader objects (DictReader instances and objects returned by the reader() function) have the following public
methods:

next()
Return the next row of the reader’s iterable object as a list, parsed according to the current dialect.

Reader objects have the following public attributes:

dialect
A read-only description of the dialect in use by the parser.

line_num
The number of lines read from the source iterator. This is not the same as the number of records returned, as
records can span multiple lines. New in version 2.5.

DictReader objects have the following public attribute:

fieldnames
If not passed as a parameter when creating the object, this attribute is initialized upon first access or when the
first record is read from the file. Changed in version 2.6.

13.1.4 Writer Objects

Writer objects (DictWriter instances and objects returned by the writer() function) have the following public
methods. A row must be a sequence of strings or numbers for Writer objects and a dictionary mapping fieldnames to
strings or numbers (by passing them through str() first) for DictWriter objects. Note that complex numbers are
written out surrounded by parens. This may cause some problems for other programs which read CSV files (assuming
they support complex numbers at all).

writerow(row)
Write the row parameter to the writer’s file object, formatted according to the current dialect.

writerows(rows)
Write all the rows parameters (a list of row objects as described above) to the writer’s file object, formatted
according to the current dialect.

Writer objects have the following public attribute:

dialect
A read-only description of the dialect in use by the writer.

13.1.5 Examples

The simplest example of reading a CSV file:

13.1. csv — CSV File Reading and Writing 333

The Python Library Reference, Release 2.6.9

import csv
reader = csv.reader(open("some.csv", "rb"))
for row in reader:

print row

Reading a file with an alternate format:

import csv
reader = csv.reader(open("passwd", "rb"), delimiter=’:’, quoting=csv.QUOTE_NONE)
for row in reader:

print row

The corresponding simplest possible writing example is:

import csv
writer = csv.writer(open("some.csv", "wb"))
writer.writerows(someiterable)

Registering a new dialect:

import csv

csv.register_dialect(’unixpwd’, delimiter=’:’, quoting=csv.QUOTE_NONE)

reader = csv.reader(open("passwd", "rb"), ’unixpwd’)

A slightly more advanced use of the reader — catching and reporting errors:

import csv, sys
filename = "some.csv"
reader = csv.reader(open(filename, "rb"))
try:

for row in reader:
print row

except csv.Error, e:
sys.exit(’file %s, line %d: %s’ % (filename, reader.line_num, e))

And while the module doesn’t directly support parsing strings, it can easily be done:

import csv
for row in csv.reader([’one,two,three’]):

print row

The csv module doesn’t directly support reading and writing Unicode, but it is 8-bit-clean save for some problems
with ASCII NUL characters. So you can write functions or classes that handle the encoding and decoding for you as
long as you avoid encodings like UTF-16 that use NULs. UTF-8 is recommended.

unicode_csv_reader() below is a generator that wraps csv.reader to handle Unicode CSV data (a list of
Unicode strings). utf_8_encoder() is a generator that encodes the Unicode strings as UTF-8, one string (or
row) at a time. The encoded strings are parsed by the CSV reader, and unicode_csv_reader() decodes the
UTF-8-encoded cells back into Unicode:

import csv

def unicode_csv_reader(unicode_csv_data, dialect=csv.excel, **kwargs):
csv.py doesn’t do Unicode; encode temporarily as UTF-8:
csv_reader = csv.reader(utf_8_encoder(unicode_csv_data),

dialect=dialect, **kwargs)
for row in csv_reader:

decode UTF-8 back to Unicode, cell by cell:

334 Chapter 13. File Formats

The Python Library Reference, Release 2.6.9

yield [unicode(cell, ’utf-8’) for cell in row]

def utf_8_encoder(unicode_csv_data):
for line in unicode_csv_data:

yield line.encode(’utf-8’)

For all other encodings the following UnicodeReader and UnicodeWriter classes can be used. They take an
additional encoding parameter in their constructor and make sure that the data passes the real reader or writer encoded
as UTF-8:

import csv, codecs, cStringIO

class UTF8Recoder:
"""
Iterator that reads an encoded stream and reencodes the input to UTF-8
"""
def __init__(self, f, encoding):

self.reader = codecs.getreader(encoding)(f)

def __iter__(self):
return self

def next(self):
return self.reader.next().encode("utf-8")

class UnicodeReader:
"""
A CSV reader which will iterate over lines in the CSV file "f",
which is encoded in the given encoding.
"""

def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds):
f = UTF8Recoder(f, encoding)
self.reader = csv.reader(f, dialect=dialect, **kwds)

def next(self):
row = self.reader.next()
return [unicode(s, "utf-8") for s in row]

def __iter__(self):
return self

class UnicodeWriter:
"""
A CSV writer which will write rows to CSV file "f",
which is encoded in the given encoding.
"""

def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds):
Redirect output to a queue
self.queue = cStringIO.StringIO()
self.writer = csv.writer(self.queue, dialect=dialect, **kwds)
self.stream = f
self.encoder = codecs.getincrementalencoder(encoding)()

13.1. csv — CSV File Reading and Writing 335

The Python Library Reference, Release 2.6.9

def writerow(self, row):
self.writer.writerow([s.encode("utf-8") for s in row])
Fetch UTF-8 output from the queue ...
data = self.queue.getvalue()
data = data.decode("utf-8")
... and reencode it into the target encoding
data = self.encoder.encode(data)
write to the target stream
self.stream.write(data)
empty queue
self.queue.truncate(0)

def writerows(self, rows):
for row in rows:

self.writerow(row)

13.2 ConfigParser — Configuration file parser

Note: The ConfigParser module has been renamed to configparser in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0. This module defines the class ConfigParser.
The ConfigParser class implements a basic configuration file parser language which provides a structure similar
to what you would find on Microsoft Windows INI files. You can use this to write Python programs which can be
customized by end users easily.

Note: This library does not interpret or write the value-type prefixes used in the Windows Registry extended version
of INI syntax.

The configuration file consists of sections, led by a [section] header and followed by name: value entries,
with continuations in the style of RFC 822 (see section 3.1.1, “LONG HEADER FIELDS”); name=value is also
accepted. Note that leading whitespace is removed from values. The optional values can contain format strings which
refer to other values in the same section, or values in a special DEFAULT section. Additional defaults can be provided
on initialization and retrieval. Lines beginning with ’#’ or ’;’ are ignored and may be used to provide comments.

Configuration files may include comments, prefixed by specific characters (# and ;). Comments may appear on their
own in an otherwise empty line, or may be entered in lines holding values or spection names. In the latter case, they
need to be preceded by a whitespace character to be recognized as a comment. (For backwards compatibility, only ;
starts an inline comment, while # does not.)

On top of the core functionality, SafeConfigParser supports interpolation. This means values can contain format
strings which refer to other values in the same section, or values in a special DEFAULT section. Additional defaults
can be provided on initialization.

For example:

[My Section]
foodir: %(dir)s/whatever
dir=frob
long: this value continues

in the next line

would resolve the %(dir)s to the value of dir (frob in this case). All reference expansions are done on demand.

Default values can be specified by passing them into the ConfigParser constructor as a dictionary. Additional
defaults may be passed into the get() method which will override all others.

Sections are normally stored in a built-in dictionary. An alternative dictionary type can be passed to the
ConfigParser constructor. For example, if a dictionary type is passed that sorts its keys, the sections will be

336 Chapter 13. File Formats

http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 2.6.9

sorted on write-back, as will be the keys within each section.

class RawConfigParser([defaults, [dict_type]])
The basic configuration object. When defaults is given, it is initialized into the dictionary of intrinsic defaults.
When dict_type is given, it will be used to create the dictionary objects for the list of sections, for the options
within a section, and for the default values. This class does not support the magical interpolation behavior. New
in version 2.3.Changed in version 2.6: dict_type was added.

class ConfigParser([defaults, [dict_type]])
Derived class of RawConfigParser that implements the magical interpolation feature and adds optional
arguments to the get() and items() methods. The values in defaults must be appropriate for the %()s
string interpolation. Note that __name__ is an intrinsic default; its value is the section name, and will override
any value provided in defaults.

All option names used in interpolation will be passed through the optionxform() method just like any other
option name reference. For example, using the default implementation of optionxform() (which converts
option names to lower case), the values foo %(bar)s and foo %(BAR)s are equivalent.

class SafeConfigParser([defaults, [dict_type]])
Derived class of ConfigParser that implements a more-sane variant of the magical interpolation feature.
This implementation is more predictable as well. New applications should prefer this version if they don’t need
to be compatible with older versions of Python. New in version 2.3.

exception Error
Base class for all other configparser exceptions.

exception NoSectionError
Exception raised when a specified section is not found.

exception DuplicateSectionError
Exception raised if add_section() is called with the name of a section that is already present.

exception NoOptionError
Exception raised when a specified option is not found in the specified section.

exception InterpolationError
Base class for exceptions raised when problems occur performing string interpolation.

exception InterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAX_INTERPOLATION_DEPTH. Subclass of InterpolationError.

exception InterpolationMissingOptionError
Exception raised when an option referenced from a value does not exist. Subclass of InterpolationError.
New in version 2.3.

exception InterpolationSyntaxError
Exception raised when the source text into which substitutions are made does not conform to the required syntax.
Subclass of InterpolationError. New in version 2.3.

exception MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exception ParsingError
Exception raised when errors occur attempting to parse a file.

MAX_INTERPOLATION_DEPTH
The maximum depth for recursive interpolation for get() when the raw parameter is false. This is relevant
only for the ConfigParser class.

See Also:

13.2. ConfigParser — Configuration file parser 337

The Python Library Reference, Release 2.6.9

Module shlex Support for a creating Unix shell-like mini-languages which can be used as an alternate format for
application configuration files.

13.2.1 RawConfigParser Objects

RawConfigParser instances have the following methods:

defaults()
Return a dictionary containing the instance-wide defaults.

sections()
Return a list of the sections available; DEFAULT is not included in the list.

add_section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised. If the name DEFAULT (or any of it’s case-insensitive variants) is
passed, ValueError is raised.

has_section(section)
Indicates whether the named section is present in the configuration. The DEFAULT section is not acknowledged.

options(section)
Returns a list of options available in the specified section.

has_option(section, option)
If the given section exists, and contains the given option, return True; otherwise return False. New in version
1.6.

read(filenames)
Attempt to read and parse a list of filenames, returning a list of filenames which were successfully parsed. If
filenames is a string or Unicode string, it is treated as a single filename. If a file named in filenames cannot be
opened, that file will be ignored. This is designed so that you can specify a list of potential configuration file
locations (for example, the current directory, the user’s home directory, and some system-wide directory), and
all existing configuration files in the list will be read. If none of the named files exist, the ConfigParser
instance will contain an empty dataset. An application which requires initial values to be loaded from a file
should load the required file or files using readfp() before calling read() for any optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser()
config.readfp(open(’defaults.cfg’))
config.read([’site.cfg’, os.path.expanduser(’~/.myapp.cfg’)])

Changed in version 2.4: Returns list of successfully parsed filenames.

readfp(fp, [filename])
Read and parse configuration data from the file or file-like object in fp (only the readline() method is used).
If filename is omitted and fp has a name attribute, that is used for filename; the default is <???>.

get(section, option)
Get an option value for the named section.

getint(section, option)
A convenience method which coerces the option in the specified section to an integer.

getfloat(section, option)
A convenience method which coerces the option in the specified section to a floating point number.

338 Chapter 13. File Formats

The Python Library Reference, Release 2.6.9

getboolean(section, option)
A convenience method which coerces the option in the specified section to a Boolean value. Note that the
accepted values for the option are "1", "yes", "true", and "on", which cause this method to return True,
and "0", "no", "false", and "off", which cause it to return False. These string values are checked in a
case-insensitive manner. Any other value will cause it to raise ValueError.

items(section)
Return a list of (name, value) pairs for each option in the given section.

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise NoSectionError.
While it is possible to use RawConfigParser (or ConfigParser with raw parameters set to true) for
internal storage of non-string values, full functionality (including interpolation and output to files) can only be
achieved using string values. New in version 1.6.

write(fileobject)
Write a representation of the configuration to the specified file object. This representation can be parsed by a
future read() call. New in version 1.6.

remove_option(section, option)
Remove the specified option from the specified section. If the section does not exist, raise NoSectionError.
If the option existed to be removed, return True; otherwise return False. New in version 1.6.

remove_section(section)
Remove the specified section from the configuration. If the section in fact existed, return True. Otherwise
return False.

optionxform(option)
Transforms the option name option as found in an input file or as passed in by client code to the form that should
be used in the internal structures. The default implementation returns a lower-case version of option; subclasses
may override this or client code can set an attribute of this name on instances to affect this behavior.

You don’t necessarily need to subclass a ConfigParser to use this method, you can also re-set it on an instance, to
a function that takes a string argument. Setting it to str, for example, would make option names case sensitive:

cfgparser = ConfigParser()
...
cfgparser.optionxform = str

Note that when reading configuration files, whitespace around the option names are stripped before
optionxform() is called.

13.2.2 ConfigParser Objects

The ConfigParser class extends some methods of the RawConfigParser interface, adding some optional
arguments.

get(section, option, [raw, [vars]])
Get an option value for the named section. If vars is provided, it must be a dictionary. The option is looked up
in vars (if provided), section, and in defaults in that order.

All the ’%’ interpolations are expanded in the return values, unless the raw argument is true. Values for
interpolation keys are looked up in the same manner as the option.

items(section, [raw, [vars]])
Return a list of (name, value) pairs for each option in the given section. Optional arguments have the same
meaning as for the get() method. New in version 2.3.

13.2. ConfigParser — Configuration file parser 339

The Python Library Reference, Release 2.6.9

13.2.3 SafeConfigParser Objects

The SafeConfigParser class implements the same extended interface as ConfigParser, with the following
addition:

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise NoSectionError. value
must be a string (str or unicode); if not, TypeError is raised. New in version 2.4.

13.2.4 Examples

An example of writing to a configuration file:

import ConfigParser

config = ConfigParser.RawConfigParser()

When adding sections or items, add them in the reverse order of
how you want them to be displayed in the actual file.
In addition, please note that using RawConfigParser’s and the raw
mode of ConfigParser’s respective set functions, you can assign
non-string values to keys internally, but will receive an error
when attempting to write to a file or when you get it in non-raw
mode. SafeConfigParser does not allow such assignments to take place.
config.add_section(’Section1’)
config.set(’Section1’, ’int’, ’15’)
config.set(’Section1’, ’bool’, ’true’)
config.set(’Section1’, ’float’, ’3.1415’)
config.set(’Section1’, ’baz’, ’fun’)
config.set(’Section1’, ’bar’, ’Python’)
config.set(’Section1’, ’foo’, ’%(bar)s is %(baz)s!’)

Writing our configuration file to ’example.cfg’
with open(’example.cfg’, ’wb’) as configfile:

config.write(configfile)

An example of reading the configuration file again:

import ConfigParser

config = ConfigParser.RawConfigParser()
config.read(’example.cfg’)

getfloat() raises an exception if the value is not a float
getint() and getboolean() also do this for their respective types
float = config.getfloat(’Section1’, ’float’)
int = config.getint(’Section1’, ’int’)
print float + int

Notice that the next output does not interpolate ’%(bar)s’ or ’%(baz)s’.
This is because we are using a RawConfigParser().
if config.getboolean(’Section1’, ’bool’):

print config.get(’Section1’, ’foo’)

To get interpolation, you will need to use a ConfigParser or SafeConfigParser:

340 Chapter 13. File Formats

The Python Library Reference, Release 2.6.9

import ConfigParser

config = ConfigParser.ConfigParser()
config.read(’example.cfg’)

Set the third, optional argument of get to 1 if you wish to use raw mode.
print config.get(’Section1’, ’foo’, 0) # -> "Python is fun!"
print config.get(’Section1’, ’foo’, 1) # -> "%(bar)s is %(baz)s!"

The optional fourth argument is a dict with members that will take
precedence in interpolation.
print config.get(’Section1’, ’foo’, 0, {’bar’: ’Documentation’,

’baz’: ’evil’})

Defaults are available in all three types of ConfigParsers. They are used in interpolation if an option used is not defined
elsewhere.

import ConfigParser

New instance with ’bar’ and ’baz’ defaulting to ’Life’ and ’hard’ each
config = ConfigParser.SafeConfigParser({’bar’: ’Life’, ’baz’: ’hard’})
config.read(’example.cfg’)

print config.get(’Section1’, ’foo’) # -> "Python is fun!"
config.remove_option(’Section1’, ’bar’)
config.remove_option(’Section1’, ’baz’)
print config.get(’Section1’, ’foo’) # -> "Life is hard!"

The function opt_move below can be used to move options between sections:

def opt_move(config, section1, section2, option):
try:

config.set(section2, option, config.get(section1, option, 1))
except ConfigParser.NoSectionError:

Create non-existent section
config.add_section(section2)
opt_move(config, section1, section2, option)

else:
config.remove_option(section1, option)

13.3 robotparser — Parser for robots.txt

Note: The robotparser module has been renamed urllib.robotparser in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0.

This module provides a single class, RobotFileParser, which answers questions about whether or not a particular
user agent can fetch a URL on the Web site that published the robots.txt file. For more details on the structure of
robots.txt files, see http://www.robotstxt.org/orig.html.

class RobotFileParser()
This class provides a set of methods to read, parse and answer questions about a single robots.txt file.

set_url(url)
Sets the URL referring to a robots.txt file.

13.3. robotparser — Parser for robots.txt 341

http://www.robotstxt.org/orig.html

The Python Library Reference, Release 2.6.9

read()
Reads the robots.txt URL and feeds it to the parser.

parse(lines)
Parses the lines argument.

can_fetch(useragent, url)
Returns True if the useragent is allowed to fetch the url according to the rules contained in the parsed
robots.txt file.

mtime()
Returns the time the robots.txt file was last fetched. This is useful for long-running web spiders that
need to check for new robots.txt files periodically.

modified()
Sets the time the robots.txt file was last fetched to the current time.

The following example demonstrates basic use of the RobotFileParser class.

>>> import robotparser
>>> rp = robotparser.RobotFileParser()
>>> rp.set_url("http://www.musi-cal.com/robots.txt")
>>> rp.read()
>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")
False
>>> rp.can_fetch("*", "http://www.musi-cal.com/")
True

13.4 netrc — netrc file processing

New in version 1.5.2. The netrc class parses and encapsulates the netrc file format used by the Unix ftp program
and other FTP clients.

class netrc([file])
A netrc instance or subclass instance encapsulates data from a netrc file. The initialization argument, if
present, specifies the file to parse. If no argument is given, the file .netrc in the user’s home directory will
be read. Parse errors will raise NetrcParseError with diagnostic information including the file name, line
number, and terminating token. If no argument is specified on a POSIX system, the presence of passwords in the
.netrc file will raise a NetrcParseError if the file ownership or permissions are insecure (owned by a
user other than the user running the process, or accessible for read or write by any other user). This implements
security behavior equivalent to that of ftp and other programs that use .netrc. Changed in version 2.6.9:
Added the POSIX permissions check.

exception NetrcParseError
Exception raised by the netrc class when syntactical errors are encountered in source text. Instances of this
exception provide three interesting attributes: msg is a textual explanation of the error, filename is the name
of the source file, and lineno gives the line number on which the error was found.

13.4.1 netrc Objects

A netrc instance has the following methods:

authenticators(host)
Return a 3-tuple (login, account, password) of authenticators for host. If the netrc file did not con-
tain an entry for the given host, return the tuple associated with the ‘default’ entry. If neither matching host nor
default entry is available, return None.

342 Chapter 13. File Formats

The Python Library Reference, Release 2.6.9

__repr__()
Dump the class data as a string in the format of a netrc file. (This discards comments and may reorder the
entries.)

Instances of netrc have public instance variables:

hosts
Dictionary mapping host names to (login, account, password) tuples. The ‘default’ entry, if any, is
represented as a pseudo-host by that name.

macros
Dictionary mapping macro names to string lists.

Note: Passwords are limited to a subset of the ASCII character set. Versions of this module prior to 2.3 were
extremely limited. Starting with 2.3, all ASCII punctuation is allowed in passwords. However, note that whitespace
and non-printable characters are not allowed in passwords. This is a limitation of the way the .netrc file is parsed and
may be removed in the future.

13.5 xdrlib — Encode and decode XDR data

The xdrlib module supports the External Data Representation Standard as described in RFC 1014, written by Sun
Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR representation, and another for unpack-
ing from XDR representation. There are also two exception classes.

class Packer()
Packer is the class for packing data into XDR representation. The Packer class is instantiated with no
arguments.

class Unpacker(data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input buffer
is given as data.

See Also:

RFC 1014 - XDR: External Data Representation Standard This RFC defined the encoding of data which was
XDR at the time this module was originally written. It has apparently been obsoleted by RFC 1832.

RFC 1832 - XDR: External Data Representation Standard Newer RFC that provides a revised definition of XDR.

13.5.1 Packer Objects

Packer instances have the following methods:

get_buffer()
Returns the current pack buffer as a string.

reset()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriate pack_type()
method. Each method takes a single argument, the value to pack. The following simple data type packing meth-
ods are supported: pack_uint(), pack_int(), pack_enum(), pack_bool(), pack_uhyper(), and
pack_hyper().

pack_float(value)
Packs the single-precision floating point number value.

13.5. xdrlib — Encode and decode XDR data 343

http://tools.ietf.org/html/rfc1014.html
http://tools.ietf.org/html/rfc1014.html
http://tools.ietf.org/html/rfc1832.html
http://tools.ietf.org/html/rfc1832.html

The Python Library Reference, Release 2.6.9

pack_double(value)
Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

pack_fstring(n, s)
Packs a fixed length string, s. n is the length of the string but it is not packed into the data buffer. The string is
padded with null bytes if necessary to guaranteed 4 byte alignment.

pack_fopaque(n, data)
Packs a fixed length opaque data stream, similarly to pack_fstring().

pack_string(s)
Packs a variable length string, s. The length of the string is first packed as an unsigned integer, then the string
data is packed with pack_fstring().

pack_opaque(data)
Packs a variable length opaque data string, similarly to pack_string().

pack_bytes(bytes)
Packs a variable length byte stream, similarly to pack_string().

The following methods support packing arrays and lists:

pack_list(list, pack_item)
Packs a list of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is not
available until the entire list has been walked. For each item in the list, an unsigned integer 1 is packed first,
followed by the data value from the list. pack_item is the function that is called to pack the individual item. At
the end of the list, an unsigned integer 0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib
p = xdrlib.Packer()
p.pack_list([1, 2, 3], p.pack_int)

pack_farray(n, array, pack_item)
Packs a fixed length list (array) of homogeneous items. n is the length of the list; it is not packed into the buffer,
but a ValueError exception is raised if len(array) is not equal to n. As above, pack_item is the function
used to pack each element.

pack_array(list, pack_item)
Packs a variable length list of homogeneous items. First, the length of the list is packed as an unsigned integer,
then each element is packed as in pack_farray() above.

13.5.2 Unpacker Objects

The Unpacker class offers the following methods:

reset(data)
Resets the string buffer with the given data.

get_position()
Returns the current unpack position in the data buffer.

set_position(position)
Sets the data buffer unpack position to position. You should be careful about using get_position() and
set_position().

344 Chapter 13. File Formats

The Python Library Reference, Release 2.6.9

get_buffer()
Returns the current unpack data buffer as a string.

done()
Indicates unpack completion. Raises an Error exception if all of the data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker. Unpacking
methods are of the form unpack_type(), and take no arguments. They return the unpacked object.

unpack_float()
Unpacks a single-precision floating point number.

unpack_double()
Unpacks a double-precision floating point number, similarly to unpack_float().

In addition, the following methods unpack strings, bytes, and opaque data:

unpack_fstring(n)
Unpacks and returns a fixed length string. n is the number of characters expected. Padding with null bytes to
guaranteed 4 byte alignment is assumed.

unpack_fopaque(n)
Unpacks and returns a fixed length opaque data stream, similarly to unpack_fstring().

unpack_string()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned integer,
then the string data is unpacked with unpack_fstring().

unpack_opaque()
Unpacks and returns a variable length opaque data string, similarly to unpack_string().

unpack_bytes()
Unpacks and returns a variable length byte stream, similarly to unpack_string().

The following methods support unpacking arrays and lists:

unpack_list(unpack_item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first unpacking
an unsigned integer flag. If the flag is 1, then the item is unpacked and appended to the list. A flag of 0 indicates
the end of the list. unpack_item is the function that is called to unpack the items.

unpack_farray(n, unpack_item)
Unpacks and returns (as a list) a fixed length array of homogeneous items. n is number of list elements to expect
in the buffer. As above, unpack_item is the function used to unpack each element.

unpack_array(unpack_item)
Unpacks and returns a variable length list of homogeneous items. First, the length of the list is unpacked as an
unsigned integer, then each element is unpacked as in unpack_farray() above.

13.5.3 Exceptions

Exceptions in this module are coded as class instances:

exception Error
The base exception class. Error has a single public data member msg containing the description of the error.

exception ConversionError
Class derived from Error. Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

13.5. xdrlib — Encode and decode XDR data 345

The Python Library Reference, Release 2.6.9

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError, instance:

print ’packing the double failed:’, instance.msg

13.6 plistlib — Generate and parse Mac OS X .plist files

Changed in version 2.6: This module was previously only available in the Mac-specific library, it is now available for
all platforms. This module provides an interface for reading and writing the “property list” XML files used mainly by
Mac OS X.

The property list (.plist) file format is a simple XML pickle supporting basic object types, like dictionaries, lists,
numbers and strings. Usually the top level object is a dictionary.

Values can be strings, integers, floats, booleans, tuples, lists, dictionaries (but only with string keys), Data or
datetime.datetime objects. String values (including dictionary keys) may be unicode strings – they will be
written out as UTF-8.

The <data> plist type is supported through the Data class. This is a thin wrapper around a Python string. Use Data
if your strings contain control characters.

See Also:

PList manual page Apple’s documentation of the file format.

This module defines the following functions:

readPlist(pathOrFile)
Read a plist file. pathOrFile may either be a file name or a (readable) file object. Return the unpacked root
object (which usually is a dictionary).

The XML data is parsed using the Expat parser from xml.parsers.expat – see its documentation for
possible exceptions on ill-formed XML. Unknown elements will simply be ignored by the plist parser.

writePlist(rootObject, pathOrFile)
Write rootObject to a plist file. pathOrFile may either be a file name or a (writable) file object.

A TypeError will be raised if the object is of an unsupported type or a container that contains objects of
unsupported types.

readPlistFromString(data)
Read a plist from a string. Return the root object.

writePlistToString(rootObject)
Return rootObject as a plist-formatted string.

readPlistFromResource(path, [restype=’plst’, [resid=0]])
Read a plist from the resource with type restype from the resource fork of path. Availability: Mac OS X.

Note: In Python 3.x, this function has been removed.

writePlistToResource(rootObject, path, [restype=’plst’, [resid=0]])
Write rootObject as a resource with type restype to the resource fork of path. Availability: Mac OS X.

Note: In Python 3.x, this function has been removed.

The following class is available:

346 Chapter 13. File Formats

http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html

The Python Library Reference, Release 2.6.9

class Data(data)
Return a “data” wrapper object around the string data. This is used in functions converting from/to plists to
represent the <data> type available in plists.

It has one attribute, data, that can be used to retrieve the Python string stored in it.

13.6.1 Examples

Generating a plist:

pl = dict(
aString="Doodah",
aList=["A", "B", 12, 32.1, [1, 2, 3]],
aFloat = 0.1,
anInt = 728,
aDict=dict(

anotherString="<hello & hi there!>",
aUnicodeValue=u’M\xe4ssig, Ma\xdf’,
aTrueValue=True,
aFalseValue=False,

),
someData = Data("<binary gunk>"),
someMoreData = Data("<lots of binary gunk>" * 10),
aDate = datetime.datetime.fromtimestamp(time.mktime(time.gmtime())),

)
unicode keys are possible, but a little awkward to use:
pl[u’\xc5benraa’] = "That was a unicode key."
writePlist(pl, fileName)

Parsing a plist:

pl = readPlist(pathOrFile)
print pl["aKey"]

13.6. plistlib — Generate and parse Mac OS X .plist files 347

The Python Library Reference, Release 2.6.9

348 Chapter 13. File Formats

CHAPTER

FOURTEEN

CRYPTOGRAPHIC SERVICES

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available at
the discretion of the installation. Here’s an overview:

14.1 hashlib — Secure hashes and message digests

New in version 2.5. This module implements a common interface to many different secure hash and message digest
algorithms. Included are the FIPS secure hash algorithms SHA1, SHA224, SHA256, SHA384, and SHA512 (defined
in FIPS 180-2) as well as RSA’s MD5 algorithm (defined in Internet RFC 1321). The terms secure hash and message
digest are interchangeable. Older algorithms were called message digests. The modern term is secure hash.

Note: If you want the adler32 or crc32 hash functions they are available in the zlib module.

Warning: Some algorithms have known hash collision weaknesses, see the FAQ at the end.

There is one constructor method named for each type of hash. All return a hash object with the same simple interface.
For example: use sha1() to create a SHA1 hash object. You can now feed this object with arbitrary strings using the
update() method. At any point you can ask it for the digest of the concatenation of the strings fed to it so far using
the digest() or hexdigest() methods. Constructors for hash algorithms that are always present in this module
are md5(), sha1(), sha224(), sha256(), sha384(), and sha512(). Additional algorithms may also be
available depending upon the OpenSSL library that Python uses on your platform.

For example, to obtain the digest of the string ’Nobody inspects the spammish repetition’:

>>> import hashlib
>>> m = hashlib.md5()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>> hashlib.sha224("Nobody inspects the spammish repetition").hexdigest()
’a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2’

349

http://tools.ietf.org/html/rfc1321.html

The Python Library Reference, Release 2.6.9

A generic new() constructor that takes the string name of the desired algorithm as its first parameter also exists to
allow access to the above listed hashes as well as any other algorithms that your OpenSSL library may offer. The
named constructors are much faster than new() and should be preferred.

Using new() with an algorithm provided by OpenSSL:

>>> h = hashlib.new(’ripemd160’)
>>> h.update("Nobody inspects the spammish repetition")
>>> h.hexdigest()
’cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc’

The following values are provided as constant attributes of the hash objects returned by the constructors:

digest_size
The size of the resulting hash in bytes.

block_size
The internal block size of the hash algorithm in bytes.

A hash object has the following methods:

update(arg)
Update the hash object with the string arg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a+b).

digest()
Return the digest of the strings passed to the update() method so far. This is a string of digest_size
bytes which may contain non-ASCII characters, including null bytes.

hexdigest()
Like digest() except the digest is returned as a string of double length, containing only hexadecimal digits.
This may be used to exchange the value safely in email or other non-binary environments.

copy()
Return a copy (“clone”) of the hash object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

See Also:

Module hmac A module to generate message authentication codes using hashes.

Module base64 Another way to encode binary hashes for non-binary environments.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf The FIPS 180-2 publication on Secure Hash Algo-
rithms.

http://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms Wikipedia article
with information on which algorithms have known issues and what that means regarding their use.

14.2 hmac — Keyed-Hashing for Message Authentication

New in version 2.2. This module implements the HMAC algorithm as described by RFC 2104.

new(key, [msg, [digestmod]])
Return a new hmac object. If msg is present, the method call update(msg) is made. digestmod is the digest
constructor or module for the HMAC object to use. It defaults to the hashlib.md5() constructor.

Note: The md5 hash has known weaknesses but remains the default for backwards compatibility. Choose a
better one for your application.

An HMAC object has the following methods:

350 Chapter 14. Cryptographic Services

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
http://tools.ietf.org/html/rfc2104.html

The Python Library Reference, Release 2.6.9

update(msg)
Update the hmac object with the string msg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a + b).

digest()
Return the digest of the strings passed to the update() method so far. This string will be the same length
as the digest_size of the digest given to the constructor. It may contain non-ASCII characters, including NUL
bytes.

hexdigest()
Like digest() except the digest is returned as a string twice the length containing only hexadecimal digits.
This may be used to exchange the value safely in email or other non-binary environments.

copy()
Return a copy (“clone”) of the hmac object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

See Also:

Module hashlib The Python module providing secure hash functions.

14.3 md5 — MD5 message digest algorithm

Deprecated since version 2.5: Use the hashlib module instead. This module implements the interface to RSA’s
MD5 message digest algorithm (see also Internet RFC 1321). Its use is quite straightforward: use new() to create an
md5 object. You can now feed this object with arbitrary strings using the update() method, and at any point you
can ask it for the digest (a strong kind of 128-bit checksum, a.k.a. “fingerprint”) of the concatenation of the strings fed
to it so far using the digest() method.

For example, to obtain the digest of the string ’Nobody inspects the spammish repetition’:

>>> import md5
>>> m = md5.new()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()
’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’

The following values are provided as constants in the module and as attributes of the md5 objects returned by new():

digest_size
The size of the resulting digest in bytes. This is always 16.

The md5 module provides the following functions:

new([arg])
Return a new md5 object. If arg is present, the method call update(arg) is made.

md5([arg])
For backward compatibility reasons, this is an alternative name for the new() function.

An md5 object has the following methods:

14.3. md5 — MD5 message digest algorithm 351

http://tools.ietf.org/html/rfc1321.html

The Python Library Reference, Release 2.6.9

update(arg)
Update the md5 object with the string arg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a+b).

digest()
Return the digest of the strings passed to the update() method so far. This is a 16-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest()
Like digest() except the digest is returned as a string of length 32, containing only hexadecimal digits. This
may be used to exchange the value safely in email or other non-binary environments.

copy()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

See Also:

Module sha Similar module implementing the Secure Hash Algorithm (SHA). The SHA algorithm is considered a
more secure hash.

14.4 sha — SHA-1 message digest algorithm

Deprecated since version 2.5: Use the hashlib module instead. This module implements the interface to NIST’s
secure hash algorithm, known as SHA-1. SHA-1 is an improved version of the original SHA hash algorithm. It is used
in the same way as the md5 module: use new() to create an sha object, then feed this object with arbitrary strings
using the update() method, and at any point you can ask it for the digest of the concatenation of the strings fed to
it so far. SHA-1 digests are 160 bits instead of MD5’s 128 bits.

new([string])
Return a new sha object. If string is present, the method call update(string) is made.

The following values are provided as constants in the module and as attributes of the sha objects returned by new():

blocksize
Size of the blocks fed into the hash function; this is always 1. This size is used to allow an arbitrary string to be
hashed.

digest_size
The size of the resulting digest in bytes. This is always 20.

An sha object has the same methods as md5 objects:

update(arg)
Update the sha object with the string arg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments: m.update(a); m.update(b) is equivalent to m.update(a+b).

digest()
Return the digest of the strings passed to the update() method so far. This is a 20-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest()
Like digest() except the digest is returned as a string of length 40, containing only hexadecimal digits. This
may be used to exchange the value safely in email or other non-binary environments.

copy()
Return a copy (“clone”) of the sha object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

See Also:

352 Chapter 14. Cryptographic Services

The Python Library Reference, Release 2.6.9

Secure Hash Standard The Secure Hash Algorithm is defined by NIST document FIPS PUB 180-2: Secure Hash
Standard, published in August 2002.

Cryptographic Toolkit (Secure Hashing) Links from NIST to various information on secure hashing.

Hardcore cypherpunks will probably find the cryptographic modules written by A.M. Kuchling of further interest; the
package contains modules for various encryption algorithms, most notably AES. These modules are not distributed
with Python but available separately. See the URL http://www.amk.ca/python/code/crypto.html for more information.

14.4. sha — SHA-1 message digest algorithm 353

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/CryptoToolkit/tkhash.html
http://www.amk.ca/python/code/crypto.html

The Python Library Reference, Release 2.6.9

354 Chapter 14. Cryptographic Services

CHAPTER

FIFTEEN

GENERIC OPERATING SYSTEM
SERVICES

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modeled after the Unix or C interfaces, but
they are available on most other systems as well. Here’s an overview:

15.1 os — Miscellaneous operating system interfaces

This module provides a portable way of using operating system dependent functionality. If you just want to read or
write a file see open(), if you want to manipulate paths, see the os.path module, and if you want to read all the
lines in all the files on the command line see the fileinput module. For creating temporary files and directories
see the tempfile module, and for high-level file and directory handling see the shutil module.

Notes on the availability of these functions:

• The design of all built-in operating system dependent modules of Python is such that as long as the same
functionality is available, it uses the same interface; for example, the function os.stat(path) returns stat
information about path in the same format (which happens to have originated with the POSIX interface).

• Extensions peculiar to a particular operating system are also available through the os module, but using them is
of course a threat to portability.

• An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

• If not separately noted, all functions that claim “Availability: Unix” are supported on Mac OS X, which builds
on a Unix core.

Note: All functions in this module raise OSError in the case of invalid or inaccessible file names and paths, or other
arguments that have the correct type, but are not accepted by the operating system.

exception error
An alias for the built-in OSError exception.

name
The name of the operating system dependent module imported. The following names have currently been
registered: ’posix’, ’nt’, ’mac’, ’os2’, ’ce’, ’java’, ’riscos’.

15.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

355

The Python Library Reference, Release 2.6.9

environ
A mapping object representing the string environment. For example, environ[’HOME’] is the pathname of
your home directory (on some platforms), and is equivalent to getenv("HOME") in C.

This mapping is captured the first time the os module is imported, typically during Python startup as part of
processing site.py. Changes to the environment made after this time are not reflected in os.environ,
except for changes made by modifying os.environ directly.

If the platform supports the putenv() function, this mapping may be used to modify the environment as well
as query the environment. putenv() will be called automatically when the mapping is modified.

Note: Calling putenv() directly does not change os.environ, so it’s better to modify os.environ.

Note: On some platforms, including FreeBSD and Mac OS X, setting environ may cause memory leaks.
Refer to the system documentation for putenv().

If putenv() is not provided, a modified copy of this mapping may be passed to the appropriate process-
creation functions to cause child processes to use a modified environment.

If the platform supports the unsetenv() function, you can delete items in this mapping to unset environment
variables. unsetenv() will be called automatically when an item is deleted from os.environ, and when
one of the pop() or clear() methods is called. Changed in version 2.6: Also unset environment variables
when calling os.environ.clear() and os.environ.pop().

chdir(path)
fchdir(fd)
getcwd()

These functions are described in Files and Directories.

ctermid()
Return the filename corresponding to the controlling terminal of the process.

Availability: Unix.

getegid()
Return the effective group id of the current process. This corresponds to the “set id” bit on the file being executed
in the current process.

Availability: Unix.

geteuid()
Return the current process’s effective user id.

Availability: Unix.

getgid()
Return the real group id of the current process.

Availability: Unix.

getgroups()
Return list of supplemental group ids associated with the current process.

Availability: Unix.

getlogin()
Return the name of the user logged in on the controlling terminal of the process. For most pur-
poses, it is more useful to use the environment variable LOGNAME to find out who the user is, or
pwd.getpwuid(os.getuid())[0] to get the login name of the currently effective user id.

Availability: Unix.

356 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

getpgid(pid)
Return the process group id of the process with process id pid. If pid is 0, the process group id of the current
process is returned.

Availability: Unix. New in version 2.3.

getpgrp()
Return the id of the current process group.

Availability: Unix.

getpid()
Return the current process id.

Availability: Unix, Windows.

getppid()
Return the parent’s process id.

Availability: Unix.

getuid()
Return the current process’s user id.

Availability: Unix.

getenv(varname, [value])
Return the value of the environment variable varname if it exists, or value if it doesn’t. value defaults to None.

Availability: most flavors of Unix, Windows.

putenv(varname, value)
Set the environment variable named varname to the string value. Such changes to the environment affect sub-
processes started with os.system(), popen() or fork() and execv().

Availability: most flavors of Unix, Windows.

Note: On some platforms, including FreeBSD and Mac OS X, setting environ may cause memory leaks.
Refer to the system documentation for putenv.

When putenv() is supported, assignments to items in os.environ are automatically translated into cor-
responding calls to putenv(); however, calls to putenv() don’t update os.environ, so it is actually
preferable to assign to items of os.environ.

setegid(egid)
Set the current process’s effective group id.

Availability: Unix.

seteuid(euid)
Set the current process’s effective user id.

Availability: Unix.

setgid(gid)
Set the current process’ group id.

Availability: Unix.

setgroups(groups)
Set the list of supplemental group ids associated with the current process to groups. groups must be a sequence,
and each element must be an integer identifying a group. This operation is typically available only to the
superuser.

Availability: Unix. New in version 2.2.

15.1. os — Miscellaneous operating system interfaces 357

The Python Library Reference, Release 2.6.9

setpgrp()
Call the system call setpgrp() or setpgrp(0, 0)() depending on which version is implemented (if
any). See the Unix manual for the semantics.

Availability: Unix.

setpgid(pid, pgrp)
Call the system call setpgid() to set the process group id of the process with id pid to the process group with
id pgrp. See the Unix manual for the semantics.

Availability: Unix.

setreuid(ruid, euid)
Set the current process’s real and effective user ids.

Availability: Unix.

setregid(rgid, egid)
Set the current process’s real and effective group ids.

Availability: Unix.

getsid(pid)
Call the system call getsid(). See the Unix manual for the semantics.

Availability: Unix. New in version 2.4.

setsid()
Call the system call setsid(). See the Unix manual for the semantics.

Availability: Unix.

setuid(uid)
Set the current process’s user id.

Availability: Unix.

strerror(code)
Return the error message corresponding to the error code in code. On platforms where strerror() returns
NULL when given an unknown error number, ValueError is raised.

Availability: Unix, Windows.

umask(mask)
Set the current numeric umask and return the previous umask.

Availability: Unix, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysname, nodename, release, version, machine). Some systems truncate the nodename to
8 characters or to the leading component; a better way to get the hostname is socket.gethostname() or
even socket.gethostbyaddr(socket.gethostname()).

Availability: recent flavors of Unix.

unsetenv(varname)
Unset (delete) the environment variable named varname. Such changes to the environment affect subprocesses
started with os.system(), popen() or fork() and execv().

When unsetenv() is supported, deletion of items in os.environ is automatically translated into a corre-
sponding call to unsetenv(); however, calls to unsetenv() don’t update os.environ, so it is actually
preferable to delete items of os.environ.

Availability: most flavors of Unix, Windows.

358 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

15.1.2 File Object Creation

These functions create new file objects. (See also open().)

fdopen(fd, [mode, [bufsize]])
Return an open file object connected to the file descriptor fd. The mode and bufsize arguments have the same
meaning as the corresponding arguments to the built-in open() function.

Availability: Unix, Windows. Changed in version 2.3: When specified, the mode argument must now start
with one of the letters ’r’, ’w’, or ’a’, otherwise a ValueError is raised.Changed in version 2.5: On
Unix, when the mode argument starts with ’a’, the O_APPEND flag is set on the file descriptor (which the
fdopen() implementation already does on most platforms).

popen(command, [mode, [bufsize]])
Open a pipe to or from command. The return value is an open file object connected to the pipe, which can be read
or written depending on whether mode is ’r’ (default) or ’w’. The bufsize argument has the same meaning as
the corresponding argument to the built-in open() function. The exit status of the command (encoded in the
format specified for wait()) is available as the return value of the close() method of the file object, except
that when the exit status is zero (termination without errors), None is returned.

Availability: Unix, Windows. Deprecated since version 2.6: This function is obsolete. Use the subprocess
module. Check especially the Replacing Older Functions with the subprocess Module section.Changed in ver-
sion 2.0: This function worked unreliably under Windows in earlier versions of Python. This was due to the use
of the _popen() function from the libraries provided with Windows. Newer versions of Python do not use the
broken implementation from the Windows libraries.

tmpfile()
Return a new file object opened in update mode (w+b). The file has no directory entries associated with it and
will be automatically deleted once there are no file descriptors for the file.

Availability: Unix, Windows.

There are a number of different popen*() functions that provide slightly different ways to create subprocesses.
Deprecated since version 2.6: All of the popen*() functions are obsolete. Use the subprocess module. For each
of the popen*() variants, if bufsize is specified, it specifies the buffer size for the I/O pipes. mode, if provided,
should be the string ’b’ or ’t’; on Windows this is needed to determine whether the file objects should be opened
in binary or text mode. The default value for mode is ’t’.

Also, for each of these variants, on Unix, cmd may be a sequence, in which case arguments will be passed directly to
the program without shell intervention (as with os.spawnv()). If cmd is a string it will be passed to the shell (as
with os.system()).

These methods do not make it possible to retrieve the exit status from the child processes. The only way to control
the input and output streams and also retrieve the return codes is to use the subprocess module; these are only
available on Unix.

For a discussion of possible deadlock conditions related to the use of these functions, see Flow Control Issues.

popen2(cmd, [mode, [bufsize]])
Execute cmd as a sub-process and return the file objects (child_stdin, child_stdout). Deprecated
since version 2.6: This function is obsolete. Use the subprocess module. Check especially the Replacing
Older Functions with the subprocess Module section. Availability: Unix, Windows. New in version 2.0.

popen3(cmd, [mode, [bufsize]])
Execute cmd as a sub-process and return the file objects (child_stdin, child_stdout,
child_stderr). Deprecated since version 2.6: This function is obsolete. Use the subprocess mod-
ule. Check especially the Replacing Older Functions with the subprocess Module section. Availability: Unix,
Windows. New in version 2.0.

15.1. os — Miscellaneous operating system interfaces 359

The Python Library Reference, Release 2.6.9

popen4(cmd, [mode, [bufsize]])
Execute cmd as a sub-process and return the file objects (child_stdin,
child_stdout_and_stderr). Deprecated since version 2.6: This function is obsolete. Use the
subprocess module. Check especially the Replacing Older Functions with the subprocess Module section.
Availability: Unix, Windows. New in version 2.0.

(Note that child_stdin, child_stdout, and child_stderr are named from the point of view of the
child process, so child_stdin is the child’s standard input.)

This functionality is also available in the popen2 module using functions of the same names, but the return values of
those functions have a different order.

15.1.3 File Descriptor Operations

These functions operate on I/O streams referenced using file descriptors.

File descriptors are small integers corresponding to a file that has been opened by the current process. For example,
standard input is usually file descriptor 0, standard output is 1, and standard error is 2. Further files opened by a
process will then be assigned 3, 4, 5, and so forth. The name “file descriptor” is slightly deceptive; on Unix platforms,
sockets and pipes are also referenced by file descriptors.

The fileno() method can be used to obtain the file descriptor associated with a file object when required. Note
that using the file descriptor directly will bypass the file object methods, ignoring aspects such as internal buffering of
data.

close(fd)
Close file descriptor fd.

Availability: Unix, Windows.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned by
os.open() or pipe(). To close a “file object” returned by the built-in function open() or by popen()
or fdopen(), use its close() method.

closerange(fd_low, fd_high)
Close all file descriptors from fd_low (inclusive) to fd_high (exclusive), ignoring errors. Equivalent to:

for fd in xrange(fd_low, fd_high):
try:

os.close(fd)
except OSError:

pass

Availability: Unix, Windows. New in version 2.6.

dup(fd)
Return a duplicate of file descriptor fd.

Availability: Unix, Windows.

dup2(fd, fd2)
Duplicate file descriptor fd to fd2, closing the latter first if necessary.

Availability: Unix, Windows.

fchmod(fd, mode)
Change the mode of the file given by fd to the numeric mode. See the docs for chmod() for possible values of
mode.

Availability: Unix. New in version 2.6.

360 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

fchown(fd, uid, gid)
Change the owner and group id of the file given by fd to the numeric uid and gid. To leave one of the ids
unchanged, set it to -1.

Availability: Unix. New in version 2.6.

fdatasync(fd)
Force write of file with filedescriptor fd to disk. Does not force update of metadata.

Availability: Unix.

Note: This function is not available on MacOS.

fpathconf(fd, name)
Return system configuration information relevant to an open file. name specifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in the pathconf_names dictionary. For configuration
variables not included in that mapping, passing an integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in pathconf_names, an OSError is raised with errno.EINVAL for
the error number.

Availability: Unix.

fstat(fd)
Return status for file descriptor fd, like stat().

Availability: Unix, Windows.

fstatvfs(fd)
Return information about the filesystem containing the file associated with file descriptor fd, like statvfs().

Availability: Unix.

fsync(fd)
Force write of file with filedescriptor fd to disk. On Unix, this calls the native fsync() function; on Windows,
the MS _commit() function.

If you’re starting with a Python file object f, first do f.flush(), and then do os.fsync(f.fileno()),
to ensure that all internal buffers associated with f are written to disk.

Availability: Unix, and Windows starting in 2.2.3.

ftruncate(fd, length)
Truncate the file corresponding to file descriptor fd, so that it is at most length bytes in size.

Availability: Unix.

isatty(fd)
Return True if the file descriptor fd is open and connected to a tty(-like) device, else False.

Availability: Unix.

lseek(fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how: SEEK_SET or 0 to set the position
relative to the beginning of the file; SEEK_CUR or 1 to set it relative to the current position; os.SEEK_END or
2 to set it relative to the end of the file.

Availability: Unix, Windows.

SEEK_SET
SEEK_CUR

15.1. os — Miscellaneous operating system interfaces 361

The Python Library Reference, Release 2.6.9

SEEK_END
Parameters to the lseek() function. Their values are 0, 1, and 2, respectively. Availability: Windows, Unix.
New in version 2.5.

open(file, flags, [mode])
Open the file file and set various flags according to flags and possibly its mode according to mode. The default
mode is 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file.

For a description of the flag and mode values, see the C run-time documentation; flag constants (like O_RDONLY
and O_WRONLY) are defined in this module too (see open() flag constants). In particular, on Windows adding
O_BINARY is needed to open files in binary mode.

Availability: Unix, Windows.

Note: This function is intended for low-level I/O. For normal usage, use the built-in function open(), which
returns a “file object” with read() and write() methods (and many more). To wrap a file descriptor in a
“file object”, use fdopen().

openpty()
Open a new pseudo-terminal pair. Return a pair of file descriptors (master, slave) for the pty and the tty,
respectively. For a (slightly) more portable approach, use the pty module.

Availability: some flavors of Unix.

pipe()
Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively.

Availability: Unix, Windows.

read(fd, n)
Read at most n bytes from file descriptor fd. Return a string containing the bytes read. If the end of the file
referred to by fd has been reached, an empty string is returned.

Availability: Unix, Windows.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned by
os.open() or pipe(). To read a “file object” returned by the built-in function open() or by popen() or
fdopen(), or sys.stdin, use its read() or readline() methods.

tcgetpgrp(fd)
Return the process group associated with the terminal given by fd (an open file descriptor as returned by
os.open()).

Availability: Unix.

tcsetpgrp(fd, pg)
Set the process group associated with the terminal given by fd (an open file descriptor as returned by
os.open()) to pg.

Availability: Unix.

ttyname(fd)
Return a string which specifies the terminal device associated with file descriptor fd. If fd is not associated with
a terminal device, an exception is raised.

Availability: Unix.

write(fd, str)
Write the string str to file descriptor fd. Return the number of bytes actually written.

Availability: Unix, Windows.

362 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returned by
os.open() or pipe(). To write a “file object” returned by the built-in function open() or by popen()
or fdopen(), or sys.stdout or sys.stderr, use its write() method.

open() flag constants

The following constants are options for the flags parameter to the open() function. They can be combined using the
bitwise OR operator |. Some of them are not available on all platforms. For descriptions of their availability and use,
consult the open(2) manual page on Unix or the MSDN on Windows.

O_RDONLY
O_WRONLY
O_RDWR
O_APPEND
O_CREAT
O_EXCL
O_TRUNC

These constants are available on Unix and Windows.

O_DSYNC
O_RSYNC
O_SYNC
O_NDELAY
O_NONBLOCK
O_NOCTTY
O_SHLOCK
O_EXLOCK

These constants are only available on Unix.

O_BINARY
O_NOINHERIT
O_SHORT_LIVED
O_TEMPORARY
O_RANDOM
O_SEQUENTIAL
O_TEXT

These constants are only available on Windows.

O_ASYNC
O_DIRECT
O_DIRECTORY
O_NOFOLLOW
O_NOATIME

These constants are GNU extensions and not present if they are not defined by the C library.

15.1.4 Files and Directories

access(path, mode)
Use the real uid/gid to test for access to path. Note that most operations will use the effective uid/gid, therefore
this routine can be used in a suid/sgid environment to test if the invoking user has the specified access to path.
mode should be F_OK to test the existence of path, or it can be the inclusive OR of one or more of R_OK,
W_OK, and X_OK to test permissions. Return True if access is allowed, False if not. See the Unix man page
access(2) for more information.

Availability: Unix, Windows.

15.1. os — Miscellaneous operating system interfaces 363

http://msdn.microsoft.com/en-us/library/z0kc8e3z.aspx

The Python Library Reference, Release 2.6.9

Note: Using access() to check if a user is authorized to e.g. open a file before actually doing so using
open() creates a security hole, because the user might exploit the short time interval between checking and
opening the file to manipulate it.

Note: I/O operations may fail even when access() indicates that they would succeed, particularly for
operations on network filesystems which may have permissions semantics beyond the usual POSIX permission-
bit model.

F_OK
Value to pass as the mode parameter of access() to test the existence of path.

R_OK
Value to include in the mode parameter of access() to test the readability of path.

W_OK
Value to include in the mode parameter of access() to test the writability of path.

X_OK
Value to include in the mode parameter of access() to determine if path can be executed.

chdir(path)
Change the current working directory to path.

Availability: Unix, Windows.

fchdir(fd)
Change the current working directory to the directory represented by the file descriptor fd. The descriptor must
refer to an opened directory, not an open file.

Availability: Unix. New in version 2.3.

getcwd()
Return a string representing the current working directory.

Availability: Unix, Windows.

getcwdu()
Return a Unicode object representing the current working directory.

Availability: Unix, Windows. New in version 2.3.

chflags(path, flags)
Set the flags of path to the numeric flags. flags may take a combination (bitwise OR) of the following values (as
defined in the stat module):

•UF_NODUMP

•UF_IMMUTABLE

•UF_APPEND

•UF_OPAQUE

•UF_NOUNLINK

•SF_ARCHIVED

•SF_IMMUTABLE

•SF_APPEND

•SF_NOUNLINK

•SF_SNAPSHOT

Availability: Unix. New in version 2.6.

364 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

chroot(path)
Change the root directory of the current process to path. Availability: Unix. New in version 2.2.

chmod(path, mode)
Change the mode of path to the numeric mode. mode may take one of the following values (as defined in the
stat module) or bitwise ORed combinations of them:

•stat.S_ISUID

•stat.S_ISGID

•stat.S_ENFMT

•stat.S_ISVTX

•stat.S_IREAD

•stat.S_IWRITE

•stat.S_IEXEC

•stat.S_IRWXU

•stat.S_IRUSR

•stat.S_IWUSR

•stat.S_IXUSR

•stat.S_IRWXG

•stat.S_IRGRP

•stat.S_IWGRP

•stat.S_IXGRP

•stat.S_IRWXO

•stat.S_IROTH

•stat.S_IWOTH

•stat.S_IXOTH

Availability: Unix, Windows.

Note: Although Windows supports chmod(), you can only set the file’s read-only flag with it (via the
stat.S_IWRITE and stat.S_IREAD constants or a corresponding integer value). All other bits are ig-
nored.

chown(path, uid, gid)
Change the owner and group id of path to the numeric uid and gid. To leave one of the ids unchanged, set it to
-1.

Availability: Unix.

lchflags(path, flags)
Set the flags of path to the numeric flags, like chflags(), but do not follow symbolic links.

Availability: Unix. New in version 2.6.

lchmod(path, mode)
Change the mode of path to the numeric mode. If path is a symlink, this affects the symlink rather than the
target. See the docs for chmod() for possible values of mode.

Availability: Unix. New in version 2.6.

15.1. os — Miscellaneous operating system interfaces 365

The Python Library Reference, Release 2.6.9

lchown(path, uid, gid)
Change the owner and group id of path to the numeric uid and gid. This function will not follow symbolic links.

Availability: Unix. New in version 2.3.

link(source, link_name)
Create a hard link pointing to source named link_name.

Availability: Unix.

listdir(path)
Return a list containing the names of the entries in the directory given by path. The list is in arbitrary order. It
does not include the special entries ’.’ and ’..’ even if they are present in the directory.

Availability: Unix, Windows. Changed in version 2.3: On Windows NT/2k/XP and Unix, if path is a Unicode
object, the result will be a list of Unicode objects. Undecodable filenames will still be returned as string objects.

lstat(path)
Like stat(), but do not follow symbolic links. This is an alias for stat() on platforms that do not support
symbolic links, such as Windows.

mkfifo(path, [mode])
Create a FIFO (a named pipe) named path with numeric mode mode. The default mode is 0666 (octal). The
current umask value is first masked out from the mode.

Availability: Unix.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Note that mkfifo() doesn’t open the
FIFO — it just creates the rendezvous point.

mknod(filename, [mode=0600, device])
Create a filesystem node (file, device special file or named pipe) named filename. mode specifies both the per-
missions to use and the type of node to be created, being combined (bitwise OR) with one of stat.S_IFREG,
stat.S_IFCHR, stat.S_IFBLK, and stat.S_IFIFO (those constants are available in stat). For
stat.S_IFCHR and stat.S_IFBLK, device defines the newly created device special file (probably using
os.makedev()), otherwise it is ignored. New in version 2.3.

major(device)
Extract the device major number from a raw device number (usually the st_dev or st_rdev field from
stat). New in version 2.3.

minor(device)
Extract the device minor number from a raw device number (usually the st_dev or st_rdev field from
stat). New in version 2.3.

makedev(major, minor)
Compose a raw device number from the major and minor device numbers. New in version 2.3.

mkdir(path, [mode])
Create a directory named path with numeric mode mode. The default mode is 0777 (octal). On some systems,
mode is ignored. Where it is used, the current umask value is first masked out.

It is also possible to create temporary directories; see the tempfile module’s tempfile.mkdtemp()
function.

Availability: Unix, Windows.

makedirs(path, [mode])
Recursive directory creation function. Like mkdir(), but makes all intermediate-level directories needed to

contain the leaf directory. Throws an error exception if the leaf directory already exists or cannot be created.

366 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

The default mode is 0777 (octal). On some systems, mode is ignored. Where it is used, the current umask value
is first masked out.

Note: makedirs() will become confused if the path elements to create include os.pardir. New in
version 1.5.2.Changed in version 2.3: This function now handles UNC paths correctly.

pathconf(path, name)
Return system configuration information relevant to a named file. name specifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in the pathconf_names dictionary. For configuration
variables not included in that mapping, passing an integer for name is also accepted.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in pathconf_names, an OSError is raised with errno.EINVAL for
the error number.

Availability: Unix.

pathconf_names
Dictionary mapping names accepted by pathconf() and fpathconf() to the integer values defined for
those names by the host operating system. This can be used to determine the set of names known to the system.
Availability: Unix.

readlink(path)
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname(path), result). Changed in version 2.6: If the path is a Uni-
code object the result will also be a Unicode object. Availability: Unix.

remove(path)
Remove (delete) the file path. If path is a directory, OSError is raised; see rmdir() below to remove a
directory. This is identical to the unlink() function documented below. On Windows, attempting to remove
a file that is in use causes an exception to be raised; on Unix, the directory entry is removed but the storage
allocated to the file is not made available until the original file is no longer in use.

Availability: Unix, Windows.

removedirs(path)
Remove directories recursively. Works like rmdir() except that, if the leaf directory is successfully re-
moved, removedirs() tries to successively remove every parent directory mentioned in path until an error
is raised (which is ignored, because it generally means that a parent directory is not empty). For example,
os.removedirs(’foo/bar/baz’) will first remove the directory ’foo/bar/baz’, and then remove
’foo/bar’ and ’foo’ if they are empty. Raises OSError if the leaf directory could not be successfully
removed. New in version 1.5.2.

rename(src, dst)
Rename the file or directory src to dst. If dst is a directory, OSError will be raised. On Unix, if dst exists and
is a file, it will be replaced silently if the user has permission. The operation may fail on some Unix flavors if
src and dst are on different filesystems. If successful, the renaming will be an atomic operation (this is a POSIX
requirement). On Windows, if dst already exists, OSError will be raised even if it is a file; there may be no
way to implement an atomic rename when dst names an existing file.

Availability: Unix, Windows.

renames(old, new)
Recursive directory or file renaming function. Works like rename(), except creation of any intermediate di-
rectories needed to make the new pathname good is attempted first. After the rename, directories corresponding
to rightmost path segments of the old name will be pruned away using removedirs(). New in version 1.5.2.

15.1. os — Miscellaneous operating system interfaces 367

The Python Library Reference, Release 2.6.9

Note: This function can fail with the new directory structure made if you lack permissions needed to remove
the leaf directory or file.

rmdir(path)
Remove (delete) the directory path. Only works when the directory is empty, otherwise, OSError is raised. In
order to remove whole directory trees, shutil.rmtree() can be used.

Availability: Unix, Windows.

stat(path)
Perform a stat() system call on the given path. The return value is an object whose attributes correspond to the
members of the stat structure, namely: st_mode (protection bits), st_ino (inode number), st_dev (de-
vice), st_nlink (number of hard links), st_uid (user id of owner), st_gid (group id of owner), st_size
(size of file, in bytes), st_atime (time of most recent access), st_mtime (time of most recent content modi-
fication), st_ctime (platform dependent; time of most recent metadata change on Unix, or the time of creation
on Windows):

>>> import os
>>> statinfo = os.stat(’somefile.txt’)
>>> statinfo
(33188, 422511L, 769L, 1, 1032, 100, 926L, 1105022698,1105022732, 1105022732)
>>> statinfo.st_size
926L
>>>

Changed in version 2.3: If stat_float_times() returns True, the time values are floats, measuring
seconds. Fractions of a second may be reported if the system supports that. On Mac OS, the times are always
floats. See stat_float_times() for further discussion. On some Unix systems (such as Linux), the
following attributes may also be available: st_blocks (number of blocks allocated for file), st_blksize
(filesystem blocksize), st_rdev (type of device if an inode device). st_flags (user defined flags for file).

On other Unix systems (such as FreeBSD), the following attributes may be available (but may be only filled out
if root tries to use them): st_gen (file generation number), st_birthtime (time of file creation).

On Mac OS systems, the following attributes may also be available: st_rsize, st_creator, st_type.

On RISCOS systems, the following attributes are also available: st_ftype (file type), st_attrs (attributes),
st_obtype (object type). For backward compatibility, the return value of stat() is also accessible as a
tuple of at least 10 integers giving the most important (and portable) members of the stat structure, in the
order st_mode, st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime, st_mtime,
st_ctime. More items may be added at the end by some implementations. The standard module stat defines
functions and constants that are useful for extracting information from a stat structure. (On Windows, some
items are filled with dummy values.)

Note: The exact meaning and resolution of the st_atime, st_mtime, and st_ctime members depends
on the operating system and the file system. For example, on Windows systems using the FAT or FAT32 file
systems, st_mtime has 2-second resolution, and st_atime has only 1-day resolution. See your operating
system documentation for details.

Availability: Unix, Windows. Changed in version 2.2: Added access to values as attributes of the returned
object.Changed in version 2.5: Added st_gen and st_birthtime.

stat_float_times([newvalue])
Determine whether stat_result represents time stamps as float objects. If newvalue is True, future calls to
stat() return floats, if it is False, future calls return ints. If newvalue is omitted, return the current setting.

For compatibility with older Python versions, accessing stat_result as a tuple always returns integers.
Changed in version 2.5: Python now returns float values by default. Applications which do not work cor-
rectly with floating point time stamps can use this function to restore the old behaviour. The resolution of the

368 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

timestamps (that is the smallest possible fraction) depends on the system. Some systems only support second
resolution; on these systems, the fraction will always be zero.

It is recommended that this setting is only changed at program startup time in the __main__ module; libraries
should never change this setting. If an application uses a library that works incorrectly if floating point time
stamps are processed, this application should turn the feature off until the library has been corrected.

statvfs(path)
Perform a statvfs() system call on the given path. The return value is an object whose attributes de-
scribe the filesystem on the given path, and correspond to the members of the statvfs structure, namely:
f_bsize, f_frsize, f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_favail, f_flag,
f_namemax. For backward compatibility, the return value is also accessible as a tuple whose values cor-
respond to the attributes, in the order given above. The standard module statvfs defines constants that are
useful for extracting information from a statvfs structure when accessing it as a sequence; this remains
useful when writing code that needs to work with versions of Python that don’t support accessing the fields as
attributes.

Availability: Unix. Changed in version 2.2: Added access to values as attributes of the returned object.

symlink(source, link_name)
Create a symbolic link pointing to source named link_name.

Availability: Unix.

tempnam([dir, [prefix]])
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in the directory dir or a common location for temporary files if dir is omitted
or None. If given and not None, prefix is used to provide a short prefix to the filename. Applications are
responsible for properly creating and managing files created using paths returned by tempnam(); no automatic
cleanup is provided. On Unix, the environment variable TMPDIR overrides dir, while on Windows TMP
is used. The specific behavior of this function depends on the C library implementation; some aspects are
underspecified in system documentation.

Warning: Use of tempnam() is vulnerable to symlink attacks; consider using tmpfile() (section File
Object Creation) instead.

Availability: Unix, Windows.

tmpnam()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible for
properly creating and managing files created using paths returned by tmpnam(); no automatic cleanup is
provided.

Warning: Use of tmpnam() is vulnerable to symlink attacks; consider using tmpfile() (section File
Object Creation) instead.

Availability: Unix, Windows. This function probably shouldn’t be used on Windows, though: Microsoft’s
implementation of tmpnam() always creates a name in the root directory of the current drive, and that’s
generally a poor location for a temp file (depending on privileges, you may not even be able to open a file
using this name).

TMP_MAX
The maximum number of unique names that tmpnam() will generate before reusing names.

unlink(path)
Remove (delete) the file path. This is the same function as remove(); the unlink() name is its traditional
Unix name.

15.1. os — Miscellaneous operating system interfaces 369

The Python Library Reference, Release 2.6.9

Availability: Unix, Windows.

utime(path, times)
Set the access and modified times of the file specified by path. If times is None, then the file’s access and
modified times are set to the current time. (The effect is similar to running the Unix program touch on the
path.) Otherwise, times must be a 2-tuple of numbers, of the form (atime, mtime) which is used to set
the access and modified times, respectively. Whether a directory can be given for path depends on whether the
operating system implements directories as files (for example, Windows does not). Note that the exact times
you set here may not be returned by a subsequent stat() call, depending on the resolution with which your
operating system records access and modification times; see stat(). Changed in version 2.0: Added support
for None for times. Availability: Unix, Windows.

walk(top, [topdown=True, [onerror=None, [followlinks=False]]])
Generate the file names in a directory tree by walking the tree either top-down or bottom-up. For each di-

rectory in the tree rooted at directory top (including top itself), it yields a 3-tuple (dirpath, dirnames,
filenames).

dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in dirpath
(excluding ’.’ and ’..’). filenames is a list of the names of the non-directory files in dirpath. Note that the
names in the lists contain no path components. To get a full path (which begins with top) to a file or directory in
dirpath, do os.path.join(dirpath, name).

If optional argument topdown is True or not specified, the triple for a directory is generated before the triples
for any of its subdirectories (directories are generated top-down). If topdown is False, the triple for a directory
is generated after the triples for all of its subdirectories (directories are generated bottom-up).

When topdown is True, the caller can modify the dirnames list in-place (perhaps using del or slice assign-
ment), and walk() will only recurse into the subdirectories whose names remain in dirnames; this can be used
to prune the search, impose a specific order of visiting, or even to inform walk() about directories the caller
creates or renames before it resumes walk() again. Modifying dirnames when topdown is False is ineffec-
tive, because in bottom-up mode the directories in dirnames are generated before dirpath itself is generated.

By default errors from the listdir() call are ignored. If optional argument onerror is specified, it should be
a function; it will be called with one argument, an OSError instance. It can report the error to continue with
the walk, or raise the exception to abort the walk. Note that the filename is available as the filename attribute
of the exception object.

By default, walk() will not walk down into symbolic links that resolve to directories. Set followlinks to True
to visit directories pointed to by symlinks, on systems that support them. New in version 2.6: The followlinks
parameter.

Note: Be aware that setting followlinks to True can lead to infinite recursion if a link points to a parent
directory of itself. walk() does not keep track of the directories it visited already.

Note: If you pass a relative pathname, don’t change the current working directory between resumptions of
walk(). walk() never changes the current directory, and assumes that its caller doesn’t either.

This example displays the number of bytes taken by non-directory files in each directory under the starting
directory, except that it doesn’t look under any CVS subdirectory:

import os
from os.path import join, getsize
for root, dirs, files in os.walk(’python/Lib/email’):

print root, "consumes",
print sum(getsize(join(root, name)) for name in files),
print "bytes in", len(files), "non-directory files"
if ’CVS’ in dirs:

dirs.remove(’CVS’) # don’t visit CVS directories

370 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

In the next example, walking the tree bottom-up is essential: rmdir() doesn’t allow deleting a directory before
the directory is empty:

Delete everything reachable from the directory named in "top",
assuming there are no symbolic links.
CAUTION: This is dangerous! For example, if top == ’/’, it
could delete all your disk files.
import os
for root, dirs, files in os.walk(top, topdown=False):

for name in files:
os.remove(os.path.join(root, name))

for name in dirs:
os.rmdir(os.path.join(root, name))

New in version 2.3.

15.1.5 Process Management

These functions may be used to create and manage processes.

The various exec*() functions take a list of arguments for the new program loaded into the process. In each case,
the first of these arguments is passed to the new program as its own name rather than as an argument a user may have
typed on a command line. For the C programmer, this is the argv[0] passed to a program’s main(). For example,
os.execv(’/bin/echo’, [’foo’, ’bar’]) will only print bar on standard output; foo will seem to be
ignored.

abort()
Generate a SIGABRT signal to the current process. On Unix, the default behavior is to produce a core
dump; on Windows, the process immediately returns an exit code of 3. Be aware that programs which use
signal.signal() to register a handler for SIGABRT will behave differently.

Availability: Unix, Windows.

execl(path, arg0, arg1, ...)
execle(path, arg0, arg1, ..., env)
execlp(file, arg0, arg1, ...)
execlpe(file, arg0, arg1, ..., env)
execv(path, args)
execve(path, args, env)
execvp(file, args)
execvpe(file, args, env)

These functions all execute a new program, replacing the current process; they do not return. On Unix, the new
executable is loaded into the current process, and will have the same process id as the caller. Errors will be
reported as OSError exceptions.

The current process is replaced immediately. Open file objects and descriptors are not flushed, so if there may
be data buffered on these open files, you should flush them using sys.stdout.flush() or os.fsync()
before calling an exec*() function.

The “l” and “v” variants of the exec*() functions differ in how command-line arguments are passed. The “l”
variants are perhaps the easiest to work with if the number of parameters is fixed when the code is written; the
individual parameters simply become additional parameters to the execl*() functions. The “v” variants are
good when the number of parameters is variable, with the arguments being passed in a list or tuple as the args
parameter. In either case, the arguments to the child process should start with the name of the command being
run, but this is not enforced.

15.1. os — Miscellaneous operating system interfaces 371

The Python Library Reference, Release 2.6.9

The variants which include a “p” near the end (execlp(), execlpe(), execvp(), and execvpe()) will
use the PATH environment variable to locate the program file. When the environment is being replaced (using
one of the exec*e() variants, discussed in the next paragraph), the new environment is used as the source of
the PATH variable. The other variants, execl(), execle(), execv(), and execve(), will not use the
PATH variable to locate the executable; path must contain an appropriate absolute or relative path.

For execle(), execlpe(), execve(), and execvpe() (note that these all end in “e”), the env parameter
must be a mapping which is used to define the environment variables for the new process (these are used instead
of the current process’ environment); the functions execl(), execlp(), execv(), and execvp() all
cause the new process to inherit the environment of the current process.

Availability: Unix, Windows.

_exit(n)
Exit to the system with status n, without calling cleanup handlers, flushing stdio buffers, etc.

Availability: Unix, Windows.

Note: The standard way to exit is sys.exit(n). _exit() should normally only be used in the child
process after a fork().

The following exit codes are defined and can be used with _exit(), although they are not required. These are
typically used for system programs written in Python, such as a mail server’s external command delivery program.

Note: Some of these may not be available on all Unix platforms, since there is some variation. These constants are
defined where they are defined by the underlying platform.

EX_OK
Exit code that means no error occurred.

Availability: Unix. New in version 2.3.

EX_USAGE
Exit code that means the command was used incorrectly, such as when the wrong number of arguments are
given.

Availability: Unix. New in version 2.3.

EX_DATAERR
Exit code that means the input data was incorrect.

Availability: Unix. New in version 2.3.

EX_NOINPUT
Exit code that means an input file did not exist or was not readable.

Availability: Unix. New in version 2.3.

EX_NOUSER
Exit code that means a specified user did not exist.

Availability: Unix. New in version 2.3.

EX_NOHOST
Exit code that means a specified host did not exist.

Availability: Unix. New in version 2.3.

EX_UNAVAILABLE
Exit code that means that a required service is unavailable.

Availability: Unix. New in version 2.3.

372 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

EX_SOFTWARE
Exit code that means an internal software error was detected.

Availability: Unix. New in version 2.3.

EX_OSERR
Exit code that means an operating system error was detected, such as the inability to fork or create a pipe.

Availability: Unix. New in version 2.3.

EX_OSFILE
Exit code that means some system file did not exist, could not be opened, or had some other kind of error.

Availability: Unix. New in version 2.3.

EX_CANTCREAT
Exit code that means a user specified output file could not be created.

Availability: Unix. New in version 2.3.

EX_IOERR
Exit code that means that an error occurred while doing I/O on some file.

Availability: Unix. New in version 2.3.

EX_TEMPFAIL
Exit code that means a temporary failure occurred. This indicates something that may not really be an error,
such as a network connection that couldn’t be made during a retryable operation.

Availability: Unix. New in version 2.3.

EX_PROTOCOL
Exit code that means that a protocol exchange was illegal, invalid, or not understood.

Availability: Unix. New in version 2.3.

EX_NOPERM
Exit code that means that there were insufficient permissions to perform the operation (but not intended for file
system problems).

Availability: Unix. New in version 2.3.

EX_CONFIG
Exit code that means that some kind of configuration error occurred.

Availability: Unix. New in version 2.3.

EX_NOTFOUND
Exit code that means something like “an entry was not found”.

Availability: Unix. New in version 2.3.

fork()
Fork a child process. Return 0 in the child and the child’s process id in the parent. If an error occurs OSError
is raised.

Note that some platforms including FreeBSD <= 6.3, Cygwin and OS/2 EMX have known issues when using
fork() from a thread.

Availability: Unix.

forkpty()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a pair of (pid,
fd), where pid is 0 in the child, the new child’s process id in the parent, and fd is the file descriptor of the master

15.1. os — Miscellaneous operating system interfaces 373

The Python Library Reference, Release 2.6.9

end of the pseudo-terminal. For a more portable approach, use the pty module. If an error occurs OSError is
raised.

Availability: some flavors of Unix.

kill(pid, sig)
Send signal sig to the process pid. Constants for the specific signals available on the host platform are defined

in the signal module. Availability: Unix.

killpg(pgid, sig)
Send the signal sig to the process group pgid.

Availability: Unix. New in version 2.3.

nice(increment)
Add increment to the process’s “niceness”. Return the new niceness.

Availability: Unix.

plock(op)
Lock program segments into memory. The value of op (defined in <sys/lock.h>) determines which seg-
ments are locked.

Availability: Unix.

popen(...)
popen2(...)
popen3(...)
popen4(...)

Run child processes, returning opened pipes for communications. These functions are described in section File
Object Creation.

spawnl(mode, path, ...)
spawnle(mode, path, ..., env)
spawnlp(mode, file, ...)
spawnlpe(mode, file, ..., env)
spawnv(mode, path, args)
spawnve(mode, path, args, env)
spawnvp(mode, file, args)
spawnvpe(mode, file, args, env)

Execute the program path in a new process.

(Note that the subprocess module provides more powerful facilities for spawning new processes and retriev-
ing their results; using that module is preferable to using these functions. Check especially the Replacing Older
Functions with the subprocess Module section.)

If mode is P_NOWAIT, this function returns the process id of the new process; if mode is P_WAIT, returns
the process’s exit code if it exits normally, or -signal, where signal is the signal that killed the process. On
Windows, the process id will actually be the process handle, so can be used with the waitpid() function.

The “l” and “v” variants of the spawn*() functions differ in how command-line arguments are passed. The
“l” variants are perhaps the easiest to work with if the number of parameters is fixed when the code is written;
the individual parameters simply become additional parameters to the spawnl*() functions. The “v” variants
are good when the number of parameters is variable, with the arguments being passed in a list or tuple as the
args parameter. In either case, the arguments to the child process must start with the name of the command
being run.

The variants which include a second “p” near the end (spawnlp(), spawnlpe(), spawnvp(), and
spawnvpe()) will use the PATH environment variable to locate the program file. When the environment
is being replaced (using one of the spawn*e() variants, discussed in the next paragraph), the new environ-
ment is used as the source of the PATH variable. The other variants, spawnl(), spawnle(), spawnv(),

374 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

and spawnve(), will not use the PATH variable to locate the executable; path must contain an appropriate
absolute or relative path.

For spawnle(), spawnlpe(), spawnve(), and spawnvpe() (note that these all end in “e”), the env
parameter must be a mapping which is used to define the environment variables for the new process (they are
used instead of the current process’ environment); the functions spawnl(), spawnlp(), spawnv(), and
spawnvp() all cause the new process to inherit the environment of the current process. Note that keys and
values in the env dictionary must be strings; invalid keys or values will cause the function to fail, with a return
value of 127.

As an example, the following calls to spawnlp() and spawnvpe() are equivalent:

import os
os.spawnlp(os.P_WAIT, ’cp’, ’cp’, ’index.html’, ’/dev/null’)

L = [’cp’, ’index.html’, ’/dev/null’]
os.spawnvpe(os.P_WAIT, ’cp’, L, os.environ)

Availability: Unix, Windows. spawnlp(), spawnlpe(), spawnvp() and spawnvpe() are not available
on Windows. New in version 1.6.

P_NOWAIT
P_NOWAITO

Possible values for the mode parameter to the spawn*() family of functions. If either of these values is given,
the spawn*() functions will return as soon as the new process has been created, with the process id as the
return value.

Availability: Unix, Windows. New in version 1.6.

P_WAIT
Possible value for the mode parameter to the spawn*() family of functions. If this is given as mode, the
spawn*() functions will not return until the new process has run to completion and will return the exit code
of the process the run is successful, or -signal if a signal kills the process.

Availability: Unix, Windows. New in version 1.6.

P_DETACH
P_OVERLAY

Possible values for the mode parameter to the spawn*() family of functions. These are less portable than
those listed above. P_DETACH is similar to P_NOWAIT, but the new process is detached from the console of
the calling process. If P_OVERLAY is used, the current process will be replaced; the spawn*() function will
not return.

Availability: Windows. New in version 1.6.

startfile(path, [operation])
Start a file with its associated application.

When operation is not specified or ’open’, this acts like double-clicking the file in Windows Explorer, or
giving the file name as an argument to the start command from the interactive command shell: the file is opened
with whatever application (if any) its extension is associated.

When another operation is given, it must be a “command verb” that specifies what should be done with the
file. Common verbs documented by Microsoft are ’print’ and ’edit’ (to be used on files) as well as
’explore’ and ’find’ (to be used on directories).

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. The path parameter is relative to
the current directory. If you want to use an absolute path, make sure the first character is not a slash (’/’);

15.1. os — Miscellaneous operating system interfaces 375

The Python Library Reference, Release 2.6.9

the underlying Win32 ShellExecute() function doesn’t work if it is. Use the os.path.normpath()
function to ensure that the path is properly encoded for Win32.

Availability: Windows. New in version 2.0.New in version 2.5: The operation parameter.

system(command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C function
system(), and has the same limitations. Changes to sys.stdin, etc. are not reflected in the environment
of the executed command.

On Unix, the return value is the exit status of the process encoded in the format specified for wait(). Note
that POSIX does not specify the meaning of the return value of the C system() function, so the return value
of the Python function is system-dependent.

On Windows, the return value is that returned by the system shell after running command, given by the Windows
environment variable COMSPEC: on command.com systems (Windows 95, 98 and ME) this is always 0; on
cmd.exe systems (Windows NT, 2000 and XP) this is the exit status of the command run; on systems using a
non-native shell, consult your shell documentation.

The subprocess module provides more powerful facilities for spawning new processes and retrieving their
results; using that module is preferable to using this function. See the Replacing Older Functions with the
subprocess Module section in the subprocess documentation for some helpful recipes.

Availability: Unix, Windows.

times()
Return a 5-tuple of floating point numbers indicating accumulated (processor or other) times, in seconds. The
items are: user time, system time, children’s user time, children’s system time, and elapsed real time since a
fixed point in the past, in that order. See the Unix manual page times(2) or the corresponding Windows
Platform API documentation. On Windows, only the first two items are filled, the others are zero.

Availability: Unix, Windows

wait()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if
the signal number is zero); the high bit of the low byte is set if a core file was produced.

Availability: Unix.

waitpid(pid, options)
The details of this function differ on Unix and Windows.

On Unix: Wait for completion of a child process given by process id pid, and return a tuple containing its process
id and exit status indication (encoded as for wait()). The semantics of the call are affected by the value of the
integer options, which should be 0 for normal operation.

If pid is greater than 0, waitpid() requests status information for that specific process. If pid is 0, the request
is for the status of any child in the process group of the current process. If pid is -1, the request pertains to any
child of the current process. If pid is less than -1, status is requested for any process in the process group -pid
(the absolute value of pid).

An OSError is raised with the value of errno when the syscall returns -1.

On Windows: Wait for completion of a process given by process handle pid, and return a tuple containing pid,
and its exit status shifted left by 8 bits (shifting makes cross-platform use of the function easier). A pid less than
or equal to 0 has no special meaning on Windows, and raises an exception. The value of integer options has no
effect. pid can refer to any process whose id is known, not necessarily a child process. The spawn() functions
called with P_NOWAIT return suitable process handles.

376 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

wait3([options])
Similar to waitpid(), except no process id argument is given and a 3-element tuple containing the child’s pro-
cess id, exit status indication, and resource usage information is returned. Refer to resource.getrusage()
for details on resource usage information. The option argument is the same as that provided to waitpid()
and wait4().

Availability: Unix. New in version 2.5.

wait4(pid, options)
Similar to waitpid(), except a 3-element tuple, containing the child’s process id, exit status indication, and
resource usage information is returned. Refer to resource.getrusage() for details on resource usage
information. The arguments to wait4() are the same as those provided to waitpid().

Availability: Unix. New in version 2.5.

WNOHANG
The option for waitpid() to return immediately if no child process status is available immediately. The
function returns (0, 0) in this case.

Availability: Unix.

WCONTINUED
This option causes child processes to be reported if they have been continued from a job control stop since their
status was last reported.

Availability: Some Unix systems. New in version 2.3.

WUNTRACED
This option causes child processes to be reported if they have been stopped but their current state has not been
reported since they were stopped.

Availability: Unix. New in version 2.3.

The following functions take a process status code as returned by system(), wait(), or waitpid() as a param-
eter. They may be used to determine the disposition of a process.

WCOREDUMP(status)
Return True if a core dump was generated for the process, otherwise return False.

Availability: Unix. New in version 2.3.

WIFCONTINUED(status)
Return True if the process has been continued from a job control stop, otherwise return False.

Availability: Unix. New in version 2.3.

WIFSTOPPED(status)
Return True if the process has been stopped, otherwise return False.

Availability: Unix.

WIFSIGNALED(status)
Return True if the process exited due to a signal, otherwise return False.

Availability: Unix.

WIFEXITED(status)
Return True if the process exited using the exit(2) system call, otherwise return False.

Availability: Unix.

WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to the exit(2) system call. Otherwise, the
return value is meaningless.

15.1. os — Miscellaneous operating system interfaces 377

The Python Library Reference, Release 2.6.9

Availability: Unix.

WSTOPSIG(status)
Return the signal which caused the process to stop.

Availability: Unix.

WTERMSIG(status)
Return the signal which caused the process to exit.

Availability: Unix.

15.1.6 Miscellaneous System Information

confstr(name)
Return string-valued system configuration values. name specifies the configuration value to retrieve; it may be a
string which is the name of a defined system value; these names are specified in a number of standards (POSIX,
Unix 95, Unix 98, and others). Some platforms define additional names as well. The names known to the host
operating system are given as the keys of the confstr_names dictionary. For configuration variables not
included in that mapping, passing an integer for name is also accepted.

If the configuration value specified by name isn’t defined, None is returned.

If name is a string and is not known, ValueError is raised. If a specific value for name is not supported by
the host system, even if it is included in confstr_names, an OSError is raised with errno.EINVAL for
the error number.

Availability: Unix

confstr_names
Dictionary mapping names accepted by confstr() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system.

Availability: Unix.

getloadavg()
Return the number of processes in the system run queue averaged over the last 1, 5, and 15 minutes or raises
OSError if the load average was unobtainable.

Availability: Unix. New in version 2.3.

sysconf(name)
Return integer-valued system configuration values. If the configuration value specified by name isn’t defined,
-1 is returned. The comments regarding the name parameter for confstr() apply here as well; the dictionary
that provides information on the known names is given by sysconf_names.

Availability: Unix.

sysconf_names
Dictionary mapping names accepted by sysconf() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system.

Availability: Unix.

The following data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined in the os.path module.

curdir
The constant string used by the operating system to refer to the current directory. This is ’.’ for Windows and
POSIX. Also available via os.path.

378 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

pardir
The constant string used by the operating system to refer to the parent directory. This is ’..’ for Windows and
POSIX. Also available via os.path.

sep
The character used by the operating system to separate pathname components. This is ’/’ for POSIX and
’\\’ for Windows. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — use
os.path.split() and os.path.join() — but it is occasionally useful. Also available via os.path.

altsep
An alternative character used by the operating system to separate pathname components, or None if only one
separator character exists. This is set to ’/’ on Windows systems where sep is a backslash. Also available via
os.path.

extsep
The character which separates the base filename from the extension; for example, the ’.’ in os.py. Also
available via os.path. New in version 2.2.

pathsep
The character conventionally used by the operating system to separate search path components (as in PATH),
such as ’:’ for POSIX or ’;’ for Windows. Also available via os.path.

defpath
The default search path used by exec*p*() and spawn*p*() if the environment doesn’t have a ’PATH’
key. Also available via os.path.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
such as ’\n’ for POSIX, or multiple characters, for example, ’\r\n’ for Windows. Do not use os.linesep as a
line terminator when writing files opened in text mode (the default); use a single ’\n’ instead, on all platforms.

devnull
The file path of the null device. For example: ’/dev/null’ for POSIX, ’nul’ for Windows. Also available
via os.path. New in version 2.4.

15.1.7 Miscellaneous Functions

urandom(n)
Return a string of n random bytes suitable for cryptographic use.

This function returns random bytes from an OS-specific randomness source. The returned data should be un-
predictable enough for cryptographic applications, though its exact quality depends on the OS implementation.
On a UNIX-like system this will query /dev/urandom, and on Windows it will use CryptGenRandom. If a
randomness source is not found, NotImplementedError will be raised. New in version 2.4.

15.2 io — Core tools for working with streams

New in version 2.6. The io module provides the Python interfaces to stream handling. The built-in open() function
is defined in this module.

At the top of the I/O hierarchy is the abstract base class IOBase. It defines the basic interface to a stream. Note,
however, that there is no separation between reading and writing to streams; implementations are allowed to throw an
IOError if they do not support a given operation.

Extending IOBase is RawIOBase which deals simply with the reading and writing of raw bytes to a stream.
FileIO subclasses RawIOBase to provide an interface to files in the machine’s file system.

15.2. io — Core tools for working with streams 379

The Python Library Reference, Release 2.6.9

BufferedIOBase deals with buffering on a raw byte stream (RawIOBase). Its subclasses, BufferedWriter,
BufferedReader, and BufferedRWPair buffer streams that are readable, writable, and both readable and
writable. BufferedRandom provides a buffered interface to random access streams. BytesIO is a simple stream
of in-memory bytes.

Another IOBase subclass, TextIOBase, deals with streams whose bytes represent text, and handles encoding and
decoding from and to strings. TextIOWrapper, which extends it, is a buffered text interface to a buffered raw
stream (BufferedIOBase). Finally, StringIO is an in-memory stream for text.

Argument names are not part of the specification, and only the arguments of open() are intended to be used as
keyword arguments.

15.2.1 Module Interface

DEFAULT_BUFFER_SIZE
An int containing the default buffer size used by the module’s buffered I/O classes. open() uses the file’s
blksize (as obtained by os.stat()) if possible.

open(file, [mode, [buffering, [encoding, [errors, [newline, [closefd=True]]]]]])
Open file and return a stream. If the file cannot be opened, an IOError is raised.

file is either a string giving the name (and the path if the file isn’t in the current working directory) of the
file to be opened or a file descriptor of the file to be opened. (If a file descriptor is given, for example, from
os.fdopen(), it is closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ’r’ which means
open for reading in text mode. Other common values are ’w’ for writing (truncating the file if it already
exists), and ’a’ for appending (which on some Unix systems, means that all writes append to the end of the file
regardless of the current seek position). In text mode, if encoding is not specified the encoding used is platform
dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available
modes are:

Character Meaning
’r’ open for reading (default)
’w’ open for writing, truncating the file first
’a’ open for writing, appending to the end of the file if it exists
’b’ binary mode
’t’ text mode (default)
’+’ open a disk file for updating (reading and writing)
’U’ universal newline mode (for backwards compatibility; should not be used in new code)

The default mode is ’rt’ (open for reading text). For binary random access, the mode ’w+b’ opens and
truncates the file to 0 bytes, while ’r+b’ opens the file without truncation.

Python distinguishes between files opened in binary and text modes, even when the underlying operating system
doesn’t. Files opened in binary mode (including ’b’ in the mode argument) return contents as bytes objects
without any decoding. In text mode (the default, or when ’t’ is included in the mode argument), the contents
of the file are returned as strings, the bytes having been first decoded using a platform-dependent encoding or
using the specified encoding if given.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a
fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

•Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on DEFAULT_BUFFER_SIZE. On many
systems, the buffer will typically be 4096 or 8192 bytes long.

380 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

•“Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent, but any encoding supported by Python can be used. See the
codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled. Pass
’strict’ to raise a ValueError exception if there is an encoding error (the default of None has the
same effect), or pass ’ignore’ to ignore errors. (Note that ignoring encoding errors can lead to data
loss.) ’replace’ causes a replacement marker (such as ’?’) to be inserted where there is malformed
data. When writing, ’xmlcharrefreplace’ (replace with the appropriate XML character reference) or
’backslashreplace’ (replace with backslashed escape sequences) can be used. Any other error handling
name that has been registered with codecs.register_error() is also valid.

newline controls how universal newlines works (it only applies to text mode). It can be None, ”, ’\n’, ’\r’,
and ’\r\n’. It works as follows:

•On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ’\n’,
’\r’, or ’\r\n’, and these are translated into ’\n’ before being returned to the caller. If it is ”,
universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has any of
the other legal values, input lines are only terminated by the given string, and the line ending is returned to
the caller untranslated.

•On output, if newline is None, any ’\n’ characters written are translated to the system default line
separator, os.linesep. If newline is ”, no translation takes place. If newline is any of the other legal
values, any ’\n’ characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will be
kept open when the file is closed. If a filename is given closefd has no effect but must be True (the default).

The type of file object returned by the open() function depends on the mode. When open() is used to
open a file in a text mode (’w’, ’r’, ’wt’, ’rt’, etc.), it returns a TextIOWrapper. When used to open
a file in a binary mode, the returned class varies: in read binary mode, it returns a BufferedReader; in
write binary and append binary modes, it returns a BufferedWriter, and in read/write mode, it returns a
BufferedRandom.

It is also possible to use a string or bytearray as a file for both reading and writing. For strings StringIO can
be used like a file opened in a text mode, and for bytearrays a BytesIO can be used like a file opened in a
binary mode.

exception BlockingIOError
Error raised when blocking would occur on a non-blocking stream. It inherits IOError.

In addition to those of IOError, BlockingIOError has one attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked.

exception UnsupportedOperation
An exception inheriting IOError and ValueError that is raised when an unsupported operation is called on
a stream.

15.2.2 I/O Base Classes

class IOBase()
The abstract base class for all I/O classes, acting on streams of bytes. There is no public constructor.

This class provides empty abstract implementations for many methods that derived classes can override selec-
tively; the default implementations represent a file that cannot be read, written or seeked.

15.2. io — Core tools for working with streams 381

The Python Library Reference, Release 2.6.9

Even though IOBase does not declare read(), readinto(), or write() because their signatures will
vary, implementations and clients should consider those methods part of the interface. Also, implementations
may raise a IOError when operations they do not support are called.

The basic type used for binary data read from or written to a file is bytes. bytearrays are accepted too, and
in some cases (such as readinto) required. Text I/O classes work with str data.

Note that calling any method (even inquiries) on a closed stream is undefined. Implementations may raise
IOError in this case.

IOBase (and its subclasses) support the iterator protocol, meaning that an IOBase object can be iterated over
yielding the lines in a stream.

IOBase is also a context manager and therefore supports the with statement. In this example, file is closed after
the with statement’s suite is finished—even if an exception occurs:

with open(’spam.txt’, ’w’) as file:
file.write(’Spam and eggs!’)

IOBase provides these data attributes and methods:

close()
Flush and close this stream. This method has no effect if the file is already closed. Once the file is closed,
any operation on the file (e.g. reading or writing) will raise an ValueError.

As a convenience, it is allowed to call this method more than once; only the first call, however, will have
an effect.

closed
True if the stream is closed.

fileno()
Return the underlying file descriptor (an integer) of the stream if it exists. An IOError is raised if the IO
object does not use a file descriptor.

flush()
Flush the write buffers of the stream if applicable. This does nothing for read-only and non-blocking
streams.

isatty()
Return True if the stream is interactive (i.e., connected to a terminal/tty device).

readable()
Return True if the stream can be read from. If False, read() will raise IOError.

readline([limit])
Read and return one line from the stream. If limit is specified, at most limit bytes will be read.

The line terminator is always b’\n’ for binary files; for text files, the newlines argument to open() can
be used to select the line terminator(s) recognized.

readlines([hint])
Read and return a list of lines from the stream. hint can be specified to control the number of lines read:
no more lines will be read if the total size (in bytes/characters) of all lines so far exceeds hint.

seek(offset, [whence])
Change the stream position to the given byte offset. offset is interpreted relative to the position indicated
by whence. Values for whence are:

•0 – start of the stream (the default); offset should be zero or positive

•1 – current stream position; offset may be negative

382 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

•2 – end of the stream; offset is usually negative

Return the new absolute position.

seekable()
Return True if the stream supports random access. If False, seek(), tell() and truncate()
will raise IOError.

tell()
Return the current stream position.

truncate([size])
Resize the stream to the given size in bytes (or the current position if size is not specified). The current
stream position isn’t changed. This resizing can extend or reduce the current file size. In case of extension,
the contents of the new file area depend on the platform (on most systems, additional bytes are zero-filled,
on Windows they’re undetermined). The new file size is returned.

writable()
Return True if the stream supports writing. If False, write() and truncate() will raise
IOError.

writelines(lines)
Write a list of lines to the stream. Line separators are not added, so it is usual for each of the lines provided
to have a line separator at the end.

class RawIOBase()
Base class for raw binary I/O. It inherits IOBase. There is no public constructor.

In addition to the attributes and methods from IOBase, RawIOBase provides the following methods:

read([n])
Read and return all the bytes from the stream until EOF, or if n is specified, up to n bytes. Only one system
call is ever made. An empty bytes object is returned on EOF; None is returned if the object is set not to
block and has no data to read.

readall()
Read and return all the bytes from the stream until EOF, using multiple calls to the stream if necessary.

readinto(b)
Read up to len(b) bytes into bytearray b and return the number of bytes read.

write(b)
Write the given bytes or bytearray object, b, to the underlying raw stream and return the number of bytes
written (This is never less than len(b), since if the write fails, an IOError will be raised).

class BufferedIOBase()
Base class for streams that support buffering. It inherits IOBase. There is no public constructor.

The main difference with RawIOBase is that the read() method supports omitting the size argument, and
does not have a default implementation that defers to readinto().

In addition, read(), readinto(), and write() may raise BlockingIOError if the underlying raw
stream is in non-blocking mode and not ready; unlike their raw counterparts, they will never return None.

A typical implementation should not inherit from a RawIOBase implementation, but wrap one like
BufferedWriter and BufferedReader.

BufferedIOBase provides or overrides these methods in addition to those from IOBase:

read([n])
Read and return up to n bytes. If the argument is omitted, None, or negative, data is read and returned
until EOF is reached. An empty bytes object is returned if the stream is already at EOF.

15.2. io — Core tools for working with streams 383

The Python Library Reference, Release 2.6.9

If the argument is positive, and the underlying raw stream is not interactive, multiple raw reads may be
issued to satisfy the byte count (unless EOF is reached first). But for interactive raw streams, at most one
raw read will be issued, and a short result does not imply that EOF is imminent.

A BlockingIOError is raised if the underlying raw stream has no data at the moment.

readinto(b)
Read up to len(b) bytes into bytearray b and return the number of bytes read.

Like read(), multiple reads may be issued to the underlying raw stream, unless the latter is ‘interactive.’

A BlockingIOError is raised if the underlying raw stream has no data at the moment.

write(b)
Write the given bytes or bytearray object, b, to the underlying raw stream and return the number of bytes
written (never less than len(b), since if the write fails an IOError will be raised).

A BlockingIOError is raised if the buffer is full, and the underlying raw stream cannot accept more
data at the moment.

15.2.3 Raw File I/O

class FileIO(name, [mode])
FileIO represents a file containing bytes data. It implements the RawIOBase interface (and therefore the
IOBase interface, too).

The mode can be ’r’, ’w’ or ’a’ for reading (default), writing, or appending. The file will be created if it
doesn’t exist when opened for writing or appending; it will be truncated when opened for writing. Add a ’+’
to the mode to allow simultaneous reading and writing.

In addition to the attributes and methods from IOBase and RawIOBase, FileIO provides the following data
attributes and methods:

mode
The mode as given in the constructor.

name
The file name. This is the file descriptor of the file when no name is given in the constructor.

read([n])
Read and return at most n bytes. Only one system call is made, so it is possible that less data than was
requested is returned. Use len() on the returned bytes object to see how many bytes were actually
returned. (In non-blocking mode, None is returned when no data is available.)

readall()
Read and return the entire file’s contents in a single bytes object. As much as immediately available is
returned in non-blocking mode. If the EOF has been reached, b” is returned.

write(b)
Write the bytes or bytearray object, b, to the file, and return the number actually written. Only one system
call is made, so it is possible that only some of the data is written.

Note that the inherited readinto() method should not be used on FileIO objects.

15.2.4 Buffered Streams

class BytesIO([initial_bytes])
A stream implementation using an in-memory bytes buffer. It inherits BufferedIOBase.

The argument initial_bytes is an optional initial bytearray.

384 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

BytesIO provides or overrides these methods in addition to those from BufferedIOBase and IOBase:

getvalue()
Return bytes containing the entire contents of the buffer.

read1()
In BytesIO, this is the same as read().

class BufferedReader(raw, [buffer_size])
A buffer for a readable, sequential RawIOBase object. It inherits BufferedIOBase.

The constructor creates a BufferedReader for the given readable raw stream and buffer_size. If buffer_size
is omitted, DEFAULT_BUFFER_SIZE is used.

BufferedReader provides or overrides these methods in addition to those from BufferedIOBase and
IOBase:

peek([n])
Return 1 (or n if specified) bytes from a buffer without advancing the position. Only a single read on the
raw stream is done to satisfy the call. The number of bytes returned may be less than requested since at
most all the buffer’s bytes from the current position to the end are returned.

read([n])
Read and return n bytes, or if n is not given or negative, until EOF or if the read call would block in
non-blocking mode.

read1(n)
Read and return up to n bytes with only one call on the raw stream. If at least one byte is buffered, only
buffered bytes are returned. Otherwise, one raw stream read call is made.

class BufferedWriter(raw, [buffer_size, [max_buffer_size]])
A buffer for a writeable sequential RawIO object. It inherits BufferedIOBase.

The constructor creates a BufferedWriter for the given writeable raw stream. If the buffer_size is not given,
it defaults to DEAFULT_BUFFER_SIZE. If max_buffer_size is omitted, it defaults to twice the buffer size.

BufferedWriter provides or overrides these methods in addition to those from BufferedIOBase and
IOBase:

flush()
Force bytes held in the buffer into the raw stream. A BlockingIOError should be raised if the raw
stream blocks.

write(b)
Write the bytes or bytearray object, b, onto the raw stream and return the number of bytes written. A
BlockingIOError is raised when the raw stream blocks.

class BufferedRWPair(reader, writer, [buffer_size, [max_buffer_size]])
A combined buffered writer and reader object for a raw stream that can be written to and read from. It has and
supports both read(), write(), and their variants. This is useful for sockets and two-way pipes. It inherits
BufferedIOBase.

reader and writer are RawIOBase objects that are readable and writeable respectively. If the buffer_size is
omitted it defaults to DEFAULT_BUFFER_SIZE. The max_buffer_size (for the buffered writer) defaults to
twice the buffer size.

BufferedRWPair implements all of BufferedIOBase‘s methods.

class BufferedRandom(raw, [buffer_size, [max_buffer_size]])
A buffered interface to random access streams. It inherits BufferedReader and BufferedWriter.

15.2. io — Core tools for working with streams 385

The Python Library Reference, Release 2.6.9

The constructor creates a reader and writer for a seekable raw stream, given in the first argument. If the
buffer_size is omitted it defaults to DEFAULT_BUFFER_SIZE. The max_buffer_size (for the buffered writer)
defaults to twice the buffer size.

BufferedRandom is capable of anything BufferedReader or BufferedWriter can do.

15.2.5 Text I/O

class TextIOBase()
Base class for text streams. This class provides a character and line based interface to stream I/O. There is
no readinto() method because Python’s character strings are immutable. It inherits IOBase. There is no
public constructor.

TextIOBase provides or overrides these data attributes and methods in addition to those from IOBase:

encoding
The name of the encoding used to decode the stream’s bytes into strings, and to encode strings into bytes.

newlines
A string, a tuple of strings, or None, indicating the newlines translated so far.

read(n)
Read and return at most n characters from the stream as a single str. If n is negative or None, reads to
EOF.

readline()
Read until newline or EOF and return a single str. If the stream is already at EOF, an empty string is
returned.

write(s)
Write the string s to the stream and return the number of characters written.

class TextIOWrapper(buffer, [encoding, [errors, [newline, [line_buffering]]]])
A buffered text stream over a BufferedIOBase raw stream, buffer. It inherits TextIOBase.

encoding gives the name of the encoding that the stream will be decoded or encoded with. It defaults to
locale.getpreferredencoding().

errors is an optional string that specifies how encoding and decoding errors are to be handled. Pass
’strict’ to raise a ValueError exception if there is an encoding error (the default of None has the
same effect), or pass ’ignore’ to ignore errors. (Note that ignoring encoding errors can lead to data
loss.) ’replace’ causes a replacement marker (such as ’?’) to be inserted where there is malformed
data. When writing, ’xmlcharrefreplace’ (replace with the appropriate XML character reference) or
’backslashreplace’ (replace with backslashed escape sequences) can be used. Any other error handling
name that has been registered with codecs.register_error() is also valid.

newline can be None, ”, ’\n’, ’\r’, or ’\r\n’. It controls the handling of line endings. If it is None,
universal newlines is enabled. With this enabled, on input, the lines endings ’\n’, ’\r’, or ’\r\n’ are
translated to ’\n’ before being returned to the caller. Conversely, on output, ’\n’ is translated to the system
default line separator, os.linesep. If newline is any other of its legal values, that newline becomes the
newline when the file is read and it is returned untranslated. On output, ’\n’ is converted to the newline.

If line_buffering is True, flush() is implied when a call to write contains a newline character.

TextIOWrapper provides these data attributes in addition to those of TextIOBase and its parents:

errors
The encoding and decoding error setting.

line_buffering
Whether line buffering is enabled.

386 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

class StringIO([initial_value, [encoding, [errors, [newline]]]])
An in-memory stream for text. It inherits TextIOWrapper.

Create a new StringIO stream with an inital value, encoding, error handling, and newline setting. See
TextIOWrapper‘s constructor for more information.

StringIO provides this method in addition to those from TextIOWrapper and its parents:

getvalue()
Return a str containing the entire contents of the buffer.

class IncrementalNewlineDecoder()
A helper codec that decodes newlines for universal newlines mode. It inherits
codecs.IncrementalDecoder.

15.3 time — Time access and conversions

This module provides various time-related functions. For related functionality, see also the datetime and
calendar modules.

Although this module is always available, not all functions are available on all platforms. Most of the functions
defined in this module call platform C library functions with the same name. It may sometimes be helpful to consult
the platform documentation, because the semantics of these functions varies among platforms.

An explanation of some terminology and conventions is in order.

• The epoch is the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For Unix, the epoch is 1970. To find out what the epoch is, look at gmtime(0).

• The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; for Unix, it is typically in 2038.

• Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t have year 2000
issues, since all dates and times are represented internally as seconds since the epoch. Functions accepting
a struct_time (see below) generally require a 4-digit year. For backward compatibility, 2-digit years are
supported if the module variable accept2dyear is a non-zero integer; this variable is initialized to 1 unless
the environment variable PYTHONY2K is set to a non-empty string, in which case it is initialized to 0. Thus,
you can set PYTHONY2K to a non-empty string in the environment to require 4-digit years for all year input.
When 2-digit years are accepted, they are converted according to the POSIX or X/Open standard: values 69-99
are mapped to 1969-1999, and values 0–68 are mapped to 2000–2068. Values 100–1899 are always illegal.
Note that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2a1, would add 1900 to
year values below 1900.

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym UTC
is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

• The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on most Unix systems, the clock “ticks” only 50 or 100 times a second.

• On the other hand, the precision of time() and sleep() is better than their Unix equivalents: times
are expressed as floating point numbers, time() returns the most accurate time available (using Unix

15.3. time — Time access and conversions 387

The Python Library Reference, Release 2.6.9

gettimeofday() where available), and sleep() will accept a time with a nonzero fraction (Unix
select() is used to implement this, where available).

• The time value as returned by gmtime(), localtime(), and strptime(), and accepted by asctime(),
mktime() and strftime(), may be considered as a sequence of 9 integers. The return values of
gmtime(), localtime(), and strptime() also offer attribute names for individual fields.

Index Attribute Values
0 tm_year (for example, 1993)
1 tm_mon range [1,12]
2 tm_mday range [1,31]
3 tm_hour range [0,23]
4 tm_min range [0,59]
5 tm_sec range [0,61]; see (1) in strftime() description
6 tm_wday range [0,6], Monday is 0
7 tm_yday range [1,366]
8 tm_isdst 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be handled
as described under “Year 2000 (Y2K) issues” above. A -1 argument as the daylight savings flag, passed to
mktime() will usually result in the correct daylight savings state to be filled in.

When a tuple with an incorrect length is passed to a function expecting a struct_time, or having elements
of the wrong type, a TypeError is raised. Changed in version 2.2: The time value sequence was changed
from a tuple to a struct_time, with the addition of attribute names for the fields.

• Use the following functions to convert between time representations:

From To Use
seconds since the epoch struct_time in UTC gmtime()
seconds since the epoch struct_time in local time localtime()
struct_time in UTC seconds since the epoch calendar.timegm()
struct_time in local time seconds since the epoch mktime()

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be set
to false if the environment variable PYTHONY2K has been set to a non-empty string. It may also be modified
at run time.

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the local
DST timezone is east of UTC (as in Western Europe, including the UK). Only use this if daylight is nonzero.

asctime([t])
Convert a tuple or struct_time representing a time as returned by gmtime() or localtime() to a 24-
character string of the following form: ’Sun Jun 20 23:21:05 1993’. If t is not provided, the current
time as returned by localtime() is used. Locale information is not used by asctime().

Note: Unlike the C function of the same name, there is no trailing newline. Changed in version 2.1: Allowed
t to be omitted.

clock()
On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and
in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same
name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating
point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically

388 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

better than one microsecond.

ctime([secs])
Convert a time expressed in seconds since the epoch to a string representing local time. If secs is not
provided or None, the current time as returned by time() is used. ctime(secs) is equivalent to
asctime(localtime(secs)). Locale information is not used by ctime(). Changed in version 2.1:
Allowed secs to be omitted.Changed in version 2.4: If secs is None, the current time is used.

daylight
Nonzero if a DST timezone is defined.

gmtime([secs])
Convert a time expressed in seconds since the epoch to a struct_time in UTC in which the dst flag is always
zero. If secs is not provided or None, the current time as returned by time() is used. Fractions of a second
are ignored. See above for a description of the struct_time object. See calendar.timegm() for the
inverse of this function. Changed in version 2.1: Allowed secs to be omitted.Changed in version 2.4: If secs is
None, the current time is used.

localtime([secs])
Like gmtime() but converts to local time. If secs is not provided or None, the current time as returned by
time() is used. The dst flag is set to 1 when DST applies to the given time. Changed in version 2.1: Allowed
secs to be omitted.Changed in version 2.4: If secs is None, the current time is used.

mktime(t)
This is the inverse function of localtime(). Its argument is the struct_time or full 9-tuple (since the
dst flag is needed; use -1 as the dst flag if it is unknown) which expresses the time in local time, not UTC. It
returns a floating point number, for compatibility with time(). If the input value cannot be represented as a
valid time, either OverflowError or ValueError will be raised (which depends on whether the invalid
value is caught by Python or the underlying C libraries). The earliest date for which it can generate a time is
platform-dependent.

sleep(secs)
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time. The actual suspension time may be less than that requested because any caught signal
will terminate the sleep() following execution of that signal’s catching routine. Also, the suspension time
may be longer than requested by an arbitrary amount because of the scheduling of other activity in the system.

strftime(format, [t])
Convert a tuple or struct_time representing a time as returned by gmtime() or localtime() to a string
as specified by the format argument. If t is not provided, the current time as returned by localtime() is used.
format must be a string. ValueError is raised if any field in t is outside of the allowed range. Changed in
version 2.1: Allowed t to be omitted.Changed in version 2.4: ValueError raised if a field in t is out of
range.Changed in version 2.5: 0 is now a legal argument for any position in the time tuple; if it is normally
illegal the value is forced to a correct one.. The following directives can be embedded in the format string.
They are shown without the optional field width and precision specification, and are replaced by the indicated
characters in the strftime() result:

15.3. time — Time access and conversions 389

The Python Library Reference, Release 2.6.9

Di-
rec-
tive

Meaning Notes

%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. (1)
%S Second as a decimal number [00,61]. (2)
%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. All

days in a new year preceding the first Sunday are considered to be in week 0.
(3)

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. All

days in a new year preceding the first Monday are considered to be in week 0.
(3)

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (no characters if no time zone exists).
%% A literal ’%’ character.

Notes:

1.When used with the strptime() function, the %p directive only affects the output hour field if the %I
directive is used to parse the hour.

2.The range really is 0 to 61; this accounts for leap seconds and the (very rare) double leap seconds.

3.When used with the strptime() function, %U and %W are only used in calculations when the day of the
week and the year are specified.

Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet email standard.
1

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
’Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the initial ’%’
of a directive in the following order; this is also not portable. The field width is normally 2 except for %j where
it is 3.

strptime(string, [format])
Parse a string representing a time according to a format. The return value is a struct_time as returned by

1 The use of %Z is now deprecated, but the %z escape that expands to the preferred hour/minute offset is not supported by all ANSI C libraries.
Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather than %Y), but practice moved to 4-digit years
long before the year 2000. The 4-digit year has been mandated by RFC 2822, which obsoletes RFC 822.

390 Chapter 15. Generic Operating System Services

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 2.6.9

gmtime() or localtime().

The format parameter uses the same directives as those used by strftime(); it defaults to "%a %b %d
%H:%M:%S %Y" which matches the formatting returned by ctime(). If string cannot be parsed according
to format, or if it has excess data after parsing, ValueError is raised. The default values used to fill in any
missing data when more accurate values cannot be inferred are (1900, 1, 1, 0, 0, 0, 0, 1, -1).

For example:

>>> import time
>>> time.strptime("30 Nov 00", "%d %b %y") # doctest: +NORMALIZE_WHITESPACE
time.struct_time(tm_year=2000, tm_mon=11, tm_mday=30, tm_hour=0, tm_min=0,

tm_sec=0, tm_wday=3, tm_yday=335, tm_isdst=-1)

Support for the %Z directive is based on the values contained in tzname and whether daylight is true.
Because of this, it is platform-specific except for recognizing UTC and GMT which are always known (and are
considered to be non-daylight savings timezones).

Only the directives specified in the documentation are supported. Because strftime() is implemented per
platform it can sometimes offer more directives than those listed. But strptime() is independent of any
platform and thus does not necessarily support all directives available that are not documented as supported.

struct_time
The type of the time value sequence returned by gmtime(), localtime(), and strptime(). New in
version 2.2.

time()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than 1
second. While this function normally returns non-decreasing values, it can return a lower value than a previous
call if the system clock has been set back between the two calls.

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western Europe,
positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

tzset()
Resets the time conversion rules used by the library routines. The environment variable TZ specifies how this
is done. New in version 2.3. Availability: Unix.

Note: Although in many cases, changing the TZ environment variable may affect the output of functions like
localtime() without calling tzset(), this behavior should not be relied on.

The TZ environment variable should contain no whitespace.

The standard format of the TZ environment variable is (whitespace added for clarity):

std offset [dst [offset [,start[/time], end[/time]]]]

Where the components are:

std and dst Three or more alphanumerics giving the timezone abbreviations. These will be propagated into
time.tzname

15.3. time — Time access and conversions 391

The Python Library Reference, Release 2.6.9

offset The offset has the form: ± hh[:mm[:ss]]. This indicates the value added the local time to arrive
at UTC. If preceded by a ‘-‘, the timezone is east of the Prime Meridian; otherwise, it is west. If no offset
follows dst, summer time is assumed to be one hour ahead of standard time.

start[/time], end[/time] Indicates when to change to and back from DST. The format of the start
and end dates are one of the following:

‘Jn’ The Julian day n (1 <= n <= 365). Leap days are not counted, so in all years February 28 is day 59
and March 1 is day 60.

‘n’ The zero-based Julian day (0 <= n <= 365). Leap days are counted, and it is possible to refer to
February 29.

‘Mm.n.d’ The d‘th day (0 <= d <= 6) or week n of month m of the year (1 <= n <= 5, 1 <= m <= 12,
where week 5 means “the last d day in month m” which may occur in either the fourth or the fifth
week). Week 1 is the first week in which the d‘th day occurs. Day zero is Sunday.

time has the same format as offset except that no leading sign (‘-‘ or ‘+’) is allowed. The default, if
time is not given, is 02:00:00.

>>> os.environ[’TZ’] = ’EST+05EDT,M4.1.0,M10.5.0’
>>> time.tzset()
>>> time.strftime(’%X %x %Z’)
’02:07:36 05/08/03 EDT’
>>> os.environ[’TZ’] = ’AEST-10AEDT-11,M10.5.0,M3.5.0’
>>> time.tzset()
>>> time.strftime(’%X %x %Z’)
’16:08:12 05/08/03 AEST’

On many Unix systems (including *BSD, Linux, Solaris, and Darwin), it is more convenient to use the system’s
zoneinfo (tzfile(5)) database to specify the timezone rules. To do this, set the TZ environment variable to
the path of the required timezone datafile, relative to the root of the systems ‘zoneinfo’ timezone database, usu-
ally located at /usr/share/zoneinfo. For example, ’US/Eastern’, ’Australia/Melbourne’,
’Egypt’ or ’Europe/Amsterdam’.

>>> os.environ[’TZ’] = ’US/Eastern’
>>> time.tzset()
>>> time.tzname
(’EST’, ’EDT’)
>>> os.environ[’TZ’] = ’Egypt’
>>> time.tzset()
>>> time.tzname
(’EET’, ’EEST’)

See Also:

Module datetime More object-oriented interface to dates and times.

Module locale Internationalization services. The locale settings can affect the return values for some of the func-
tions in the time module.

Module calendar General calendar-related functions. timegm() is the inverse of gmtime() from this module.

15.4 optparse — More powerful command line option parser

392 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

New in version 2.3. optparse is a more convenient, flexible, and powerful library for parsing command-line options
than the old getopt module. optparse uses a more declarative style of command-line parsing: you create an
instance of OptionParser, populate it with options, and parse the command line. optparse allows users to
specify options in the conventional GNU/POSIX syntax, and additionally generates usage and help messages for you.

Here’s an example of using optparse in a simple script:

from optparse import OptionParser
[...]
parser = OptionParser()
parser.add_option("-f", "--file", dest="filename",

help="write report to FILE", metavar="FILE")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose", default=True,
help="don’t print status messages to stdout")

(options, args) = parser.parse_args()

With these few lines of code, users of your script can now do the “usual thing” on the command-line, for example:

<yourscript> --file=outfile -q

As it parses the command line, optparse sets attributes of the options object returned by parse_args()
based on user-supplied command-line values. When parse_args() returns from parsing this command line,
options.filename will be "outfile" and options.verbose will be False. optparse supports both
long and short options, allows short options to be merged together, and allows options to be associated with their
arguments in a variety of ways. Thus, the following command lines are all equivalent to the above example:

<yourscript> -f outfile --quiet
<yourscript> --quiet --file outfile
<yourscript> -q -foutfile
<yourscript> -qfoutfile

Additionally, users can run one of

<yourscript> -h
<yourscript> --help

and optparse will print out a brief summary of your script’s options:

usage: <yourscript> [options]

options:
-h, --help show this help message and exit
-f FILE, --file=FILE write report to FILE
-q, --quiet don’t print status messages to stdout

where the value of yourscript is determined at runtime (normally from sys.argv[0]).

15.4.1 Background

optparse was explicitly designed to encourage the creation of programs with straightforward, conventional
command-line interfaces. To that end, it supports only the most common command-line syntax and semantics con-
ventionally used under Unix. If you are unfamiliar with these conventions, read this section to acquaint yourself with
them.

15.4. optparse — More powerful command line option parser 393

The Python Library Reference, Release 2.6.9

Terminology

argument a string entered on the command-line, and passed by the shell to execl() or execv(). In Python,
arguments are elements of sys.argv[1:] (sys.argv[0] is the name of the program being executed).
Unix shells also use the term “word”.

It is occasionally desirable to substitute an argument list other than sys.argv[1:], so you should read “argu-
ment” as “an element of sys.argv[1:], or of some other list provided as a substitute for sys.argv[1:]“.

option an argument used to supply extra information to guide or customize the execution of a program. There are
many different syntaxes for options; the traditional Unix syntax is a hyphen (“-“) followed by a single letter, e.g.
"-x" or "-F". Also, traditional Unix syntax allows multiple options to be merged into a single argument, e.g.
"-x -F" is equivalent to "-xF". The GNU project introduced "--" followed by a series of hyphen-separated
words, e.g. "--file" or "--dry-run". These are the only two option syntaxes provided by optparse.

Some other option syntaxes that the world has seen include:

• a hyphen followed by a few letters, e.g. "-pf" (this is not the same as multiple options merged into a
single argument)

• a hyphen followed by a whole word, e.g. "-file" (this is technically equivalent to the previous syntax,
but they aren’t usually seen in the same program)

• a plus sign followed by a single letter, or a few letters, or a word, e.g. "+f", "+rgb"

• a slash followed by a letter, or a few letters, or a word, e.g. "/f", "/file"

These option syntaxes are not supported by optparse, and they never will be. This is deliberate: the first
three are non-standard on any environment, and the last only makes sense if you’re exclusively targeting VMS,
MS-DOS, and/or Windows.

option argument an argument that follows an option, is closely associated with that option, and is consumed from
the argument list when that option is. With optparse, option arguments may either be in a separate argument
from their option:

-f foo
--file foo

or included in the same argument:

-ffoo
--file=foo

Typically, a given option either takes an argument or it doesn’t. Lots of people want an “optional option argu-
ments” feature, meaning that some options will take an argument if they see it, and won’t if they don’t. This is
somewhat controversial, because it makes parsing ambiguous: if "-a" takes an optional argument and "-b" is
another option entirely, how do we interpret "-ab"? Because of this ambiguity, optparse does not support
this feature.

positional argument something leftover in the argument list after options have been parsed, i.e. after options and
their arguments have been parsed and removed from the argument list.

required option an option that must be supplied on the command-line; note that the phrase “required option” is self-
contradictory in English. optparse doesn’t prevent you from implementing required options, but doesn’t give
you much help at it either.

For example, consider this hypothetical command-line:

prog -v --report /tmp/report.txt foo bar

"-v" and "--report" are both options. Assuming that --report takes one argument, "/tmp/report.txt"
is an option argument. "foo" and "bar" are positional arguments.

394 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

What are options for?

Options are used to provide extra information to tune or customize the execution of a program. In case it wasn’t
clear, options are usually optional. A program should be able to run just fine with no options whatsoever. (Pick a
random program from the Unix or GNU toolsets. Can it run without any options at all and still make sense? The
main exceptions are find, tar, and dd—all of which are mutant oddballs that have been rightly criticized for their
non-standard syntax and confusing interfaces.)

Lots of people want their programs to have “required options”. Think about it. If it’s required, then it’s not optional! If
there is a piece of information that your program absolutely requires in order to run successfully, that’s what positional
arguments are for.

As an example of good command-line interface design, consider the humble cp utility, for copying files. It doesn’t
make much sense to try to copy files without supplying a destination and at least one source. Hence, cp fails if you
run it with no arguments. However, it has a flexible, useful syntax that does not require any options at all:

cp SOURCE DEST
cp SOURCE ... DEST-DIR

You can get pretty far with just that. Most cp implementations provide a bunch of options to tweak exactly how
the files are copied: you can preserve mode and modification time, avoid following symlinks, ask before clobbering
existing files, etc. But none of this distracts from the core mission of cp, which is to copy either one file to another, or
several files to another directory.

What are positional arguments for?

Positional arguments are for those pieces of information that your program absolutely, positively requires to run.

A good user interface should have as few absolute requirements as possible. If your program requires 17 distinct pieces
of information in order to run successfully, it doesn’t much matter how you get that information from the user—most
people will give up and walk away before they successfully run the program. This applies whether the user interface
is a command-line, a configuration file, or a GUI: if you make that many demands on your users, most of them will
simply give up.

In short, try to minimize the amount of information that users are absolutely required to supply—use sensible defaults
whenever possible. Of course, you also want to make your programs reasonably flexible. That’s what options are for.
Again, it doesn’t matter if they are entries in a config file, widgets in the “Preferences” dialog of a GUI, or command-
line options—the more options you implement, the more flexible your program is, and the more complicated its
implementation becomes. Too much flexibility has drawbacks as well, of course; too many options can overwhelm
users and make your code much harder to maintain.

15.4.2 Tutorial

While optparse is quite flexible and powerful, it’s also straightforward to use in most cases. This section covers the
code patterns that are common to any optparse-based program.

First, you need to import the OptionParser class; then, early in the main program, create an OptionParser instance:

from optparse import OptionParser
[...]
parser = OptionParser()

Then you can start defining options. The basic syntax is:

parser.add_option(opt_str, ...,
attr=value, ...)

15.4. optparse — More powerful command line option parser 395

The Python Library Reference, Release 2.6.9

Each option has one or more option strings, such as "-f" or "--file", and several option attributes that tell
optparse what to expect and what to do when it encounters that option on the command line.

Typically, each option will have one short option string and one long option string, e.g.:

parser.add_option("-f", "--file", ...)

You’re free to define as many short option strings and as many long option strings as you like (including zero), as long
as there is at least one option string overall.

The option strings passed to add_option() are effectively labels for the option defined by that call. For brevity, we
will frequently refer to encountering an option on the command line; in reality, optparse encounters option strings
and looks up options from them.

Once all of your options are defined, instruct optparse to parse your program’s command line:

(options, args) = parser.parse_args()

(If you like, you can pass a custom argument list to parse_args(), but that’s rarely necessary: by default it uses
sys.argv[1:].)

parse_args() returns two values:

• options, an object containing values for all of your options—e.g. if "--file" takes a single string argu-
ment, then options.file will be the filename supplied by the user, or None if the user did not supply that
option

• args, the list of positional arguments leftover after parsing options

This tutorial section only covers the four most important option attributes: action, type, dest (destination), and
help. Of these, action is the most fundamental.

Understanding option actions

Actions tell optparse what to do when it encounters an option on the command line. There is a fixed set of actions
hard-coded into optparse; adding new actions is an advanced topic covered in section Extending optparse. Most
actions tell optparse to store a value in some variable—for example, take a string from the command line and store
it in an attribute of options.

If you don’t specify an option action, optparse defaults to store.

The store action

The most common option action is store, which tells optparse to take the next argument (or the remainder of the
current argument), ensure that it is of the correct type, and store it to your chosen destination.

For example:

parser.add_option("-f", "--file",
action="store", type="string", dest="filename")

Now let’s make up a fake command line and ask optparse to parse it:

args = ["-f", "foo.txt"]
(options, args) = parser.parse_args(args)

When optparse sees the option string "-f", it consumes the next argument, "foo.txt", and stores it in
options.filename. So, after this call to parse_args(), options.filename is "foo.txt".

Some other option types supported by optparse are int and float. Here’s an option that expects an integer
argument:

396 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

parser.add_option("-n", type="int", dest="num")

Note that this option has no long option string, which is perfectly acceptable. Also, there’s no explicit action, since the
default is store.

Let’s parse another fake command-line. This time, we’ll jam the option argument right up against the option: since
"-n42" (one argument) is equivalent to "-n 42" (two arguments), the code

(options, args) = parser.parse_args(["-n42"])
print options.num

will print "42".

If you don’t specify a type, optparse assumes string. Combined with the fact that the default action is store,
that means our first example can be a lot shorter:

parser.add_option("-f", "--file", dest="filename")

If you don’t supply a destination, optparse figures out a sensible default from the option strings: if the first long op-
tion string is "--foo-bar", then the default destination is foo_bar. If there are no long option strings, optparse
looks at the first short option string: the default destination for "-f" is f.

optparse also includes built-in long and complex types. Adding types is covered in section Extending optparse.

Handling boolean (flag) options

Flag options—set a variable to true or false when a particular option is seen —are quite common. optparse supports
them with two separate actions, store_true and store_false. For example, you might have a verbose flag
that is turned on with "-v" and off with "-q":

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose")

Here we have two different options with the same destination, which is perfectly OK. (It just means you have to be a
bit careful when setting default values— see below.)

When optparse encounters "-v" on the command line, it sets options.verbose to True; when it encounters
"-q", options.verbose is set to False.

Other actions

Some other actions supported by optparse are:

"store_const" store a constant value

"append" append this option’s argument to a list

"count" increment a counter by one

"callback" call a specified function

These are covered in section Reference Guide, Reference Guide and section Option Callbacks.

Default values

All of the above examples involve setting some variable (the “destination”) when certain command-line options are
seen. What happens if those options are never seen? Since we didn’t supply any defaults, they are all set to None. This
is usually fine, but sometimes you want more control. optparse lets you supply a default value for each destination,
which is assigned before the command line is parsed.

15.4. optparse — More powerful command line option parser 397

The Python Library Reference, Release 2.6.9

First, consider the verbose/quiet example. If we want optparse to set verbose to True unless "-q" is seen, then
we can do this:

parser.add_option("-v", action="store_true", dest="verbose", default=True)
parser.add_option("-q", action="store_false", dest="verbose")

Since default values apply to the destination rather than to any particular option, and these two options happen to have
the same destination, this is exactly equivalent:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Consider this:

parser.add_option("-v", action="store_true", dest="verbose", default=False)
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Again, the default value for verbose will be True: the last default value supplied for any particular destination is
the one that counts.

A clearer way to specify default values is the set_defaults() method of OptionParser, which you can call at any
time before calling parse_args():

parser.set_defaults(verbose=True)
parser.add_option(...)
(options, args) = parser.parse_args()

As before, the last value specified for a given option destination is the one that counts. For clarity, try to use one
method or the other of setting default values, not both.

Generating help

optparse‘s ability to generate help and usage text automatically is useful for creating user-friendly command-line
interfaces. All you have to do is supply a help value for each option, and optionally a short usage message for your
whole program. Here’s an OptionParser populated with user-friendly (documented) options:

usage = "usage: %prog [options] arg1 arg2"
parser = OptionParser(usage=usage)
parser.add_option("-v", "--verbose",

action="store_true", dest="verbose", default=True,
help="make lots of noise [default]")

parser.add_option("-q", "--quiet",
action="store_false", dest="verbose",
help="be vewwy quiet (I’m hunting wabbits)")

parser.add_option("-f", "--filename",
metavar="FILE", help="write output to FILE")

parser.add_option("-m", "--mode",
default="intermediate",
help="interaction mode: novice, intermediate, "

"or expert [default: %default]")

If optparse encounters either "-h" or "--help" on the command-line, or if you just call
parser.print_help(), it prints the following to standard output:

usage: <yourscript> [options] arg1 arg2

options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]

398 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

-q, --quiet be vewwy quiet (I’m hunting wabbits)
-f FILE, --filename=FILE

write output to FILE
-m MODE, --mode=MODE interaction mode: novice, intermediate, or

expert [default: intermediate]

(If the help output is triggered by a help option, optparse exits after printing the help text.)

There’s a lot going on here to help optparse generate the best possible help message:

• the script defines its own usage message:

usage = "usage: %prog [options] arg1 arg2"

optparse expands "%prog" in the usage string to the name of the current program, i.e.
os.path.basename(sys.argv[0]). The expanded string is then printed before the detailed option help.

If you don’t supply a usage string, optparse uses a bland but sensible default: "usage: %prog
[options]", which is fine if your script doesn’t take any positional arguments.

• every option defines a help string, and doesn’t worry about line-wrapping— optparse takes care of wrapping
lines and making the help output look good.

• options that take a value indicate this fact in their automatically-generated help message, e.g. for the “mode”
option:

-m MODE, --mode=MODE

Here, “MODE” is called the meta-variable: it stands for the argument that the user is expected to supply to
-m/--mode. By default, optparse converts the destination variable name to uppercase and uses that for the
meta-variable. Sometimes, that’s not what you want—for example, the --filename option explicitly sets
metavar="FILE", resulting in this automatically-generated option description:

-f FILE, --filename=FILE

This is important for more than just saving space, though: the manually written help text uses the meta-variable
“FILE” to clue the user in that there’s a connection between the semi-formal syntax “-f FILE” and the informal
semantic description “write output to FILE”. This is a simple but effective way to make your help text a lot
clearer and more useful for end users.

New in version 2.4: Options that have a default value can include %default in the help string—optparse will
replace it with str() of the option’s default value. If an option has no default value (or the default value is None),
%default expands to none. When dealing with many options, it is convenient to group these options for better help
output. An OptionParser can contain several option groups, each of which can contain several options.

Continuing with the parser defined above, adding an OptionGroup to a parser is easy:

group = OptionGroup(parser, "Dangerous Options",
"Caution: use these options at your own risk. "
"It is believed that some of them bite.")

group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

This would result in the following help output:

usage: [options] arg1 arg2

options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I’m hunting wabbits)
-fFILE, --file=FILE write output to FILE

15.4. optparse — More powerful command line option parser 399

The Python Library Reference, Release 2.6.9

-mMODE, --mode=MODE interaction mode: one of ’novice’, ’intermediate’
[default], ’expert’

Dangerous Options:
Caution: use of these options is at your own risk. It is believed that
some of them bite.
-g Group option.

Printing a version string

Similar to the brief usage string, optparse can also print a version string for your program. You have to supply the
string as the version argument to OptionParser:

parser = OptionParser(usage="%prog [-f] [-q]", version="%prog 1.0")

"%prog" is expanded just like it is in usage. Apart from that, version can contain anything you like. When you
supply it, optparse automatically adds a "--version" option to your parser. If it encounters this option on the
command line, it expands your version string (by replacing "%prog"), prints it to stdout, and exits.

For example, if your script is called /usr/bin/foo:

$ /usr/bin/foo --version
foo 1.0

The following two methods can be used to print and get the version string:

print_version(file=None)
Print the version message for the current program (self.version) to file (default stdout). As with
print_usage(), any occurrence of "%prog" in self.version is replaced with the name of the cur-
rent program. Does nothing if self.version is empty or undefined.

get_version()
Same as print_version() but returns the version string instead of printing it.

How optparse handles errors

There are two broad classes of errors that optparse has to worry about: programmer errors and user errors. Program-
mer errors are usually erroneous calls to OptionParser.add_option(), e.g. invalid option strings, unknown
option attributes, missing option attributes, etc. These are dealt with in the usual way: raise an exception (either
optparse.OptionError or TypeError) and let the program crash.

Handling user errors is much more important, since they are guaranteed to happen no matter how stable your code is.
optparse can automatically detect some user errors, such as bad option arguments (passing "-n 4x" where -n
takes an integer argument), missing arguments ("-n" at the end of the command line, where -n takes an argument of
any type). Also, you can call OptionParser.error() to signal an application-defined error condition:

(options, args) = parser.parse_args()
[...]
if options.a and options.b:

parser.error("options -a and -b are mutually exclusive")

In either case, optparse handles the error the same way: it prints the program’s usage message and an error message
to standard error and exits with error status 2.

Consider the first example above, where the user passes "4x" to an option that takes an integer:

$ /usr/bin/foo -n 4x
usage: foo [options]

400 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

foo: error: option -n: invalid integer value: ’4x’

Or, where the user fails to pass a value at all:

$ /usr/bin/foo -n
usage: foo [options]

foo: error: -n option requires an argument

optparse-generated error messages take care always to mention the option involved in the error; be sure to do the
same when calling OptionParser.error() from your application code.

If optparse‘s default error-handling behaviour does not suit your needs, you’ll need to subclass OptionParser and
override its exit() and/or error() methods.

Putting it all together

Here’s what optparse-based scripts usually look like:

from optparse import OptionParser
[...]
def main():

usage = "usage: %prog [options] arg"
parser = OptionParser(usage)
parser.add_option("-f", "--file", dest="filename",

help="read data from FILENAME")
parser.add_option("-v", "--verbose",

action="store_true", dest="verbose")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose")
[...]
(options, args) = parser.parse_args()
if len(args) != 1:

parser.error("incorrect number of arguments")
if options.verbose:

print "reading %s..." % options.filename
[...]

if __name__ == "__main__":
main()

15.4.3 Reference Guide

Creating the parser

The first step in using optparse is to create an OptionParser instance.

class OptionParser(...)
The OptionParser constructor has no required arguments, but a number of optional keyword arguments. You
should always pass them as keyword arguments, i.e. do not rely on the order in which the arguments are declared.

usage (default: "%prog [options]") The usage summary to print when your program is run in-
correctly or with a help option. When optparse prints the usage string, it expands %prog to
os.path.basename(sys.argv[0]) (or to prog if you passed that keyword argument). To sup-
press a usage message, pass the special value optparse.SUPPRESS_USAGE.

15.4. optparse — More powerful command line option parser 401

The Python Library Reference, Release 2.6.9

option_list (default: []) A list of Option objects to populate the parser with. The options in
option_list are added after any options in standard_option_list (a class attribute that may be
set by OptionParser subclasses), but before any version or help options. Deprecated; use add_option()
after creating the parser instead.

option_class (default: optparse.Option) Class to use when adding options to the parser in
add_option().

version (default: None) A version string to print when the user supplies a version option. If you supply
a true value for version, optparse automatically adds a version option with the single option string
"--version". The substring "%prog" is expanded the same as for usage.

conflict_handler (default: "error") Specifies what to do when options with conflicting option strings
are added to the parser; see section Conflicts between options.

description (default: None) A paragraph of text giving a brief overview of your program. optparse
reformats this paragraph to fit the current terminal width and prints it when the user requests help (after
usage, but before the list of options).

formatter (default: a new IndentedHelpFormatter) An instance of optparse.HelpFormatter that
will be used for printing help text. optparse provides two concrete classes for this purpose: Indent-
edHelpFormatter and TitledHelpFormatter.

add_help_option (default: True) If true, optparse will add a help option (with option strings "-h"
and "--help") to the parser.

prog The string to use when expanding "%prog" in usage and version instead of
os.path.basename(sys.argv[0]).

epilog (default: None) A paragraph of help text to print after the option help.

Populating the parser

There are several ways to populate the parser with options. The preferred way is by using
OptionParser.add_option(), as shown in section Tutorial. add_option() can be called in one of
two ways:

• pass it an Option instance (as returned by make_option())

• pass it any combination of positional and keyword arguments that are acceptable to make_option() (i.e., to
the Option constructor), and it will create the Option instance for you

The other alternative is to pass a list of pre-constructed Option instances to the OptionParser constructor, as in:

option_list = [
make_option("-f", "--filename",

action="store", type="string", dest="filename"),
make_option("-q", "--quiet",

action="store_false", dest="verbose"),
]

parser = OptionParser(option_list=option_list)

(make_option() is a factory function for creating Option instances; currently it is an alias for the Option construc-
tor. A future version of optparse may split Option into several classes, and make_option() will pick the right
class to instantiate. Do not instantiate Option directly.)

402 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Defining options

Each Option instance represents a set of synonymous command-line option strings, e.g. -f and --file. You can
specify any number of short or long option strings, but you must specify at least one overall option string.

The canonical way to create an Option instance is with the add_option() method of OptionParser.

add_option(opt_str, [...], attr=value, ...)
To define an option with only a short option string:

parser.add_option("-f", attr=value, ...)

And to define an option with only a long option string:

parser.add_option("--foo", attr=value, ...)

The keyword arguments define attributes of the new Option object. The most important option attribute is
action, and it largely determines which other attributes are relevant or required. If you pass irrelevant op-
tion attributes, or fail to pass required ones, optparse raises an OptionError exception explaining your
mistake.

An option’s action determines what optparse does when it encounters this option on the command-line. The
standard option actions hard-coded into optparse are:

"store" store this option’s argument (default)

"store_const" store a constant value

"store_true" store a true value

"store_false" store a false value

"append" append this option’s argument to a list

"append_const" append a constant value to a list

"count" increment a counter by one

"callback" call a specified function

"help" print a usage message including all options and the documentation for them

(If you don’t supply an action, the default is "store". For this action, you may also supply type and dest
option attributes; see Standard option actions.)

As you can see, most actions involve storing or updating a value somewhere. optparse always creates a special
object for this, conventionally called options (it happens to be an instance of optparse.Values). Option
arguments (and various other values) are stored as attributes of this object, according to the dest (destination) option
attribute.

For example, when you call

parser.parse_args()

one of the first things optparse does is create the options object:

options = Values()

If one of the options in this parser is defined with

parser.add_option("-f", "--file", action="store", type="string", dest="filename")

and the command-line being parsed includes any of the following:

15.4. optparse — More powerful command line option parser 403

The Python Library Reference, Release 2.6.9

-ffoo
-f foo
--file=foo
--file foo

then optparse, on seeing this option, will do the equivalent of

options.filename = "foo"

The type and dest option attributes are almost as important as action, but action is the only one that makes
sense for all options.

Option attributes

The following option attributes may be passed as keyword arguments to OptionParser.add_option(). If you
pass an option attribute that is not relevant to a particular option, or fail to pass a required option attribute, optparse
raises OptionError.

action
(default: "store")

Determines optparse‘s behaviour when this option is seen on the command line; the available options are
documented here.

type
(default: "string")

The argument type expected by this option (e.g., "string" or "int"); the available option types are docu-
mented here.

dest
(default: derived from option strings)

If the option’s action implies writing or modifying a value somewhere, this tells optparse where to write it:
dest names an attribute of the options object that optparse builds as it parses the command line.

default
The value to use for this option’s destination if the option is not seen on the command line. See also
OptionParser.set_defaults().

nargs
(default: 1)

How many arguments of type type should be consumed when this option is seen. If > 1, optparse will store
a tuple of values to dest.

const
For actions that store a constant value, the constant value to store.

choices
For options of type "choice", the list of strings the user may choose from.

callback
For options with action "callback", the callable to call when this option is seen. See section Option Call-
backs for detail on the arguments passed to the callable.

callback_args
callback_kwargs

Additional positional and keyword arguments to pass to callback after the four standard callback arguments.

404 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

help
Help text to print for this option when listing all available options after the user supplies a help option (such
as "--help"). If no help text is supplied, the option will be listed without help text. To hide this option, use
the special value optparse.SUPPRESS_HELP.

metavar
(default: derived from option strings)

Stand-in for the option argument(s) to use when printing help text. See section Tutorial for an example.

Standard option actions

The various option actions all have slightly different requirements and effects. Most actions have several relevant
option attributes which you may specify to guide optparse‘s behaviour; a few have required attributes, which you
must specify for any option using that action.

• "store" [relevant: type, dest, nargs, choices]

The option must be followed by an argument, which is converted to a value according to type and stored in
dest. If nargs > 1, multiple arguments will be consumed from the command line; all will be converted
according to type and stored to dest as a tuple. See the Standard option types section.

If choices is supplied (a list or tuple of strings), the type defaults to "choice".

If type is not supplied, it defaults to "string".

If dest is not supplied, optparse derives a destination from the first long option string (e.g., "--foo-bar"
implies foo_bar). If there are no long option strings, optparse derives a destination from the first short
option string (e.g., "-f" implies f).

Example:

parser.add_option("-f")
parser.add_option("-p", type="float", nargs=3, dest="point")

As it parses the command line

-f foo.txt -p 1 -3.5 4 -fbar.txt

optparse will set

options.f = "foo.txt"
options.point = (1.0, -3.5, 4.0)
options.f = "bar.txt"

• "store_const" [required: const; relevant: dest]

The value const is stored in dest.

Example:

parser.add_option("-q", "--quiet",
action="store_const", const=0, dest="verbose")

parser.add_option("-v", "--verbose",
action="store_const", const=1, dest="verbose")

parser.add_option("--noisy",
action="store_const", const=2, dest="verbose")

If "--noisy" is seen, optparse will set

options.verbose = 2

15.4. optparse — More powerful command line option parser 405

The Python Library Reference, Release 2.6.9

• "store_true" [relevant: dest]

A special case of "store_const" that stores a true value to dest.

• "store_false" [relevant: dest]

Like "store_true", but stores a false value.

Example:

parser.add_option("--clobber", action="store_true", dest="clobber")
parser.add_option("--no-clobber", action="store_false", dest="clobber")

• "append" [relevant: type, dest, nargs, choices]

The option must be followed by an argument, which is appended to the list in dest. If no default value for
dest is supplied, an empty list is automatically created when optparse first encounters this option on the
command-line. If nargs > 1, multiple arguments are consumed, and a tuple of length nargs is appended to
dest.

The defaults for type and dest are the same as for the "store" action.

Example:

parser.add_option("-t", "--tracks", action="append", type="int")

If "-t3" is seen on the command-line, optparse does the equivalent of:

options.tracks = []
options.tracks.append(int("3"))

If, a little later on, "--tracks=4" is seen, it does:

options.tracks.append(int("4"))

• "append_const" [required: const; relevant: dest]

Like "store_const", but the value const is appended to dest; as with "append", dest defaults to
None, and an empty list is automatically created the first time the option is encountered.

• "count" [relevant: dest]

Increment the integer stored at dest. If no default value is supplied, dest is set to zero before being incre-
mented the first time.

Example:

parser.add_option("-v", action="count", dest="verbosity")

The first time "-v" is seen on the command line, optparse does the equivalent of:

options.verbosity = 0
options.verbosity += 1

Every subsequent occurrence of "-v" results in

options.verbosity += 1

• "callback" [required: callback; relevant: type, nargs, callback_args, callback_kwargs]

Call the function specified by callback, which is called as

func(option, opt_str, value, parser, *args, **kwargs)

See section Option Callbacks for more detail.

406 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

• "help"

Prints a complete help message for all the options in the current option parser. The help message is constructed
from the usage string passed to OptionParser’s constructor and the help string passed to every option.

If no help string is supplied for an option, it will still be listed in the help message. To omit an option entirely,
use the special value optparse.SUPPRESS_HELP.

optparse automatically adds a help option to all OptionParsers, so you do not normally need to create one.

Example:

from optparse import OptionParser, SUPPRESS_HELP

usually, a help option is added automatically, but that can
be suppressed using the add_help_option argument
parser = OptionParser(add_help_option=False)

parser.add_option("-h", "--help", action="help")
parser.add_option("-v", action="store_true", dest="verbose",

help="Be moderately verbose")
parser.add_option("--file", dest="filename",

help="Input file to read data from")
parser.add_option("--secret", help=SUPPRESS_HELP)

If optparse sees either "-h" or "--help" on the command line, it will print something like the following
help message to stdout (assuming sys.argv[0] is "foo.py"):

usage: foo.py [options]

options:
-h, --help Show this help message and exit
-v Be moderately verbose
--file=FILENAME Input file to read data from

After printing the help message, optparse terminates your process with sys.exit(0).

• "version"

Prints the version number supplied to the OptionParser to stdout and exits. The version number is actually
formatted and printed by the print_version() method of OptionParser. Generally only relevant if the
version argument is supplied to the OptionParser constructor. As with help options, you will rarely create
version options, since optparse automatically adds them when needed.

Standard option types

optparse has six built-in option types: "string", "int", "long", "choice", "float" and "complex".
If you need to add new option types, see section Extending optparse.

Arguments to string options are not checked or converted in any way: the text on the command line is stored in the
destination (or passed to the callback) as-is.

Integer arguments (type "int" or "long") are parsed as follows:

• if the number starts with 0x, it is parsed as a hexadecimal number

• if the number starts with 0, it is parsed as an octal number

• if the number starts with 0b, it is parsed as a binary number

• otherwise, the number is parsed as a decimal number

15.4. optparse — More powerful command line option parser 407

The Python Library Reference, Release 2.6.9

The conversion is done by calling either int() or long() with the appropriate base (2, 8, 10, or 16). If this fails,
so will optparse, although with a more useful error message.

"float" and "complex" option arguments are converted directly with float() and complex(), with similar
error-handling.

"choice" options are a subtype of "string" options. The choices‘ option attribute (a sequence of strings)
defines the set of allowed option arguments. optparse.check_choice() compares user-supplied option argu-
ments against this master list and raises OptionValueError if an invalid string is given.

Parsing arguments

The whole point of creating and populating an OptionParser is to call its parse_args() method:

(options, args) = parser.parse_args(args=None, values=None)

where the input parameters are

args the list of arguments to process (default: sys.argv[1:])

values a optparse.Values object to store option arguments in (default: a new instance of Values) – if you
give an existing object, the option defaults will not be initialized on it

and the return values are

options the same object that was passed in as values, or the optparse.Values instance created by optparse

args the leftover positional arguments after all options have been processed

The most common usage is to supply neither keyword argument. If you supply values, it will be modified with
repeated setattr() calls (roughly one for every option argument stored to an option destination) and returned by
parse_args().

If parse_args() encounters any errors in the argument list, it calls the OptionParser’s error() method with an
appropriate end-user error message. This ultimately terminates your process with an exit status of 2 (the traditional
Unix exit status for command-line errors).

Querying and manipulating your option parser

The default behavior of the option parser can be customized slightly, and you can also poke around your option parser
and see what’s there. OptionParser provides several methods to help you out:

disable_interspersed_args()
Set parsing to stop on the first non-option. For example, if "-a" and "-b" are both simple options that take no
arguments, optparse normally accepts this syntax:

prog -a arg1 -b arg2

and treats it as equivalent to

prog -a -b arg1 arg2

To disable this feature, call disable_interspersed_args(). This restores traditional Unix syntax,
where option parsing stops with the first non-option argument.

Use this if you have a command processor which runs another command which has options of its own and you
want to make sure these options don’t get confused. For example, each command might have a different set of
options.

408 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

enable_interspersed_args()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This
is the default behavior.

get_option(opt_str)
Returns the Option instance with the option string opt_str, or None if no options have that option string.

has_option(opt_str)
Return true if the OptionParser has an option with option string opt_str (e.g., "-q" or "--verbose").

remove_option(opt_str)
If the OptionParser has an option corresponding to opt_str, that option is removed. If that option provided
any other option strings, all of those option strings become invalid. If opt_str does not occur in any option
belonging to this OptionParser, raises ValueError.

Conflicts between options

If you’re not careful, it’s easy to define options with conflicting option strings:

parser.add_option("-n", "--dry-run", ...)
[...]
parser.add_option("-n", "--noisy", ...)

(This is particularly true if you’ve defined your own OptionParser subclass with some standard options.)

Every time you add an option, optparse checks for conflicts with existing options. If it finds any, it invokes the
current conflict-handling mechanism. You can set the conflict-handling mechanism either in the constructor:

parser = OptionParser(..., conflict_handler=handler)

or with a separate call:

parser.set_conflict_handler(handler)

The available conflict handlers are:

"error" (default) assume option conflicts are a programming error and raise
OptionConflictError

"resolve" resolve option conflicts intelligently (see below)

As an example, let’s define an OptionParser that resolves conflicts intelligently and add conflicting options to it:

parser = OptionParser(conflict_handler="resolve")
parser.add_option("-n", "--dry-run", ..., help="do no harm")
parser.add_option("-n", "--noisy", ..., help="be noisy")

At this point, optparse detects that a previously-added option is already using the "-n" option string. Since
conflict_handler is "resolve", it resolves the situation by removing "-n" from the earlier option’s list of
option strings. Now "--dry-run" is the only way for the user to activate that option. If the user asks for help, the
help message will reflect that:

options:
--dry-run do no harm
[...]
-n, --noisy be noisy

It’s possible to whittle away the option strings for a previously-added option until there are none left, and the user has
no way of invoking that option from the command-line. In that case, optparse removes that option completely, so
it doesn’t show up in help text or anywhere else. Carrying on with our existing OptionParser:

parser.add_option("--dry-run", ..., help="new dry-run option")

15.4. optparse — More powerful command line option parser 409

The Python Library Reference, Release 2.6.9

At this point, the original -n/--dry-run option is no longer accessible, so optparse removes it, leaving this
help text:

options:
[...]
-n, --noisy be noisy
--dry-run new dry-run option

Cleanup

OptionParser instances have several cyclic references. This should not be a problem for Python’s garbage collector,
but you may wish to break the cyclic references explicitly by calling destroy() on your OptionParser once you
are done with it. This is particularly useful in long-running applications where large object graphs are reachable from
your OptionParser.

Other methods

OptionParser supports several other public methods:

set_usage(usage)
Set the usage string according to the rules described above for the usage constructor keyword argument.
Passing None sets the default usage string; use optparse.SUPPRESS_USAGE to suppress a usage message.

print_usage(file=None)
Print the usage message for the current program (self.usage) to file (default stdout). Any occurrence of
the string "%prog" in self.usage is replaced with the name of the current program. Does nothing if
self.usage is empty or not defined.

get_usage()
Same as print_usage() but returns the usage string instead of printing it.

set_defaults(dest=value, ...)
Set default values for several option destinations at once. Using set_defaults() is the preferred way to set
default values for options, since multiple options can share the same destination. For example, if several “mode”
options all set the same destination, any one of them can set the default, and the last one wins:

parser.add_option("--advanced", action="store_const",
dest="mode", const="advanced",
default="novice") # overridden below

parser.add_option("--novice", action="store_const",
dest="mode", const="novice",
default="advanced") # overrides above setting

To avoid this confusion, use set_defaults():

parser.set_defaults(mode="advanced")
parser.add_option("--advanced", action="store_const",

dest="mode", const="advanced")
parser.add_option("--novice", action="store_const",

dest="mode", const="novice")

410 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

15.4.4 Option Callbacks

When optparse‘s built-in actions and types aren’t quite enough for your needs, you have two choices: extend
optparse or define a callback option. Extending optparse is more general, but overkill for a lot of simple cases.
Quite often a simple callback is all you need.

There are two steps to defining a callback option:

• define the option itself using the "callback" action

• write the callback; this is a function (or method) that takes at least four arguments, as described below

Defining a callback option

As always, the easiest way to define a callback option is by using the OptionParser.add_option() method.
Apart from action, the only option attribute you must specify is callback, the function to call:

parser.add_option("-c", action="callback", callback=my_callback)

callback is a function (or other callable object), so you must have already defined my_callback() when you
create this callback option. In this simple case, optparse doesn’t even know if -c takes any arguments, which
usually means that the option takes no arguments—the mere presence of -c on the command-line is all it needs to
know. In some circumstances, though, you might want your callback to consume an arbitrary number of command-line
arguments. This is where writing callbacks gets tricky; it’s covered later in this section.

optparse always passes four particular arguments to your callback, and it will only pass additional arguments if you
specify them via callback_args and callback_kwargs. Thus, the minimal callback function signature is:

def my_callback(option, opt, value, parser):

The four arguments to a callback are described below.

There are several other option attributes that you can supply when you define a callback option:

type has its usual meaning: as with the "store" or "append" actions, it instructs optparse to consume one
argument and convert it to type. Rather than storing the converted value(s) anywhere, though, optparse
passes it to your callback function.

nargs also has its usual meaning: if it is supplied and > 1, optparse will consume nargs arguments, each of
which must be convertible to type. It then passes a tuple of converted values to your callback.

callback_args a tuple of extra positional arguments to pass to the callback

callback_kwargs a dictionary of extra keyword arguments to pass to the callback

How callbacks are called

All callbacks are called as follows:

func(option, opt_str, value, parser, *args, **kwargs)

where

option is the Option instance that’s calling the callback

opt_str is the option string seen on the command-line that’s triggering the callback. (If an abbreviated long option
was used, opt_str will be the full, canonical option string—e.g. if the user puts "--foo" on the command-
line as an abbreviation for "--foobar", then opt_str will be "--foobar".)

15.4. optparse — More powerful command line option parser 411

The Python Library Reference, Release 2.6.9

value is the argument to this option seen on the command-line. optparse will only expect an argument if type
is set; the type of value will be the type implied by the option’s type. If type for this option is None
(no argument expected), then value will be None. If nargs > 1, value will be a tuple of values of the
appropriate type.

parser is the OptionParser instance driving the whole thing, mainly useful because you can access some other
interesting data through its instance attributes:

parser.largs the current list of leftover arguments, ie. arguments that have been consumed but are neither
options nor option arguments. Feel free to modify parser.largs, e.g. by adding more arguments to it.
(This list will become args, the second return value of parse_args().)

parser.rargs the current list of remaining arguments, ie. with opt_str and value (if applicable) re-
moved, and only the arguments following them still there. Feel free to modify parser.rargs, e.g. by
consuming more arguments.

parser.values the object where option values are by default stored (an instance of optparse.OptionValues).
This lets callbacks use the same mechanism as the rest of optparse for storing option values; you don’t
need to mess around with globals or closures. You can also access or modify the value(s) of any options
already encountered on the command-line.

args is a tuple of arbitrary positional arguments supplied via the callback_args option attribute.

kwargs is a dictionary of arbitrary keyword arguments supplied via callback_kwargs.

Raising errors in a callback

The callback function should raise OptionValueError if there are any problems with the option or its argument(s).
optparse catches this and terminates the program, printing the error message you supply to stderr. Your message
should be clear, concise, accurate, and mention the option at fault. Otherwise, the user will have a hard time figuring
out what he did wrong.

Callback example 1: trivial callback

Here’s an example of a callback option that takes no arguments, and simply records that the option was seen:

def record_foo_seen(option, opt_str, value, parser):
parser.values.saw_foo = True

parser.add_option("--foo", action="callback", callback=record_foo_seen)

Of course, you could do that with the "store_true" action.

Callback example 2: check option order

Here’s a slightly more interesting example: record the fact that "-a" is seen, but blow up if it comes after "-b" in
the command-line.

def check_order(option, opt_str, value, parser):
if parser.values.b:

raise OptionValueError("can’t use -a after -b")
parser.values.a = 1

[...]
parser.add_option("-a", action="callback", callback=check_order)
parser.add_option("-b", action="store_true", dest="b")

412 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Callback example 3: check option order (generalized)

If you want to re-use this callback for several similar options (set a flag, but blow up if "-b" has already been seen),
it needs a bit of work: the error message and the flag that it sets must be generalized.

def check_order(option, opt_str, value, parser):
if parser.values.b:

raise OptionValueError("can’t use %s after -b" % opt_str)
setattr(parser.values, option.dest, 1)

[...]
parser.add_option("-a", action="callback", callback=check_order, dest=’a’)
parser.add_option("-b", action="store_true", dest="b")
parser.add_option("-c", action="callback", callback=check_order, dest=’c’)

Callback example 4: check arbitrary condition

Of course, you could put any condition in there—you’re not limited to checking the values of already-defined options.
For example, if you have options that should not be called when the moon is full, all you have to do is this:

def check_moon(option, opt_str, value, parser):
if is_moon_full():

raise OptionValueError("%s option invalid when moon is full"
% opt_str)

setattr(parser.values, option.dest, 1)
[...]
parser.add_option("--foo",

action="callback", callback=check_moon, dest="foo")

(The definition of is_moon_full() is left as an exercise for the reader.)

Callback example 5: fixed arguments

Things get slightly more interesting when you define callback options that take a fixed number of arguments. Spec-
ifying that a callback option takes arguments is similar to defining a "store" or "append" option: if you define
type, then the option takes one argument that must be convertible to that type; if you further define nargs, then the
option takes nargs arguments.

Here’s an example that just emulates the standard "store" action:

def store_value(option, opt_str, value, parser):
setattr(parser.values, option.dest, value)

[...]
parser.add_option("--foo",

action="callback", callback=store_value,
type="int", nargs=3, dest="foo")

Note that optparse takes care of consuming 3 arguments and converting them to integers for you; all you have to
do is store them. (Or whatever; obviously you don’t need a callback for this example.)

Callback example 6: variable arguments

Things get hairy when you want an option to take a variable number of arguments. For this case, you must write a
callback, as optparse doesn’t provide any built-in capabilities for it. And you have to deal with certain intricacies
of conventional Unix command-line parsing that optparse normally handles for you. In particular, callbacks should
implement the conventional rules for bare "--" and "-" arguments:

15.4. optparse — More powerful command line option parser 413

The Python Library Reference, Release 2.6.9

• either "--" or "-" can be option arguments

• bare "--" (if not the argument to some option): halt command-line processing and discard the "--"

• bare "-" (if not the argument to some option): halt command-line processing but keep the "-" (append it to
parser.largs)

If you want an option that takes a variable number of arguments, there are several subtle, tricky issues to worry about.
The exact implementation you choose will be based on which trade-offs you’re willing to make for your application
(which is why optparse doesn’t support this sort of thing directly).

Nevertheless, here’s a stab at a callback for an option with variable arguments:

def vararg_callback(option, opt_str, value, parser):
assert value is None
value = []

def floatable(str):
try:

float(str)
return True

except ValueError:
return False

for arg in parser.rargs:
stop on --foo like options
if arg[:2] == "--" and len(arg) > 2:

break
stop on -a, but not on -3 or -3.0
if arg[:1] == "-" and len(arg) > 1 and not floatable(arg):

break
value.append(arg)

del parser.rargs[:len(value)]
setattr(parser.values, option.dest, value)

[...]
parser.add_option("-c", "--callback", dest="vararg_attr",

action="callback", callback=vararg_callback)

15.4.5 Extending optparse

Since the two major controlling factors in how optparse interprets command-line options are the action and type of
each option, the most likely direction of extension is to add new actions and new types.

Adding new types

To add new types, you need to define your own subclass of optparse‘s Option class. This class has a couple of
attributes that define optparse‘s types: TYPES and TYPE_CHECKER.

TYPES
A tuple of type names; in your subclass, simply define a new tuple TYPES that builds on the standard one.

TYPE_CHECKER
A dictionary mapping type names to type-checking functions. A type-checking function has the following
signature:

414 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

def check_mytype(option, opt, value)

where option is an Option instance, opt is an option string (e.g., "-f"), and value is the string from
the command line that must be checked and converted to your desired type. check_mytype() should return
an object of the hypothetical type mytype. The value returned by a type-checking function will wind up in
the OptionValues instance returned by OptionParser.parse_args(), or be passed to a callback as the
value parameter.

Your type-checking function should raise OptionValueError if it encounters any problems.
OptionValueError takes a single string argument, which is passed as-is to OptionParser‘s error()
method, which in turn prepends the program name and the string "error:" and prints everything to stderr
before terminating the process.

Here’s a silly example that demonstrates adding a "complex" option type to parse Python-style complex numbers on
the command line. (This is even sillier than it used to be, because optparse 1.3 added built-in support for complex
numbers, but never mind.)

First, the necessary imports:

from copy import copy
from optparse import Option, OptionValueError

You need to define your type-checker first, since it’s referred to later (in the TYPE_CHECKER class attribute of your
Option subclass):

def check_complex(option, opt, value):
try:

return complex(value)
except ValueError:

raise OptionValueError(
"option %s: invalid complex value: %r" % (opt, value))

Finally, the Option subclass:

class MyOption (Option):
TYPES = Option.TYPES + ("complex",)
TYPE_CHECKER = copy(Option.TYPE_CHECKER)
TYPE_CHECKER["complex"] = check_complex

(If we didn’t make a copy() of Option.TYPE_CHECKER, we would end up modifying the TYPE_CHECKER
attribute of optparse‘s Option class. This being Python, nothing stops you from doing that except good manners
and common sense.)

That’s it! Now you can write a script that uses the new option type just like any other optparse-based script, except
you have to instruct your OptionParser to use MyOption instead of Option:

parser = OptionParser(option_class=MyOption)
parser.add_option("-c", type="complex")

Alternately, you can build your own option list and pass it to OptionParser; if you don’t use add_option() in the
above way, you don’t need to tell OptionParser which option class to use:

option_list = [MyOption("-c", action="store", type="complex", dest="c")]
parser = OptionParser(option_list=option_list)

Adding new actions

Adding new actions is a bit trickier, because you have to understand that optparse has a couple of classifications
for actions:

15.4. optparse — More powerful command line option parser 415

The Python Library Reference, Release 2.6.9

“store” actions actions that result in optparse storing a value to an attribute of the current OptionValues instance;
these options require a dest attribute to be supplied to the Option constructor.

“typed” actions actions that take a value from the command line and expect it to be of a certain type; or rather, a
string that can be converted to a certain type. These options require a type attribute to the Option constructor.

These are overlapping sets: some default “store” actions are "store", "store_const", "append", and
"count", while the default “typed” actions are "store", "append", and "callback".

When you add an action, you need to categorize it by listing it in at least one of the following class attributes of Option
(all are lists of strings):

ACTIONS
All actions must be listed in ACTIONS.

STORE_ACTIONS
“store” actions are additionally listed here.

TYPED_ACTIONS
“typed” actions are additionally listed here.

ALWAYS_TYPED_ACTIONS
Actions that always take a type (i.e. whose options always take a value) are additionally listed here. The only
effect of this is that optparse assigns the default type, "string", to options with no explicit type whose
action is listed in ALWAYS_TYPED_ACTIONS.

In order to actually implement your new action, you must override Option’s take_action() method and add a
case that recognizes your action.

For example, let’s add an "extend" action. This is similar to the standard "append" action, but instead of taking
a single value from the command-line and appending it to an existing list, "extend" will take multiple values in a
single comma-delimited string, and extend an existing list with them. That is, if "--names" is an "extend" option
of type "string", the command line

--names=foo,bar --names blah --names ding,dong

would result in a list

["foo", "bar", "blah", "ding", "dong"]

Again we define a subclass of Option:

class MyOption(Option):

ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)

def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":

lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)

else:
Option.take_action(

self, action, dest, opt, value, values, parser)

Features of note:

• "extend" both expects a value on the command-line and stores that value somewhere, so it goes in both
STORE_ACTIONS and TYPED_ACTIONS.

416 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

• to ensure that optparse assigns the default type of "string" to "extend" actions, we put the "extend"
action in ALWAYS_TYPED_ACTIONS as well.

• MyOption.take_action() implements just this one new action, and passes control back to
Option.take_action() for the standard optparse actions.

• values is an instance of the optparse_parser.Values class, which provides the very useful ensure_value()
method. ensure_value() is essentially getattr() with a safety valve; it is called as

values.ensure_value(attr, value)

If the attr attribute of values doesn’t exist or is None, then ensure_value() first sets it to value, and
then returns ‘value. This is very handy for actions like "extend", "append", and "count", all of which
accumulate data in a variable and expect that variable to be of a certain type (a list for the first two, an integer
for the latter). Using ensure_value() means that scripts using your action don’t have to worry about
setting a default value for the option destinations in question; they can just leave the default as None and
ensure_value() will take care of getting it right when it’s needed.

15.5 getopt — Parser for command line options

This module helps scripts to parse the command line arguments in sys.argv. It supports the same conventions as
the Unix getopt() function (including the special meanings of arguments of the form ‘-‘ and ‘--‘). Long options
similar to those supported by GNU software may be used as well via an optional third argument.

A more convenient, flexible, and powerful alternative is the optparse module.

This module provides two functions and an exception:

getopt(args, options, [long_options])
Parses command line options and parameter list. args is the argument list to be parsed, without the leading
reference to the running program. Typically, this means sys.argv[1:]. options is the string of option letters
that the script wants to recognize, with options that require an argument followed by a colon (’:’; i.e., the same
format that Unix getopt() uses).

Note: Unlike GNU getopt(), after a non-option argument, all further arguments are considered also non-
options. This is similar to the way non-GNU Unix systems work.

long_options, if specified, must be a list of strings with the names of the long options which should be sup-
ported. The leading ’--’ characters should not be included in the option name. Long options which require
an argument should be followed by an equal sign (’=’). Optional arguments are not supported. To accept
only long options, options should be an empty string. Long options on the command line can be recognized so
long as they provide a prefix of the option name that matches exactly one of the accepted options. For exam-
ple, if long_options is [’foo’, ’frob’], the option --fo will match as --foo, but --f will not match
uniquely, so GetoptError will be raised.

The return value consists of two elements: the first is a list of (option, value) pairs; the second is the list
of program arguments left after the option list was stripped (this is a trailing slice of args). Each option-and-
value pair returned has the option as its first element, prefixed with a hyphen for short options (e.g., ’-x’) or
two hyphens for long options (e.g., ’--long-option’), and the option argument as its second element, or
an empty string if the option has no argument. The options occur in the list in the same order in which they were
found, thus allowing multiple occurrences. Long and short options may be mixed.

gnu_getopt(args, options, [long_options])
This function works like getopt(), except that GNU style scanning mode is used by default. This means
that option and non-option arguments may be intermixed. The getopt() function stops processing options as
soon as a non-option argument is encountered.

15.5. getopt — Parser for command line options 417

The Python Library Reference, Release 2.6.9

If the first character of the option string is ‘+’, or if the environment variable POSIXLY_CORRECT is set,
then option processing stops as soon as a non-option argument is encountered. New in version 2.3.

exception GetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring an argument
is given none. The argument to the exception is a string indicating the cause of the error. For long options, an
argument given to an option which does not require one will also cause this exception to be raised. The attributes
msg and opt give the error message and related option; if there is no specific option to which the exception
relates, opt is an empty string. Changed in version 1.6: Introduced GetoptError as a synonym for error.

exception error
Alias for GetoptError; for backward compatibility.

An example using only Unix style options:

>>> import getopt
>>> args = ’-a -b -cfoo -d bar a1 a2’.split()
>>> args
[’-a’, ’-b’, ’-cfoo’, ’-d’, ’bar’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’abc:d:’)
>>> optlist
[(’-a’, ’’), (’-b’, ’’), (’-c’, ’foo’), (’-d’, ’bar’)]
>>> args
[’a1’, ’a2’]

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x a1 a2’
>>> args = s.split()
>>> args
[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’x’, [
... ’condition=’, ’output-file=’, ’testing’])
>>> optlist
[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’, ’’)]
>>> args
[’a1’, ’a2’]

In a script, typical usage is something like this:

import getopt, sys

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], "ho:v", ["help", "output="])
except getopt.GetoptError, err:

print help information and exit:
print str(err) # will print something like "option -a not recognized"
usage()
sys.exit(2)

output = None
verbose = False
for o, a in opts:

if o == "-v":
verbose = True

elif o in ("-h", "--help"):
usage()
sys.exit()

418 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

elif o in ("-o", "--output"):
output = a

else:
assert False, "unhandled option"

...

if __name__ == "__main__":
main()

See Also:

Module optparse More object-oriented command line option parsing.

15.6 logging — Logging facility for Python

New in version 2.3. This module defines functions and classes which implement a flexible error logging system for
applications.

Logging is performed by calling methods on instances of the Logger class (hereafter called loggers). Each instance
has a name, and they are conceptually arranged in a namespace hierarchy using dots (periods) as separators. For
example, a logger named “scan” is the parent of loggers “scan.text”, “scan.html” and “scan.pdf”. Logger names can
be anything you want, and indicate the area of an application in which a logged message originates.

Logged messages also have levels of importance associated with them. The default levels provided are DEBUG, INFO,
WARNING, ERROR and CRITICAL. As a convenience, you indicate the importance of a logged message by calling an
appropriate method of Logger. The methods are debug(), info(), warning(), error() and critical(),
which mirror the default levels. You are not constrained to use these levels: you can specify your own and use a more
general Logger method, log(), which takes an explicit level argument.

15.6.1 Logging tutorial

The key benefit of having the logging API provided by a standard library module is that all Python modules can
participate in logging, so your application log can include messages from third-party modules.

It is, of course, possible to log messages with different verbosity levels or to different destinations. Support for
writing log messages to files, HTTP GET/POST locations, email via SMTP, generic sockets, or OS-specific logging
mechanisms are all supported by the standard module. You can also create your own log destination class if you have
special requirements not met by any of the built-in classes.

Simple examples

Most applications are probably going to want to log to a file, so let’s start with that case. Using the basicConfig()
function, we can set up the default handler so that debug messages are written to a file (in the example, we assume that
you have the appropriate permissions to create a file called example.log in the current directory):

import logging
LOG_FILENAME = ’example.log’
logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG)

logging.debug(’This message should go to the log file’)

And now if we open the file and look at what we have, we should find the log message:

DEBUG:root:This message should go to the log file

15.6. logging — Logging facility for Python 419

The Python Library Reference, Release 2.6.9

If you run the script repeatedly, the additional log messages are appended to the file. To create a new file each time,
you can pass a filemode argument to basicConfig() with a value of ’w’. Rather than managing the file size
yourself, though, it is simpler to use a RotatingFileHandler:

import glob
import logging
import logging.handlers

LOG_FILENAME = ’logging_rotatingfile_example.out’

Set up a specific logger with our desired output level
my_logger = logging.getLogger(’MyLogger’)
my_logger.setLevel(logging.DEBUG)

Add the log message handler to the logger
handler = logging.handlers.RotatingFileHandler(

LOG_FILENAME, maxBytes=20, backupCount=5)

my_logger.addHandler(handler)

Log some messages
for i in range(20):

my_logger.debug(’i = %d’ % i)

See what files are created
logfiles = glob.glob(’%s*’ % LOG_FILENAME)

for filename in logfiles:
print filename

The result should be 6 separate files, each with part of the log history for the application:

logging_rotatingfile_example.out
logging_rotatingfile_example.out.1
logging_rotatingfile_example.out.2
logging_rotatingfile_example.out.3
logging_rotatingfile_example.out.4
logging_rotatingfile_example.out.5

The most current file is always logging_rotatingfile_example.out, and each time it reaches the size limit
it is renamed with the suffix .1. Each of the existing backup files is renamed to increment the suffix (.1 becomes .2,
etc.) and the .6 file is erased.

Obviously this example sets the log length much much too small as an extreme example. You would want to set
maxBytes to an appropriate value.

Another useful feature of the logging API is the ability to produce different messages at different log levels. This allows
you to instrument your code with debug messages, for example, but turning the log level down so that those debug
messages are not written for your production system. The default levels are NOTSET, DEBUG, INFO, WARNING,
ERROR and CRITICAL.

The logger, handler, and log message call each specify a level. The log message is only emitted if the handler and
logger are configured to emit messages of that level or lower. For example, if a message is CRITICAL, and the logger
is set to ERROR, the message is emitted. If a message is a WARNING, and the logger is set to produce only ERRORs,
the message is not emitted:

import logging
import sys

420 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

LEVELS = {’debug’: logging.DEBUG,
’info’: logging.INFO,
’warning’: logging.WARNING,
’error’: logging.ERROR,
’critical’: logging.CRITICAL}

if len(sys.argv) > 1:
level_name = sys.argv[1]
level = LEVELS.get(level_name, logging.NOTSET)
logging.basicConfig(level=level)

logging.debug(’This is a debug message’)
logging.info(’This is an info message’)
logging.warning(’This is a warning message’)
logging.error(’This is an error message’)
logging.critical(’This is a critical error message’)

Run the script with an argument like ‘debug’ or ‘warning’ to see which messages show up at different levels:

$ python logging_level_example.py debug
DEBUG:root:This is a debug message
INFO:root:This is an info message
WARNING:root:This is a warning message
ERROR:root:This is an error message
CRITICAL:root:This is a critical error message

$ python logging_level_example.py info
INFO:root:This is an info message
WARNING:root:This is a warning message
ERROR:root:This is an error message
CRITICAL:root:This is a critical error message

You will notice that these log messages all have root embedded in them. The logging module supports a hierarchy of
loggers with different names. An easy way to tell where a specific log message comes from is to use a separate logger
object for each of your modules. Each new logger “inherits” the configuration of its parent, and log messages sent to
a logger include the name of that logger. Optionally, each logger can be configured differently, so that messages from
different modules are handled in different ways. Let’s look at a simple example of how to log from different modules
so it is easy to trace the source of the message:

import logging

logging.basicConfig(level=logging.WARNING)

logger1 = logging.getLogger(’package1.module1’)
logger2 = logging.getLogger(’package2.module2’)

logger1.warning(’This message comes from one module’)
logger2.warning(’And this message comes from another module’)

And the output:

$ python logging_modules_example.py
WARNING:package1.module1:This message comes from one module
WARNING:package2.module2:And this message comes from another module

15.6. logging — Logging facility for Python 421

The Python Library Reference, Release 2.6.9

There are many more options for configuring logging, including different log message formatting options, having
messages delivered to multiple destinations, and changing the configuration of a long-running application on the fly
using a socket interface. All of these options are covered in depth in the library module documentation.

Loggers

The logging library takes a modular approach and offers the several categories of components: loggers, handlers,
filters, and formatters. Loggers expose the interface that application code directly uses. Handlers send the log records
to the appropriate destination. Filters provide a finer grained facility for determining which log records to send on to
a handler. Formatters specify the layout of the resultant log record.

Logger objects have a threefold job. First, they expose several methods to application code so that applications can
log messages at runtime. Second, logger objects determine which log messages to act upon based upon severity (the
default filtering facility) or filter objects. Third, logger objects pass along relevant log messages to all interested log
handlers.

The most widely used methods on logger objects fall into two categories: configuration and message sending.

• Logger.setLevel() specifies the lowest-severity log message a logger will handle, where debug is the
lowest built-in severity level and critical is the highest built-in severity. For example, if the severity level is info,
the logger will handle only info, warning, error, and critical messages and will ignore debug messages.

• Logger.addFilter() and Logger.removeFilter() add and remove filter objects from the logger
object. This tutorial does not address filters.

With the logger object configured, the following methods create log messages:

• Logger.debug(), Logger.info(), Logger.warning(), Logger.error(), and
Logger.critical() all create log records with a message and a level that corresponds to their re-
spective method names. The message is actually a format string, which may contain the standard string
substitution syntax of %s, %d, %f, and so on. The rest of their arguments is a list of objects that correspond
with the substitution fields in the message. With regard to **kwargs, the logging methods care only about a
keyword of exc_info and use it to determine whether to log exception information.

• Logger.exception() creates a log message similar to Logger.error(). The difference is that
Logger.exception() dumps a stack trace along with it. Call this method only from an exception han-
dler.

• Logger.log() takes a log level as an explicit argument. This is a little more verbose for logging messages
than using the log level convenience methods listed above, but this is how to log at custom log levels.

getLogger() returns a reference to a logger instance with the specified name if it is provided, or root if not. The
names are period-separated hierarchical structures. Multiple calls to getLogger() with the same name will return a
reference to the same logger object. Loggers that are further down in the hierarchical list are children of loggers higher
up in the list. For example, given a logger with a name of foo, loggers with names of foo.bar, foo.bar.baz,
and foo.bam are all descendants of foo. Child loggers propagate messages up to the handlers associated with their
ancestor loggers. Because of this, it is unnecessary to define and configure handlers for all the loggers an application
uses. It is sufficient to configure handlers for a top-level logger and create child loggers as needed.

Handlers

Handler objects are responsible for dispatching the appropriate log messages (based on the log messages’ severity)
to the handler’s specified destination. Logger objects can add zero or more handler objects to themselves with an
addHandler() method. As an example scenario, an application may want to send all log messages to a log file, all
log messages of error or higher to stdout, and all messages of critical to an email address. This scenario requires three
individual handlers where each handler is responsible for sending messages of a specific severity to a specific location.

422 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

The standard library includes quite a few handler types; this tutorial uses only StreamHandler and FileHandler
in its examples.

There are very few methods in a handler for application developers to concern themselves with. The only handler
methods that seem relevant for application developers who are using the built-in handler objects (that is, not creating
custom handlers) are the following configuration methods:

• The Handler.setLevel() method, just as in logger objects, specifies the lowest severity that will be dis-
patched to the appropriate destination. Why are there two setLevel() methods? The level set in the logger
determines which severity of messages it will pass to its handlers. The level set in each handler determines
which messages that handler will send on.

• setFormatter() selects a Formatter object for this handler to use.

• addFilter() and removeFilter() respectively configure and deconfigure filter objects on handlers.

Application code should not directly instantiate and use instances of Handler. Instead, the Handler class is a base
class that defines the interface that all handlers should have and establishes some default behavior that child classes
can use (or override).

Formatters

Formatter objects configure the final order, structure, and contents of the log message. Unlike the base
logging.Handler class, application code may instantiate formatter classes, although you could likely subclass
the formatter if your application needs special behavior. The constructor takes two optional arguments: a message
format string and a date format string. If there is no message format string, the default is to use the raw message. If
there is no date format string, the default date format is:

%Y-%m-%d %H:%M:%S

with the milliseconds tacked on at the end.

The message format string uses %(<dictionary key>)s styled string substitution; the possible keys are docu-
mented in Formatter Objects.

The following message format string will log the time in a human-readable format, the severity of the message, and
the contents of the message, in that order:

"%(asctime)s - %(levelname)s - %(message)s"

Configuring Logging

Programmers can configure logging either by creating loggers, handlers, and formatters explicitly in a main module
with the configuration methods listed above (using Python code), or by creating a logging config file. The following
code is an example of configuring a very simple logger, a console handler, and a simple formatter in a Python module:

import logging

create logger
logger = logging.getLogger("simple_example")
logger.setLevel(logging.DEBUG)
create console handler and set level to debug
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
create formatter
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
add formatter to ch
ch.setFormatter(formatter)

15.6. logging — Logging facility for Python 423

The Python Library Reference, Release 2.6.9

add ch to logger
logger.addHandler(ch)

"application" code
logger.debug("debug message")
logger.info("info message")
logger.warn("warn message")
logger.error("error message")
logger.critical("critical message")

Running this module from the command line produces the following output:

$ python simple_logging_module.py
2005-03-19 15:10:26,618 - simple_example - DEBUG - debug message
2005-03-19 15:10:26,620 - simple_example - INFO - info message
2005-03-19 15:10:26,695 - simple_example - WARNING - warn message
2005-03-19 15:10:26,697 - simple_example - ERROR - error message
2005-03-19 15:10:26,773 - simple_example - CRITICAL - critical message

The following Python module creates a logger, handler, and formatter nearly identical to those in the example listed
above, with the only difference being the names of the objects:

import logging
import logging.config

logging.config.fileConfig("logging.conf")

create logger
logger = logging.getLogger("simpleExample")

"application" code
logger.debug("debug message")
logger.info("info message")
logger.warn("warn message")
logger.error("error message")
logger.critical("critical message")

Here is the logging.conf file:

[loggers]
keys=root,simpleExample

[handlers]
keys=consoleHandler

[formatters]
keys=simpleFormatter

[logger_root]
level=DEBUG
handlers=consoleHandler

[logger_simpleExample]
level=DEBUG
handlers=consoleHandler
qualname=simpleExample
propagate=0

424 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

[handler_consoleHandler]
class=StreamHandler
level=DEBUG
formatter=simpleFormatter
args=(sys.stdout,)

[formatter_simpleFormatter]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
datefmt=

The output is nearly identical to that of the non-config-file-based example:

$ python simple_logging_config.py
2005-03-19 15:38:55,977 - simpleExample - DEBUG - debug message
2005-03-19 15:38:55,979 - simpleExample - INFO - info message
2005-03-19 15:38:56,054 - simpleExample - WARNING - warn message
2005-03-19 15:38:56,055 - simpleExample - ERROR - error message
2005-03-19 15:38:56,130 - simpleExample - CRITICAL - critical message

You can see that the config file approach has a few advantages over the Python code approach, mainly separation of
configuration and code and the ability of noncoders to easily modify the logging properties.

Configuring Logging for a Library

When developing a library which uses logging, some consideration needs to be given to its configuration. If the using
application does not use logging, and library code makes logging calls, then a one-off message “No handlers could be
found for logger X.Y.Z” is printed to the console. This message is intended to catch mistakes in logging configuration,
but will confuse an application developer who is not aware of logging by the library.

In addition to documenting how a library uses logging, a good way to configure library logging so that it does not
cause a spurious message is to add a handler which does nothing. This avoids the message being printed, since a
handler will be found: it just doesn’t produce any output. If the library user configures logging for application use,
presumably that configuration will add some handlers, and if levels are suitably configured then logging calls made in
library code will send output to those handlers, as normal.

A do-nothing handler can be simply defined as follows:

import logging

class NullHandler(logging.Handler):
def emit(self, record):

pass

An instance of this handler should be added to the top-level logger of the logging namespace used by the library. If all
logging by a library foo is done using loggers with names matching “foo.x.y”, then the code:

import logging

h = NullHandler()
logging.getLogger("foo").addHandler(h)

should have the desired effect. If an organisation produces a number of libraries, then the logger name specified can
be “orgname.foo” rather than just “foo”.

15.6. logging — Logging facility for Python 425

The Python Library Reference, Release 2.6.9

15.6.2 Logging Levels

The numeric values of logging levels are given in the following table. These are primarily of interest if you want to
define your own levels, and need them to have specific values relative to the predefined levels. If you define a level
with the same numeric value, it overwrites the predefined value; the predefined name is lost.

Level Numeric value
CRITICAL 50
ERROR 40
WARNING 30
INFO 20
DEBUG 10
NOTSET 0

Levels can also be associated with loggers, being set either by the developer or through loading a saved logging
configuration. When a logging method is called on a logger, the logger compares its own level with the level associated
with the method call. If the logger’s level is higher than the method call’s, no logging message is actually generated.
This is the basic mechanism controlling the verbosity of logging output.

Logging messages are encoded as instances of the LogRecord class. When a logger decides to actually log an event,
a LogRecord instance is created from the logging message.

Logging messages are subjected to a dispatch mechanism through the use of handlers, which are instances of sub-
classes of the Handler class. Handlers are responsible for ensuring that a logged message (in the form of a
LogRecord) ends up in a particular location (or set of locations) which is useful for the target audience for that
message (such as end users, support desk staff, system administrators, developers). Handlers are passed LogRecord
instances intended for particular destinations. Each logger can have zero, one or more handlers associated with it (via
the addHandler() method of Logger). In addition to any handlers directly associated with a logger, all handlers
associated with all ancestors of the logger are called to dispatch the message (unless the propagate flag for a logger is
set to a false value, at which point the passing to ancestor handlers stops).

Just as for loggers, handlers can have levels associated with them. A handler’s level acts as a filter in the same way
as a logger’s level does. If a handler decides to actually dispatch an event, the emit() method is used to send the
message to its destination. Most user-defined subclasses of Handler will need to override this emit().

15.6.3 Useful Handlers

In addition to the base Handler class, many useful subclasses are provided:

1. StreamHandler instances send error messages to streams (file-like objects).

2. FileHandler instances send error messages to disk files.

3. BaseRotatingHandler is the base class for handlers that rotate log files at a certain point. It is not meant
to be instantiated directly. Instead, use RotatingFileHandler or TimedRotatingFileHandler.

4. RotatingFileHandler instances send error messages to disk files, with support for maximum log file sizes and
log file rotation.

5. TimedRotatingFileHandler instances send error messages to disk files, rotating the log file at certain timed
intervals.

6. SocketHandler instances send error messages to TCP/IP sockets.

7. DatagramHandler instances send error messages to UDP sockets.

8. SMTPHandler instances send error messages to a designated email address.

9. SysLogHandler instances send error messages to a Unix syslog daemon, possibly on a remote machine.

426 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

10. NTEventLogHandler instances send error messages to a Windows NT/2000/XP event log.

11. MemoryHandler instances send error messages to a buffer in memory, which is flushed whenever specific criteria
are met.

12. HTTPHandler instances send error messages to an HTTP server using either GET or POST semantics.

13. WatchedFileHandler instances watch the file they are logging to. If the file changes, it is closed and reopened
using the file name. This handler is only useful on Unix-like systems; Windows does not support the underlying
mechanism used.

The StreamHandler and FileHandler classes are defined in the core logging package. The other handlers
are defined in a sub- module, logging.handlers. (There is also another sub-module, logging.config, for
configuration functionality.)

Logged messages are formatted for presentation through instances of the Formatter class. They are initialized with
a format string suitable for use with the % operator and a dictionary.

For formatting multiple messages in a batch, instances of BufferingFormatter can be used. In addition to the
format string (which is applied to each message in the batch), there is provision for header and trailer format strings.

When filtering based on logger level and/or handler level is not enough, instances of Filter can be added to both
Logger and Handler instances (through their addFilter() method). Before deciding to process a message
further, both loggers and handlers consult all their filters for permission. If any filter returns a false value, the message
is not processed further.

The basic Filter functionality allows filtering by specific logger name. If this feature is used, messages sent to the
named logger and its children are allowed through the filter, and all others dropped.

15.6.4 Module-Level Functions

In addition to the classes described above, there are a number of module- level functions.

getLogger([name])
Return a logger with the specified name or, if no name is specified, return a logger which is the root logger of
the hierarchy. If specified, the name is typically a dot-separated hierarchical name like “a”, “a.b” or “a.b.c.d”.
Choice of these names is entirely up to the developer who is using logging.

All calls to this function with a given name return the same logger instance. This means that logger instances
never need to be passed between different parts of an application.

getLoggerClass()
Return either the standard Logger class, or the last class passed to setLoggerClass(). This function may
be called from within a new class definition, to ensure that installing a customised Logger class will not undo
customisations already applied by other code. For example:

class MyLogger(logging.getLoggerClass()):
... override behaviour here

debug(msg, [*args, [**kwargs]])
Logs a message with level DEBUG on the root logger. The msg is the message format string, and the args are
the arguments which are merged into msg using the string formatting operator. (Note that this means that you
can use keywords in the format string, together with a single dictionary argument.)

There are two keyword arguments in kwargs which are inspected: exc_info which, if it does not evaluate as false,
causes exception information to be added to the logging message. If an exception tuple (in the format returned
by sys.exc_info()) is provided, it is used; otherwise, sys.exc_info() is called to get the exception
information.

15.6. logging — Logging facility for Python 427

The Python Library Reference, Release 2.6.9

The other optional keyword argument is extra which can be used to pass a dictionary which is used to populate
the __dict__ of the LogRecord created for the logging event with user-defined attributes. These custom attributes
can then be used as you like. For example, they could be incorporated into logged messages. For example:

FORMAT = "%(asctime)-15s %(clientip)s %(user)-8s %(message)s"
logging.basicConfig(format=FORMAT)
d = {’clientip’: ’192.168.0.1’, ’user’: ’fbloggs’}
logging.warning("Protocol problem: %s", "connection reset", extra=d)

would print something like

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection reset

The keys in the dictionary passed in extra should not clash with the keys used by the logging system. (See the
Formatter documentation for more information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise some care. In the above example,
for instance, the Formatter has been set up with a format string which expects ‘clientip’ and ‘user’ in the
attribute dictionary of the LogRecord. If these are missing, the message will not be logged because a string
formatting exception will occur. So in this case, you always need to pass the extra dictionary with these keys.

While this might be annoying, this feature is intended for use in specialized circumstances, such as multi-
threaded servers where the same code executes in many contexts, and interesting conditions which arise are
dependent on this context (such as remote client IP address and authenticated user name, in the above example).
In such circumstances, it is likely that specialized Formatters would be used with particular Handlers.
Changed in version 2.5: extra was added.

info(msg, [*args, [**kwargs]])
Logs a message with level INFO on the root logger. The arguments are interpreted as for debug().

warning(msg, [*args, [**kwargs]])
Logs a message with level WARNING on the root logger. The arguments are interpreted as for debug().

error(msg, [*args, [**kwargs]])
Logs a message with level ERROR on the root logger. The arguments are interpreted as for debug().

critical(msg, [*args, [**kwargs]])
Logs a message with level CRITICAL on the root logger. The arguments are interpreted as for debug().

exception(msg, [*args])
Logs a message with level ERROR on the root logger. The arguments are interpreted as for debug(). Exception
info is added to the logging message. This function should only be called from an exception handler.

log(level, msg, [*args, [**kwargs]])
Logs a message with level level on the root logger. The other arguments are interpreted as for debug().

disable(lvl)
Provides an overriding level lvl for all loggers which takes precedence over the logger’s own level. When the
need arises to temporarily throttle logging output down across the whole application, this function can be useful.
Its effect is to disable all logging calls of severity lvl and below, so that if you call it with a value of INFO, then
all INFO and DEBUG events would be discarded, whereas those of severity WARNING and above would be
processed according to the logger’s effective level.

addLevelName(lvl, levelName)
Associates level lvl with text levelName in an internal dictionary, which is used to map numeric levels to a
textual representation, for example when a Formatter formats a message. This function can also be used to
define your own levels. The only constraints are that all levels used must be registered using this function, levels
should be positive integers and they should increase in increasing order of severity.

428 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

getLevelName(lvl)
Returns the textual representation of logging level lvl. If the level is one of the predefined levels CRITICAL,
ERROR, WARNING, INFO or DEBUG then you get the corresponding string. If you have associated levels with
names using addLevelName() then the name you have associated with lvl is returned. If a numeric value
corresponding to one of the defined levels is passed in, the corresponding string representation is returned.
Otherwise, the string “Level %s” % lvl is returned.

makeLogRecord(attrdict)
Creates and returns a new LogRecord instance whose attributes are defined by attrdict. This function is useful
for taking a pickled LogRecord attribute dictionary, sent over a socket, and reconstituting it as a LogRecord
instance at the receiving end.

basicConfig([**kwargs])
Does basic configuration for the logging system by creating a StreamHandler with a default Formatter
and adding it to the root logger. The functions debug(), info(), warning(), error() and
critical() will call basicConfig() automatically if no handlers are defined for the root logger.

This function does nothing if the root logger already has handlers configured for it. Changed in version 2.4:
Formerly, basicConfig() did not take any keyword arguments. The following keyword arguments are
supported.

For-
mat

Description

filenameSpecifies that a FileHandler be created, using the specified filename, rather than a StreamHandler.
filemodeSpecifies the mode to open the file, if filename is specified (if filemode is unspecified, it defaults to ‘a’).
format Use the specified format string for the handler.
datefmt Use the specified date/time format.
level Set the root logger level to the specified level.
stream Use the specified stream to initialize the StreamHandler. Note that this argument is incompatible with

‘filename’ - if both are present, ‘stream’ is ignored.

shutdown()
Informs the logging system to perform an orderly shutdown by flushing and closing all handlers. This should
be called at application exit and no further use of the logging system should be made after this call.

setLoggerClass(klass)
Tells the logging system to use the class klass when instantiating a logger. The class should de-
fine __init__() such that only a name argument is required, and the __init__() should call
Logger.__init__(). This function is typically called before any loggers are instantiated by applications
which need to use custom logger behavior.

See Also:

PEP 282 - A Logging System The proposal which described this feature for inclusion in the Python standard library.

Original Python logging package This is the original source for the logging package. The version of the package
available from this site is suitable for use with Python 1.5.2, 2.1.x and 2.2.x, which do not include the logging
package in the standard library.

15.6.5 Logger Objects

Loggers have the following attributes and methods. Note that Loggers are never instantiated directly, but always
through the module-level function logging.getLogger(name).

propagate
If this evaluates to false, logging messages are not passed by this logger or by its child loggers to the handlers
of higher level (ancestor) loggers. The constructor sets this attribute to 1.

15.6. logging — Logging facility for Python 429

http://www.python.org/dev/peps/pep-0282
http://www.red-dove.com/python_logging.html

The Python Library Reference, Release 2.6.9

setLevel(lvl)
Sets the threshold for this logger to lvl. Logging messages which are less severe than lvl will be ignored. When
a logger is created, the level is set to NOTSET (which causes all messages to be processed when the logger is
the root logger, or delegation to the parent when the logger is a non-root logger). Note that the root logger is
created with level WARNING.

The term “delegation to the parent” means that if a logger has a level of NOTSET, its chain of ancestor loggers
is traversed until either an ancestor with a level other than NOTSET is found, or the root is reached.

If an ancestor is found with a level other than NOTSET, then that ancestor’s level is treated as the effective level
of the logger where the ancestor search began, and is used to determine how a logging event is handled.

If the root is reached, and it has a level of NOTSET, then all messages will be processed. Otherwise, the root’s
level will be used as the effective level.

isEnabledFor(lvl)
Indicates if a message of severity lvl would be processed by this logger. This method checks first the
module-level level set by logging.disable(lvl) and then the logger’s effective level as determined by
getEffectiveLevel().

getEffectiveLevel()
Indicates the effective level for this logger. If a value other than NOTSET has been set using setLevel(), it is
returned. Otherwise, the hierarchy is traversed towards the root until a value other than NOTSET is found, and
that value is returned.

debug(msg, [*args, [**kwargs]])
Logs a message with level DEBUG on this logger. The msg is the message format string, and the args are the
arguments which are merged into msg using the string formatting operator. (Note that this means that you can
use keywords in the format string, together with a single dictionary argument.)

There are two keyword arguments in kwargs which are inspected: exc_info which, if it does not evaluate as false,
causes exception information to be added to the logging message. If an exception tuple (in the format returned
by sys.exc_info()) is provided, it is used; otherwise, sys.exc_info() is called to get the exception
information.

The other optional keyword argument is extra which can be used to pass a dictionary which is used to populate
the __dict__ of the LogRecord created for the logging event with user-defined attributes. These custom attributes
can then be used as you like. For example, they could be incorporated into logged messages. For example:

FORMAT = "%(asctime)-15s %(clientip)s %(user)-8s %(message)s"
logging.basicConfig(format=FORMAT)
d = { ’clientip’ : ’192.168.0.1’, ’user’ : ’fbloggs’ }
logger = logging.getLogger("tcpserver")
logger.warning("Protocol problem: %s", "connection reset", extra=d)

would print something like

2006-02-08 22:20:02,165 192.168.0.1 fbloggs Protocol problem: connection reset

The keys in the dictionary passed in extra should not clash with the keys used by the logging system. (See the
Formatter documentation for more information on which keys are used by the logging system.)

If you choose to use these attributes in logged messages, you need to exercise some care. In the above example,
for instance, the Formatter has been set up with a format string which expects ‘clientip’ and ‘user’ in the
attribute dictionary of the LogRecord. If these are missing, the message will not be logged because a string
formatting exception will occur. So in this case, you always need to pass the extra dictionary with these keys.

While this might be annoying, this feature is intended for use in specialized circumstances, such as multi-
threaded servers where the same code executes in many contexts, and interesting conditions which arise are

430 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

dependent on this context (such as remote client IP address and authenticated user name, in the above example).
In such circumstances, it is likely that specialized Formatters would be used with particular Handlers.
Changed in version 2.5: extra was added.

info(msg, [*args, [**kwargs]])
Logs a message with level INFO on this logger. The arguments are interpreted as for debug().

warning(msg, [*args, [**kwargs]])
Logs a message with level WARNING on this logger. The arguments are interpreted as for debug().

error(msg, [*args, [**kwargs]])
Logs a message with level ERROR on this logger. The arguments are interpreted as for debug().

critical(msg, [*args, [**kwargs]])
Logs a message with level CRITICAL on this logger. The arguments are interpreted as for debug().

log(lvl, msg, [*args, [**kwargs]])
Logs a message with integer level lvl on this logger. The other arguments are interpreted as for debug().

exception(msg, [*args])
Logs a message with level ERROR on this logger. The arguments are interpreted as for debug(). Exception
info is added to the logging message. This method should only be called from an exception handler.

addFilter(filt)
Adds the specified filter filt to this logger.

removeFilter(filt)
Removes the specified filter filt from this logger.

filter(record)
Applies this logger’s filters to the record and returns a true value if the record is to be processed.

addHandler(hdlr)
Adds the specified handler hdlr to this logger.

removeHandler(hdlr)
Removes the specified handler hdlr from this logger.

findCaller()
Finds the caller’s source filename and line number. Returns the filename, line number and function name as a
3-element tuple. Changed in version 2.4: The function name was added. In earlier versions, the filename and
line number were returned as a 2-element tuple..

handle(record)
Handles a record by passing it to all handlers associated with this logger and its ancestors (until a false value of
propagate is found). This method is used for unpickled records received from a socket, as well as those created
locally. Logger-level filtering is applied using filter().

makeRecord(name, lvl, fn, lno, msg, args, exc_info, [func, extra])
This is a factory method which can be overridden in subclasses to create specialized LogRecord instances.
Changed in version 2.5: func and extra were added.

15.6.6 Basic example

Changed in version 2.4: formerly basicConfig() did not take any keyword arguments. The logging package
provides a lot of flexibility, and its configuration can appear daunting. This section demonstrates that simple use of the
logging package is possible.

The simplest example shows logging to the console:

15.6. logging — Logging facility for Python 431

The Python Library Reference, Release 2.6.9

import logging

logging.debug(’A debug message’)
logging.info(’Some information’)
logging.warning(’A shot across the bows’)

If you run the above script, you’ll see this:

WARNING:root:A shot across the bows

Because no particular logger was specified, the system used the root logger. The debug and info messages didn’t appear
because by default, the root logger is configured to only handle messages with a severity of WARNING or above. The
message format is also a configuration default, as is the output destination of the messages - sys.stderr. The
severity level, the message format and destination can be easily changed, as shown in the example below:

import logging

logging.basicConfig(level=logging.DEBUG,
format=’%(asctime)s %(levelname)s %(message)s’,
filename=’myapp.log’,
filemode=’w’)

logging.debug(’A debug message’)
logging.info(’Some information’)
logging.warning(’A shot across the bows’)

The basicConfig() method is used to change the configuration defaults, which results in output (written to
myapp.log) which should look something like the following:

2004-07-02 13:00:08,743 DEBUG A debug message
2004-07-02 13:00:08,743 INFO Some information
2004-07-02 13:00:08,743 WARNING A shot across the bows

This time, all messages with a severity of DEBUG or above were handled, and the format of the messages was also
changed, and output went to the specified file rather than the console.

Formatting uses standard Python string formatting - see section String Formatting Operations. The format string takes
the following common specifiers. For a complete list of specifiers, consult the Formatter documentation.

Format Description
%(name)s Name of the logger (logging channel).
%(levelname)sText logging level for the message (’DEBUG’, ’INFO’, ’WARNING’, ’ERROR’,

’CRITICAL’).
%(asctime)sHuman-readable time when the LogRecord was created. By default this is of the form

“2003-07-08 16:49:45,896” (the numbers after the comma are millisecond portion of the time).
%(message)sThe logged message.

To change the date/time format, you can pass an additional keyword parameter, datefmt, as in the following:

import logging

logging.basicConfig(level=logging.DEBUG,
format=’%(asctime)s %(levelname)-8s %(message)s’,
datefmt=’%a, %d %b %Y %H:%M:%S’,
filename=’/temp/myapp.log’,
filemode=’w’)

logging.debug(’A debug message’)
logging.info(’Some information’)
logging.warning(’A shot across the bows’)

which would result in output like

432 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Fri, 02 Jul 2004 13:06:18 DEBUG A debug message
Fri, 02 Jul 2004 13:06:18 INFO Some information
Fri, 02 Jul 2004 13:06:18 WARNING A shot across the bows

The date format string follows the requirements of strftime() - see the documentation for the time module.

If, instead of sending logging output to the console or a file, you’d rather use a file-like object which you have created
separately, you can pass it to basicConfig() using the stream keyword argument. Note that if both stream and
filename keyword arguments are passed, the stream argument is ignored.

Of course, you can put variable information in your output. To do this, simply have the message be a format string and
pass in additional arguments containing the variable information, as in the following example:

import logging

logging.basicConfig(level=logging.DEBUG,
format=’%(asctime)s %(levelname)-8s %(message)s’,
datefmt=’%a, %d %b %Y %H:%M:%S’,
filename=’/temp/myapp.log’,
filemode=’w’)

logging.error(’Pack my box with %d dozen %s’, 5, ’liquor jugs’)

which would result in

Wed, 21 Jul 2004 15:35:16 ERROR Pack my box with 5 dozen liquor jugs

15.6.7 Logging to multiple destinations

Let’s say you want to log to console and file with different message formats and in differing circumstances. Say you
want to log messages with levels of DEBUG and higher to file, and those messages at level INFO and higher to the
console. Let’s also assume that the file should contain timestamps, but the console messages should not. Here’s how
you can achieve this:

import logging

set up logging to file - see previous section for more details
logging.basicConfig(level=logging.DEBUG,

format=’%(asctime)s %(name)-12s %(levelname)-8s %(message)s’,
datefmt=’%m-%d %H:%M’,
filename=’/temp/myapp.log’,
filemode=’w’)

define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
set a format which is simpler for console use
formatter = logging.Formatter(’%(name)-12s: %(levelname)-8s %(message)s’)
tell the handler to use this format
console.setFormatter(formatter)
add the handler to the root logger
logging.getLogger(’’).addHandler(console)

Now, we can log to the root logger, or any other logger. First the root...
logging.info(’Jackdaws love my big sphinx of quartz.’)

Now, define a couple of other loggers which might represent areas in your
application:

15.6. logging — Logging facility for Python 433

The Python Library Reference, Release 2.6.9

logger1 = logging.getLogger(’myapp.area1’)
logger2 = logging.getLogger(’myapp.area2’)

logger1.debug(’Quick zephyrs blow, vexing daft Jim.’)
logger1.info(’How quickly daft jumping zebras vex.’)
logger2.warning(’Jail zesty vixen who grabbed pay from quack.’)
logger2.error(’The five boxing wizards jump quickly.’)

When you run this, on the console you will see

root : INFO Jackdaws love my big sphinx of quartz.
myapp.area1 : INFO How quickly daft jumping zebras vex.
myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack.
myapp.area2 : ERROR The five boxing wizards jump quickly.

and in the file you will see something like

10-22 22:19 root INFO Jackdaws love my big sphinx of quartz.
10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex.
10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly.

As you can see, the DEBUG message only shows up in the file. The other messages are sent to both destinations.

This example uses console and file handlers, but you can use any number and combination of handlers you choose.

15.6.8 Exceptions raised during logging

The logging package is designed to swallow exceptions which occur while logging in production. This is so that errors
which occur while handling logging events - such as logging misconfiguration, network or other similar errors - do not
cause the application using logging to terminate prematurely.

SystemExit and KeyboardInterrupt exceptions are never swallowed. Other exceptions which occur during
the emit() method of a Handler subclass are passed to its handleError() method.

The default implementation of handleError() in Handler checks to see if a module-level variable,
raiseExceptions, is set. If set, a traceback is printed to sys.stderr. If not set, the exception is swallowed.

Note: The default value of raiseExceptions is True. This is because during development, you typically want
to be notified of any exceptions that occur. It’s advised that you set raiseExceptions to False for production
usage.

15.6.9 Adding contextual information to your logging output

Sometimes you want logging output to contain contextual information in addition to the parameters passed to the
logging call. For example, in a networked application, it may be desirable to log client-specific information in the
log (e.g. remote client’s username, or IP address). Although you could use the extra parameter to achieve this, it’s
not always convenient to pass the information in this way. While it might be tempting to create Logger instances
on a per-connection basis, this is not a good idea because these instances are not garbage collected. While this is not
a problem in practice, when the number of Logger instances is dependent on the level of granularity you want to
use in logging an application, it could be hard to manage if the number of Logger instances becomes effectively
unbounded.

An easy way in which you can pass contextual information to be output along with logging event information is to use
the LoggerAdapter class. This class is designed to look like a Logger, so that you can call debug(), info(),

434 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

warning(), error(), exception(), critical() and log(). These methods have the same signatures as
their counterparts in Logger, so you can use the two types of instances interchangeably.

When you create an instance of LoggerAdapter, you pass it a Logger instance and a dict-like object which
contains your contextual information. When you call one of the logging methods on an instance of LoggerAdapter,
it delegates the call to the underlying instance of Logger passed to its constructor, and arranges to pass the contextual
information in the delegated call. Here’s a snippet from the code of LoggerAdapter:

def debug(self, msg, *args, **kwargs):
"""
Delegate a debug call to the underlying logger, after adding
contextual information from this adapter instance.
"""
msg, kwargs = self.process(msg, kwargs)
self.logger.debug(msg, *args, **kwargs)

The process() method of LoggerAdapter is where the contextual information is added to the logging output.
It’s passed the message and keyword arguments of the logging call, and it passes back (potentially) modified versions
of these to use in the call to the underlying logger. The default implementation of this method leaves the message
alone, but inserts an “extra” key in the keyword argument whose value is the dict-like object passed to the constructor.
Of course, if you had passed an “extra” keyword argument in the call to the adapter, it will be silently overwritten.

The advantage of using “extra” is that the values in the dict-like object are merged into the LogRecord instance’s
__dict__, allowing you to use customized strings with your Formatter instances which know about the keys of the
dict-like object. If you need a different method, e.g. if you want to prepend or append the contextual information to the
message string, you just need to subclass LoggerAdapter and override process() to do what you need. Here’s
an example script which uses this class, which also illustrates what dict-like behaviour is needed from an arbitrary
“dict-like” object for use in the constructor:

import logging

class ConnInfo:
"""
An example class which shows how an arbitrary class can be used as
the ’extra’ context information repository passed to a LoggerAdapter.
"""

def __getitem__(self, name):
"""
To allow this instance to look like a dict.
"""
from random import choice
if name == "ip":

result = choice(["127.0.0.1", "192.168.0.1"])
elif name == "user":

result = choice(["jim", "fred", "sheila"])
else:

result = self.__dict__.get(name, "?")
return result

def __iter__(self):
"""
To allow iteration over keys, which will be merged into
the LogRecord dict before formatting and output.
"""
keys = ["ip", "user"]

15.6. logging — Logging facility for Python 435

The Python Library Reference, Release 2.6.9

keys.extend(self.__dict__.keys())
return keys.__iter__()

if __name__ == "__main__":
from random import choice
levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
a1 = logging.LoggerAdapter(logging.getLogger("a.b.c"),

{ "ip" : "123.231.231.123", "user" : "sheila" })
logging.basicConfig(level=logging.DEBUG,

format="%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s")
a1.debug("A debug message")
a1.info("An info message with %s", "some parameters")
a2 = logging.LoggerAdapter(logging.getLogger("d.e.f"), ConnInfo())
for x in range(10):

lvl = choice(levels)
lvlname = logging.getLevelName(lvl)
a2.log(lvl, "A message at %s level with %d %s", lvlname, 2, "parameters")

When this script is run, the output should look something like this:

2008-01-18 14:49:54,023 a.b.c DEBUG IP: 123.231.231.123 User: sheila A debug message
2008-01-18 14:49:54,023 a.b.c INFO IP: 123.231.231.123 User: sheila An info message with some parameters
2008-01-18 14:49:54,023 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters
2008-01-18 14:49:54,033 d.e.f INFO IP: 192.168.0.1 User: jim A message at INFO level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
2008-01-18 14:49:54,033 d.e.f ERROR IP: 127.0.0.1 User: fred A message at ERROR level with 2 parameters
2008-01-18 14:49:54,033 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: jim A message at WARNING level with 2 parameters
2008-01-18 14:49:54,033 d.e.f INFO IP: 192.168.0.1 User: fred A message at INFO level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 192.168.0.1 User: sheila A message at WARNING level with 2 parameters
2008-01-18 14:49:54,033 d.e.f WARNING IP: 127.0.0.1 User: jim A message at WARNING level with 2 parameters

New in version 2.6. The LoggerAdapter class was not present in previous versions.

15.6.10 Logging to a single file from multiple processes

Although logging is thread-safe, and logging to a single file from multiple threads in a single process is supported,
logging to a single file from multiple processes is not supported, because there is no standard way to serialize access
to a single file across multiple processes in Python. If you need to log to a single file from multiple processes, the
best way of doing this is to have all the processes log to a SocketHandler, and have a separate process which
implements a socket server which reads from the socket and logs to file. (If you prefer, you can dedicate one thread in
one of the existing processes to perform this function.) The following section documents this approach in more detail
and includes a working socket receiver which can be used as a starting point for you to adapt in your own applications.

If you are using a recent version of Python which includes the multiprocessing module, you can write your own
handler which uses the Lock class from this module to serialize access to the file from your processes. The existing
FileHandler and subclasses do not make use of multiprocessing at present, though they may do so in the
future. Note that at present, the multiprocessing module does not provide working lock functionality on all
platforms (see http://bugs.python.org/issue3770).

436 Chapter 15. Generic Operating System Services

http://bugs.python.org/issue3770

The Python Library Reference, Release 2.6.9

15.6.11 Sending and receiving logging events across a network

Let’s say you want to send logging events across a network, and handle them at the receiving end. A simple way of
doing this is attaching a SocketHandler instance to the root logger at the sending end:

import logging, logging.handlers

rootLogger = logging.getLogger(’’)
rootLogger.setLevel(logging.DEBUG)
socketHandler = logging.handlers.SocketHandler(’localhost’,

logging.handlers.DEFAULT_TCP_LOGGING_PORT)
don’t bother with a formatter, since a socket handler sends the event as
an unformatted pickle
rootLogger.addHandler(socketHandler)

Now, we can log to the root logger, or any other logger. First the root...
logging.info(’Jackdaws love my big sphinx of quartz.’)

Now, define a couple of other loggers which might represent areas in your
application:

logger1 = logging.getLogger(’myapp.area1’)
logger2 = logging.getLogger(’myapp.area2’)

logger1.debug(’Quick zephyrs blow, vexing daft Jim.’)
logger1.info(’How quickly daft jumping zebras vex.’)
logger2.warning(’Jail zesty vixen who grabbed pay from quack.’)
logger2.error(’The five boxing wizards jump quickly.’)

At the receiving end, you can set up a receiver using the SocketServer module. Here is a basic working example:

import cPickle
import logging
import logging.handlers
import SocketServer
import struct

class LogRecordStreamHandler(SocketServer.StreamRequestHandler):
"""Handler for a streaming logging request.

This basically logs the record using whatever logging policy is
configured locally.
"""

def handle(self):
"""
Handle multiple requests - each expected to be a 4-byte length,
followed by the LogRecord in pickle format. Logs the record
according to whatever policy is configured locally.
"""
while 1:

chunk = self.connection.recv(4)
if len(chunk) < 4:

break

15.6. logging — Logging facility for Python 437

The Python Library Reference, Release 2.6.9

slen = struct.unpack(">L", chunk)[0]
chunk = self.connection.recv(slen)
while len(chunk) < slen:

chunk = chunk + self.connection.recv(slen - len(chunk))
obj = self.unPickle(chunk)
record = logging.makeLogRecord(obj)
self.handleLogRecord(record)

def unPickle(self, data):
return cPickle.loads(data)

def handleLogRecord(self, record):
if a name is specified, we use the named logger rather than the one
implied by the record.
if self.server.logname is not None:

name = self.server.logname
else:

name = record.name
logger = logging.getLogger(name)
N.B. EVERY record gets logged. This is because Logger.handle
is normally called AFTER logger-level filtering. If you want
to do filtering, do it at the client end to save wasting
cycles and network bandwidth!
logger.handle(record)

class LogRecordSocketReceiver(SocketServer.ThreadingTCPServer):
"""simple TCP socket-based logging receiver suitable for testing.
"""

allow_reuse_address = 1

def __init__(self, host=’localhost’,
port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
handler=LogRecordStreamHandler):

SocketServer.ThreadingTCPServer.__init__(self, (host, port), handler)
self.abort = 0
self.timeout = 1
self.logname = None

def serve_until_stopped(self):
import select
abort = 0
while not abort:

rd, wr, ex = select.select([self.socket.fileno()],
[], [],
self.timeout)

if rd:
self.handle_request()

abort = self.abort

def main():
logging.basicConfig(

format="%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s")
tcpserver = LogRecordSocketReceiver()

438 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

print "About to start TCP server..."
tcpserver.serve_until_stopped()

if __name__ == "__main__":
main()

First run the server, and then the client. On the client side, nothing is printed on the console; on the server side, you
should see something like:

About to start TCP server...
59 root INFO Jackdaws love my big sphinx of quartz.
59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
69 myapp.area1 INFO How quickly daft jumping zebras vex.
69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
69 myapp.area2 ERROR The five boxing wizards jump quickly.

Note that there are some security issues with pickle in some scenarios. If these affect you, you can use an alternative
serialization scheme by overriding the makePickle() method and implementing your alternative there, as well as
adapting the above script to use your alternative serialization.

15.6.12 Using arbitrary objects as messages

In the preceding sections and examples, it has been assumed that the message passed when logging the event is a
string. However, this is not the only possibility. You can pass an arbitrary object as a message, and its __str__()
method will be called when the logging system needs to convert it to a string representation. In fact, if you want to,
you can avoid computing a string representation altogether - for example, the SocketHandler emits an event by
pickling it and sending it over the wire.

15.6.13 Optimization

Formatting of message arguments is deferred until it cannot be avoided. However, computing the arguments passed to
the logging method can also be expensive, and you may want to avoid doing it if the logger will just throw away your
event. To decide what to do, you can call the isEnabledFor() method which takes a level argument and returns
true if the event would be created by the Logger for that level of call. You can write code like this:

if logger.isEnabledFor(logging.DEBUG):
logger.debug("Message with %s, %s", expensive_func1(),

expensive_func2())

so that if the logger’s threshold is set above DEBUG, the calls to expensive_func1() and
expensive_func2() are never made.

There are other optimizations which can be made for specific applications which need more precise control over what
logging information is collected. Here’s a list of things you can do to avoid processing during logging which you don’t
need:

What you don’t want to collect How to avoid collecting it
Information about where calls were made from. Set logging._srcfile to None.
Threading information. Set logging.logThreads to 0.
Process information. Set logging.logProcesses to 0.

Also note that the core logging module only includes the basic handlers. If you don’t import logging.handlers
and logging.config, they won’t take up any memory.

15.6. logging — Logging facility for Python 439

The Python Library Reference, Release 2.6.9

15.6.14 Handler Objects

Handlers have the following attributes and methods. Note that Handler is never instantiated directly; this
class acts as a base for more useful subclasses. However, the __init__() method in subclasses needs to call
Handler.__init__().

__init__(level=NOTSET)
Initializes the Handler instance by setting its level, setting the list of filters to the empty list and creating a
lock (using createLock()) for serializing access to an I/O mechanism.

createLock()
Initializes a thread lock which can be used to serialize access to underlying I/O functionality which may not be
threadsafe.

acquire()
Acquires the thread lock created with createLock().

release()
Releases the thread lock acquired with acquire().

setLevel(lvl)
Sets the threshold for this handler to lvl. Logging messages which are less severe than lvl will be ignored. When
a handler is created, the level is set to NOTSET (which causes all messages to be processed).

setFormatter(form)
Sets the Formatter for this handler to form.

addFilter(filt)
Adds the specified filter filt to this handler.

removeFilter(filt)
Removes the specified filter filt from this handler.

filter(record)
Applies this handler’s filters to the record and returns a true value if the record is to be processed.

flush()
Ensure all logging output has been flushed. This version does nothing and is intended to be implemented by
subclasses.

close()
Tidy up any resources used by the handler. This version does no output but removes the handler from an internal
list of handlers which is closed when shutdown() is called. Subclasses should ensure that this gets called
from overridden close() methods.

handle(record)
Conditionally emits the specified logging record, depending on filters which may have been added to the handler.
Wraps the actual emission of the record with acquisition/release of the I/O thread lock.

handleError(record)
This method should be called from handlers when an exception is encountered during an emit() call. By
default it does nothing, which means that exceptions get silently ignored. This is what is mostly wanted for
a logging system - most users will not care about errors in the logging system, they are more interested in
application errors. You could, however, replace this with a custom handler if you wish. The specified record is
the one which was being processed when the exception occurred.

format(record)
Do formatting for a record - if a formatter is set, use it. Otherwise, use the default formatter for the module.

440 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

emit(record)
Do whatever it takes to actually log the specified logging record. This version is intended to be implemented by
subclasses and so raises a NotImplementedError.

StreamHandler

The StreamHandler class, located in the core logging package, sends logging output to streams such as
sys.stdout, sys.stderr or any file-like object (or, more precisely, any object which supports write() and flush()
methods).

class StreamHandler([strm])
Returns a new instance of the StreamHandler class. If strm is specified, the instance will use it for logging
output; otherwise, sys.stderr will be used.

emit(record)
If a formatter is specified, it is used to format the record. The record is then written to
the stream with a trailing newline. If exception information is present, it is formatted using
traceback.print_exception() and appended to the stream.

flush()
Flushes the stream by calling its flush() method. Note that the close() method is inherited from
Handler and so does no output, so an explicit flush() call may be needed at times.

FileHandler

The FileHandler class, located in the core logging package, sends logging output to a disk file. It inherits the
output functionality from StreamHandler.

class FileHandler(filename, [mode, [encoding, [delay]]])
Returns a new instance of the FileHandler class. The specified file is opened and used as the stream for
logging. If mode is not specified, ’a’ is used. If encoding is not None, it is used to open the file with that
encoding. If delay is true, then file opening is deferred until the first call to emit(). By default, the file grows
indefinitely. Changed in version 2.6: delay was added.

close()
Closes the file.

emit(record)
Outputs the record to the file.

See Configuring Logging for a Library for more information on how to use NullHandler.

WatchedFileHandler

New in version 2.6. The WatchedFileHandler class, located in the logging.handlers module, is a
FileHandler which watches the file it is logging to. If the file changes, it is closed and reopened using the file
name.

A file change can happen because of usage of programs such as newsyslog and logrotate which perform log file
rotation. This handler, intended for use under Unix/Linux, watches the file to see if it has changed since the last emit.
(A file is deemed to have changed if its device or inode have changed.) If the file has changed, the old file stream is
closed, and the file opened to get a new stream.

This handler is not appropriate for use under Windows, because under Windows open log files cannot be moved or
renamed - logging opens the files with exclusive locks - and so there is no need for such a handler. Furthermore,
ST_INO is not supported under Windows; stat() always returns zero for this value.

15.6. logging — Logging facility for Python 441

The Python Library Reference, Release 2.6.9

class WatchedFileHandler(filename, [mode, [encoding, [delay]]])
Returns a new instance of the WatchedFileHandler class. The specified file is opened and used as the
stream for logging. If mode is not specified, ’a’ is used. If encoding is not None, it is used to open the file with
that encoding. If delay is true, then file opening is deferred until the first call to emit(). By default, the file
grows indefinitely. Changed in version 2.6: delay was added.

emit(record)
Outputs the record to the file, but first checks to see if the file has changed. If it has, the existing stream is
flushed and closed and the file opened again, before outputting the record to the file.

RotatingFileHandler

The RotatingFileHandler class, located in the logging.handlers module, supports rotation of disk log
files.

class RotatingFileHandler(filename, [mode, [maxBytes, [backupCount, [encoding, [delay]]]]])
Returns a new instance of the RotatingFileHandler class. The specified file is opened and used as the
stream for logging. If mode is not specified, ’a’ is used. If encoding is not None, it is used to open the file with
that encoding. If delay is true, then file opening is deferred until the first call to emit(). By default, the file
grows indefinitely.

You can use the maxBytes and backupCount values to allow the file to rollover at a predetermined size. When
the size is about to be exceeded, the file is closed and a new file is silently opened for output. Rollover oc-
curs whenever the current log file is nearly maxBytes in length; if maxBytes is zero, rollover never occurs. If
backupCount is non-zero, the system will save old log files by appending the extensions “.1”, “.2” etc., to the
filename. For example, with a backupCount of 5 and a base file name of app.log, you would get app.log,
app.log.1, app.log.2, up to app.log.5. The file being written to is always app.log. When this file
is filled, it is closed and renamed to app.log.1, and if files app.log.1, app.log.2, etc. exist, then they
are renamed to app.log.2, app.log.3 etc. respectively. Changed in version 2.6: delay was added.

doRollover()
Does a rollover, as described above.

emit(record)
Outputs the record to the file, catering for rollover as described previously.

TimedRotatingFileHandler

The TimedRotatingFileHandler class, located in the logging.handlers module, supports rotation of
disk log files at certain timed intervals.

class TimedRotatingFileHandler(filename, [when, [interval, [backupCount, [encoding, [delay, [utc]]]]]])
Returns a new instance of the TimedRotatingFileHandler class. The specified file is opened and used
as the stream for logging. On rotating it also sets the filename suffix. Rotating happens based on the product of
when and interval.

You can use the when to specify the type of interval. The list of possible values is below. Note that they are not
case sensitive.

Value Type of interval
’S’ Seconds
’M’ Minutes
’H’ Hours
’D’ Days
’W’ Week day (0=Monday)
’midnight’ Roll over at midnight

442 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

The system will save old log files by appending extensions to the filename. The extensions are date-and-time
based, using the strftime format %Y-%m-%d_%H-%M-%S or a leading portion thereof, depending on the rollover
interval.

When computing the next rollover time for the first time (when the handler is created), the last modification time
of an existing log file, or else the current time, is used to compute when the next rotation will occur.

If the utc argument is true, times in UTC will be used; otherwise local time is used.

If backupCount is nonzero, at most backupCount files will be kept, and if more would be created when rollover
occurs, the oldest one is deleted. The deletion logic uses the interval to determine which files to delete, so
changing the interval may leave old files lying around.

If delay is true, then file opening is deferred until the first call to emit(). Changed in version 2.6: delay was
added.

doRollover()
Does a rollover, as described above.

emit(record)
Outputs the record to the file, catering for rollover as described above.

SocketHandler

The SocketHandler class, located in the logging.handlers module, sends logging output to a network
socket. The base class uses a TCP socket.

class SocketHandler(host, port)
Returns a new instance of the SocketHandler class intended to communicate with a remote machine whose
address is given by host and port.

close()
Closes the socket.

emit()
Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there is an error with
the socket, silently drops the packet. If the connection was previously lost, re-establishes the connection.
To unpickle the record at the receiving end into a LogRecord, use the makeLogRecord() function.

handleError()
Handles an error which has occurred during emit(). The most likely cause is a lost connection. Closes
the socket so that we can retry on the next event.

makeSocket()
This is a factory method which allows subclasses to define the precise type of socket they want. The default
implementation creates a TCP socket (socket.SOCK_STREAM).

makePickle(record)
Pickles the record’s attribute dictionary in binary format with a length prefix, and returns it ready for
transmission across the socket.

Note that pickles aren’t completely secure. If you are concerned about security, you may want to override
this method to implement a more secure mechanism. For example, you can sign pickles using HMAC and
then verify them on the receiving end, or alternatively you can disable unpickling of global objects on the
receiving end.

send(packet)
Send a pickled string packet to the socket. This function allows for partial sends which can happen when
the network is busy.

15.6. logging — Logging facility for Python 443

The Python Library Reference, Release 2.6.9

DatagramHandler

The DatagramHandler class, located in the logging.handlers module, inherits from SocketHandler to
support sending logging messages over UDP sockets.

class DatagramHandler(host, port)
Returns a new instance of the DatagramHandler class intended to communicate with a remote machine
whose address is given by host and port.

emit()
Pickles the record’s attribute dictionary and writes it to the socket in binary format. If there is an error with
the socket, silently drops the packet. To unpickle the record at the receiving end into a LogRecord, use
the makeLogRecord() function.

makeSocket()
The factory method of SocketHandler is here overridden to create a UDP socket
(socket.SOCK_DGRAM).

send(s)
Send a pickled string to a socket.

SysLogHandler

The SysLogHandler class, located in the logging.handlers module, supports sending logging messages to a
remote or local Unix syslog.

class SysLogHandler([address, [facility]])
Returns a new instance of the SysLogHandler class intended to communicate with a remote Unix ma-
chine whose address is given by address in the form of a (host, port) tuple. If address is not specified,
(’localhost’, 514) is used. The address is used to open a UDP socket. An alternative to providing a
(host, port) tuple is providing an address as a string, for example “/dev/log”. In this case, a Unix domain
socket is used to send the message to the syslog. If facility is not specified, LOG_USER is used.

close()
Closes the socket to the remote host.

emit(record)
The record is formatted, and then sent to the syslog server. If exception information is present, it is not
sent to the server.

encodePriority(facility, priority)
Encodes the facility and priority into an integer. You can pass in strings or integers - if strings are passed,
internal mapping dictionaries are used to convert them to integers.

The symbolic LOG_ values are defined in SysLogHandler and mirror the values defined in the
sys/syslog.h header file.

Priorities
Name (string) Symbolic value
alert LOG_ALERT
crit or critical LOG_CRIT
debug LOG_DEBUG
emerg or panic LOG_EMERG
err or error LOG_ERR
info LOG_INFO
notice LOG_NOTICE
warn or warning LOG_WARNING

444 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Facilities
Name (string) Symbolic value
auth LOG_AUTH
authpriv LOG_AUTHPRIV
cron LOG_CRON
daemon LOG_DAEMON
ftp LOG_FTP
kern LOG_KERN
lpr LOG_LPR
mail LOG_MAIL
news LOG_NEWS
syslog LOG_SYSLOG
user LOG_USER
uucp LOG_UUCP
local0 LOG_LOCAL0
local1 LOG_LOCAL1
local2 LOG_LOCAL2
local3 LOG_LOCAL3
local4 LOG_LOCAL4
local5 LOG_LOCAL5
local6 LOG_LOCAL6
local7 LOG_LOCAL7

mapPriority(levelname)
Maps a logging level name to a syslog priority name. You may need to override this if you are using
custom levels, or if the default algorithm is not suitable for your needs. The default algorithm maps
DEBUG, INFO, WARNING, ERROR and CRITICAL to the equivalent syslog names, and all other level
names to “warning”.

NTEventLogHandler

The NTEventLogHandler class, located in the logging.handlers module, supports sending logging mes-
sages to a local Windows NT, Windows 2000 or Windows XP event log. Before you can use it, you need Mark
Hammond’s Win32 extensions for Python installed.

class NTEventLogHandler(appname, [dllname, [logtype]])
Returns a new instance of the NTEventLogHandler class. The appname is used to define the application
name as it appears in the event log. An appropriate registry entry is created using this name. The dllname should
give the fully qualified pathname of a .dll or .exe which contains message definitions to hold in the log (if not
specified, ’win32service.pyd’ is used - this is installed with the Win32 extensions and contains some
basic placeholder message definitions. Note that use of these placeholders will make your event logs big, as
the entire message source is held in the log. If you want slimmer logs, you have to pass in the name of your
own .dll or .exe which contains the message definitions you want to use in the event log). The logtype is one of
’Application’, ’System’ or ’Security’, and defaults to ’Application’.

close()
At this point, you can remove the application name from the registry as a source of event log entries.
However, if you do this, you will not be able to see the events as you intended in the Event Log Viewer -
it needs to be able to access the registry to get the .dll name. The current version does not do this.

emit(record)
Determines the message ID, event category and event type, and then logs the message in the NT event log.

getEventCategory(record)
Returns the event category for the record. Override this if you want to specify your own categories. This

15.6. logging — Logging facility for Python 445

The Python Library Reference, Release 2.6.9

version returns 0.

getEventType(record)
Returns the event type for the record. Override this if you want to specify your own types. This version
does a mapping using the handler’s typemap attribute, which is set up in __init__() to a dictionary
which contains mappings for DEBUG, INFO, WARNING, ERROR and CRITICAL. If you are using your
own levels, you will either need to override this method or place a suitable dictionary in the handler’s
typemap attribute.

getMessageID(record)
Returns the message ID for the record. If you are using your own messages, you could do this by hav-
ing the msg passed to the logger being an ID rather than a format string. Then, in here, you could use
a dictionary lookup to get the message ID. This version returns 1, which is the base message ID in
win32service.pyd.

SMTPHandler

The SMTPHandler class, located in the logging.handlers module, supports sending logging messages to an
email address via SMTP.

class SMTPHandler(mailhost, fromaddr, toaddrs, subject, [credentials])
Returns a new instance of the SMTPHandler class. The instance is initialized with the from and to addresses
and subject line of the email. The toaddrs should be a list of strings. To specify a non-standard SMTP port,
use the (host, port) tuple format for the mailhost argument. If you use a string, the standard SMTP port is used.
If your SMTP server requires authentication, you can specify a (username, password) tuple for the credentials
argument. Changed in version 2.6: credentials was added.

emit(record)
Formats the record and sends it to the specified addressees.

getSubject(record)
If you want to specify a subject line which is record-dependent, override this method.

MemoryHandler

The MemoryHandler class, located in the logging.handlers module, supports buffering of logging records in
memory, periodically flushing them to a target handler. Flushing occurs whenever the buffer is full, or when an event
of a certain severity or greater is seen.

MemoryHandler is a subclass of the more general BufferingHandler, which is an abstract class. This
buffers logging records in memory. Whenever each record is added to the buffer, a check is made by calling
shouldFlush() to see if the buffer should be flushed. If it should, then flush() is expected to do the need-
ful.

class BufferingHandler(capacity)
Initializes the handler with a buffer of the specified capacity.

emit(record)
Appends the record to the buffer. If shouldFlush() returns true, calls flush() to process the buffer.

flush()
You can override this to implement custom flushing behavior. This version just zaps the buffer to empty.

shouldFlush(record)
Returns true if the buffer is up to capacity. This method can be overridden to implement custom flushing
strategies.

446 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

class MemoryHandler(capacity, [flushLevel, [target]])
Returns a new instance of the MemoryHandler class. The instance is initialized with a buffer size of capacity.
If flushLevel is not specified, ERROR is used. If no target is specified, the target will need to be set using
setTarget() before this handler does anything useful.

close()
Calls flush(), sets the target to None and clears the buffer.

flush()
For a MemoryHandler, flushing means just sending the buffered records to the target, if there is one.
Override if you want different behavior.

setTarget(target)
Sets the target handler for this handler.

shouldFlush(record)
Checks for buffer full or a record at the flushLevel or higher.

HTTPHandler

The HTTPHandler class, located in the logging.handlers module, supports sending logging messages to a
Web server, using either GET or POST semantics.

class HTTPHandler(host, url, [method])
Returns a new instance of the HTTPHandler class. The instance is initialized with a host address, url and
HTTP method. The host can be of the form host:port, should you need to use a specific port number. If no
method is specified, GET is used.

emit(record)
Sends the record to the Web server as an URL-encoded dictionary.

15.6.15 Formatter Objects

Formatters have the following attributes and methods. They are responsible for converting a LogRecord to
(usually) a string which can be interpreted by either a human or an external system. The base Formatter allows a
formatting string to be specified. If none is supplied, the default value of ’%(message)s’ is used.

A Formatter can be initialized with a format string which makes use of knowledge of the LogRecord attributes - such
as the default value mentioned above making use of the fact that the user’s message and arguments are pre-formatted
into a LogRecord‘s message attribute. This format string contains standard Python %-style mapping keys. See
section String Formatting Operations for more information on string formatting.

Currently, the useful mapping keys in a LogRecord are:

15.6. logging — Logging facility for Python 447

The Python Library Reference, Release 2.6.9

Format Description
%(name)s Name of the logger (logging channel).
%(levelno)s Numeric logging level for the message (DEBUG, INFO, WARNING, ERROR, CRITICAL).
%(levelname)sText logging level for the message (’DEBUG’, ’INFO’, ’WARNING’, ’ERROR’,

’CRITICAL’).
%(pathname)s Full pathname of the source file where the logging call was issued (if available).
%(filename)s Filename portion of pathname.
%(module)s Module (name portion of filename).
%(funcName)s Name of function containing the logging call.
%(lineno)d Source line number where the logging call was issued (if available).
%(created)f Time when the LogRecord was created (as returned by time.time()).
%(relativeCreated)dTime in milliseconds when the LogRecord was created, relative to the time the logging module

was loaded.
%(asctime)s Human-readable time when the LogRecord was created. By default this is of the form

“2003-07-08 16:49:45,896” (the numbers after the comma are millisecond portion of the time).
%(msecs)d Millisecond portion of the time when the LogRecord was created.
%(thread)d Thread ID (if available).
%(threadName)sThread name (if available).
%(process)d Process ID (if available).
%(message)s The logged message, computed as msg % args.

Changed in version 2.5: funcName was added.

class Formatter([fmt, [datefmt]])
Returns a new instance of the Formatter class. The instance is initialized with a format string for the mes-
sage as a whole, as well as a format string for the date/time portion of a message. If no fmt is specified,
’%(message)s’ is used. If no datefmt is specified, the ISO8601 date format is used.

format(record)
The record’s attribute dictionary is used as the operand to a string formatting operation. Returns the re-
sulting string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message
attribute of the record is computed using msg % args. If the formatting string contains ’(asctime)’,
formatTime() is called to format the event time. If there is exception information, it is formatted using
formatException() and appended to the message. Note that the formatted exception information
is cached in attribute exc_text. This is useful because the exception information can be pickled and sent
across the wire, but you should be careful if you have more than one Formatter subclass which cus-
tomizes the formatting of exception information. In this case, you will have to clear the cached value after
a formatter has done its formatting, so that the next formatter to handle the event doesn’t use the cached
value but recalculates it afresh.

formatTime(record, [datefmt])
This method should be called from format() by a formatter which wants to make use of a formatted
time. This method can be overridden in formatters to provide for any specific requirement, but the basic
behavior is as follows: if datefmt (a string) is specified, it is used with time.strftime() to format the
creation time of the record. Otherwise, the ISO8601 format is used. The resulting string is returned.

formatException(exc_info)
Formats the specified exception information (a standard exception tuple as re-
turned by sys.exc_info()) as a string. This default implementation just uses
traceback.print_exception(). The resulting string is returned.

15.6.16 Filter Objects

Filters can be used by Handlers and Loggers for more sophisticated filtering than is provided by levels. The base
filter class only allows events which are below a certain point in the logger hierarchy. For example, a filter initialized

448 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

with “A.B” will allow events logged by loggers “A.B”, “A.B.C”, “A.B.C.D”, “A.B.D” etc. but not “A.BB”, “B.A.B”
etc. If initialized with the empty string, all events are passed.

class Filter([name])
Returns an instance of the Filter class. If name is specified, it names a logger which, together with its
children, will have its events allowed through the filter. If no name is specified, allows every event.

filter(record)
Is the specified record to be logged? Returns zero for no, nonzero for yes. If deemed appropriate, the
record may be modified in-place by this method.

15.6.17 LogRecord Objects

LogRecord instances are created every time something is logged. They contain all the information pertinent to the
event being logged. The main information passed in is in msg and args, which are combined using msg % args to
create the message field of the record. The record also includes information such as when the record was created, the
source line where the logging call was made, and any exception information to be logged.

class LogRecord(name, lvl, pathname, lineno, msg, args, exc_info, [func])
Returns an instance of LogRecord initialized with interesting information. The name is the logger name; lvl
is the numeric level; pathname is the absolute pathname of the source file in which the logging call was made;
lineno is the line number in that file where the logging call is found; msg is the user-supplied message (a format
string); args is the tuple which, together with msg, makes up the user message; and exc_info is the exception
tuple obtained by calling sys.exc_info() (or None, if no exception information is available). The func is
the name of the function from which the logging call was made. If not specified, it defaults to None. Changed
in version 2.5: func was added.

getMessage()
Returns the message for this LogRecord instance after merging any user-supplied arguments with the
message.

15.6.18 LoggerAdapter Objects

New in version 2.6. LoggerAdapter instances are used to conveniently pass contextual information into logging
calls. For a usage example , see the section on adding contextual information to your logging output.

class LoggerAdapter(logger, extra)
Returns an instance of LoggerAdapter initialized with an underlying Logger instance and a dict-like object.

process(msg, kwargs)
Modifies the message and/or keyword arguments passed to a logging call in order to insert contextual
information. This implementation takes the object passed as extra to the constructor and adds it to kwargs
using key ‘extra’. The return value is a (msg, kwargs) tuple which has the (possibly modified) versions of
the arguments passed in.

In addition to the above, LoggerAdapter supports all the logging methods of Logger, i.e. debug(), info(),
warning(), error(), exception(), critical() and log(). These methods have the same signatures as
their counterparts in Logger, so you can use the two types of instances interchangeably.

15.6.19 Thread Safety

The logging module is intended to be thread-safe without any special work needing to be done by its clients. It achieves
this though using threading locks; there is one lock to serialize access to the module’s shared data, and each handler
also creates a lock to serialize access to its underlying I/O.

15.6. logging — Logging facility for Python 449

The Python Library Reference, Release 2.6.9

If you are implementing asynchronous signal handlers using the signal module, you may not be able to use logging
from within such handlers. This is because lock implementations in the threadingmodule are not always re-entrant,
and so cannot be invoked from such signal handlers.

15.6.20 Configuration

Configuration functions

The following functions configure the logging module. They are located in the logging.config module. Their
use is optional — you can configure the logging module using these functions or by making calls to the main API
(defined in logging itself) and defining handlers which are declared either in logging or logging.handlers.

fileConfig(fname, [defaults])
Reads the logging configuration from a ConfigParser-format file named fname. This function can be called sev-
eral times from an application, allowing an end user the ability to select from various pre-canned configurations
(if the developer provides a mechanism to present the choices and load the chosen configuration). Defaults to
be passed to ConfigParser can be specified in the defaults argument.

listen([port])
Starts up a socket server on the specified port, and listens for new configurations. If no port is specified, the
module’s default DEFAULT_LOGGING_CONFIG_PORT is used. Logging configurations will be sent as a file
suitable for processing by fileConfig(). Returns a Thread instance on which you can call start() to
start the server, and which you can join() when appropriate. To stop the server, call stopListening().

To send a configuration to the socket, read in the configuration file and send it to the socket as a string of bytes
preceded by a four-byte length string packed in binary using struct.pack(’>L’, n).

stopListening()
Stops the listening server which was created with a call to listen(). This is typically called before calling
join() on the return value from listen().

Configuration file format

The configuration file format understood by fileConfig() is based on ConfigParser functionality. The file
must contain sections called [loggers], [handlers] and [formatters] which identify by name the entities
of each type which are defined in the file. For each such entity, there is a separate section which identifies how
that entity is configured. Thus, for a logger named log01 in the [loggers] section, the relevant configuration
details are held in a section [logger_log01]. Similarly, a handler called hand01 in the [handlers] section
will have its configuration held in a section called [handler_hand01], while a formatter called form01 in the
[formatters] section will have its configuration specified in a section called [formatter_form01]. The root
logger configuration must be specified in a section called [logger_root].

Examples of these sections in the file are given below.

[loggers]
keys=root,log02,log03,log04,log05,log06,log07

[handlers]
keys=hand01,hand02,hand03,hand04,hand05,hand06,hand07,hand08,hand09

[formatters]
keys=form01,form02,form03,form04,form05,form06,form07,form08,form09

The root logger must specify a level and a list of handlers. An example of a root logger section is given below.

450 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

[logger_root]
level=NOTSET
handlers=hand01

The level entry can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL or NOTSET. For the root
logger only, NOTSET means that all messages will be logged. Level values are eval()uated in the context of the
logging package’s namespace.

The handlers entry is a comma-separated list of handler names, which must appear in the [handlers] section.
These names must appear in the [handlers] section and have corresponding sections in the configuration file.

For loggers other than the root logger, some additional information is required. This is illustrated by the following
example.

[logger_parser]
level=DEBUG
handlers=hand01
propagate=1
qualname=compiler.parser

The level and handlers entries are interpreted as for the root logger, except that if a non-root logger’s level is
specified as NOTSET, the system consults loggers higher up the hierarchy to determine the effective level of the logger.
The propagate entry is set to 1 to indicate that messages must propagate to handlers higher up the logger hierarchy
from this logger, or 0 to indicate that messages are not propagated to handlers up the hierarchy. The qualname entry
is the hierarchical channel name of the logger, that is to say the name used by the application to get the logger.

Sections which specify handler configuration are exemplified by the following.

[handler_hand01]
class=StreamHandler
level=NOTSET
formatter=form01
args=(sys.stdout,)

The class entry indicates the handler’s class (as determined by eval() in the logging package’s namespace).
The level is interpreted as for loggers, and NOTSET is taken to mean “log everything”. Changed in version 2.6:
Added support for resolving the handler’s class as a dotted module and class name. The formatter entry indicates
the key name of the formatter for this handler. If blank, a default formatter (logging._defaultFormatter) is
used. If a name is specified, it must appear in the [formatters] section and have a corresponding section in the
configuration file.

The args entry, when eval()uated in the context of the logging package’s namespace, is the list of arguments to
the constructor for the handler class. Refer to the constructors for the relevant handlers, or to the examples below, to
see how typical entries are constructed.

[handler_hand02]
class=FileHandler
level=DEBUG
formatter=form02
args=(’python.log’, ’w’)

[handler_hand03]
class=handlers.SocketHandler
level=INFO
formatter=form03
args=(’localhost’, handlers.DEFAULT_TCP_LOGGING_PORT)

[handler_hand04]
class=handlers.DatagramHandler

15.6. logging — Logging facility for Python 451

The Python Library Reference, Release 2.6.9

level=WARN
formatter=form04
args=(’localhost’, handlers.DEFAULT_UDP_LOGGING_PORT)

[handler_hand05]
class=handlers.SysLogHandler
level=ERROR
formatter=form05
args=((’localhost’, handlers.SYSLOG_UDP_PORT), handlers.SysLogHandler.LOG_USER)

[handler_hand06]
class=handlers.NTEventLogHandler
level=CRITICAL
formatter=form06
args=(’Python Application’, ’’, ’Application’)

[handler_hand07]
class=handlers.SMTPHandler
level=WARN
formatter=form07
args=(’localhost’, ’from@abc’, [’user1@abc’, ’user2@xyz’], ’Logger Subject’)

[handler_hand08]
class=handlers.MemoryHandler
level=NOTSET
formatter=form08
target=
args=(10, ERROR)

[handler_hand09]
class=handlers.HTTPHandler
level=NOTSET
formatter=form09
args=(’localhost:9022’, ’/log’, ’GET’)

Sections which specify formatter configuration are typified by the following.

[formatter_form01]
format=F1 %(asctime)s %(levelname)s %(message)s
datefmt=
class=logging.Formatter

The format entry is the overall format string, and the datefmt entry is the strftime()-compatible date/time
format string. If empty, the package substitutes ISO8601 format date/times, which is almost equivalent to specifying
the date format string "%Y-%m-%d %H:%M:%S". The ISO8601 format also specifies milliseconds, which are ap-
pended to the result of using the above format string, with a comma separator. An example time in ISO8601 format is
2003-01-23 00:29:50,411.

The class entry is optional. It indicates the name of the formatter’s class (as a dotted module and class name.)
This option is useful for instantiating a Formatter subclass. Subclasses of Formatter can present exception
tracebacks in an expanded or condensed format.

Configuration server example

Here is an example of a module using the logging configuration server:

452 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

import logging
import logging.config
import time
import os

read initial config file
logging.config.fileConfig("logging.conf")

create and start listener on port 9999
t = logging.config.listen(9999)
t.start()

logger = logging.getLogger("simpleExample")

try:
loop through logging calls to see the difference
new configurations make, until Ctrl+C is pressed
while True:

logger.debug("debug message")
logger.info("info message")
logger.warn("warn message")
logger.error("error message")
logger.critical("critical message")
time.sleep(5)

except KeyboardInterrupt:
cleanup
logging.config.stopListening()
t.join()

And here is a script that takes a filename and sends that file to the server, properly preceded with the binary-encoded
length, as the new logging configuration:

#!/usr/bin/env python
import socket, sys, struct

data_to_send = open(sys.argv[1], "r").read()

HOST = ’localhost’
PORT = 9999
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print "connecting..."
s.connect((HOST, PORT))
print "sending config..."
s.send(struct.pack(">L", len(data_to_send)))
s.send(data_to_send)
s.close()
print "complete"

15.6.21 More examples

Multiple handlers and formatters

Loggers are plain Python objects. The addHandler() method has no minimum or maximum quota for the number
of handlers you may add. Sometimes it will be beneficial for an application to log all messages of all severities to a

15.6. logging — Logging facility for Python 453

The Python Library Reference, Release 2.6.9

text file while simultaneously logging errors or above to the console. To set this up, simply configure the appropriate
handlers. The logging calls in the application code will remain unchanged. Here is a slight modification to the previous
simple module-based configuration example:

import logging

logger = logging.getLogger("simple_example")
logger.setLevel(logging.DEBUG)
create file handler which logs even debug messages
fh = logging.FileHandler("spam.log")
fh.setLevel(logging.DEBUG)
create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
create formatter and add it to the handlers
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
ch.setFormatter(formatter)
fh.setFormatter(formatter)
add the handlers to logger
logger.addHandler(ch)
logger.addHandler(fh)

"application" code
logger.debug("debug message")
logger.info("info message")
logger.warn("warn message")
logger.error("error message")
logger.critical("critical message")

Notice that the “application” code does not care about multiple handlers. All that changed was the addition and
configuration of a new handler named fh.

The ability to create new handlers with higher- or lower-severity filters can be very helpful when writing and testing
an application. Instead of using many print statements for debugging, use logger.debug: Unlike the print
statements, which you will have to delete or comment out later, the logger.debug statements can remain intact in the
source code and remain dormant until you need them again. At that time, the only change that needs to happen is to
modify the severity level of the logger and/or handler to debug.

Using logging in multiple modules

It was mentioned above that multiple calls to logging.getLogger(’someLogger’) return a reference to the
same logger object. This is true not only within the same module, but also across modules as long as it is in the same
Python interpreter process. It is true for references to the same object; additionally, application code can define and
configure a parent logger in one module and create (but not configure) a child logger in a separate module, and all
logger calls to the child will pass up to the parent. Here is a main module:

import logging
import auxiliary_module

create logger with "spam_application"
logger = logging.getLogger("spam_application")
logger.setLevel(logging.DEBUG)
create file handler which logs even debug messages
fh = logging.FileHandler("spam.log")
fh.setLevel(logging.DEBUG)

454 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
create formatter and add it to the handlers
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
fh.setFormatter(formatter)
ch.setFormatter(formatter)
add the handlers to the logger
logger.addHandler(fh)
logger.addHandler(ch)

logger.info("creating an instance of auxiliary_module.Auxiliary")
a = auxiliary_module.Auxiliary()
logger.info("created an instance of auxiliary_module.Auxiliary")
logger.info("calling auxiliary_module.Auxiliary.do_something")
a.do_something()
logger.info("finished auxiliary_module.Auxiliary.do_something")
logger.info("calling auxiliary_module.some_function()")
auxiliary_module.some_function()
logger.info("done with auxiliary_module.some_function()")

Here is the auxiliary module:

import logging

create logger
module_logger = logging.getLogger("spam_application.auxiliary")

class Auxiliary:
def __init__(self):

self.logger = logging.getLogger("spam_application.auxiliary.Auxiliary")
self.logger.info("creating an instance of Auxiliary")

def do_something(self):
self.logger.info("doing something")
a = 1 + 1
self.logger.info("done doing something")

def some_function():
module_logger.info("received a call to \"some_function\"")

The output looks like this:

2005-03-23 23:47:11,663 - spam_application - INFO -
creating an instance of auxiliary_module.Auxiliary

2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
creating an instance of Auxiliary

2005-03-23 23:47:11,665 - spam_application - INFO -
created an instance of auxiliary_module.Auxiliary

2005-03-23 23:47:11,668 - spam_application - INFO -
calling auxiliary_module.Auxiliary.do_something

2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
doing something

2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
done doing something

2005-03-23 23:47:11,670 - spam_application - INFO -
finished auxiliary_module.Auxiliary.do_something

15.6. logging — Logging facility for Python 455

The Python Library Reference, Release 2.6.9

2005-03-23 23:47:11,671 - spam_application - INFO -
calling auxiliary_module.some_function()

2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
received a call to "some_function"

2005-03-23 23:47:11,673 - spam_application - INFO -
done with auxiliary_module.some_function()

15.7 getpass — Portable password input

The getpass module provides two functions:

getpass([prompt, [stream]])
Prompt the user for a password without echoing. The user is prompted using the string prompt, which defaults
to ’Password: ’. On Unix, the prompt is written to the file-like object stream. stream defaults to the
controlling terminal (/dev/tty) or if that is unavailable to sys.stderr (this argument is ignored on Windows).

If echo free input is unavailable getpass() falls back to printing a warning message to stream and reading from
sys.stdin and issuing a GetPassWarning.

Availability: Macintosh, Unix, Windows. Changed in version 2.5: The stream parameter was added.Changed in
version 2.6: On Unix it defaults to using /dev/tty before falling back to sys.stdin and sys.stderr.

Note: If you call getpass from within IDLE, the input may be done in the terminal you launched IDLE from
rather than the idle window itself.

exception GetPassWarning
A UserWarning subclass issued when password input may be echoed.

getuser()
Return the “login name” of the user. Availability: Unix, Windows.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in order, and
returns the value of the first one which is set to a non-empty string. If none are set, the login name from the
password database is returned on systems which support the pwd module, otherwise, an exception is raised.

15.8 curses — Terminal handling for character-cell displays

Platforms: Unix Changed in version 1.6: Added support for the ncurses library and converted to a package. The
curses module provides an interface to the curses library, the de-facto standard for portable advanced terminal
handling.

While curses is most widely used in the Unix environment, versions are available for DOS, OS/2, and possibly other
systems as well. This extension module is designed to match the API of ncurses, an open-source curses library hosted
on Linux and the BSD variants of Unix.

Note: Since version 5.4, the ncurses library decides how to interpret non-ASCII data using the nl_langinfo
function. That means that you have to call locale.setlocale() in the application and encode Unicode strings
using one of the system’s available encodings. This example uses the system’s default encoding:

import locale
locale.setlocale(locale.LC_ALL, ’’)
code = locale.getpreferredencoding()

Then use code as the encoding for str.encode() calls.

See Also:

456 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Module curses.ascii Utilities for working with ASCII characters, regardless of your locale settings.

Module curses.panel A panel stack extension that adds depth to curses windows.

Module curses.textpad Editable text widget for curses supporting Emacs-like bindings.

Module curses.wrapper Convenience function to ensure proper terminal setup and resetting on application entry
and exit.

Curses Programming with Python (in) Tutorial material on using curses with Python, by Andrew Kuchling and Eric
Raymond.

The Demo/curses/ directory in the Python source distribution contains some example programs using the curses
bindings provided by this module.

15.8.1 Functions

The module curses defines the following exception:

exception error
Exception raised when a curses library function returns an error.

Note: Whenever x or y arguments to a function or a method are optional, they default to the current cursor location.
Whenever attr is optional, it defaults to A_NORMAL.

The module curses defines the following functions:

baudrate()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a fixed
high value. Included for historical reasons; in former times, it was used to write output loops for time delays
and occasionally to change interfaces depending on the line speed.

beep()
Emit a short attention sound.

can_change_color()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

cbreak()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off and
characters are available to be read one by one. However, unlike raw mode, special characters (interrupt, quit,
suspend, and flow control) retain their effects on the tty driver and calling program. Calling first raw() then
cbreak() leaves the terminal in cbreak mode.

color_content(color_number)
Returns the intensity of the red, green, and blue (RGB) components in the color color_number, which must be
between 0 and COLORS. A 3-tuple is returned, containing the R,G,B values for the given color, which will be
between 0 (no component) and 1000 (maximum amount of component).

color_pair(color_number)
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A_STANDOUT, A_REVERSE, and the other A_* attributes. pair_number() is the counterpart to this
function.

curs_set(visibility)
Sets the cursor state. visibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

def_prog_mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using

15.8. curses — Terminal handling for character-cell displays 457

The Python Library Reference, Release 2.6.9

curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls to
reset_prog_mode() will restore this mode.

def_shell_mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using curses.
(Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent calls to
reset_shell_mode() will restore this mode.

delay_output(ms)
Inserts an ms millisecond pause in output.

doupdate()
Update the physical screen. The curses library keeps two data structures, one representing the current physical
screen contents and a virtual screen representing the desired next state. The doupdate() ground updates the
physical screen to match the virtual screen.

The virtual screen may be updated by a noutrefresh() call after write operations such as addstr()
have been performed on a window. The normal refresh() call is simply noutrefresh() followed by
doupdate(); if you have to update multiple windows, you can speed performance and perhaps reduce screen
flicker by issuing noutrefresh() calls on all windows, followed by a single doupdate().

echo()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin()
De-initialize the library, and return terminal to normal status.

erasechar()
Returns the user’s current erase character. Under Unix operating systems this is a property of the controlling tty
of the curses program, and is not set by the curses library itself.

filter()
The filter() routine, if used, must be called before initscr() is called. The effect is that, during those
calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled; and the home string
is set to the value of cr. The effect is that the cursor is confined to the current line, and so are screen updates.
This may be used for enabling character-at-a-time line editing without touching the rest of the screen.

flash()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal produced by beep().

flushinp()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet been
processed by the program.

getmouse()
After getch() returns KEY_MOUSE to signal a mouse event, this method should be call to retrieve the queued
mouse event, represented as a 5-tuple (id, x, y, z, bstate). id is an ID value used to distinguish
multiple devices, and x, y, z are the event’s coordinates. (z is currently unused.). bstate is an integer value
whose bits will be set to indicate the type of event, and will be the bitwise OR of one or more of the fol-
lowing constants, where n is the button number from 1 to 4: BUTTONn_PRESSED, BUTTONn_RELEASED,
BUTTONn_CLICKED, BUTTONn_DOUBLE_CLICKED, BUTTONn_TRIPLE_CLICKED, BUTTON_SHIFT,
BUTTON_CTRL, BUTTON_ALT.

getsyx()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1 is
returned.

getwin(file)

458 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Reads window related data stored in the file by an earlier putwin() call. The routine then creates and initial-
izes a new window using that data, returning the new window object.

has_colors()
Returns true if the terminal can display colors; otherwise, it returns false.

has_ic()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for historical
reasons only, as all modern software terminal emulators have such capabilities.

has_il()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling re-
gions. This function is included for historical reasons only, as all modern software terminal emulators have such
capabilities.

has_key(ch)
Takes a key value ch, and returns true if the current terminal type recognizes a key with that value.

halfdelay(tenths)
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immediately
available to the program. However, after blocking for tenths tenths of seconds, an exception is raised if nothing
has been typed. The value of tenths must be a number between 1 and 255. Use nocbreak() to leave half-delay
mode.

init_color(color_number, r, g, b)
Changes the definition of a color, taking the number of the color to be changed followed by three RGB values (for
the amounts of red, green, and blue components). The value of color_number must be between 0 and COLORS.
Each of r, g, b, must be a value between 0 and 1000. When init_color() is used, all occurrences of that
color on the screen immediately change to the new definition. This function is a no-op on most terminals; it is
active only if can_change_color() returns 1.

init_pair(pair_number, fg, bg)
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color number. The value of pair_number must be between 1
and COLOR_PAIRS - 1 (the 0 color pair is wired to white on black and cannot be changed). The value of
fg and bg arguments must be between 0 and COLORS. If the color-pair was previously initialized, the screen is
refreshed and all occurrences of that color-pair are changed to the new definition.

initscr()
Initialize the library. Returns a WindowObject which represents the whole screen.

Note: If there is an error opening the terminal, the underlying curses library may cause the interpreter to exit.

isendwin()
Returns true if endwin() has been called (that is, the curses library has been deinitialized).

keyname(k)
Return the name of the key numbered k. The name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed by the
corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string consisting
of the prefix ‘M-‘ followed by the name of the corresponding ASCII character.

killchar()
Returns the user’s current line kill character. Under Unix operating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

longname()
Returns a string containing the terminfo long name field describing the current terminal. The maximum length
of a verbose description is 128 characters. It is defined only after the call to initscr().

15.8. curses — Terminal handling for character-cell displays 459

The Python Library Reference, Release 2.6.9

meta(yes)
If yes is 1, allow 8-bit characters to be input. If yes is 0, allow only 7-bit chars.

mouseinterval(interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them to be
recognized as a click, and returns the previous interval value. The default value is 200 msec, or one fifth of a
second.

mousemask(mousemask)
Sets the mouse events to be reported, and returns a tuple (availmask, oldmask). availmask indicates
which of the specified mouse events can be reported; on complete failure it returns 0. oldmask is the previous
value of the given window’s mouse event mask. If this function is never called, no mouse events are ever
reported.

napms(ms)
Sleep for ms milliseconds.

newpad(nlines, ncols)
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad is
returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated with
a particular part of the screen. Pads can be used when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads (such as from scrolling or echoing of input) do
not occur. The refresh() and noutrefresh() methods of a pad require 6 arguments to specify the part
of the pad to be displayed and the location on the screen to be used for the display. The arguments are pminrow,
pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper left corner of the pad region
to be displayed and the s arguments define a clipping box on the screen within which the pad region is to be
displayed.

newwin([nlines, ncols], begin_y, begin_x)
Return a new window, whose left-upper corner is at (begin_y, begin_x), and whose height/width is
nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the screen.

nl()
Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

nocbreak()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho()
Leave echo mode. Echoing of input characters is turned off.

nonl()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation of
newline into newline/return on output (but this does not change the behavior of addch(’\n’), which always
does the equivalent of return and line feed on the virtual screen). With translation off, curses can sometimes
speed up vertical motion a little; also, it will be able to detect the return key on input.

noqiflush()
When the noqiflush routine is used, normal flush of input and output queues associated with the INTR, QUIT
and SUSP characters will not be done. You may want to call noqiflush() in a signal handler if you want
output to continue as though the interrupt had not occurred, after the handler exits.

noraw()
Leave raw mode. Return to normal “cooked” mode with line buffering.

460 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

pair_content(pair_number)
Returns a tuple (fg, bg) containing the colors for the requested color pair. The value of pair_number must
be between 1 and COLOR_PAIRS - 1.

pair_number(attr)
Returns the number of the color-pair set by the attribute value attr. color_pair() is the counterpart to this
function.

putp(string)
Equivalent to tputs(str, 1, putchar); emits the value of a specified terminfo capability for the current
terminal. Note that the output of putp always goes to standard output.

qiflush([flag])
If flag is false, the effect is the same as calling noqiflush(). If flag is true, or no argument is provided, the
queues will be flushed when these control characters are read.

raw()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow control
keys are turned off; characters are presented to curses input functions one by one.

reset_prog_mode()
Restores the terminal to “program” mode, as previously saved by def_prog_mode().

reset_shell_mode()
Restores the terminal to “shell” mode, as previously saved by def_shell_mode().

setsyx(y, x)
Sets the virtual screen cursor to y, x. If y and x are both -1, then leaveok is set.

setupterm([termstr, fd])
Initializes the terminal. termstr is a string giving the terminal name; if omitted, the value of the TERM envi-
ronment variable will be used. fd is the file descriptor to which any initialization sequences will be sent; if not
supplied, the file descriptor for sys.stdout will be used.

start_color()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right after initscr().

start_color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables in the curses module, COLORS and COLOR_PAIRS, containing the maximum number
of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the values they
had when the terminal was just turned on.

termattrs()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a curses
program needs complete control over the appearance of the screen.

termname()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag(capname)
Returns the value of the Boolean capability corresponding to the terminfo capability name capname. The value
-1 is returned if capname is not a Boolean capability, or 0 if it is canceled or absent from the terminal descrip-
tion.

tigetnum(capname)
Returns the value of the numeric capability corresponding to the terminfo capability name capname. The value
-2 is returned if capname is not a numeric capability, or -1 if it is canceled or absent from the terminal
description.

15.8. curses — Terminal handling for character-cell displays 461

The Python Library Reference, Release 2.6.9

tigetstr(capname)
Returns the value of the string capability corresponding to the terminfo capability name capname. None is
returned if capname is not a string capability, or is canceled or absent from the terminal description.

tparm(str, [...])
Instantiates the string str with the supplied parameters, where str should be a parameterized string obtained from
the terminfo database. E.g. tparm(tigetstr("cup"), 5, 3) could result in ’\033[6;4H’, the exact
result depending on terminal type.

typeahead(fd)
Specifies that the file descriptor fd be used for typeahead checking. If fd is -1, then no typeahead checking is
done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating the
screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or doupdate is
called again, allowing faster response to commands typed in advance. This function allows specifying a different
file descriptor for typeahead checking.

unctrl(ch)
Returns a string which is a printable representation of the character ch. Control characters are displayed as a
caret followed by the character, for example as ^C. Printing characters are left as they are.

ungetch(ch)
Push ch so the next getch() will return it.

Note: Only one ch can be pushed before getch() is called.

ungetmouse(id, x, y, z, bstate)
Push a KEY_MOUSE event onto the input queue, associating the given state data with it.

use_env(flag)
If used, this function should be called before initscr() or newterm are called. When flag is false, the values
of lines and columns specified in the terminfo database will be used, even if environment variables LINES and
COLUMNS (used by default) are set, or if curses is running in a window (in which case default behavior would
be to use the window size if LINES and COLUMNS are not set).

use_default_colors()
Allow use of default values for colors on terminals supporting this feature. Use this to support transparency
in your application. The default color is assigned to the color number -1. After calling this function,
init_pair(x, curses.COLOR_RED, -1) initializes, for instance, color pair x to a red foreground color
on the default background.

15.8.2 Window Objects

Window objects, as returned by initscr() and newwin() above, have the following methods:

addch([y, x], ch, [attr])

Note: A character means a C character (an ASCII code), rather then a Python character (a string of length
1). (This note is true whenever the documentation mentions a character.) The built-in ord() is handy for
conveying strings to codes.

Paint character ch at (y, x) with attributes attr, overwriting any character previously painter at that location.
By default, the character position and attributes are the current settings for the window object.

addnstr([y, x], str, n, [attr])
Paint at most n characters of the string str at (y, x) with attributes attr, overwriting anything previously on
the display.

462 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

addstr([y, x], str, [attr])
Paint the string str at (y, x) with attributes attr, overwriting anything previously on the display.

attroff(attr)
Remove attribute attr from the “background” set applied to all writes to the current window.

attron(attr)
Add attribute attr from the “background” set applied to all writes to the current window.

attrset(attr)
Set the “background” set of attributes to attr. This set is initially 0 (no attributes).

bkgd(ch, [attr])
Sets the background property of the window to the character ch, with attributes attr. The change is then applied
to every character position in that window:

•The attribute of every character in the window is changed to the new background attribute.

•Wherever the former background character appears, it is changed to the new background character.

bkgdset(ch, [attr])
Sets the window’s background. A window’s background consists of a character and any combination of at-
tributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that are written
into the window. Both the character and attribute parts of the background are combined with the blank charac-
ters. The background becomes a property of the character and moves with the character through any scrolling
and insert/delete line/character operations.

border([ls, [rs, [ts, [bs, [tl, [tr, [bl, [br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for a specific part
of the border; see the table below for more details. The characters can be specified as integers or as one-character
strings.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters can not be used. The defaults are listed in this table:

Parameter Description Default value
ls Left side ACS_VLINE
rs Right side ACS_VLINE
ts Top ACS_HLINE
bs Bottom ACS_HLINE
tl Upper-left corner ACS_ULCORNER
tr Upper-right corner ACS_URCORNER
bl Bottom-left corner ACS_LLCORNER
br Bottom-right corner ACS_LRCORNER

box([vertch, horch])
Similar to border(), but both ls and rs are vertch and both ts and bs are horch. The default corner characters
are always used by this function.

chgat([y, x], [num], attr)
Sets the attributes of num characters at the current cursor position, or at position (y, x) if supplied. If no
value of num is given or num = -1, the attribute will be set on all the characters to the end of the line. This
function does not move the cursor. The changed line will be touched using the touchline() method so that
the contents will be redisplayed by the next window refresh.

clear()
Like erase(), but also causes the whole window to be repainted upon next call to refresh().

clearok(yes)
If yes is 1, the next call to refresh() will clear the window completely.

15.8. curses — Terminal handling for character-cell displays 463

The Python Library Reference, Release 2.6.9

clrtobot()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent of
clrtoeol() is performed.

clrtoeol()
Erase from cursor to the end of the line.

cursyncup()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position of
the window.

delch([y, x])
Delete any character at (y, x).

deleteln()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin([nlines, ncols], begin_y, begin_x)
An abbreviation for “derive window”, derwin() is the same as calling subwin(), except that begin_y and
begin_x are relative to the origin of the window, rather than relative to the entire screen. Returns a window
object for the derived window.

echochar(ch, [attr])
Add character ch with attribute attr, and immediately call refresh() on the window.

enclose(y, x)
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location of a
mouse event.

erase()
Clear the window.

getbegyx()
Return a tuple (y, x) of co-ordinates of upper-left corner.

getch([y, x])
Get a character. Note that the integer returned does not have to be in ASCII range: function keys, keypad keys
and so on return numbers higher than 256. In no-delay mode, -1 is returned if there is no input, else getch()
waits until a key is pressed.

getkey([y, x])
Get a character, returning a string instead of an integer, as getch() does. Function keys, keypad keys and so
on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is no
input.

getmaxyx()
Return a tuple (y, x) of the height and width of the window.

getparyx()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y and
x. Returns -1,-1 if this window has no parent.

getstr([y, x])
Read a string from the user, with primitive line editing capacity.

getyx()
Return a tuple (y, x) of current cursor position relative to the window’s upper-left corner.

hline([y, x], ch, n)
Display a horizontal line starting at (y, x) with length n consisting of the character ch.

464 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

idcok(flag)
If flag is false, curses no longer considers using the hardware insert/delete character feature of the terminal; if
flag is true, use of character insertion and deletion is enabled. When curses is first initialized, use of character
insert/delete is enabled by default.

idlok(yes)
If called with yes equal to 1, curses will try and use hardware line editing facilities. Otherwise, line inser-
tion/deletion are disabled.

immedok(flag)
If flag is true, any change in the window image automatically causes the window to be refreshed; you no longer
have to call refresh() yourself. However, it may degrade performance considerably, due to repeated calls to
wrefresh. This option is disabled by default.

inch([y, x])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and upper
bits are the attributes.

insch([y, x], ch, [attr])
Paint character ch at (y, x) with attributes attr, moving the line from position x right by one character.

insdelln(nlines)
Inserts nlines lines into the specified window above the current line. The nlines bottom lines are lost. For
negative nlines, delete nlines lines starting with the one under the cursor, and move the remaining lines up. The
bottom nlines lines are cleared. The current cursor position remains the same.

insertln()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr([y, x], str, n, [attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor, up to
n characters. If n is zero or negative, the entire string is inserted. All characters to the right of the cursor are
shifted right, with the rightmost characters on the line being lost. The cursor position does not change (after
moving to y, x, if specified).

insstr([y, x], str, [attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the rightmost characters on the line being lost. The
cursor position does not change (after moving to y, x, if specified).

instr([y, x], [n])
Returns a string of characters, extracted from the window starting at the current cursor position, or at y, x if
specified. Attributes are stripped from the characters. If n is specified, instr() returns return a string at most
n characters long (exclusive of the trailing NUL).

is_linetouched(line)
Returns true if the specified line was modified since the last call to refresh(); otherwise returns false. Raises
a curses.error exception if line is not valid for the given window.

is_wintouched()
Returns true if the specified window was modified since the last call to refresh(); otherwise returns false.

keypad(yes)
If yes is 1, escape sequences generated by some keys (keypad, function keys) will be interpreted by curses. If
yes is 0, escape sequences will be left as is in the input stream.

leaveok(yes)
If yes is 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yes is 0, cursor will always be at “cursor position” after an update.

15.8. curses — Terminal handling for character-cell displays 465

The Python Library Reference, Release 2.6.9

move(new_y, new_x)
Move cursor to (new_y, new_x).

mvderwin(y, x)
Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the screen.

mvwin(new_y, new_x)
Move the window so its upper-left corner is at (new_y, new_x).

nodelay(yes)
If yes is 1, getch() will be non-blocking.

notimeout(yes)
If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

noutrefresh()
Mark for refresh but wait. This function updates the data structure representing the desired state of the window,
but does not force an update of the physical screen. To accomplish that, call doupdate().

overlay(destwin, [sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overlay the window on top of destwin. The windows need not be the same size, only the overlapping region is
copied. This copy is non-destructive, which means that the current background character does not overwrite the
old contents of destwin.

To get fine-grained control over the copied region, the second form of overlay() can be used. sminrow and
smincol are the upper-left coordinates of the source window, and the other variables mark a rectangle in the
destination window.

overwrite(destwin, [sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overwrite the window on top of destwin. The windows need not be the same size, in which case only the
overlapping region is copied. This copy is destructive, which means that the current background character
overwrites the old contents of destwin.

To get fine-grained control over the copied region, the second form of overwrite() can be used. sminrow
and smincol are the upper-left coordinates of the source window, the other variables mark a rectangle in the
destination window.

putwin(file)
Writes all data associated with the window into the provided file object. This information can be later retrieved
using the getwin() function.

redrawln(beg, num)
Indicates that the num screen lines, starting at line beg, are corrupted and should be completely redrawn on the
next refresh() call.

redrawwin()
Touches the entire window, causing it to be completely redrawn on the next refresh() call.

refresh([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created with newpad(). The
additional parameters are needed to indicate what part of the pad and screen are involved. pminrow and pmincol
specify the upper left-hand corner of the rectangle to be displayed in the pad. sminrow, smincol, smaxrow, and
smaxcol specify the edges of the rectangle to be displayed on the screen. The lower right-hand corner of the
rectangle to be displayed in the pad is calculated from the screen coordinates, since the rectangles must be the

466 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

same size. Both rectangles must be entirely contained within their respective structures. Negative values of
pminrow, pmincol, sminrow, or smincol are treated as if they were zero.

scroll([lines=1])
Scroll the screen or scrolling region upward by lines lines.

scrollok(flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling region,
either as a result of a newline action on the bottom line, or typing the last character of the last line. If flag is
false, the cursor is left on the bottom line. If flag is true, the window is scrolled up one line. Note that in order
to get the physical scrolling effect on the terminal, it is also necessary to call idlok().

setscrreg(top, bottom)
Set the scrolling region from line top to line bottom. All scrolling actions will take place in this region.

standend()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

standout()
Turn on attribute A_STANDOUT.

subpad([nlines, ncols], begin_y, begin_x)
Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height is
ncols/nlines.

subwin([nlines, ncols], begin_y, begin_x)
Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height is
ncols/nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the window.

syncdown()
Touches each location in the window that has been touched in any of its ancestor windows. This routine is called
by refresh(), so it should almost never be necessary to call it manually.

syncok(flag)
If called with flag set to true, then syncup() is called automatically whenever there is a change in the window.

syncup()
Touches all locations in ancestors of the window that have been changed in the window.

timeout(delay)
Sets blocking or non-blocking read behavior for the window. If delay is negative, blocking read is used (which
will wait indefinitely for input). If delay is zero, then non-blocking read is used, and -1 will be returned by
getch() if no input is waiting. If delay is positive, then getch() will block for delay milliseconds, and
return -1 if there is still no input at the end of that time.

touchline(start, count, [changed])
Pretend count lines have been changed, starting with line start. If changed is supplied, it specifies whether the
affected lines are marked as having been changed (changed=1) or unchanged (changed=0).

touchwin()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin()
Marks all lines in the window as unchanged since the last call to refresh().

vline([y, x], ch, n)
Display a vertical line starting at (y, x) with length n consisting of the character ch.

15.8. curses — Terminal handling for character-cell displays 467

The Python Library Reference, Release 2.6.9

15.8.3 Constants

The curses module defines the following data members:

ERR
Some curses routines that return an integer, such as getch(), return ERR upon failure.

OK
Some curses routines that return an integer, such as napms(), return OK upon success.

version
A string representing the current version of the module. Also available as __version__.

Several constants are available to specify character cell attributes:

Attribute Meaning
A_ALTCHARSET Alternate character set mode.
A_BLINK Blink mode.
A_BOLD Bold mode.
A_DIM Dim mode.
A_NORMAL Normal attribute.
A_STANDOUT Standout mode.
A_UNDERLINE Underline mode.

Keys are referred to by integer constants with names starting with KEY_. The exact keycaps available are system
dependent.

Key constant Key
KEY_MIN Minimum key value
KEY_BREAK Break key (unreliable)
KEY_DOWN Down-arrow
KEY_UP Up-arrow
KEY_LEFT Left-arrow
KEY_RIGHT Right-arrow
KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACE Backspace (unreliable)
KEY_F0 Function keys. Up to 64 function keys are supported.
KEY_Fn Value of function key n
KEY_DL Delete line
KEY_IL Insert line
KEY_DC Delete character
KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen
KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line
KEY_SF Scroll 1 line forward
KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page
KEY_PPAGE Previous page
KEY_STAB Set tab
KEY_CTAB Clear tab
KEY_CATAB Clear all tabs
KEY_ENTER Enter or send (unreliable)
KEY_SRESET Soft (partial) reset (unreliable)
KEY_RESET Reset or hard reset (unreliable)

Continued on next page

468 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Table 15.1 – continued from previous page
KEY_PRINT Print
KEY_LL Home down or bottom (lower left)
KEY_A1 Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad
KEY_BTAB Back tab
KEY_BEG Beg (beginning)
KEY_CANCEL Cancel
KEY_CLOSE Close
KEY_COMMAND Cmd (command)
KEY_COPY Copy
KEY_CREATE Create
KEY_END End
KEY_EXIT Exit
KEY_FIND Find
KEY_HELP Help
KEY_MARK Mark
KEY_MESSAGE Message
KEY_MOVE Move
KEY_NEXT Next
KEY_OPEN Open
KEY_OPTIONS Options
KEY_PREVIOUS Prev (previous)
KEY_REDO Redo
KEY_REFERENCE Ref (reference)
KEY_REFRESH Refresh
KEY_REPLACE Replace
KEY_RESTART Restart
KEY_RESUME Resume
KEY_SAVE Save
KEY_SBEG Shifted Beg (beginning)
KEY_SCANCEL Shifted Cancel
KEY_SCOMMAND Shifted Command
KEY_SCOPY Shifted Copy
KEY_SCREATE Shifted Create
KEY_SDC Shifted Delete char
KEY_SDL Shifted Delete line
KEY_SELECT Select
KEY_SEND Shifted End
KEY_SEOL Shifted Clear line
KEY_SEXIT Shifted Dxit
KEY_SFIND Shifted Find
KEY_SHELP Shifted Help
KEY_SHOME Shifted Home
KEY_SIC Shifted Input
KEY_SLEFT Shifted Left arrow
KEY_SMESSAGE Shifted Message
KEY_SMOVE Shifted Move
KEY_SNEXT Shifted Next
KEY_SOPTIONS Shifted Options

Continued on next page

15.8. curses — Terminal handling for character-cell displays 469

The Python Library Reference, Release 2.6.9

Table 15.1 – continued from previous page
KEY_SPREVIOUS Shifted Prev
KEY_SPRINT Shifted Print
KEY_SREDO Shifted Redo
KEY_SREPLACE Shifted Replace
KEY_SRIGHT Shifted Right arrow
KEY_SRSUME Shifted Resume
KEY_SSAVE Shifted Save
KEY_SSUSPEND Shifted Suspend
KEY_SUNDO Shifted Undo
KEY_SUSPEND Suspend
KEY_UNDO Undo
KEY_MOUSE Mouse event has occurred
KEY_RESIZE Terminal resize event
KEY_MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function keys
(KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mapped to KEY_UP, KEY_DOWN, KEY_LEFT
and KEY_RIGHT in the obvious way. If your machine has a PC keyboard, it is safe to expect arrow keys and twelve
function keys (older PC keyboards may have only ten function keys); also, the following keypad mappings are stan-
dard:

Keycap Constant
Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page Up KEY_NPAGE
Page Down KEY_PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal, and
will generally be available on software emulations such as X terminals. When there is no graphic available, curses
falls back on a crude printable ASCII approximation.

Note: These are available only after initscr() has been called.

ACS code Meaning
ACS_BBSS alternate name for upper right corner
ACS_BLOCK solid square block
ACS_BOARD board of squares
ACS_BSBS alternate name for horizontal line
ACS_BSSB alternate name for upper left corner
ACS_BSSS alternate name for top tee
ACS_BTEE bottom tee
ACS_BULLET bullet
ACS_CKBOARD checker board (stipple)
ACS_DARROW arrow pointing down
ACS_DEGREE degree symbol
ACS_DIAMOND diamond
ACS_GEQUAL greater-than-or-equal-to
ACS_HLINE horizontal line
ACS_LANTERN lantern symbol
ACS_LARROW left arrow
ACS_LEQUAL less-than-or-equal-to

Continued on next page

470 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Table 15.2 – continued from previous page
ACS_LLCORNER lower left-hand corner
ACS_LRCORNER lower right-hand corner
ACS_LTEE left tee
ACS_NEQUAL not-equal sign
ACS_PI letter pi
ACS_PLMINUS plus-or-minus sign
ACS_PLUS big plus sign
ACS_RARROW right arrow
ACS_RTEE right tee
ACS_S1 scan line 1
ACS_S3 scan line 3
ACS_S7 scan line 7
ACS_S9 scan line 9
ACS_SBBS alternate name for lower right corner
ACS_SBSB alternate name for vertical line
ACS_SBSS alternate name for right tee
ACS_SSBB alternate name for lower left corner
ACS_SSBS alternate name for bottom tee
ACS_SSSB alternate name for left tee
ACS_SSSS alternate name for crossover or big plus
ACS_STERLING pound sterling
ACS_TTEE top tee
ACS_UARROW up arrow
ACS_ULCORNER upper left corner
ACS_URCORNER upper right corner
ACS_VLINE vertical line

The following table lists the predefined colors:

Constant Color
COLOR_BLACK Black
COLOR_BLUE Blue
COLOR_CYAN Cyan (light greenish blue)
COLOR_GREEN Green
COLOR_MAGENTA Magenta (purplish red)
COLOR_RED Red
COLOR_WHITE White
COLOR_YELLOW Yellow

15.9 curses.textpad — Text input widget for curses programs

New in version 1.6. The curses.textpad module provides a Textbox class that handles elementary text editing
in a curses window, supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator,
BBedit 6.x, FrameMaker, and many other programs). The module also provides a rectangle-drawing function useful
for framing text boxes or for other purposes.

The module curses.textpad defines the following function:

rectangle(win, uly, ulx, lry, lrx)
Draw a rectangle. The first argument must be a window object; the remaining arguments are coordinates relative
to that window. The second and third arguments are the y and x coordinates of the upper left hand corner of
the rectangle to be drawn; the fourth and fifth arguments are the y and x coordinates of the lower right hand

15.9. curses.textpad — Text input widget for curses programs 471

The Python Library Reference, Release 2.6.9

corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that make this possible
(including xterm and most other software terminal emulators). Otherwise it will be drawn with ASCII dashes,
vertical bars, and plus signs.

15.9.1 Textbox objects

You can instantiate a Textbox object as follows:

class Textbox(win)
Return a textbox widget object. The win argument should be a curses WindowObject in which the textbox is
to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of the containing
window, with coordinates (0, 0). The instance’s stripspaces flag is initially on.

Textbox objects have the following methods:

edit([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination
keystrokes is entered. If validator is supplied, it must be a function. It will be called for each keystroke
entered with the keystroke as a parameter; command dispatch is done on the result. This method returns the
window contents as a string; whether blanks in the window are included is affected by the stripspaces
member.

do_command(ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action
Control-A Go to left edge of window.
Control-B Cursor left, wrapping to previous line if appropriate.
Control-D Delete character under cursor.
Control-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F Cursor right, wrapping to next line when appropriate.
Control-G Terminate, returning the window contents.
Control-H Delete character backward.
Control-J Terminate if the window is 1 line, otherwise insert newline.
Control-K If line is blank, delete it, otherwise clear to end of line.
Control-L Refresh screen.
Control-N Cursor down; move down one line.
Control-O Insert a blank line at cursor location.
Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

Constant Keystroke
KEY_LEFT Control-B
KEY_RIGHT Control-F
KEY_UP Control-P
KEY_DOWN Control-N
KEY_BACKSPACE Control-h

All other keystrokes are treated as a command to insert the given character and move right (with line
wrapping).

gather()
This method returns the window contents as a string; whether blanks in the window are included is affected
by the stripspaces member.

472 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to
the end of that line instead, and trailing blanks are stripped when the window contents are gathered.

15.10 curses.wrapper — Terminal handler for curses programs

New in version 1.6. This module supplies one function, wrapper(), which runs another function which should be
the rest of your curses-using application. If the application raises an exception, wrapper() will restore the terminal
to a sane state before re-raising the exception and generating a traceback.

wrapper(func, ...)
Wrapper function that initializes curses and calls another function, func, restoring normal keyboard/screen be-
havior on error. The callable object func is then passed the main window ‘stdscr’ as its first argument, followed
by any other arguments passed to wrapper().

Before calling the hook function, wrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores cooked
mode, turns on echo, and disables the terminal keypad.

15.11 curses.ascii — Utilities for ASCII characters

New in version 1.6. The curses.ascii module supplies name constants for ASCII characters and functions to test
membership in various ASCII character classes. The constants supplied are names for control characters as follows:

Name Meaning
NUL
SOH Start of heading, console interrupt
STX Start of text
ETX End of text
EOT End of transmission
ENQ Enquiry, goes with ACK flow control
ACK Acknowledgement
BEL Bell
BS Backspace
TAB Tab
HT Alias for TAB: “Horizontal tab”
LF Line feed
NL Alias for LF: “New line”
VT Vertical tab
FF Form feed
CR Carriage return
SO Shift-out, begin alternate character set
SI Shift-in, resume default character set
DLE Data-link escape
DC1 XON, for flow control
DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control
DC4 Device control 4
NAK Negative acknowledgement
SYN Synchronous idle

Continued on next page

15.10. curses.wrapper — Terminal handler for curses programs 473

The Python Library Reference, Release 2.6.9

Table 15.3 – continued from previous page
ETB End transmission block
CAN Cancel
EM End of medium
SUB Substitute
ESC Escape
FS File separator
GS Group separator
RS Record separator, block-mode terminator
US Unit separator
SP Space
DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from teleprinter
conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

isalnum(c)
Checks for an ASCII alphanumeric character; it is equivalent to isalpha(c) or isdigit(c).

isalpha(c)
Checks for an ASCII alphabetic character; it is equivalent to isupper(c) or islower(c).

isascii(c)
Checks for a character value that fits in the 7-bit ASCII set.

isblank(c)
Checks for an ASCII whitespace character.

iscntrl(c)
Checks for an ASCII control character (in the range 0x00 to 0x1f).

isdigit(c)
Checks for an ASCII decimal digit, ’0’ through ’9’. This is equivalent to c in string.digits.

isgraph(c)
Checks for ASCII any printable character except space.

islower(c)
Checks for an ASCII lower-case character.

isprint(c)
Checks for any ASCII printable character including space.

ispunct(c)
Checks for any printable ASCII character which is not a space or an alphanumeric character.

isspace(c)
Checks for ASCII white-space characters; space, line feed, carriage return, form feed, horizontal tab, vertical
tab.

isupper(c)
Checks for an ASCII uppercase letter.

isxdigit(c)
Checks for an ASCII hexadecimal digit. This is equivalent to c in string.hexdigits.

isctrl(c)
Checks for an ASCII control character (ordinal values 0 to 31).

474 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

ismeta(c)
Checks for a non-ASCII character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the built-in
function ord().

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they do
not actually know anything about the host machine’s character encoding. For functions that know about the character
encoding (and handle internationalization properly) see the string module.

The following two functions take either a single-character string or integer byte value; they return a value of the same
type.

ascii(c)
Return the ASCII value corresponding to the low 7 bits of c.

ctrl(c)
Return the control character corresponding to the given character (the character bit value is bitwise-anded with
0x1f).

alt(c)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

unctrl(c)
Return a string representation of the ASCII character c. If c is printable, this string is the character itself. If the
character is a control character (0x00-0x1f) the string consists of a caret (’^’) followed by the corresponding
uppercase letter. If the character is an ASCII delete (0x7f) the string is ’^?’. If the character has its meta bit
(0x80) set, the meta bit is stripped, the preceding rules applied, and ’!’ prepended to the result.

controlnames
A 33-element string array that contains the ASCII mnemonics for the thirty-two ASCII control characters from
0 (NUL) to 0x1f (US), in order, plus the mnemonic SP for the space character.

15.12 curses.panel — A panel stack extension for curses

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only the visible
portions of each window will be displayed. Panels can be added, moved up or down in the stack, and removed.

15.12.1 Functions

The module curses.panel defines the following functions:

bottom_panel()
Returns the bottom panel in the panel stack.

new_panel(win)
Returns a panel object, associating it with the given window win. Be aware that you need to keep the returned
panel object referenced explicitly. If you don’t, the panel object is garbage collected and removed from the
panel stack.

top_panel()
Returns the top panel in the panel stack.

15.12. curses.panel — A panel stack extension for curses 475

The Python Library Reference, Release 2.6.9

update_panels()
Updates the virtual screen after changes in the panel stack. This does not call curses.doupdate(), so
you’ll have to do this yourself.

15.12.2 Panel Objects

Panel objects, as returned by new_panel() above, are windows with a stacking order. There’s always a window
associated with a panel which determines the content, while the panel methods are responsible for the window’s depth
in the panel stack.

Panel objects have the following methods:

above()
Returns the panel above the current panel.

below()
Returns the panel below the current panel.

bottom()
Push the panel to the bottom of the stack.

hidden()
Returns true if the panel is hidden (not visible), false otherwise.

hide()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

move(y, x)
Move the panel to the screen coordinates (y, x).

replace(win)
Change the window associated with the panel to the window win.

set_userptr(obj)
Set the panel’s user pointer to obj. This is used to associate an arbitrary piece of data with the panel, and can be
any Python object.

show()
Display the panel (which might have been hidden).

top()
Push panel to the top of the stack.

userptr()
Returns the user pointer for the panel. This might be any Python object.

window()
Returns the window object associated with the panel.

15.13 platform — Access to underlying platform’s identifying data

New in version 2.3.

Note: Specific platforms listed alphabetically, with Linux included in the Unix section.

476 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

15.13.1 Cross Platform

architecture(executable=sys.executable, bits=”, linkage=”)
Queries the given executable (defaults to the Python interpreter binary) for various architecture information.

Returns a tuple (bits, linkage) which contain information about the bit architecture and the linkage
format used for the executable. Both values are returned as strings.

Values that cannot be determined are returned as given by the parameter presets. If bits is given as ”, the
sizeof(pointer)() (or sizeof(long)() on Python version < 1.5.2) is used as indicator for the sup-
ported pointer size.

The function relies on the system’s file command to do the actual work. This is available on most if not all
Unix platforms and some non-Unix platforms and then only if the executable points to the Python interpreter.
Reasonable defaults are used when the above needs are not met.

machine()
Returns the machine type, e.g. ’i386’. An empty string is returned if the value cannot be determined.

node()
Returns the computer’s network name (may not be fully qualified!). An empty string is returned if the value
cannot be determined.

platform(aliased=0, terse=0)
Returns a single string identifying the underlying platform with as much useful information as possible.

The output is intended to be human readable rather than machine parseable. It may look different on different
platforms and this is intended.

If aliased is true, the function will use aliases for various platforms that report system names which differ from
their common names, for example SunOS will be reported as Solaris. The system_alias() function is used
to implement this.

Setting terse to true causes the function to return only the absolute minimum information needed to identify the
platform.

processor()
Returns the (real) processor name, e.g. ’amdk6’.

An empty string is returned if the value cannot be determined. Note that many platforms do not provide this
information or simply return the same value as for machine(). NetBSD does this.

python_build()
Returns a tuple (buildno, builddate) stating the Python build number and date as strings.

python_compiler()
Returns a string identifying the compiler used for compiling Python.

python_branch()
Returns a string identifying the Python implementation SCM branch. New in version 2.6.

python_implementation()
Returns a string identifying the Python implementation. Possible return values are: ‘CPython’, ‘IronPython’,
‘Jython’. New in version 2.6.

python_revision()
Returns a string identifying the Python implementation SCM revision. New in version 2.6.

python_version()
Returns the Python version as string ’major.minor.patchlevel’

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it defaults
to 0).

15.13. platform — Access to underlying platform’s identifying data 477

The Python Library Reference, Release 2.6.9

python_version_tuple()
Returns the Python version as tuple (major, minor, patchlevel) of strings.

Note that unlike the Python sys.version, the returned value will always include the patchlevel (it defaults
to ’0’).

release()
Returns the system’s release, e.g. ’2.2.0’ or ’NT’ An empty string is returned if the value cannot be deter-
mined.

system()
Returns the system/OS name, e.g. ’Linux’, ’Windows’, or ’Java’. An empty string is returned if the
value cannot be determined.

system_alias(system, release, version)
Returns (system, release, version) aliased to common marketing names used for some systems. It
also does some reordering of the information in some cases where it would otherwise cause confusion.

version()
Returns the system’s release version, e.g. ’#3 on degas’. An empty string is returned if the value cannot
be determined.

uname()
Fairly portable uname interface. Returns a tuple of strings (system, node, release, version,
machine, processor) identifying the underlying platform.

Note that unlike the os.uname() function this also returns possible processor information as additional tuple
entry.

Entries which cannot be determined are set to ”.

15.13.2 Java Platform

java_ver(release=”, vendor=”, vminfo=(”, ”, ”), osinfo=(”, ”, ”))
Version interface for Jython.

Returns a tuple (release, vendor, vminfo, osinfo) with vminfo being a tuple (vm_name,
vm_release, vm_vendor) and osinfo being a tuple (os_name, os_version, os_arch). Val-
ues which cannot be determined are set to the defaults given as parameters (which all default to ”).

15.13.3 Windows Platform

win32_ver(release=”, version=”, csd=”, ptype=”)
Get additional version information from the Windows Registry and return a tuple (version, csd,
ptype) referring to version number, CSD level and OS type (multi/single processor).

As a hint: ptype is ’Uniprocessor Free’ on single processor NT machines and ’Multiprocessor
Free’ on multi processor machines. The ‘Free’ refers to the OS version being free of debugging code. It could
also state ‘Checked’ which means the OS version uses debugging code, i.e. code that checks arguments, ranges,
etc.

Note: Note: this function works best with Mark Hammond’s win32all package installed, but also on Python
2.3 and later (support for this was added in Python 2.6). It obviously only runs on Win32 compatible platforms.

478 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Win95/98 specific

popen(cmd, mode=’r’, bufsize=None)
Portable popen() interface. Find a working popen implementation preferring win32pipe.popen(). On
Windows NT, win32pipe.popen() should work; on Windows 9x it hangs due to bugs in the MS C library.

15.13.4 Mac OS Platform

mac_ver(release=”, versioninfo=(”, ”, ”), machine=”)
Get Mac OS version information and return it as tuple (release, versioninfo, machine) with ver-
sioninfo being a tuple (version, dev_stage, non_release_version).

Entries which cannot be determined are set to ”. All tuple entries are strings.

Documentation for the underlying gestalt() API is available online at http://www.rgaros.nl/gestalt/.

15.13.5 Unix Platforms

dist(distname=”, version=”, id=”, supported_dists=(’SuSE’, ’debian’, ’redhat’, ’mandrake’, ...))
This is an old version of the functionality now provided by linux_distribution(). For new code, please
use the linux_distribution().

The only difference between the two is that dist() always returns the short name of the distribution taken
from the supported_dists parameter. Deprecated since version 2.6.

linux_distribution(distname=”, version=”, id=”, supported_dists=(’SuSE’, ’debian’, ’redhat’, ’mandrake’,
...), full_distribution_name=1)

Tries to determine the name of the Linux OS distribution name.

supported_dists may be given to define the set of Linux distributions to look for. It defaults to a list of
currently supported Linux distributions identified by their release file name.

If full_distribution_name is true (default), the full distribution read from the OS is returned. Otherwise
the short name taken from supported_dists is used.

Returns a tuple (distname,version,id) which defaults to the args given as parameters. id is the item
in parentheses after the version number. It is usually the version codename. New in version 2.6.

libc_ver(executable=sys.executable, lib=”, version=”, chunksize=2048)
Tries to determine the libc version against which the file executable (defaults to the Python interpreter) is linked.
Returns a tuple of strings (lib, version) which default to the given parameters in case the lookup fails.

Note that this function has intimate knowledge of how different libc versions add symbols to the executable is
probably only usable for executables compiled using gcc.

The file is read and scanned in chunks of chunksize bytes.

15.14 errno — Standard errno system symbols

This module makes available standard errno system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed from linux/include/errno.h, which should be pretty all-
inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcode[errno.EPERM] maps to ’EPERM’.

15.14. errno — Standard errno system symbols 479

http://www.rgaros.nl/gestalt/

The Python Library Reference, Release 2.6.9

To translate a numeric error code to an error message, use os.strerror().

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific list
of defined symbols is available as errno.errorcode.keys(). Symbols available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

480 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

15.14. errno — Standard errno system symbols 481

The Python Library Reference, Release 2.6.9

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

482 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
.lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

15.14. errno — Standard errno system symbols 483

The Python Library Reference, Release 2.6.9

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

484 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

15.15 ctypes — A foreign function library for Python

New in version 2.5. ctypes is a foreign function library for Python. It provides C compatible data types, and allows
calling functions in DLLs or shared libraries. It can be used to wrap these libraries in pure Python.

15.15. ctypes — A foreign function library for Python 485

The Python Library Reference, Release 2.6.9

15.15.1 ctypes tutorial

Note: The code samples in this tutorial use doctest to make sure that they actually work. Since some code samples
behave differently under Linux, Windows, or Mac OS X, they contain doctest directives in comments.

Note: Some code samples reference the ctypes c_int type. This type is an alias for the c_long type on 32-bit
systems. So, you should not be confused if c_long is printed if you would expect c_int — they are actually the
same type.

Loading dynamic link libraries

ctypes exports the cdll, and on Windows windll and oledll objects, for loading dynamic link libraries.

You load libraries by accessing them as attributes of these objects. cdll loads libraries which export functions using
the standard cdecl calling convention, while windll libraries call functions using the stdcall calling convention.
oledll also uses the stdcall calling convention, and assumes the functions return a Windows HRESULT error code.
The error code is used to automatically raise a WindowsError exception when the function call fails.

Here are some examples for Windows. Note that msvcrt is the MS standard C library containing most standard C
functions, and uses the cdecl calling convention:

>>> from ctypes import *
>>> print windll.kernel32 # doctest: +WINDOWS
<WinDLL ’kernel32’, handle ... at ...>
>>> print cdll.msvcrt # doctest: +WINDOWS
<CDLL ’msvcrt’, handle ... at ...>
>>> libc = cdll.msvcrt # doctest: +WINDOWS
>>>

Windows appends the usual .dll file suffix automatically.

On Linux, it is required to specify the filename including the extension to load a library, so attribute access can not be
used to load libraries. Either the LoadLibrary() method of the dll loaders should be used, or you should load the
library by creating an instance of CDLL by calling the constructor:

>>> cdll.LoadLibrary("libc.so.6") # doctest: +LINUX
<CDLL ’libc.so.6’, handle ... at ...>
>>> libc = CDLL("libc.so.6") # doctest: +LINUX
>>> libc # doctest: +LINUX
<CDLL ’libc.so.6’, handle ... at ...>
>>>

Accessing functions from loaded dlls

Functions are accessed as attributes of dll objects:

>>> from ctypes import *
>>> libc.printf
<_FuncPtr object at 0x...>
>>> print windll.kernel32.GetModuleHandleA # doctest: +WINDOWS
<_FuncPtr object at 0x...>
>>> print windll.kernel32.MyOwnFunction # doctest: +WINDOWS
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "ctypes.py", line 239, in __getattr__

func = _StdcallFuncPtr(name, self)

486 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

AttributeError: function ’MyOwnFunction’ not found
>>>

Note that win32 system dlls like kernel32 and user32 often export ANSI as well as UNICODE versions of a
function. The UNICODE version is exported with an W appended to the name, while the ANSI version is exported
with an A appended to the name. The win32 GetModuleHandle function, which returns a module handle for a given
module name, has the following C prototype, and a macro is used to expose one of them as GetModuleHandle
depending on whether UNICODE is defined or not:

/* ANSI version */
HMODULE GetModuleHandleA(LPCSTR lpModuleName);
/* UNICODE version */
HMODULE GetModuleHandleW(LPCWSTR lpModuleName);

windll does not try to select one of them by magic, you must access the version you need by specifying
GetModuleHandleA or GetModuleHandleW explicitly, and then call it with strings or unicode strings respec-
tively.

Sometimes, dlls export functions with names which aren’t valid Python identifiers, like "??2@YAPAXI@Z". In this
case you have to use getattr() to retrieve the function:

>>> getattr(cdll.msvcrt, "??2@YAPAXI@Z") # doctest: +WINDOWS
<_FuncPtr object at 0x...>
>>>

On Windows, some dlls export functions not by name but by ordinal. These functions can be accessed by indexing the
dll object with the ordinal number:

>>> cdll.kernel32[1] # doctest: +WINDOWS
<_FuncPtr object at 0x...>
>>> cdll.kernel32[0] # doctest: +WINDOWS
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "ctypes.py", line 310, in __getitem__

func = _StdcallFuncPtr(name, self)
AttributeError: function ordinal 0 not found
>>>

Calling functions

You can call these functions like any other Python callable. This example uses the time() function, which returns
system time in seconds since the Unix epoch, and the GetModuleHandleA() function, which returns a win32
module handle.

This example calls both functions with a NULL pointer (None should be used as the NULL pointer):

>>> print libc.time(None) # doctest: +SKIP
1150640792
>>> print hex(windll.kernel32.GetModuleHandleA(None)) # doctest: +WINDOWS
0x1d000000
>>>

ctypes tries to protect you from calling functions with the wrong number of arguments or the wrong calling con-
vention. Unfortunately this only works on Windows. It does this by examining the stack after the function returns, so
although an error is raised the function has been called:

>>> windll.kernel32.GetModuleHandleA() # doctest: +WINDOWS
Traceback (most recent call last):

File "<stdin>", line 1, in ?

15.15. ctypes — A foreign function library for Python 487

The Python Library Reference, Release 2.6.9

ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>> windll.kernel32.GetModuleHandleA(0, 0) # doctest: +WINDOWS
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>

The same exception is raised when you call an stdcall function with the cdecl calling convention, or vice versa:

>>> cdll.kernel32.GetModuleHandleA(None) # doctest: +WINDOWS
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: Procedure probably called with not enough arguments (4 bytes missing)
>>>

>>> windll.msvcrt.printf("spam") # doctest: +WINDOWS
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: Procedure probably called with too many arguments (4 bytes in excess)
>>>

To find out the correct calling convention you have to look into the C header file or the documentation for the function
you want to call.

On Windows, ctypes uses win32 structured exception handling to prevent crashes from general protection faults
when functions are called with invalid argument values:

>>> windll.kernel32.GetModuleHandleA(32) # doctest: +WINDOWS
Traceback (most recent call last):

File "<stdin>", line 1, in ?
WindowsError: exception: access violation reading 0x00000020
>>>

There are, however, enough ways to crash Python with ctypes, so you should be careful anyway.

None, integers, longs, byte strings and unicode strings are the only native Python objects that can directly be used as
parameters in these function calls. None is passed as a C NULL pointer, byte strings and unicode strings are passed
as pointer to the memory block that contains their data (char * or wchar_t *). Python integers and Python longs
are passed as the platforms default C int type, their value is masked to fit into the C type.

Before we move on calling functions with other parameter types, we have to learn more about ctypes data types.

Fundamental data types

ctypes defines a number of primitive C compatible data types :

488 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

ctypes type C type Python type
c_char char 1-character string
c_wchar wchar_t 1-character unicode string
c_byte char int/long
c_ubyte unsigned char int/long
c_short short int/long
c_ushort unsigned short int/long
c_int int int/long
c_uint unsigned int int/long
c_long long int/long
c_ulong unsigned long int/long
c_longlong __int64 or long long int/long
c_ulonglong unsigned __int64 or unsigned long long int/long
c_float float float
c_double double float
c_longdouble long double float
c_char_p char * (NUL terminated) string or None
c_wchar_p wchar_t * (NUL terminated) unicode or None
c_void_p void * int/long or None

All these types can be created by calling them with an optional initializer of the correct type and value:

>>> c_int()
c_long(0)
>>> c_char_p("Hello, World")
c_char_p(’Hello, World’)
>>> c_ushort(-3)
c_ushort(65533)
>>>

Since these types are mutable, their value can also be changed afterwards:

>>> i = c_int(42)
>>> print i
c_long(42)
>>> print i.value
42
>>> i.value = -99
>>> print i.value
-99
>>>

Assigning a new value to instances of the pointer types c_char_p, c_wchar_p, and c_void_p changes the
memory location they point to, not the contents of the memory block (of course not, because Python strings are
immutable):

>>> s = "Hello, World"
>>> c_s = c_char_p(s)
>>> print c_s
c_char_p(’Hello, World’)
>>> c_s.value = "Hi, there"
>>> print c_s
c_char_p(’Hi, there’)
>>> print s # first string is unchanged
Hello, World
>>>

15.15. ctypes — A foreign function library for Python 489

The Python Library Reference, Release 2.6.9

You should be careful, however, not to pass them to functions expecting pointers to mutable memory. If you need
mutable memory blocks, ctypes has a create_string_buffer() function which creates these in various ways.
The current memory block contents can be accessed (or changed) with the raw property; if you want to access it as
NUL terminated string, use the value property:

>>> from ctypes import *
>>> p = create_string_buffer(3) # create a 3 byte buffer, initialized to NUL bytes
>>> print sizeof(p), repr(p.raw)
3 ’\x00\x00\x00’
>>> p = create_string_buffer("Hello") # create a buffer containing a NUL terminated string
>>> print sizeof(p), repr(p.raw)
6 ’Hello\x00’
>>> print repr(p.value)
’Hello’
>>> p = create_string_buffer("Hello", 10) # create a 10 byte buffer
>>> print sizeof(p), repr(p.raw)
10 ’Hello\x00\x00\x00\x00\x00’
>>> p.value = "Hi"
>>> print sizeof(p), repr(p.raw)
10 ’Hi\x00lo\x00\x00\x00\x00\x00’
>>>

The create_string_buffer() function replaces the c_buffer() function (which is still available as an
alias), as well as the c_string() function from earlier ctypes releases. To create a mutable memory block contain-
ing unicode characters of the C type wchar_t use the create_unicode_buffer() function.

Calling functions, continued

Note that printf prints to the real standard output channel, not to sys.stdout, so these examples will only work at
the console prompt, not from within IDLE or PythonWin:

>>> printf = libc.printf
>>> printf("Hello, %s\n", "World!")
Hello, World!
14
>>> printf("Hello, %S\n", u"World!")
Hello, World!
14
>>> printf("%d bottles of beer\n", 42)
42 bottles of beer
19
>>> printf("%f bottles of beer\n", 42.5)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: Don’t know how to convert parameter 2
>>>

As has been mentioned before, all Python types except integers, strings, and unicode strings have to be wrapped in
their corresponding ctypes type, so that they can be converted to the required C data type:

>>> printf("An int %d, a double %f\n", 1234, c_double(3.14))
An int 1234, a double 3.140000
31
>>>

490 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Calling functions with your own custom data types

You can also customize ctypes argument conversion to allow instances of your own classes be used as function
arguments. ctypes looks for an _as_parameter_ attribute and uses this as the function argument. Of course, it
must be one of integer, string, or unicode:

>>> class Bottles(object):
... def __init__(self, number):
... self._as_parameter_ = number
...
>>> bottles = Bottles(42)
>>> printf("%d bottles of beer\n", bottles)
42 bottles of beer
19
>>>

If you don’t want to store the instance’s data in the _as_parameter_ instance variable, you could define a
property() which makes the data available.

Specifying the required argument types (function prototypes)

It is possible to specify the required argument types of functions exported from DLLs by setting the argtypes
attribute.

argtypes must be a sequence of C data types (the printf function is probably not a good example here, because
it takes a variable number and different types of parameters depending on the format string, on the other hand this is
quite handy to experiment with this feature):

>>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
>>> printf("String ’%s’, Int %d, Double %f\n", "Hi", 10, 2.2)
String ’Hi’, Int 10, Double 2.200000
37
>>>

Specifying a format protects against incompatible argument types (just as a prototype for a C function), and tries to
convert the arguments to valid types:

>>> printf("%d %d %d", 1, 2, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: wrong type
>>> printf("%s %d %f\n", "X", 2, 3)
X 2 3.000000
13
>>>

If you have defined your own classes which you pass to function calls, you have to implement a from_param() class
method for them to be able to use them in the argtypes sequence. The from_param() class method receives
the Python object passed to the function call, it should do a typecheck or whatever is needed to make sure this object
is acceptable, and then return the object itself, its _as_parameter_ attribute, or whatever you want to pass as the
C function argument in this case. Again, the result should be an integer, string, unicode, a ctypes instance, or an
object with an _as_parameter_ attribute.

15.15. ctypes — A foreign function library for Python 491

The Python Library Reference, Release 2.6.9

Return types

By default functions are assumed to return the C int type. Other return types can be specified by setting the restype
attribute of the function object.

Here is a more advanced example, it uses the strchr function, which expects a string pointer and a char, and returns
a pointer to a string:

>>> strchr = libc.strchr
>>> strchr("abcdef", ord("d")) # doctest: +SKIP
8059983
>>> strchr.restype = c_char_p # c_char_p is a pointer to a string
>>> strchr("abcdef", ord("d"))
’def’
>>> print strchr("abcdef", ord("x"))
None
>>>

If you want to avoid the ord("x") calls above, you can set the argtypes attribute, and the second argument will
be converted from a single character Python string into a C char:

>>> strchr.restype = c_char_p
>>> strchr.argtypes = [c_char_p, c_char]
>>> strchr("abcdef", "d")
’def’
>>> strchr("abcdef", "def")
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ArgumentError: argument 2: exceptions.TypeError: one character string expected
>>> print strchr("abcdef", "x")
None
>>> strchr("abcdef", "d")
’def’
>>>

You can also use a callable Python object (a function or a class for example) as the restype attribute, if the foreign
function returns an integer. The callable will be called with the integer the C function returns, and the result of this
call will be used as the result of your function call. This is useful to check for error return values and automatically
raise an exception:

>>> GetModuleHandle = windll.kernel32.GetModuleHandleA # doctest: +WINDOWS
>>> def ValidHandle(value):
... if value == 0:
... raise WinError()
... return value
...
>>>
>>> GetModuleHandle.restype = ValidHandle # doctest: +WINDOWS
>>> GetModuleHandle(None) # doctest: +WINDOWS
486539264
>>> GetModuleHandle("something silly") # doctest: +WINDOWS
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 3, in ValidHandle

WindowsError: [Errno 126] The specified module could not be found.
>>>

492 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

WinError is a function which will call Windows FormatMessage() api to get the string representation of an
error code, and returns an exception. WinError takes an optional error code parameter, if no one is used, it calls
GetLastError() to retrieve it.

Please note that a much more powerful error checking mechanism is available through the errcheck attribute; see
the reference manual for details.

Passing pointers (or: passing parameters by reference)

Sometimes a C api function expects a pointer to a data type as parameter, probably to write into the corresponding
location, or if the data is too large to be passed by value. This is also known as passing parameters by reference.

ctypes exports the byref() function which is used to pass parameters by reference. The same effect can be
achieved with the pointer() function, although pointer() does a lot more work since it constructs a real pointer
object, so it is faster to use byref() if you don’t need the pointer object in Python itself:

>>> i = c_int()
>>> f = c_float()
>>> s = create_string_buffer(’\000’ * 32)
>>> print i.value, f.value, repr(s.value)
0 0.0 ’’
>>> libc.sscanf("1 3.14 Hello", "%d %f %s",
... byref(i), byref(f), s)
3
>>> print i.value, f.value, repr(s.value)
1 3.1400001049 ’Hello’
>>>

Structures and unions

Structures and unions must derive from the Structure and Union base classes which are defined in the ctypes
module. Each subclass must define a _fields_ attribute. _fields_ must be a list of 2-tuples, containing a field
name and a field type.

The field type must be a ctypes type like c_int, or any other derived ctypes type: structure, union, array, pointer.

Here is a simple example of a POINT structure, which contains two integers named x and y, and also shows how to
initialize a structure in the constructor:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = [("x", c_int),
... ("y", c_int)]
...
>>> point = POINT(10, 20)
>>> print point.x, point.y
10 20
>>> point = POINT(y=5)
>>> print point.x, point.y
0 5
>>> POINT(1, 2, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: too many initializers
>>>

15.15. ctypes — A foreign function library for Python 493

The Python Library Reference, Release 2.6.9

You can, however, build much more complicated structures. Structures can itself contain other structures by using a
structure as a field type.

Here is a RECT structure which contains two POINTs named upperleft and lowerright:

>>> class RECT(Structure):
... _fields_ = [("upperleft", POINT),
... ("lowerright", POINT)]
...
>>> rc = RECT(point)
>>> print rc.upperleft.x, rc.upperleft.y
0 5
>>> print rc.lowerright.x, rc.lowerright.y
0 0
>>>

Nested structures can also be initialized in the constructor in several ways:

>>> r = RECT(POINT(1, 2), POINT(3, 4))
>>> r = RECT((1, 2), (3, 4))

Field descriptors can be retrieved from the class, they are useful for debugging because they can provide useful
information:

>>> print POINT.x
<Field type=c_long, ofs=0, size=4>
>>> print POINT.y
<Field type=c_long, ofs=4, size=4>
>>>

Structure/union alignment and byte order

By default, Structure and Union fields are aligned in the same way the C compiler does it. It is possible to override
this behavior be specifying a _pack_ class attribute in the subclass definition. This must be set to a positive integer
and specifies the maximum alignment for the fields. This is what #pragma pack(n) also does in MSVC.

ctypes uses the native byte order for Structures and Unions. To build structures with non-native byte or-
der, you can use one of the BigEndianStructure, LittleEndianStructure, BigEndianUnion, and
LittleEndianUnion base classes. These classes cannot contain pointer fields.

Bit fields in structures and unions

It is possible to create structures and unions containing bit fields. Bit fields are only possible for integer fields, the bit
width is specified as the third item in the _fields_ tuples:

>>> class Int(Structure):
... _fields_ = [("first_16", c_int, 16),
... ("second_16", c_int, 16)]
...
>>> print Int.first_16
<Field type=c_long, ofs=0:0, bits=16>
>>> print Int.second_16
<Field type=c_long, ofs=0:16, bits=16>
>>>

494 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Arrays

Arrays are sequences, containing a fixed number of instances of the same type.

The recommended way to create array types is by multiplying a data type with a positive integer:

TenPointsArrayType = POINT * 10

Here is an example of an somewhat artificial data type, a structure containing 4 POINTs among other stuff:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class MyStruct(Structure):
... _fields_ = [("a", c_int),
... ("b", c_float),
... ("point_array", POINT * 4)]
>>>
>>> print len(MyStruct().point_array)
4
>>>

Instances are created in the usual way, by calling the class:

arr = TenPointsArrayType()
for pt in arr:

print pt.x, pt.y

The above code print a series of 0 0 lines, because the array contents is initialized to zeros.

Initializers of the correct type can also be specified:

>>> from ctypes import *
>>> TenIntegers = c_int * 10
>>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
>>> print ii
<c_long_Array_10 object at 0x...>
>>> for i in ii: print i,
...
1 2 3 4 5 6 7 8 9 10
>>>

Pointers

Pointer instances are created by calling the pointer() function on a ctypes type:

>>> from ctypes import *
>>> i = c_int(42)
>>> pi = pointer(i)
>>>

Pointer instances have a contents attribute which returns the object to which the pointer points, the i object above:

>>> pi.contents
c_long(42)
>>>

Note that ctypes does not have OOR (original object return), it constructs a new, equivalent object each time you
retrieve an attribute:

15.15. ctypes — A foreign function library for Python 495

The Python Library Reference, Release 2.6.9

>>> pi.contents is i
False
>>> pi.contents is pi.contents
False
>>>

Assigning another c_int instance to the pointer’s contents attribute would cause the pointer to point to the memory
location where this is stored:

>>> i = c_int(99)
>>> pi.contents = i
>>> pi.contents
c_long(99)
>>>

Pointer instances can also be indexed with integers:

>>> pi[0]
99
>>>

Assigning to an integer index changes the pointed to value:

>>> print i
c_long(99)
>>> pi[0] = 22
>>> print i
c_long(22)
>>>

It is also possible to use indexes different from 0, but you must know what you’re doing, just as in C: You can access
or change arbitrary memory locations. Generally you only use this feature if you receive a pointer from a C function,
and you know that the pointer actually points to an array instead of a single item.

Behind the scenes, the pointer() function does more than simply create pointer instances, it has to create pointer
types first. This is done with the POINTER() function, which accepts any ctypes type, and returns a new type:

>>> PI = POINTER(c_int)
>>> PI
<class ’ctypes.LP_c_long’>
>>> PI(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: expected c_long instead of int
>>> PI(c_int(42))
<ctypes.LP_c_long object at 0x...>
>>>

Calling the pointer type without an argument creates a NULL pointer. NULL pointers have a False boolean value:

>>> null_ptr = POINTER(c_int)()
>>> print bool(null_ptr)
False
>>>

ctypes checks for NULL when dereferencing pointers (but dereferencing invalid non-NULL pointers would crash
Python):

>>> null_ptr[0]
Traceback (most recent call last):

496 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

....
ValueError: NULL pointer access
>>>

>>> null_ptr[0] = 1234
Traceback (most recent call last):

....
ValueError: NULL pointer access
>>>

Type conversions

Usually, ctypes does strict type checking. This means, if you have POINTER(c_int) in the argtypes list of a
function or as the type of a member field in a structure definition, only instances of exactly the same type are accepted.
There are some exceptions to this rule, where ctypes accepts other objects. For example, you can pass compatible
array instances instead of pointer types. So, for POINTER(c_int), ctypes accepts an array of c_int:

>>> class Bar(Structure):
... _fields_ = [("count", c_int), ("values", POINTER(c_int))]
...
>>> bar = Bar()
>>> bar.values = (c_int * 3)(1, 2, 3)
>>> bar.count = 3
>>> for i in range(bar.count):
... print bar.values[i]
...
1
2
3
>>>

To set a POINTER type field to NULL, you can assign None:

>>> bar.values = None
>>>

Sometimes you have instances of incompatible types. In C, you can cast one type into another type. ctypes provides
a cast() function which can be used in the same way. The Bar structure defined above accepts POINTER(c_int)
pointers or c_int arrays for its values field, but not instances of other types:

>>> bar.values = (c_byte * 4)()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
>>>

For these cases, the cast() function is handy.

The cast() function can be used to cast a ctypes instance into a pointer to a different ctypes data type. cast()
takes two parameters, a ctypes object that is or can be converted to a pointer of some kind, and a ctypes pointer type.
It returns an instance of the second argument, which references the same memory block as the first argument:

>>> a = (c_byte * 4)()
>>> cast(a, POINTER(c_int))
<ctypes.LP_c_long object at ...>
>>>

So, cast() can be used to assign to the values field of Bar the structure:

15.15. ctypes — A foreign function library for Python 497

The Python Library Reference, Release 2.6.9

>>> bar = Bar()
>>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
>>> print bar.values[0]
0
>>>

Incomplete Types

Incomplete Types are structures, unions or arrays whose members are not yet specified. In C, they are specified by
forward declarations, which are defined later:

struct cell; /* forward declaration */

struct {
char *name;
struct cell *next;

} cell;

The straightforward translation into ctypes code would be this, but it does not work:

>>> class cell(Structure):
... _fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
...
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 2, in cell

NameError: name ’cell’ is not defined
>>>

because the new class cell is not available in the class statement itself. In ctypes, we can define the cell
class and set the _fields_ attribute later, after the class statement:

>>> from ctypes import *
>>> class cell(Structure):
... pass
...
>>> cell._fields_ = [("name", c_char_p),
... ("next", POINTER(cell))]
>>>

Lets try it. We create two instances of cell, and let them point to each other, and finally follow the pointer chain a
few times:

>>> c1 = cell()
>>> c1.name = "foo"
>>> c2 = cell()
>>> c2.name = "bar"
>>> c1.next = pointer(c2)
>>> c2.next = pointer(c1)
>>> p = c1
>>> for i in range(8):
... print p.name,
... p = p.next[0]
...
foo bar foo bar foo bar foo bar
>>>

498 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Callback functions

ctypes allows to create C callable function pointers from Python callables. These are sometimes called callback
functions.

First, you must create a class for the callback function, the class knows the calling convention, the return type, and the
number and types of arguments this function will receive.

The CFUNCTYPE factory function creates types for callback functions using the normal cdecl calling convention,
and, on Windows, the WINFUNCTYPE factory function creates types for callback functions using the stdcall calling
convention.

Both of these factory functions are called with the result type as first argument, and the callback functions expected
argument types as the remaining arguments.

I will present an example here which uses the standard C library’s qsort() function, this is used to sort items with
the help of a callback function. qsort() will be used to sort an array of integers:

>>> IntArray5 = c_int * 5
>>> ia = IntArray5(5, 1, 7, 33, 99)
>>> qsort = libc.qsort
>>> qsort.restype = None
>>>

qsort() must be called with a pointer to the data to sort, the number of items in the data array, the size of one item,
and a pointer to the comparison function, the callback. The callback will then be called with two pointers to items,
and it must return a negative integer if the first item is smaller than the second, a zero if they are equal, and a positive
integer else.

So our callback function receives pointers to integers, and must return an integer. First we create the type for the
callback function:

>>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
>>>

For the first implementation of the callback function, we simply print the arguments we get, and return 0 (incremental
development ;-):

>>> def py_cmp_func(a, b):
... print "py_cmp_func", a, b
... return 0
...
>>>

Create the C callable callback:

>>> cmp_func = CMPFUNC(py_cmp_func)
>>>

And we’re ready to go:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>

15.15. ctypes — A foreign function library for Python 499

The Python Library Reference, Release 2.6.9

py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
>>>

We know how to access the contents of a pointer, so lets redefine our callback:

>>> def py_cmp_func(a, b):
... print "py_cmp_func", a[0], b[0]
... return 0
...
>>> cmp_func = CMPFUNC(py_cmp_func)
>>>

Here is what we get on Windows:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
py_cmp_func 7 1
py_cmp_func 33 1
py_cmp_func 99 1
py_cmp_func 5 1
py_cmp_func 7 5
py_cmp_func 33 5
py_cmp_func 99 5
py_cmp_func 7 99
py_cmp_func 33 99
py_cmp_func 7 33
>>>

It is funny to see that on linux the sort function seems to work much more efficiently, it is doing less comparisons:

>>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +LINUX
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 5 7
py_cmp_func 1 7
>>>

Ah, we’re nearly done! The last step is to actually compare the two items and return a useful result:

>>> def py_cmp_func(a, b):
... print "py_cmp_func", a[0], b[0]
... return a[0] - b[0]
...
>>>

Final run on Windows:

>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +WINDOWS
py_cmp_func 33 7
py_cmp_func 99 33
py_cmp_func 5 99
py_cmp_func 1 99
py_cmp_func 33 7
py_cmp_func 1 33
py_cmp_func 5 33
py_cmp_func 5 7
py_cmp_func 1 7
py_cmp_func 5 1
>>>

500 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

and on Linux:

>>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +LINUX
py_cmp_func 5 1
py_cmp_func 33 99
py_cmp_func 7 33
py_cmp_func 1 7
py_cmp_func 5 7
>>>

It is quite interesting to see that the Windows qsort() function needs more comparisons than the linux version!

As we can easily check, our array is sorted now:

>>> for i in ia: print i,
...
1 5 7 33 99
>>>

Important note for callback functions:

Make sure you keep references to CFUNCTYPE objects as long as they are used from C code. ctypes doesn’t, and
if you don’t, they may be garbage collected, crashing your program when a callback is made.

Accessing values exported from dlls

Some shared libraries not only export functions, they also export variables. An example in the Python library itself is
the Py_OptimizeFlag, an integer set to 0, 1, or 2, depending on the -O or -OO flag given on startup.

ctypes can access values like this with the in_dll() class methods of the type. pythonapi is a predefined symbol
giving access to the Python C api:

>>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
>>> print opt_flag
c_long(0)
>>>

If the interpreter would have been started with -O, the sample would have printed c_long(1), or c_long(2) if
-OO would have been specified.

An extended example which also demonstrates the use of pointers accesses the PyImport_FrozenModules
pointer exported by Python.

Quoting the Python docs: This pointer is initialized to point to an array of “struct _frozen” records, terminated by
one whose members are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party
code could play tricks with this to provide a dynamically created collection of frozen modules.

So manipulating this pointer could even prove useful. To restrict the example size, we show only how this table can
be read with ctypes:

>>> from ctypes import *
>>>
>>> class struct_frozen(Structure):
... _fields_ = [("name", c_char_p),
... ("code", POINTER(c_ubyte)),
... ("size", c_int)]
...
>>>

We have defined the struct _frozen data type, so we can get the pointer to the table:

15.15. ctypes — A foreign function library for Python 501

The Python Library Reference, Release 2.6.9

>>> FrozenTable = POINTER(struct_frozen)
>>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
>>>

Since table is a pointer to the array of struct_frozen records, we can iterate over it, but we just have to
make sure that our loop terminates, because pointers have no size. Sooner or later it would probably crash with an
access violation or whatever, so it’s better to break out of the loop when we hit the NULL entry:

>>> for item in table:
... print item.name, item.size
... if item.name is None:
... break
...
__hello__ 104
__phello__ -104
__phello__.spam 104
None 0
>>>

The fact that standard Python has a frozen module and a frozen package (indicated by the negative size member) is
not well known, it is only used for testing. Try it out with import __hello__ for example.

Surprises

There are some edges in ctypes where you may be expect something else than what actually happens.

Consider the following example:

>>> from ctypes import *
>>> class POINT(Structure):
... _fields_ = ("x", c_int), ("y", c_int)
...
>>> class RECT(Structure):
... _fields_ = ("a", POINT), ("b", POINT)
...
>>> p1 = POINT(1, 2)
>>> p2 = POINT(3, 4)
>>> rc = RECT(p1, p2)
>>> print rc.a.x, rc.a.y, rc.b.x, rc.b.y
1 2 3 4
>>> # now swap the two points
>>> rc.a, rc.b = rc.b, rc.a
>>> print rc.a.x, rc.a.y, rc.b.x, rc.b.y
3 4 3 4
>>>

Hm. We certainly expected the last statement to print 3 4 1 2. What happened? Here are the steps of the rc.a,
rc.b = rc.b, rc.a line above:

>>> temp0, temp1 = rc.b, rc.a
>>> rc.a = temp0
>>> rc.b = temp1
>>>

Note that temp0 and temp1 are objects still using the internal buffer of the rc object above. So executing rc.a =
temp0 copies the buffer contents of temp0 into rc ‘s buffer. This, in turn, changes the contents of temp1. So, the
last assignment rc.b = temp1, doesn’t have the expected effect.

502 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays doesn’t copy the sub-object, instead it
retrieves a wrapper object accessing the root-object’s underlying buffer.

Another example that may behave different from what one would expect is this:

>>> s = c_char_p()
>>> s.value = "abc def ghi"
>>> s.value
’abc def ghi’
>>> s.value is s.value
False
>>>

Why is it printing False? ctypes instances are objects containing a memory block plus some descriptors accessing
the contents of the memory. Storing a Python object in the memory block does not store the object itself, instead the
contents of the object is stored. Accessing the contents again constructs a new Python object each time!

Variable-sized data types

ctypes provides some support for variable-sized arrays and structures.

The resize() function can be used to resize the memory buffer of an existing ctypes object. The function takes the
object as first argument, and the requested size in bytes as the second argument. The memory block cannot be made
smaller than the natural memory block specified by the objects type, a ValueError is raised if this is tried:

>>> short_array = (c_short * 4)()
>>> print sizeof(short_array)
8
>>> resize(short_array, 4)
Traceback (most recent call last):

...
ValueError: minimum size is 8
>>> resize(short_array, 32)
>>> sizeof(short_array)
32
>>> sizeof(type(short_array))
8
>>>

This is nice and fine, but how would one access the additional elements contained in this array? Since the type still
only knows about 4 elements, we get errors accessing other elements:

>>> short_array[:]
[0, 0, 0, 0]
>>> short_array[7]
Traceback (most recent call last):

...
IndexError: invalid index
>>>

Another way to use variable-sized data types with ctypes is to use the dynamic nature of Python, and (re-)define the
data type after the required size is already known, on a case by case basis.

15.15. ctypes — A foreign function library for Python 503

The Python Library Reference, Release 2.6.9

15.15.2 ctypes reference

Finding shared libraries

When programming in a compiled language, shared libraries are accessed when compiling/linking a program, and
when the program is run.

The purpose of the find_library() function is to locate a library in a way similar to what the compiler does (on
platforms with several versions of a shared library the most recent should be loaded), while the ctypes library loaders
act like when a program is run, and call the runtime loader directly.

The ctypes.util module provides a function which can help to determine the library to load.

find_library
Try to find a library and return a pathname. name is the library name without any prefix like lib, suffix like .so,
.dylib or version number (this is the form used for the posix linker option -l). If no library can be found,
returns None.

The exact functionality is system dependent.

On Linux, find_library() tries to run external programs (/sbin/ldconfig, gcc, and objdump) to find the
library file. It returns the filename of the library file. Here are some examples:

>>> from ctypes.util import find_library
>>> find_library("m")
’libm.so.6’
>>> find_library("c")
’libc.so.6’
>>> find_library("bz2")
’libbz2.so.1.0’
>>>

On OS X, find_library() tries several predefined naming schemes and paths to locate the library, and returns a
full pathname if successful:

>>> from ctypes.util import find_library
>>> find_library("c")
’/usr/lib/libc.dylib’
>>> find_library("m")
’/usr/lib/libm.dylib’
>>> find_library("bz2")
’/usr/lib/libbz2.dylib’
>>> find_library("AGL")
’/System/Library/Frameworks/AGL.framework/AGL’
>>>

On Windows, find_library() searches along the system search path, and returns the full pathname, but since
there is no predefined naming scheme a call like find_library("c") will fail and return None.

If wrapping a shared library with ctypes, it may be better to determine the shared library name at development type,
and hardcode that into the wrapper module instead of using find_library() to locate the library at runtime.

Loading shared libraries

There are several ways to loaded shared libraries into the Python process. One way is to instantiate one of the following
classes:

504 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

class CDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)
Instances of this class represent loaded shared libraries. Functions in these libraries use the standard C calling
convention, and are assumed to return int.

class OleDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)
Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use the
stdcall calling convention, and are assumed to return the windows specific HRESULT code. HRESULT
values contain information specifying whether the function call failed or succeeded, together with additional
error code. If the return value signals a failure, an WindowsError is automatically raised.

class WinDLL(name, mode=DEFAULT_MODE, handle=None, use_errno=False, use_last_error=False)
Windows only: Instances of this class represent loaded shared libraries, functions in these libraries use the
stdcall calling convention, and are assumed to return int by default.

On Windows CE only the standard calling convention is used, for convenience the WinDLL and OleDLL use
the standard calling convention on this platform.

The Python global interpreter lock is released before calling any function exported by these libraries, and reacquired
afterwards.

class PyDLL(name, mode=DEFAULT_MODE, handle=None)
Instances of this class behave like CDLL instances, except that the Python GIL is not released during the function
call, and after the function execution the Python error flag is checked. If the error flag is set, a Python exception
is raised.

Thus, this is only useful to call Python C api functions directly.

All these classes can be instantiated by calling them with at least one argument, the pathname of the shared library.
If you have an existing handle to an already loaded shared library, it can be passed as the handle named parameter,
otherwise the underlying platforms dlopen or LoadLibrary function is used to load the library into the process,
and to get a handle to it.

The mode parameter can be used to specify how the library is loaded. For details, consult the dlopen(3) manpage,
on Windows, mode is ignored.

The use_errno parameter, when set to True, enables a ctypes mechanism that allows to access the system errno error
number in a safe way. ctypes maintains a thread-local copy of the systems errno variable; if you call foreign
functions created with use_errno=True then the errno value before the function call is swapped with the ctypes
private copy, the same happens immediately after the function call.

The function ctypes.get_errno() returns the value of the ctypes private copy, and the function
ctypes.set_errno() changes the ctypes private copy to a new value and returns the former value.

The use_last_error parameter, when set to True, enables the same mechanism for the Windows er-
ror code which is managed by the GetLastError() and SetLastError() Windows API functions;
ctypes.get_last_error() and ctypes.set_last_error() are used to request and change the ctypes
private copy of the windows error code. New in version 2.6: The use_last_error and use_errno optional parameters
were added.

RTLD_GLOBAL
Flag to use as mode parameter. On platforms where this flag is not available, it is defined as the integer zero.

RTLD_LOCAL
Flag to use as mode parameter. On platforms where this is not available, it is the same as RTLD_GLOBAL.

DEFAULT_MODE
The default mode which is used to load shared libraries. On OSX 10.3, this is RTLD_GLOBAL, otherwise it is
the same as RTLD_LOCAL.

Instances of these classes have no public methods, however __getattr__() and __getitem__() have special
behavior: functions exported by the shared library can be accessed as attributes of by index. Please note that both

15.15. ctypes — A foreign function library for Python 505

The Python Library Reference, Release 2.6.9

__getattr__() and __getitem__() cache their result, so calling them repeatedly returns the same object each
time.

The following public attributes are available, their name starts with an underscore to not clash with exported function
names:

_handle
The system handle used to access the library.

_name
The name of the library passed in the constructor.

Shared libraries can also be loaded by using one of the prefabricated objects, which are instances of the
LibraryLoader class, either by calling the LoadLibrary() method, or by retrieving the library as attribute
of the loader instance.

class LibraryLoader(dlltype)
Class which loads shared libraries. dlltype should be one of the CDLL, PyDLL, WinDLL, or OleDLL types.

__getattr__() has special behavior: It allows to load a shared library by accessing it as attribute of a library
loader instance. The result is cached, so repeated attribute accesses return the same library each time.

LoadLibrary(name)
Load a shared library into the process and return it. This method always returns a new instance of the
library.

These prefabricated library loaders are available:

cdll
Creates CDLL instances.

windll
Windows only: Creates WinDLL instances.

oledll
Windows only: Creates OleDLL instances.

pydll
Creates PyDLL instances.

For accessing the C Python api directly, a ready-to-use Python shared library object is available:

pythonapi
An instance of PyDLL that exposes Python C API functions as attributes. Note that all these functions are
assumed to return C int, which is of course not always the truth, so you have to assign the correct restype
attribute to use these functions.

Foreign functions

As explained in the previous section, foreign functions can be accessed as attributes of loaded shared libraries. The
function objects created in this way by default accept any number of arguments, accept any ctypes data instances as
arguments, and return the default result type specified by the library loader. They are instances of a private class:

class _FuncPtr()
Base class for C callable foreign functions.

Instances of foreign functions are also C compatible data types; they represent C function pointers.

This behavior can be customized by assigning to special attributes of the foreign function object.

506 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

restype
Assign a ctypes type to specify the result type of the foreign function. Use None for void, a function not
returning anything.

It is possible to assign a callable Python object that is not a ctypes type, in this case the function is assumed
to return a C int, and the callable will be called with this integer, allowing to do further processing or
error checking. Using this is deprecated, for more flexible post processing or error checking use a ctypes
data type as restype and assign a callable to the errcheck attribute.

argtypes
Assign a tuple of ctypes types to specify the argument types that the function accepts. Functions using the
stdcall calling convention can only be called with the same number of arguments as the length of this
tuple; functions using the C calling convention accept additional, unspecified arguments as well.

When a foreign function is called, each actual argument is passed to the from_param() class method
of the items in the argtypes tuple, this method allows to adapt the actual argument to an object that the
foreign function accepts. For example, a c_char_p item in the argtypes tuple will convert a unicode
string passed as argument into an byte string using ctypes conversion rules.

New: It is now possible to put items in argtypes which are not ctypes types, but each item must have a
from_param() method which returns a value usable as argument (integer, string, ctypes instance). This
allows to define adapters that can adapt custom objects as function parameters.

errcheck
Assign a Python function or another callable to this attribute. The callable will be called with three or
more arguments:

callable(result, func, arguments)
result is what the foreign function returns, as specified by the restype attribute.

func is the foreign function object itself, this allows to reuse the same callable object to check or post
process the results of several functions.

arguments is a tuple containing the parameters originally passed to the function call, this allows to
specialize the behavior on the arguments used.

The object that this function returns will be returned from the foreign function call, but it can also check
the result value and raise an exception if the foreign function call failed.

exception ArgumentError
This exception is raised when a foreign function call cannot convert one of the passed arguments.

Function prototypes

Foreign functions can also be created by instantiating function prototypes. Function prototypes are similar to function
prototypes in C; they describe a function (return type, argument types, calling convention) without defining an imple-
mentation. The factory functions must be called with the desired result type and the argument types of the function.

CFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
The returned function prototype creates functions that use the standard C calling convention. The function will
release the GIL during the call. If use_errno is set to True, the ctypes private copy of the system errno variable
is exchanged with the real errno value before and after the call; use_last_error does the same for the Windows
error code. Changed in version 2.6: The optional use_errno and use_last_error parameters were added.

WINFUNCTYPE(restype, *argtypes, use_errno=False, use_last_error=False)
Windows only: The returned function prototype creates functions that use the stdcall calling convention,
except on Windows CE where WINFUNCTYPE() is the same as CFUNCTYPE(). The function will release the
GIL during the call. use_errno and use_last_error have the same meaning as above.

15.15. ctypes — A foreign function library for Python 507

The Python Library Reference, Release 2.6.9

PYFUNCTYPE(restype, *argtypes)
The returned function prototype creates functions that use the Python calling convention. The function will not
release the GIL during the call.

Function prototypes created by these factory functions can be instantiated in different ways, depending on the type
and number of the parameters in the call:

prototype(address)
Returns a foreign function at the specified address which must be an integer.

prototype(callable)
Create a C callable function (a callback function) from a Python callable.

prototype(func_spec, [paramflags])
Returns a foreign function exported by a shared library. func_spec must be a 2-tuple
(name_or_ordinal, library). The first item is the name of the exported function as string,
or the ordinal of the exported function as small integer. The second item is the shared library in-
stance.

prototype(vtbl_index, name, [paramflags, [iid]])
Returns a foreign function that will call a COM method. vtbl_index is the index into the virtual
function table, a small non-negative integer. name is name of the COM method. iid is an optional
pointer to the interface identifier which is used in extended error reporting.

COM methods use a special calling convention: They require a pointer to the COM interface as first
argument, in addition to those parameters that are specified in the argtypes tuple.

The optional paramflags parameter creates foreign function wrappers with much more functionality than
the features described above.

paramflags must be a tuple of the same length as argtypes.

Each item in this tuple contains further information about a parameter, it must be a tuple containing one,
two, or three items.

The first item is an integer containing a combination of direction flags for the parameter:

1 Specifies an input parameter to the function.

2 Output parameter. The foreign function fills in a value.

4 Input parameter which defaults to the integer zero.

The optional second item is the parameter name as string. If this is specified, the foreign function can be
called with named parameters.

The optional third item is the default value for this parameter.

This example demonstrates how to wrap the Windows MessageBoxA function so that it supports default parameters
and named arguments. The C declaration from the windows header file is this:

WINUSERAPI int WINAPI
MessageBoxA(

HWND hWnd ,
LPCSTR lpText,
LPCSTR lpCaption,
UINT uType);

Here is the wrapping with ctypes:

>>> from ctypes import c_int, WINFUNCTYPE, windll
>>> from ctypes.wintypes import HWND, LPCSTR, UINT
>>> prototype = WINFUNCTYPE(c_int, HWND, LPCSTR, LPCSTR, UINT)

508 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

>>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", None), (1, "flags", 0)
>>> MessageBox = prototype(("MessageBoxA", windll.user32), paramflags)
>>>

The MessageBox foreign function can now be called in these ways:

>>> MessageBox()
>>> MessageBox(text="Spam, spam, spam")
>>> MessageBox(flags=2, text="foo bar")
>>>

A second example demonstrates output parameters. The win32 GetWindowRect function retrieves the dimensions
of a specified window by copying them into RECT structure that the caller has to supply. Here is the C declaration:

WINUSERAPI BOOL WINAPI
GetWindowRect(

HWND hWnd,
LPRECT lpRect);

Here is the wrapping with ctypes:

>>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
>>> from ctypes.wintypes import BOOL, HWND, RECT
>>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
>>> paramflags = (1, "hwnd"), (2, "lprect")
>>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
>>>

Functions with output parameters will automatically return the output parameter value if there is a single one, or a tuple
containing the output parameter values when there are more than one, so the GetWindowRect function now returns a
RECT instance, when called.

Output parameters can be combined with the errcheck protocol to do further output processing and error checking.
The win32 GetWindowRect api function returns a BOOL to signal success or failure, so this function could do the
error checking, and raises an exception when the api call failed:

>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... return args
...
>>> GetWindowRect.errcheck = errcheck
>>>

If the errcheck function returns the argument tuple it receives unchanged, ctypes continues the normal processing
it does on the output parameters. If you want to return a tuple of window coordinates instead of a RECT instance, you
can retrieve the fields in the function and return them instead, the normal processing will no longer take place:

>>> def errcheck(result, func, args):
... if not result:
... raise WinError()
... rc = args[1]
... return rc.left, rc.top, rc.bottom, rc.right
...
>>> GetWindowRect.errcheck = errcheck
>>>

15.15. ctypes — A foreign function library for Python 509

The Python Library Reference, Release 2.6.9

Utility functions

addressof(obj)
Returns the address of the memory buffer as integer. obj must be an instance of a ctypes type.

alignment(obj_or_type)
Returns the alignment requirements of a ctypes type. obj_or_type must be a ctypes type or instance.

byref(obj, [offset])
Returns a light-weight pointer to obj, which must be an instance of a ctypes type. offset defaults to zero, and
must be an integer that will be added to the internal pointer value.

byref(obj, offset) corresponds to this C code:

(((char *)&obj) + offset)

The returned object can only be used as a foreign function call parameter. It behaves similar to
pointer(obj), but the construction is a lot faster. New in version 2.6: The offset optional argument was
added.

cast(obj, type)
This function is similar to the cast operator in C. It returns a new instance of type which points to the same
memory block as obj. type must be a pointer type, and obj must be an object that can be interpreted as a pointer.

create_string_buffer(init_or_size, [size])
This function creates a mutable character buffer. The returned object is a ctypes array of c_char.

init_or_size must be an integer which specifies the size of the array, or a string which will be used to initialize
the array items.

If a string is specified as first argument, the buffer is made one item larger than the length of the string so that the
last element in the array is a NUL termination character. An integer can be passed as second argument which
allows to specify the size of the array if the length of the string should not be used.

If the first parameter is a unicode string, it is converted into an 8-bit string according to ctypes conversion rules.

create_unicode_buffer(init_or_size, [size])
This function creates a mutable unicode character buffer. The returned object is a ctypes array of c_wchar.

init_or_size must be an integer which specifies the size of the array, or a unicode string which will be used to
initialize the array items.

If a unicode string is specified as first argument, the buffer is made one item larger than the length of the string so
that the last element in the array is a NUL termination character. An integer can be passed as second argument
which allows to specify the size of the array if the length of the string should not be used.

If the first parameter is a 8-bit string, it is converted into an unicode string according to ctypes conversion rules.

DllCanUnloadNow()
Windows only: This function is a hook which allows to implement in-process COM servers with ctypes. It is
called from the DllCanUnloadNow function that the _ctypes extension dll exports.

DllGetClassObject()
Windows only: This function is a hook which allows to implement in-process COM servers with ctypes. It is
called from the DllGetClassObject function that the _ctypes extension dll exports.

find_library(name)
Try to find a library and return a pathname. name is the library name without any prefix like lib, suffix like
.so, .dylib or version number (this is the form used for the posix linker option -l). If no library can be
found, returns None.

510 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

The exact functionality is system dependent. Changed in version 2.6: Windows only: find_library("m")
or find_library("c") return the result of a call to find_msvcrt().

find_msvcrt()
Windows only: return the filename of the VC runtype library used by Python, and by the extension modules. If
the name of the library cannot be determined, None is returned.

If you need to free memory, for example, allocated by an extension module with a call to the free(void *),
it is important that you use the function in the same library that allocated the memory. New in version 2.6.

FormatError([code])
Windows only: Returns a textual description of the error code code. If no error code is specified, the last error
code is used by calling the Windows api function GetLastError.

GetLastError()
Windows only: Returns the last error code set by Windows in the calling thread. This function calls the Windows
GetLastError() function directly, it does not return the ctypes-private copy of the error code.

get_errno()
Returns the current value of the ctypes-private copy of the system errno variable in the calling thread. New in
version 2.6.

get_last_error()
Windows only: returns the current value of the ctypes-private copy of the system LastError variable in the
calling thread. New in version 2.6.

memmove(dst, src, count)
Same as the standard C memmove library function: copies count bytes from src to dst. dst and src must be
integers or ctypes instances that can be converted to pointers.

memset(dst, c, count)
Same as the standard C memset library function: fills the memory block at address dst with count bytes of value
c. dst must be an integer specifying an address, or a ctypes instance.

POINTER(type)
This factory function creates and returns a new ctypes pointer type. Pointer types are cached an reused internally,
so calling this function repeatedly is cheap. type must be a ctypes type.

pointer(obj)
This function creates a new pointer instance, pointing to obj. The returned object is of the type
POINTER(type(obj)).

Note: If you just want to pass a pointer to an object to a foreign function call, you should use byref(obj)
which is much faster.

resize(obj, size)
This function resizes the internal memory buffer of obj, which must be an instance of a ctypes type. It is not
possible to make the buffer smaller than the native size of the objects type, as given by sizeof(type(obj)),
but it is possible to enlarge the buffer.

set_conversion_mode(encoding, errors)
This function sets the rules that ctypes objects use when converting between 8-bit strings and unicode strings.
encoding must be a string specifying an encoding, like ’utf-8’ or ’mbcs’, errors must be a string specifying
the error handling on encoding/decoding errors. Examples of possible values are "strict", "replace", or
"ignore".

set_conversion_mode() returns a 2-tuple containing the previous conversion rules. On windows, the
initial conversion rules are (’mbcs’, ’ignore’), on other systems (’ascii’, ’strict’).

set_errno(value)
Set the current value of the ctypes-private copy of the system errno variable in the calling thread to value and

15.15. ctypes — A foreign function library for Python 511

The Python Library Reference, Release 2.6.9

return the previous value. New in version 2.6.

set_last_error(value)
Windows only: set the current value of the ctypes-private copy of the system LastError variable in the calling
thread to value and return the previous value. New in version 2.6.

sizeof(obj_or_type)
Returns the size in bytes of a ctypes type or instance memory buffer. Does the same as the C sizeof()
function.

string_at(address, [size])
This function returns the string starting at memory address address. If size is specified, it is used as size,
otherwise the string is assumed to be zero-terminated.

WinError(code=None, descr=None)
Windows only: this function is probably the worst-named thing in ctypes. It creates an instance of WindowsEr-
ror. If code is not specified, GetLastError is called to determine the error code. If descr is not specified,
FormatError() is called to get a textual description of the error.

wstring_at(address, [size])
This function returns the wide character string starting at memory address address as unicode string. If size
is specified, it is used as the number of characters of the string, otherwise the string is assumed to be zero-
terminated.

Data types

class _CData()
This non-public class is the common base class of all ctypes data types. Among other things, all ctypes type
instances contain a memory block that hold C compatible data; the address of the memory block is returned by
the addressof() helper function. Another instance variable is exposed as _objects; this contains other
Python objects that need to be kept alive in case the memory block contains pointers.

Common methods of ctypes data types, these are all class methods (to be exact, they are methods of the meta-
class):

from_buffer(source, [offset])
This method returns a ctypes instance that shares the buffer of the source object. The source object must
support the writeable buffer interface. The optional offset parameter specifies an offset into the source
buffer in bytes; the default is zero. If the source buffer is not large enough a ValueError is raised. New
in version 2.6.

from_buffer_copy(source, [offset])
This method creates a ctypes instance, copying the buffer from the source object buffer which must be
readable. The optional offset parameter specifies an offset into the source buffer in bytes; the default is
zero. If the source buffer is not large enough a ValueError is raised. New in version 2.6.

from_address(address)
This method returns a ctypes type instance using the memory specified by address which must be an
integer.

from_param(obj)
This method adapts obj to a ctypes type. It is called with the actual object used in a foreign function call
when the type is present in the foreign function’s argtypes tuple; it must return an object that can be
used as a function call parameter.

All ctypes data types have a default implementation of this classmethod that normally returns obj if that is
an instance of the type. Some types accept other objects as well.

512 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

in_dll(library, name)
This method returns a ctypes type instance exported by a shared library. name is the name of the symbol
that exports the data, library is the loaded shared library.

Common instance variables of ctypes data types:

_b_base_
Sometimes ctypes data instances do not own the memory block they contain, instead they share part of the
memory block of a base object. The _b_base_ read-only member is the root ctypes object that owns the
memory block.

_b_needsfree_
This read-only variable is true when the ctypes data instance has allocated the memory block itself, false
otherwise.

_objects
This member is either None or a dictionary containing Python objects that need to be kept alive so that the
memory block contents is kept valid. This object is only exposed for debugging; never modify the contents
of this dictionary.

Fundamental data types

class _SimpleCData()
This non-public class is the base class of all fundamental ctypes data types. It is mentioned here because
it contains the common attributes of the fundamental ctypes data types. _SimpleCData is a subclass of
_CData, so it inherits their methods and attributes. Changed in version 2.6: ctypes data types that are not and
do not contain pointers can now be pickled. Instances have a single attribute:

value
This attribute contains the actual value of the instance. For integer and pointer types, it is an integer, for
character types, it is a single character string, for character pointer types it is a Python string or unicode
string.

When the value attribute is retrieved from a ctypes instance, usually a new object is returned each time.
ctypes does not implement original object return, always a new object is constructed. The same is true
for all other ctypes object instances.

Fundamental data types, when returned as foreign function call results, or, for example, by retrieving structure field
members or array items, are transparently converted to native Python types. In other words, if a foreign function has a
restype of c_char_p, you will always receive a Python string, not a c_char_p instance.

Subclasses of fundamental data types do not inherit this behavior. So, if a foreign functions restype is a subclass of
c_void_p, you will receive an instance of this subclass from the function call. Of course, you can get the value of
the pointer by accessing the value attribute.

These are the fundamental ctypes data types:

class c_byte()
Represents the C signed char datatype, and interprets the value as small integer. The constructor accepts
an optional integer initializer; no overflow checking is done.

class c_char()
Represents the C char datatype, and interprets the value as a single character. The constructor accepts an
optional string initializer, the length of the string must be exactly one character.

class c_char_p()
Represents the C char * datatype when it points to a zero-terminated string. For a general character pointer
that may also point to binary data, POINTER(c_char) must be used. The constructor accepts an integer
address, or a string.

15.15. ctypes — A foreign function library for Python 513

The Python Library Reference, Release 2.6.9

class c_double()
Represents the C double datatype. The constructor accepts an optional float initializer.

class c_longdouble()
Represents the C long double datatype. The constructor accepts an optional float initializer. On platforms
where sizeof(long double) == sizeof(double) it is an alias to c_double. New in version 2.6.

class c_float()
Represents the C float datatype. The constructor accepts an optional float initializer.

class c_int()
Represents the C signed int datatype. The constructor accepts an optional integer initializer; no overflow
checking is done. On platforms where sizeof(int) == sizeof(long) it is an alias to c_long.

class c_int8()
Represents the C 8-bit signed int datatype. Usually an alias for c_byte.

class c_int16()
Represents the C 16-bit signed int datatype. Usually an alias for c_short.

class c_int32()
Represents the C 32-bit signed int datatype. Usually an alias for c_int.

class c_int64()
Represents the C 64-bit signed int datatype. Usually an alias for c_longlong.

class c_long()
Represents the C signed long datatype. The constructor accepts an optional integer initializer; no overflow
checking is done.

class c_longlong()
Represents the C signed long long datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class c_short()
Represents the C signed short datatype. The constructor accepts an optional integer initializer; no overflow
checking is done.

class c_size_t()
Represents the C size_t datatype.

class c_ubyte()
Represents the C unsigned char datatype, it interprets the value as small integer. The constructor accepts
an optional integer initializer; no overflow checking is done.

class c_uint()
Represents the C unsigned int datatype. The constructor accepts an optional integer initializer; no overflow
checking is done. On platforms where sizeof(int) == sizeof(long) it is an alias for c_ulong.

class c_uint8()
Represents the C 8-bit unsigned int datatype. Usually an alias for c_ubyte.

class c_uint16()
Represents the C 16-bit unsigned int datatype. Usually an alias for c_ushort.

class c_uint32()
Represents the C 32-bit unsigned int datatype. Usually an alias for c_uint.

class c_uint64()
Represents the C 64-bit unsigned int datatype. Usually an alias for c_ulonglong.

514 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

class c_ulong()
Represents the C unsigned long datatype. The constructor accepts an optional integer initializer; no over-
flow checking is done.

class c_ulonglong()
Represents the C unsigned long long datatype. The constructor accepts an optional integer initializer;
no overflow checking is done.

class c_ushort()
Represents the C unsigned short datatype. The constructor accepts an optional integer initializer; no
overflow checking is done.

class c_void_p()
Represents the C void * type. The value is represented as integer. The constructor accepts an optional integer
initializer.

class c_wchar()
Represents the C wchar_t datatype, and interprets the value as a single character unicode string. The con-
structor accepts an optional string initializer, the length of the string must be exactly one character.

class c_wchar_p()
Represents the C wchar_t * datatype, which must be a pointer to a zero-terminated wide character string.
The constructor accepts an integer address, or a string.

class c_bool()
Represent the C bool datatype (more accurately, _Bool from C99). Its value can be True or False, and the
constructor accepts any object that has a truth value. New in version 2.6.

class HRESULT()
Windows only: Represents a HRESULT value, which contains success or error information for a function or
method call.

class py_object()
Represents the C PyObject * datatype. Calling this without an argument creates a NULL PyObject *
pointer.

The ctypes.wintypes module provides quite some other Windows specific data types, for example HWND,
WPARAM, or DWORD. Some useful structures like MSG or RECT are also defined.

Structured data types

class Union(*args, **kw)
Abstract base class for unions in native byte order.

class BigEndianStructure(*args, **kw)
Abstract base class for structures in big endian byte order.

class LittleEndianStructure(*args, **kw)
Abstract base class for structures in little endian byte order.

Structures with non-native byte order cannot contain pointer type fields, or any other data types containing pointer
type fields.

class Structure(*args, **kw)
Abstract base class for structures in native byte order.

Concrete structure and union types must be created by subclassing one of these types, and at least define a
fields class variable. ctypes will create descriptors which allow reading and writing the fields by direct
attribute accesses. These are the

15.15. ctypes — A foreign function library for Python 515

The Python Library Reference, Release 2.6.9

fields
A sequence defining the structure fields. The items must be 2-tuples or 3-tuples. The first item is the name
of the field, the second item specifies the type of the field; it can be any ctypes data type.

For integer type fields like c_int, a third optional item can be given. It must be a small positive integer
defining the bit width of the field.

Field names must be unique within one structure or union. This is not checked, only one field can be
accessed when names are repeated.

It is possible to define the _fields_ class variable after the class statement that defines the Structure
subclass, this allows to create data types that directly or indirectly reference themselves:

class List(Structure):
pass

List._fields_ = [("pnext", POINTER(List)),
...
]

The _fields_ class variable must, however, be defined before the type is first used (an instance is
created, sizeof() is called on it, and so on). Later assignments to the _fields_ class variable will
raise an AttributeError.

Structure and union subclass constructors accept both positional and named arguments. Positional argu-
ments are used to initialize the fields in the same order as they appear in the _fields_ definition, named
arguments are used to initialize the fields with the corresponding name.

It is possible to defined sub-subclasses of structure types, they inherit the fields of the base class plus the
fields defined in the sub-subclass, if any.

pack
An optional small integer that allows to override the alignment of structure fields in the instance. _pack_
must already be defined when _fields_ is assigned, otherwise it will have no effect.

anonymous
An optional sequence that lists the names of unnamed (anonymous) fields. _anonymous_ must be
already defined when _fields_ is assigned, otherwise it will have no effect.

The fields listed in this variable must be structure or union type fields. ctypes will create descriptors in
the structure type that allows to access the nested fields directly, without the need to create the structure or
union field.

Here is an example type (Windows):

class _U(Union):
fields = [("lptdesc", POINTER(TYPEDESC)),

("lpadesc", POINTER(ARRAYDESC)),
("hreftype", HREFTYPE)]

class TYPEDESC(Structure):
anonymous = ("u",)
fields = [("u", _U),

("vt", VARTYPE)]

The TYPEDESC structure describes a COM data type, the vt field specifies which one of the union fields
is valid. Since the u field is defined as anonymous field, it is now possible to access the members directly
off the TYPEDESC instance. td.lptdesc and td.u.lptdesc are equivalent, but the former is faster
since it does not need to create a temporary union instance:

516 Chapter 15. Generic Operating System Services

The Python Library Reference, Release 2.6.9

td = TYPEDESC()
td.vt = VT_PTR
td.lptdesc = POINTER(some_type)
td.u.lptdesc = POINTER(some_type)

It is possible to defined sub-subclasses of structures, they inherit the fields of the base class. If the subclass
definition has a separate _fields_ variable, the fields specified in this are appended to the fields of the base
class.

Structure and union constructors accept both positional and keyword arguments. Positional arguments are used
to initialize member fields in the same order as they are appear in _fields_. Keyword arguments in the
constructor are interpreted as attribute assignments, so they will initialize _fields_ with the same name, or
create new attributes for names not present in _fields_.

Arrays and pointers

Not yet written - please see the sections Pointers and section Arrays in the tutorial.

15.15. ctypes — A foreign function library for Python 517

The Python Library Reference, Release 2.6.9

518 Chapter 15. Generic Operating System Services

CHAPTER

SIXTEEN

OPTIONAL OPERATING SYSTEM
SERVICES

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modeled after the Unix or C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:

16.1 select — Waiting for I/O completion

This module provides access to the select() and poll() functions available in most operating systems, epoll()
available on Linux 2.5+ and kqueue() available on most BSD. Note that on Windows, it only works for sockets; on
other operating systems, it also works for other file types (in particular, on Unix, it works on pipes). It cannot be used
on regular files to determine whether a file has grown since it was last read.

The module defines the following:

exception error
The exception raised when an error occurs. The accompanying value is a pair containing the numeric error code
from errno and the corresponding string, as would be printed by the C function perror().

epoll([sizehint=-1])
(Only supported on Linux 2.5.44 and newer.) Returns an edge polling object, which can be used as Edge or
Level Triggered interface for I/O events; see section Edge and Level Trigger Polling (epoll) Objects below for
the methods supported by epolling objects. New in version 2.6.

poll()
(Not supported by all operating systems.) Returns a polling object, which supports registering and unregister-
ing file descriptors, and then polling them for I/O events; see section Polling Objects below for the methods
supported by polling objects.

kqueue()
(Only supported on BSD.) Returns a kernel queue object; see section Kqueue Objects below for the methods
supported by kqueue objects. New in version 2.6.

kevent(ident, filter=KQ_FILTER_READ, flags=KQ_EV_ADD, fflags=0, data=0, udata=0)
(Only supported on BSD.) Returns a kernel event object; see section Kevent Objects below for the methods
supported by kevent objects. New in version 2.6.

select(rlist, wlist, xlist, [timeout])
This is a straightforward interface to the Unix select() system call. The first three arguments are sequences
of ‘waitable objects’: either integers representing file descriptors or objects with a parameterless method named
fileno() returning such an integer:

519

The Python Library Reference, Release 2.6.9

•rlist: wait until ready for reading

•wlist: wait until ready for writing

•xlist: wait for an “exceptional condition” (see the manual page for what your system considers such a
condition)

Empty sequences are allowed, but acceptance of three empty sequences is platform-dependent. (It is known
to work on Unix but not on Windows.) The optional timeout argument specifies a time-out as a floating point
number in seconds. When the timeout argument is omitted the function blocks until at least one file descriptor
is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned. Among the
acceptable object types in the sequences are Python file objects (e.g. sys.stdin, or objects returned by
open() or os.popen()), socket objects returned by socket.socket(). You may also define a wrapper
class yourself, as long as it has an appropriate fileno() method (that really returns a file descriptor, not just
a random integer).

Note: File objects on Windows are not acceptable, but sockets are. On Windows, the underlying select()
function is provided by the WinSock library, and does not handle file descriptors that don’t originate from
WinSock.

16.1.1 Edge and Level Trigger Polling (epoll) Objects

http://linux.die.net/man/4/epoll

eventmask

Constant Meaning
EPOLLIN Available for read
EPOLLOUT Available for write
EPOLLPRI Urgent data for read
EPOLLERR Error condition happened on the assoc. fd
EPOLLHUP Hang up happened on the assoc. fd
EPOLLET Set Edge Trigger behavior, the default is Level Trigger behavior
EPOLLONESHOT Set one-shot behavior. After one event is pulled out, the fd is internally disabled
EPOLLRDNORM ???
EPOLLRDBAND ???
EPOLLWRNORM ???
EPOLLWRBAND ???
EPOLLMSG ???

close()
Close the control file descriptor of the epoll object.

fileno()
Return the file descriptor number of the control fd.

fromfd(fd)
Create an epoll object from a given file descriptor.

register(fd, [eventmask])
Register a fd descriptor with the epoll object.

Note: Registering a file descriptor that’s already registered raises an IOError – contrary to Polling Objects‘s
register.

modify(fd, eventmask)
Modify a register file descriptor.

520 Chapter 16. Optional Operating System Services

http://linux.die.net/man/4/epoll

The Python Library Reference, Release 2.6.9

unregister(fd)
Remove a registered file descriptor from the epoll object.

poll([timeout=-1, [maxevents=-1]])
Wait for events. timeout in seconds (float)

16.1.2 Polling Objects

The poll() system call, supported on most Unix systems, provides better scalability for network servers that service
many, many clients at the same time. poll() scales better because the system call only requires listing the file
descriptors of interest, while select() builds a bitmap, turns on bits for the fds of interest, and then afterward the
whole bitmap has to be linearly scanned again. select() is O(highest file descriptor), while poll() is O(number
of file descriptors).

register(fd, [eventmask])
Register a file descriptor with the polling object. Future calls to the poll() method will then check whether
the file descriptor has any pending I/O events. fd can be either an integer, or an object with a fileno()method
that returns an integer. File objects implement fileno(), so they can also be used as the argument.

eventmask is an optional bitmask describing the type of events you want to check for, and can be a combination
of the constants POLLIN, POLLPRI, and POLLOUT, described in the table below. If not specified, the default
value used will check for all 3 types of events.

Constant Meaning
POLLIN There is data to read
POLLPRI There is urgent data to read
POLLOUT Ready for output: writing will not block
POLLERR Error condition of some sort
POLLHUP Hung up
POLLNVAL Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has the same effect as registering the
descriptor exactly once.

modify(fd, eventmask)
Modifies an already registered fd. This has the same effect as register(fd, eventmask)(). Attempting
to modify a file descriptor that was never registered causes an IOError exception with errno ENOENT to be
raised. New in version 2.6.

unregister(fd)
Remove a file descriptor being tracked by a polling object. Just like the register() method, fd can be an
integer or an object with a fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes a KeyError exception to be raised.

poll([timeout])
Polls the set of registered file descriptors, and returns a possibly-empty list containing (fd, event) 2-tuples
for the descriptors that have events or errors to report. fd is the file descriptor, and event is a bitmask with bits set
for the reported events for that descriptor — POLLIN for waiting input, POLLOUT to indicate that the descriptor
can be written to, and so forth. An empty list indicates that the call timed out and no file descriptors had any
events to report. If timeout is given, it specifies the length of time in milliseconds which the system will wait for
events before returning. If timeout is omitted, negative, or None, the call will block until there is an event for
this poll object.

16.1. select — Waiting for I/O completion 521

The Python Library Reference, Release 2.6.9

16.1.3 Kqueue Objects

close()
Close the control file descriptor of the kqueue object.

fileno()
Return the file descriptor number of the control fd.

fromfd(fd)
Create a kqueue object from a given file descriptor.

control(changelist, max_events, [timeout=None])
Low level interface to kevent

•changelist must be an iterable of kevent object or None

•max_events must be 0 or a positive integer

•timeout in seconds (floats possible)

16.1.4 Kevent Objects

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

ident
Value used to identify the event. The interpretation depends on the filter but it’s usually the file descriptor. In the
constructor ident can either be an int or an object with a fileno() function. kevent stores the integer internally.

filter
Name of the kernel filter.

Constant Meaning
KQ_FILTER_READ Takes a descriptor and returns whenever there is data available to read
KQ_FILTER_WRITE Takes a descriptor and returns whenever there is data available to write
KQ_FILTER_AIO AIO requests
KQ_FILTER_VNODE Returns when one or more of the requested events watched in fflag occurs
KQ_FILTER_PROC Watch for events on a process id
KQ_FILTER_NETDEV Watch for events on a network device [not available on Mac OS X]
KQ_FILTER_SIGNAL Returns whenever the watched signal is delivered to the process
KQ_FILTER_TIMER Establishes an arbitrary timer

flags
Filter action.

Constant Meaning
KQ_EV_ADD Adds or modifies an event
KQ_EV_DELETE Removes an event from the queue
KQ_EV_ENABLE Permitscontrol() to returns the event
KQ_EV_DISABLE Disablesevent
KQ_EV_ONESHOT Removes event after first occurrence
KQ_EV_CLEAR Reset the state after an event is retrieved
KQ_EV_SYSFLAGS internal event
KQ_EV_FLAG1 internal event
KQ_EV_EOF Filter specific EOF condition
KQ_EV_ERROR See return values

fflags
Filter specific flags.

KQ_FILTER_READ and KQ_FILTER_WRITE filter flags:

522 Chapter 16. Optional Operating System Services

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

The Python Library Reference, Release 2.6.9

Constant Meaning
KQ_NOTE_LOWAT low water mark of a socket buffer

KQ_FILTER_VNODE filter flags:

Constant Meaning
KQ_NOTE_DELETE unlink() was called
KQ_NOTE_WRITE a write occurred
KQ_NOTE_EXTEND the file was extended
KQ_NOTE_ATTRIB an attribute was changed
KQ_NOTE_LINK the link count has changed
KQ_NOTE_RENAME the file was renamed
KQ_NOTE_REVOKE access to the file was revoked

KQ_FILTER_PROC filter flags:

Constant Meaning
KQ_NOTE_EXIT the process has exited
KQ_NOTE_FORK the process has called fork()
KQ_NOTE_EXEC the process has executed a new process
KQ_NOTE_PCTRLMASK internal filter flag
KQ_NOTE_PDATAMASK internal filter flag
KQ_NOTE_TRACK follow a process across fork()
KQ_NOTE_CHILD returned on the child process for NOTE_TRACK
KQ_NOTE_TRACKERR unable to attach to a child

KQ_FILTER_NETDEV filter flags (not available on Mac OS X):

Constant Meaning
KQ_NOTE_LINKUP link is up
KQ_NOTE_LINKDOWN link is down
KQ_NOTE_LINKINV link state is invalid

data
Filter specific data.

udata
User defined value.

16.2 threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lower level thread module. See also the
mutex and Queue modules.

The dummy_threading module is provided for situations where threading cannot be used because thread is
missing.

Note: Starting with Python 2.6, this module provides PEP 8 compliant aliases and properties to replace the
camelCase names that were inspired by Java’s threading API. This updated API is compatible with that of the
multiprocessing module. However, no schedule has been set for the deprecation of the camelCase names and
they remain fully supported in both Python 2.x and 3.x.

Note: Starting with Python 2.5, several Thread methods raise RuntimeError instead of AssertionError if
called erroneously.

This module defines the following functions and objects:

active_count()

16.2. threading — Higher-level threading interface 523

http://www.python.org/dev/peps/pep-0008

The Python Library Reference, Release 2.6.9

activeCount()
Return the number of Thread objects currently alive. The returned count is equal to the length of the list
returned by enumerate().

Condition()
A factory function that returns a new condition variable object. A condition variable allows one or more threads
to wait until they are notified by another thread.

current_thread()
currentThread()

Return the current Thread object, corresponding to the caller’s thread of control. If the caller’s thread of
control was not created through the threading module, a dummy thread object with limited functionality is
returned.

enumerate()
Return a list of all Thread objects currently alive. The list includes daemonic threads, dummy thread objects
created by current_thread(), and the main thread. It excludes terminated threads and threads that have
not yet been started.

Event()
A factory function that returns a new event object. An event manages a flag that can be set to true with the
set() method and reset to false with the clear() method. The wait() method blocks until the flag is true.

class local()
A class that represents thread-local data. Thread-local data are data whose values are thread specific. To manage
thread-local data, just create an instance of local (or a subclass) and store attributes on it:

mydata = threading.local()
mydata.x = 1

The instance’s values will be different for separate threads.

For more details and extensive examples, see the documentation string of the _threading_local module.
New in version 2.4.

Lock()
A factory function that returns a new primitive lock object. Once a thread has acquired it, subsequent attempts
to acquire it block, until it is released; any thread may release it.

RLock()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by the thread that
acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking;
the thread must release it once for each time it has acquired it.

Semaphore([value])
A factory function that returns a new semaphore object. A semaphore manages a counter representing the
number of release() calls minus the number of acquire() calls, plus an initial value. The acquire()
method blocks if necessary until it can return without making the counter negative. If not given, value defaults
to 1.

BoundedSemaphore([value])
A factory function that returns a new bounded semaphore object. A bounded semaphore checks to make sure its
current value doesn’t exceed its initial value. If it does, ValueError is raised. In most situations semaphores
are used to guard resources with limited capacity. If the semaphore is released too many times it’s a sign of a
bug. If not given, value defaults to 1.

class Thread()
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

524 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

class Timer()
A thread that executes a function after a specified interval has passed.

settrace(func)
Set a trace function for all threads started from the threading module. The func will be passed to
sys.settrace() for each thread, before its run() method is called. New in version 2.3.

setprofile(func)
Set a profile function for all threads started from the threading module. The func will be passed to
sys.setprofile() for each thread, before its run() method is called. New in version 2.3.

stack_size([size])
Return the thread stack size used when creating new threads. The optional size argument specifies the stack size
to be used for subsequently created threads, and must be 0 (use platform or configured default) or a positive
integer value of at least 32,768 (32kB). If changing the thread stack size is unsupported, a ThreadError
is raised. If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified.
32kB is currently the minimum supported stack size value to guarantee sufficient stack space for the interpreter
itself. Note that some platforms may have particular restrictions on values for the stack size, such as requiring
a minimum stack size > 32kB or requiring allocation in multiples of the system memory page size - platform
documentation should be referred to for more information (4kB pages are common; using multiples of 4096 for
the stack size is the suggested approach in the absence of more specific information). Availability: Windows,
systems with POSIX threads. New in version 2.5.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and condition
variables basic behavior of every object, they are separate objects in Python. Python’s Thread class supports a subset
of the behavior of Java’s Thread class; currently, there are no priorities, no thread groups, and threads cannot be
destroyed, stopped, suspended, resumed, or interrupted. The static methods of Java’s Thread class, when implemented,
are mapped to module-level functions.

All of the methods described below are executed atomically.

16.2.1 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify the activity:
by passing a callable object to the constructor, or by overriding the run() method in a subclass. No other methods
(except for the constructor) should be overridden in a subclass. In other words, only override the __init__() and
run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’s start() method. This invokes the
run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ‘alive’. It stops being alive when its run() method
terminates – either normally, or by raising an unhandled exception. The is_alive() method tests whether the
thread is alive.

Other threads can call a thread’s join() method. This blocks the calling thread until the thread whose join()
method is called is terminated.

A thread has a name. The name can be passed to the constructor, and read or changed through the name attribute.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program exits
when only daemon threads are left. The initial value is inherited from the creating thread. The flag can be set through
the daemon property.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It is not a
daemon thread.

16.2. threading — Higher-level threading interface 525

The Python Library Reference, Release 2.6.9

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to “alien
threads”, which are threads of control started outside the threading module, such as directly from C code. Dummy
thread objects have limited functionality; they are always considered alive and daemonic, and cannot be join()ed.
They are never deleted, since it is impossible to detect the termination of alien threads.

class Thread(group=None, target=None, name=None, args=(), kwargs={})
This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N” where N is a small
decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread.__init__()) before doing anything else to the thread.

start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked
in a separate thread of control.

This method will raise a RuntimeException if called more than once on the same thread object.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

join([timeout])
Wait until the thread terminates. This blocks the calling thread until the thread whose join() method
is called terminates – either normally or through an unhandled exception – or until the optional timeout
occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must
call isAlive() after join() to decide whether a timeout happened – if the thread is still alive, the
join() call timed out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a
deadlock. It is also an error to join() a thread before it has been started and attempts to do so raises the
same exception.

getName()
setName()

Old API for name.

name
A string used for identification purposes only. It has no semantics. Multiple threads may be given the same
name. The initial name is set by the constructor.

526 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

ident
The ‘thread identifier’ of this thread or None if the thread has not been started. This is a nonzero integer.
See the thread.get_ident() function. Thread identifiers may be recycled when a thread exits and
another thread is created. The identifier is available even after the thread has exited. New in version 2.6.

is_alive()
isAlive()

Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method termi-
nates. The module function enumerate() returns a list of all alive threads.

isDaemon()
setDaemon()

Old API for daemon.

daemon
A boolean value indicating whether this thread is a daemon thread (True) or not (False). This must be set
before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.

The entire Python program exits when no alive non-daemon threads are left.

16.2.2 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In Python, it is
currently the lowest level synchronization primitive available, implemented directly by the thread extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two basic
methods, acquire() and release(). When the state is unlocked, acquire() changes the state to locked and
returns immediately. When the state is locked, acquire() blocks until a call to release() in another thread
changes it to unlocked, then the acquire() call resets it to locked and returns. The release() method should
only be called in the locked state; it changes the state to unlocked and returns immediately. If an attempt is made to
release an unlocked lock, a RuntimeError will be raised.

When more than one thread is blocked in acquire() waiting for the state to turn to unlocked, only one thread
proceeds when a release() call resets the state to unlocked; which one of the waiting threads proceeds is not
defined, and may vary across implementations.

All methods are executed atomically.

acquire([blocking=1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return true.

When invoked with the blocking argument set to true, do the same thing as when called without arguments, and
return true.

When invoked with the blocking argument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release()
Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the lock to
become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.

16.2. threading — Higher-level threading interface 527

The Python Library Reference, Release 2.6.9

There is no return value.

16.2.3 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally, it
uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked state used by primitive
locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.

To lock the lock, a thread calls its acquire() method; this returns once the thread owns the lock. To unlock the
lock, a thread calls its release() method. acquire()/release() call pairs may be nested; only the final
release() (the release() of the outermost pair) resets the lock to unlocked and allows another thread blocked
in acquire() to proceed.

acquire([blocking=1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion level by one, and
return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked. Once the lock
is unlocked (not owned by any thread), then grab ownership, set the recursion level to one, and return. If more
than one thread is blocked waiting until the lock is unlocked, only one at a time will be able to grab ownership
of the lock. There is no return value in this case.

When invoked with the blocking argument set to true, do the same thing as when called without arguments, and
return true.

When invoked with the blocking argument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked
(not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked, allow
exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains
locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. A RuntimeError is raised if this method is
called when the lock is unlocked.

There is no return value.

16.2.4 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created by
default. (Passing one in is useful when several condition variables must share the same lock.)

A condition variable has acquire() and release()methods that call the corresponding methods of the associated
lock. It also has a wait() method, and notify() and notifyAll() methods. These three must only be called
when the calling thread has acquired the lock, otherwise a RuntimeError is raised.

The wait() method releases the lock, and then blocks until it is awakened by a notify() or notifyAll()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also
possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The
notifyAll() method wakes up all threads waiting for the condition variable.

Note: the notify() and notifyAll() methods don’t release the lock; this means that the thread or threads
awakened will not return from their wait() call immediately, but only when the thread that called notify() or
notifyAll() finally relinquishes ownership of the lock.

528 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

Tip: the typical programming style using condition variables uses the lock to synchronize access to some shared state;
threads that are interested in a particular change of state call wait() repeatedly until they see the desired state, while
threads that modify the state call notify() or notifyAll()when they change the state in such a way that it could
possibly be a desired state for one of the waiters. For example, the following code is a generic producer-consumer
situation with unlimited buffer capacity:

Consume one item
cv.acquire()
while not an_item_is_available():

cv.wait()
get_an_available_item()
cv.release()

Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()

To choose between notify() and notifyAll(), consider whether one state change can be interesting for only
one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer only needs
to wake up one consumer thread.

class Condition([lock])
If the lock argument is given and not None, it must be a Lock or RLock object, and it is used as the underlying
lock. Otherwise, a new RLock object is created and used as the underlying lock.

acquire(*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the
return value is whatever that method returns.

release()
Release the underlying lock. This method calls the corresponding method on the underlying lock; there is
no return value.

wait([timeout])
Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this
method is called, a RuntimeError is raised.

This method releases the underlying lock, and then blocks until it is awakened by a notify() or
notifyAll() call for the same condition variable in another thread, or until the optional timeout occurs.
Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof).

When the underlying lock is an RLock, it is not released using its release() method, since this may
not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface
of the RLock class is used, which really unlocks it even when it has been recursively acquired several
times. Another internal interface is then used to restore the recursion level when the lock is reacquired.

notify()
Wake up a thread waiting on this condition, if any. If the calling thread has not acquired the lock when this
method is called, a RuntimeError is raised.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it is a no-op
if no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it’s not safe to rely
on this behavior. A future, optimized implementation may occasionally wake up more than one thread.

16.2. threading — Higher-level threading interface 529

The Python Library Reference, Release 2.6.9

Note: the awakened thread does not actually return from its wait() call until it can reacquire the lock.
Since notify() does not release the lock, its caller should.

notify_all()
notifyAll()

Wake up all threads waiting on this condition. This method acts like notify(), but wakes up all waiting
threads instead of one. If the calling thread has not acquired the lock when this method is called, a
RuntimeError is raised.

16.2.5 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early Dutch
computer scientist Edsger W. Dijkstra (he used P() and V() instead of acquire() and release()).

A semaphore manages an internal counter which is decremented by each acquire() call and incremented by each
release() call. The counter can never go below zero; when acquire() finds that it is zero, it blocks, waiting
until some other thread calls release().

class Semaphore([value])
The optional argument gives the initial value for the internal counter; it defaults to 1. If the value given is less
than 0, ValueError is raised.

acquire([blocking])
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by
one and return immediately. If it is zero on entry, block, waiting until some other thread has called
release() to make it larger than zero. This is done with proper interlocking so that if multiple
acquire() calls are blocked, release() will wake exactly one of them up. The implementation
may pick one at random, so the order in which blocked threads are awakened should not be relied on.
There is no return value in this case.

When invoked with blocking set to true, do the same thing as when called without arguments, and return
true.

When invoked with blocking set to false, do not block. If a call without an argument would block, return
false immediately; otherwise, do the same thing as when called without arguments, and return true.

release()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another
thread is waiting for it to become larger than zero again, wake up that thread.

Semaphore Example

Semaphores are often used to guard resources with limited capacity, for example, a database server. In any situation
where the size of the resource size is fixed, you should use a bounded semaphore. Before spawning any worker threads,
your main thread would initialize the semaphore:

maxconnections = 5
...
pool_sema = BoundedSemaphore(value=maxconnections)

Once spawned, worker threads call the semaphore’s acquire and release methods when they need to connect to the
server:

pool_sema.acquire()
conn = connectdb()
... use connection ...

530 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

conn.close()
pool_sema.release()

The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore to be
released more than it’s acquired will go undetected.

16.2.6 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event and other
threads wait for it.

An event object manages an internal flag that can be set to true with the set() method and reset to false with the
clear() method. The wait() method blocks until the flag is true.

class Event()
The internal flag is initially false.

is_set()
isSet()

Return true if and only if the internal flag is true. Changed in version 2.6: The is_set() syntax is new.

set()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that call
wait() once the flag is true will not block at all.

clear()
Reset the internal flag to false. Subsequently, threads calling wait() will block until set() is called to
set the internal flag to true again.

wait([timeout])
Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise,
block until another thread calls set() to set the flag to true, or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof).

This method always returns None.

16.2.7 Timer Objects

This class represents an action that should be run only after a certain amount of time has passed — a timer. Timer is
a subclass of Thread and as such also functions as an example of creating custom threads.

Timers are started, as with threads, by calling their start() method. The timer can be stopped (before its action
has begun) by calling the cancel() method. The interval the timer will wait before executing its action may not be
exactly the same as the interval specified by the user.

For example:

def hello():
print "hello, world"

t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed

class Timer(interval, function, args=, [], kwargs={})
Create a timer that will run function with arguments args and keyword arguments kwargs, after interval seconds
have passed.

16.2. threading — Higher-level threading interface 531

The Python Library Reference, Release 2.6.9

cancel()
Stop the timer, and cancel the execution of the timer’s action. This will only work if the timer is still in its
waiting stage.

16.2.8 Using locks, conditions, and semaphores in the with statement

All of the objects provided by this module that have acquire() and release() methods can be used as context
managers for a with statement. The acquire() method will be called when the block is entered, and release()
will be called when the block is exited.

Currently, Lock, RLock, Condition, Semaphore, and BoundedSemaphore objects may be used as with
statement context managers. For example:

import threading

some_rlock = threading.RLock()

with some_rlock:
print "some_rlock is locked while this executes"

16.2.9 Importing in threaded code

While the import machinery is thread safe, there are two key restrictions on threaded imports due to inherent limitations
in the way that thread safety is provided:

• Firstly, other than in the main module, an import should not have the side effect of spawning a new thread and
then waiting for that thread in any way. Failing to abide by this restriction can lead to a deadlock if the spawned
thread directly or indirectly attempts to import a module.

• Secondly, all import attempts must be completed before the interpreter starts shutting itself down. This can
be most easily achieved by only performing imports from non-daemon threads created through the threading
module. Daemon threads and threads created directly with the thread module will require some other form
of synchronization to ensure they do not attempt imports after system shutdown has commenced. Failure to
abide by this restriction will lead to intermittent exceptions and crashes during interpreter shutdown (as the late
imports attempt to access machinery which is no longer in a valid state).

16.3 thread — Multiple threads of control

Note: The thread module has been renamed to _thread in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0; however, you should consider using the high-level threading module
instead. This module provides low-level primitives for working with multiple threads (also called light-weight
processes or tasks) — multiple threads of control sharing their global data space. For synchronization, simple locks
(also called mutexes or binary semaphores) are provided. The threading module provides an easier to use and
higher-level threading API built on top of this module. The module is optional. It is supported on Windows, Linux,
SGI IRIX, Solaris 2.x, as well as on systems that have a POSIX thread (a.k.a. “pthread”) implementation. For systems
lacking the thread module, the dummy_thread module is available. It duplicates this module’s interface and can
be used as a drop-in replacement.

It defines the following constant and functions:

exception error
Raised on thread-specific errors.

532 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

LockType
This is the type of lock objects.

start_new_thread(function, args, [kwargs])
Start a new thread and return its identifier. The thread executes the function function with the argument list args
(which must be a tuple). The optional kwargs argument specifies a dictionary of keyword arguments. When the
function returns, the thread silently exits. When the function terminates with an unhandled exception, a stack
trace is printed and then the thread exits (but other threads continue to run).

interrupt_main()
Raise a KeyboardInterrupt exception in the main thread. A subthread can use this function to interrupt
the main thread. New in version 2.3.

exit()
Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.

allocate_lock()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get_ident()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

stack_size([size])
Return the thread stack size used when creating new threads. The optional size argument specifies the stack size
to be used for subsequently created threads, and must be 0 (use platform or configured default) or a positive
integer value of at least 32,768 (32kB). If changing the thread stack size is unsupported, the error exception
is raised. If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified.
32kB is currently the minimum supported stack size value to guarantee sufficient stack space for the interpreter
itself. Note that some platforms may have particular restrictions on values for the stack size, such as requiring
a minimum stack size > 32kB or requiring allocation in multiples of the system memory page size - platform
documentation should be referred to for more information (4kB pages are common; using multiples of 4096 for
the stack size is the suggested approach in the absence of more specific information). Availability: Windows,
systems with POSIX threads. New in version 2.5.

Lock objects have the following methods:

acquire([waitflag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence). If
the integer waitflag argument is present, the action depends on its value: if it is zero, the lock is only acquired
if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired unconditionally as
before. The return value is True if the lock is acquired successfully, False if not.

release()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

locked()
Return the status of the lock: True if it has been acquired by some thread, False if not.

In addition to these methods, lock objects can also be used via the with statement, e.g.:

import thread

a_lock = thread.allocate_lock()

with a_lock:
print "a_lock is locked while this executes"

16.3. thread — Multiple threads of control 533

The Python Library Reference, Release 2.6.9

Caveats:

• Threads interact strangely with interrupts: the KeyboardInterrupt exception will be received by an arbi-
trary thread. (When the signal module is available, interrupts always go to the main thread.)

• Calling sys.exit() or raising the SystemExit exception is equivalent to calling thread.exit().

• Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep(), file.read(), select.select()) work as expected.)

• It is not possible to interrupt the acquire() method on a lock — the KeyboardInterrupt exception will
happen after the lock has been acquired.

• When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the
native thread implementation, they survive. On most other systems, they are killed without executing try ...
finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except that try ... finally clauses are
honored), and the standard I/O files are not flushed.

16.4 dummy_threading — Drop-in replacement for the threading
module

This module provides a duplicate interface to the threading module. It is meant to be imported when the thread
module is not provided on a platform.

Suggested usage is:

try:
import threading as _threading

except ImportError:
import dummy_threading as _threading

Be careful to not use this module where deadlock might occur from a thread being created that blocks waiting for
another thread to be created. This often occurs with blocking I/O.

16.5 dummy_thread — Drop-in replacement for the thread module

Note: The dummy_thread module has been renamed to _dummy_thread in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0; however, you should consider using the high-lever
dummy_threading module instead.

This module provides a duplicate interface to the thread module. It is meant to be imported when the thread
module is not provided on a platform.

Suggested usage is:

try:
import thread as _thread

except ImportError:
import dummy_thread as _thread

Be careful to not use this module where deadlock might occur from a thread being created that blocks waiting for
another thread to be created. This often occurs with blocking I/O.

534 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

16.6 multiprocessing — Process-based “threading” interface

New in version 2.6.

16.6.1 Introduction

multiprocessing is a package that supports spawning processes using an API similar to the threadingmodule.
The multiprocessing package offers both local and remote concurrency, effectively side-stepping the Global
Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing module allows the
programmer to fully leverage multiple processors on a given machine. It runs on both Unix and Windows.

Warning: Some of this package’s functionality requires a functioning shared semaphore implementation on the
host operating system. Without one, the multiprocessing.synchronize module will be disabled, and
attempts to import it will result in an ImportError. See issue 3770 for additional information.

Note: Functionality within this package requires that the __main__ method be importable by the children. This is
covered in Programming guidelines however it is worth pointing out here. This means that some examples, such as
the multiprocessing.Pool examples will not work in the interactive interpreter. For example:

>>> from multiprocessing import Pool
>>> p = Pool(5)
>>> def f(x):
... return x*x
...
>>> p.map(f, [1,2,3])
Process PoolWorker-1:
Process PoolWorker-2:
Process PoolWorker-3:
Traceback (most recent call last):
AttributeError: ’module’ object has no attribute ’f’
AttributeError: ’module’ object has no attribute ’f’
AttributeError: ’module’ object has no attribute ’f’

(If you try this it will actually output three full tracebacks interleaved in a semi-random fashion, and then you may
have to stop the master process somehow.)

The Process class

In multiprocessing, processes are spawned by creating a Process object and then calling its start()
method. Process follows the API of threading.Thread. A trivial example of a multiprocess program is

from multiprocessing import Process

def f(name):
print ’hello’, name

if __name__ == ’__main__’:
p = Process(target=f, args=(’bob’,))
p.start()
p.join()

To show the individual process IDs involved, here is an expanded example:

16.6. multiprocessing — Process-based “threading” interface 535

http://bugs.python.org/issue3770

The Python Library Reference, Release 2.6.9

from multiprocessing import Process
import os

def info(title):
print title
print ’module name:’, __name__
print ’parent process:’, os.getppid()
print ’process id:’, os.getpid()

def f(name):
info(’function f’)
print ’hello’, name

if __name__ == ’__main__’:
info(’main line’)
p = Process(target=f, args=(’bob’,))
p.start()
p.join()

For an explanation of why (on Windows) the if __name__ == ’__main__’ part is necessary, see Programming
guidelines.

Exchanging objects between processes

multiprocessing supports two types of communication channel between processes:

Queues

The Queue class is a near clone of Queue.Queue. For example:

from multiprocessing import Process, Queue

def f(q):
q.put([42, None, ’hello’])

if __name__ == ’__main__’:
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, ’hello’]"
p.join()

Queues are thread and process safe.

Pipes

The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex
(two-way). For example:

from multiprocessing import Process, Pipe

def f(conn):
conn.send([42, None, ’hello’])
conn.close()

if __name__ == ’__main__’:
parent_conn, child_conn = Pipe()

536 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

p = Process(target=f, args=(child_conn,))
p.start()
print parent_conn.recv() # prints "[42, None, ’hello’]"
p.join()

The two connection objects returned by Pipe() represent the two ends of the pipe. Each connection
object has send() and recv()methods (among others). Note that data in a pipe may become corrupted
if two processes (or threads) try to read from or write to the same end of the pipe at the same time. Of
course there is no risk of corruption from processes using different ends of the pipe at the same time.

Synchronization between processes

multiprocessing contains equivalents of all the synchronization primitives from threading. For instance one
can use a lock to ensure that only one process prints to standard output at a time:

from multiprocessing import Process, Lock

def f(l, i):
l.acquire()
print ’hello world’, i
l.release()

if __name__ == ’__main__’:
lock = Lock()

for num in range(10):
Process(target=f, args=(lock, num)).start()

Without using the lock output from the different processes is liable to get all mixed up.

Sharing state between processes

As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as
possible. This is particularly true when using multiple processes.

However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing
so.

Shared memory

Data can be stored in a shared memory map using Value or Array. For example, the following code

from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927
for i in range(len(a)):

a[i] = -a[i]

if __name__ == ’__main__’:
num = Value(’d’, 0.0)
arr = Array(’i’, range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

16.6. multiprocessing — Process-based “threading” interface 537

The Python Library Reference, Release 2.6.9

print num.value
print arr[:]

will print

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

The ’d’ and ’i’ arguments used when creating num and arr are typecodes of the kind used by the
array module: ’d’ indicates a double precision float and ’i’ indicates a signed integer. These shared
objects will be process and thread safe.

For more flexibility in using shared memory one can use the multiprocessing.sharedctypes
module which supports the creation of arbitrary ctypes objects allocated from shared memory.

Server process

A manager object returned by Manager() controls a server process which holds Python objects and
allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock,
Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array. For exam-
ple,

from multiprocessing import Process, Manager

def f(d, l):
d[1] = ’1’
d[’2’] = 2
d[0.25] = None
l.reverse()

if __name__ == ’__main__’:
manager = Manager()

d = manager.dict()
l = manager.list(range(10))

p = Process(target=f, args=(d, l))
p.start()
p.join()

print d
print l

will print

{0.25: None, 1: ’1’, ’2’: 2}
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process managers are more flexible than using shared memory objects because they can be made to
support arbitrary object types. Also, a single manager can be shared by processes on different computers
over a network. They are, however, slower than using shared memory.

Using a pool of workers

The Pool class represents a pool of worker processes. It has methods which allows tasks to be offloaded to the worker
processes in a few different ways.

538 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

For example:

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == ’__main__’:
pool = Pool(processes=4) # start 4 worker processes
result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously
print result.get(timeout=1) # prints "100" unless your computer is *very* slow
print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"

16.6.2 Reference

The multiprocessing package mostly replicates the API of the threading module.

Process and exceptions

class Process([group, [target, [name, [args, [kwargs]]]]])
Process objects represent activity that is run in a separate process. The Process class has equivalents of all
the methods of threading.Thread.

The constructor should always be called with keyword arguments. group should always be None; it exists
solely for compatibility with threading.Thread. target is the callable object to be invoked by the run()
method. It defaults to None, meaning nothing is called. name is the process name. By default, a unique name
is constructed of the form ‘Process-N1:N2:...:Nk‘ where N1,N2,...,Nk is a sequence of integers whose length is
determined by the generation of the process. args is the argument tuple for the target invocation. kwargs is a
dictionary of keyword arguments for the target invocation. By default, no arguments are passed to target.

If a subclass overrides the constructor, it must make sure it invokes the base class constructor
(Process.__init__()) before doing anything else to the process.

run()
Method representing the process’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

start()
Start the process’s activity.

This must be called at most once per process object. It arranges for the object’s run() method to be
invoked in a separate process.

join([timeout])
Block the calling thread until the process whose join() method is called terminates or until the optional
timeout occurs.

If timeout is None then there is no timeout.

A process can be joined many times.

A process cannot join itself because this would cause a deadlock. It is an error to attempt to join a process
before it has been started.

16.6. multiprocessing — Process-based “threading” interface 539

The Python Library Reference, Release 2.6.9

name
The process’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple processes may be
given the same name. The initial name is set by the constructor.

is_alive()
Return whether the process is alive.

Roughly, a process object is alive from the moment the start() method returns until the child process
terminates.

daemon
The process’s daemon flag, a Boolean value. This must be set before start() is called.

The initial value is inherited from the creating process.

When a process exits, it attempts to terminate all of its daemonic child processes.

Note that a daemonic process is not allowed to create child processes. Otherwise a daemonic process
would leave its children orphaned if it gets terminated when its parent process exits. Additionally, these
are not Unix daemons or services, they are normal processes that will be terminated (and not joined) if
non-dameonic processes have exited.

In addition to the Threading.Thread API, Process objects also support the following attributes and
methods:

pid
Return the process ID. Before the process is spawned, this will be None.

exitcode
The child’s exit code. This will be None if the process has not yet terminated. A negative value -N
indicates that the child was terminated by signal N.

authkey
The process’s authentication key (a byte string).

When multiprocessing is initialized the main process is assigned a random string using
os.random().

When a Process object is created, it will inherit the authentication key of its parent process, although
this may be changed by setting authkey to another byte string.

See Authentication keys.

terminate()
Terminate the process. On Unix this is done using the SIGTERM signal; on Windows
TerminateProcess() is used. Note that exit handlers and finally clauses, etc., will not be executed.

Note that descendant processes of the process will not be terminated – they will simply become orphaned.

Warning: If this method is used when the associated process is using a pipe or queue then the pipe
or queue is liable to become corrupted and may become unusable by other process. Similarly, if the
process has acquired a lock or semaphore etc. then terminating it is liable to cause other processes to
deadlock.

Note that the start(), join(), is_alive() and exit_code methods should only be called by the
process that created the process object.

Example usage of some of the methods of Process:

>>> import multiprocessing, time, signal
>>> p = multiprocessing.Process(target=time.sleep, args=(1000,))

540 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

>>> print p, p.is_alive()
<Process(Process-1, initial)> False
>>> p.start()
>>> print p, p.is_alive()
<Process(Process-1, started)> True
>>> p.terminate()
>>> time.sleep(0.1)
>>> print p, p.is_alive()
<Process(Process-1, stopped[SIGTERM])> False
>>> p.exitcode == -signal.SIGTERM
True

exception BufferTooShort
Exception raised by Connection.recv_bytes_into() when the supplied buffer object is too small for
the message read.

If e is an instance of BufferTooShort then e.args[0] will give the message as a byte string.

Pipes and Queues

When using multiple processes, one generally uses message passing for communication between processes and avoids
having to use any synchronization primitives like locks.

For passing messages one can use Pipe() (for a connection between two processes) or a queue (which allows
multiple producers and consumers).

The Queue and JoinableQueue types are multi-producer, multi-consumer FIFO queues modelled on the
Queue.Queue class in the standard library. They differ in that Queue lacks the task_done() and join()
methods introduced into Python 2.5’s Queue.Queue class.

If you use JoinableQueue then you must call JoinableQueue.task_done() for each task removed from
the queue or else the semaphore used to count the number of unfinished tasks may eventually overflow raising an
exception.

Note that one can also create a shared queue by using a manager object – see Managers.

Note: multiprocessing uses the usual Queue.Empty and Queue.Full exceptions to signal a timeout. They
are not available in the multiprocessing namespace so you need to import them from Queue.

Warning: If a process is killed using Process.terminate() or os.kill() while it is trying to use a
Queue, then the data in the queue is likely to become corrupted. This may cause any other processes to get an
exception when it tries to use the queue later on.

Warning: As mentioned above, if a child process has put items on a queue (and it has not used
JoinableQueue.cancel_join_thread()), then that process will not terminate until all buffered items
have been flushed to the pipe.
This means that if you try joining that process you may get a deadlock unless you are sure that all items which
have been put on the queue have been consumed. Similarly, if the child process is non-daemonic then the parent
process may hang on exit when it tries to join all its non-daemonic children.
Note that a queue created using a manager does not have this issue. See Programming guidelines.

For an example of the usage of queues for interprocess communication see Examples.

Pipe([duplex])
Returns a pair (conn1, conn2) of Connection objects representing the ends of a pipe.

16.6. multiprocessing — Process-based “threading” interface 541

The Python Library Reference, Release 2.6.9

If duplex is True (the default) then the pipe is bidirectional. If duplex is False then the pipe is unidirectional:
conn1 can only be used for receiving messages and conn2 can only be used for sending messages.

class Queue([maxsize])
Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process first
puts an item on the queue a feeder thread is started which transfers objects from a buffer into the pipe.

The usual Queue.Empty and Queue.Full exceptions from the standard library’s Queue module are raised
to signal timeouts.

Queue implements all the methods of Queue.Queue except for task_done() and join().

qsize()
Return the approximate size of the queue. Because of multithreading/multiprocessing semantics, this
number is not reliable.

Note that this may raise NotImplementedError on Unix platforms like Mac OS X where
sem_getvalue() is not implemented.

empty()
Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing seman-
tics, this is not reliable.

full()
Return True if the queue is full, False otherwise. Because of multithreading/multiprocessing semantics,
this is not reliable.

put(item, [block, [timeout]])
Put item into the queue. If the optional argument block is True (the default) and timeout is None (the
default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most
timeout seconds and raises the Queue.Full exception if no free slot was available within that time.
Otherwise (block is False), put an item on the queue if a free slot is immediately available, else raise the
Queue.Full exception (timeout is ignored in that case).

put_nowait(item)
Equivalent to put(item, False).

get([block, [timeout]])
Remove and return an item from the queue. If optional args block is True (the default) and timeout is
None (the default), block if necessary until an item is available. If timeout is a positive number, it blocks
at most timeout seconds and raises the Queue.Empty exception if no item was available within that time.
Otherwise (block is False), return an item if one is immediately available, else raise the Queue.Empty
exception (timeout is ignored in that case).

get_nowait()
get_no_wait()

Equivalent to get(False).

multiprocessing.Queue has a few additional methods not found in Queue.Queue. These methods are
usually unnecessary for most code:

close()
Indicate that no more data will be put on this queue by the current process. The background thread will
quit once it has flushed all buffered data to the pipe. This is called automatically when the queue is garbage
collected.

join_thread()
Join the background thread. This can only be used after close() has been called. It blocks until the
background thread exits, ensuring that all data in the buffer has been flushed to the pipe.

542 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

By default if a process is not the creator of the queue then on exit it will attempt to join the queue’s
background thread. The process can call cancel_join_thread() to make join_thread() do
nothing.

cancel_join_thread()
Prevent join_thread() from blocking. In particular, this prevents the background thread from being
joined automatically when the process exits – see join_thread().

class JoinableQueue([maxsize])
JoinableQueue, a Queue subclass, is a queue which additionally has task_done() and join() meth-
ods.

task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get()
used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is
complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

join()
Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer thread calls task_done() to indicate that the item was retrieved and all work on
it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

Miscellaneous

active_children()
Return list of all live children of the current process.

Calling this has the side affect of “joining” any processes which have already finished.

cpu_count()
Return the number of CPUs in the system. May raise NotImplementedError.

current_process()
Return the Process object corresponding to the current process.

An analogue of threading.current_thread().

freeze_support()
Add support for when a program which uses multiprocessing has been frozen to produce a Windows
executable. (Has been tested with py2exe, PyInstaller and cx_Freeze.)

One needs to call this function straight after the if __name__ == ’__main__’ line of the main module.
For example:

from multiprocessing import Process, freeze_support

def f():
print ’hello world!’

if __name__ == ’__main__’:
freeze_support()
Process(target=f).start()

16.6. multiprocessing — Process-based “threading” interface 543

The Python Library Reference, Release 2.6.9

If the freeze_support() line is omitted then trying to run the frozen executable will raise
RuntimeError.

If the module is being run normally by the Python interpreter then freeze_support() has no effect.

set_executable()
Sets the path of the Python interpreter to use when starting a child process. (By default sys.executable is
used). Embedders will probably need to do some thing like

setExecutable(os.path.join(sys.exec_prefix, ’pythonw.exe’))

before they can create child processes. (Windows only)

Note: multiprocessing contains no analogues of threading.active_count(),
threading.enumerate(), threading.settrace(), threading.setprofile(),
threading.Timer, or threading.local.

Connection Objects

Connection objects allow the sending and receiving of picklable objects or strings. They can be thought of as message
oriented connected sockets.

Connection objects usually created using Pipe() – see also Listeners and Clients.

class Connection()

send(obj)
Send an object to the other end of the connection which should be read using recv().

The object must be picklable.

recv()
Return an object sent from the other end of the connection using send(). Raises EOFError if there is
nothing left to receive and the other end was closed.

fileno()
Returns the file descriptor or handle used by the connection.

close()
Close the connection.

This is called automatically when the connection is garbage collected.

poll([timeout])
Return whether there is any data available to be read.

If timeout is not specified then it will return immediately. If timeout is a number then this specifies the
maximum time in seconds to block. If timeout is None then an infinite timeout is used.

send_bytes(buffer, [offset, [size]])
Send byte data from an object supporting the buffer interface as a complete message.

If offset is given then data is read from that position in buffer. If size is given then that many bytes will be
read from buffer.

recv_bytes([maxlength])
Return a complete message of byte data sent from the other end of the connection as a string. Raises
EOFError if there is nothing left to receive and the other end has closed.

If maxlength is specified and the message is longer than maxlength then IOError is raised and the con-
nection will no longer be readable.

544 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

recv_bytes_into(buffer, [offset])
Read into buffer a complete message of byte data sent from the other end of the connection and return the
number of bytes in the message. Raises EOFError if there is nothing left to receive and the other end
was closed.

buffer must be an object satisfying the writable buffer interface. If offset is given then the message will
be written into the buffer from that position. Offset must be a non-negative integer less than the length of
buffer (in bytes).

If the buffer is too short then a BufferTooShort exception is raised and the complete message is
available as e.args[0] where e is the exception instance.

For example:

>>> from multiprocessing import Pipe
>>> a, b = Pipe()
>>> a.send([1, ’hello’, None])
>>> b.recv()
[1, ’hello’, None]
>>> b.send_bytes(’thank you’)
>>> a.recv_bytes()
’thank you’
>>> import array
>>> arr1 = array.array(’i’, range(5))
>>> arr2 = array.array(’i’, [0] * 10)
>>> a.send_bytes(arr1)
>>> count = b.recv_bytes_into(arr2)
>>> assert count == len(arr1) * arr1.itemsize
>>> arr2
array(’i’, [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])

Warning: The Connection.recv() method automatically unpickles the data it receives, which can be a
security risk unless you can trust the process which sent the message.
Therefore, unless the connection object was produced using Pipe() you should only use the recv() and
send() methods after performing some sort of authentication. See Authentication keys.

Warning: If a process is killed while it is trying to read or write to a pipe then the data in the pipe is likely to
become corrupted, because it may become impossible to be sure where the message boundaries lie.

Synchronization primitives

Generally synchronization primitives are not as necessary in a multiprocess program as they are in a multithreaded
program. See the documentation for threading module.

Note that one can also create synchronization primitives by using a manager object – see Managers.

class BoundedSemaphore([value])
A bounded semaphore object: a clone of threading.BoundedSemaphore.

(On Mac OS X, this is indistinguishable from Semaphore because sem_getvalue() is not implemented
on that platform).

class Condition([lock])
A condition variable: a clone of threading.Condition.

If lock is specified then it should be a Lock or RLock object from multiprocessing.

16.6. multiprocessing — Process-based “threading” interface 545

The Python Library Reference, Release 2.6.9

class Event()
A clone of threading.Event.

class Lock()
A non-recursive lock object: a clone of threading.Lock.

class RLock()
A recursive lock object: a clone of threading.RLock.

class Semaphore([value])
A bounded semaphore object: a clone of threading.Semaphore.

Note: The acquire() method of BoundedSemaphore, Lock, RLock and Semaphore has a time-
out parameter not supported by the equivalents in threading. The signature is acquire(block=True,
timeout=None) with keyword parameters being acceptable. If block is True and timeout is not None then it
specifies a timeout in seconds. If block is False then timeout is ignored.

On Mac OS X, sem_timedwait is unsupported, so calling acquire() with a timeout will emulate that function’s
behavior using a sleeping loop.

Note: If the SIGINT signal generated by Ctrl-C arrives while the main thread is blocked by a call to
BoundedSemaphore.acquire(), Lock.acquire(), RLock.acquire(), Semaphore.acquire(),
Condition.acquire() or Condition.wait() then the call will be immediately interrupted and
KeyboardInterrupt will be raised.

This differs from the behaviour of threading where SIGINT will be ignored while the equivalent blocking calls are
in progress.

Shared ctypes Objects

It is possible to create shared objects using shared memory which can be inherited by child processes.

Value(typecode_or_type, *args, [lock])
Return a ctypes object allocated from shared memory. By default the return value is actually a synchronized
wrapper for the object.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character typecode
of the kind used by the array module. *args is passed on to the constructor for the type.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword-only argument.

Array(typecode_or_type, size_or_initializer, *, lock=True)
Return a ctypes array allocated from shared memory. By default the return value is actually a synchronized
wrapper for the array.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a one
character typecode of the kind used by the array module. If size_or_initializer is an integer, then it determines
the length of the array, and the array will be initially zeroed. Otherwise, size_or_initializer is a sequence which
is used to initialize the array and whose length determines the length of the array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword only argument.

546 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and
retrieve strings.

The multiprocessing.sharedctypes module

The multiprocessing.sharedctypes module provides functions for allocating ctypes objects from shared
memory which can be inherited by child processes.

Note: Although it is possible to store a pointer in shared memory remember that this will refer to a location in the
address space of a specific process. However, the pointer is quite likely to be invalid in the context of a second process
and trying to dereference the pointer from the second process may cause a crash.

RawArray(typecode_or_type, size_or_initializer)
Return a ctypes array allocated from shared memory.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a one
character typecode of the kind used by the array module. If size_or_initializer is an integer then it determines
the length of the array, and the array will be initially zeroed. Otherwise size_or_initializer is a sequence which
is used to initialize the array and whose length determines the length of the array.

Note that setting and getting an element is potentially non-atomic – use Array() instead to make sure that
access is automatically synchronized using a lock.

RawValue(typecode_or_type, *args)
Return a ctypes object allocated from shared memory.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character typecode
of the kind used by the array module. *args is passed on to the constructor for the type.

Note that setting and getting the value is potentially non-atomic – use Value() instead to make sure that access
is automatically synchronized using a lock.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and
retrieve strings – see documentation for ctypes.

Array(typecode_or_type, size_or_initializer, *args, [lock])
The same as RawArray() except that depending on the value of lock a process-safe synchronization wrapper
may be returned instead of a raw ctypes array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword-only argument.

Value(typecode_or_type, *args, [lock])
The same as RawValue() except that depending on the value of lock a process-safe synchronization wrapper
may be returned instead of a raw ctypes object.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword-only argument.

copy(obj)
Return a ctypes object allocated from shared memory which is a copy of the ctypes object obj.

synchronized(obj, [lock])
Return a process-safe wrapper object for a ctypes object which uses lock to synchronize access. If lock is None
(the default) then a multiprocessing.RLock object is created automatically.

16.6. multiprocessing — Process-based “threading” interface 547

The Python Library Reference, Release 2.6.9

A synchronized wrapper will have two methods in addition to those of the object it wraps: get_obj() returns
the wrapped object and get_lock() returns the lock object used for synchronization.

Note that accessing the ctypes object through the wrapper can be a lot slower than accessing the raw ctypes
object.

The table below compares the syntax for creating shared ctypes objects from shared memory with the normal ctypes
syntax. (In the table MyStruct is some subclass of ctypes.Structure.)

ctypes sharedctypes using type sharedctypes using typecode
c_double(2.4) RawValue(c_double, 2.4) RawValue(‘d’, 2.4)
MyStruct(4, 6) RawValue(MyStruct, 4, 6)
(c_short * 7)() RawArray(c_short, 7) RawArray(‘h’, 7)
(c_int * 3)(9, 2, 8) RawArray(c_int, (9, 2, 8)) RawArray(‘i’, (9, 2, 8))

Below is an example where a number of ctypes objects are modified by a child process:

from multiprocessing import Process, Lock
from multiprocessing.sharedctypes import Value, Array
from ctypes import Structure, c_double

class Point(Structure):
fields = [(’x’, c_double), (’y’, c_double)]

def modify(n, x, s, A):
n.value **= 2
x.value **= 2
s.value = s.value.upper()
for a in A:

a.x **= 2
a.y **= 2

if __name__ == ’__main__’:
lock = Lock()

n = Value(’i’, 7)
x = Value(c_double, 1.0/3.0, lock=False)
s = Array(’c’, ’hello world’, lock=lock)
A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)

p = Process(target=modify, args=(n, x, s, A))
p.start()
p.join()

print n.value
print x.value
print s.value
print [(a.x, a.y) for a in A]

The results printed are

49
0.1111111111111111
HELLO WORLD
[(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]

548 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

Managers

Managers provide a way to create data which can be shared between different processes. A manager object controls a
server process which manages shared objects. Other processes can access the shared objects by using proxies.

Manager()
Returns a started SyncManager object which can be used for sharing objects between processes. The returned
manager object corresponds to a spawned child process and has methods which will create shared objects and
return corresponding proxies.

Manager processes will be shutdown as soon as they are garbage collected or their parent process exits. The manager
classes are defined in the multiprocessing.managers module:

class BaseManager([address, [authkey]])
Create a BaseManager object.

Once created one should call start() or get_server().serve_forever() to ensure that the manager
object refers to a started manager process.

address is the address on which the manager process listens for new connections. If address is None then an
arbitrary one is chosen.

authkey is the authentication key which will be used to check the validity of incoming connections to the server
process. If authkey is None then current_process().authkey. Otherwise authkey is used and it must
be a string.

start()
Start a subprocess to start the manager.

get_server()
Returns a Server object which represents the actual server under the control of the Manager. The
Server object supports the serve_forever() method:

>>> from multiprocessing.managers import BaseManager
>>> manager = BaseManager(address=(’’, 50000), authkey=’abc’)
>>> server = manager.get_server()
>>> server.serve_forever()

Server additionally has an address attribute.

connect()
Connect a local manager object to a remote manager process:

>>> from multiprocessing.managers import BaseManager
>>> m = BaseManager(address=(’127.0.0.1’, 5000), authkey=’abc’)
>>> m.connect()

shutdown()
Stop the process used by the manager. This is only available if start() has been used to start the server
process.

This can be called multiple times.

register(typeid, [callable, [proxytype, [exposed, [method_to_typeid, [create_method]]]]])
A classmethod which can be used for registering a type or callable with the manager class.

typeid is a “type identifier” which is used to identify a particular type of shared object. This must be a
string.

16.6. multiprocessing — Process-based “threading” interface 549

The Python Library Reference, Release 2.6.9

callable is a callable used for creating objects for this type identifier. If a manager instance will be created
using the from_address() classmethod or if the create_method argument is False then this can be
left as None.

proxytype is a subclass of BaseProxy which is used to create proxies for shared objects with this typeid.
If None then a proxy class is created automatically.

exposed is used to specify a sequence of method names which proxies for this typeid should be allowed to
access using BaseProxy._callMethod(). (If exposed is None then proxytype._exposed_ is
used instead if it exists.) In the case where no exposed list is specified, all “public methods” of the shared
object will be accessible. (Here a “public method” means any attribute which has a __call__() method
and whose name does not begin with ’_’.)

method_to_typeid is a mapping used to specify the return type of those exposed methods which
should return a proxy. It maps method names to typeid strings. (If method_to_typeid is None then
proxytype._method_to_typeid_ is used instead if it exists.) If a method’s name is not a key
of this mapping or if the mapping is None then the object returned by the method will be copied by value.

create_method determines whether a method should be created with name typeid which can be used to tell
the server process to create a new shared object and return a proxy for it. By default it is True.

BaseManager instances also have one read-only property:

address
The address used by the manager.

class SyncManager()
A subclass of BaseManager which can be used for the synchronization of processes. Objects of this type are
returned by multiprocessing.Manager().

It also supports creation of shared lists and dictionaries.

BoundedSemaphore([value])
Create a shared threading.BoundedSemaphore object and return a proxy for it.

Condition([lock])
Create a shared threading.Condition object and return a proxy for it.

If lock is supplied then it should be a proxy for a threading.Lock or threading.RLock object.

Event()
Create a shared threading.Event object and return a proxy for it.

Lock()
Create a shared threading.Lock object and return a proxy for it.

Namespace()
Create a shared Namespace object and return a proxy for it.

Queue([maxsize])
Create a shared Queue.Queue object and return a proxy for it.

RLock()
Create a shared threading.RLock object and return a proxy for it.

Semaphore([value])
Create a shared threading.Semaphore object and return a proxy for it.

Array(typecode, sequence)
Create an array and return a proxy for it.

Value(typecode, value)
Create an object with a writable value attribute and return a proxy for it.

550 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

dict()
dict(mapping)
dict(sequence)

Create a shared dict object and return a proxy for it.

list()
list(sequence)

Create a shared list object and return a proxy for it.

Namespace objects

A namespace object has no public methods, but does have writable attributes. Its representation shows the values of
its attributes.

However, when using a proxy for a namespace object, an attribute beginning with ’_’ will be an attribute of the proxy
and not an attribute of the referent:

>>> manager = multiprocessing.Manager()
>>> Global = manager.Namespace()
>>> Global.x = 10
>>> Global.y = ’hello’
>>> Global._z = 12.3 # this is an attribute of the proxy
>>> print Global
Namespace(x=10, y=’hello’)

Customized managers

To create one’s own manager, one creates a subclass of BaseManager and use the register() classmethod to
register new types or callables with the manager class. For example:

from multiprocessing.managers import BaseManager

class MathsClass(object):
def add(self, x, y):

return x + y
def mul(self, x, y):

return x * y

class MyManager(BaseManager):
pass

MyManager.register(’Maths’, MathsClass)

if __name__ == ’__main__’:
manager = MyManager()
manager.start()
maths = manager.Maths()
print maths.add(4, 3) # prints 7
print maths.mul(7, 8) # prints 56

16.6. multiprocessing — Process-based “threading” interface 551

The Python Library Reference, Release 2.6.9

Using a remote manager

It is possible to run a manager server on one machine and have clients use it from other machines (assuming that the
firewalls involved allow it).

Running the following commands creates a server for a single shared queue which remote clients can access:

>>> from multiprocessing.managers import BaseManager
>>> import Queue
>>> queue = Queue.Queue()
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register(’get_queue’, callable=lambda:queue)
>>> m = QueueManager(address=(’’, 50000), authkey=’abracadabra’)
>>> s = m.get_server()
>>> s.serve_forever()

One client can access the server as follows:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register(’get_queue’)
>>> m = QueueManager(address=(’foo.bar.org’, 50000), authkey=’abracadabra’)
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.put(’hello’)

Another client can also use it:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register(’get_queue’)
>>> m = QueueManager(address=(’foo.bar.org’, 50000), authkey=’abracadabra’)
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.get()
’hello’

Local processes can also access that queue, using the code from above on the client to access it remotely:

>>> from multiprocessing import Process, Queue
>>> from multiprocessing.managers import BaseManager
>>> class Worker(Process):
... def __init__(self, q):
... self.q = q
... super(Worker, self).__init__()
... def run(self):
... self.q.put(’local hello’)
...
>>> queue = Queue()
>>> w = Worker(queue)
>>> w.start()
>>> class QueueManager(BaseManager): pass
...
>>> QueueManager.register(’get_queue’, callable=lambda: queue)
>>> m = QueueManager(address=(’’, 50000), authkey=’abracadabra’)
>>> s = m.get_server()
>>> s.serve_forever()

552 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

Proxy Objects

A proxy is an object which refers to a shared object which lives (presumably) in a different process. The shared object
is said to be the referent of the proxy. Multiple proxy objects may have the same referent.

A proxy object has methods which invoke corresponding methods of its referent (although not every method of the
referent will necessarily be available through the proxy). A proxy can usually be used in most of the same ways that
its referent can:

>>> from multiprocessing import Manager
>>> manager = Manager()
>>> l = manager.list([i*i for i in range(10)])
>>> print l
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> print repr(l)
<ListProxy object, typeid ’list’ at 0x...>
>>> l[4]
16
>>> l[2:5]
[4, 9, 16]

Notice that applying str() to a proxy will return the representation of the referent, whereas applying repr() will
return the representation of the proxy.

An important feature of proxy objects is that they are picklable so they can be passed between processes. Note,
however, that if a proxy is sent to the corresponding manager’s process then unpickling it will produce the referent
itself. This means, for example, that one shared object can contain a second:

>>> a = manager.list()
>>> b = manager.list()
>>> a.append(b) # referent of a now contains referent of b
>>> print a, b
[[]] []
>>> b.append(’hello’)
>>> print a, b
[[’hello’]] [’hello’]

Note: The proxy types in multiprocessing do nothing to support comparisons by value. So, for instance, we
have:

>>> manager.list([1,2,3]) == [1,2,3]
False

One should just use a copy of the referent instead when making comparisons.

class BaseProxy()
Proxy objects are instances of subclasses of BaseProxy.

_callmethod(methodname, [args, [kwds]])
Call and return the result of a method of the proxy’s referent.

If proxy is a proxy whose referent is obj then the expression

proxy._callmethod(methodname, args, kwds)

will evaluate the expression

getattr(obj, methodname)(*args, **kwds)

16.6. multiprocessing — Process-based “threading” interface 553

The Python Library Reference, Release 2.6.9

in the manager’s process.

The returned value will be a copy of the result of the call or a proxy to a new shared object – see documen-
tation for the method_to_typeid argument of BaseManager.register().

If an exception is raised by the call, then then is re-raised by _callmethod(). If some other exception
is raised in the manager’s process then this is converted into a RemoteError exception and is raised by
_callmethod().

Note in particular that an exception will be raised if methodname has not been exposed

An example of the usage of _callmethod():

>>> l = manager.list(range(10))
>>> l._callmethod(’__len__’)
10
>>> l._callmethod(’__getslice__’, (2, 7)) # equiv to ‘l[2:7]‘
[2, 3, 4, 5, 6]
>>> l._callmethod(’__getitem__’, (20,)) # equiv to ‘l[20]‘
Traceback (most recent call last):
...
IndexError: list index out of range

_getvalue()
Return a copy of the referent.

If the referent is unpicklable then this will raise an exception.

__repr__()
Return a representation of the proxy object.

__str__()
Return the representation of the referent.

Cleanup

A proxy object uses a weakref callback so that when it gets garbage collected it deregisters itself from the manager
which owns its referent.

A shared object gets deleted from the manager process when there are no longer any proxies referring to it.

Process Pools

One can create a pool of processes which will carry out tasks submitted to it with the Pool class.

class Pool([processes, [initializer, [initargs]]])
A process pool object which controls a pool of worker processes to which jobs can be submitted. It supports
asynchronous results with timeouts and callbacks and has a parallel map implementation.

processes is the number of worker processes to use. If processes is None then the number re-
turned by cpu_count() is used. If initializer is not None then each worker process will call
initializer(*initargs) when it starts.

apply(func, [args, [kwds]])
Equivalent of the apply() built-in function. It blocks till the result is ready. Given this blocks,
apply_async() is better suited for performing work in parallel. Additionally, the passed in function is
only executed in one of the workers of the pool.

554 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

apply_async(func, [args, [kwds, [callback]]])
A variant of the apply() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the result
becomes ready callback is applied to it (unless the call failed). callback should complete immediately
since otherwise the thread which handles the results will get blocked.

map(func, iterable, [chunksize])
A parallel equivalent of the map() built-in function (it supports only one iterable argument though). It
blocks till the result is ready.

This method chops the iterable into a number of chunks which it submits to the process pool as separate
tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer.

map_async(func, iterable, [chunksize, [callback]])
A variant of the map() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the result
becomes ready callback is applied to it (unless the call failed). callback should complete immediately
since otherwise the thread which handles the results will get blocked.

imap(func, iterable, [chunksize])
An equivalent of itertools.imap().

The chunksize argument is the same as the one used by the map() method. For very long iterables using
a large value for chunksize can make make the job complete much faster than using the default value of 1.

Also if chunksize is 1 then the next() method of the iterator returned by the imap() method has an
optional timeout parameter: next(timeout) will raise multiprocessing.TimeoutError if the
result cannot be returned within timeout seconds.

imap_unordered(func, iterable, [chunksize])
The same as imap() except that the ordering of the results from the returned iterator should be considered
arbitrary. (Only when there is only one worker process is the order guaranteed to be “correct”.)

close()
Prevents any more tasks from being submitted to the pool. Once all the tasks have been completed the
worker processes will exit.

terminate()
Stops the worker processes immediately without completing outstanding work. When the pool object is
garbage collected terminate() will be called immediately.

join()
Wait for the worker processes to exit. One must call close() or terminate() before using join().

class AsyncResult()
The class of the result returned by Pool.apply_async() and Pool.map_async().

get([timeout])
Return the result when it arrives. If timeout is not None and the result does not arrive within timeout
seconds then multiprocessing.TimeoutError is raised. If the remote call raised an exception
then that exception will be reraised by get().

wait([timeout])
Wait until the result is available or until timeout seconds pass.

ready()
Return whether the call has completed.

16.6. multiprocessing — Process-based “threading” interface 555

The Python Library Reference, Release 2.6.9

successful()
Return whether the call completed without raising an exception. Will raise AssertionError if the
result is not ready.

The following example demonstrates the use of a pool:

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == ’__main__’:
pool = Pool(processes=4) # start 4 worker processes

result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously
print result.get(timeout=1) # prints "100" unless your computer is *very* slow

print pool.map(f, range(10)) # prints "[0, 1, 4,..., 81]"

it = pool.imap(f, range(10))
print it.next() # prints "0"
print it.next() # prints "1"
print it.next(timeout=1) # prints "4" unless your computer is *very* slow

import time
result = pool.apply_async(time.sleep, (10,))
print result.get(timeout=1) # raises TimeoutError

Listeners and Clients

Usually message passing between processes is done using queues or by using Connection objects returned by
Pipe().

However, the multiprocessing.connection module allows some extra flexibility. It basically gives a high
level message oriented API for dealing with sockets or Windows named pipes, and also has support for digest authen-
tication using the hmac module.

deliver_challenge(connection, authkey)
Send a randomly generated message to the other end of the connection and wait for a reply.

If the reply matches the digest of the message using authkey as the key then a welcome message is sent to the
other end of the connection. Otherwise AuthenticationError is raised.

answerChallenge(connection, authkey)
Receive a message, calculate the digest of the message using authkey as the key, and then send the digest back.

If a welcome message is not received, then AuthenticationError is raised.

Client(address, [family, [authenticate, [authkey]]])
Attempt to set up a connection to the listener which is using address address, returning a Connection.

The type of the connection is determined by family argument, but this can generally be omitted since it can
usually be inferred from the format of address. (See Address Formats)

If authenticate is True or authkey is a string then digest authentication is used. The key used for authentication
will be either authkey or current_process().authkey) if authkey is None. If authentication fails then
AuthenticationError is raised. See Authentication keys.

556 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

class Listener([address, [family, [backlog, [authenticate, [authkey]]]]])
A wrapper for a bound socket or Windows named pipe which is ‘listening’ for connections.

address is the address to be used by the bound socket or named pipe of the listener object.

Note: If an address of ‘0.0.0.0’ is used, the address will not be a connectable end point on Windows. If you
require a connectable end-point, you should use ‘127.0.0.1’.

family is the type of socket (or named pipe) to use. This can be one of the strings ’AF_INET’ (for a TCP
socket), ’AF_UNIX’ (for a Unix domain socket) or ’AF_PIPE’ (for a Windows named pipe). Of these only
the first is guaranteed to be available. If family is None then the family is inferred from the format of address.
If address is also None then a default is chosen. This default is the family which is assumed to be the fastest
available. See Address Formats. Note that if family is ’AF_UNIX’ and address is None then the socket will be
created in a private temporary directory created using tempfile.mkstemp().

If the listener object uses a socket then backlog (1 by default) is passed to the listen() method of the socket
once it has been bound.

If authenticate is True (False by default) or authkey is not None then digest authentication is used.

If authkey is a string then it will be used as the authentication key; otherwise it must be None.

If authkey is None and authenticate is True then current_process().authkey is used as the authenti-
cation key. If authkey is None and authenticate is False then no authentication is done. If authentication fails
then AuthenticationError is raised. See Authentication keys.

accept()
Accept a connection on the bound socket or named pipe of the listener object and return a Connection
object. If authentication is attempted and fails, then AuthenticationError is raised.

close()
Close the bound socket or named pipe of the listener object. This is called automatically when the listener
is garbage collected. However it is advisable to call it explicitly.

Listener objects have the following read-only properties:

address
The address which is being used by the Listener object.

last_accepted
The address from which the last accepted connection came. If this is unavailable then it is None.

The module defines two exceptions:

exception AuthenticationError
Exception raised when there is an authentication error.

Examples

The following server code creates a listener which uses ’secret password’ as an authentication key. It then
waits for a connection and sends some data to the client:

from multiprocessing.connection import Listener
from array import array

address = (’localhost’, 6000) # family is deduced to be ’AF_INET’
listener = Listener(address, authkey=’secret password’)

conn = listener.accept()
print ’connection accepted from’, listener.last_accepted

conn.send([2.25, None, ’junk’, float])

16.6. multiprocessing — Process-based “threading” interface 557

The Python Library Reference, Release 2.6.9

conn.send_bytes(’hello’)

conn.send_bytes(array(’i’, [42, 1729]))

conn.close()
listener.close()

The following code connects to the server and receives some data from the server:

from multiprocessing.connection import Client
from array import array

address = (’localhost’, 6000)
conn = Client(address, authkey=’secret password’)

print conn.recv() # => [2.25, None, ’junk’, float]

print conn.recv_bytes() # => ’hello’

arr = array(’i’, [0, 0, 0, 0, 0])
print conn.recv_bytes_into(arr) # => 8
print arr # => array(’i’, [42, 1729, 0, 0, 0])

conn.close()

Address Formats

• An ’AF_INET’ address is a tuple of the form (hostname, port) where hostname is a string and port is
an integer.

• An ’AF_UNIX’ address is a string representing a filename on the filesystem.

• An ’AF_PIPE’ address is a string of the form ‘r’\\.\pipe\PipeName’’. To use Client() to con-
nect to a named pipe on a remote computer called ServerName one should use an address of the form
‘r’\\ServerName\pipe\PipeName’’ instead.

Note that any string beginning with two backslashes is assumed by default to be an ’AF_PIPE’ address rather than
an ’AF_UNIX’ address.

Authentication keys

When one uses Connection.recv(), the data received is automatically unpickled. Unfortunately unpickling data
from an untrusted source is a security risk. Therefore Listener and Client() use the hmac module to provide
digest authentication.

An authentication key is a string which can be thought of as a password: once a connection is established both ends
will demand proof that the other knows the authentication key. (Demonstrating that both ends are using the same key
does not involve sending the key over the connection.)

If authentication is requested but do authentication key is specified then the return value of
current_process().authkey is used (see Process). This value will automatically inherited by any
Process object that the current process creates. This means that (by default) all processes of a multi-process
program will share a single authentication key which can be used when setting up connections between themselves.

Suitable authentication keys can also be generated by using os.urandom().

558 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

Logging

Some support for logging is available. Note, however, that the logging package does not use process shared locks
so it is possible (depending on the handler type) for messages from different processes to get mixed up.

get_logger()
Returns the logger used by multiprocessing. If necessary, a new one will be created.

When first created the logger has level logging.NOTSET and no default handler. Messages sent to this logger
will not by default propagate to the root logger.

Note that on Windows child processes will only inherit the level of the parent process’s logger – any other
customization of the logger will not be inherited.

log_to_stderr()
This function performs a call to get_logger() but in addition to returning the logger cre-
ated by get_logger, it adds a handler which sends output to sys.stderr using format
’[%(levelname)s/%(processName)s] %(message)s’.

Below is an example session with logging turned on:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(logging.INFO)
>>> logger.warning(’doomed’)
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at ’/.../listener-...’
>>> del m
[INFO/MainProcess] sending shutdown message to manager
[INFO/SyncManager-...] manager exiting with exitcode 0

In addition to having these two logging functions, the multiprocessing also exposes two additional logging level
attributes. These are SUBWARNING and SUBDEBUG. The table below illustrates where theses fit in the normal level
hierarchy.

Level Numeric value
SUBWARNING 25
SUBDEBUG 5

For a full table of logging levels, see the logging module.

These additional logging levels are used primarily for certain debug messages within the multiprocessing module.
Below is the same example as above, except with SUBDEBUG enabled:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(multiprocessing.SUBDEBUG)
>>> logger.warning(’doomed’)
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at ’/.../pymp-djGBXN/listener-...’
>>> del m
[SUBDEBUG/MainProcess] finalizer calling ...
[INFO/MainProcess] sending shutdown message to manager

16.6. multiprocessing — Process-based “threading” interface 559

The Python Library Reference, Release 2.6.9

[DEBUG/SyncManager-...] manager received shutdown message
[SUBDEBUG/SyncManager-...] calling <Finalize object, callback=unlink, ...
[SUBDEBUG/SyncManager-...] finalizer calling <built-in function unlink> ...
[SUBDEBUG/SyncManager-...] calling <Finalize object, dead>
[SUBDEBUG/SyncManager-...] finalizer calling <function rmtree at 0x5aa730> ...
[INFO/SyncManager-...] manager exiting with exitcode 0

The multiprocessing.dummy module

multiprocessing.dummy replicates the API of multiprocessing but is no more than a wrapper around the
threading module.

16.6.3 Programming guidelines

There are certain guidelines and idioms which should be adhered to when using multiprocessing.

All platforms

Avoid shared state

As far as possible one should try to avoid shifting large amounts of data between processes.

It is probably best to stick to using queues or pipes for communication between processes rather than
using the lower level synchronization primitives from the threading module.

Picklability

Ensure that the arguments to the methods of proxies are picklable.

Thread safety of proxies

Do not use a proxy object from more than one thread unless you protect it with a lock.

(There is never a problem with different processes using the same proxy.)

Joining zombie processes

On Unix when a process finishes but has not been joined it becomes a zombie. There should never
be very many because each time a new process starts (or active_children() is called) all com-
pleted processes which have not yet been joined will be joined. Also calling a finished process’s
Process.is_alive() will join the process. Even so it is probably good practice to explicitly join all
the processes that you start.

Better to inherit than pickle/unpickle

On Windows many types from multiprocessing need to be picklable so that child processes can
use them. However, one should generally avoid sending shared objects to other processes using pipes or
queues. Instead you should arrange the program so that a process which need access to a shared resource
created elsewhere can inherit it from an ancestor process.

Avoid terminating processes

Using the Process.terminate() method to stop a process is liable to cause any shared resources
(such as locks, semaphores, pipes and queues) currently being used by the process to become broken or
unavailable to other processes.

Therefore it is probably best to only consider using Process.terminate() on processes which never
use any shared resources.

560 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

Joining processes that use queues

Bear in mind that a process that has put items in a queue will wait before terminating until all the
buffered items are fed by the “feeder” thread to the underlying pipe. (The child process can call the
Queue.cancel_join_thread() method of the queue to avoid this behaviour.)

This means that whenever you use a queue you need to make sure that all items which have been put
on the queue will eventually be removed before the process is joined. Otherwise you cannot be sure that
processes which have put items on the queue will terminate. Remember also that non-daemonic processes
will be automatically be joined.

An example which will deadlock is the following:

from multiprocessing import Process, Queue

def f(q):
q.put(’X’ * 1000000)

if __name__ == ’__main__’:
queue = Queue()
p = Process(target=f, args=(queue,))
p.start()
p.join() # this deadlocks
obj = queue.get()

A fix here would be to swap the last two lines round (or simply remove the p.join() line).

Explicitly pass resources to child processes

On Unix a child process can make use of a shared resource created in a parent process using a global
resource. However, it is better to pass the object as an argument to the constructor for the child process.

Apart from making the code (potentially) compatible with Windows this also ensures that as long as the
child process is still alive the object will not be garbage collected in the parent process. This might be
important if some resource is freed when the object is garbage collected in the parent process.

So for instance

from multiprocessing import Process, Lock

def f():
... do something using "lock" ...

if __name__ == ’__main__’:
lock = Lock()
for i in range(10):

Process(target=f).start()

should be rewritten as

from multiprocessing import Process, Lock

def f(l):
... do something using "l" ...

if __name__ == ’__main__’:
lock = Lock()
for i in range(10):

Process(target=f, args=(lock,)).start()

16.6. multiprocessing — Process-based “threading” interface 561

The Python Library Reference, Release 2.6.9

Beware replacing sys.stdin with a “file like object”

multiprocessing originally unconditionally called:

os.close(sys.stdin.fileno())

in the multiprocessing.Process._bootstrap() method — this resulted in issues with
processes-in-processes. This has been changed to:

sys.stdin.close()
sys.stdin = open(os.devnull)

Which solves the fundamental issue of processes colliding with each other resulting in a bad file descriptor
error, but introduces a potential danger to applications which replace sys.stdin() with a “file-like
object” with output buffering. This danger is that if multiple processes call close() on this file-like
object, it could result in the same data being flushed to the object multiple times, resulting in corruption.

If you write a file-like object and implement your own caching, you can make it fork-safe by storing the
pid whenever you append to the cache, and discarding the cache when the pid changes. For example:

@property
def cache(self):

pid = os.getpid()
if pid != self._pid:

self._pid = pid
self._cache = []

return self._cache

For more information, see issue 5155, issue 5313 and issue 5331

Windows

Since Windows lacks os.fork() it has a few extra restrictions:

More picklability

Ensure that all arguments to Process.__init__() are picklable. This means, in particular, that
bound or unbound methods cannot be used directly as the target argument on Windows — just define
a function and use that instead.

Also, if you subclass Process then make sure that instances will be picklable when the
Process.start() method is called.

Global variables

Bear in mind that if code run in a child process tries to access a global variable, then the value it sees (if
any) may not be the same as the value in the parent process at the time that Process.start() was
called.

However, global variables which are just module level constants cause no problems.

Safe importing of main module

Make sure that the main module can be safely imported by a new Python interpreter without causing
unintended side effects (such a starting a new process).

For example, under Windows running the following module would fail with a RuntimeError:

from multiprocessing import Process

def foo():
print ’hello’

562 Chapter 16. Optional Operating System Services

http://bugs.python.org/issue5155
http://bugs.python.org/issue5313
http://bugs.python.org/issue5331

The Python Library Reference, Release 2.6.9

p = Process(target=foo)
p.start()

Instead one should protect the “entry point” of the program by using if __name__ ==
’__main__’: as follows:

from multiprocessing import Process, freeze_support

def foo():
print ’hello’

if __name__ == ’__main__’:
freeze_support()
p = Process(target=foo)
p.start()

(The freeze_support() line can be omitted if the program will be run normally instead of frozen.)

This allows the newly spawned Python interpreter to safely import the module and then run the module’s
foo() function.

Similar restrictions apply if a pool or manager is created in the main module.

16.6.4 Examples

Demonstration of how to create and use customized managers and proxies:

#
This module shows how to use arbitrary callables with a subclass of
‘BaseManager‘.
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

from multiprocessing import freeze_support
from multiprocessing.managers import BaseManager, BaseProxy
import operator

##

class Foo(object):
def f(self):

print ’you called Foo.f()’
def g(self):

print ’you called Foo.g()’
def _h(self):

print ’you called Foo._h()’

A simple generator function
def baz():

for i in xrange(10):
yield i*i

Proxy type for generator objects

16.6. multiprocessing — Process-based “threading” interface 563

The Python Library Reference, Release 2.6.9

class GeneratorProxy(BaseProxy):
exposed = (’next’, ’__next__’)
def __iter__(self):

return self
def next(self):

return self._callmethod(’next’)
def __next__(self):

return self._callmethod(’__next__’)

Function to return the operator module
def get_operator_module():

return operator

##

class MyManager(BaseManager):
pass

register the Foo class; make ‘f()‘ and ‘g()‘ accessible via proxy
MyManager.register(’Foo1’, Foo)

register the Foo class; make ‘g()‘ and ‘_h()‘ accessible via proxy
MyManager.register(’Foo2’, Foo, exposed=(’g’, ’_h’))

register the generator function baz; use ‘GeneratorProxy‘ to make proxies
MyManager.register(’baz’, baz, proxytype=GeneratorProxy)

register get_operator_module(); make public functions accessible via proxy
MyManager.register(’operator’, get_operator_module)

##

def test():
manager = MyManager()
manager.start()

print ’-’ * 20

f1 = manager.Foo1()
f1.f()
f1.g()
assert not hasattr(f1, ’_h’)
assert sorted(f1._exposed_) == sorted([’f’, ’g’])

print ’-’ * 20

f2 = manager.Foo2()
f2.g()
f2._h()
assert not hasattr(f2, ’f’)
assert sorted(f2._exposed_) == sorted([’g’, ’_h’])

print ’-’ * 20

564 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

it = manager.baz()
for i in it:

print ’<%d>’ % i,
print

print ’-’ * 20

op = manager.operator()
print ’op.add(23, 45) =’, op.add(23, 45)
print ’op.pow(2, 94) =’, op.pow(2, 94)
print ’op.getslice(range(10), 2, 6) =’, op.getslice(range(10), 2, 6)
print ’op.repeat(range(5), 3) =’, op.repeat(range(5), 3)
print ’op._exposed_ =’, op._exposed_

##

if __name__ == ’__main__’:
freeze_support()
test()

Using Pool:

#
A test of ‘multiprocessing.Pool‘ class
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import multiprocessing
import time
import random
import sys

#
Functions used by test code
#

def calculate(func, args):
result = func(*args)
return ’%s says that %s%s = %s’ % (

multiprocessing.current_process().name,
func.__name__, args, result
)

def calculatestar(args):
return calculate(*args)

def mul(a, b):
time.sleep(0.5*random.random())
return a * b

def plus(a, b):
time.sleep(0.5*random.random())
return a + b

16.6. multiprocessing — Process-based “threading” interface 565

The Python Library Reference, Release 2.6.9

def f(x):
return 1.0 / (x-5.0)

def pow3(x):
return x**3

def noop(x):
pass

#
Test code
#

def test():
print ’cpu_count() = %d\n’ % multiprocessing.cpu_count()

#
Create pool
#

PROCESSES = 4
print ’Creating pool with %d processes\n’ % PROCESSES
pool = multiprocessing.Pool(PROCESSES)
print ’pool = %s’ % pool
print

#
Tests
#

TASKS = [(mul, (i, 7)) for i in range(10)] + \
[(plus, (i, 8)) for i in range(10)]

results = [pool.apply_async(calculate, t) for t in TASKS]
imap_it = pool.imap(calculatestar, TASKS)
imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)

print ’Ordered results using pool.apply_async():’
for r in results:

print ’\t’, r.get()
print

print ’Ordered results using pool.imap():’
for x in imap_it:

print ’\t’, x
print

print ’Unordered results using pool.imap_unordered():’
for x in imap_unordered_it:

print ’\t’, x
print

print ’Ordered results using pool.map() --- will block till complete:’

566 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

for x in pool.map(calculatestar, TASKS):
print ’\t’, x

print

#
Simple benchmarks
#

N = 100000
print ’def pow3(x): return x**3’

t = time.time()
A = map(pow3, xrange(N))
print ’\tmap(pow3, xrange(%d)):\n\t\t%s seconds’ % \

(N, time.time() - t)

t = time.time()
B = pool.map(pow3, xrange(N))
print ’\tpool.map(pow3, xrange(%d)):\n\t\t%s seconds’ % \

(N, time.time() - t)

t = time.time()
C = list(pool.imap(pow3, xrange(N), chunksize=N//8))
print ’\tlist(pool.imap(pow3, xrange(%d), chunksize=%d)):\n\t\t%s’ \

’ seconds’ % (N, N//8, time.time() - t)

assert A == B == C, (len(A), len(B), len(C))
print

L = [None] * 1000000
print ’def noop(x): pass’
print ’L = [None] * 1000000’

t = time.time()
A = map(noop, L)
print ’\tmap(noop, L):\n\t\t%s seconds’ % \

(time.time() - t)

t = time.time()
B = pool.map(noop, L)
print ’\tpool.map(noop, L):\n\t\t%s seconds’ % \

(time.time() - t)

t = time.time()
C = list(pool.imap(noop, L, chunksize=len(L)//8))
print ’\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds’ % \

(len(L)//8, time.time() - t)

assert A == B == C, (len(A), len(B), len(C))
print

del A, B, C, L

#

16.6. multiprocessing — Process-based “threading” interface 567

The Python Library Reference, Release 2.6.9

Test error handling
#

print ’Testing error handling:’

try:
print pool.apply(f, (5,))

except ZeroDivisionError:
print ’\tGot ZeroDivisionError as expected from pool.apply()’

else:
raise AssertionError(’expected ZeroDivisionError’)

try:
print pool.map(f, range(10))

except ZeroDivisionError:
print ’\tGot ZeroDivisionError as expected from pool.map()’

else:
raise AssertionError(’expected ZeroDivisionError’)

try:
print list(pool.imap(f, range(10)))

except ZeroDivisionError:
print ’\tGot ZeroDivisionError as expected from list(pool.imap())’

else:
raise AssertionError(’expected ZeroDivisionError’)

it = pool.imap(f, range(10))
for i in range(10):

try:
x = it.next()

except ZeroDivisionError:
if i == 5:

pass
except StopIteration:

break
else:

if i == 5:
raise AssertionError(’expected ZeroDivisionError’)

assert i == 9
print ’\tGot ZeroDivisionError as expected from IMapIterator.next()’
print

#
Testing timeouts
#

print ’Testing ApplyResult.get() with timeout:’,
res = pool.apply_async(calculate, TASKS[0])
while 1:

sys.stdout.flush()
try:

sys.stdout.write(’\n\t%s’ % res.get(0.02))
break

568 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

except multiprocessing.TimeoutError:
sys.stdout.write(’.’)

print
print

print ’Testing IMapIterator.next() with timeout:’,
it = pool.imap(calculatestar, TASKS)
while 1:

sys.stdout.flush()
try:

sys.stdout.write(’\n\t%s’ % it.next(0.02))
except StopIteration:

break
except multiprocessing.TimeoutError:

sys.stdout.write(’.’)
print
print

#
Testing callback
#

print ’Testing callback:’

A = []
B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

r = pool.apply_async(mul, (7, 8), callback=A.append)
r.wait()

r = pool.map_async(pow3, range(10), callback=A.extend)
r.wait()

if A == B:
print ’\tcallbacks succeeded\n’

else:
print ’\t*** callbacks failed\n\t\t%s != %s\n’ % (A, B)

#
Check there are no outstanding tasks
#

assert not pool._cache, ’cache = %r’ % pool._cache

#
Check close() methods
#

print ’Testing close():’

for worker in pool._pool:
assert worker.is_alive()

result = pool.apply_async(time.sleep, [0.5])

16.6. multiprocessing — Process-based “threading” interface 569

The Python Library Reference, Release 2.6.9

pool.close()
pool.join()

assert result.get() is None

for worker in pool._pool:
assert not worker.is_alive()

print ’\tclose() succeeded\n’

#
Check terminate() method
#

print ’Testing terminate():’

pool = multiprocessing.Pool(2)
DELTA = 0.1
ignore = pool.apply(pow3, [2])
results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]
pool.terminate()
pool.join()

for worker in pool._pool:
assert not worker.is_alive()

print ’\tterminate() succeeded\n’

#
Check garbage collection
#

print ’Testing garbage collection:’

pool = multiprocessing.Pool(2)
DELTA = 0.1
processes = pool._pool
ignore = pool.apply(pow3, [2])
results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]

results = pool = None

time.sleep(DELTA * 2)

for worker in processes:
assert not worker.is_alive()

print ’\tgarbage collection succeeded\n’

if __name__ == ’__main__’:
multiprocessing.freeze_support()

assert len(sys.argv) in (1, 2)

570 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

if len(sys.argv) == 1 or sys.argv[1] == ’processes’:
print ’ Using processes ’.center(79, ’-’)

elif sys.argv[1] == ’threads’:
print ’ Using threads ’.center(79, ’-’)
import multiprocessing.dummy as multiprocessing

else:
print ’Usage:\n\t%s [processes | threads]’ % sys.argv[0]
raise SystemExit(2)

test()

Synchronization types like locks, conditions and queues:

#
A test file for the ‘multiprocessing‘ package
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time, sys, random
from Queue import Empty

import multiprocessing # may get overwritten

TEST_VALUE

def value_func(running, mutex):
random.seed()
time.sleep(random.random()*4)

mutex.acquire()
print ’\n\t\t\t’ + str(multiprocessing.current_process()) + ’ has finished’
running.value -= 1
mutex.release()

def test_value():
TASKS = 10
running = multiprocessing.Value(’i’, TASKS)
mutex = multiprocessing.Lock()

for i in range(TASKS):
p = multiprocessing.Process(target=value_func, args=(running, mutex))
p.start()

while running.value > 0:
time.sleep(0.08)
mutex.acquire()
print running.value,
sys.stdout.flush()
mutex.release()

print

16.6. multiprocessing — Process-based “threading” interface 571

The Python Library Reference, Release 2.6.9

print ’No more running processes’

TEST_QUEUE

def queue_func(queue):
for i in range(30):

time.sleep(0.5 * random.random())
queue.put(i*i)

queue.put(’STOP’)

def test_queue():
q = multiprocessing.Queue()

p = multiprocessing.Process(target=queue_func, args=(q,))
p.start()

o = None
while o != ’STOP’:

try:
o = q.get(timeout=0.3)
print o,
sys.stdout.flush()

except Empty:
print ’TIMEOUT’

print

TEST_CONDITION

def condition_func(cond):
cond.acquire()
print ’\t’ + str(cond)
time.sleep(2)
print ’\tchild is notifying’
print ’\t’ + str(cond)
cond.notify()
cond.release()

def test_condition():
cond = multiprocessing.Condition()

p = multiprocessing.Process(target=condition_func, args=(cond,))
print cond

cond.acquire()
print cond
cond.acquire()
print cond

p.start()

print ’main is waiting’

572 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

cond.wait()
print ’main has woken up’

print cond
cond.release()
print cond
cond.release()

p.join()
print cond

TEST_SEMAPHORE

def semaphore_func(sema, mutex, running):
sema.acquire()

mutex.acquire()
running.value += 1
print running.value, ’tasks are running’
mutex.release()

random.seed()
time.sleep(random.random()*2)

mutex.acquire()
running.value -= 1
print ’%s has finished’ % multiprocessing.current_process()
mutex.release()

sema.release()

def test_semaphore():
sema = multiprocessing.Semaphore(3)
mutex = multiprocessing.RLock()
running = multiprocessing.Value(’i’, 0)

processes = [
multiprocessing.Process(target=semaphore_func,

args=(sema, mutex, running))
for i in range(10)
]

for p in processes:
p.start()

for p in processes:
p.join()

TEST_JOIN_TIMEOUT

def join_timeout_func():
print ’\tchild sleeping’

16.6. multiprocessing — Process-based “threading” interface 573

The Python Library Reference, Release 2.6.9

time.sleep(5.5)
print ’\n\tchild terminating’

def test_join_timeout():
p = multiprocessing.Process(target=join_timeout_func)
p.start()

print ’waiting for process to finish’

while 1:
p.join(timeout=1)
if not p.is_alive():

break
print ’.’,
sys.stdout.flush()

TEST_EVENT

def event_func(event):
print ’\t%r is waiting’ % multiprocessing.current_process()
event.wait()
print ’\t%r has woken up’ % multiprocessing.current_process()

def test_event():
event = multiprocessing.Event()

processes = [multiprocessing.Process(target=event_func, args=(event,))
for i in range(5)]

for p in processes:
p.start()

print ’main is sleeping’
time.sleep(2)

print ’main is setting event’
event.set()

for p in processes:
p.join()

TEST_SHAREDVALUES

def sharedvalues_func(values, arrays, shared_values, shared_arrays):
for i in range(len(values)):

v = values[i][1]
sv = shared_values[i].value
assert v == sv

for i in range(len(values)):
a = arrays[i][1]
sa = list(shared_arrays[i][:])

574 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

assert a == sa

print ’Tests passed’

def test_sharedvalues():
values = [

(’i’, 10),
(’h’, -2),
(’d’, 1.25)
]

arrays = [
(’i’, range(100)),
(’d’, [0.25 * i for i in range(100)]),
(’H’, range(1000))
]

shared_values = [multiprocessing.Value(id, v) for id, v in values]
shared_arrays = [multiprocessing.Array(id, a) for id, a in arrays]

p = multiprocessing.Process(
target=sharedvalues_func,
args=(values, arrays, shared_values, shared_arrays)
)

p.start()
p.join()

assert p.exitcode == 0

####

def test(namespace=multiprocessing):
global multiprocessing

multiprocessing = namespace

for func in [test_value, test_queue, test_condition,
test_semaphore, test_join_timeout, test_event,
test_sharedvalues]:

print ’\n\t######## %s\n’ % func.__name__
func()

ignore = multiprocessing.active_children() # cleanup any old processes
if hasattr(multiprocessing, ’_debug_info’):

info = multiprocessing._debug_info()
if info:

print info
raise ValueError(’there should be no positive refcounts left’)

if __name__ == ’__main__’:
multiprocessing.freeze_support()

16.6. multiprocessing — Process-based “threading” interface 575

The Python Library Reference, Release 2.6.9

assert len(sys.argv) in (1, 2)

if len(sys.argv) == 1 or sys.argv[1] == ’processes’:
print ’ Using processes ’.center(79, ’-’)
namespace = multiprocessing

elif sys.argv[1] == ’manager’:
print ’ Using processes and a manager ’.center(79, ’-’)
namespace = multiprocessing.Manager()
namespace.Process = multiprocessing.Process
namespace.current_process = multiprocessing.current_process
namespace.active_children = multiprocessing.active_children

elif sys.argv[1] == ’threads’:
print ’ Using threads ’.center(79, ’-’)
import multiprocessing.dummy as namespace

else:
print ’Usage:\n\t%s [processes | manager | threads]’ % sys.argv[0]
raise SystemExit(2)

test(namespace)

An showing how to use queues to feed tasks to a collection of worker process and collect the results:

#
Simple example which uses a pool of workers to carry out some tasks.
#
Notice that the results will probably not come out of the output
queue in the same in the same order as the corresponding tasks were
put on the input queue. If it is important to get the results back
in the original order then consider using ‘Pool.map()‘ or
‘Pool.imap()‘ (which will save on the amount of code needed anyway).
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time
import random

from multiprocessing import Process, Queue, current_process, freeze_support

#
Function run by worker processes
#

def worker(input, output):
for func, args in iter(input.get, ’STOP’):

result = calculate(func, args)
output.put(result)

#
Function used to calculate result
#

def calculate(func, args):
result = func(*args)

576 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

return ’%s says that %s%s = %s’ % \
(current_process().name, func.__name__, args, result)

#
Functions referenced by tasks
#

def mul(a, b):
time.sleep(0.5*random.random())
return a * b

def plus(a, b):
time.sleep(0.5*random.random())
return a + b

#
#
#

def test():
NUMBER_OF_PROCESSES = 4
TASKS1 = [(mul, (i, 7)) for i in range(20)]
TASKS2 = [(plus, (i, 8)) for i in range(10)]

Create queues
task_queue = Queue()
done_queue = Queue()

Submit tasks
for task in TASKS1:

task_queue.put(task)

Start worker processes
for i in range(NUMBER_OF_PROCESSES):

Process(target=worker, args=(task_queue, done_queue)).start()

Get and print results
print ’Unordered results:’
for i in range(len(TASKS1)):

print ’\t’, done_queue.get()

Add more tasks using ‘put()‘
for task in TASKS2:

task_queue.put(task)

Get and print some more results
for i in range(len(TASKS2)):

print ’\t’, done_queue.get()

Tell child processes to stop
for i in range(NUMBER_OF_PROCESSES):

task_queue.put(’STOP’)

16.6. multiprocessing — Process-based “threading” interface 577

The Python Library Reference, Release 2.6.9

if __name__ == ’__main__’:
freeze_support()
test()

An example of how a pool of worker processes can each run a SimpleHTTPServer.HttpServer instance while
sharing a single listening socket.

#
Example where a pool of http servers share a single listening socket
#
On Windows this module depends on the ability to pickle a socket
object so that the worker processes can inherit a copy of the server
object. (We import ‘multiprocessing.reduction‘ to enable this pickling.)
#
Not sure if we should synchronize access to ‘socket.accept()‘ method by
using a process-shared lock -- does not seem to be necessary.
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import os
import sys

from multiprocessing import Process, current_process, freeze_support
from BaseHTTPServer import HTTPServer
from SimpleHTTPServer import SimpleHTTPRequestHandler

if sys.platform == ’win32’:
import multiprocessing.reduction # make sockets pickable/inheritable

def note(format, *args):
sys.stderr.write(’[%s]\t%s\n’ % (current_process().name, format%args))

class RequestHandler(SimpleHTTPRequestHandler):
we override log_message() to show which process is handling the request
def log_message(self, format, *args):

note(format, *args)

def serve_forever(server):
note(’starting server’)
try:

server.serve_forever()
except KeyboardInterrupt:

pass

def runpool(address, number_of_processes):
create a single server object -- children will each inherit a copy
server = HTTPServer(address, RequestHandler)

create child processes to act as workers
for i in range(number_of_processes-1):

578 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

Process(target=serve_forever, args=(server,)).start()

main process also acts as a worker
serve_forever(server)

def test():
DIR = os.path.join(os.path.dirname(__file__), ’..’)
ADDRESS = (’localhost’, 8000)
NUMBER_OF_PROCESSES = 4

print ’Serving at http://%s:%d using %d worker processes’ % \
(ADDRESS[0], ADDRESS[1], NUMBER_OF_PROCESSES)

print ’To exit press Ctrl-’ + [’C’, ’Break’][sys.platform==’win32’]

os.chdir(DIR)
runpool(ADDRESS, NUMBER_OF_PROCESSES)

if __name__ == ’__main__’:
freeze_support()
test()

Some simple benchmarks comparing multiprocessing with threading:

#
Simple benchmarks for the multiprocessing package
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time, sys, multiprocessing, threading, Queue, gc

if sys.platform == ’win32’:
_timer = time.clock

else:
_timer = time.time

delta = 1

TEST_QUEUESPEED

def queuespeed_func(q, c, iterations):
a = ’0’ * 256
c.acquire()
c.notify()
c.release()

for i in xrange(iterations):
q.put(a)

q.put(’STOP’)

16.6. multiprocessing — Process-based “threading” interface 579

The Python Library Reference, Release 2.6.9

def test_queuespeed(Process, q, c):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

p = Process(target=queuespeed_func, args=(q, c, iterations))
c.acquire()
p.start()
c.wait()
c.release()

result = None
t = _timer()

while result != ’STOP’:
result = q.get()

elapsed = _timer() - t

p.join()

print iterations, ’objects passed through the queue in’, elapsed, ’seconds’
print ’average number/sec:’, iterations/elapsed

TEST_PIPESPEED

def pipe_func(c, cond, iterations):
a = ’0’ * 256
cond.acquire()
cond.notify()
cond.release()

for i in xrange(iterations):
c.send(a)

c.send(’STOP’)

def test_pipespeed():
c, d = multiprocessing.Pipe()
cond = multiprocessing.Condition()
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

p = multiprocessing.Process(target=pipe_func,
args=(d, cond, iterations))

cond.acquire()
p.start()
cond.wait()

580 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

cond.release()

result = None
t = _timer()

while result != ’STOP’:
result = c.recv()

elapsed = _timer() - t
p.join()

print iterations, ’objects passed through connection in’,elapsed,’seconds’
print ’average number/sec:’, iterations/elapsed

TEST_SEQSPEED

def test_seqspeed(seq):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

t = _timer()

for i in xrange(iterations):
a = seq[5]

elapsed = _timer()-t

print iterations, ’iterations in’, elapsed, ’seconds’
print ’average number/sec:’, iterations/elapsed

TEST_LOCK

def test_lockspeed(l):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

t = _timer()

for i in xrange(iterations):
l.acquire()
l.release()

elapsed = _timer()-t

print iterations, ’iterations in’, elapsed, ’seconds’
print ’average number/sec:’, iterations/elapsed

16.6. multiprocessing — Process-based “threading” interface 581

The Python Library Reference, Release 2.6.9

TEST_CONDITION

def conditionspeed_func(c, N):
c.acquire()
c.notify()

for i in xrange(N):
c.wait()
c.notify()

c.release()

def test_conditionspeed(Process, c):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

c.acquire()
p = Process(target=conditionspeed_func, args=(c, iterations))
p.start()

c.wait()

t = _timer()

for i in xrange(iterations):
c.notify()
c.wait()

elapsed = _timer()-t

c.release()
p.join()

print iterations * 2, ’waits in’, elapsed, ’seconds’
print ’average number/sec:’, iterations * 2 / elapsed

####

def test():
manager = multiprocessing.Manager()

gc.disable()

print ’\n\t######## testing Queue.Queue\n’
test_queuespeed(threading.Thread, Queue.Queue(),

threading.Condition())
print ’\n\t######## testing multiprocessing.Queue\n’
test_queuespeed(multiprocessing.Process, multiprocessing.Queue(),

multiprocessing.Condition())

582 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

print ’\n\t######## testing Queue managed by server process\n’
test_queuespeed(multiprocessing.Process, manager.Queue(),

manager.Condition())
print ’\n\t######## testing multiprocessing.Pipe\n’
test_pipespeed()

print

print ’\n\t######## testing list\n’
test_seqspeed(range(10))
print ’\n\t######## testing list managed by server process\n’
test_seqspeed(manager.list(range(10)))
print ’\n\t######## testing Array("i", ..., lock=False)\n’
test_seqspeed(multiprocessing.Array(’i’, range(10), lock=False))
print ’\n\t######## testing Array("i", ..., lock=True)\n’
test_seqspeed(multiprocessing.Array(’i’, range(10), lock=True))

print

print ’\n\t######## testing threading.Lock\n’
test_lockspeed(threading.Lock())
print ’\n\t######## testing threading.RLock\n’
test_lockspeed(threading.RLock())
print ’\n\t######## testing multiprocessing.Lock\n’
test_lockspeed(multiprocessing.Lock())
print ’\n\t######## testing multiprocessing.RLock\n’
test_lockspeed(multiprocessing.RLock())
print ’\n\t######## testing lock managed by server process\n’
test_lockspeed(manager.Lock())
print ’\n\t######## testing rlock managed by server process\n’
test_lockspeed(manager.RLock())

print

print ’\n\t######## testing threading.Condition\n’
test_conditionspeed(threading.Thread, threading.Condition())
print ’\n\t######## testing multiprocessing.Condition\n’
test_conditionspeed(multiprocessing.Process, multiprocessing.Condition())
print ’\n\t######## testing condition managed by a server process\n’
test_conditionspeed(multiprocessing.Process, manager.Condition())

gc.enable()

if __name__ == ’__main__’:
multiprocessing.freeze_support()
test()

16.7 mmap — Memory-mapped file support

Memory-mapped file objects behave like both strings and like file objects. Unlike normal string objects, however,
these are mutable. You can use mmap objects in most places where strings are expected; for example, you can use
the re module to search through a memory-mapped file. Since they’re mutable, you can change a single character by

16.7. mmap — Memory-mapped file support 583

The Python Library Reference, Release 2.6.9

doing obj[index] = ’a’, or change a substring by assigning to a slice: obj[i1:i2] = ’...’. You can also
read and write data starting at the current file position, and seek() through the file to different positions.

A memory-mapped file is created by the mmap constructor, which is different on Unix and on Windows. In either case
you must provide a file descriptor for a file opened for update. If you wish to map an existing Python file object, use
its fileno() method to obtain the correct value for the fileno parameter. Otherwise, you can open the file using the
os.open() function, which returns a file descriptor directly (the file still needs to be closed when done).

For both the Unix and Windows versions of the constructor, access may be specified as an optional keyword parameter.
access accepts one of three values: ACCESS_READ, ACCESS_WRITE, or ACCESS_COPY to specify read-only,
write-through or copy-on-write memory respectively. access can be used on both Unix and Windows. If access is
not specified, Windows mmap returns a write-through mapping. The initial memory values for all three access types
are taken from the specified file. Assignment to an ACCESS_READ memory map raises a TypeError exception.
Assignment to an ACCESS_WRITE memory map affects both memory and the underlying file. Assignment to an
ACCESS_COPY memory map affects memory but does not update the underlying file. Changed in version 2.5: To
map anonymous memory, -1 should be passed as the fileno along with the length.Changed in version 2.6: mmap.mmap
has formerly been a factory function creating mmap objects. Now mmap.mmap is the class itself.

class mmap(fileno, length, [tagname, [access, [offset]]])
(Windows version) Maps length bytes from the file specified by the file handle fileno, and creates a mmap
object. If length is larger than the current size of the file, the file is extended to contain length bytes. If length is
0, the maximum length of the map is the current size of the file, except that if the file is empty Windows raises
an exception (you cannot create an empty mapping on Windows).

tagname, if specified and not None, is a string giving a tag name for the mapping. Windows allows you to have
many different mappings against the same file. If you specify the name of an existing tag, that tag is opened,
otherwise a new tag of this name is created. If this parameter is omitted or None, the mapping is created
without a name. Avoiding the use of the tag parameter will assist in keeping your code portable between Unix
and Windows.

offset may be specified as a non-negative integer offset. mmap references will be relative to the offset from the
beginning of the file. offset defaults to 0. offset must be a multiple of the ALLOCATIONGRANULARITY.

class mmap(fileno, length, [flags, [prot, [access, [offset]]]])
(Unix version) Maps length bytes from the file specified by the file descriptor fileno, and returns a mmap object.
If length is 0, the maximum length of the map will be the current size of the file when mmap is called.

flags specifies the nature of the mapping. MAP_PRIVATE creates a private copy-on-write mapping, so changes
to the contents of the mmap object will be private to this process, and MAP_SHARED creates a mapping that’s
shared with all other processes mapping the same areas of the file. The default value is MAP_SHARED.

prot, if specified, gives the desired memory protection; the two most useful values are PROT_READ
and PROT_WRITE, to specify that the pages may be read or written. prot defaults to PROT_READ |
PROT_WRITE.

access may be specified in lieu of flags and prot as an optional keyword parameter. It is an error to specify both
flags, prot and access. See the description of access above for information on how to use this parameter.

offset may be specified as a non-negative integer offset. mmap references will be relative to the offset from the
beginning of the file. offset defaults to 0. offset must be a multiple of the PAGESIZE or ALLOCATIONGRAN-
ULARITY.

This example shows a simple way of using mmap:

import mmap

write a simple example file
with open("hello.txt", "wb") as f:

f.write("Hello Python!\n")

584 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

with open("hello.txt", "r+b") as f:
memory-map the file, size 0 means whole file
map = mmap.mmap(f.fileno(), 0)
read content via standard file methods
print map.readline() # prints "Hello Python!"
read content via slice notation
print map[:5] # prints "Hello"
update content using slice notation;
note that new content must have same size
map[6:] = " world!\n"
... and read again using standard file methods
map.seek(0)
print map.readline() # prints "Hello world!"
close the map
map.close()

The next example demonstrates how to create an anonymous map and exchange data between the parent and
child processes:

import mmap
import os

map = mmap.mmap(-1, 13)
map.write("Hello world!")

pid = os.fork()

if pid == 0: # In a child process
map.seek(0)
print map.readline()

map.close()

Memory-mapped file objects support the following methods:

close()
Close the file. Subsequent calls to other methods of the object will result in an exception being raised.

find(string, [start, [end]])
Returns the lowest index in the object where the substring string is found, such that string is contained in
the range [start, end]. Optional arguments start and end are interpreted as in slice notation. Returns -1 on
failure.

flush([offset, size])
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there is no
guarantee that changes are written back before the object is destroyed. If offset and size are specified, only
changes to the given range of bytes will be flushed to disk; otherwise, the whole extent of the mapping is
flushed.

(Windows version) A nonzero value returned indicates success; zero indicates failure.

(Unix version) A zero value is returned to indicate success. An exception is raised when the call failed.

move(dest, src, count)
Copy the count bytes starting at offset src to the destination index dest. If the mmap was created with
ACCESS_READ, then calls to move will throw a TypeError exception.

16.7. mmap — Memory-mapped file support 585

The Python Library Reference, Release 2.6.9

read(num)
Return a string containing up to num bytes starting from the current file position; the file position is updated
to point after the bytes that were returned.

read_byte()
Returns a string of length 1 containing the character at the current file position, and advances the file
position by 1.

readline()
Returns a single line, starting at the current file position and up to the next newline.

resize(newsize)
Resizes the map and the underlying file, if any. If the mmap was created with ACCESS_READ or
ACCESS_COPY, resizing the map will throw a TypeError exception.

rfind(string, [start, [end]])
Returns the highest index in the object where the substring string is found, such that string is contained in
the range [start, end]. Optional arguments start and end are interpreted as in slice notation. Returns -1 on
failure.

seek(pos, [whence])
Set the file’s current position. whence argument is optional and defaults to os.SEEK_SET or 0 (ab-
solute file positioning); other values are os.SEEK_CUR or 1 (seek relative to the current position) and
os.SEEK_END or 2 (seek relative to the file’s end).

size()
Return the length of the file, which can be larger than the size of the memory-mapped area.

tell()
Returns the current position of the file pointer.

write(string)
Write the bytes in string into memory at the current position of the file pointer; the file position is updated
to point after the bytes that were written. If the mmap was created with ACCESS_READ, then writing to it
will throw a TypeError exception.

write_byte(byte)
Write the single-character string byte into memory at the current position of the file pointer; the file po-
sition is advanced by 1. If the mmap was created with ACCESS_READ, then writing to it will throw a
TypeError exception.

16.8 readline — GNU readline interface

Platforms: Unix

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly or via the rlcompleter module. Settings made
using this module affect the behaviour of both the interpreter’s interactive prompt and the prompts offered by the
raw_input() and input() built-in functions.

Note: On MacOS X the readline module can be implemented using the libedit library instead of GNU
readline.

The configuration file for libedit is different from that of GNU readline. If you programmaticly load configuration
strings you can check for the text “libedit” in readline.__doc__ to differentiate between GNU readline and
libedit.

The readline module defines the following functions:

586 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

parse_and_bind(string)
Parse and execute single line of a readline init file.

get_line_buffer()
Return the current contents of the line buffer.

insert_text(string)
Insert text into the command line.

read_init_file([filename])
Parse a readline initialization file. The default filename is the last filename used.

read_history_file([filename])
Load a readline history file. The default filename is ~/.history.

write_history_file([filename])
Save a readline history file. The default filename is ~/.history.

clear_history()
Clear the current history. (Note: this function is not available if the installed version of GNU readline doesn’t
support it.) New in version 2.4.

get_history_length()
Return the desired length of the history file. Negative values imply unlimited history file size.

set_history_length(length)
Set the number of lines to save in the history file. write_history_file() uses this value to truncate the
history file when saving. Negative values imply unlimited history file size.

get_current_history_length()
Return the number of lines currently in the history. (This is different from get_history_length(), which
returns the maximum number of lines that will be written to a history file.) New in version 2.3.

get_history_item(index)
Return the current contents of history item at index. New in version 2.3.

remove_history_item(pos)
Remove history item specified by its position from the history. New in version 2.4.

replace_history_item(pos, line)
Replace history item specified by its position with the given line. New in version 2.4.

redisplay()
Change what’s displayed on the screen to reflect the current contents of the line buffer. New in version 2.3.

set_startup_hook([function])
Set or remove the startup_hook function. If function is specified, it will be used as the new startup_hook
function; if omitted or None, any hook function already installed is removed. The startup_hook function is
called with no arguments just before readline prints the first prompt.

set_pre_input_hook([function])
Set or remove the pre_input_hook function. If function is specified, it will be used as the new pre_input_hook
function; if omitted or None, any hook function already installed is removed. The pre_input_hook function
is called with no arguments after the first prompt has been printed and just before readline starts reading input
characters.

set_completer([function])
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function(text, state), for state in 0, 1, 2, ..., until it returns a non-string value. It should return the
next possible completion starting with text.

16.8. readline — GNU readline interface 587

The Python Library Reference, Release 2.6.9

get_completer()
Get the completer function, or None if no completer function has been set. New in version 2.3.

get_completion_type()
Get the type of completion being attempted. New in version 2.6.

get_begidx()
Get the beginning index of the readline tab-completion scope.

get_endidx()
Get the ending index of the readline tab-completion scope.

set_completer_delims(string)
Set the readline word delimiters for tab-completion.

get_completer_delims()
Get the readline word delimiters for tab-completion.

set_completion_display_matches_hook([function])
Set or remove the completion display function. If function is specified, it will be used as the new completion dis-
play function; if omitted or None, any completion display function already installed is removed. The completion
display function is called as function(substitution, [matches], longest_match_length)
once each time matches need to be displayed. New in version 2.6.

add_history(line)
Append a line to the history buffer, as if it was the last line typed.

See Also:

Module rlcompleter Completion of Python identifiers at the interactive prompt.

16.8.1 Example

The following example demonstrates how to use the readline module’s history reading and writing functions to
automatically load and save a history file named .pyhist from the user’s home directory. The code below would
normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import os
histfile = os.path.join(os.environ["HOME"], ".pyhist")
try:

readline.read_history_file(histfile)
except IOError:

pass
import atexit
atexit.register(readline.write_history_file, histfile)
del os, histfile

The following example extends the code.InteractiveConsole class to support history save/restore.

import code
import readline
import atexit
import os

class HistoryConsole(code.InteractiveConsole):
def __init__(self, locals=None, filename="<console>",

histfile=os.path.expanduser("~/.console-history")):
code.InteractiveConsole.__init__(self, locals, filename)
self.init_history(histfile)

588 Chapter 16. Optional Operating System Services

The Python Library Reference, Release 2.6.9

def init_history(self, histfile):
readline.parse_and_bind("tab: complete")
if hasattr(readline, "read_history_file"):

try:
readline.read_history_file(histfile)

except IOError:
pass

atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.write_history_file(histfile)

16.9 rlcompleter — Completion function for GNU readline

The rlcompleter module defines a completion function suitable for the readline module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete() method is set as the readline completer.

Example:

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete")
>>> readline. <TAB PRESSED>
readline.__doc__ readline.get_line_buffer(readline.read_init_file(
readline.__file__ readline.insert_text(readline.set_completer(
readline.__name__ readline.parse_and_bind(
>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. A user can add the following lines
to his or her initialization file (identified by the PYTHONSTARTUP environment variable) to get automatic Tab
completion:

try:
import readline

except ImportError:
print "Module readline not available."

else:
import rlcompleter
readline.parse_and_bind("tab: complete")

On platforms without readline, the Completer class defined by this module can still be used for custom purposes.

16.9.1 Completer Objects

Completer objects have the following method:

complete(text, state)
Return the stateth completion for text.

If called for text that doesn’t include a period character (’.’), it will complete from names currently defined in
__main__, __builtin__ and keywords (as defined by the keyword module).

16.9. rlcompleter — Completion function for GNU readline 589

The Python Library Reference, Release 2.6.9

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not be
evaluated, but it can generate calls to __getattr__()) up to the last part, and find matches for the rest via
the dir() function. Any exception raised during the evaluation of the expression is caught, silenced and None
is returned.

590 Chapter 16. Optional Operating System Services

CHAPTER

SEVENTEEN

INTERPROCESS COMMUNICATION
AND NETWORKING

The modules described in this chapter provide mechanisms for different processes to communicate.

Some modules only work for two processes that are on the same machine, e.g. signal and subprocess. Other
modules support networking protocols that two or more processes can used to communicate across machines.

The list of modules described in this chapter is:

17.1 subprocess — Subprocess management

New in version 2.4. The subprocessmodule allows you to spawn new processes, connect to their input/output/error
pipes, and obtain their return codes. This module intends to replace several other, older modules and functions, such
as:

os.system
os.spawn*
os.popen*
popen2.*
commands.*

Information about how the subprocess module can be used to replace these modules and functions can be found
in the following sections.

See Also:

PEP 324 – PEP proposing the subprocess module

17.1.1 Using the subprocess Module

This module defines one class called Popen:

class Popen(args, bufsize=0, executable=None, stdin=None, stdout=None, stderr=None, preexec_fn=None,
close_fds=False, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None,
creationflags=0)

Arguments are:

args should be a string, or a sequence of program arguments. The program to execute is normally the first item
in the args sequence or the string if a string is given, but can be explicitly set by using the executable argument.
When executable is given, the first item in the args sequence is still treated by most programs as the command

591

http://www.python.org/dev/peps/pep-0324

The Python Library Reference, Release 2.6.9

name, which can then be different from the actual executable name. On Unix, it becomes the display name for
the executing program in utilities such as ps.

On Unix, with shell=False (default): In this case, the Popen class uses os.execvp() to execute the child
program. args should normally be a sequence. If a string is specified for args, it will be used as the name or
path of the program to execute; this will only work if the program is being given no arguments.

Note: shlex.split() can be useful when determining the correct tokenization for args, especially in
complex cases:

>>> import shlex, subprocess
>>> command_line = raw_input()
/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo ’$MONEY’"
>>> args = shlex.split(command_line)
>>> print args
[’/bin/vikings’, ’-input’, ’eggs.txt’, ’-output’, ’spam spam.txt’, ’-cmd’, "echo ’$MONEY’"]
>>> p = subprocess.Popen(args) # Success!

Note in particular that options (such as -input) and arguments (such as eggs.txt) that are separated by whitespace
in the shell go in separate list elements, while arguments that need quoting or backslash escaping when used in
the shell (such as filenames containing spaces or the echo command shown above) are single list elements.

On Unix, with shell=True: If args is a string, it specifies the command string to execute through the shell. This
means that the string must be formatted exactly as it would be when typed at the shell prompt. This includes,
for example, quoting or backslash escaping filenames with spaces in them. If args is a sequence, the first item
specifies the command string, and any additional items will be treated as additional arguments to the shell itself.
That is to say, Popen does the equivalent of:

Popen([’/bin/sh’, ’-c’, args[0], args[1], ...])

On Windows: the Popen class uses CreateProcess() to execute the child program, which operates on strings. If
args is a sequence, it will be converted to a string using the list2cmdline() method. Please note that not
all MS Windows applications interpret the command line the same way: list2cmdline() is designed for
applications using the same rules as the MS C runtime.

bufsize, if given, has the same meaning as the corresponding argument to the built-in open() function: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negative bufsize means to use the system default, which usually means fully buffered. The default value for
bufsize is 0 (unbuffered).

Note: If you experience performance issues, it is recommended that you try to enable buffering by setting
bufsize to either -1 or a large enough positive value (such as 4096).

The executable argument specifies the program to execute. It is very seldom needed: Usually, the program to
execute is defined by the args argument. If shell=True, the executable argument specifies which shell to
use. On Unix, the default shell is /bin/sh. On Windows, the default shell is specified by the COMSPEC
environment variable. The only reason you would need to specify shell=True on Windows is where the
command you wish to execute is actually built in to the shell, eg dir, copy. You don’t need shell=True to
run a batch file, nor to run a console-based executable.

stdin, stdout and stderr specify the executed programs’ standard input, standard output and standard error file
handles, respectively. Valid values are PIPE, an existing file descriptor (a positive integer), an existing file
object, and None. PIPE indicates that a new pipe to the child should be created. With None, no redirection
will occur; the child’s file handles will be inherited from the parent. Additionally, stderr can be STDOUT, which
indicates that the stderr data from the applications should be captured into the same file handle as for stdout.

If preexec_fn is set to a callable object, this object will be called in the child process just before the child is
executed. (Unix only)

592 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

If close_fds is true, all file descriptors except 0, 1 and 2 will be closed before the child process is executed.
(Unix only). Or, on Windows, if close_fds is true then no handles will be inherited by the child process. Note
that on Windows, you cannot set close_fds to true and also redirect the standard handles by setting stdin, stdout
or stderr.

If shell is True, the specified command will be executed through the shell.

If cwd is not None, the child’s current directory will be changed to cwd before it is executed. Note that this
directory is not considered when searching the executable, so you can’t specify the program’s path relative to
cwd.

If env is not None, it must be a mapping that defines the environment variables for the new process; these are
used instead of inheriting the current process’ environment, which is the default behavior.

Note: If specified, env must provide any variables required for the program to execute. On Windows, in order
to run a side-by-side assembly the specified env must include a valid SystemRoot.

If universal_newlines is True, the file objects stdout and stderr are opened as text files, but lines may be
terminated by any of ’\n’, the Unix end-of-line convention, ’\r’, the old Macintosh convention or ’\r\n’,
the Windows convention. All of these external representations are seen as ’\n’ by the Python program.

Note: This feature is only available if Python is built with universal newline support (the default). Also, the
newlines attribute of the file objects stdout, stdin and stderr are not updated by the communicate()
method.

The startupinfo and creationflags, if given, will be passed to the underlying CreateProcess() function. They can
specify things such as appearance of the main window and priority for the new process. (Windows only)

PIPE
Special value that can be used as the stdin, stdout or stderr argument to Popen and indicates that a pipe to the
standard stream should be opened.

STDOUT
Special value that can be used as the stderr argument to Popen and indicates that standard error should go into
the same handle as standard output.

Convenience Functions

This module also defines two shortcut functions:

call(*popenargs, **kwargs)
Run command with arguments. Wait for command to complete, then return the returncode attribute.

The arguments are the same as for the Popen constructor. Example:

>>> retcode = subprocess.call(["ls", "-l"])

check_call(*popenargs, **kwargs)
Run command with arguments. Wait for command to complete. If the exit code was zero then return, other-
wise raise CalledProcessError. The CalledProcessError object will have the return code in the
returncode attribute.

The arguments are the same as for the Popen constructor. Example:

>>> subprocess.check_call(["ls", "-l"])
0

New in version 2.5.

17.1. subprocess — Subprocess management 593

http://en.wikipedia.org/wiki/Side-by-Side_Assembly

The Python Library Reference, Release 2.6.9

Exceptions

Exceptions raised in the child process, before the new program has started to execute, will be re-raised in the par-
ent. Additionally, the exception object will have one extra attribute called child_traceback, which is a string
containing traceback information from the childs point of view.

The most common exception raised is OSError. This occurs, for example, when trying to execute a non-existent file.
Applications should prepare for OSError exceptions.

A ValueError will be raised if Popen is called with invalid arguments.

check_call() will raise CalledProcessError, if the called process returns a non-zero return code.

Security

Unlike some other popen functions, this implementation will never call /bin/sh implicitly. This means that all charac-
ters, including shell metacharacters, can safely be passed to child processes.

17.1.2 Popen Objects

Instances of the Popen class have the following methods:

poll()
Check if child process has terminated. Set and return returncode attribute.

wait()
Wait for child process to terminate. Set and return returncode attribute.

Warning: This will deadlock if the child process generates enough output to a stdout or stderr pipe such
that it blocks waiting for the OS pipe buffer to accept more data. Use communicate() to avoid that.

communicate(input=None)
Interact with process: Send data to stdin. Read data from stdout and stderr, until end-of-file is reached. Wait for
process to terminate. The optional input argument should be a string to be sent to the child process, or None, if
no data should be sent to the child.

communicate() returns a tuple (stdoutdata, stderrdata).

Note that if you want to send data to the process’s stdin, you need to create the Popen object with stdin=PIPE.
Similarly, to get anything other than None in the result tuple, you need to give stdout=PIPE and/or
stderr=PIPE too.

Note: The data read is buffered in memory, so do not use this method if the data size is large or unlimited.

send_signal(signal)
Sends the signal signal to the child.

Note: On Windows only SIGTERM is supported so far. It’s an alias for terminate(). New in version 2.6.

terminate()
Stop the child. On Posix OSs the method sends SIGTERM to the child. On Windows the Win32 API function
TerminateProcess() is called to stop the child. New in version 2.6.

kill()
Kills the child. On Posix OSs the function sends SIGKILL to the child. On Windows kill() is an alias for
terminate(). New in version 2.6.

594 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

The following attributes are also available:

Warning: Use communicate() rather than .stdin.write, .stdout.read or .stderr.read to
avoid deadlocks due to any of the other OS pipe buffers filling up and blocking the child process.

stdin
If the stdin argument was PIPE, this attribute is a file object that provides input to the child process. Otherwise,
it is None.

stdout
If the stdout argument was PIPE, this attribute is a file object that provides output from the child process.
Otherwise, it is None.

stderr
If the stderr argument was PIPE, this attribute is a file object that provides error output from the child process.
Otherwise, it is None.

pid
The process ID of the child process.

Note that if you set the shell argument to True, this is the process ID of the spawned shell.

returncode
The child return code, set by poll() and wait() (and indirectly by communicate()). A None value
indicates that the process hasn’t terminated yet.

A negative value -N indicates that the child was terminated by signal N (Unix only).

17.1.3 Replacing Older Functions with the subprocess Module

In this section, “a ==> b” means that b can be used as a replacement for a.

Note: All functions in this section fail (more or less) silently if the executed program cannot be found; this module
raises an OSError exception.

In the following examples, we assume that the subprocess module is imported with “from subprocess import *”.

Replacing /bin/sh shell backquote

output=‘mycmd myarg‘
==>
output = Popen(["mycmd", "myarg"], stdout=PIPE).communicate()[0]

Replacing shell pipeline

output=‘dmesg | grep hda‘
==>
p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
output = p2.communicate()[0]

17.1. subprocess — Subprocess management 595

The Python Library Reference, Release 2.6.9

Replacing os.system()

sts = os.system("mycmd" + " myarg")
==>
p = Popen("mycmd" + " myarg", shell=True)
sts = os.waitpid(p.pid, 0)[1]

Notes:

• Calling the program through the shell is usually not required.

• It’s easier to look at the returncode attribute than the exit status.

A more realistic example would look like this:

try:
retcode = call("mycmd" + " myarg", shell=True)
if retcode < 0:

print >>sys.stderr, "Child was terminated by signal", -retcode
else:

print >>sys.stderr, "Child returned", retcode
except OSError, e:

print >>sys.stderr, "Execution failed:", e

Replacing the os.spawn family

P_NOWAIT example:

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid

P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])

Vector example:

os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])

Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

Replacing os.popen(), os.popen2(), os.popen3()

pipe = os.popen("cmd", ’r’, bufsize)
==>
pipe = Popen("cmd", shell=True, bufsize=bufsize, stdout=PIPE).stdout

pipe = os.popen("cmd", ’w’, bufsize)
==>
pipe = Popen("cmd", shell=True, bufsize=bufsize, stdin=PIPE).stdin

596 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

(child_stdin, child_stdout) = os.popen2("cmd", mode, bufsize)
==>
p = Popen("cmd", shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

(child_stdin,
child_stdout,
child_stderr) = os.popen3("cmd", mode, bufsize)

==>
p = Popen("cmd", shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
child_stdout,
child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4("cmd", mode,
bufsize)

==>
p = Popen("cmd", shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

On Unix, os.popen2, os.popen3 and os.popen4 also accept a sequence as the command to execute, in which case
arguments will be passed directly to the program without shell intervention. This usage can be replaced as follows:

(child_stdin, child_stdout) = os.popen2(["/bin/ls", "-l"], mode,
bufsize)

==>
p = Popen(["/bin/ls", "-l"], bufsize=bufsize, stdin=PIPE, stdout=PIPE)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

Return code handling translates as follows:

pipe = os.popen("cmd", ’w’)
...
rc = pipe.close()
if rc is not None and rc >> 8:

print "There were some errors"
==>
process = Popen("cmd", ’w’, shell=True, stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:

print "There were some errors"

Replacing functions from the popen2 module

(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)
==>
p = Popen(["somestring"], shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

On Unix, popen2 also accepts a sequence as the command to execute, in which case arguments will be passed directly
to the program without shell intervention. This usage can be replaced as follows:

17.1. subprocess — Subprocess management 597

The Python Library Reference, Release 2.6.9

(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize,
mode)

==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

popen2.Popen3 and popen2.Popen4 basically work as subprocess.Popen, except that:

• Popen raises an exception if the execution fails.

• the capturestderr argument is replaced with the stderr argument.

• stdin=PIPE and stdout=PIPE must be specified.

• popen2 closes all file descriptors by default, but you have to specify close_fds=True with Popen.

17.2 socket — Low-level networking interface

This module provides access to the BSD socket interface. It is available on all modern Unix systems, Windows, Mac
OS X, BeOS, OS/2, and probably additional platforms.

Note: Some behavior may be platform dependent, since calls are made to the operating system socket APIs.

For an introduction to socket programming (in C), see the following papers: An Introductory 4.3BSD Interprocess
Communication Tutorial, by Stuart Sechrest and An Advanced 4.3BSD Interprocess Communication Tutorial, by
Samuel J. Leffler et al, both in the UNIX Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and
PS1:8). The platform-specific reference material for the various socket-related system calls are also a valuable source
of information on the details of socket semantics. For Unix, refer to the manual pages; for Windows, see the WinSock
(or Winsock 2) specification. For IPv6-ready APIs, readers may want to refer to RFC 3493 titled Basic Socket
Interface Extensions for IPv6. The Python interface is a straightforward transliteration of the Unix system call and
library interface for sockets to Python’s object-oriented style: the socket() function returns a socket object whose
methods implement the various socket system calls. Parameter types are somewhat higher-level than in the C interface:
as with read() and write() operations on Python files, buffer allocation on receive operations is automatic, and
buffer length is implicit on send operations.

Socket addresses are represented as follows: A single string is used for the AF_UNIX address family. A pair (host,
port) is used for the AF_INET address family, where host is a string representing either a hostname in Internet
domain notation like ’daring.cwi.nl’ or an IPv4 address like ’100.50.200.5’, and port is an integral port
number. For AF_INET6 address family, a four-tuple (host, port, flowinfo, scopeid) is used, where
flowinfo and scopeid represents sin6_flowinfo and sin6_scope_id member in struct sockaddr_in6
in C. For socket module methods, flowinfo and scopeid can be omitted just for backward compatibility. Note,
however, omission of scopeid can cause problems in manipulating scoped IPv6 addresses. Other address families are
currently not supported. The address format required by a particular socket object is automatically selected based on
the address family specified when the socket object was created.

For IPv4 addresses, two special forms are accepted instead of a host address: the empty string represents
INADDR_ANY, and the string ’<broadcast>’ represents INADDR_BROADCAST. The behavior is not available
for IPv6 for backward compatibility, therefore, you may want to avoid these if you intend to support IPv6 with your
Python programs.

If you use a hostname in the host portion of IPv4/v6 socket address, the program may show a nondeterministic behav-
ior, as Python uses the first address returned from the DNS resolution. The socket address will be resolved differently
into an actual IPv4/v6 address, depending on the results from DNS resolution and/or the host configuration. For deter-
ministic behavior use a numeric address in host portion. New in version 2.5: AF_NETLINK sockets are represented as
pairs pid, groups.New in version 2.6: Linux-only support for TIPC is also available using the AF_TIPC address

598 Chapter 17. Interprocess Communication and Networking

http://tools.ietf.org/html/rfc3493.html

The Python Library Reference, Release 2.6.9

family. TIPC is an open, non-IP based networked protocol designed for use in clustered computer environments. Ad-
dresses are represented by a tuple, and the fields depend on the address type. The general tuple form is (addr_type,
v1, v2, v3 [, scope]), where:

• addr_type is one of TIPC_ADDR_NAMESEQ, TIPC_ADDR_NAME, or TIPC_ADDR_ID.

• scope is one of TIPC_ZONE_SCOPE, TIPC_CLUSTER_SCOPE, and TIPC_NODE_SCOPE.

• If addr_type is TIPC_ADDR_NAME, then v1 is the server type, v2 is the port identifier, and v3 should be 0.

If addr_type is TIPC_ADDR_NAMESEQ, then v1 is the server type, v2 is the lower port number, and v3 is the
upper port number.

If addr_type is TIPC_ADDR_ID, then v1 is the node, v2 is the reference, and v3 should be set to 0.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised; errors related to socket or address semantics raise the error socket.error.

Non-blocking mode is supported through setblocking(). A generalization of this based on timeouts is supported
through settimeout().

The module socket exports the following constants and functions:

exception error
This exception is raised for socket-related errors. The accompanying value is either a string telling what went

wrong or a pair (errno, string) representing an error returned by a system call, similar to the value
accompanying os.error. See the module errno, which contains names for the error codes defined by the
underlying operating system. Changed in version 2.6: socket.error is now a child class of IOError.

exception herror
This exception is raised for address-related errors, i.e. for functions that use h_errno in the C API, including
gethostbyname_ex() and gethostbyaddr().

The accompanying value is a pair (h_errno, string) representing an error returned by a library call.
string represents the description of h_errno, as returned by the hstrerror() C function.

exception gaierror
This exception is raised for address-related errors, for getaddrinfo() and getnameinfo(). The accom-
panying value is a pair (error, string) representing an error returned by a library call. string represents
the description of error, as returned by the gai_strerror() C function. The error value will match one of
the EAI_* constants defined in this module.

exception timeout
This exception is raised when a timeout occurs on a socket which has had timeouts enabled via a prior call to
settimeout(). The accompanying value is a string whose value is currently always “timed out”. New in
version 2.3.

AF_UNIX
AF_INET
AF_INET6

These constants represent the address (and protocol) families, used for the first argument to socket(). If the
AF_UNIX constant is not defined then this protocol is unsupported.

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_RDM
SOCK_SEQPACKET

These constants represent the socket types, used for the second argument to socket(). (Only SOCK_STREAM
and SOCK_DGRAM appear to be generally useful.)

SO_*

17.2. socket — Low-level networking interface 599

The Python Library Reference, Release 2.6.9

SOMAXCONN
MSG_*
SOL_*
IPPROTO_*
IPPORT_*
INADDR_*
IP_*
IPV6_*
EAI_*
AI_*
NI_*
TCP_*

Many constants of these forms, documented in the Unix documentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in arguments to the setsockopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the Unix
header files are defined; for a few symbols, default values are provided.

SIO_*
RCVALL_*

Constants for Windows’ WSAIoctl(). The constants are used as arguments to the ioctl() method of socket
objects. New in version 2.6.

TIPC_*
TIPC related constants, matching the ones exported by the C socket API. See the TIPC documentation for more
information. New in version 2.6.

has_ipv6
This constant contains a boolean value which indicates if IPv6 is supported on this platform. New in version
2.3.

create_connection(address, [timeout])
Convenience function. Connect to address (a 2-tuple (host, port)), and return the socket object. Passing
the optional timeout parameter will set the timeout on the socket instance before attempting to connect. If no
timeout is supplied, the global default timeout setting returned by getdefaulttimeout() is used. New in
version 2.6.

getaddrinfo(host, port, family=0, socktype=0, proto=0, flags=0)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating
a socket connected to that service. host is a domain name, a string representation of an IPv4/v6 address or None.
port is a string service name such as ’http’, a numeric port number or None. By passing None as the value
of host and port, you can pass NULL to the underlying C API.

The family, socktype and proto arguments can be optionally specified in order to narrow the list of addresses
returned. Passing zero as a value for each of these arguments selects the full range of results. The flags argument
can be one or several of the AI_* constants, and will influence how results are computed and returned. For
example, AI_NUMERICHOST will disable domain name resolution and will raise an error if host is a domain
name.

The function returns a list of 5-tuples with the following structure:

(family, socktype, proto, canonname, sockaddr)

In these tuples, family, socktype, proto are all integers and are meant to be passed to the socket() function.
canonname will be a string representing the canonical name of the host if AI_CANONNAME is part of the flags
argument; else canonname will be empty. sockaddr is a tuple describing a socket address, whose format depends
on the returned family (a (address, port) 2-tuple for AF_INET, a (address, port, flow info,
scope id) 4-tuple for AF_INET6), and is meant to be passed to the socket.connect() method.

600 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

The following example fetches address information for a hypothetical TCP connection to www.python.org
on port 80 (results may differ on your system if IPv6 isn’t enabled):

>>> socket.getaddrinfo("www.python.org", 80, 0, 0, socket.SOL_TCP)
[(2, 1, 6, ’’, (’82.94.164.162’, 80)),
(10, 1, 6, ’’, (’2001:888:2000:d::a2’, 80, 0, 0))]

New in version 2.2.

getfqdn([name])
Return a fully qualified domain name for name. If name is omitted or empty, it is interpreted as the local host. To
find the fully qualified name, the hostname returned by gethostbyaddr() is checked, followed by aliases
for the host, if available. The first name which includes a period is selected. In case no fully qualified domain
name is available, the hostname as returned by gethostname() is returned. New in version 2.0.

gethostbyname(hostname)
Translate a host name to IPv4 address format. The IPv4 address is returned as a string, such as
’100.50.200.5’. If the host name is an IPv4 address itself it is returned unchanged. See
gethostbyname_ex() for a more complete interface. gethostbyname() does not support IPv6 name
resolution, and getaddrinfo() should be used instead for IPv4/v6 dual stack support.

gethostbyname_ex(hostname)
Translate a host name to IPv4 address format, extended interface. Return a triple (hostname, aliaslist,
ipaddrlist) where hostname is the primary host name responding to the given ip_address, aliaslist is a
(possibly empty) list of alternative host names for the same address, and ipaddrlist is a list of IPv4 addresses for
the same interface on the same host (often but not always a single address). gethostbyname_ex() does not
support IPv6 name resolution, and getaddrinfo() should be used instead for IPv4/v6 dual stack support.

gethostname()
Return a string containing the hostname of the machine where the Python interpreter is currently executing.

If you want to know the current machine’s IP address, you may want to use
gethostbyname(gethostname()). This operation assumes that there is a valid address-to-host
mapping for the host, and the assumption does not always hold.

Note: gethostname() doesn’t always return the fully qualified domain name; use getfqdn() (see above).

gethostbyaddr(ip_address)
Return a triple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name re-
sponding to the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the same
address, and ipaddrlist is a list of IPv4/v6 addresses for the same interface on the same host (most likely
containing only a single address). To find the fully qualified domain name, use the function getfqdn().
gethostbyaddr() supports both IPv4 and IPv6.

getnameinfo(sockaddr, flags)
Translate a socket address sockaddr into a 2-tuple (host, port). Depending on the settings of flags, the
result can contain a fully-qualified domain name or numeric address representation in host. Similarly, port can
contain a string port name or a numeric port number. New in version 2.2.

getprotobyname(protocolname)
Translate an Internet protocol name (for example, ’icmp’) to a constant suitable for passing as the (optional)
third argument to the socket() function. This is usually only needed for sockets opened in “raw” mode
(SOCK_RAW); for the normal socket modes, the correct protocol is chosen automatically if the protocol is omit-
ted or zero.

getservbyname(servicename, [protocolname])
Translate an Internet service name and protocol name to a port number for that service. The optional protocol
name, if given, should be ’tcp’ or ’udp’, otherwise any protocol will match.

17.2. socket — Low-level networking interface 601

The Python Library Reference, Release 2.6.9

getservbyport(port, [protocolname])
Translate an Internet port number and protocol name to a service name for that service. The optional protocol
name, if given, should be ’tcp’ or ’udp’, otherwise any protocol will match.

socket([family, [type, [proto]]])
Create a new socket using the given address family, socket type and protocol number. The address family should
be AF_INET (the default), AF_INET6 or AF_UNIX. The socket type should be SOCK_STREAM (the default),
SOCK_DGRAM or perhaps one of the other SOCK_ constants. The protocol number is usually zero and may be
omitted in that case.

socketpair([family, [type, [proto]]])
Build a pair of connected socket objects using the given address family, socket type, and protocol number.
Address family, socket type, and protocol number are as for the socket() function above. The default family
is AF_UNIX if defined on the platform; otherwise, the default is AF_INET. Availability: Unix. New in version
2.4.

fromfd(fd, family, type, [proto])
Duplicate the file descriptor fd (an integer as returned by a file object’s fileno() method) and build a socket
object from the result. Address family, socket type and protocol number are as for the socket() function
above. The file descriptor should refer to a socket, but this is not checked — subsequent operations on the object
may fail if the file descriptor is invalid. This function is rarely needed, but can be used to get or set socket
options on a socket passed to a program as standard input or output (such as a server started by the Unix inet
daemon). The socket is assumed to be in blocking mode. Availability: Unix.

ntohl(x)
Convert 32-bit positive integers from network to host byte order. On machines where the host byte order is the
same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs(x)
Convert 16-bit positive integers from network to host byte order. On machines where the host byte order is the
same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl(x)
Convert 32-bit positive integers from host to network byte order. On machines where the host byte order is the
same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons(x)
Convert 16-bit positive integers from host to network byte order. On machines where the host byte order is the
same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

inet_aton(ip_string)
Convert an IPv4 address from dotted-quad string format (for example, ‘123.45.67.89’) to 32-bit packed binary
format, as a string four characters in length. This is useful when conversing with a program that uses the standard
C library and needs objects of type struct in_addr, which is the C type for the 32-bit packed binary this
function returns.

inet_aton() also accepts strings with less than three dots; see the Unix manual page inet(3) for details.

If the IPv4 address string passed to this function is invalid, socket.error will be raised. Note that exactly
what is valid depends on the underlying C implementation of inet_aton().

inet_aton() does not support IPv6, and inet_pton() should be used instead for IPv4/v6 dual stack
support.

inet_ntoa(packed_ip)
Convert a 32-bit packed IPv4 address (a string four characters in length) to its standard dotted-quad string
representation (for example, ‘123.45.67.89’). This is useful when conversing with a program that uses the
standard C library and needs objects of type struct in_addr, which is the C type for the 32-bit packed
binary data this function takes as an argument.

602 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

If the string passed to this function is not exactly 4 bytes in length, socket.error will be raised.
inet_ntoa() does not support IPv6, and inet_ntop() should be used instead for IPv4/v6 dual stack
support.

inet_pton(address_family, ip_string)
Convert an IP address from its family-specific string format to a packed, binary format. inet_pton() is useful
when a library or network protocol calls for an object of type struct in_addr (similar to inet_aton())
or struct in6_addr.

Supported values for address_family are currently AF_INET and AF_INET6. If the IP address string ip_string
is invalid, socket.error will be raised. Note that exactly what is valid depends on both the value of ad-
dress_family and the underlying implementation of inet_pton().

Availability: Unix (maybe not all platforms). New in version 2.3.

inet_ntop(address_family, packed_ip)
Convert a packed IP address (a string of some number of characters) to its standard, family-specific string
representation (for example, ’7.10.0.5’ or ’5aef:2b::8’) inet_ntop() is useful when a library
or network protocol returns an object of type struct in_addr (similar to inet_ntoa()) or struct
in6_addr.

Supported values for address_family are currently AF_INET and AF_INET6. If the string packed_ip is not the
correct length for the specified address family, ValueError will be raised. A socket.error is raised for
errors from the call to inet_ntop().

Availability: Unix (maybe not all platforms). New in version 2.3.

getdefaulttimeout()
Return the default timeout in floating seconds for new socket objects. A value of None indicates that new socket
objects have no timeout. When the socket module is first imported, the default is None. New in version 2.3.

setdefaulttimeout(timeout)
Set the default timeout in floating seconds for new socket objects. A value of None indicates that new socket
objects have no timeout. When the socket module is first imported, the default is None. New in version 2.3.

SocketType
This is a Python type object that represents the socket object type. It is the same as type(socket(...)).

See Also:

Module SocketServer Classes that simplify writing network servers.

17.2.1 Socket Objects

Socket objects have the following methods. Except for makefile() these correspond to Unix system calls applica-
ble to sockets.

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is a
pair (conn, address) where conn is a new socket object usable to send and receive data on the connection,
and address is the address bound to the socket on the other end of the connection.

bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address depends on the
address family — see above.)

Note: This method has historically accepted a pair of parameters for AF_INET addresses instead of only a
tuple. This was never intentional and is no longer available in Python 2.0 and later.

17.2. socket — Low-level networking interface 603

The Python Library Reference, Release 2.6.9

close()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

connect(address)
Connect to a remote socket at address. (The format of address depends on the address family — see above.)

Note: This method has historically accepted a pair of parameters for AF_INET addresses instead of only a
tuple. This was never intentional and is no longer available in Python 2.0 and later.

connect_ex(address)
Like connect(address), but return an error indicator instead of raising an exception for errors returned by
the C-level connect() call (other problems, such as “host not found,” can still raise exceptions). The error
indicator is 0 if the operation succeeded, otherwise the value of the errno variable. This is useful to support,
for example, asynchronous connects.

Note: This method has historically accepted a pair of parameters for AF_INET addresses instead of only a
tuple. This was never intentional and is no longer available in Python 2.0 and later.

fileno()
Return the socket’s file descriptor (a small integer). This is useful with select.select().

Under Windows the small integer returned by this method cannot be used where a file descriptor can be used
(such as os.fdopen()). Unix does not have this limitation.

getpeername()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IPv4/v6 socket, for instance. (The format of the address returned depends on the address family — see
above.) On some systems this function is not supported.

getsockname()
Return the socket’s own address. This is useful to find out the port number of an IPv4/v6 socket, for instance.
(The format of the address returned depends on the address family — see above.)

getsockopt(level, optname, [buflen])
Return the value of the given socket option (see the Unix man page getsockopt(2)). The needed symbolic
constants (SO_* etc.) are defined in this module. If buflen is absent, an integer option is assumed and its integer
value is returned by the function. If buflen is present, it specifies the maximum length of the buffer used to
receive the option in, and this buffer is returned as a string. It is up to the caller to decode the contents of the
buffer (see the optional built-in module struct for a way to decode C structures encoded as strings).

ioctl(control, option)

Platform Windows

The ioctl() method is a limited interface to the WSAIoctl system interface. Please refer to the Win32
documentation for more information.

On other platforms, the generic fcntl.fcntl() and fcntl.ioctl() functions may be used; they accept
a socket object as their first argument. New in version 2.6.

listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

makefile([mode, [bufsize]])
Return a file object associated with the socket. (File objects are described in File Objects.) The file object
references a dup()ped version of the socket file descriptor, so the file object and socket object may be closed
or garbage-collected independently. The socket must be in blocking mode (it can not have a timeout). The
optional mode and bufsize arguments are interpreted the same way as by the built-in file() function.

604 Chapter 17. Interprocess Communication and Networking

http://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx

The Python Library Reference, Release 2.6.9

recv(bufsize, [flags])
Receive data from the socket. The return value is a string representing the data received. The maximum amount
of data to be received at once is specified by bufsize. See the Unix manual page recv(2) for the meaning of
the optional argument flags; it defaults to zero.

Note: For best match with hardware and network realities, the value of bufsize should be a relatively small
power of 2, for example, 4096.

recvfrom(bufsize, [flags])
Receive data from the socket. The return value is a pair (string, address) where string is a string
representing the data received and address is the address of the socket sending the data. See the Unix manual
page recv(2) for the meaning of the optional argument flags; it defaults to zero. (The format of address
depends on the address family — see above.)

recvfrom_into(buffer, [nbytes, [flags]])
Receive data from the socket, writing it into buffer instead of creating a new string. The return value is a pair
(nbytes, address) where nbytes is the number of bytes received and address is the address of the socket
sending the data. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults
to zero. (The format of address depends on the address family — see above.) New in version 2.5.

recv_into(buffer, [nbytes, [flags]])
Receive up to nbytes bytes from the socket, storing the data into a buffer rather than creating a new string. If
nbytes is not specified (or 0), receive up to the size available in the given buffer. Returns the number of bytes
received. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults to
zero. New in version 2.5.

send(string, [flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has
the same meaning as for recv() above. Returns the number of bytes sent. Applications are responsible for
checking that all data has been sent; if only some of the data was transmitted, the application needs to attempt
delivery of the remaining data.

sendall(string, [flags])
Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has
the same meaning as for recv() above. Unlike send(), this method continues to send data from string until
either all data has been sent or an error occurs. None is returned on success. On error, an exception is raised,
and there is no way to determine how much data, if any, was successfully sent.

sendto(string, [flags], address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified by address. The optional flags argument has the same meaning as for recv() above. Return the
number of bytes sent. (The format of address depends on the address family — see above.)

setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is 0, the socket is set to non-blocking, else to blocking
mode. Initially all sockets are in blocking mode. In non-blocking mode, if a recv() call doesn’t find any
data, or if a send() call can’t immediately dispose of the data, a error exception is raised; in blocking
mode, the calls block until they can proceed. s.setblocking(0) is equivalent to s.settimeout(0.0);
s.setblocking(1) is equivalent to s.settimeout(None).

settimeout(value)
Set a timeout on blocking socket operations. The value argument can be a nonnegative float expressing seconds,
or None. If a float is given, subsequent socket operations will raise an timeout exception if the timeout period
value has elapsed before the operation has completed. Setting a timeout of None disables timeouts on socket
operations. s.settimeout(0.0) is equivalent to s.setblocking(0); s.settimeout(None) is
equivalent to s.setblocking(1). New in version 2.3.

gettimeout()
Return the timeout in floating seconds associated with socket operations, or None if no timeout is set. This

17.2. socket — Low-level networking interface 605

The Python Library Reference, Release 2.6.9

reflects the last call to setblocking() or settimeout(). New in version 2.3.

Some notes on socket blocking and timeouts: A socket object can be in one of three modes: blocking, non-blocking,
or timeout. Sockets are always created in blocking mode. In blocking mode, operations block until complete or the
system returns an error (such as connection timed out). In non-blocking mode, operations fail (with an error that is un-
fortunately system-dependent) if they cannot be completed immediately. In timeout mode, operations fail if they can-
not be completed within the timeout specified for the socket or if the system returns an error. The setblocking()
method is simply a shorthand for certain settimeout() calls.

Timeout mode internally sets the socket in non-blocking mode. The blocking and timeout modes are shared between
file descriptors and socket objects that refer to the same network endpoint. A consequence of this is that file objects
returned by the makefile() method must only be used when the socket is in blocking mode; in timeout or non-
blocking mode file operations that cannot be completed immediately will fail.

Note that the connect() operation is subject to the timeout setting, and in general it is recommended to call
settimeout() before calling connect() or pass a timeout parameter to create_connection(). The sys-
tem network stack may return a connection timeout error of its own regardless of any Python socket timeout setting.

setsockopt(level, optname, value)
Set the value of the given socket option (see the Unix manual page setsockopt(2)). The needed symbolic

constants are defined in the socket module (SO_* etc.). The value can be an integer or a string representing
a buffer. In the latter case it is up to the caller to ensure that the string contains the proper bits (see the optional
built-in module struct for a way to encode C structures as strings).

shutdown(how)
Shut down one or both halves of the connection. If how is SHUT_RD, further receives are disallowed. If how is
SHUT_WR, further sends are disallowed. If how is SHUT_RDWR, further sends and receives are disallowed.

Note that there are no methods read() or write(); use recv() and send() without flags argument instead.

Socket objects also have these (read-only) attributes that correspond to the values given to the socket constructor.

family
The socket family. New in version 2.5.

type
The socket type. New in version 2.5.

proto
The socket protocol. New in version 2.5.

17.2.2 Example

Here are four minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back
(servicing only one client), and a client using it. Note that a server must perform the sequence socket(), bind(),
listen(), accept() (possibly repeating the accept() to service more than one client), while a client only
needs the sequence socket(), connect(). Also note that the server does not send()/recv() on the socket it
is listening on but on the new socket returned by accept().

The first two examples support IPv4 only.

Echo server program
import socket

HOST = ’’ # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))

606 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

s.listen(1)
conn, addr = s.accept()
print ’Connected by’, addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
import socket

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(’Hello, world’)
data = s.recv(1024)
s.close()
print ’Received’, repr(data)

The next two examples are identical to the above two, but support both IPv4 and IPv6. The server side will listen
to the first address family available (it should listen to both instead). On most of IPv6-ready systems, IPv6 will take
precedence and the server may not accept IPv4 traffic. The client side will try to connect to the all addresses returned
as a result of the name resolution, and sends traffic to the first one connected successfully.

Echo server program
import socket
import sys

HOST = None # Symbolic name meaning all available interfaces
PORT = 50007 # Arbitrary non-privileged port
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC,

socket.SOCK_STREAM, 0, socket.AI_PASSIVE):
af, socktype, proto, canonname, sa = res
try:

s = socket.socket(af, socktype, proto)
except socket.error, msg:

s = None
continue

try:
s.bind(sa)
s.listen(1)

except socket.error, msg:
s.close()
s = None
continue

break
if s is None:

print ’could not open socket’
sys.exit(1)

conn, addr = s.accept()
print ’Connected by’, addr
while 1:

17.2. socket — Low-level networking interface 607

The Python Library Reference, Release 2.6.9

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
import socket
import sys

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = None
for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM):

af, socktype, proto, canonname, sa = res
try:

s = socket.socket(af, socktype, proto)
except socket.error, msg:

s = None
continue

try:
s.connect(sa)

except socket.error, msg:
s.close()
s = None
continue

break
if s is None:

print ’could not open socket’
sys.exit(1)

s.send(’Hello, world’)
data = s.recv(1024)
s.close()
print ’Received’, repr(data)

The last example shows how to write a very simple network sniffer with raw sockets on Windows. The example
requires administrator privileges to modify the interface:

import socket

the public network interface
HOST = socket.gethostbyname(socket.gethostname())

create a raw socket and bind it to the public interface
s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP)
s.bind((HOST, 0))

Include IP headers
s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

receive all packages
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

receive a package
print s.recvfrom(65565)

608 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

disabled promiscuous mode
s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

17.3 ssl — SSL wrapper for socket objects

New in version 2.6. This module provides access to Transport Layer Security (often known as “Secure Sockets Layer”)
encryption and peer authentication facilities for network sockets, both client-side and server-side. This module uses
the OpenSSL library. It is available on all modern Unix systems, Windows, Mac OS X, and probably additional
platforms, as long as OpenSSL is installed on that platform.

Note: Some behavior may be platform dependent, since calls are made to the operating system socket APIs. The
installed version of OpenSSL may also cause variations in behavior.

This section documents the objects and functions in the ssl module; for more general information about TLS, SSL,
and certificates, the reader is referred to the documents in the “See Also” section at the bottom.

This module provides a class, ssl.SSLSocket, which is derived from the socket.socket type, and provides
a socket-like wrapper that also encrypts and decrypts the data going over the socket with SSL. It supports additional
read() and write() methods, along with a method, getpeercert(), to retrieve the certificate of the other side
of the connection, and a method, cipher(), to retrieve the cipher being used for the secure connection.

17.3.1 Functions, Constants, and Exceptions

exception SSLError
Raised to signal an error from the underlying SSL implementation. This signifies some problem in the higher-
level encryption and authentication layer that’s superimposed on the underlying network connection. This error
is a subtype of socket.error, which in turn is a subtype of IOError.

wrap_socket(sock, keyfile=None, certfile=None, server_side=False, cert_reqs=CERT_NONE, ssl_version={see
docs}, ca_certs=None, do_handshake_on_connect=True, suppress_ragged_eofs=True)

Takes an instance sock of socket.socket, and returns an instance of ssl.SSLSocket, a subtype of
socket.socket, which wraps the underlying socket in an SSL context. For client-side sockets, the context
construction is lazy; if the underlying socket isn’t connected yet, the context construction will be performed after
connect() is called on the socket. For server-side sockets, if the socket has no remote peer, it is assumed to be
a listening socket, and the server-side SSL wrapping is automatically performed on client connections accepted
via the accept() method. wrap_socket() may raise SSLError.

The keyfile and certfile parameters specify optional files which contain a certificate to be used to iden-
tify the local side of the connection. See the discussion of Certificates for more information on how the certificate
is stored in the certfile.

Often the private key is stored in the same file as the certificate; in this case, only the certfile parameter
need be passed. If the private key is stored in a separate file, both parameters must be used. If the private key is
stored in the certfile, it should come before the first certificate in the certificate chain:

-----BEGIN RSA PRIVATE KEY-----
... (private key in base64 encoding) ...
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
... (certificate in base64 PEM encoding) ...
-----END CERTIFICATE-----

The parameter server_side is a boolean which identifies whether server-side or client-side behavior is de-
sired from this socket.

17.3. ssl — SSL wrapper for socket objects 609

The Python Library Reference, Release 2.6.9

The parameter cert_reqs specifies whether a certificate is required from the other side of the connection, and
whether it will be validated if provided. It must be one of the three values CERT_NONE (certificates ignored),
CERT_OPTIONAL (not required, but validated if provided), or CERT_REQUIRED (required and validated).
If the value of this parameter is not CERT_NONE, then the ca_certs parameter must point to a file of CA
certificates.

The ca_certs file contains a set of concatenated “certification authority” certificates, which are used to val-
idate certificates passed from the other end of the connection. See the discussion of Certificates for more
information about how to arrange the certificates in this file.

The parameter ssl_version specifies which version of the SSL protocol to use. Typically, the server chooses
a particular protocol version, and the client must adapt to the server’s choice. Most of the versions are not
interoperable with the other versions. If not specified, for client-side operation, the default SSL version is
SSLv3; for server-side operation, SSLv23. These version selections provide the most compatibility with other
versions.

Here’s a table showing which versions in a client (down the side) can connect to which versions in a server
(along the top):

client / server SSLv2 SSLv3 SSLv23 TLSv1
SSLv2 yes no yes* no
SSLv3 yes yes yes no
SSLv23 yes no yes no
TLSv1 no no yes yes

In some older versions of OpenSSL (for instance, 0.9.7l on OS X 10.4), an SSLv2 client could not connect to
an SSLv23 server.

The parameter do_handshake_on_connect specifies whether to do the SSL handshake automatically after
doing a socket.connect(), or whether the application program will call it explicitly, by invoking the
SSLSocket.do_handshake() method. Calling SSLSocket.do_handshake() explicitly gives the
program control over the blocking behavior of the socket I/O involved in the handshake.

The parameter suppress_ragged_eofs specifies how the SSLSocket.read() method should signal
unexpected EOF from the other end of the connection. If specified as True (the default), it returns a normal EOF
in response to unexpected EOF errors raised from the underlying socket; if False, it will raise the exceptions
back to the caller.

RAND_status()
Returns True if the SSL pseudo-random number generator has been seeded with ‘enough’ randomness, and
False otherwise. You can use ssl.RAND_egd() and ssl.RAND_add() to increase the randomness of the
pseudo-random number generator.

RAND_egd(path)
If you are running an entropy-gathering daemon (EGD) somewhere, and path is the pathname of a socket
connection open to it, this will read 256 bytes of randomness from the socket, and add it to the SSL pseudo-
random number generator to increase the security of generated secret keys. This is typically only necessary on
systems without better sources of randomness.

See http://egd.sourceforge.net/ or http://prngd.sourceforge.net/ for sources of entropy-gathering daemons.

RAND_add(bytes, entropy)
Mixes the given bytes into the SSL pseudo-random number generator. The parameter entropy (a float)
is a lower bound on the entropy contained in string (so you can always use 0.0). See RFC 1750 for more
information on sources of entropy.

cert_time_to_seconds(timestring)
Returns a floating-point value containing a normal seconds-after-the-epoch time value, given the time-string
representing the “notBefore” or “notAfter” date from a certificate.

610 Chapter 17. Interprocess Communication and Networking

http://egd.sourceforge.net/
http://prngd.sourceforge.net/
http://tools.ietf.org/html/rfc1750.html

The Python Library Reference, Release 2.6.9

Here’s an example:

>>> import ssl
>>> ssl.cert_time_to_seconds("May 9 00:00:00 2007 GMT")
1178694000.0
>>> import time
>>> time.ctime(ssl.cert_time_to_seconds("May 9 00:00:00 2007 GMT"))
’Wed May 9 00:00:00 2007’
>>>

get_server_certificate(addr, ssl_version=PROTOCOL_SSLv3, ca_certs=None)
Given the address addr of an SSL-protected server, as a (hostname, port-number) pair, fetches the server’s
certificate, and returns it as a PEM-encoded string. If ssl_version is specified, uses that version of the SSL
protocol to attempt to connect to the server. If ca_certs is specified, it should be a file containing a list of
root certificates, the same format as used for the same parameter in wrap_socket(). The call will attempt to
validate the server certificate against that set of root certificates, and will fail if the validation attempt fails.

DER_cert_to_PEM_cert(DER_cert_bytes)
Given a certificate as a DER-encoded blob of bytes, returns a PEM-encoded string version of the same certificate.

PEM_cert_to_DER_cert(PEM_cert_string)
Given a certificate as an ASCII PEM string, returns a DER-encoded sequence of bytes for that same certificate.

CERT_NONE
Value to pass to the cert_reqs parameter to sslobject()when no certificates will be required or validated
from the other side of the socket connection.

CERT_OPTIONAL
Value to pass to the cert_reqs parameter to sslobject() when no certificates will be required from the
other side of the socket connection, but if they are provided, will be validated. Note that use of this setting
requires a valid certificate validation file also be passed as a value of the ca_certs parameter.

CERT_REQUIRED
Value to pass to the cert_reqs parameter to sslobject() when certificates will be required from the
other side of the socket connection. Note that use of this setting requires a valid certificate validation file also
be passed as a value of the ca_certs parameter.

PROTOCOL_SSLv2
Selects SSL version 2 as the channel encryption protocol.

Warning: SSL version 2 is insecure. Its use is highly discouraged.

PROTOCOL_SSLv23
Selects SSL version 2 or 3 as the channel encryption protocol. This is a setting to use with servers for maximum
compatibility with the other end of an SSL connection, but it may cause the specific ciphers chosen for the
encryption to be of fairly low quality.

PROTOCOL_SSLv3
Selects SSL version 3 as the channel encryption protocol. For clients, this is the maximally compatible SSL
variant.

PROTOCOL_TLSv1
Selects TLS version 1 as the channel encryption protocol. This is the most modern version, and probably the
best choice for maximum protection, if both sides can speak it.

17.3. ssl — SSL wrapper for socket objects 611

The Python Library Reference, Release 2.6.9

17.3.2 SSLSocket Objects

read([nbytes=1024])
Reads up to nbytes bytes from the SSL-encrypted channel and returns them.

write(data)
Writes the data to the other side of the connection, using the SSL channel to encrypt. Returns the number of
bytes written.

getpeercert(binary_form=False)
If there is no certificate for the peer on the other end of the connection, returns None.

If the parameter binary_form is False, and a certificate was received from the peer, this method returns a
dict instance. If the certificate was not validated, the dict is empty. If the certificate was validated, it returns
a dict with the keys subject (the principal for which the certificate was issued), and notAfter (the time
after which the certificate should not be trusted). The certificate was already validated, so the notBefore and
issuer fields are not returned. If a certificate contains an instance of the Subject Alternative Name extension
(see RFC 3280), there will also be a subjectAltName key in the dictionary.

The “subject” field is a tuple containing the sequence of relative distinguished names (RDNs) given in the
certificate’s data structure for the principal, and each RDN is a sequence of name-value pairs:

{’notAfter’: ’Feb 16 16:54:50 2013 GMT’,
’subject’: (((’countryName’, u’US’),),

((’stateOrProvinceName’, u’Delaware’),),
((’localityName’, u’Wilmington’),),
((’organizationName’, u’Python Software Foundation’),),
((’organizationalUnitName’, u’SSL’),),
((’commonName’, u’somemachine.python.org’),))}

If the binary_form parameter is True, and a certificate was provided, this method returns the DER-encoded
form of the entire certificate as a sequence of bytes, or None if the peer did not provide a certificate. This return
value is independent of validation; if validation was required (CERT_OPTIONAL or CERT_REQUIRED), it will
have been validated, but if CERT_NONE was used to establish the connection, the certificate, if present, will not
have been validated.

cipher()
Returns a three-value tuple containing the name of the cipher being used, the version of the SSL protocol that
defines its use, and the number of secret bits being used. If no connection has been established, returns None.

do_handshake()
Perform a TLS/SSL handshake. If this is used with a non-blocking socket, it may raise SSLError with an
arg[0] of SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE, in which case it must be called again
until it completes successfully. For example, to simulate the behavior of a blocking socket, one might write:

while True:
try:

s.do_handshake()
break

except ssl.SSLError, err:
if err.args[0] == ssl.SSL_ERROR_WANT_READ:

select.select([s], [], [])
elif err.args[0] == ssl.SSL_ERROR_WANT_WRITE:

select.select([], [s], [])
else:

raise

612 Chapter 17. Interprocess Communication and Networking

http://tools.ietf.org/html/rfc3280.html

The Python Library Reference, Release 2.6.9

unwrap()
Performs the SSL shutdown handshake, which removes the TLS layer from the underlying socket, and returns
the underlying socket object. This can be used to go from encrypted operation over a connection to unen-
crypted. The socket instance returned should always be used for further communication with the other side of
the connection, rather than the original socket instance (which may not function properly after the unwrap).

17.3.3 Certificates

Certificates in general are part of a public-key / private-key system. In this system, each principal, (which may be a
machine, or a person, or an organization) is assigned a unique two-part encryption key. One part of the key is public,
and is called the public key; the other part is kept secret, and is called the private key. The two parts are related, in that
if you encrypt a message with one of the parts, you can decrypt it with the other part, and only with the other part.

A certificate contains information about two principals. It contains the name of a subject, and the subject’s public key.
It also contains a statement by a second principal, the issuer, that the subject is who he claims to be, and that this is
indeed the subject’s public key. The issuer’s statement is signed with the issuer’s private key, which only the issuer
knows. However, anyone can verify the issuer’s statement by finding the issuer’s public key, decrypting the statement
with it, and comparing it to the other information in the certificate. The certificate also contains information about the
time period over which it is valid. This is expressed as two fields, called “notBefore” and “notAfter”.

In the Python use of certificates, a client or server can use a certificate to prove who they are. The other side of a
network connection can also be required to produce a certificate, and that certificate can be validated to the satisfaction
of the client or server that requires such validation. The connection attempt can be set to raise an exception if the
validation fails. Validation is done automatically, by the underlying OpenSSL framework; the application need not
concern itself with its mechanics. But the application does usually need to provide sets of certificates to allow this
process to take place.

Python uses files to contain certificates. They should be formatted as “PEM” (see RFC 1422), which is a base-64
encoded form wrapped with a header line and a footer line:

-----BEGIN CERTIFICATE-----
... (certificate in base64 PEM encoding) ...
-----END CERTIFICATE-----

The Python files which contain certificates can contain a sequence of certificates, sometimes called a certificate chain.
This chain should start with the specific certificate for the principal who “is” the client or server, and then the certificate
for the issuer of that certificate, and then the certificate for the issuer of that certificate, and so on up the chain till you
get to a certificate which is self-signed, that is, a certificate which has the same subject and issuer, sometimes called a
root certificate. The certificates should just be concatenated together in the certificate file. For example, suppose we
had a three certificate chain, from our server certificate to the certificate of the certification authority that signed our
server certificate, to the root certificate of the agency which issued the certification authority’s certificate:

-----BEGIN CERTIFICATE-----
... (certificate for your server)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the certificate for the CA)...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... (the root certificate for the CA’s issuer)...
-----END CERTIFICATE-----

If you are going to require validation of the other side of the connection’s certificate, you need to provide a “CA certs”
file, filled with the certificate chains for each issuer you are willing to trust. Again, this file just contains these chains
concatenated together. For validation, Python will use the first chain it finds in the file which matches.

17.3. ssl — SSL wrapper for socket objects 613

http://tools.ietf.org/html/rfc1422.html

The Python Library Reference, Release 2.6.9

Some “standard” root certificates are available from various certification authorities: CACert.org, Thawte, Verisign,
Positive SSL (used by python.org), Equifax and GeoTrust.

In general, if you are using SSL3 or TLS1, you don’t need to put the full chain in your “CA certs” file; you only
need the root certificates, and the remote peer is supposed to furnish the other certificates necessary to chain from its
certificate to a root certificate. See RFC 4158 for more discussion of the way in which certification chains can be built.

If you are going to create a server that provides SSL-encrypted connection services, you will need to acquire a certifi-
cate for that service. There are many ways of acquiring appropriate certificates, such as buying one from a certification
authority. Another common practice is to generate a self-signed certificate. The simplest way to do this is with the
OpenSSL package, using something like the following:

% openssl req -new -x509 -days 365 -nodes -out cert.pem -keyout cert.pem
Generating a 1024 bit RSA private key
.......++++++
.............................++++++
writing new private key to ’cert.pem’

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:MyState
Locality Name (eg, city) []:Some City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Organization, Inc.
Organizational Unit Name (eg, section) []:My Group
Common Name (eg, YOUR name) []:myserver.mygroup.myorganization.com
Email Address []:ops@myserver.mygroup.myorganization.com
%

The disadvantage of a self-signed certificate is that it is its own root certificate, and no one else will have it in their
cache of known (and trusted) root certificates.

17.3.4 Examples

Testing for SSL support

To test for the presence of SSL support in a Python installation, user code should use the following idiom:

try:
import ssl

except ImportError:
pass

else:
[do something that requires SSL support]

Client-side operation

This example connects to an SSL server, prints the server’s address and certificate, sends some bytes, and reads part
of the response:

614 Chapter 17. Interprocess Communication and Networking

http://www.cacert.org/index.php?id=3
http://www.thawte.com/roots/
http://www.verisign.com/support/roots.html
http://www.PositiveSSL.com/ssl-certificate-support/cert_installation/UTN-USERFirst-Hardware.crt
http://www.geotrust.com/resources/root_certificates/index.asp
http://tools.ietf.org/html/rfc4158.html

The Python Library Reference, Release 2.6.9

import socket, ssl, pprint

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

require a certificate from the server
ssl_sock = ssl.wrap_socket(s,

ca_certs="/etc/ca_certs_file",
cert_reqs=ssl.CERT_REQUIRED)

ssl_sock.connect((’www.verisign.com’, 443))

print repr(ssl_sock.getpeername())
print ssl_sock.cipher()
print pprint.pformat(ssl_sock.getpeercert())

Set a simple HTTP request -- use httplib in actual code.
ssl_sock.write("""GET / HTTP/1.0\r
Host: www.verisign.com\r\n\r\n""")

Read a chunk of data. Will not necessarily
read all the data returned by the server.
data = ssl_sock.read()

note that closing the SSLSocket will also close the underlying socket
ssl_sock.close()

As of September 6, 2007, the certificate printed by this program looked like this:

{’notAfter’: ’May 8 23:59:59 2009 GMT’,
’subject’: (((’serialNumber’, u’2497886’),),

((’1.3.6.1.4.1.311.60.2.1.3’, u’US’),),
((’1.3.6.1.4.1.311.60.2.1.2’, u’Delaware’),),
((’countryName’, u’US’),),
((’postalCode’, u’94043’),),
((’stateOrProvinceName’, u’California’),),
((’localityName’, u’Mountain View’),),
((’streetAddress’, u’487 East Middlefield Road’),),
((’organizationName’, u’VeriSign, Inc.’),),
((’organizationalUnitName’,

u’Production Security Services’),),
((’organizationalUnitName’,

u’Terms of use at www.verisign.com/rpa (c)06’),),
((’commonName’, u’www.verisign.com’),))}

which is a fairly poorly-formed subject field.

Server-side operation

For server operation, typically you’d need to have a server certificate, and private key, each in a file. You’d open a
socket, bind it to a port, call listen() on it, then start waiting for clients to connect:

import socket, ssl

bindsocket = socket.socket()

17.3. ssl — SSL wrapper for socket objects 615

The Python Library Reference, Release 2.6.9

bindsocket.bind((’myaddr.mydomain.com’, 10023))
bindsocket.listen(5)

When one did, you’d call accept() on the socket to get the new socket from the other end, and use
wrap_socket() to create a server-side SSL context for it:

while True:
newsocket, fromaddr = bindsocket.accept()
connstream = ssl.wrap_socket(newsocket,

server_side=True,
certfile="mycertfile",
keyfile="mykeyfile",
ssl_version=ssl.PROTOCOL_TLSv1)

deal_with_client(connstream)

Then you’d read data from the connstream and do something with it till you are finished with the client (or the
client is finished with you):

def deal_with_client(connstream):

data = connstream.read()
null data means the client is finished with us
while data:

if not do_something(connstream, data):
we’ll assume do_something returns False
when we’re finished with client
break

data = connstream.read()
finished with client
connstream.close()

And go back to listening for new client connections.

See Also:

Class socket.socket Documentation of underlying socket class

Introducing SSL and Certificates using OpenSSL Frederick J. Hirsch

RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management
Steve Kent

RFC 1750: Randomness Recommendations for Security D. Eastlake et. al.

RFC 3280: Internet X.509 Public Key Infrastructure Certificate and CRL Profile Housley et. al.

17.4 signal — Set handlers for asynchronous events

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals and
their handlers:

• A handler for a particular signal, once set, remains installed until it is explicitly reset (Python emulates the BSD
style interface regardless of the underlying implementation), with the exception of the handler for SIGCHLD,
which follows the underlying implementation.

• There is no way to “block” signals temporarily from critical sections (since this is not supported by all Unix
flavors).

616 Chapter 17. Interprocess Communication and Networking

http://old.pseudonym.org/ssl/wwwj-index.html
http://www.ietf.org/rfc/rfc1422
http://www.ietf.org/rfc/rfc1750
http://www.ietf.org/rfc/rfc3280

The Python Library Reference, Release 2.6.9

• Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can
only occur between the “atomic” instructions of the Python interpreter. This means that signals arriving during
long calculations implemented purely in C (such as regular expression matches on large bodies of text) may be
delayed for an arbitrary amount of time.

• When a signal arrives during an I/O operation, it is possible that the I/O operation raises an exception after
the signal handler returns. This is dependent on the underlying Unix system’s semantics regarding interrupted
system calls.

• Because the C signal handler always returns, it makes little sense to catch synchronous errors like SIGFPE or
SIGSEGV.

• Python installs a small number of signal handlers by default: SIGPIPE is ignored (so write errors
on pipes and sockets can be reported as ordinary Python exceptions) and SIGINT is translated into a
KeyboardInterrupt exception. All of these can be overridden.

• Some care must be taken if both signals and threads are used in the same program. The fundamental thing to
remember in using signals and threads simultaneously is: always perform signal() operations in the main
thread of execution. Any thread can perform an alarm(), getsignal(), pause(), setitimer() or
getitimer(); only the main thread can set a new signal handler, and the main thread will be the only one to
receive signals (this is enforced by the Python signal module, even if the underlying thread implementation
supports sending signals to individual threads). This means that signals can’t be used as a means of inter-thread
communication. Use locks instead.

The variables defined in the signal module are:

SIG_DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default action for SIGQUIT is to dump core and exit, while the default action
for SIGCHLD is to simply ignore it.

SIG_IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal.SIGHUP; the variable names are identical to the names used in C programs, as found in
<signal.h>. The Unix man page for ‘signal()‘ lists the existing signals (on some systems this is
signal(2), on others the list is in signal(7)). Note that not all systems define the same set of signal
names; only those names defined by the system are defined by this module.

NSIG
One more than the number of the highest signal number.

ITIMER_REAL
Decrements interval timer in real time, and delivers SIGALRM upon expiration.

ITIMER_VIRTUAL
Decrements interval timer only when the process is executing, and delivers SIGVTALRM upon expiration.

ITIMER_PROF
Decrements interval timer both when the process executes and when the system is executing on behalf of the
process. Coupled with ITIMER_VIRTUAL, this timer is usually used to profile the time spent by the application
in user and kernel space. SIGPROF is delivered upon expiration.

The signal module defines one exception:

exception ItimerError
Raised to signal an error from the underlying setitimer() or getitimer() implementation. Expect this
error if an invalid interval timer or a negative time is passed to setitimer(). This error is a subtype of
IOError.

17.4. signal — Set handlers for asynchronous events 617

The Python Library Reference, Release 2.6.9

The signal module defines the following functions:

alarm(time)
If time is non-zero, this function requests that a SIGALRM signal be sent to the process in time seconds. Any
previously scheduled alarm is canceled (only one alarm can be scheduled at any time). The returned value is
then the number of seconds before any previously set alarm was to have been delivered. If time is zero, no alarm
is scheduled, and any scheduled alarm is canceled. If the return value is zero, no alarm is currently scheduled.
(See the Unix man page alarm(2).) Availability: Unix.

getsignal(signalnum)
Return the current signal handler for the signal signalnum. The returned value may be a callable Python object,
or one of the special values signal.SIG_IGN, signal.SIG_DFL or None. Here, signal.SIG_IGN
means that the signal was previously ignored, signal.SIG_DFL means that the default way of handling the
signal was previously in use, and None means that the previous signal handler was not installed from Python.

pause()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing.
Not on Windows. (See the Unix man page signal(2).)

setitimer(which, seconds, [interval])
Sets given interval timer (one of signal.ITIMER_REAL, signal.ITIMER_VIRTUAL or
signal.ITIMER_PROF) specified by which to fire after seconds (float is accepted, different from
alarm()) and after that every interval seconds. The interval timer specified by which can be cleared by setting
seconds to zero.

When an interval timer fires, a signal is sent to the process. The signal sent is dependent on the timer being
used; signal.ITIMER_REAL will deliver SIGALRM, signal.ITIMER_VIRTUAL sends SIGVTALRM,
and signal.ITIMER_PROF will deliver SIGPROF.

The old values are returned as a tuple: (delay, interval).

Attempting to pass an invalid interval timer will cause an ItimerError. Availability: Unix. New in version
2.6.

getitimer(which)
Returns current value of a given interval timer specified by which. Availability: Unix. New in version 2.6.

set_wakeup_fd(fd)
Set the wakeup fd to fd. When a signal is received, a ’\0’ byte is written to the fd. This can be used by a
library to wakeup a poll or select call, allowing the signal to be fully processed.

The old wakeup fd is returned. fd must be non-blocking. It is up to the library to remove any bytes before calling
poll or select again.

When threads are enabled, this function can only be called from the main thread; attempting to call it from other
threads will cause a ValueError exception to be raised.

siginterrupt(signalnum, flag)
Change system call restart behaviour: if flag is False, system calls will be restarted when interrupted by signal
signalnum, otherwise system calls will be interrupted. Returns nothing. Availability: Unix (see the man page
siginterrupt(3) for further information).

Note that installing a signal handler with signal()will reset the restart behaviour to interruptible by implicitly
calling siginterrupt() with a true flag value for the given signal. New in version 2.6.

signal(signalnum, handler)
Set the handler for signal signalnum to the function handler. handler can be a callable Python object taking
two arguments (see below), or one of the special values signal.SIG_IGN or signal.SIG_DFL. The
previous signal handler will be returned (see the description of getsignal() above). (See the Unix man
page signal(2).)

618 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

When threads are enabled, this function can only be called from the main thread; attempting to call it from other
threads will cause a ValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a frame
object; for a description of frame objects, see the description in the type hierarchy (in The Python Language
Reference) or see the attribute descriptions in the inspect module).

17.4.1 Example

Here is a minimal example program. It uses the alarm() function to limit the time spent waiting to open a file; this
is useful if the file is for a serial device that may not be turned on, which would normally cause the os.open() to
hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation takes too long, the
alarm signal will be sent, and the handler raises an exception.

import signal, os

def handler(signum, frame):
print ’Signal handler called with signal’, signum
raise IOError("Couldn’t open device!")

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

This open() may hang indefinitely
fd = os.open(’/dev/ttyS0’, os.O_RDWR)

signal.alarm(0) # Disable the alarm

17.5 popen2 — Subprocesses with accessible I/O streams

Deprecated since version 2.6: This module is obsolete. Use the subprocess module. Check especially the Replac-
ing Older Functions with the subprocess Module section. This module allows you to spawn processes and connect to
their input/output/error pipes and obtain their return codes under Unix and Windows.

The subprocess module provides more powerful facilities for spawning new processes and retrieving their results.
Using the subprocess module is preferable to using the popen2 module.

The primary interface offered by this module is a trio of factory functions. For each of these, if bufsize is specified,
it specifies the buffer size for the I/O pipes. mode, if provided, should be the string ’b’ or ’t’; on Windows this is
needed to determine whether the file objects should be opened in binary or text mode. The default value for mode is
’t’.

On Unix, cmd may be a sequence, in which case arguments will be passed directly to the program without shell
intervention (as with os.spawnv()). If cmd is a string it will be passed to the shell (as with os.system()).

The only way to retrieve the return codes for the child processes is by using the poll() or wait() methods on
the Popen3 and Popen4 classes; these are only available on Unix. This information is not available when using
the popen2(), popen3(), and popen4() functions, or the equivalent functions in the os module. (Note that the
tuples returned by the os module’s functions are in a different order from the ones returned by the popen2 module.)

popen2(cmd, [bufsize, [mode]])
Executes cmd as a sub-process. Returns the file objects (child_stdout, child_stdin).

17.5. popen2 — Subprocesses with accessible I/O streams 619

The Python Library Reference, Release 2.6.9

popen3(cmd, [bufsize, [mode]])
Executes cmd as a sub-process. Returns the file objects (child_stdout, child_stdin,
child_stderr).

popen4(cmd, [bufsize, [mode]])
Executes cmd as a sub-process. Returns the file objects (child_stdout_and_stderr,
child_stdin). New in version 2.0.

On Unix, a class defining the objects returned by the factory functions is also available. These are not used for the
Windows implementation, and are not available on that platform.

class Popen3(cmd, [capturestderr, [bufsize]])
This class represents a child process. Normally, Popen3 instances are created using the popen2() and
popen3() factory functions described above.

If not using one of the helper functions to create Popen3 objects, the parameter cmd is the shell command to
execute in a sub-process. The capturestderr flag, if true, specifies that the object should capture standard error
output of the child process. The default is false. If the bufsize parameter is specified, it specifies the size of the
I/O buffers to/from the child process.

class Popen4(cmd, [bufsize])
Similar to Popen3, but always captures standard error into the same file object as standard output. These are
typically created using popen4(). New in version 2.0.

17.5.1 Popen3 and Popen4 Objects

Instances of the Popen3 and Popen4 classes have the following methods:

poll()
Returns -1 if child process hasn’t completed yet, or its status code (see wait()) otherwise.

wait()
Waits for and returns the status code of the child process. The status code encodes both the return code of the
process and information about whether it exited using the exit() system call or died due to a signal. Functions
to help interpret the status code are defined in the os module; see section Process Management for the W*()
family of functions.

The following attributes are also available:

fromchild
A file object that provides output from the child process. For Popen4 instances, this will provide both the
standard output and standard error streams.

tochild
A file object that provides input to the child process.

childerr
A file object that provides error output from the child process, if capturestderr was true for the constructor,
otherwise None. This will always be None for Popen4 instances.

pid
The process ID of the child process.

17.5.2 Flow Control Issues

Any time you are working with any form of inter-process communication, control flow needs to be carefully thought
out. This remains the case with the file objects provided by this module (or the os module equivalents).

620 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

When reading output from a child process that writes a lot of data to standard error while the parent is reading from
the child’s standard output, a deadlock can occur. A similar situation can occur with other combinations of reads and
writes. The essential factors are that more than _PC_PIPE_BUF bytes are being written by one process in a blocking
fashion, while the other process is reading from the first process, also in a blocking fashion.

There are several ways to deal with this situation.

The simplest application change, in many cases, will be to follow this model in the parent process:

import popen2

r, w, e = popen2.popen3(’python slave.py’)
e.readlines()
r.readlines()
r.close()
e.close()
w.close()

with code like this in the child:

import os
import sys

note that each of these print statements
writes a single long string

print >>sys.stderr, 400 * ’this is a test\n’
os.close(sys.stderr.fileno())
print >>sys.stdout, 400 * ’this is another test\n’

In particular, note that sys.stderr must be closed after writing all data, or readlines() won’t return. Also
note that os.close() must be used, as sys.stderr.close() won’t close stderr (otherwise assigning to
sys.stderr will silently close it, so no further errors can be printed).

Applications which need to support a more general approach should integrate I/O over pipes with their select()
loops, or use separate threads to read each of the individual files provided by whichever popen*() function or
Popen* class was used.

See Also:

Module subprocess Module for spawning and managing subprocesses.

17.6 asyncore — Asynchronous socket handler

This module provides the basic infrastructure for writing asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do “more than one thing at a time.” Multi-threaded
programming is the simplest and most popular way to do it, but there is another very different technique, that lets you
have nearly all the advantages of multi-threading, without actually using multiple threads. It’s really only practical
if your program is largely I/O bound. If your program is processor bound, then pre-emptive scheduled threads are
probably what you really need. Network servers are rarely processor bound, however.

If your operating system supports the select() system call in its I/O library (and nearly all do), then you can use it to
juggle multiple communication channels at once; doing other work while your I/O is taking place in the “background.”
Although this strategy can seem strange and complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The asyncore module solves many of the difficult problems for you,
making the task of building sophisticated high-performance network servers and clients a snap. For “conversational”
applications and protocols the companion asynchat module is invaluable.

17.6. asyncore — Asynchronous socket handler 621

The Python Library Reference, Release 2.6.9

The basic idea behind both modules is to create one or more network channels, instances of class
asyncore.dispatcher and asynchat.async_chat. Creating the channels adds them to a global map, used
by the loop() function if you do not provide it with your own map.

Once the initial channel(s) is(are) created, calling the loop() function activates channel service, which continues
until the last channel (including any that have been added to the map during asynchronous service) is closed.

loop([timeout, [use_poll, [map, [count]]]])
Enter a polling loop that terminates after count passes or all open channels have been closed. All arguments are
optional. The count parameter defaults to None, resulting in the loop terminating only when all channels have
been closed. The timeout argument sets the timeout parameter for the appropriate select() or poll() call,
measured in seconds; the default is 30 seconds. The use_poll parameter, if true, indicates that poll() should
be used in preference to select() (the default is False).

The map parameter is a dictionary whose items are the channels to watch. As channels are closed they are deleted
from their map. If map is omitted, a global map is used. Channels (instances of asyncore.dispatcher,
asynchat.async_chat and subclasses thereof) can freely be mixed in the map.

class dispatcher()
The dispatcher class is a thin wrapper around a low-level socket object. To make it more useful, it has a
few methods for event-handling which are called from the asynchronous loop. Otherwise, it can be treated as a
normal non-blocking socket object.

The firing of low-level events at certain times or in certain connection states tells the asynchronous loop that
certain higher-level events have taken place. For example, if we have asked for a socket to connect to another
host, we know that the connection has been made when the socket becomes writable for the first time (at this
point you know that you may write to it with the expectation of success). The implied higher-level events are:

Event Description
handle_connect() Implied by the first read or write event
handle_close() Implied by a read event with no data available
handle_accept() Implied by a read event on a listening socket

During asynchronous processing, each mapped channel’s readable() and writable() methods are used
to determine whether the channel’s socket should be added to the list of channels select()ed or poll()ed
for read and write events.

Thus, the set of channel events is larger than the basic socket events. The full set of methods that can be
overridden in your subclass follows:

handle_read()
Called when the asynchronous loop detects that a read() call on the channel’s socket will succeed.

handle_write()
Called when the asynchronous loop detects that a writable socket can be written. Often this method will
implement the necessary buffering for performance. For example:

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

handle_expt()
Called when there is out of band (OOB) data for a socket connection. This will almost never happen, as
OOB is tenuously supported and rarely used.

handle_connect()
Called when the active opener’s socket actually makes a connection. Might send a “welcome” banner, or
initiate a protocol negotiation with the remote endpoint, for example.

622 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

handle_close()
Called when the socket is closed.

handle_error()
Called when an exception is raised and not otherwise handled. The default version prints a condensed
traceback.

handle_accept()
Called on listening channels (passive openers) when a connection can be established with a new remote
endpoint that has issued a connect() call for the local endpoint.

readable()
Called each time around the asynchronous loop to determine whether a channel’s socket should be added
to the list on which read events can occur. The default method simply returns True, indicating that by
default, all channels will be interested in read events.

writable()
Called each time around the asynchronous loop to determine whether a channel’s socket should be added
to the list on which write events can occur. The default method simply returns True, indicating that by
default, all channels will be interested in write events.

In addition, each channel delegates or extends many of the socket methods. Most of these are nearly identical to
their socket partners.

create_socket(family, type)
This is identical to the creation of a normal socket, and will use the same options for creation. Refer to the
socket documentation for information on creating sockets.

connect(address)
As with the normal socket object, address is a tuple with the first element the host to connect to, and the
second the port number.

send(data)
Send data to the remote end-point of the socket.

recv(buffer_size)
Read at most buffer_size bytes from the socket’s remote end-point. An empty string implies that the
channel has been closed from the other end.

listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number of
queued connections and should be at least 1; the maximum value is system-dependent (usually 5).

bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address depends on
the address family — refer to the socket documentation for more information.) To mark the socket as
re-usable (setting the SO_REUSEADDR option), call the dispatcher object’s set_reuse_addr()
method.

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return
value is a pair (conn, address) where conn is a new socket object usable to send and receive data on
the connection, and address is the address bound to the socket on the other end of the connection.

close()
Close the socket. All future operations on the socket object will fail. The remote end-point will receive no
more data (after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

class file_dispatcher()
A file_dispatcher takes a file descriptor or file object along with an optional map argument and wraps it for use

17.6. asyncore — Asynchronous socket handler 623

The Python Library Reference, Release 2.6.9

with the poll() or loop() functions. If provided a file object or anything with a fileno() method, that
method will be called and passed to the file_wrapper constructor. Availability: UNIX.

class file_wrapper()
A file_wrapper takes an integer file descriptor and calls os.dup() to duplicate the handle so that the original
handle may be closed independently of the file_wrapper. This class implements sufficient methods to emulate a
socket for use by the file_dispatcher class. Availability: UNIX.

17.6.1 asyncore Example basic HTTP client

Here is a very basic HTTP client that uses the dispatcher class to implement its socket handling:

import asyncore, socket

class http_client(asyncore.dispatcher):

def __init__(self, host, path):
asyncore.dispatcher.__init__(self)
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect((host, 80))
self.buffer = ’GET %s HTTP/1.0\r\n\r\n’ % path

def handle_connect(self):
pass

def handle_close(self):
self.close()

def handle_read(self):
print self.recv(8192)

def writable(self):
return (len(self.buffer) > 0)

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

c = http_client(’www.python.org’, ’/’)

asyncore.loop()

17.7 asynchat — Asynchronous socket command/response handler

This module builds on the asyncore infrastructure, simplifying asynchronous clients and servers and mak-
ing it easier to handle protocols whose elements are terminated by arbitrary strings, or are of variable length.
asynchat defines the abstract class async_chat that you subclass, providing implementations of the
collect_incoming_data() and found_terminator() methods. It uses the same asynchronous loop
as asyncore, and the two types of channel, asyncore.dispatcher and asynchat.async_chat, can
freely be mixed in the channel map. Typically an asyncore.dispatcher server channel generates new
asynchat.async_chat channel objects as it receives incoming connection requests.

624 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

class async_chat()
This class is an abstract subclass of asyncore.dispatcher. To make practical use of the
code you must subclass async_chat, providing meaningful collect_incoming_data() and
found_terminator() methods. The asyncore.dispatcher methods can be used, although not all
make sense in a message/response context.

Like asyncore.dispatcher, async_chat defines a set of events that are generated by an analysis of
socket conditions after a select() call. Once the polling loop has been started the async_chat object’s
methods are called by the event-processing framework with no action on the part of the programmer.

Two class attributes can be modified, to improve performance, or possibly even to conserve memory.

ac_in_buffer_size
The asynchronous input buffer size (default 4096).

ac_out_buffer_size
The asynchronous output buffer size (default 4096).

Unlike asyncore.dispatcher, async_chat allows you to define a first-in-first-out queue (fifo) of pro-
ducers. A producer need have only one method, more(), which should return data to be transmitted on the
channel. The producer indicates exhaustion (i.e. that it contains no more data) by having its more() method
return the empty string. At this point the async_chat object removes the producer from the fifo and starts
using the next producer, if any. When the producer fifo is empty the handle_write() method does nothing.
You use the channel object’s set_terminator() method to describe how to recognize the end of, or an
important breakpoint in, an incoming transmission from the remote endpoint.

To build a functioning async_chat subclass your input methods collect_incoming_data() and
found_terminator() must handle the data that the channel receives asynchronously. The methods are
described below.

close_when_done()
Pushes a None on to the producer fifo. When this producer is popped off the fifo it causes the channel to be
closed.

collect_incoming_data(data)
Called with data holding an arbitrary amount of received data. The default method, which must be overridden,
raises a NotImplementedError exception.

discard_buffers()
In emergencies this method will discard any data held in the input and/or output buffers and the producer fifo.

found_terminator()
Called when the incoming data stream matches the termination condition set by set_terminator(). The
default method, which must be overridden, raises a NotImplementedError exception. The buffered input
data should be available via an instance attribute.

get_terminator()
Returns the current terminator for the channel.

push(data)
Pushes data on to the channel’s fifo to ensure its transmission. This is all you need to do to have the channel
write the data out to the network, although it is possible to use your own producers in more complex schemes to
implement encryption and chunking, for example.

push_with_producer(producer)
Takes a producer object and adds it to the producer fifo associated with the channel. When all currently-pushed
producers have been exhausted the channel will consume this producer’s data by calling its more() method
and send the data to the remote endpoint.

17.7. asynchat — Asynchronous socket command/response handler 625

The Python Library Reference, Release 2.6.9

set_terminator(term)
Sets the terminating condition to be recognized on the channel. term may be any of three types of value,
corresponding to three different ways to handle incoming protocol data.

term Description
string Will call found_terminator() when the string is found in the input stream
integer Will call found_terminator() when the indicated number of characters have been received
None The channel continues to collect data forever

Note that any data following the terminator will be available for reading by the channel after
found_terminator() is called.

17.7.1 asynchat - Auxiliary Classes

class fifo([list=None])
A fifo holding data which has been pushed by the application but not yet popped for writing to the channel.
A fifo is a list used to hold data and/or producers until they are required. If the list argument is provided then
it should contain producers or data items to be written to the channel.

is_empty()
Returns True if and only if the fifo is empty.

first()
Returns the least-recently push()ed item from the fifo.

push(data)
Adds the given data (which may be a string or a producer object) to the producer fifo.

pop()
If the fifo is not empty, returns True, first(), deleting the popped item. Returns False, None for
an empty fifo.

17.7.2 asynchat Example

The following partial example shows how HTTP requests can be read with async_chat. A web server might
create an http_request_handler object for each incoming client connection. Notice that initially the channel
terminator is set to match the blank line at the end of the HTTP headers, and a flag indicates that the headers are being
read.

Once the headers have been read, if the request is of type POST (indicating that further data are present in the input
stream) then the Content-Length: header is used to set a numeric terminator to read the right amount of data
from the channel.

The handle_request() method is called once all relevant input has been marshalled, after setting the channel
terminator to None to ensure that any extraneous data sent by the web client are ignored.

class http_request_handler(asynchat.async_chat):

def __init__(self, sock, addr, sessions, log):
asynchat.async_chat.__init__(self, sock=sock)
self.addr = addr
self.sessions = sessions
self.ibuffer = []
self.obuffer = ""
self.set_terminator("\r\n\r\n")
self.reading_headers = True
self.handling = False

626 Chapter 17. Interprocess Communication and Networking

The Python Library Reference, Release 2.6.9

self.cgi_data = None
self.log = log

def collect_incoming_data(self, data):
"""Buffer the data"""
self.ibuffer.append(data)

def found_terminator(self):
if self.reading_headers:

self.reading_headers = False
self.parse_headers("".join(self.ibuffer))
self.ibuffer = []
if self.op.upper() == "POST":

clen = self.headers.getheader("content-length")
self.set_terminator(int(clen))

else:
self.handling = True
self.set_terminator(None)
self.handle_request()

elif not self.handling:
self.set_terminator(None) # browsers sometimes over-send
self.cgi_data = parse(self.headers, "".join(self.ibuffer))
self.handling = True
self.ibuffer = []
self.handle_request()

17.7. asynchat — Asynchronous socket command/response handler 627

The Python Library Reference, Release 2.6.9

628 Chapter 17. Interprocess Communication and Networking

CHAPTER

EIGHTEEN

INTERNET DATA HANDLING

This chapter describes modules which support handling data formats commonly used on the Internet.

18.1 email — An email and MIME handling package

New in version 2.2. The email package is a library for managing email messages, including MIME and other RFC
2822-based message documents. It subsumes most of the functionality in several older standard modules such as
rfc822, mimetools, multifile, and other non-standard packages such as mimecntl. It is specifically not
designed to do any sending of email messages to SMTP (RFC 2821), NNTP, or other servers; those are functions
of modules such as smtplib and nntplib. The email package attempts to be as RFC-compliant as possible,
supporting in addition to RFC 2822, such MIME-related RFCs as RFC 2045, RFC 2046, RFC 2047, and RFC 2231.

The primary distinguishing feature of the email package is that it splits the parsing and generating of email messages
from the internal object model representation of email. Applications using the email package deal primarily with
objects; you can add sub-objects to messages, remove sub-objects from messages, completely re-arrange the contents,
etc. There is a separate parser and a separate generator which handles the transformation from flat text to the object
model, and then back to flat text again. There are also handy subclasses for some common MIME object types, and a
few miscellaneous utilities that help with such common tasks as extracting and parsing message field values, creating
RFC-compliant dates, etc.

The following sections describe the functionality of the email package. The ordering follows a progression that
should be common in applications: an email message is read as flat text from a file or other source, the text is parsed to
produce the object structure of the email message, this structure is manipulated, and finally, the object tree is rendered
back into flat text.

It is perfectly feasible to create the object structure out of whole cloth — i.e. completely from scratch. From there, a
similar progression can be taken as above.

Also included are detailed specifications of all the classes and modules that the email package provides, the exception
classes you might encounter while using the email package, some auxiliary utilities, and a few examples. For users
of the older mimelib package, or previous versions of the email package, a section on differences and porting is
provided.

Contents of the email package documentation:

18.1.1 email: Representing an email message

The central class in the email package is the Message class, imported from the email.message module. It is
the base class for the email object model. Message provides the core functionality for setting and querying header
fields, and for accessing message bodies.

629

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2821.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 2.6.9

Conceptually, a Message object consists of headers and payloads. Headers are RFC 2822 style field names and
values where the field name and value are separated by a colon. The colon is not part of either the field name or the
field value.

Headers are stored and returned in case-preserving form but are matched case-insensitively. There may also be a single
envelope header, also known as the Unix-From header or the From_ header. The payload is either a string in the case
of simple message objects or a list of Message objects for MIME container documents (e.g. multipart/* and
message/rfc822).

Message objects provide a mapping style interface for accessing the message headers, and an explicit interface for
accessing both the headers and the payload. It provides convenience methods for generating a flat text representation
of the message object tree, for accessing commonly used header parameters, and for recursively walking over the
object tree.

Here are the methods of the Message class:

class Message()
The constructor takes no arguments.

as_string([unixfrom])
Return the entire message flattened as a string. When optional unixfrom is True, the envelope header is
included in the returned string. unixfrom defaults to False. Flattening the message may trigger changes
to the Message if defaults need to be filled in to complete the transformation to a string (for example,
MIME boundaries may be generated or modified).

Note that this method is provided as a convenience and may not always format the message the way you
want. For example, by default it mangles lines that begin with From. For more flexibility, instantiate a
Generator instance and use its flatten() method directly. For example:

from cStringIO import StringIO
from email.generator import Generator
fp = StringIO()
g = Generator(fp, mangle_from_=False, maxheaderlen=60)
g.flatten(msg)
text = fp.getvalue()

__str__()
Equivalent to as_string(unixfrom=True).

is_multipart()
Return True if the message’s payload is a list of sub-Message objects, otherwise return False. When
is_multipart() returns False, the payload should be a string object.

set_unixfrom(unixfrom)
Set the message’s envelope header to unixfrom, which should be a string.

get_unixfrom()
Return the message’s envelope header. Defaults to None if the envelope header was never set.

attach(payload)
Add the given payload to the current payload, which must be None or a list of Message objects before
the call. After the call, the payload will always be a list of Message objects. If you want to set the
payload to a scalar object (e.g. a string), use set_payload() instead.

get_payload([i, [decode]])
Return the current payload, which will be a list of Message objects when is_multipart() is True,
or a string when is_multipart() is False. If the payload is a list and you mutate the list object, you
modify the message’s payload in place.

630 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

With optional argument i, get_payload() will return the i-th element of the payload, counting from
zero, if is_multipart() is True. An IndexError will be raised if i is less than 0 or greater than or
equal to the number of items in the payload. If the payload is a string (i.e. is_multipart() is False)
and i is given, a TypeError is raised.

Optional decode is a flag indicating whether the payload should be decoded or not, according to the
Content-Transfer-Encoding header. When True and the message is not a multipart, the pay-
load will be decoded if this header’s value is quoted-printable or base64. If some other encoding
is used, or Content-Transfer-Encoding header is missing, or if the payload has bogus base64
data, the payload is returned as-is (undecoded). If the message is a multipart and the decode flag is True,
then None is returned. The default for decode is False.

set_payload(payload, [charset])
Set the entire message object’s payload to payload. It is the client’s responsibility to ensure the payload
invariants. Optional charset sets the message’s default character set; see set_charset() for details.
Changed in version 2.2.2: charset argument added.

set_charset(charset)
Set the character set of the payload to charset, which can either be a Charset instance (see
email.charset), a string naming a character set, or None. If it is a string, it will be converted
to a Charset instance. If charset is None, the charset parameter will be removed from the
Content-Type header. Anything else will generate a TypeError.

The message will be assumed to be of type text/*, with the payload either in unicode or encoded
with charset.input_charset. It will be encoded or converted to charset.output_charset and transfer en-
coded properly, if needed, when generating the plain text representation of the message. MIME headers
(MIME-Version, Content-Type, Content-Transfer-Encoding) will be added as needed.
New in version 2.2.2.

get_charset()
Return the Charset instance associated with the message’s payload. New in version 2.2.2.

The following methods implement a mapping-like interface for accessing the message’s RFC 2822 headers.
Note that there are some semantic differences between these methods and a normal mapping (i.e. dictionary)
interface. For example, in a dictionary there are no duplicate keys, but here there may be duplicate message
headers. Also, in dictionaries there is no guaranteed order to the keys returned by keys(), but in a Message
object, headers are always returned in the order they appeared in the original message, or were added to the
message later. Any header deleted and then re-added are always appended to the end of the header list.

These semantic differences are intentional and are biased toward maximal convenience.

Note that in all cases, any envelope header present in the message is not included in the mapping interface.

__len__()
Return the total number of headers, including duplicates.

__contains__(name)
Return true if the message object has a field named name. Matching is done case-insensitively and name
should not include the trailing colon. Used for the in operator, e.g.:

if ’message-id’ in myMessage:
print ’Message-ID:’, myMessage[’message-id’]

__getitem__(name)
Return the value of the named header field. name should not include the colon field separator. If the header
is missing, None is returned; a KeyError is never raised.

Note that if the named field appears more than once in the message’s headers, exactly which of those field
values will be returned is undefined. Use the get_all() method to get the values of all the extant named

18.1. email — An email and MIME handling package 631

http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

headers.

__setitem__(name, val)
Add a header to the message with field name name and value val. The field is appended to the end of the
message’s existing fields.

Note that this does not overwrite or delete any existing header with the same name. If you want to ensure
that the new header is the only one present in the message with field name name, delete the field first, e.g.:

del msg[’subject’]
msg[’subject’] = ’Python roolz!’

__delitem__(name)
Delete all occurrences of the field with name name from the message’s headers. No exception is raised if
the named field isn’t present in the headers.

has_key(name)
Return true if the message contains a header field named name, otherwise return false.

keys()
Return a list of all the message’s header field names.

values()
Return a list of all the message’s field values.

items()
Return a list of 2-tuples containing all the message’s field headers and values.

get(name, [failobj])
Return the value of the named header field. This is identical to __getitem__() except that optional
failobj is returned if the named header is missing (defaults to None).

Here are some additional useful methods:

get_all(name, [failobj])
Return a list of all the values for the field named name. If there are no such named headers in the message,
failobj is returned (defaults to None).

add_header(_name, _value, **_params)
Extended header setting. This method is similar to __setitem__() except that additional header pa-
rameters can be provided as keyword arguments. _name is the header field to add and _value is the primary
value for the header.

For each item in the keyword argument dictionary _params, the key is taken as the parameter name, with
underscores converted to dashes (since dashes are illegal in Python identifiers). Normally, the parameter
will be added as key="value" unless the value is None, in which case only the key will be added.

Here’s an example:

msg.add_header(’Content-Disposition’, ’attachment’, filename=’bud.gif’)

This will add a header that looks like

Content-Disposition: attachment; filename="bud.gif"

replace_header(_name, _value)
Replace a header. Replace the first header found in the message that matches _name, retaining header
order and field name case. If no matching header was found, a KeyError is raised. New in version 2.2.2.

632 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

get_content_type()
Return the message’s content type. The returned string is coerced to lower case of the form
maintype/subtype. If there was no Content-Type header in the message the default type as
given by get_default_type() will be returned. Since according to RFC 2045, messages always
have a default type, get_content_type() will always return a value.

RFC 2045 defines a message’s default type to be text/plain unless it appears inside
a multipart/digest container, in which case it would be message/rfc822. If the
Content-Type header has an invalid type specification, RFC 2045 mandates that the default type be
text/plain. New in version 2.2.2.

get_content_maintype()
Return the message’s main content type. This is the maintype part of the string returned by
get_content_type(). New in version 2.2.2.

get_content_subtype()
Return the message’s sub-content type. This is the subtype part of the string returned by
get_content_type(). New in version 2.2.2.

get_default_type()
Return the default content type. Most messages have a default content type of text/plain, except for
messages that are subparts of multipart/digest containers. Such subparts have a default content
type of message/rfc822. New in version 2.2.2.

set_default_type(ctype)
Set the default content type. ctype should either be text/plain or message/rfc822, although this
is not enforced. The default content type is not stored in the Content-Type header. New in version
2.2.2.

get_params([failobj, [header, [unquote]]])
Return the message’s Content-Type parameters, as a list. The elements of the returned list are 2-tuples
of key/value pairs, as split on the ’=’ sign. The left hand side of the ’=’ is the key, while the right hand
side is the value. If there is no ’=’ sign in the parameter the value is the empty string, otherwise the value
is as described in get_param() and is unquoted if optional unquote is True (the default).

Optional failobj is the object to return if there is no Content-Type header. Optional header is the
header to search instead of Content-Type. Changed in version 2.2.2: unquote argument added.

get_param(param, [failobj, [header, [unquote]]])
Return the value of the Content-Type header’s parameter param as a string. If the message has no
Content-Type header or if there is no such parameter, then failobj is returned (defaults to None).

Optional header if given, specifies the message header to use instead of Content-Type.

Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-
tuple if the parameter was RFC 2231 encoded. When it’s a 3-tuple, the elements of the value are of the
form (CHARSET, LANGUAGE, VALUE). Note that both CHARSET and LANGUAGE can be None, in
which case you should consider VALUE to be encoded in the us-ascii charset. You can usually ignore
LANGUAGE.

If your application doesn’t care whether the parameter was encoded as in RFC 2231, you can collapse the
parameter value by calling email.utils.collapse_rfc2231_value(), passing in the return
value from get_param(). This will return a suitably decoded Unicode string whn the value is a tuple,
or the original string unquoted if it isn’t. For example:

rawparam = msg.get_param(’foo’)
param = email.utils.collapse_rfc2231_value(rawparam)

In any case, the parameter value (either the returned string, or the VALUE item in the 3-tuple) is always

18.1. email — An email and MIME handling package 633

http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 2.6.9

unquoted, unless unquote is set to False. Changed in version 2.2.2: unquote argument added, and 3-tuple
return value possible.

set_param(param, value, [header, [requote, [charset, [language]]]])
Set a parameter in the Content-Type header. If the parameter already exists in the header, its value will
be replaced with value. If the Content-Type header as not yet been defined for this message, it will be
set to text/plain and the new parameter value will be appended as per RFC 2045.

Optional header specifies an alternative header to Content-Type, and all parameters will be quoted as
necessary unless optional requote is False (the default is True).

If optional charset is specified, the parameter will be encoded according to RFC 2231. Optional language
specifies the RFC 2231 language, defaulting to the empty string. Both charset and language should be
strings. New in version 2.2.2.

del_param(param, [header, [requote]])
Remove the given parameter completely from the Content-Type header. The header will be re-written
in place without the parameter or its value. All values will be quoted as necessary unless requote is False
(the default is True). Optional header specifies an alternative to Content-Type. New in version 2.2.2.

set_type(type, [header], [requote])
Set the main type and subtype for the Content-Type header. type must be a string in the form
maintype/subtype, otherwise a ValueError is raised.

This method replaces the Content-Type header, keeping all the parameters in place. If requote is
False, this leaves the existing header’s quoting as is, otherwise the parameters will be quoted (the de-
fault).

An alternative header can be specified in the header argument. When the Content-Type header is set
a MIME-Version header is also added. New in version 2.2.2.

get_filename([failobj])
Return the value of the filename parameter of the Content-Disposition header of the message.
If the header does not have a filename parameter, this method falls back to looking for the name
parameter. If neither is found, or the header is missing, then failobj is returned. The returned string will
always be unquoted as per email.utils.unquote().

get_boundary([failobj])
Return the value of the boundary parameter of the Content-Type header of the message, or failobj if
either the header is missing, or has no boundary parameter. The returned string will always be unquoted
as per email.utils.unquote().

set_boundary(boundary)
Set the boundary parameter of the Content-Type header to boundary. set_boundary() will
always quote boundary if necessary. A HeaderParseError is raised if the message object has no
Content-Type header.

Note that using this method is subtly different than deleting the old Content-Type header and adding a
new one with the new boundary via add_header(), because set_boundary() preserves the order
of the Content-Type header in the list of headers. However, it does not preserve any continuation lines
which may have been present in the original Content-Type header.

get_content_charset([failobj])
Return the charset parameter of the Content-Type header, coerced to lower case. If there is no
Content-Type header, or if that header has no charset parameter, failobj is returned.

Note that this method differs from get_charset() which returns the Charset instance for the default
encoding of the message body. New in version 2.2.2.

634 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 2.6.9

get_charsets([failobj])
Return a list containing the character set names in the message. If the message is a multipart, then the
list will contain one element for each subpart in the payload, otherwise, it will be a list of length 1.

Each item in the list will be a string which is the value of the charset parameter in the Content-Type
header for the represented subpart. However, if the subpart has no Content-Type header, no charset
parameter, or is not of the text main MIME type, then that item in the returned list will be failobj.

walk()
The walk()method is an all-purpose generator which can be used to iterate over all the parts and subparts
of a message object tree, in depth-first traversal order. You will typically use walk() as the iterator in a
for loop; each iteration returns the next subpart.

Here’s an example that prints the MIME type of every part of a multipart message structure:

>>> for part in msg.walk():
... print part.get_content_type()
multipart/report
text/plain
message/delivery-status
text/plain
text/plain
message/rfc822

Changed in version 2.5: The previously deprecated methods get_type(), get_main_type(), and
get_subtype() were removed. Message objects can also optionally contain two instance attributes, which
can be used when generating the plain text of a MIME message.

preamble
The format of a MIME document allows for some text between the blank line following the headers,
and the first multipart boundary string. Normally, this text is never visible in a MIME-aware mail reader
because it falls outside the standard MIME armor. However, when viewing the raw text of the message, or
when viewing the message in a non-MIME aware reader, this text can become visible.

The preamble attribute contains this leading extra-armor text for MIME documents. When the Parser
discovers some text after the headers but before the first boundary string, it assigns this text to the message’s
preamble attribute. When the Generator is writing out the plain text representation of a MIME message,
and it finds the message has a preamble attribute, it will write this text in the area between the headers and
the first boundary. See email.parser and email.generator for details.

Note that if the message object has no preamble, the preamble attribute will be None.

epilogue
The epilogue attribute acts the same way as the preamble attribute, except that it contains text that appears
between the last boundary and the end of the message. Changed in version 2.5: You do not need to set the
epilogue to the empty string in order for the Generator to print a newline at the end of the file.

defects
The defects attribute contains a list of all the problems found when parsing this message. See
email.errors for a detailed description of the possible parsing defects. New in version 2.4.

18.1.2 email: Parsing email messages

Message object structures can be created in one of two ways: they can be created from whole cloth by instantiating
Message objects and stringing them together via attach() and set_payload() calls, or they can be created
by parsing a flat text representation of the email message.

18.1. email — An email and MIME handling package 635

The Python Library Reference, Release 2.6.9

The email package provides a standard parser that understands most email document structures, including MIME
documents. You can pass the parser a string or a file object, and the parser will return to you the root Message instance
of the object structure. For simple, non-MIME messages the payload of this root object will likely be a string con-
taining the text of the message. For MIME messages, the root object will return True from its is_multipart()
method, and the subparts can be accessed via the get_payload() and walk() methods.

There are actually two parser interfaces available for use, the classic Parser API and the incremental FeedParser
API. The classic Parser API is fine if you have the entire text of the message in memory as a string, or if the entire
message lives in a file on the file system. FeedParser is more appropriate for when you’re reading the message from
a stream which might block waiting for more input (e.g. reading an email message from a socket). The FeedParser
can consume and parse the message incrementally, and only returns the root object when you close the parser 1.

Note that the parser can be extended in limited ways, and of course you can implement your own parser completely
from scratch. There is no magical connection between the email package’s bundled parser and the Message class,
so your custom parser can create message object trees any way it finds necessary.

FeedParser API

New in version 2.4. The FeedParser, imported from the email.feedparser module, provides an API that is
conducive to incremental parsing of email messages, such as would be necessary when reading the text of an email
message from a source that can block (e.g. a socket). The FeedParser can of course be used to parse an email
message fully contained in a string or a file, but the classic Parser API may be more convenient for such use cases.
The semantics and results of the two parser APIs are identical.

The FeedParser‘s API is simple; you create an instance, feed it a bunch of text until there’s no more to feed it, then
close the parser to retrieve the root message object. The FeedParser is extremely accurate when parsing standards-
compliant messages, and it does a very good job of parsing non-compliant messages, providing information about how
a message was deemed broken. It will populate a message object’s defects attribute with a list of any problems it found
in a message. See the email.errors module for the list of defects that it can find.

Here is the API for the FeedParser:

class FeedParser([_factory])
Create a FeedParser instance. Optional _factory is a no-argument callable that will be called whenever a
new message object is needed. It defaults to the email.message.Message class.

feed(data)
Feed the FeedParser some more data. data should be a string containing one or more lines. The lines
can be partial and the FeedParser will stitch such partial lines together properly. The lines in the string
can have any of the common three line endings, carriage return, newline, or carriage return and newline
(they can even be mixed).

close()
Closing a FeedParser completes the parsing of all previously fed data, and returns the root message
object. It is undefined what happens if you feed more data to a closed FeedParser.

Parser class API

The Parser class, imported from the email.parser module, provides an API that can be used to parse a message
when the complete contents of the message are available in a string or file. The email.parsermodule also provides
a second class, called HeaderParser which can be used if you’re only interested in the headers of the message.
HeaderParser can be much faster in these situations, since it does not attempt to parse the message body, instead
setting the payload to the raw body as a string. HeaderParser has the same API as the Parser class.

1 As of email package version 3.0, introduced in Python 2.4, the classic Parser was re-implemented in terms of the FeedParser, so the
semantics and results are identical between the two parsers.

636 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

class Parser([_class])
The constructor for the Parser class takes an optional argument _class. This must be a callable factory (such as
a function or a class), and it is used whenever a sub-message object needs to be created. It defaults to Message
(see email.message). The factory will be called without arguments.

The optional strict flag is ignored. Deprecated since version 2.4: Because the Parser class is a backward
compatible API wrapper around the new-in-Python 2.4 FeedParser, all parsing is effectively non-strict. You
should simply stop passing a strict flag to the Parser constructor.Changed in version 2.2.2: The strict flag was
added.Changed in version 2.4: The strict flag was deprecated. The other public Parser methods are:

parse(fp, [headersonly])
Read all the data from the file-like object fp, parse the resulting text, and return the root message object. fp
must support both the readline() and the read() methods on file-like objects.

The text contained in fp must be formatted as a block of RFC 2822 style headers and header continuation
lines, optionally preceded by a envelope header. The header block is terminated either by the end of
the data or by a blank line. Following the header block is the body of the message (which may contain
MIME-encoded subparts).

Optional headersonly is as with the parse() method. Changed in version 2.2.2: The headersonly flag
was added.

parsestr(text, [headersonly])
Similar to the parse() method, except it takes a string object instead of a file-like object. Calling
this method on a string is exactly equivalent to wrapping text in a StringIO instance first and calling
parse().

Optional headersonly is a flag specifying whether to stop parsing after reading the headers or not. The de-
fault is False, meaning it parses the entire contents of the file. Changed in version 2.2.2: The headersonly
flag was added.

Since creating a message object structure from a string or a file object is such a common task, two functions are
provided as a convenience. They are available in the top-level email package namespace.

message_from_string(s, [_class, [strict]])
Return a message object structure from a string. This is exactly equivalent to Parser().parsestr(s).
Optional _class and strict are interpreted as with the Parser class constructor. Changed in version 2.2.2: The
strict flag was added.

message_from_file(fp, [_class, [strict]])
Return a message object structure tree from an open file object. This is exactly equivalent to
Parser().parse(fp). Optional _class and strict are interpreted as with the Parser class constructor.
Changed in version 2.2.2: The strict flag was added.

Here’s an example of how you might use this at an interactive Python prompt:

>>> import email
>>> msg = email.message_from_string(myString)

Additional notes

Here are some notes on the parsing semantics:

• Most non-multipart type messages are parsed as a single message object with a string payload. These objects
will return False for is_multipart(). Their get_payload() method will return a string object.

• All multipart type messages will be parsed as a container message object with a list of sub-message ob-
jects for their payload. The outer container message will return True for is_multipart() and their
get_payload() method will return the list of Message subparts.

18.1. email — An email and MIME handling package 637

http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

• Most messages with a content type of message/* (e.g. message/delivery-status and
message/rfc822) will also be parsed as container object containing a list payload of length 1. Their
is_multipart() method will return True. The single element in the list payload will be a sub-message
object.

• Some non-standards compliant messages may not be internally consistent about their multipart-edness.
Such messages may have a Content-Type header of type multipart, but their is_multipart()
method may return False. If such messages were parsed with the FeedParser, they will have an instance of
the MultipartInvariantViolationDefect class in their defects attribute list. See email.errors
for details.

18.1.3 email: Generating MIME documents

One of the most common tasks is to generate the flat text of the email message represented by a message object
structure. You will need to do this if you want to send your message via the smtplib module or the nntplib
module, or print the message on the console. Taking a message object structure and producing a flat text document is
the job of the Generator class.

Again, as with the email.parser module, you aren’t limited to the functionality of the bundled generator; you
could write one from scratch yourself. However the bundled generator knows how to generate most email in a
standards-compliant way, should handle MIME and non-MIME email messages just fine, and is designed so that
the transformation from flat text, to a message structure via the Parser class, and back to flat text, is idempotent (the
input is identical to the output). On the other hand, using the Generator on a Message constructed by program may
result in changes to the Message object as defaults are filled in.

Here are the public methods of the Generator class, imported from the email.generator module:

class Generator(outfp, [mangle_from_, [maxheaderlen]])
The constructor for the Generator class takes a file-like object called outfp for an argument. outfp must
support the write() method and be usable as the output file in a Python extended print statement.

Optional mangle_from_ is a flag that, when True, puts a > character in front of any line in the body that starts
exactly as From, i.e. From followed by a space at the beginning of the line. This is the only guaranteed portable
way to avoid having such lines be mistaken for a Unix mailbox format envelope header separator (see WHY
THE CONTENT-LENGTH FORMAT IS BAD for details). mangle_from_ defaults to True, but you might
want to set this to False if you are not writing Unix mailbox format files.

Optional maxheaderlen specifies the longest length for a non-continued header. When a header line is longer
than maxheaderlen (in characters, with tabs expanded to 8 spaces), the header will be split as defined in the
Header class. Set to zero to disable header wrapping. The default is 78, as recommended (but not required) by
RFC 2822.

The other public Generator methods are:

flatten(msg, [unixfrom])
Print the textual representation of the message object structure rooted at msg to the output file specified
when the Generator instance was created. Subparts are visited depth-first and the resulting text will be
properly MIME encoded.

Optional unixfrom is a flag that forces the printing of the envelope header delimiter before the first RFC
2822 header of the root message object. If the root object has no envelope header, a standard one is crafted.
By default, this is set to False to inhibit the printing of the envelope delimiter.

Note that for subparts, no envelope header is ever printed. New in version 2.2.2.

clone(fp)
Return an independent clone of this Generator instance with the exact same options. New in version
2.2.2.

638 Chapter 18. Internet Data Handling

http://www.jwz.org/doc/content-length.html
http://www.jwz.org/doc/content-length.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

write(s)
Write the string s to the underlying file object, i.e. outfp passed to Generator‘s constructor. This
provides just enough file-like API for Generator instances to be used in extended print statements.

As a convenience, see the methods Message.as_string() and str(aMessage), a.k.a.
Message.__str__(), which simplify the generation of a formatted string representation of a message ob-
ject. For more detail, see email.message.

The email.generator module also provides a derived class, called DecodedGenerator which is like the
Generator base class, except that non-text parts are substituted with a format string representing the part.

class DecodedGenerator(outfp, [mangle_from_, [maxheaderlen, [fmt]]])
This class, derived from Generator walks through all the subparts of a message. If the subpart is of main
type text, then it prints the decoded payload of the subpart. Optional _mangle_from_ and maxheaderlen are
as with the Generator base class.

If the subpart is not of main type text, optional fmt is a format string that is used instead of the message
payload. fmt is expanded with the following keywords, %(keyword)s format:

•type – Full MIME type of the non-text part

•maintype – Main MIME type of the non-text part

•subtype – Sub-MIME type of the non-text part

•filename – Filename of the non-text part

•description – Description associated with the non-text part

•encoding – Content transfer encoding of the non-text part

The default value for fmt is None, meaning

[Non-text (%(type)s) part of message omitted, filename %(filename)s]

New in version 2.2.2.

Changed in version 2.5: The previously deprecated method __call__() was removed.

18.1.4 email: Creating email and MIME objects from scratch

Ordinarily, you get a message object structure by passing a file or some text to a parser, which parses the text and
returns the root message object. However you can also build a complete message structure from scratch, or even
individual Message objects by hand. In fact, you can also take an existing structure and add new Message objects,
move them around, etc. This makes a very convenient interface for slicing-and-dicing MIME messages.

You can create a new object structure by creating Message instances, adding attachments and all the appropriate
headers manually. For MIME messages though, the email package provides some convenient subclasses to make
things easier.

Here are the classes:

class MIMEBase(_maintype, _subtype, **_params)
Module: email.mime.base

This is the base class for all the MIME-specific subclasses of Message. Ordinarily you won’t create instances
specifically of MIMEBase, although you could. MIMEBase is provided primarily as a convenient base class
for more specific MIME-aware subclasses.

_maintype is the Content-Type major type (e.g. text or image), and _subtype is the Content-Type
minor type (e.g. plain or gif). _params is a parameter key/value dictionary and is passed directly to
Message.add_header().

18.1. email — An email and MIME handling package 639

The Python Library Reference, Release 2.6.9

The MIMEBase class always adds a Content-Type header (based on _maintype, _subtype, and _params),
and a MIME-Version header (always set to 1.0).

class MIMENonMultipart()
Module: email.mime.nonmultipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are not multipart.
The primary purpose of this class is to prevent the use of the attach() method, which only makes sense
for multipart messages. If attach() is called, a MultipartConversionError exception is raised.
New in version 2.2.2.

class MIMEMultipart([_subtype, [boundary, [_subparts, [_params]]]])
Module: email.mime.multipart

A subclass of MIMEBase, this is an intermediate base class for MIME messages that are multipart. Optional
_subtype defaults to mixed, but can be used to specify the subtype of the message. A Content-Type header
of multipart/_subtype will be added to the message object. A MIME-Version header will also be
added.

Optional boundary is the multipart boundary string. When None (the default), the boundary is calculated when
needed (for example, when the message is serialized).

_subparts is a sequence of initial subparts for the payload. It must be possible to convert this sequence to a list.
You can always attach new subparts to the message by using the Message.attach() method.

Additional parameters for the Content-Type header are taken from the keyword arguments, or passed into
the _params argument, which is a keyword dictionary. New in version 2.2.2.

class MIMEApplication(_data, [_subtype, [_encoder, [**_params]]])
Module: email.mime.application

A subclass of MIMENonMultipart, the MIMEApplication class is used to represent MIME message
objects of major type application. _data is a string containing the raw byte data. Optional _subtype
specifies the MIME subtype and defaults to octet-stream.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the data for
transport. This callable takes one argument, which is the MIMEApplication instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor. New in version 2.5.

class MIMEAudio(_audiodata, [_subtype, [_encoder, [**_params]]])
Module: email.mime.audio

A subclass of MIMENonMultipart, the MIMEAudio class is used to create MIME message objects of major
type audio. _audiodata is a string containing the raw audio data. If this data can be decoded by the standard
Python module sndhdr, then the subtype will be automatically included in the Content-Type header. Oth-
erwise you can explicitly specify the audio subtype via the _subtype parameter. If the minor type could not be
guessed and _subtype was not given, then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the audio
data for transport. This callable takes one argument, which is the MIMEAudio instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the base class constructor.

class MIMEImage(_imagedata, [_subtype, [_encoder, [**_params]]])
Module: email.mime.image

640 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

A subclass of MIMENonMultipart, the MIMEImage class is used to create MIME message objects of major
type image. _imagedata is a string containing the raw image data. If this data can be decoded by the standard
Python module imghdr, then the subtype will be automatically included in the Content-Type header. Oth-
erwise you can explicitly specify the image subtype via the _subtype parameter. If the minor type could not be
guessed and _subtype was not given, then TypeError is raised.

Optional _encoder is a callable (i.e. function) which will perform the actual encoding of the image
data for transport. This callable takes one argument, which is the MIMEImage instance. It should use
get_payload() and set_payload() to change the payload to encoded form. It should also add any
Content-Transfer-Encoding or other headers to the message object as necessary. The default encoding
is base64. See the email.encoders module for a list of the built-in encoders.

_params are passed straight through to the MIMEBase constructor.

class MIMEMessage(_msg, [_subtype])
Module: email.mime.message

A subclass of MIMENonMultipart, the MIMEMessage class is used to create MIME objects of main type
message. _msg is used as the payload, and must be an instance of class Message (or a subclass thereof),
otherwise a TypeError is raised.

Optional _subtype sets the subtype of the message; it defaults to rfc822.

class MIMEText(_text, [_subtype, [_charset]])
Module: email.mime.text

A subclass of MIMENonMultipart, the MIMEText class is used to create MIME objects of major type
text. _text is the string for the payload. _subtype is the minor type and defaults to plain. _charset is the
character set of the text and is passed as a parameter to the MIMENonMultipart constructor; it defaults to
us-ascii. If _text is unicode, it is encoded using the output_charset of _charset, otherwise it is used as-is.
Changed in version 2.4: The previously deprecated _encoding argument has been removed. Content Transfer
Encoding now happens happens implicitly based on the _charset argument.

18.1.5 email: Internationalized headers

RFC 2822 is the base standard that describes the format of email messages. It derives from the older RFC 822
standard which came into widespread use at a time when most email was composed of ASCII characters only. RFC
2822 is a specification written assuming email contains only 7-bit ASCII characters.

Of course, as email has been deployed worldwide, it has become internationalized, such that language specific char-
acter sets can now be used in email messages. The base standard still requires email messages to be transferred using
only 7-bit ASCII characters, so a slew of RFCs have been written describing how to encode email containing non-
ASCII characters into RFC 2822-compliant format. These RFCs include RFC 2045, RFC 2046, RFC 2047, and
RFC 2231. The email package supports these standards in its email.header and email.charset modules.

If you want to include non-ASCII characters in your email headers, say in the Subject or To fields, you should use
the Header class and assign the field in the Message object to an instance of Header instead of using a string for
the header value. Import the Header class from the email.header module. For example:

>>> from email.message import Message
>>> from email.header import Header
>>> msg = Message()
>>> h = Header(’p\xf6stal’, ’iso-8859-1’)
>>> msg[’Subject’] = h
>>> print msg.as_string()
Subject: =?iso-8859-1?q?p=F6stal?=

Notice here how we wanted the Subject field to contain a non-ASCII character? We did this by creating a Header
instance and passing in the character set that the byte string was encoded in. When the subsequent Message instance

18.1. email — An email and MIME handling package 641

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 2.6.9

was flattened, the Subject field was properly RFC 2047 encoded. MIME-aware mail readers would show this
header using the embedded ISO-8859-1 character. New in version 2.2.2. Here is the Header class description:

class Header([s, [charset, [maxlinelen, [header_name, [continuation_ws, [errors]]]]]])
Create a MIME-compliant header that can contain strings in different character sets.

Optional s is the initial header value. If None (the default), the initial header value is not set. You can later
append to the header with append() method calls. s may be a byte string or a Unicode string, but see the
append() documentation for semantics.

Optional charset serves two purposes: it has the same meaning as the charset argument to the append()
method. It also sets the default character set for all subsequent append() calls that omit the charset argument.
If charset is not provided in the constructor (the default), the us-ascii character set is used both as s‘s initial
charset and as the default for subsequent append() calls.

The maximum line length can be specified explicit via maxlinelen. For splitting the first line to a shorter value
(to account for the field header which isn’t included in s, e.g. Subject) pass in the name of the field in
header_name. The default maxlinelen is 76, and the default value for header_name is None, meaning it is not
taken into account for the first line of a long, split header.

Optional continuation_ws must be RFC 2822-compliant folding whitespace, and is usually either a space or a
hard tab character. This character will be prepended to continuation lines.

Optional errors is passed straight through to the append() method.

append(s, [charset, [errors]])
Append the string s to the MIME header.

Optional charset, if given, should be a Charset instance (see email.charset) or the name of a
character set, which will be converted to a Charset instance. A value of None (the default) means that
the charset given in the constructor is used.

s may be a byte string or a Unicode string. If it is a byte string (i.e. isinstance(s, str) is true),
then charset is the encoding of that byte string, and a UnicodeError will be raised if the string cannot
be decoded with that character set.

If s is a Unicode string, then charset is a hint specifying the character set of the characters in the string.
In this case, when producing an RFC 2822-compliant header using RFC 2047 rules, the Unicode string
will be encoded using the following charsets in order: us-ascii, the charset hint, utf-8. The first
character set to not provoke a UnicodeError is used.

Optional errors is passed through to any unicode() or ustr.encode() call, and defaults to “strict”.

encode([splitchars])
Encode a message header into an RFC-compliant format, possibly wrapping long lines and encapsulating
non-ASCII parts in base64 or quoted-printable encodings. Optional splitchars is a string containing char-
acters to split long ASCII lines on, in rough support of RFC 2822‘s highest level syntactic breaks. This
doesn’t affect RFC 2047 encoded lines.

The Header class also provides a number of methods to support standard operators and built-in functions.

__str__()
A synonym for Header.encode(). Useful for str(aHeader).

__unicode__()
A helper for the built-in unicode() function. Returns the header as a Unicode string.

__eq__(other)
This method allows you to compare two Header instances for equality.

__ne__(other)
This method allows you to compare two Header instances for inequality.

642 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2047.html

The Python Library Reference, Release 2.6.9

The email.header module also provides the following convenient functions.

decode_header(header)
Decode a message header value without converting the character set. The header value is in header.

This function returns a list of (decoded_string, charset) pairs containing each of the decoded parts
of the header. charset is None for non-encoded parts of the header, otherwise a lower case string containing the
name of the character set specified in the encoded string.

Here’s an example:

>>> from email.header import decode_header
>>> decode_header(’=?iso-8859-1?q?p=F6stal?=’)
[(’p\xf6stal’, ’iso-8859-1’)]

make_header(decoded_seq, [maxlinelen, [header_name, [continuation_ws]]])
Create a Header instance from a sequence of pairs as returned by decode_header().

decode_header() takes a header value string and returns a sequence of pairs of the format
(decoded_string, charset) where charset is the name of the character set.

This function takes one of those sequence of pairs and returns a Header instance. Optional maxlinelen,
header_name, and continuation_ws are as in the Header constructor.

18.1.6 email: Representing character sets

This module provides a class Charset for representing character sets and character set conversions in email mes-
sages, as well as a character set registry and several convenience methods for manipulating this registry. Instances of
Charset are used in several other modules within the email package.

Import this class from the email.charset module. New in version 2.2.2.

class Charset([input_charset])
Map character sets to their email properties.

This class provides information about the requirements imposed on email for a specific character set. It also
provides convenience routines for converting between character sets, given the availability of the applicable
codecs. Given a character set, it will do its best to provide information on how to use that character set in an
email message in an RFC-compliant way.

Certain character sets must be encoded with quoted-printable or base64 when used in email headers or bodies.
Certain character sets must be converted outright, and are not allowed in email.

Optional input_charset is as described below; it is always coerced to lower case. After being alias normalized
it is also used as a lookup into the registry of character sets to find out the header encoding, body encoding,
and output conversion codec to be used for the character set. For example, if input_charset is iso-8859-1,
then headers and bodies will be encoded using quoted-printable and no output conversion codec is necessary.
If input_charset is euc-jp, then headers will be encoded with base64, bodies will not be encoded, but output
text will be converted from the euc-jp character set to the iso-2022-jp character set.

Charset instances have the following data attributes:

input_charset
The initial character set specified. Common aliases are converted to their official email names (e.g.
latin_1 is converted to iso-8859-1). Defaults to 7-bit us-ascii.

header_encoding
If the character set must be encoded before it can be used in an email header, this attribute
will be set to Charset.QP (for quoted-printable), Charset.BASE64 (for base64 encoding), or
Charset.SHORTEST for the shortest of QP or BASE64 encoding. Otherwise, it will be None.

18.1. email — An email and MIME handling package 643

The Python Library Reference, Release 2.6.9

body_encoding
Same as header_encoding, but describes the encoding for the mail message’s body, which indeed may be
different than the header encoding. Charset.SHORTEST is not allowed for body_encoding.

output_charset
Some character sets must be converted before they can be used in email headers or bodies. If the in-
put_charset is one of them, this attribute will contain the name of the character set output will be converted
to. Otherwise, it will be None.

input_codec
The name of the Python codec used to convert the input_charset to Unicode. If no conversion codec is
necessary, this attribute will be None.

output_codec
The name of the Python codec used to convert Unicode to the output_charset. If no conversion codec is
necessary, this attribute will have the same value as the input_codec.

Charset instances also have the following methods:

get_body_encoding()
Return the content transfer encoding used for body encoding.

This is either the string quoted-printable or base64 depending on the encoding used, or it is a
function, in which case you should call the function with a single argument, the Message object being
encoded. The function should then set the Content-Transfer-Encoding header itself to whatever
is appropriate.

Returns the string quoted-printable if body_encoding is QP, returns the string base64 if
body_encoding is BASE64, and returns the string 7bit otherwise.

convert(s)
Convert the string s from the input_codec to the output_codec.

to_splittable(s)
Convert a possibly multibyte string to a safely splittable format. s is the string to split.

Uses the input_codec to try and convert the string to Unicode, so it can be safely split on character bound-
aries (even for multibyte characters).

Returns the string as-is if it isn’t known how to convert s to Unicode with the input_charset.

Characters that could not be converted to Unicode will be replaced with the Unicode replacement character
’U+FFFD’.

from_splittable(ustr, [to_output])
Convert a splittable string back into an encoded string. ustr is a Unicode string to “unsplit”.

This method uses the proper codec to try and convert the string from Unicode back into an encoded format.
Return the string as-is if it is not Unicode, or if it could not be converted from Unicode.

Characters that could not be converted from Unicode will be replaced with an appropriate character (usu-
ally ’?’).

If to_output is True (the default), uses output_codec to convert to an encoded format. If to_output is
False, it uses input_codec.

get_output_charset()
Return the output character set.

This is the output_charset attribute if that is not None, otherwise it is input_charset.

644 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

encoded_header_len()
Return the length of the encoded header string, properly calculating for quoted-printable or base64 encod-
ing.

header_encode(s, [convert])
Header-encode the string s.

If convert is True, the string will be converted from the input charset to the output charset automatically.
This is not useful for multibyte character sets, which have line length issues (multibyte characters must be
split on a character, not a byte boundary); use the higher-level Header class to deal with these issues (see
email.header). convert defaults to False.

The type of encoding (base64 or quoted-printable) will be based on the header_encoding attribute.

body_encode(s, [convert])
Body-encode the string s.

If convert is True (the default), the string will be converted from the input charset to output charset auto-
matically. Unlike header_encode(), there are no issues with byte boundaries and multibyte charsets
in email bodies, so this is usually pretty safe.

The type of encoding (base64 or quoted-printable) will be based on the body_encoding attribute.

The Charset class also provides a number of methods to support standard operations and built-in functions.

__str__()
Returns input_charset as a string coerced to lower case. __repr__() is an alias for __str__().

__eq__(other)
This method allows you to compare two Charset instances for equality.

__ne__(other)
This method allows you to compare two Charset instances for inequality.

The email.charset module also provides the following functions for adding new entries to the global character
set, alias, and codec registries:

add_charset(charset, [header_enc, [body_enc, [output_charset]]])
Add character properties to the global registry.

charset is the input character set, and must be the canonical name of a character set.

Optional header_enc and body_enc is either Charset.QP for quoted-printable, Charset.BASE64 for
base64 encoding, Charset.SHORTEST for the shortest of quoted-printable or base64 encoding, or None
for no encoding. SHORTEST is only valid for header_enc. The default is None for no encoding.

Optional output_charset is the character set that the output should be in. Conversions will proceed from input
charset, to Unicode, to the output charset when the method Charset.convert() is called. The default is to
output in the same character set as the input.

Both input_charset and output_charset must have Unicode codec entries in the module’s character set-to-codec
mapping; use add_codec() to add codecs the module does not know about. See the codecs module’s
documentation for more information.

The global character set registry is kept in the module global dictionary CHARSETS.

add_alias(alias, canonical)
Add a character set alias. alias is the alias name, e.g. latin-1. canonical is the character set’s canonical
name, e.g. iso-8859-1.

The global charset alias registry is kept in the module global dictionary ALIASES.

add_codec(charset, codecname)
Add a codec that map characters in the given character set to and from Unicode.

18.1. email — An email and MIME handling package 645

The Python Library Reference, Release 2.6.9

charset is the canonical name of a character set. codecname is the name of a Python codec, as appropriate for
the second argument to the unicode() built-in, or to the encode() method of a Unicode string.

18.1.7 email: Encoders

When creating Message objects from scratch, you often need to encode the payloads for transport through compliant
mail servers. This is especially true for image/* and text/* type messages containing binary data.

The email package provides some convenient encodings in its encoders module. These encoders are actually
used by the MIMEAudio and MIMEImage class constructors to provide default encodings. All encoder functions
take exactly one argument, the message object to encode. They usually extract the payload, encode it, and reset
the payload to this newly encoded value. They should also set the Content-Transfer-Encoding header as
appropriate.

Here are the encoding functions provided:

encode_quopri(msg)
Encodes the payload into quoted-printable form and sets the Content-Transfer-Encoding header to
quoted-printable 2. This is a good encoding to use when most of your payload is normal printable data,
but contains a few unprintable characters.

encode_base64(msg)
Encodes the payload into base64 form and sets the Content-Transfer-Encoding header to base64.
This is a good encoding to use when most of your payload is unprintable data since it is a more compact form
than quoted-printable. The drawback of base64 encoding is that it renders the text non-human readable.

encode_7or8bit(msg)
This doesn’t actually modify the message’s payload, but it does set the Content-Transfer-Encoding
header to either 7bit or 8bit as appropriate, based on the payload data.

encode_noop(msg)
This does nothing; it doesn’t even set the Content-Transfer-Encoding header.

18.1.8 email: Exception and Defect classes

The following exception classes are defined in the email.errors module:

exception MessageError
This is the base class for all exceptions that the email package can raise. It is derived from the standard
Exception class and defines no additional methods.

exception MessageParseError
This is the base class for exceptions thrown by the Parser class. It is derived from MessageError.

exception HeaderParseError
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived from
MessageParseError. It can be raised from the Parser.parse() or Parser.parsestr() methods.

Situations where it can be raised include finding an envelope header after the first RFC 2822 header of the
message, finding a continuation line before the first RFC 2822 header is found, or finding a line in the headers
which is neither a header or a continuation line.

exception BoundaryError
Raised under some error conditions when parsing the RFC 2822 headers of a message, this class is derived from
MessageParseError. It can be raised from the Parser.parse() or Parser.parsestr() methods.

2 Note that encoding with encode_quopri() also encodes all tabs and space characters in the data.

646 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

Situations where it can be raised include not being able to find the starting or terminating boundary in a
multipart/* message when strict parsing is used.

exception MultipartConversionError
Raised when a payload is added to a Message object using add_payload(), but the payload is al-
ready a scalar and the message’s Content-Type main type is not either multipart or missing.
MultipartConversionError multiply inherits from MessageError and the built-in TypeError.

Since Message.add_payload() is deprecated, this exception is rarely raised in practice. However the
exception may also be raised if the attach() method is called on an instance of a class derived from
MIMENonMultipart (e.g. MIMEImage).

Here’s the list of the defects that the FeedParser can find while parsing messages. Note that the defects are added to
the message where the problem was found, so for example, if a message nested inside a multipart/alternative
had a malformed header, that nested message object would have a defect, but the containing messages would not.

All defect classes are subclassed from email.errors.MessageDefect, but this class is not an exception! New
in version 2.4: All the defect classes were added.

• NoBoundaryInMultipartDefect – A message claimed to be a multipart, but had no boundary param-
eter.

• StartBoundaryNotFoundDefect – The start boundary claimed in the Content-Type header was
never found.

• FirstHeaderLineIsContinuationDefect – The message had a continuation line as its first header
line.

• MisplacedEnvelopeHeaderDefect - A “Unix From” header was found in the middle of a header block.

• MalformedHeaderDefect – A header was found that was missing a colon, or was otherwise malformed.

• MultipartInvariantViolationDefect – A message claimed to be a multipart, but no subparts
were found. Note that when a message has this defect, its is_multipart() method may return false even
though its content type claims to be multipart.

18.1.9 email: Miscellaneous utilities

There are several useful utilities provided in the email.utils module:

quote(str)
Return a new string with backslashes in str replaced by two backslashes, and double quotes replaced by
backslash-double quote.

unquote(str)
Return a new string which is an unquoted version of str. If str ends and begins with double quotes, they are
stripped off. Likewise if str ends and begins with angle brackets, they are stripped off.

parseaddr(address)
Parse address – which should be the value of some address-containing field such as To or Cc – into its constituent
realname and email address parts. Returns a tuple of that information, unless the parse fails, in which case a
2-tuple of (”, ”) is returned.

formataddr(pair)
The inverse of parseaddr(), this takes a 2-tuple of the form (realname, email_address) and re-
turns the string value suitable for a To or Cc header. If the first element of pair is false, then the second element
is returned unmodified.

getaddresses(fieldvalues)
This method returns a list of 2-tuples of the form returned by parseaddr(). fieldvalues is a sequence of

18.1. email — An email and MIME handling package 647

The Python Library Reference, Release 2.6.9

header field values as might be returned by Message.get_all(). Here’s a simple example that gets all the
recipients of a message:

from email.utils import getaddresses

tos = msg.get_all(’to’, [])
ccs = msg.get_all(’cc’, [])
resent_tos = msg.get_all(’resent-to’, [])
resent_ccs = msg.get_all(’resent-cc’, [])
all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)

parsedate(date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that format as
specified, so parsedate() tries to guess correctly in such cases. date is a string containing an RFC 2822 date,
such as "Mon, 20 Nov 1995 19:12:08 -0500". If it succeeds in parsing the date, parsedate()
returns a 9-tuple that can be passed directly to time.mktime(); otherwise None will be returned. Note that
indexes 6, 7, and 8 of the result tuple are not usable.

parsedate_tz(date)
Performs the same function as parsedate(), but returns either None or a 10-tuple; the first 9 elements make
up a tuple that can be passed directly to time.mktime(), and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time) 3. If the input string has no timezone, the last
element of the tuple returned is None. Note that indexes 6, 7, and 8 of the result tuple are not usable.

mktime_tz(tuple)
Turn a 10-tuple as returned by parsedate_tz() into a UTC timestamp. It the timezone item in the tuple is
None, assume local time. Minor deficiency: mktime_tz() interprets the first 8 elements of tuple as a local
time and then compensates for the timezone difference. This may yield a slight error around changes in daylight
savings time, though not worth worrying about for common use.

formatdate([timeval, [localtime], [usegmt]])
Returns a date string as per RFC 2822, e.g.:

Fri, 09 Nov 2001 01:08:47 -0000

Optional timeval if given is a floating point time value as accepted by time.gmtime() and
time.localtime(), otherwise the current time is used.

Optional localtime is a flag that when True, interprets timeval, and returns a date relative to the local timezone
instead of UTC, properly taking daylight savings time into account. The default is False meaning UTC is
used.

Optional usegmt is a flag that when True, outputs a date string with the timezone as an ascii string GMT, rather
than a numeric -0000. This is needed for some protocols (such as HTTP). This only applies when localtime is
False. The default is False. New in version 2.4.

make_msgid([idstring])
Returns a string suitable for an RFC 2822-compliant Message-ID header. Optional idstring if given, is a
string used to strengthen the uniqueness of the message id.

decode_rfc2231(s)
Decode the string s according to RFC 2231.

encode_rfc2231(s, [charset, [language]])
Encode the string s according to RFC 2231. Optional charset and language, if given is the character set name

3 Note that the sign of the timezone offset is the opposite of the sign of the time.timezone variable for the same timezone; the latter variable
follows the POSIX standard while this module follows RFC 2822.

648 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

and language name to use. If neither is given, s is returned as-is. If charset is given but language is not, the
string is encoded using the empty string for language.

collapse_rfc2231_value(value, [errors, [fallback_charset]])
When a header parameter is encoded in RFC 2231 format, Message.get_param() may return a 3-tuple
containing the character set, language, and value. collapse_rfc2231_value() turns this into a unicode
string. Optional errors is passed to the errors argument of the built-in unicode() function; it defaults to
replace. Optional fallback_charset specifies the character set to use if the one in the RFC 2231 header is not
known by Python; it defaults to us-ascii.

For convenience, if the value passed to collapse_rfc2231_value() is not a tuple, it should be a string
and it is returned unquoted.

decode_params(params)
Decode parameters list according to RFC 2231. params is a sequence of 2-tuples containing elements of the
form (content-type, string-value).

Changed in version 2.4: The dump_address_pair() function has been removed; use formataddr() in-
stead.Changed in version 2.4: The decode() function has been removed; use the Header.decode_header()
method instead.Changed in version 2.4: The encode() function has been removed; use the Header.encode()
method instead.

18.1.10 email: Iterators

Iterating over a message object tree is fairly easy with the Message.walk() method. The email.iterators
module provides some useful higher level iterations over message object trees.

body_line_iterator(msg, [decode])
This iterates over all the payloads in all the subparts of msg, returning the string payloads line-by-line. It skips
over all the subpart headers, and it skips over any subpart with a payload that isn’t a Python string. This is
somewhat equivalent to reading the flat text representation of the message from a file using readline(),
skipping over all the intervening headers.

Optional decode is passed through to Message.get_payload().

typed_subpart_iterator(msg, [maintype, [subtype]])
This iterates over all the subparts of msg, returning only those subparts that match the MIME type specified by
maintype and subtype.

Note that subtype is optional; if omitted, then subpart MIME type matching is done only with the main type.
maintype is optional too; it defaults to text.

Thus, by default typed_subpart_iterator() returns each subpart that has a MIME type of text/*.

The following function has been added as a useful debugging tool. It should not be considered part of the supported
public interface for the package.

_structure(msg, [fp, [level]])
Prints an indented representation of the content types of the message object structure. For example:

>>> msg = email.message_from_file(somefile)
>>> _structure(msg)
multipart/mixed

text/plain
text/plain
multipart/digest

message/rfc822
text/plain

message/rfc822

18.1. email — An email and MIME handling package 649

http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 2.6.9

text/plain
message/rfc822

text/plain
message/rfc822

text/plain
message/rfc822

text/plain
text/plain

Optional fp is a file-like object to print the output to. It must be suitable for Python’s extended print statement.
level is used internally.

18.1.11 email: Examples

Here are a few examples of how to use the email package to read, write, and send simple email messages, as well as
more complex MIME messages.

First, let’s see how to create and send a simple text message:

Import smtplib for the actual sending function
import smtplib

Import the email modules we’ll need
from email.mime.text import MIMEText

Open a plain text file for reading. For this example, assume that
the text file contains only ASCII characters.
fp = open(textfile, ’rb’)
Create a text/plain message
msg = MIMEText(fp.read())
fp.close()

me == the sender’s email address
you == the recipient’s email address
msg[’Subject’] = ’The contents of %s’ % textfile
msg[’From’] = me
msg[’To’] = you

Send the message via our own SMTP server, but don’t include the
envelope header.
s = smtplib.SMTP()
s.sendmail(me, [you], msg.as_string())
s.quit()

Here’s an example of how to send a MIME message containing a bunch of family pictures that may be residing in a
directory:

Import smtplib for the actual sending function
import smtplib

Here are the email package modules we’ll need
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

COMMASPACE = ’, ’

650 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

Create the container (outer) email message.
msg = MIMEMultipart()
msg[’Subject’] = ’Our family reunion’
me == the sender’s email address
family = the list of all recipients’ email addresses
msg[’From’] = me
msg[’To’] = COMMASPACE.join(family)
msg.preamble = ’Our family reunion’

Assume we know that the image files are all in PNG format
for file in pngfiles:

Open the files in binary mode. Let the MIMEImage class automatically
guess the specific image type.
fp = open(file, ’rb’)
img = MIMEImage(fp.read())
fp.close()
msg.attach(img)

Send the email via our own SMTP server.
s = smtplib.SMTP()
s.sendmail(me, family, msg.as_string())
s.quit()

Here’s an example of how to send the entire contents of a directory as an email message: 4

#!/usr/bin/env python

"""Send the contents of a directory as a MIME message."""

import os
import sys
import smtplib
For guessing MIME type based on file name extension
import mimetypes

from optparse import OptionParser

from email import encoders
from email.message import Message
from email.mime.audio import MIMEAudio
from email.mime.base import MIMEBase
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

COMMASPACE = ’, ’

def main():
parser = OptionParser(usage="""\

Send the contents of a directory as a MIME message.

4 Thanks to Matthew Dixon Cowles for the original inspiration and examples.

18.1. email — An email and MIME handling package 651

The Python Library Reference, Release 2.6.9

Usage: %prog [options]

Unless the -o option is given, the email is sent by forwarding to your local
SMTP server, which then does the normal delivery process. Your local machine
must be running an SMTP server.
""")

parser.add_option(’-d’, ’--directory’,
type=’string’, action=’store’,
help="""Mail the contents of the specified directory,
otherwise use the current directory. Only the regular
files in the directory are sent, and we don’t recurse to
subdirectories.""")

parser.add_option(’-o’, ’--output’,
type=’string’, action=’store’, metavar=’FILE’,
help="""Print the composed message to FILE instead of
sending the message to the SMTP server.""")

parser.add_option(’-s’, ’--sender’,
type=’string’, action=’store’, metavar=’SENDER’,
help=’The value of the From: header (required)’)

parser.add_option(’-r’, ’--recipient’,
type=’string’, action=’append’, metavar=’RECIPIENT’,
default=[], dest=’recipients’,
help=’A To: header value (at least one required)’)

opts, args = parser.parse_args()
if not opts.sender or not opts.recipients:

parser.print_help()
sys.exit(1)

directory = opts.directory
if not directory:

directory = ’.’
Create the enclosing (outer) message
outer = MIMEMultipart()
outer[’Subject’] = ’Contents of directory %s’ % os.path.abspath(directory)
outer[’To’] = COMMASPACE.join(opts.recipients)
outer[’From’] = opts.sender
outer.preamble = ’You will not see this in a MIME-aware mail reader.\n’

for filename in os.listdir(directory):
path = os.path.join(directory, filename)
if not os.path.isfile(path):

continue
Guess the content type based on the file’s extension. Encoding
will be ignored, although we should check for simple things like
gzip’d or compressed files.
ctype, encoding = mimetypes.guess_type(path)
if ctype is None or encoding is not None:

No guess could be made, or the file is encoded (compressed), so
use a generic bag-of-bits type.
ctype = ’application/octet-stream’

maintype, subtype = ctype.split(’/’, 1)
if maintype == ’text’:

fp = open(path)
Note: we should handle calculating the charset
msg = MIMEText(fp.read(), _subtype=subtype)

652 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

fp.close()
elif maintype == ’image’:

fp = open(path, ’rb’)
msg = MIMEImage(fp.read(), _subtype=subtype)
fp.close()

elif maintype == ’audio’:
fp = open(path, ’rb’)
msg = MIMEAudio(fp.read(), _subtype=subtype)
fp.close()

else:
fp = open(path, ’rb’)
msg = MIMEBase(maintype, subtype)
msg.set_payload(fp.read())
fp.close()
Encode the payload using Base64
encoders.encode_base64(msg)

Set the filename parameter
msg.add_header(’Content-Disposition’, ’attachment’, filename=filename)
outer.attach(msg)

Now send or store the message
composed = outer.as_string()
if opts.output:

fp = open(opts.output, ’w’)
fp.write(composed)
fp.close()

else:
s = smtplib.SMTP()
s.sendmail(opts.sender, opts.recipients, composed)
s.quit()

if __name__ == ’__main__’:
main()

Here’s an example of how to unpack a MIME message like the one above, into a directory of files:

#!/usr/bin/env python

"""Unpack a MIME message into a directory of files."""

import os
import sys
import email
import errno
import mimetypes

from optparse import OptionParser

def main():
parser = OptionParser(usage="""\

Unpack a MIME message into a directory of files.

Usage: %prog [options] msgfile
""")

18.1. email — An email and MIME handling package 653

The Python Library Reference, Release 2.6.9

parser.add_option(’-d’, ’--directory’,
type=’string’, action=’store’,
help="""Unpack the MIME message into the named
directory, which will be created if it doesn’t already
exist.""")

opts, args = parser.parse_args()
if not opts.directory:

parser.print_help()
sys.exit(1)

try:
msgfile = args[0]

except IndexError:
parser.print_help()
sys.exit(1)

try:
os.mkdir(opts.directory)

except OSError, e:
Ignore directory exists error
if e.errno != errno.EEXIST:

raise

fp = open(msgfile)
msg = email.message_from_file(fp)
fp.close()

counter = 1
for part in msg.walk():

multipart/* are just containers
if part.get_content_maintype() == ’multipart’:

continue
Applications should really sanitize the given filename so that an
email message can’t be used to overwrite important files
filename = part.get_filename()
if not filename:

ext = mimetypes.guess_extension(part.get_content_type())
if not ext:

Use a generic bag-of-bits extension
ext = ’.bin’

filename = ’part-%03d%s’ % (counter, ext)
counter += 1
fp = open(os.path.join(opts.directory, filename), ’wb’)
fp.write(part.get_payload(decode=True))
fp.close()

if __name__ == ’__main__’:
main()

Here’s an example of how to create an HTML message with an alternative plain text version: 5

#! /usr/bin/python

5 Contributed by Martin Matejek.

654 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

import smtplib

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

me == my email address
you == recipient’s email address
me = "my@email.com"
you = "your@email.com"

Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart(’alternative’)
msg[’Subject’] = "Link"
msg[’From’] = me
msg[’To’] = you

Create the body of the message (a plain-text and an HTML version).
text = "Hi!\nHow are you?\nHere is the link you wanted:\nhttp://www.python.org"
html = """\
<html>

<head></head>
<body>

<p>Hi!

How are you?

Here is the link you wanted.

</p>
</body>

</html>
"""

Record the MIME types of both parts - text/plain and text/html.
part1 = MIMEText(text, ’plain’)
part2 = MIMEText(html, ’html’)

Attach parts into message container.
According to RFC 2046, the last part of a multipart message, in this case
the HTML message, is best and preferred.
msg.attach(part1)
msg.attach(part2)

Send the message via local SMTP server.
s = smtplib.SMTP(’localhost’)
sendmail function takes 3 arguments: sender’s address, recipient’s address
and message to send - here it is sent as one string.
s.sendmail(me, you, msg.as_string())
s.quit()

See Also:

Module smtplib SMTP protocol client

Module nntplib NNTP protocol client

18.1. email — An email and MIME handling package 655

The Python Library Reference, Release 2.6.9

18.1.12 Package History

This table describes the release history of the email package, corresponding to the version of Python that the package
was released with. For purposes of this document, when you see a note about change or added versions, these refer
to the Python version the change was made in, not the email package version. This table also describes the Python
compatibility of each version of the package.

email version distributed with compatible with
1.x Python 2.2.0 to Python 2.2.1 no longer supported
2.5 Python 2.2.2+ and Python 2.3 Python 2.1 to 2.5
3.0 Python 2.4 Python 2.3 to 2.5
4.0 Python 2.5 Python 2.3 to 2.5

Here are the major differences between email version 4 and version 3:

• All modules have been renamed according to PEP 8 standards. For example, the version 3 module
email.Message was renamed to email.message in version 4.

• A new subpackage email.mime was added and all the version 3 email.MIME* modules were renamed
and situated into the email.mime subpackage. For example, the version 3 module email.MIMEText was
renamed to email.mime.text.

Note that the version 3 names will continue to work until Python 2.6.

• The email.mime.application module was added, which contains the MIMEApplication class.

• Methods that were deprecated in version 3 have been removed. These include Generator.__call__(),
Message.get_type(), Message.get_main_type(), Message.get_subtype().

• Fixes have been added for RFC 2231 support which can change some of the return types for
Message.get_param() and friends. Under some circumstances, values which used to return a 3-tuple
now return simple strings (specifically, if all extended parameter segments were unencoded, there is no lan-
guage and charset designation expected, so the return type is now a simple string). Also, %-decoding used to be
done for both encoded and unencoded segments; this decoding is now done only for encoded segments.

Here are the major differences between email version 3 and version 2:

• The FeedParser class was introduced, and the Parser class was implemented in terms of the
FeedParser. All parsing therefore is non-strict, and parsing will make a best effort never to raise an ex-
ception. Problems found while parsing messages are stored in the message’s defect attribute.

• All aspects of the API which raised DeprecationWarnings in version 2 have been removed.
These include the _encoder argument to the MIMEText constructor, the Message.add_payload()
method, the Utils.dump_address_pair() function, and the functions Utils.decode() and
Utils.encode().

• New DeprecationWarnings have been added to: Generator.__call__(),
Message.get_type(), Message.get_main_type(), Message.get_subtype(), and the
strict argument to the Parser class. These are expected to be removed in future versions.

• Support for Pythons earlier than 2.3 has been removed.

Here are the differences between email version 2 and version 1:

• The email.Header and email.Charset modules have been added.

• The pickle format for Message instances has changed. Since this was never (and still isn’t) formally defined,
this isn’t considered a backward incompatibility. However if your application pickles and unpickles Message
instances, be aware that in email version 2, Message instances now have private variables _charset and
_default_type.

656 Chapter 18. Internet Data Handling

http://www.python.org/dev/peps/pep-0008
http://tools.ietf.org/html/rfc2231.html

The Python Library Reference, Release 2.6.9

• Several methods in the Message class have been deprecated, or their signatures changed. Also, many new
methods have been added. See the documentation for the Message class for details. The changes should be
completely backward compatible.

• The object structure has changed in the face of message/rfc822 content types. In email version 1, such a
type would be represented by a scalar payload, i.e. the container message’s is_multipart() returned false,
get_payload() was not a list object, but a single Message instance.

This structure was inconsistent with the rest of the package, so the object representation for message/rfc822
content types was changed. In email version 2, the container does return True from is_multipart(),
and get_payload() returns a list containing a single Message item.

Note that this is one place that backward compatibility could not be completely maintained. However, if
you’re already testing the return type of get_payload(), you should be fine. You just need to make sure
your code doesn’t do a set_payload() with a Message instance on a container with a content type of
message/rfc822.

• The Parser constructor’s strict argument was added, and its parse() and parsestr() methods grew a
headersonly argument. The strict flag was also added to functions email.message_from_file() and
email.message_from_string().

• Generator.__call__() is deprecated; use Generator.flatten() instead. The Generator class
has also grown the clone() method.

• The DecodedGenerator class in the email.Generator module was added.

• The intermediate base classes MIMENonMultipart and MIMEMultipart have been added, and interposed
in the class hierarchy for most of the other MIME-related derived classes.

• The _encoder argument to the MIMEText constructor has been deprecated. Encoding now happens implicitly
based on the _charset argument.

• The following functions in the email.Utils module have been deprecated: dump_address_pairs(),
decode(), and encode(). The following functions have been added to the module: make_msgid(),
decode_rfc2231(), encode_rfc2231(), and decode_params().

• The non-public function email.Iterators._structure() was added.

18.1.13 Differences from mimelib

The email package was originally prototyped as a separate library called mimelib. Changes have been made so that
method names are more consistent, and some methods or modules have either been added or removed. The semantics
of some of the methods have also changed. For the most part, any functionality available in mimelib is still available
in the email package, albeit often in a different way. Backward compatibility between the mimelib package and
the email package was not a priority.

Here is a brief description of the differences between the mimelib and the email packages, along with hints on
how to port your applications.

Of course, the most visible difference between the two packages is that the package name has been changed to email.
In addition, the top-level package has the following differences:

• messageFromString() has been renamed to message_from_string().

• messageFromFile() has been renamed to message_from_file().

The Message class has the following differences:

• The method asString() was renamed to as_string().

• The method ismultipart() was renamed to is_multipart().

18.1. email — An email and MIME handling package 657

http://mimelib.sf.net/

The Python Library Reference, Release 2.6.9

• The get_payload() method has grown a decode optional argument.

• The method getall() was renamed to get_all().

• The method addheader() was renamed to add_header().

• The method gettype() was renamed to get_type().

• The method getmaintype() was renamed to get_main_type().

• The method getsubtype() was renamed to get_subtype().

• The method getparams() was renamed to get_params(). Also, whereas getparams() returned a list
of strings, get_params() returns a list of 2-tuples, effectively the key/value pairs of the parameters, split on
the ’=’ sign.

• The method getparam() was renamed to get_param().

• The method getcharsets() was renamed to get_charsets().

• The method getfilename() was renamed to get_filename().

• The method getboundary() was renamed to get_boundary().

• The method setboundary() was renamed to set_boundary().

• The method getdecodedpayload() was removed. To get similar functionality, pass the value 1 to the
decode flag of the get_payload() method.

• The method getpayloadastext() was removed. Similar functionality is supported by the
DecodedGenerator class in the email.generator module.

• The method getbodyastext() was removed. You can get similar functionality by creating an iterator with
typed_subpart_iterator() in the email.iterators module.

The Parser class has no differences in its public interface. It does have some additional smarts to recognize
message/delivery-status type messages, which it represents as a Message instance containing separate
Message subparts for each header block in the delivery status notification 6.

The Generator class has no differences in its public interface. There is a new class in the email.generator
module though, called DecodedGenerator which provides most of the functionality previously available in the
Message.getpayloadastext() method.

The following modules and classes have been changed:

• The MIMEBase class constructor arguments _major and _minor have changed to _maintype and _subtype
respectively.

• The Image class/module has been renamed to MIMEImage. The _minor argument has been renamed to
_subtype.

• The Text class/module has been renamed to MIMEText. The _minor argument has been renamed to _subtype.

• The MessageRFC822 class/module has been renamed to MIMEMessage. Note that an earlier version of
mimelib called this class/module RFC822, but that clashed with the Python standard library module rfc822
on some case-insensitive file systems.

Also, the MIMEMessage class now represents any kind of MIME message with main type message. It takes
an optional argument _subtype which is used to set the MIME subtype. _subtype defaults to rfc822.

mimelib provided some utility functions in its address and date modules. All of these functions have been
moved to the email.utils module.

6 Delivery Status Notifications (DSN) are defined in RFC 1894.

658 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc1894.html

The Python Library Reference, Release 2.6.9

The MsgReader class/module has been removed. Its functionality is most closely supported in the
body_line_iterator() function in the email.iterators module.

18.2 json — JSON encoder and decoder

New in version 2.6. JSON (JavaScript Object Notation) <http://json.org> is a subset of JavaScript syntax (ECMA-262
3rd edition) used as a lightweight data interchange format.

json exposes an API familiar to users of the standard library marshal and pickle modules.

Encoding basic Python object hierarchies:

>>> import json
>>> json.dumps([’foo’, {’bar’: (’baz’, None, 1.0, 2)}])
’["foo", {"bar": ["baz", null, 1.0, 2]}]’
>>> print json.dumps("\"foo\bar")
"\"foo\bar"
>>> print json.dumps(u’\u1234’)
"\u1234"
>>> print json.dumps(’\\’)
"\\"
>>> print json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True)
{"a": 0, "b": 0, "c": 0}
>>> from StringIO import StringIO
>>> io = StringIO()
>>> json.dump([’streaming API’], io)
>>> io.getvalue()
’["streaming API"]’

Compact encoding:

>>> import json
>>> json.dumps([1,2,3,{’4’: 5, ’6’: 7}], separators=(’,’,’:’))
’[1,2,3,{"4":5,"6":7}]’

Pretty printing:

>>> import json
>>> print json.dumps({’4’: 5, ’6’: 7}, sort_keys=True, indent=4)
{

"4": 5,
"6": 7

}

Decoding JSON:

>>> import json
>>> json.loads(’["foo", {"bar":["baz", null, 1.0, 2]}]’)
[u’foo’, {u’bar’: [u’baz’, None, 1.0, 2]}]
>>> json.loads(’"\\"foo\\bar"’)
u’"foo\x08ar’
>>> from StringIO import StringIO
>>> io = StringIO(’["streaming API"]’)
>>> json.load(io)
[u’streaming API’]

Specializing JSON object decoding:

18.2. json — JSON encoder and decoder 659

http://json.org

The Python Library Reference, Release 2.6.9

>>> import json
>>> def as_complex(dct):
... if ’__complex__’ in dct:
... return complex(dct[’real’], dct[’imag’])
... return dct
...
>>> json.loads(’{"__complex__": true, "real": 1, "imag": 2}’,
... object_hook=as_complex)
(1+2j)
>>> import decimal
>>> json.loads(’1.1’, parse_float=decimal.Decimal)
Decimal(’1.1’)

Extending JSONEncoder:

>>> import json
>>> class ComplexEncoder(json.JSONEncoder):
... def default(self, obj):
... if isinstance(obj, complex):
... return [obj.real, obj.imag]
... return json.JSONEncoder.default(self, obj)
...
>>> dumps(2 + 1j, cls=ComplexEncoder)
’[2.0, 1.0]’
>>> ComplexEncoder().encode(2 + 1j)
’[2.0, 1.0]’
>>> list(ComplexEncoder().iterencode(2 + 1j))
[’[’, ’2.0’, ’, ’, ’1.0’, ’]’]

Using json.tool from the shell to validate and pretty-print:

$ echo ’{"json":"obj"}’ | python -mjson.tool
{

"json": "obj"
}
$ echo ’{ 1.2:3.4}’ | python -mjson.tool
Expecting property name: line 1 column 2 (char 2)

Note: The JSON produced by this module’s default settings is a subset of YAML, so it may be used as a serializer
for that as well.

18.2.1 Basic Usage

dump(obj, fp, [skipkeys, [ensure_ascii, [check_circular, [allow_nan, [cls, [indent, [separators, [encoding, [default,
[**kw]]]]]]]]]])

Serialize obj as a JSON formatted stream to fp (a .write()-supporting file-like object).

If skipkeys is True (default: False), then dict keys that are not of a basic type (str, unicode, int, long,
float, bool, None) will be skipped instead of raising a TypeError.

If ensure_ascii is False (default: True), then some chunks written to fp may be unicode instances, subject
to normal Python str to unicode coercion rules. Unless fp.write() explicitly understands unicode (as
in codecs.getwriter()) this is likely to cause an error.

If check_circular is False (default: True), then the circular reference check for container types will be skipped
and a circular reference will result in an OverflowError (or worse).

660 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

If allow_nan is False (default: True), then it will be a ValueError to serialize out of range float values
(nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents
(NaN, Infinity, -Infinity).

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with
that indent level. An indent level of 0 will only insert newlines. None (the default) selects the most compact
representation.

If separators is an (item_separator, dict_separator) tuple, then it will be used instead of the
default (’, ’, ’: ’) separators. (’,’, ’:’) is the most compact JSON representation.

encoding is the character encoding for str instances, default is UTF-8.

default(obj) is a function that should return a serializable version of obj or raise TypeError. The default
simply raises TypeError.

To use a custom JSONEncoder subclass (e.g. one that overrides the default() method to serialize addi-
tional types), specify it with the cls kwarg.

dumps(obj, [skipkeys, [ensure_ascii, [check_circular, [allow_nan, [cls, [indent, [separators, [encoding, [default,
[**kw]]]]]]]]]])

Serialize obj to a JSON formatted str.

If ensure_ascii is False, then the return value will be a unicode instance. The other arguments have the
same meaning as in dump().

load(fp, [encoding, [cls, [object_hook, [parse_float, [parse_int, [parse_constant, [**kw]]]]]]])
Deserialize fp (a .read()-supporting file-like object containing a JSON document) to a Python object.

If the contents of fp are encoded with an ASCII based encoding other than UTF-8 (e.g. latin-1), then an appro-
priate encoding name must be specified. Encodings that are not ASCII based (such as UCS-2) are not allowed,
and should be wrapped with codecs.getreader(encoding)(fp), or simply decoded to a unicode
object and passed to loads().

object_hook is an optional function that will be called with the result of any object literal decoded (a dict).
The return value of object_hook will be used instead of the dict. This feature can be used to implement custom
decoders (e.g. JSON-RPC class hinting).

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default, this is
equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g.
decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default, this is
equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g.
float).

parse_constant, if specified, will be called with one of the following strings: ’-Infinity’, ’Infinity’,
’NaN’, ’null’, ’true’, ’false’. This can be used to raise an exception if invalid JSON numbers are
encountered.

To use a custom JSONDecoder subclass, specify it with the cls kwarg. Additional keyword arguments will
be passed to the constructor of the class.

loads(s, [encoding, [cls, [object_hook, [parse_float, [parse_int, [parse_constant, [**kw]]]]]]])
Deserialize s (a str or unicode instance containing a JSON document) to a Python object.

If s is a str instance and is encoded with an ASCII based encoding other than UTF-8 (e.g. latin-1), then an
appropriate encoding name must be specified. Encodings that are not ASCII based (such as UCS-2) are not
allowed and should be decoded to unicode first.

The other arguments have the same meaning as in dump().

18.2. json — JSON encoder and decoder 661

The Python Library Reference, Release 2.6.9

18.2.2 Encoders and decoders

class JSONDecoder([encoding, [object_hook, [parse_float, [parse_int, [parse_constant, [strict]]]]]])
Simple JSON decoder.

Performs the following translations in decoding by default:

JSON Python
object dict
array list
string unicode
number (int) int, long
number (real) float
true True
false False
null None

It also understands NaN, Infinity, and -Infinity as their corresponding float values, which is outside
the JSON spec.

encoding determines the encoding used to interpret any str objects decoded by this instance (UTF-8 by de-
fault). It has no effect when decoding unicode objects.

Note that currently only encodings that are a superset of ASCII work, strings of other encodings should be
passed in as unicode.

object_hook, if specified, will be called with the result of every JSON object decoded and its return value will be
used in place of the given dict. This can be used to provide custom deserializations (e.g. to support JSON-RPC
class hinting).

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default, this is
equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g.
decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default, this is
equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g.
float).

parse_constant, if specified, will be called with one of the following strings: ’-Infinity’, ’Infinity’,
’NaN’, ’null’, ’true’, ’false’. This can be used to raise an exception if invalid JSON numbers are
encountered.

decode(s)
Return the Python representation of s (a str or unicode instance containing a JSON document)

raw_decode(s)
Decode a JSON document from s (a str or unicode beginning with a JSON document) and return a
2-tuple of the Python representation and the index in s where the document ended.

This can be used to decode a JSON document from a string that may have extraneous data at the end.

class JSONEncoder([skipkeys, [ensure_ascii, [check_circular, [allow_nan, [sort_keys, [indent, [separators, [en-
coding, [default]]]]]]]]])

Extensible JSON encoder for Python data structures.

Supports the following objects and types by default:

662 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

Python JSON
dict object
list, tuple array
str, unicode string
int, long, float number
True true
False false
None null

To extend this to recognize other objects, subclass and implement a default() method with another method
that returns a serializable object for o if possible, otherwise it should call the superclass implementation (to raise
TypeError).

If skipkeys is False (the default), then it is a TypeError to attempt encoding of keys that are not str, int,
long, float or None. If skipkeys is True, such items are simply skipped.

If ensure_ascii is True (the default), the output is guaranteed to be str objects with all incoming unicode
characters escaped. If ensure_ascii is False, the output will be a unicode object.

If check_circular is True (the default), then lists, dicts, and custom encoded objects will be checked for cir-
cular references during encoding to prevent an infinite recursion (which would cause an OverflowError).
Otherwise, no such check takes place.

If allow_nan is True (the default), then NaN, Infinity, and -Infinity will be encoded as such. This be-
havior is not JSON specification compliant, but is consistent with most JavaScript based encoders and decoders.
Otherwise, it will be a ValueError to encode such floats.

If sort_keys is True (the default), then the output of dictionaries will be sorted by key; this is useful for regres-
sion tests to ensure that JSON serializations can be compared on a day-to-day basis.

If indent is a non-negative integer (it is None by default), then JSON array elements and object members will be
pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most compact
representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (’,
’, ’: ’). To get the most compact JSON representation, you should specify (’,’, ’:’) to eliminate
whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a
JSON encodable version of the object or raise a TypeError.

If encoding is not None, then all input strings will be transformed into unicode using that encoding prior to
JSON-encoding. The default is UTF-8.

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
return JSONEncoder.default(self, o)

18.2. json — JSON encoder and decoder 663

The Python Library Reference, Release 2.6.9

encode(o)
Return a JSON string representation of a Python data structure, o. For example:

>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
’{"foo": ["bar", "baz"]}’

iterencode(o)
Encode the given object, o, and yield each string representation as available. For example:

for chunk in JSONEncoder().iterencode(bigobject):
mysocket.write(chunk)

18.3 mailcap — Mailcap file handling

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react to
files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For example,
a mailcap file might contain a line like video/mpeg; xmpeg %s. Then, if the user encounters an email message
or Web document with the MIME type video/mpeg, %s will be replaced by a filename (usually one belonging to a
temporary file) and the xmpeg program can be automatically started to view the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mail
Format Information,” but is not an Internet standard. However, mailcap files are supported on most Unix systems.

findmatch(caps, MIMEtype, [key, [filename, [plist]]])
Return a 2-tuple; the first element is a string containing the command line to be executed (which can be passed
to os.system()), and the second element is the mailcap entry for a given MIME type. If no matching MIME
type can be found, (None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the default value
is ‘view’, since in the most common case you simply want to view the body of the MIME-typed data. Other
possible values might be ‘compose’ and ‘edit’, if you wanted to create a new body of the given MIME type or
alter the existing body data. See RFC 1524 for a complete list of these fields.

filename is the filename to be substituted for %s in the command line; the default value is ’/dev/null’which
is almost certainly not what you want, so usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the
list must be a string containing the parameter name, an equals sign (’=’), and the parameter’s value. Mailcap
entries can contain named parameters like %{foo}, which will be replaced by the value of the parameter named
‘foo’. For example, if the command line showpartial %{id} %{number} %{total}was in a mailcap
file, and plist was set to [’id=1’, ’number=2’, ’total=3’], the resulting command line would be
’showpartial 1 2 3’.

In a mailcap file, the “test” field can optionally be specified to test some external condition (such as the machine
architecture, or the window system in use) to determine whether or not the mailcap line applies. findmatch()
will automatically check such conditions and skip the entry if the check fails.

getcaps()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be passed to the
findmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t be necessary to know the
details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s
mailcap file $HOME/.mailcap will override settings in the system mailcap files /etc/mailcap,
/usr/etc/mailcap, and /usr/local/etc/mailcap.

An example usage:

664 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc1524.html
http://tools.ietf.org/html/rfc1524.html

The Python Library Reference, Release 2.6.9

>>> import mailcap
>>> d=mailcap.getcaps()
>>> mailcap.findmatch(d, ’video/mpeg’, filename=’/tmp/tmp1223’)
(’xmpeg /tmp/tmp1223’, {’view’: ’xmpeg %s’})

18.4 mailbox — Manipulate mailboxes in various formats

This module defines two classes, Mailbox and Message, for accessing and manipulating on-disk mailboxes and
the messages they contain. Mailbox offers a dictionary-like mapping from keys to messages. Message extends the
email.Message module’s Message class with format-specific state and behavior. Supported mailbox formats are
Maildir, mbox, MH, Babyl, and MMDF.

See Also:

Module email Represent and manipulate messages.

18.4.1 Mailbox objects

class Mailbox()
A mailbox, which may be inspected and modified.

The Mailbox class defines an interface and is not intended to be instantiated. Instead, format-specific sub-
classes should inherit from Mailbox and your code should instantiate a particular subclass.

The Mailbox interface is dictionary-like, with small keys corresponding to messages. Keys are issued by the
Mailbox instance with which they will be used and are only meaningful to that Mailbox instance. A key
continues to identify a message even if the corresponding message is modified, such as by replacing it with
another message.

Messages may be added to a Mailbox instance using the set-like method add() and removed using a del
statement or the set-like methods remove() and discard().

Mailbox interface semantics differ from dictionary semantics in some noteworthy ways. Each time a message
is requested, a new representation (typically a Message instance) is generated based upon the current state of
the mailbox. Similarly, when a message is added to a Mailbox instance, the provided message representation’s
contents are copied. In neither case is a reference to the message representation kept by the Mailbox instance.

The default Mailbox iterator iterates over message representations, not keys as the default dictionary iterator
does. Moreover, modification of a mailbox during iteration is safe and well-defined. Messages added to the
mailbox after an iterator is created will not be seen by the iterator. Messages removed from the mailbox before
the iterator yields them will be silently skipped, though using a key from an iterator may result in a KeyError
exception if the corresponding message is subsequently removed.

Warning: Be very cautious when modifying mailboxes that might be simultaneously changed by some
other process. The safest mailbox format to use for such tasks is Maildir; try to avoid using single-file
formats such as mbox for concurrent writing. If you’re modifying a mailbox, you must lock it by calling
the lock() and unlock() methods before reading any messages in the file or making any changes by
adding or deleting a message. Failing to lock the mailbox runs the risk of losing messages or corrupting the
entire mailbox.

Mailbox instances have the following methods:

add(message)
Add message to the mailbox and return the key that has been assigned to it.

18.4. mailbox — Manipulate mailboxes in various formats 665

The Python Library Reference, Release 2.6.9

Parameter message may be a Message instance, an email.Message.Message instance, a string,
or a file-like object (which should be open in text mode). If message is an instance of the appropriate
format-specific Message subclass (e.g., if it’s an mboxMessage instance and this is an mbox instance),
its format-specific information is used. Otherwise, reasonable defaults for format-specific information are
used.

remove(key)
__delitem__(key)
discard(key)

Delete the message corresponding to key from the mailbox.

If no such message exists, a KeyError exception is raised if the method was called as remove() or
__delitem__() but no exception is raised if the method was called as discard(). The behavior
of discard() may be preferred if the underlying mailbox format supports concurrent modification by
other processes.

__setitem__(key, message)
Replace the message corresponding to key with message. Raise a KeyError exception if no message
already corresponds to key.

As with add(), parameter message may be a Message instance, an email.Message.Message
instance, a string, or a file-like object (which should be open in text mode). If message is an instance of
the appropriate format-specific Message subclass (e.g., if it’s an mboxMessage instance and this is an
mbox instance), its format-specific information is used. Otherwise, the format-specific information of the
message that currently corresponds to key is left unchanged.

iterkeys()
keys()

Return an iterator over all keys if called as iterkeys() or return a list of keys if called as keys().

itervalues()
__iter__()
values()

Return an iterator over representations of all messages if called as itervalues() or __iter__() or
return a list of such representations if called as values(). The messages are represented as instances of
the appropriate format-specific Message subclass unless a custom message factory was specified when
the Mailbox instance was initialized.

Note: The behavior of __iter__() is unlike that of dictionaries, which iterate over keys.

iteritems()
items()

Return an iterator over (key, message) pairs, where key is a key and message is a message representation, if
called as iteritems() or return a list of such pairs if called as items(). The messages are represented
as instances of the appropriate format-specific Message subclass unless a custom message factory was
specified when the Mailbox instance was initialized.

get(key, [default=None])
__getitem__(key)

Return a representation of the message corresponding to key. If no such message exists, default is re-
turned if the method was called as get() and a KeyError exception is raised if the method was
called as __getitem__(). The message is represented as an instance of the appropriate format-specific
Message subclass unless a custom message factory was specified when the Mailbox instance was ini-
tialized.

get_message(key)
Return a representation of the message corresponding to key as an instance of the appropriate format-
specific Message subclass, or raise a KeyError exception if no such message exists.

666 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

get_string(key)
Return a string representation of the message corresponding to key, or raise a KeyError exception if no
such message exists.

get_file(key)
Return a file-like representation of the message corresponding to key, or raise a KeyError exception if
no such message exists. The file-like object behaves as if open in binary mode. This file should be closed
once it is no longer needed.

Note: Unlike other representations of messages, file-like representations are not necessarily independent
of the Mailbox instance that created them or of the underlying mailbox. More specific documentation is
provided by each subclass.

has_key(key)
__contains__(key)

Return True if key corresponds to a message, False otherwise.

__len__()
Return a count of messages in the mailbox.

clear()
Delete all messages from the mailbox.

pop(key, [default])
Return a representation of the message corresponding to key and delete the message. If no such message
exists, return default if it was supplied or else raise a KeyError exception. The message is represented
as an instance of the appropriate format-specific Message subclass unless a custom message factory was
specified when the Mailbox instance was initialized.

popitem()
Return an arbitrary (key, message) pair, where key is a key and message is a message representation, and
delete the corresponding message. If the mailbox is empty, raise a KeyError exception. The message is
represented as an instance of the appropriate format-specific Message subclass unless a custom message
factory was specified when the Mailbox instance was initialized.

update(arg)
Parameter arg should be a key-to-message mapping or an iterable of (key, message) pairs. Updates the
mailbox so that, for each given key and message, the message corresponding to key is set to message as if
by using __setitem__(). As with __setitem__(), each key must already correspond to a message
in the mailbox or else a KeyError exception will be raised, so in general it is incorrect for arg to be a
Mailbox instance.

Note: Unlike with dictionaries, keyword arguments are not supported.

flush()
Write any pending changes to the filesystem. For some Mailbox subclasses, changes are always written
immediately and flush() does nothing, but you should still make a habit of calling this method.

lock()
Acquire an exclusive advisory lock on the mailbox so that other processes know not to modify it. An
ExternalClashError is raised if the lock is not available. The particular locking mechanisms used
depend upon the mailbox format. You should always lock the mailbox before making any modifications
to its contents.

unlock()
Release the lock on the mailbox, if any.

close()
Flush the mailbox, unlock it if necessary, and close any open files. For some Mailbox subclasses, this
method does nothing.

18.4. mailbox — Manipulate mailboxes in various formats 667

The Python Library Reference, Release 2.6.9

Maildir

class Maildir(dirname, [factory=rfc822.Message, [create=True]])
A subclass of Mailbox for mailboxes in Maildir format. Parameter factory is a callable object that accepts a
file-like message representation (which behaves as if opened in binary mode) and returns a custom representa-
tion. If factory is None, MaildirMessage is used as the default message representation. If create is True,
the mailbox is created if it does not exist.

It is for historical reasons that factory defaults to rfc822.Message and that dirname is named as such rather
than path. For a Maildir instance that behaves like instances of other Mailbox subclasses, set factory to
None.

Maildir is a directory-based mailbox format invented for the qmail mail transfer agent and now widely supported
by other programs. Messages in a Maildir mailbox are stored in separate files within a common directory
structure. This design allows Maildir mailboxes to be accessed and modified by multiple unrelated programs
without data corruption, so file locking is unnecessary.

Maildir mailboxes contain three subdirectories, namely: tmp, new, and cur. Messages are created momentar-
ily in the tmp subdirectory and then moved to the new subdirectory to finalize delivery. A mail user agent may
subsequently move the message to the cur subdirectory and store information about the state of the message in
a special “info” section appended to its file name.

Folders of the style introduced by the Courier mail transfer agent are also supported. Any subdirectory of the
main mailbox is considered a folder if ’.’ is the first character in its name. Folder names are represented by
Maildir without the leading ’.’. Each folder is itself a Maildir mailbox but should not contain other folders.
Instead, a logical nesting is indicated using ’.’ to delimit levels, e.g., “Archived.2005.07”.

Note: The Maildir specification requires the use of a colon (’:’) in certain message file names. However,
some operating systems do not permit this character in file names, If you wish to use a Maildir-like format on
such an operating system, you should specify another character to use instead. The exclamation point (’!’) is
a popular choice. For example:

import mailbox
mailbox.Maildir.colon = ’!’

The colon attribute may also be set on a per-instance basis.

Maildir instances have all of the methods of Mailbox in addition to the following:

list_folders()
Return a list of the names of all folders.

get_folder(folder)
Return a Maildir instance representing the folder whose name is folder. A NoSuchMailboxError
exception is raised if the folder does not exist.

add_folder(folder)
Create a folder whose name is folder and return a Maildir instance representing it.

remove_folder(folder)
Delete the folder whose name is folder. If the folder contains any messages, a NotEmptyError excep-
tion will be raised and the folder will not be deleted.

clean()
Delete temporary files from the mailbox that have not been accessed in the last 36 hours. The Maildir
specification says that mail-reading programs should do this occasionally.

Some Mailbox methods implemented by Maildir deserve special remarks:

add(message)

668 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

__setitem__(key, message)
update(arg)

Warning: These methods generate unique file names based upon the current process ID. When using
multiple threads, undetected name clashes may occur and cause corruption of the mailbox unless
threads are coordinated to avoid using these methods to manipulate the same mailbox simultaneously.

flush()
All changes to Maildir mailboxes are immediately applied, so this method does nothing.

lock()
unlock()

Maildir mailboxes do not support (or require) locking, so these methods do nothing.

close()
Maildir instances do not keep any open files and the underlying mailboxes do not support locking, so
this method does nothing.

get_file(key)
Depending upon the host platform, it may not be possible to modify or remove the underlying message
while the returned file remains open.

See Also:

maildir man page from qmail The original specification of the format.

Using maildir format Notes on Maildir by its inventor. Includes an updated name-creation scheme and details on
“info” semantics.

maildir man page from Courier Another specification of the format. Describes a common extension for supporting
folders.

mbox

class mbox(path, [factory=None, [create=True]])
A subclass of Mailbox for mailboxes in mbox format. Parameter factory is a callable object that accepts a file-
like message representation (which behaves as if opened in binary mode) and returns a custom representation. If
factory is None, mboxMessage is used as the default message representation. If create is True, the mailbox
is created if it does not exist.

The mbox format is the classic format for storing mail on Unix systems. All messages in an mbox mailbox
are stored in a single file with the beginning of each message indicated by a line whose first five characters are
“From “.

Several variations of the mbox format exist to address perceived shortcomings in the original. In the interest of
compatibility, mbox implements the original format, which is sometimes referred to as mboxo. This means that
the Content-Length header, if present, is ignored and that any occurrences of “From ” at the beginning of a
line in a message body are transformed to “>From ” when storing the message, although occurrences of “>From
” are not transformed to “From ” when reading the message.

Some Mailbox methods implemented by mbox deserve special remarks:

get_file(key)
Using the file after calling flush() or close() on the mbox instance may yield unpredictable results
or raise an exception.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

18.4. mailbox — Manipulate mailboxes in various formats 669

http://www.qmail.org/man/man5/maildir.html
http://cr.yp.to/proto/maildir.html
http://www.courier-mta.org/maildir.html

The Python Library Reference, Release 2.6.9

See Also:

mbox man page from qmail A specification of the format and its variations.

mbox man page from tin Another specification of the format, with details on locking.

Configuring Netscape Mail on Unix: Why The Content-Length Format is Bad An argument for using the origi-
nal mbox format rather than a variation.

“mbox” is a family of several mutually incompatible mailbox formats A history of mbox variations.

MH

class MH(path, [factory=None, [create=True]])
A subclass of Mailbox for mailboxes in MH format. Parameter factory is a callable object that accepts a file-
like message representation (which behaves as if opened in binary mode) and returns a custom representation.
If factory is None, MHMessage is used as the default message representation. If create is True, the mailbox
is created if it does not exist.

MH is a directory-based mailbox format invented for the MH Message Handling System, a mail user agent. Each
message in an MH mailbox resides in its own file. An MH mailbox may contain other MH mailboxes (called
folders) in addition to messages. Folders may be nested indefinitely. MH mailboxes also support sequences,
which are named lists used to logically group messages without moving them to sub-folders. Sequences are
defined in a file called .mh_sequences in each folder.

The MH class manipulates MH mailboxes, but it does not attempt to emulate all of mh‘s behaviors. In particular,
it does not modify and is not affected by the context or .mh_profile files that are used by mh to store its
state and configuration.

MH instances have all of the methods of Mailbox in addition to the following:

list_folders()
Return a list of the names of all folders.

get_folder(folder)
Return an MH instance representing the folder whose name is folder. A NoSuchMailboxError excep-
tion is raised if the folder does not exist.

add_folder(folder)
Create a folder whose name is folder and return an MH instance representing it.

remove_folder(folder)
Delete the folder whose name is folder. If the folder contains any messages, a NotEmptyError excep-
tion will be raised and the folder will not be deleted.

get_sequences()
Return a dictionary of sequence names mapped to key lists. If there are no sequences, the empty dictionary
is returned.

set_sequences(sequences)
Re-define the sequences that exist in the mailbox based upon sequences, a dictionary of names mapped to
key lists, like returned by get_sequences().

pack()
Rename messages in the mailbox as necessary to eliminate gaps in numbering. Entries in the sequences
list are updated correspondingly.

Note: Already-issued keys are invalidated by this operation and should not be subsequently used.

Some Mailbox methods implemented by MH deserve special remarks:

remove(key)

670 Chapter 18. Internet Data Handling

http://www.qmail.org/man/man5/mbox.html
http://www.tin.org/bin/man.cgi?section=5&topic=mbox
http://www.jwz.org/doc/content-length.html
http://homepages.tesco.net./~J.deBoynePollard/FGA/mail-mbox-formats.html

The Python Library Reference, Release 2.6.9

__delitem__(key)
discard(key)

These methods immediately delete the message. The MH convention of marking a message for deletion
by prepending a comma to its name is not used.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls. For MH mailboxes, locking the mailbox means locking the .mh_sequences file and, only for the
duration of any operations that affect them, locking individual message files.

get_file(key)
Depending upon the host platform, it may not be possible to remove the underlying message while the
returned file remains open.

flush()
All changes to MH mailboxes are immediately applied, so this method does nothing.

close()
MH instances do not keep any open files, so this method is equivalent to unlock().

See Also:

nmh - Message Handling System Home page of nmh, an updated version of the original mh.

MH & nmh: Email for Users & Programmers A GPL-licensed book on mh and nmh, with some information on
the mailbox format.

Babyl

class Babyl(path, [factory=None, [create=True]])
A subclass of Mailbox for mailboxes in Babyl format. Parameter factory is a callable object that accepts a file-
like message representation (which behaves as if opened in binary mode) and returns a custom representation. If
factory is None, BabylMessage is used as the default message representation. If create is True, the mailbox
is created if it does not exist.

Babyl is a single-file mailbox format used by the Rmail mail user agent included with Emacs. The beginning
of a message is indicated by a line containing the two characters Control-Underscore (’\037’) and Control-L
(’\014’). The end of a message is indicated by the start of the next message or, in the case of the last message,
a line containing a Control-Underscore (’\037’) character.

Messages in a Babyl mailbox have two sets of headers, original headers and so-called visible headers. Visible
headers are typically a subset of the original headers that have been reformatted or abridged to be more attractive.
Each message in a Babyl mailbox also has an accompanying list of labels, or short strings that record extra
information about the message, and a list of all user-defined labels found in the mailbox is kept in the Babyl
options section.

Babyl instances have all of the methods of Mailbox in addition to the following:

get_labels()
Return a list of the names of all user-defined labels used in the mailbox.

Note: The actual messages are inspected to determine which labels exist in the mailbox rather than
consulting the list of labels in the Babyl options section, but the Babyl section is updated whenever the
mailbox is modified.

Some Mailbox methods implemented by Babyl deserve special remarks:

get_file(key)
In Babyl mailboxes, the headers of a message are not stored contiguously with the body of the message.

18.4. mailbox — Manipulate mailboxes in various formats 671

http://www.nongnu.org/nmh/
http://rand-mh.sourceforge.net/book/

The Python Library Reference, Release 2.6.9

To generate a file-like representation, the headers and body are copied together into a StringIO instance
(from the StringIO module), which has an API identical to that of a file. As a result, the file-like
object is truly independent of the underlying mailbox but does not save memory compared to a string
representation.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

See Also:

Format of Version 5 Babyl Files A specification of the Babyl format.

Reading Mail with Rmail The Rmail manual, with some information on Babyl semantics.

MMDF

class MMDF(path, [factory=None, [create=True]])
A subclass of Mailbox for mailboxes in MMDF format. Parameter factory is a callable object that accepts a
file-like message representation (which behaves as if opened in binary mode) and returns a custom representa-
tion. If factory is None, MMDFMessage is used as the default message representation. If create is True, the
mailbox is created if it does not exist.

MMDF is a single-file mailbox format invented for the Multichannel Memorandum Distribution Facility, a mail
transfer agent. Each message is in the same form as an mbox message but is bracketed before and after by
lines containing four Control-A (’\001’) characters. As with the mbox format, the beginning of each message
is indicated by a line whose first five characters are “From “, but additional occurrences of “From ” are not
transformed to “>From ” when storing messages because the extra message separator lines prevent mistaking
such occurrences for the starts of subsequent messages.

Some Mailbox methods implemented by MMDF deserve special remarks:

get_file(key)
Using the file after calling flush() or close() on the MMDF instance may yield unpredictable results
or raise an exception.

lock()
unlock()

Three locking mechanisms are used—dot locking and, if available, the flock() and lockf() system
calls.

See Also:

mmdf man page from tin A specification of MMDF format from the documentation of tin, a newsreader.

MMDF A Wikipedia article describing the Multichannel Memorandum Distribution Facility.

18.4.2 Message objects

class Message([message])
A subclass of the email.Message module’s Message. Subclasses of mailbox.Message add mailbox-
format-specific state and behavior.

If message is omitted, the new instance is created in a default, empty state. If message is an
email.Message.Message instance, its contents are copied; furthermore, any format-specific information
is converted insofar as possible if message is a Message instance. If message is a string or a file, it should
contain an RFC 2822-compliant message, which is read and parsed.

672 Chapter 18. Internet Data Handling

http://quimby.gnus.org/notes/BABYL
http://www.gnu.org/software/emacs/manual/html_node/emacs/Rmail.html
http://www.tin.org/bin/man.cgi?section=5&topic=mmdf
http://en.wikipedia.org/wiki/MMDF
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

The format-specific state and behaviors offered by subclasses vary, but in general it is only the properties that
are not specific to a particular mailbox that are supported (although presumably the properties are specific to a
particular mailbox format). For example, file offsets for single-file mailbox formats and file names for directory-
based mailbox formats are not retained, because they are only applicable to the original mailbox. But state such
as whether a message has been read by the user or marked as important is retained, because it applies to the
message itself.

There is no requirement that Message instances be used to represent messages retrieved using Mailbox
instances. In some situations, the time and memory required to generate Message representations might not
not acceptable. For such situations, Mailbox instances also offer string and file-like representations, and a
custom message factory may be specified when a Mailbox instance is initialized.

MaildirMessage

class MaildirMessage([message])
A message with Maildir-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Typically, a mail user agent application moves all of the messages in the new subdirectory to the cur subdi-
rectory after the first time the user opens and closes the mailbox, recording that the messages are old whether
or not they’ve actually been read. Each message in cur has an “info” section added to its file name to store
information about its state. (Some mail readers may also add an “info” section to messages in new.) The “info”
section may take one of two forms: it may contain “2,” followed by a list of standardized flags (e.g., “2,FR”) or
it may contain “1,” followed by so-called experimental information. Standard flags for Maildir messages are as
follows:

Flag Meaning Explanation
D Draft Under composition
F Flagged Marked as important
P Passed Forwarded, resent, or bounced
R Replied Replied to
S Seen Read
T Trashed Marked for subsequent deletion

MaildirMessage instances offer the following methods:

get_subdir()
Return either “new” (if the message should be stored in the new subdirectory) or “cur” (if the message
should be stored in the cur subdirectory).

Note: A message is typically moved from new to cur after its mailbox has been accessed, whether or not
the message is has been read. A message msg has been read if "S" in msg.get_flags() is True.

set_subdir(subdir)
Set the subdirectory the message should be stored in. Parameter subdir must be either “new” or “cur”.

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the standard Maildir
format, the result is the concatenation in alphabetical order of zero or one occurrence of each of ’D’, ’F’,
’P’, ’R’, ’S’, and ’T’. The empty string is returned if no flags are set or if “info” contains experimental
semantics.

set_flags(flags)
Set the flags specified by flags and unset all others.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag

18.4. mailbox — Manipulate mailboxes in various formats 673

The Python Library Reference, Release 2.6.9

may be a string of more than one character. The current “info” is overwritten whether or not it contains
experimental information rather than flags.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time,
flag maybe a string of more than one character. If “info” contains experimental information rather than
flags, the current “info” is not modified.

get_date()
Return the delivery date of the message as a floating-point number representing seconds since the epoch.

set_date(date)
Set the delivery date of the message to date, a floating-point number representing seconds since the epoch.

get_info()
Return a string containing the “info” for a message. This is useful for accessing and modifying “info” that
is experimental (i.e., not a list of flags).

set_info(info)
Set “info” to info, which should be a string.

When a MaildirMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“cur” subdirectory O flag
F flag F flag
R flag A flag
S flag R flag
T flag D flag

When a MaildirMessage instance is created based upon an MHMessage instance, the following conversions take
place:

Resulting state MHMessage state
“cur” subdirectory “unseen” sequence
“cur” subdirectory and S flag no “unseen” sequence
F flag “flagged” sequence
R flag “replied” sequence

When a MaildirMessage instance is created based upon a BabylMessage instance, the following conversions
take place:

Resulting state BabylMessage state
“cur” subdirectory “unseen” label
“cur” subdirectory and S flag no “unseen” label
P flag “forwarded” or “resent” label
R flag “answered” label
T flag “deleted” label

mboxMessage

class mboxMessage([message])
A message with mbox-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Messages in an mbox mailbox are stored together in a single file. The sender’s envelope address and the time
of delivery are typically stored in a line beginning with “From ” that is used to indicate the start of a message,
though there is considerable variation in the exact format of this data among mbox implementations. Flags that

674 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

indicate the state of the message, such as whether it has been read or marked as important, are typically stored
in Status and X-Status headers.

Conventional flags for mbox messages are as follows:

Flag Meaning Explanation
R Read Read
O Old Previously detected by MUA
D Deleted Marked for subsequent deletion
F Flagged Marked as important
A Answered Replied to

The “R” and “O” flags are stored in the Status header, and the “D”, “F”, and “A” flags are stored in the
X-Status header. The flags and headers typically appear in the order mentioned.

mboxMessage instances offer the following methods:

get_from()
Return a string representing the “From ” line that marks the start of the message in an mbox mailbox. The
leading “From ” and the trailing newline are excluded.

set_from(from_, [time_=None])
Set the “From ” line to from_, which should be specified without a leading “From ” or trailing newline. For
convenience, time_ may be specified and will be formatted appropriately and appended to from_. If time_
is specified, it should be a struct_time instance, a tuple suitable for passing to time.strftime(),
or True (to use time.gmtime()).

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the conventional
format, the result is the concatenation in the following order of zero or one occurrence of each of ’R’,
’O’, ’D’, ’F’, and ’A’.

set_flags(flags)
Set the flags specified by flags and unset all others. Parameter flags should be the concatenation in any
order of zero or more occurrences of each of ’R’, ’O’, ’D’, ’F’, and ’A’.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag may
be a string of more than one character.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time,
flag maybe a string of more than one character.

When an mboxMessage instance is created based upon a MaildirMessage instance, a “From ” line is generated
based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

Resulting state MaildirMessage state
R flag S flag
O flag “cur” subdirectory
D flag T flag
F flag F flag
A flag R flag

When an mboxMessage instance is created based upon an MHMessage instance, the following conversions take
place:

18.4. mailbox — Manipulate mailboxes in various formats 675

The Python Library Reference, Release 2.6.9

Resulting state MHMessage state
R flag and O flag no “unseen” sequence
O flag “unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an mboxMessage instance is created based upon a BabylMessage instance, the following conversions take
place:

Resulting state BabylMessage state
R flag and O flag no “unseen” label
O flag “unseen” label
D flag “deleted” label
A flag “answered” label

When a Message instance is created based upon an MMDFMessage instance, the “From ” line is copied and all flags
directly correspond:

Resulting state MMDFMessage state
R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

MHMessage

class MHMessage([message])
A message with MH-specific behaviors. Parameter message has the same meaning as with the Message con-
structor.

MH messages do not support marks or flags in the traditional sense, but they do support sequences, which are
logical groupings of arbitrary messages. Some mail reading programs (although not the standard mh and nmh)
use sequences in much the same way flags are used with other formats, as follows:

Sequence Explanation
unseen Not read, but previously detected by MUA
replied Replied to
flagged Marked as important

MHMessage instances offer the following methods:

get_sequences()
Return a list of the names of sequences that include this message.

set_sequences(sequences)
Set the list of sequences that include this message.

add_sequence(sequence)
Add sequence to the list of sequences that include this message.

remove_sequence(sequence)
Remove sequence from the list of sequences that include this message.

When an MHMessage instance is created based upon a MaildirMessage instance, the following conversions take
place:

676 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

Resulting state MaildirMessage state
“unseen” sequence no S flag
“replied” sequence R flag
“flagged” sequence F flag

When an MHMessage instance is created based upon an mboxMessage or MMDFMessage instance, the Status
and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“unseen” sequence no R flag
“replied” sequence A flag
“flagged” sequence F flag

When an MHMessage instance is created based upon a BabylMessage instance, the following conversions take
place:

Resulting state BabylMessage state
“unseen” sequence “unseen” label
“replied” sequence “answered” label

BabylMessage

class BabylMessage([message])
A message with Babyl-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

Certain message labels, called attributes, are defined by convention to have special meanings. The attributes are
as follows:

Label Explanation
unseen Not read, but previously detected by MUA
deleted Marked for subsequent deletion
filed Copied to another file or mailbox
answered Replied to
forwarded Forwarded
edited Modified by the user
resent Resent

By default, Rmail displays only visible headers. The BabylMessage class, though, uses the original headers
because they are more complete. Visible headers may be accessed explicitly if desired.

BabylMessage instances offer the following methods:

get_labels()
Return a list of labels on the message.

set_labels(labels)
Set the list of labels on the message to labels.

add_label(label)
Add label to the list of labels on the message.

remove_label(label)
Remove label from the list of labels on the message.

get_visible()
Return an Message instance whose headers are the message’s visible headers and whose body is empty.

set_visible(visible)
Set the message’s visible headers to be the same as the headers in message. Parameter visible should be

18.4. mailbox — Manipulate mailboxes in various formats 677

The Python Library Reference, Release 2.6.9

a Message instance, an email.Message.Message instance, a string, or a file-like object (which
should be open in text mode).

update_visible()
When a BabylMessage instance’s original headers are modified, the visible headers are not automati-
cally modified to correspond. This method updates the visible headers as follows: each visible header with
a corresponding original header is set to the value of the original header, each visible header without a
corresponding original header is removed, and any of Date, From, Reply-To, To, CC, and Subject
that are present in the original headers but not the visible headers are added to the visible headers.

When a BabylMessage instance is created based upon a MaildirMessage instance, the following conversions
take place:

Resulting state MaildirMessage state
“unseen” label no S flag
“deleted” label T flag
“answered” label R flag
“forwarded” label P flag

When a BabylMessage instance is created based upon an mboxMessage or MMDFMessage instance, the
Status and X-Status headers are omitted and the following conversions take place:

Resulting state mboxMessage or MMDFMessage state
“unseen” label no R flag
“deleted” label D flag
“answered” label A flag

When a BabylMessage instance is created based upon an MHMessage instance, the following conversions take
place:

Resulting state MHMessage state
“unseen” label “unseen” sequence
“answered” label “replied” sequence

MMDFMessage

class MMDFMessage([message])
A message with MMDF-specific behaviors. Parameter message has the same meaning as with the Message
constructor.

As with message in an mbox mailbox, MMDF messages are stored with the sender’s address and the delivery
date in an initial line beginning with “From “. Likewise, flags that indicate the state of the message are typically
stored in Status and X-Status headers.

Conventional flags for MMDF messages are identical to those of mbox message and are as follows:

Flag Meaning Explanation
R Read Read
O Old Previously detected by MUA
D Deleted Marked for subsequent deletion
F Flagged Marked as important
A Answered Replied to

The “R” and “O” flags are stored in the Status header, and the “D”, “F”, and “A” flags are stored in the
X-Status header. The flags and headers typically appear in the order mentioned.

MMDFMessage instances offer the following methods, which are identical to those offered by mboxMessage:

678 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

get_from()
Return a string representing the “From ” line that marks the start of the message in an mbox mailbox. The
leading “From ” and the trailing newline are excluded.

set_from(from_, [time_=None])
Set the “From ” line to from_, which should be specified without a leading “From ” or trailing newline. For
convenience, time_ may be specified and will be formatted appropriately and appended to from_. If time_
is specified, it should be a struct_time instance, a tuple suitable for passing to time.strftime(),
or True (to use time.gmtime()).

get_flags()
Return a string specifying the flags that are currently set. If the message complies with the conventional
format, the result is the concatenation in the following order of zero or one occurrence of each of ’R’,
’O’, ’D’, ’F’, and ’A’.

set_flags(flags)
Set the flags specified by flags and unset all others. Parameter flags should be the concatenation in any
order of zero or more occurrences of each of ’R’, ’O’, ’D’, ’F’, and ’A’.

add_flag(flag)
Set the flag(s) specified by flag without changing other flags. To add more than one flag at a time, flag may
be a string of more than one character.

remove_flag(flag)
Unset the flag(s) specified by flag without changing other flags. To remove more than one flag at a time,
flag maybe a string of more than one character.

When an MMDFMessage instance is created based upon a MaildirMessage instance, a “From ” line is generated
based upon the MaildirMessage instance’s delivery date, and the following conversions take place:

Resulting state MaildirMessage state
R flag S flag
O flag “cur” subdirectory
D flag T flag
F flag F flag
A flag R flag

When an MMDFMessage instance is created based upon an MHMessage instance, the following conversions take
place:

Resulting state MHMessage state
R flag and O flag no “unseen” sequence
O flag “unseen” sequence
F flag “flagged” sequence
A flag “replied” sequence

When an MMDFMessage instance is created based upon a BabylMessage instance, the following conversions take
place:

Resulting state BabylMessage state
R flag and O flag no “unseen” label
O flag “unseen” label
D flag “deleted” label
A flag “answered” label

When an MMDFMessage instance is created based upon an mboxMessage instance, the “From ” line is copied and
all flags directly correspond:

18.4. mailbox — Manipulate mailboxes in various formats 679

The Python Library Reference, Release 2.6.9

Resulting state mboxMessage state
R flag R flag
O flag O flag
D flag D flag
F flag F flag
A flag A flag

18.4.3 Exceptions

The following exception classes are defined in the mailbox module:

exception Error
The based class for all other module-specific exceptions.

exception NoSuchMailboxError
Raised when a mailbox is expected but is not found, such as when instantiating a Mailbox subclass with a path
that does not exist (and with the create parameter set to False), or when opening a folder that does not exist.

exception NotEmptyError
Raised when a mailbox is not empty but is expected to be, such as when deleting a folder that contains messages.

exception ExternalClashError
Raised when some mailbox-related condition beyond the control of the program causes it to be unable to pro-
ceed, such as when failing to acquire a lock that another program already holds a lock, or when a uniquely-
generated file name already exists.

exception FormatError
Raised when the data in a file cannot be parsed, such as when an MH instance attempts to read a corrupted
.mh_sequences file.

18.4.4 Deprecated classes and methods

Deprecated since version 2.6. Older versions of the mailbox module do not support modification of mailboxes,
such as adding or removing message, and do not provide classes to represent format-specific message properties. For
backward compatibility, the older mailbox classes are still available, but the newer classes should be used in preference
to them. The old classes will be removed in Python 3.0.

Older mailbox objects support only iteration and provide a single public method:

next()
Return the next message in the mailbox, created with the optional factory argument passed into the mailbox
object’s constructor. By default this is an rfc822.Message object (see the rfc822 module). Depending on
the mailbox implementation the fp attribute of this object may be a true file object or a class instance simulating
a file object, taking care of things like message boundaries if multiple mail messages are contained in a single
file, etc. If no more messages are available, this method returns None.

Most of the older mailbox classes have names that differ from the current mailbox class names, except for Maildir.
For this reason, the new Maildir class defines a next() method and its constructor differs slightly from those of
the other new mailbox classes.

The older mailbox classes whose names are not the same as their newer counterparts are as follows:

class UnixMailbox(fp, [factory])
Access to a classic Unix-style mailbox, where all messages are contained in a single file and separated by From
(a.k.a. From_) lines. The file object fp points to the mailbox file. The optional factory parameter is a callable
that should create new message objects. factory is called with one argument, fp by the next() method of the
mailbox object. The default is the rfc822.Message class (see the rfc822 module – and the note below).

680 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

Note: For reasons of this module’s internal implementation, you will probably want to open the fp object in
binary mode. This is especially important on Windows.

For maximum portability, messages in a Unix-style mailbox are separated by any line that begins exactly with
the string ’From ’ (note the trailing space) if preceded by exactly two newlines. Because of the wide-range
of variations in practice, nothing else on the From_ line should be considered. However, the current implemen-
tation doesn’t check for the leading two newlines. This is usually fine for most applications.

The UnixMailbox class implements a more strict version of From_ line checking, using a regular expression
that usually correctly matched From_ delimiters. It considers delimiter line to be separated by From name
time lines. For maximum portability, use the PortableUnixMailbox class instead. This class is identical
to UnixMailbox except that individual messages are separated by only From lines.

class PortableUnixMailbox(fp, [factory])
A less-strict version of UnixMailbox, which considers only the From at the beginning of the line separating
messages. The “name time” portion of the From line is ignored, to protect against some variations that are
observed in practice. This works since lines in the message which begin with ’From ’ are quoted by mail
handling software at delivery-time.

class MmdfMailbox(fp, [factory])
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by lines con-
sisting of 4 control-A characters. The file object fp points to the mailbox file. Optional factory is as with the
UnixMailbox class.

class MHMailbox(dirname, [factory])
Access an MH mailbox, a directory with each message in a separate file with a numeric name. The name of the
mailbox directory is passed in dirname. factory is as with the UnixMailbox class.

class BabylMailbox(fp, [factory])
Access a Babyl mailbox, which is similar to an MMDF mailbox. In Babyl format, each message has two sets
of headers, the original headers and the visible headers. The original headers appear before a line contain-
ing only ’*** EOOH ***’ (End-Of-Original-Headers) and the visible headers appear after the EOOH line.
Babyl-compliant mail readers will show you only the visible headers, and BabylMailbox objects will return
messages containing only the visible headers. You’ll have to do your own parsing of the mailbox file to get at the
original headers. Mail messages start with the EOOH line and end with a line containing only ’\037\014’.
factory is as with the UnixMailbox class.

If you wish to use the older mailbox classes with the email module rather than the deprecated rfc822 module, you
can do so as follows:

import email
import email.Errors
import mailbox

def msgfactory(fp):
try:

return email.message_from_file(fp)
except email.Errors.MessageParseError:

Don’t return None since that will
stop the mailbox iterator
return ’’

mbox = mailbox.UnixMailbox(fp, msgfactory)

Alternatively, if you know your mailbox contains only well-formed MIME messages, you can simplify this to:

import email
import mailbox

18.4. mailbox — Manipulate mailboxes in various formats 681

The Python Library Reference, Release 2.6.9

mbox = mailbox.UnixMailbox(fp, email.message_from_file)

18.4.5 Examples

A simple example of printing the subjects of all messages in a mailbox that seem interesting:

import mailbox
for message in mailbox.mbox(’~/mbox’):

subject = message[’subject’] # Could possibly be None.
if subject and ’python’ in subject.lower():

print subject

To copy all mail from a Babyl mailbox to an MH mailbox, converting all of the format-specific information that can
be converted:

import mailbox
destination = mailbox.MH(’~/Mail’)
destination.lock()
for message in mailbox.Babyl(’~/RMAIL’):

destination.add(mailbox.MHMessage(message))
destination.flush()
destination.unlock()

This example sorts mail from several mailing lists into different mailboxes, being careful to avoid mail corruption due
to concurrent modification by other programs, mail loss due to interruption of the program, or premature termination
due to malformed messages in the mailbox:

import mailbox
import email.Errors

list_names = (’python-list’, ’python-dev’, ’python-bugs’)

boxes = dict((name, mailbox.mbox(’~/email/%s’ % name)) for name in list_names)
inbox = mailbox.Maildir(’~/Maildir’, factory=None)

for key in inbox.iterkeys():
try:

message = inbox[key]
except email.Errors.MessageParseError:

continue # The message is malformed. Just leave it.

for name in list_names:
list_id = message[’list-id’]
if list_id and name in list_id:

Get mailbox to use
box = boxes[name]

Write copy to disk before removing original.
If there’s a crash, you might duplicate a message, but
that’s better than losing a message completely.
box.lock()
box.add(message)
box.flush()
box.unlock()

682 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

Remove original message
inbox.lock()
inbox.discard(key)
inbox.flush()
inbox.unlock()
break # Found destination, so stop looking.

for box in boxes.itervalues():
box.close()

18.5 mhlib — Access to MH mailboxes

Deprecated since version 2.6: The mhlib module has been removed in Python 3.0. Use the mailbox instead. The
mhlib module provides a Python interface to MH folders and their contents.

The module contains three basic classes, MH, which represents a particular collection of folders, Folder, which
represents a single folder, and Message, which represents a single message.

class MH([path, [profile]])
MH represents a collection of MH folders.

class Folder(mh, name)
The Folder class represents a single folder and its messages.

class Message(folder, number, [name])
Message objects represent individual messages in a folder. The Message class is derived from
mimetools.Message.

18.5.1 MH Objects

MH instances have the following methods:

error(format, [...])
Print an error message – can be overridden.

getprofile(key)
Return a profile entry (None if not set).

getpath()
Return the mailbox pathname.

getcontext()
Return the current folder name.

setcontext(name)
Set the current folder name.

listfolders()
Return a list of top-level folders.

listallfolders()
Return a list of all folders.

listsubfolders(name)
Return a list of direct subfolders of the given folder.

listallsubfolders(name)
Return a list of all subfolders of the given folder.

18.5. mhlib — Access to MH mailboxes 683

The Python Library Reference, Release 2.6.9

makefolder(name)
Create a new folder.

deletefolder(name)
Delete a folder – must have no subfolders.

openfolder(name)
Return a new open folder object.

18.5.2 Folder Objects

Folder instances represent open folders and have the following methods:

error(format, [...])
Print an error message – can be overridden.

getfullname()
Return the folder’s full pathname.

getsequencesfilename()
Return the full pathname of the folder’s sequences file.

getmessagefilename(n)
Return the full pathname of message n of the folder.

listmessages()
Return a list of messages in the folder (as numbers).

getcurrent()
Return the current message number.

setcurrent(n)
Set the current message number to n.

parsesequence(seq)
Parse msgs syntax into list of messages.

getlast()
Get last message, or 0 if no messages are in the folder.

setlast(n)
Set last message (internal use only).

getsequences()
Return dictionary of sequences in folder. The sequence names are used as keys, and the values are the lists of
message numbers in the sequences.

putsequences(dict)
Return dictionary of sequences in folder name: list.

removemessages(list)
Remove messages in list from folder.

refilemessages(list, tofolder)
Move messages in list to other folder.

movemessage(n, tofolder, ton)
Move one message to a given destination in another folder.

copymessage(n, tofolder, ton)
Copy one message to a given destination in another folder.

684 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

18.5.3 Message Objects

The Message class adds one method to those of mimetools.Message:

openmessage(n)
Return a new open message object (costs a file descriptor).

18.6 mimetools — Tools for parsing MIME messages

Deprecated since version 2.3: The email package should be used in preference to the mimetools module. This
module is present only to maintain backward compatibility, and it has been removed in 3.x. This module defines a
subclass of the rfc822module’s Message class and a number of utility functions that are useful for the manipulation
for MIME multipart or encoded message.

It defines the following items:

class Message(fp, [seekable])
Return a new instance of the Message class. This is a subclass of the rfc822.Message class, with some
additional methods (see below). The seekable argument has the same meaning as for rfc822.Message.

choose_boundary()
Return a unique string that has a high likelihood of being usable as a part boundary. The string has the form
’hostipaddr.uid.pid.timestamp.random’.

decode(input, output, encoding)
Read data encoded using the allowed MIME encoding from open file object input and write the decoded
data to open file object output. Valid values for encoding include ’base64’, ’quoted-printable’,
’uuencode’, ’x-uuencode’, ’uue’, ’x-uue’, ’7bit’, and ’8bit’. Decoding messages encoded
in ’7bit’ or ’8bit’ has no effect. The input is simply copied to the output.

encode(input, output, encoding)
Read data from open file object input and write it encoded using the allowed MIME encoding to open file object
output. Valid values for encoding are the same as for decode().

copyliteral(input, output)
Read lines from open file input until EOF and write them to open file output.

copybinary(input, output)
Read blocks until EOF from open file input and write them to open file output. The block size is currently fixed
at 8192.

See Also:

Module email Comprehensive email handling package; supersedes the mimetools module.

Module rfc822 Provides the base class for mimetools.Message.

Module multifile Support for reading files which contain distinct parts, such as MIME data.

http://faqs.cs.uu.nl/na-dir/mail/mime-faq/.html The MIME Frequently Asked Questions document. For an
overview of MIME, see the answer to question 1.1 in Part 1 of this document.

18.6.1 Additional Methods of Message Objects

The Message class defines the following methods in addition to the rfc822.Message methods:

getplist()
Return the parameter list of the Content-Type header. This is a list of strings. For parameters of the form

18.6. mimetools — Tools for parsing MIME messages 685

http://faqs.cs.uu.nl/na-dir/mail/mime-faq/.html

The Python Library Reference, Release 2.6.9

key=value, key is converted to lower case but value is not. For example, if the message contains the header
Content-type: text/html; spam=1; Spam=2; Spam then getplist()will return the Python
list [’spam=1’, ’spam=2’, ’Spam’].

getparam(name)
Return the value of the first parameter (as returned by getplist()) of the form name=value for the given
name. If value is surrounded by quotes of the form ‘<...>‘ or ‘"..."‘, these are removed.

getencoding()
Return the encoding specified in the Content-Transfer-Encoding message header. If no such header
exists, return ’7bit’. The encoding is converted to lower case.

gettype()
Return the message type (of the form type/subtype) as specified in the Content-Type header. If no such
header exists, return ’text/plain’. The type is converted to lower case.

getmaintype()
Return the main type as specified in the Content-Type header. If no such header exists, return ’text’.
The main type is converted to lower case.

getsubtype()
Return the subtype as specified in the Content-Type header. If no such header exists, return ’plain’. The
subtype is converted to lower case.

18.7 mimetypes — Map filenames to MIME types

The mimetypesmodule converts between a filename or URL and the MIME type associated with the filename exten-
sion. Conversions are provided from filename to MIME type and from MIME type to filename extension; encodings
are not supported for the latter conversion.

The module provides one class and a number of convenience functions. The functions are the normal interface to this
module, but some applications may be interested in the class as well.

The functions described below provide the primary interface for this module. If the module has not been initialized,
they will call init() if they rely on the information init() sets up.

guess_type(filename, [strict])
Guess the type of a file based on its filename or URL, given by filename. The return value is a tuple (type,
encoding) where type is None if the type can’t be guessed (missing or unknown suffix) or a string of the
form ’type/subtype’, usable for a MIME content-type header.

encoding is None for no encoding or the name of the program used to encode (e.g. compress or gzip). The
encoding is suitable for use as a Content-Encoding header, not as a Content-Transfer-Encoding
header. The mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first tried case
sensitively, then case insensitively.

Optional strict is a flag specifying whether the list of known MIME types is limited to only the official types
registered with IANA are recognized. When strict is true (the default), only the IANA types are supported;
when strict is false, some additional non-standard but commonly used MIME types are also recognized.

guess_all_extensions(type, [strict])
Guess the extensions for a file based on its MIME type, given by type. The return value is a list of strings giving
all possible filename extensions, including the leading dot (’.’). The extensions are not guaranteed to have been
associated with any particular data stream, but would be mapped to the MIME type type by guess_type().

Optional strict has the same meaning as with the guess_type() function.

guess_extension(type, [strict])
Guess the extension for a file based on its MIME type, given by type. The return value is a string giving a

686 Chapter 18. Internet Data Handling

http://www.iana.org/assignments/media-types/

The Python Library Reference, Release 2.6.9

filename extension, including the leading dot (’.’). The extension is not guaranteed to have been associated
with any particular data stream, but would be mapped to the MIME type type by guess_type(). If no
extension can be guessed for type, None is returned.

Optional strict has the same meaning as with the guess_type() function.

Some additional functions and data items are available for controlling the behavior of the module.

init([files])
Initialize the internal data structures. If given, files must be a sequence of file names which should be used to
augment the default type map. If omitted, the file names to use are taken from knownfiles. Each file named
in files or knownfiles takes precedence over those named before it. Calling init() repeatedly is allowed.

read_mime_types(filename)
Load the type map given in the file filename, if it exists. The type map is returned as a dictionary mapping
filename extensions, including the leading dot (’.’), to strings of the form ’type/subtype’. If the file
filename does not exist or cannot be read, None is returned.

add_type(type, ext, [strict])
Add a mapping from the mimetype type to the extension ext. When the extension is already known, the new
type will replace the old one. When the type is already known the extension will be added to the list of known
extensions.

When strict is True (the default), the mapping will added to the official MIME types, otherwise to the non-
standard ones.

inited
Flag indicating whether or not the global data structures have been initialized. This is set to true by init().

knownfiles
List of type map file names commonly installed. These files are typically named mime.types and are installed
in different locations by different packages.

suffix_map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the encoding
and the type are indicated by the same extension. For example, the .tgz extension is mapped to .tar.gz to
allow the encoding and type to be recognized separately.

encodings_map
Dictionary mapping filename extensions to encoding types.

types_map
Dictionary mapping filename extensions to MIME types.

common_types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types.

The MimeTypes class may be useful for applications which may want more than one MIME-type database:

class MimeTypes([filenames])
This class represents a MIME-types database. By default, it provides access to the same database as the rest
of this module. The initial database is a copy of that provided by the module, and may be extended by loading
additional mime.types-style files into the database using the read() or readfp() methods. The mapping
dictionaries may also be cleared before loading additional data if the default data is not desired.

The optional filenames parameter can be used to cause additional files to be loaded “on top” of the default
database. New in version 2.2.

An example usage of the module:

>>> import mimetypes
>>> mimetypes.init()

18.7. mimetypes — Map filenames to MIME types 687

The Python Library Reference, Release 2.6.9

>>> mimetypes.knownfiles
[’/etc/mime.types’, ’/etc/httpd/mime.types’, ...]
>>> mimetypes.suffix_map[’.tgz’]
’.tar.gz’
>>> mimetypes.encodings_map[’.gz’]
’gzip’
>>> mimetypes.types_map[’.tgz’]
’application/x-tar-gz’

18.7.1 MimeTypes Objects

MimeTypes instances provide an interface which is very like that of the mimetypes module.

suffix_map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the encoding
and the type are indicated by the same extension. For example, the .tgz extension is mapped to .tar.gz to
allow the encoding and type to be recognized separately. This is initially a copy of the global suffix_map
defined in the module.

encodings_map
Dictionary mapping filename extensions to encoding types. This is initially a copy of the global
encodings_map defined in the module.

types_map
Dictionary mapping filename extensions to MIME types. This is initially a copy of the global types_map
defined in the module.

common_types
Dictionary mapping filename extensions to non-standard, but commonly found MIME types. This is initially a
copy of the global common_types defined in the module.

guess_extension(type, [strict])
Similar to the guess_extension() function, using the tables stored as part of the object.

guess_type(url, [strict])
Similar to the guess_type() function, using the tables stored as part of the object.

read(path)
Load MIME information from a file named path. This uses readfp() to parse the file.

readfp(file)
Load MIME type information from an open file. The file must have the format of the standard mime.types
files.

18.8 MimeWriter — Generic MIME file writer

Deprecated since version 2.3: The email package should be used in preference to the MimeWriter module. This
module is present only to maintain backward compatibility. This module defines the class MimeWriter. The
MimeWriter class implements a basic formatter for creating MIME multi-part files. It doesn’t seek around the
output file nor does it use large amounts of buffer space. You must write the parts out in the order that they should
occur in the final file. MimeWriter does buffer the headers you add, allowing you to rearrange their order.

class MimeWriter(fp)
Return a new instance of the MimeWriter class. The only argument passed, fp, is a file object to be used for
writing. Note that a StringIO object could also be used.

688 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

18.8.1 MimeWriter Objects

MimeWriter instances have the following methods:

addheader(key, value, [prefix])
Add a header line to the MIME message. The key is the name of the header, where the value obviously provides
the value of the header. The optional argument prefix determines where the header is inserted; 0 means append
at the end, 1 is insert at the start. The default is to append.

flushheaders()
Causes all headers accumulated so far to be written out (and forgotten). This is useful if you don’t need a body
part at all, e.g. for a subpart of type message/rfc822 that’s (mis)used to store some header-like information.

startbody(ctype, [plist, [prefix]])
Returns a file-like object which can be used to write to the body of the message. The content-type is set to the
provided ctype, and the optional parameter plist provides additional parameters for the content-type declaration.
prefix functions as in addheader() except that the default is to insert at the start.

startmultipartbody(subtype, [boundary, [plist, [prefix]]])
Returns a file-like object which can be used to write to the body of the message. Additionally, this method
initializes the multi-part code, where subtype provides the multipart subtype, boundary may provide a user-
defined boundary specification, and plist provides optional parameters for the subtype. prefix functions as in
startbody(). Subparts should be created using nextpart().

nextpart()
Returns a new instance of MimeWriter which represents an individual part in a multipart message. This may
be used to write the part as well as used for creating recursively complex multipart messages. The message must
first be initialized with startmultipartbody() before using nextpart().

lastpart()
This is used to designate the last part of a multipart message, and should always be used when writing multipart
messages.

18.9 mimify — MIME processing of mail messages

Deprecated since version 2.3: The email package should be used in preference to the mimify module. This module
is present only to maintain backward compatibility. The mimify module defines two functions to convert mail
messages to and from MIME format. The mail message can be either a simple message or a so-called multipart
message. Each part is treated separately. Mimifying (a part of) a message entails encoding the message as quoted-
printable if it contains any characters that cannot be represented using 7-bit ASCII. Unmimifying (a part of) a message
entails undoing the quoted-printable encoding. Mimify and unmimify are especially useful when a message has to be
edited before being sent. Typical use would be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable variables:

mimify(infile, outfile)
Copy the message in infile to outfile, converting parts to quoted-printable and adding MIME mail headers when
necessary. infile and outfile can be file objects (actually, any object that has a readline() method (for infile)
or a write() method (for outfile)) or strings naming the files. If infile and outfile are both strings, they may
have the same value.

18.9. mimify — MIME processing of mail messages 689

The Python Library Reference, Release 2.6.9

unmimify(infile, outfile, [decode_base64])
Copy the message in infile to outfile, decoding all quoted-printable parts. infile and outfile can be file objects
(actually, any object that has a readline() method (for infile) or a write() method (for outfile)) or strings
naming the files. If infile and outfile are both strings, they may have the same value. If the decode_base64
argument is provided and tests true, any parts that are coded in the base64 encoding are decoded as well.

mime_decode_header(line)
Return a decoded version of the encoded header line in line. This only supports the ISO 8859-1 charset (Latin-1).

mime_encode_header(line)
Return a MIME-encoded version of the header line in line.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ASCII characters (characters
with the 8th bit set), or if there are any lines longer than MAXLEN characters (default value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored in CHARSET,
and the default value is ISO-8859-1 (also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-l length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively. infile defaults to standard input, outfile defaults to standard
output. The same file can be specified for input and output.

If the -l option is given when encoding, if there are any lines longer than the specified length, the containing part will
be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

See Also:

Module quopri Encode and decode MIME quoted-printable files.

18.10 multifile — Support for files containing distinct parts

Deprecated since version 2.5: The email package should be used in preference to the multifile module. This
module is present only to maintain backward compatibility. The MultiFile object enables you to treat sections
of a text file as file-like input objects, with ” being returned by readline() when a given delimiter pattern is
encountered. The defaults of this class are designed to make it useful for parsing MIME multipart messages, but by
subclassing it and overriding methods it can be easily adapted for more general use.

class MultiFile(fp, [seekable])
Create a multi-file. You must instantiate this class with an input object argument for the MultiFile instance
to get lines from, such as a file object returned by open().

MultiFile only ever looks at the input object’s readline(), seek() and tell() methods, and the
latter two are only needed if you want random access to the individual MIME parts. To use MultiFile on a
non-seekable stream object, set the optional seekable argument to false; this will prevent using the input object’s
seek() and tell() methods.

It will be useful to know that in MultiFile‘s view of the world, text is composed of three kinds of lines: data,
section-dividers, and end-markers. MultiFile is designed to support parsing of messages that may have multiple
nested message parts, each with its own pattern for section-divider and end-marker lines.

See Also:

690 Chapter 18. Internet Data Handling

The Python Library Reference, Release 2.6.9

Module email Comprehensive email handling package; supersedes the multifile module.

18.10.1 MultiFile Objects

A MultiFile instance has the following methods:

readline(str)
Read a line. If the line is data (not a section-divider or end-marker or real EOF) return it. If the line matches the
most-recently-stacked boundary, return ” and set self.last to 1 or 0 according as the match is or is not an
end-marker. If the line matches any other stacked boundary, raise an error. On encountering end-of-file on the
underlying stream object, the method raises Error unless all boundaries have been popped.

readlines(str)
Return all lines remaining in this part as a list of strings.

read()
Read all lines, up to the next section. Return them as a single (multiline) string. Note that this doesn’t take a
size argument!

seek(pos, [whence])
Seek. Seek indices are relative to the start of the current section. The pos and whence arguments are interpreted
as for a file seek.

tell()
Return the file position relative to the start of the current section.

next()
Skip lines to the next section (that is, read lines until a section-divider or end-marker has been consumed). Return
true if there is such a section, false if an end-marker is seen. Re-enable the most-recently-pushed boundary.

is_data(str)
Return true if str is data and false if it might be a section boundary. As written, it tests for a prefix other than
’--’ at start of line (which all MIME boundaries have) but it is declared so it can be overridden in derived
classes.

Note that this test is used intended as a fast guard for the real boundary tests; if it always returns false it will
merely slow processing, not cause it to fail.

push(str)
Push a boundary string. When a decorated version of this boundary is found as an input line, it will be interpreted
as a section-divider or end-marker (depending on the decoration, see RFC 2045). All subsequent reads will
return the empty string to indicate end-of-file, until a call to pop() removes the boundary a or next() call
reenables it.

It is possible to push more than one boundary. Encountering the most-recently-pushed boundary will return
EOF; encountering any other boundary will raise an error.

pop()
Pop a section boundary. This boundary will no longer be interpreted as EOF.

section_divider(str)
Turn a boundary into a section-divider line. By default, this method prepends ’--’ (which MIME section
boundaries have) but it is declared so it can be overridden in derived classes. This method need not append LF
or CR-LF, as comparison with the result ignores trailing whitespace.

end_marker(str)
Turn a boundary string into an end-marker line. By default, this method prepends ’--’ and appends ’--’
(like a MIME-multipart end-of-message marker) but it is declared so it can be overridden in derived classes.
This method need not append LF or CR-LF, as comparison with the result ignores trailing whitespace.

18.10. multifile — Support for files containing distinct parts 691

http://tools.ietf.org/html/rfc2045.html

The Python Library Reference, Release 2.6.9

Finally, MultiFile instances have two public instance variables:

level
Nesting depth of the current part.

last
True if the last end-of-file was for an end-of-message marker.

18.10.2 MultiFile Example

import mimetools
import multifile
import StringIO

def extract_mime_part_matching(stream, mimetype):
"""Return the first element in a multipart MIME message on stream
matching mimetype."""

msg = mimetools.Message(stream)
msgtype = msg.gettype()
params = msg.getplist()

data = StringIO.StringIO()
if msgtype[:10] == "multipart/":

file = multifile.MultiFile(stream)
file.push(msg.getparam("boundary"))
while file.next():

submsg = mimetools.Message(file)
try:

data = StringIO.StringIO()
mimetools.decode(file, data, submsg.getencoding())

except ValueError:
continue

if submsg.gettype() == mimetype:
break

file.pop()
return data.getvalue()

18.11 rfc822 — Parse RFC 2822 mail headers

Deprecated since version 2.3: The email package should be used in preference to the rfc822 module. This mod-
ule is present only to maintain backward compatibility, and has been removed in 3.0. This module defines a class,
Message, which represents an “email message” as defined by the Internet standard RFC 2822. 7 Such messages con-
sist of a collection of message headers, and a message body. This module also defines a helper class AddressList
for parsing RFC 2822 addresses. Please refer to the RFC for information on the specific syntax of RFC 2822 mes-
sages. The mailbox module provides classes to read mailboxes produced by various end-user mail programs.

class Message(file, [seekable])
A Message instance is instantiated with an input object as parameter. Message relies only on the input object

7 This module originally conformed to RFC 822, hence the name. Since then, RFC 2822 has been released as an update to RFC 822. This
module should be considered RFC 2822-conformant, especially in cases where the syntax or semantics have changed since RFC 822.

692 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 2.6.9

having a readline() method; in particular, ordinary file objects qualify. Instantiation reads headers from the
input object up to a delimiter line (normally a blank line) and stores them in the instance. The message body,
following the headers, is not consumed.

This class can work with any input object that supports a readline() method. If the input object has seek
and tell capability, the rewindbody() method will work; also, illegal lines will be pushed back onto the
input stream. If the input object lacks seek but has an unread() method that can push back a line of input,
Message will use that to push back illegal lines. Thus this class can be used to parse messages coming from a
buffered stream.

The optional seekable argument is provided as a workaround for certain stdio libraries in which tell() dis-
cards buffered data before discovering that the lseek() system call doesn’t work. For maximum portability,
you should set the seekable argument to zero to prevent that initial tell() when passing in an unseekable
object such as a file object created from a socket object.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a terminating CR-LF
is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g. m[’From’], m[’from’] and
m[’FROM’] all yield the same result.

class AddressList(field)
You may instantiate the AddressList helper class using a single string parameter, a comma-separated list of
RFC 2822 addresses to be parsed. (The parameter None yields an empty list.)

quote(str)
Return a new string with backslashes in str replaced by two backslashes and double quotes replaced by
backslash-double quote.

unquote(str)
Return a new string which is an unquoted version of str. If str ends and begins with double quotes, they are
stripped off. Likewise if str ends and begins with angle brackets, they are stripped off.

parseaddr(address)
Parse address, which should be the value of some address-containing field such as To or Cc, into its constituent
“realname” and “email address” parts. Returns a tuple of that information, unless the parse fails, in which case
a 2-tuple (None, None) is returned.

dump_address_pair(pair)
The inverse of parseaddr(), this takes a 2-tuple of the form (realname, email_address) and re-
turns the string value suitable for a To or Cc header. If the first element of pair is false, then the second element
is returned unmodified.

parsedate(date)
Attempts to parse a date according to the rules in RFC 2822. however, some mailers don’t follow that format as
specified, so parsedate() tries to guess correctly in such cases. date is a string containing an RFC 2822 date,
such as ’Mon, 20 Nov 1995 19:12:08 -0500’. If it succeeds in parsing the date, parsedate()
returns a 9-tuple that can be passed directly to time.mktime(); otherwise None will be returned. Note that
indexes 6, 7, and 8 of the result tuple are not usable.

parsedate_tz(date)
Performs the same function as parsedate(), but returns either None or a 10-tuple; the first 9 elements make
up a tuple that can be passed directly to time.mktime(), and the tenth is the offset of the date’s timezone
from UTC (which is the official term for Greenwich Mean Time). (Note that the sign of the timezone offset is
the opposite of the sign of the time.timezone variable for the same timezone; the latter variable follows the
POSIX standard while this module follows RFC 2822.) If the input string has no timezone, the last element of
the tuple returned is None. Note that indexes 6, 7, and 8 of the result tuple are not usable.

mktime_tz(tuple)
Turn a 10-tuple as returned by parsedate_tz() into a UTC timestamp. If the timezone item in the tuple

18.11. rfc822 — Parse RFC 2822 mail headers 693

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

is None, assume local time. Minor deficiency: this first interprets the first 8 elements as a local time and then
compensates for the timezone difference; this may yield a slight error around daylight savings time switch dates.
Not enough to worry about for common use.

See Also:

Module email Comprehensive email handling package; supersedes the rfc822 module.

Module mailbox Classes to read various mailbox formats produced by end-user mail programs.

Module mimetools Subclass of rfc822.Message that handles MIME encoded messages.

18.11.1 Message Objects

A Message instance has the following methods:

rewindbody()
Seek to the start of the message body. This only works if the file object is seekable.

isheader(line)
Returns a line’s canonicalized fieldname (the dictionary key that will be used to index it) if the line is a legal
RFC 2822 header; otherwise returns None (implying that parsing should stop here and the line be pushed back
on the input stream). It is sometimes useful to override this method in a subclass.

islast(line)
Return true if the given line is a delimiter on which Message should stop. The delimiter line is consumed, and
the file object’s read location positioned immediately after it. By default this method just checks that the line is
blank, but you can override it in a subclass.

iscomment(line)
Return True if the given line should be ignored entirely, just skipped. By default this is a stub that always
returns False, but you can override it in a subclass.

getallmatchingheaders(name)
Return a list of lines consisting of all headers matching name, if any. Each physical line, whether it is a contin-
uation line or not, is a separate list item. Return the empty list if no header matches name.

getfirstmatchingheader(name)
Return a list of lines comprising the first header matching name, and its continuation line(s), if any. Return
None if there is no header matching name.

getrawheader(name)
Return a single string consisting of the text after the colon in the first header matching name. This includes
leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any continuation line(s)
were present. Return None if there is no header matching name.

getheader(name, [default])
Return a single string consisting of the last header matching name, but strip leading and trailing whitespace.
Internal whitespace is not stripped. The optional default argument can be used to specify a different default to
be returned when there is no header matching name; it defaults to None. This is the preferred way to get parsed
headers.

get(name, [default])
An alias for getheader(), to make the interface more compatible with regular dictionaries.

getaddr(name)
Return a pair (full name, email address) parsed from the string returned by getheader(name).
If no header matching name exists, return (None, None); otherwise both the full name and the address are
(possibly empty) strings.

694 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc2822.html

The Python Library Reference, Release 2.6.9

Example: If m‘s first From header contains the string ’jack@cwi.nl (Jack Jansen)’, then
m.getaddr(’From’) will yield the pair (’Jack Jansen’, ’jack@cwi.nl’). If the header con-
tained ’Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist(name)
This is similar to getaddr(list), but parses a header containing a list of email addresses (e.g. a To header)
and returns a list of (full name, email address) pairs (even if there was only one address in the
header). If there is no header matching name, return an empty list.

If multiple headers exist that match the named header (e.g. if there are several Cc headers), all are parsed for
addresses. Any continuation lines the named headers contain are also parsed.

getdate(name)
Retrieve a header using getheader() and parse it into a 9-tuple compatible with time.mktime(); note
that fields 6, 7, and 8 are not usable. If there is no header matching name, or it is unparsable, return None.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been tested
and found correct on a large collection of email from many sources, it is still possible that this function may
occasionally yield an incorrect result.

getdate_tz(name)
Retrieve a header using getheader() and parse it into a 10-tuple; the first 9 elements will make a tuple
compatible with time.mktime(), and the 10th is a number giving the offset of the date’s timezone from
UTC. Note that fields 6, 7, and 8 are not usable. Similarly to getdate(), if there is no header matching name,
or it is unparsable, return None.

Message instances also support a limited mapping interface. In particular: m[name] is like
m.getheader(name) but raises KeyError if there is no matching header; and len(m), m.get(name[,
default]), name in m, m.keys(), m.values() m.items(), and m.setdefault(name[,
default]) act as expected, with the one difference that setdefault() uses an empty string as the de-
fault value. Message instances also support the mapping writable interface m[name] = value and del
m[name]. Message objects do not support the clear(), copy(), popitem(), or update() methods of the
mapping interface. (Support for get() and setdefault() was only added in Python 2.2.)

Finally, Message instances have some public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read (except that setitem calls
may disturb this order). Each line contains a trailing newline. The blank line terminating the headers is not
contained in the list.

fp
The file or file-like object passed at instantiation time. This can be used to read the message content.

unixfrom
The Unix From line, if the message had one, or an empty string. This is needed to regenerate the message in
some contexts, such as an mbox-style mailbox file.

18.11.2 AddressList Objects

An AddressList instance has the following methods:

__len__()
Return the number of addresses in the address list.

__str__()
Return a canonicalized string representation of the address list. Addresses are rendered in “name”
<host@domain> form, comma-separated.

18.11. rfc822 — Parse RFC 2822 mail headers 695

mailto:host@domain

The Python Library Reference, Release 2.6.9

__add__(alist)
Return a new AddressList instance that contains all addresses in both AddressList operands, with du-
plicates removed (set union).

__iadd__(alist)
In-place version of __add__(); turns this AddressList instance into the union of itself and the right-hand
instance, alist.

__sub__(alist)
Return a new AddressList instance that contains every address in the left-hand AddressList operand
that is not present in the right-hand address operand (set difference).

__isub__(alist)
In-place version of __sub__(), removing addresses in this list which are also in alist.

Finally, AddressList instances have one public instance variable:

addresslist
A list of tuple string pairs, one per address. In each member, the first is the canonicalized name part, the second
is the actual route-address (’@’-separated username-host.domain pair).

18.12 base64 — RFC 3548: Base16, Base32, Base64 Data Encodings

This module provides data encoding and decoding as specified in RFC 3548. This standard defines the Base16,
Base32, and Base64 algorithms for encoding and decoding arbitrary binary strings into text strings that can be safely
sent by email, used as parts of URLs, or included as part of an HTTP POST request. The encoding algorithm is not
the same as the uuencode program.

There are two interfaces provided by this module. The modern interface supports encoding and decoding string objects
using all three alphabets. The legacy interface provides for encoding and decoding to and from file-like objects as well
as strings, but only using the Base64 standard alphabet.

The modern interface, which was introduced in Python 2.4, provides:

b64encode(s, [altchars])
Encode a string use Base64.

s is the string to encode. Optional altchars must be a string of at least length 2 (additional characters are ignored)
which specifies an alternative alphabet for the + and / characters. This allows an application to e.g. generate
URL or filesystem safe Base64 strings. The default is None, for which the standard Base64 alphabet is used.

The encoded string is returned.

b64decode(s, [altchars])
Decode a Base64 encoded string.

s is the string to decode. Optional altchars must be a string of at least length 2 (additional characters are ignored)
which specifies the alternative alphabet used instead of the + and / characters.

The decoded string is returned. A TypeError is raised if s were incorrectly padded or if there are non-alphabet
characters present in the string.

standard_b64encode(s)
Encode string s using the standard Base64 alphabet.

standard_b64decode(s)
Decode string s using the standard Base64 alphabet.

696 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc3548.html

The Python Library Reference, Release 2.6.9

urlsafe_b64encode(s)
Encode string s using a URL-safe alphabet, which substitutes - instead of + and _ instead of / in the standard
Base64 alphabet. The result can still contain =.

urlsafe_b64decode(s)
Decode string s using a URL-safe alphabet, which substitutes - instead of + and _ instead of / in the standard
Base64 alphabet.

b32encode(s)
Encode a string using Base32. s is the string to encode. The encoded string is returned.

b32decode(s, [casefold, [map01]])
Decode a Base32 encoded string.

s is the string to decode. Optional casefold is a flag specifying whether a lowercase alphabet is acceptable as
input. For security purposes, the default is False.

RFC 3548 allows for optional mapping of the digit 0 (zero) to the letter O (oh), and for optional mapping of the
digit 1 (one) to either the letter I (eye) or letter L (el). The optional argument map01 when not None, specifies
which letter the digit 1 should be mapped to (when map01 is not None, the digit 0 is always mapped to the letter
O). For security purposes the default is None, so that 0 and 1 are not allowed in the input.

The decoded string is returned. A TypeError is raised if s were incorrectly padded or if there are non-alphabet
characters present in the string.

b16encode(s)
Encode a string using Base16.

s is the string to encode. The encoded string is returned.

b16decode(s, [casefold])
Decode a Base16 encoded string.

s is the string to decode. Optional casefold is a flag specifying whether a lowercase alphabet is acceptable as
input. For security purposes, the default is False.

The decoded string is returned. A TypeError is raised if s were incorrectly padded or if there are non-alphabet
characters present in the string.

The legacy interface:

decode(input, output)
Decode the contents of the input file and write the resulting binary data to the output file. input and output must
either be file objects or objects that mimic the file object interface. input will be read until input.read()
returns an empty string.

decodestring(s)
Decode the string s, which must contain one or more lines of base64 encoded data, and return a string containing
the resulting binary data.

encode(input, output)
Encode the contents of the input file and write the resulting base64 encoded data to the output file. input
and output must either be file objects or objects that mimic the file object interface. input will be read until
input.read() returns an empty string. encode() returns the encoded data plus a trailing newline character
(’\n’).

encodestring(s)
Encode the string s, which can contain arbitrary binary data, and return a string containing one or more lines
of base64-encoded data. encodestring() returns a string containing one or more lines of base64-encoded
data always including an extra trailing newline (’\n’).

An example usage of the module:

18.12. base64 — RFC 3548: Base16, Base32, Base64 Data Encodings 697

http://tools.ietf.org/html/rfc3548.html

The Python Library Reference, Release 2.6.9

>>> import base64
>>> encoded = base64.b64encode(’data to be encoded’)
>>> encoded
’ZGF0YSB0byBiZSBlbmNvZGVk’
>>> data = base64.b64decode(encoded)
>>> data
’data to be encoded’

See Also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

RFC 1521 - MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies
Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

18.13 binhex — Encode and decode binhex4 files

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files in
ASCII. On the Macintosh, both forks of a file and the finder information are encoded (or decoded), on other platforms
only the data fork is handled.

Note: In Python 3.x, special Macintosh support has been removed.

The binhex module defines the following functions:

binhex(input, output)
Convert a binary file with filename input to binhex file output. The output parameter can either be a filename or
a file-like object (any object supporting a write() and close() method).

hexbin(input, [output])
Decode a binhex file input. input may be a filename or a file-like object supporting read() and close()
methods. The resulting file is written to a file named output, unless the argument is omitted in which case the
output filename is read from the binhex file.

The following exception is also defined:

exception Error
Exception raised when something can’t be encoded using the binhex format (for example, a filename is too long
to fit in the filename field), or when input is not properly encoded binhex data.

See Also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

18.13.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the old Macintosh newline convention
(carriage-return as end of line).

As of this writing, hexbin() appears to not work in all cases.

698 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc1521.html

The Python Library Reference, Release 2.6.9

18.14 binascii — Convert between binary and ASCII

The binascii module contains a number of methods to convert between binary and various ASCII-encoded binary
representations. Normally, you will not use these functions directly but use wrapper modules like uu, base64, or
binhex instead. The binascii module contains low-level functions written in C for greater speed that are used by
the higher-level modules.

The binascii module defines the following functions:

a2b_uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain 45
(binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a_uu(data)
Convert binary data to a line of ASCII characters, the return value is the converted line, including a newline
char. The length of data should be at most 45.

a2b_base64(string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed at
a time.

b2a_base64(data)
Convert binary data to a line of ASCII characters in base64 coding. The return value is the converted line,
including a newline char. The length of data should be at most 57 to adhere to the base64 standard.

a2b_qp(string, [header])
Convert a block of quoted-printable data back to binary and return the binary data. More than one line may be
passed at a time. If the optional argument header is present and true, underscores will be decoded as spaces.

b2a_qp(data, [quotetabs, istext, header])
Convert binary data to a line(s) of ASCII characters in quoted-printable encoding. The return value is the
converted line(s). If the optional argument quotetabs is present and true, all tabs and spaces will be encoded. If
the optional argument istext is present and true, newlines are not encoded but trailing whitespace will be encoded.
If the optional argument header is present and true, spaces will be encoded as underscores per RFC1522. If the
optional argument header is present and false, newline characters will be encoded as well; otherwise linefeed
conversion might corrupt the binary data stream.

a2b_hqx(string)
Convert binhex4 formatted ASCII data to binary, without doing RLE-decompression. The string should contain
a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have the remaining bits
zero.

rledecode_hqx(data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses 0x90 after a byte as
a repeat indicator, followed by a count. A count of 0 specifies a byte value of 0x90. The routine returns the
decompressed data, unless data input data ends in an orphaned repeat indicator, in which case the Incomplete
exception is raised.

rlecode_hqx(data)
Perform binhex4 style RLE-compression on data and return the result.

b2a_hqx(data)
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument should already be
RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc_hqx(data, crc)
Compute the binhex4 crc value of data, starting with an initial crc and returning the result.

crc32(data, [crc])
Compute CRC-32, the 32-bit checksum of data, starting with an initial crc. This is consistent with the ZIP file

18.14. binascii — Convert between binary and ASCII 699

The Python Library Reference, Release 2.6.9

checksum. Since the algorithm is designed for use as a checksum algorithm, it is not suitable for use as a general
hash algorithm. Use as follows:

print binascii.crc32("hello world")
Or, in two pieces:
crc = binascii.crc32("hello")
crc = binascii.crc32(" world", crc) & 0xffffffff
print ’crc32 = 0x%08x’ % crc

Note: To generate the same numeric value across all Python versions and platforms use crc32(data) & 0xffffffff. If
you are only using the checksum in packed binary format this is not necessary as the return value is the correct 32bit
binary representation regardless of sign. Changed in version 2.6: The return value is in the range [-2**31, 2**31-1]
regardless of platform. In the past the value would be signed on some platforms and unsigned on others. Use &
0xffffffff on the value if you want it to match 3.0 behavior.Changed in version 3.0: The return value is unsigned and
in the range [0, 2**32-1] regardless of platform.

b2a_hex(data)
hexlify(data)

Return the hexadecimal representation of the binary data. Every byte of data is converted into the corresponding
2-digit hex representation. The resulting string is therefore twice as long as the length of data.

a2b_hex(hexstr)
unhexlify(hexstr)

Return the binary data represented by the hexadecimal string hexstr. This function is the inverse of b2a_hex().
hexstr must contain an even number of hexadecimal digits (which can be upper or lower case), otherwise a
TypeError is raised.

exception Error
Exception raised on errors. These are usually programming errors.

exception Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled by reading
a little more data and trying again.

See Also:

Module base64 Support for base64 encoding used in MIME email messages.

Module binhex Support for the binhex format used on the Macintosh.

Module uu Support for UU encoding used on Unix.

Module quopri Support for quoted-printable encoding used in MIME email messages.

18.15 quopri — Encode and decode MIME quoted-printable data

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Multipur-
pose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies”. The quoted-printable encoding is designed for data where there are relatively few nonprintable characters;
the base64 encoding scheme available via the base64 module is more compact if there are many such characters, as
when sending a graphics file.

decode(input, output, [header])
Decode the contents of the input file and write the resulting decoded binary data to the output file. input
and output must either be file objects or objects that mimic the file object interface. input will be read until
input.readline() returns an empty string. If the optional argument header is present and true, underscore

700 Chapter 18. Internet Data Handling

http://tools.ietf.org/html/rfc1521.html

The Python Library Reference, Release 2.6.9

will be decoded as space. This is used to decode “Q”-encoded headers as described in RFC 1522: “MIME
(Multipurpose Internet Mail Extensions) Part Two: Message Header Extensions for Non-ASCII Text”.

encode(input, output, quotetabs)
Encode the contents of the input file and write the resulting quoted-printable data to the output file. input
and output must either be file objects or objects that mimic the file object interface. input will be read until
input.readline() returns an empty string. quotetabs is a flag which controls whether to encode embedded
spaces and tabs; when true it encodes such embedded whitespace, and when false it leaves them unencoded.
Note that spaces and tabs appearing at the end of lines are always encoded, as per RFC 1521.

decodestring(s, [header])
Like decode(), except that it accepts a source string and returns the corresponding decoded string.

encodestring(s, [quotetabs])
Like encode(), except that it accepts a source string and returns the corresponding encoded string. quotetabs
is optional (defaulting to 0), and is passed straight through to encode().

See Also:

Module mimify General utilities for processing of MIME messages.

Module base64 Encode and decode MIME base64 data

18.16 uu — Encode and decode uuencode files

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred over
ASCII-only connections. Wherever a file argument is expected, the methods accept a file-like object. For backwards
compatibility, a string containing a pathname is also accepted, and the corresponding file will be opened for reading and
writing; the pathname ’-’ is understood to mean the standard input or output. However, this interface is deprecated;
it’s better for the caller to open the file itself, and be sure that, when required, the mode is ’rb’ or ’wb’ on Windows.
This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

The uu module defines the following functions:

encode(in_file, out_file, [name, [mode]])
Uuencode file in_file into file out_file. The uuencoded file will have the header specifying name and mode as
the defaults for the results of decoding the file. The default defaults are taken from in_file, or ’-’ and 0666
respectively.

decode(in_file, [out_file, [mode, [quiet]]])
This call decodes uuencoded file in_file placing the result on file out_file. If out_file is a pathname, mode is used
to set the permission bits if the file must be created. Defaults for out_file and mode are taken from the uuencode
header. However, if the file specified in the header already exists, a uu.Error is raised.

decode() may print a warning to standard error if the input was produced by an incorrect uuencoder and
Python could recover from that error. Setting quiet to a true value silences this warning.

exception Error
Subclass of Exception, this can be raised by uu.decode() under various situations, such as described
above, but also including a badly formatted header, or truncated input file.

See Also:

Module binascii Support module containing ASCII-to-binary and binary-to-ASCII conversions.

18.16. uu — Encode and decode uuencode files 701

http://tools.ietf.org/html/rfc1522.html
http://tools.ietf.org/html/rfc1521.html

The Python Library Reference, Release 2.6.9

702 Chapter 18. Internet Data Handling

CHAPTER

NINETEEN

STRUCTURED MARKUP PROCESSING
TOOLS

Python supports a variety of modules to work with various forms of structured data markup. This includes modules to
work with the Standard Generalized Markup Language (SGML) and the Hypertext Markup Language (HTML), and
several interfaces for working with the Extensible Markup Language (XML).

It is important to note that modules in the xml package require that there be at least one SAX-compliant XML parser
available. Starting with Python 2.3, the Expat parser is included with Python, so the xml.parsers.expat module
will always be available. You may still want to be aware of the PyXML add-on package; that package provides an
extended set of XML libraries for Python.

The documentation for the xml.dom and xml.sax packages are the definition of the Python bindings for the DOM
and SAX interfaces.

19.1 HTMLParser — Simple HTML and XHTML parser

Note: The HTMLParser module has been renamed to html.parser in Python 3.0. The 2to3 tool will auto-
matically adapt imports when converting your sources to 3.0. New in version 2.2. This module defines a class
HTMLParser which serves as the basis for parsing text files formatted in HTML (HyperText Mark-up Language)
and XHTML. Unlike the parser in htmllib, this parser is not based on the SGML parser in sgmllib.

class HTMLParser()
The HTMLParser class is instantiated without arguments.

An HTMLParser instance is fed HTML data and calls handler functions when tags begin and end. The
HTMLParser class is meant to be overridden by the user to provide a desired behavior.

Unlike the parser in htmllib, this parser does not check that end tags match start tags or call the end-tag
handler for elements which are closed implicitly by closing an outer element.

An exception is defined as well:

exception HTMLParseError
Exception raised by the HTMLParser class when it encounters an error while parsing. This exception provides
three attributes: msg is a brief message explaining the error, lineno is the number of the line on which the
broken construct was detected, and offset is the number of characters into the line at which the construct
starts.

HTMLParser instances have the following methods:

reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

703

http://pyxml.sourceforge.net/

The Python Library Reference, Release 2.6.9

feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed or close() is called.

close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call the HTMLParser base class method close().

getpos()
Return current line number and offset.

get_starttag_text()
Return the text of the most recently opened start tag. This should not normally be needed for structured process-
ing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal changes
(whitespace between attributes can be preserved, etc.).

handle_starttag(tag, attrs)
This method is called to handle the start of a tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

The tag argument is the name of the tag converted to lower case. The attrs argument is a list of (name,
value) pairs containing the attributes found inside the tag’s <> brackets. The name will be translated to
lower case, and quotes in the value have been removed, and character and entity references have been re-
placed. For instance, for the tag , this method would be called as
handle_starttag(’a’, [(’href’, ’http://www.cwi.nl/’)]). Changed in version 2.6: All
entity references from htmlentitydefs are now replaced in the attribute values.

handle_startendtag(tag, attrs)
Similar to handle_starttag(), but called when the parser encounters an XHTML-style empty tag (<a
.../>). This method may be overridden by subclasses which require this particular lexical information; the
default implementation simple calls handle_starttag() and handle_endtag().

handle_endtag(tag)
This method is called to handle the end tag of an element. It is intended to be overridden by a derived class; the
base class implementation does nothing. The tag argument is the name of the tag converted to lower case.

handle_data(data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle_charref(name)
This method is called to process a character reference of the form &#ref;. It is intended to be overridden by a
derived class; the base class implementation does nothing.

handle_entityref(name)
This method is called to process a general entity reference of the form &name; where name is an general entity
reference. It is intended to be overridden by a derived class; the base class implementation does nothing.

handle_comment(data)
This method is called when a comment is encountered. The comment argument is a string containing the text be-
tween the -- and -- delimiters, but not the delimiters themselves. For example, the comment <!--text-->
will cause this method to be called with the argument ’text’. It is intended to be overridden by a derived
class; the base class implementation does nothing.

handle_decl(decl)
Method called when an SGML doctype declaration is read by the parser. The decl parameter will be the entire
contents of the declaration inside the <!...> markup. It is intended to be overridden by a derived class; the
base class implementation does nothing.

704 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

unknown_decl(data)
Method called when an unrecognized SGML declaration is read by the parser. The data parameter will be the
entire contents of the declaration inside the <!...> markup. It is sometimes useful to be be overridden by a
derived class; the base class implementation throws an HTMLParseError.

handle_pi(data)
Method called when a processing instruction is encountered. The data parameter will contain the entire process-
ing instruction. For example, for the processing instruction <?proc color=’red’>, this method would be
called as handle_pi("proc color=’red’"). It is intended to be overridden by a derived class; the base
class implementation does nothing.

Note: The HTMLParser class uses the SGML syntactic rules for processing instructions. An XHTML
processing instruction using the trailing ’?’ will cause the ’?’ to be included in data.

19.1.1 Example HTML Parser Application

As a basic example, below is a very basic HTML parser that uses the HTMLParser class to print out tags as they are
encountered:

from HTMLParser import HTMLParser

class MyHTMLParser(HTMLParser):

def handle_starttag(self, tag, attrs):
print "Encountered the beginning of a %s tag" % tag

def handle_endtag(self, tag):
print "Encountered the end of a %s tag" % tag

19.2 sgmllib — Simple SGML parser

Deprecated since version 2.6: The sgmllib module has been removed in Python 3.0. This module defines a class
SGMLParser which serves as the basis for parsing text files formatted in SGML (Standard Generalized Mark-up
Language). In fact, it does not provide a full SGML parser — it only parses SGML insofar as it is used by HTML,
and the module only exists as a base for the htmllib module. Another HTML parser which supports XHTML and
offers a somewhat different interface is available in the HTMLParser module.

class SGMLParser()
The SGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the following
constructs:

•Opening and closing tags of the form <tag attr="value" ...> and </tag>, respectively.

•Numeric character references of the form &#name;.

•Entity references of the form &name;.

•SGML comments of the form <!--text-->. Note that spaces, tabs, and newlines are allowed between
the trailing > and the immediately preceding --.

A single exception is defined as well:

exception SGMLParseError
Exception raised by the SGMLParser class when it encounters an error while parsing. New in version 2.1.

SGMLParser instances have the following methods:

19.2. sgmllib — Simple SGML parser 705

The Python Library Reference, Release 2.6.9

reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the HTML
tag <PLAINTEXT> can be implemented.)

setliteral()
Enter literal mode (CDATA mode).

feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed or close() is called.

close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close().

get_starttag_text()
Return the text of the most recently opened start tag. This should not normally be needed for structured process-
ing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal changes
(whitespace between attributes can be preserved, etc.).

handle_starttag(tag, method, attributes)
This method is called to handle start tags for which either a start_tag() or do_tag() method has been
defined. The tag argument is the name of the tag converted to lower case, and the method argument is the bound
method which should be used to support semantic interpretation of the start tag. The attributes argument is a
list of (name, value) pairs containing the attributes found inside the tag’s <> brackets.

The name has been translated to lower case. Double quotes and backslashes in the value have been interpreted,
as well as known character references and known entity references terminated by a semicolon (normally, entity
references can be terminated by any non-alphanumerical character, but this would break the very common case
of when eggs is a valid entity name).

For instance, for the tag , this method would be called as
unknown_starttag(’a’, [(’href’, ’http://www.cwi.nl/’)]). The base implementation
simply calls method with attributes as the only argument. New in version 2.5: Handling of entity and char-
acter references within attribute values.

handle_endtag(tag, method)
This method is called to handle endtags for which an end_tag() method has been defined. The tag argument
is the name of the tag converted to lower case, and the method argument is the bound method which should
be used to support semantic interpretation of the end tag. If no end_tag() method is defined for the closing
element, this handler is not called. The base implementation simply calls method.

handle_data(data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle_charref(ref)
This method is called to process a character reference of the form &#ref;. The base implementation uses
convert_charref() to convert the reference to a string. If that method returns a string, it is passed to
handle_data(), otherwise unknown_charref(ref) is called to handle the error. Changed in version
2.5: Use convert_charref() instead of hard-coding the conversion.

convert_charref(ref)
Convert a character reference to a string, or None. ref is the reference passed in as a string. In the base
implementation, ref must be a decimal number in the range 0-255. It converts the code point found using the
convert_codepoint() method. If ref is invalid or out of range, this method returns None. This method is

706 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

called by the default handle_charref() implementation and by the attribute value parser. New in version
2.5.

convert_codepoint(codepoint)
Convert a codepoint to a str value. Encodings can be handled here if appropriate, though the rest of sgmllib
is oblivious on this matter. New in version 2.5.

handle_entityref(ref)
This method is called to process a general entity reference of the form &ref; where ref is an general entity
reference. It converts ref by passing it to convert_entityref(). If a translation is returned, it calls the
method handle_data()with the translation; otherwise, it calls the method unknown_entityref(ref).
The default entitydefs defines translations for &, &apos, >, <, and ". Changed in
version 2.5: Use convert_entityref() instead of hard-coding the conversion.

convert_entityref(ref)
Convert a named entity reference to a str value, or None. The resulting value will not be parsed. ref will
be only the name of the entity. The default implementation looks for ref in the instance (or class) variable
entitydefs which should be a mapping from entity names to corresponding translations. If no translation
is available for ref, this method returns None. This method is called by the default handle_entityref()
implementation and by the attribute value parser. New in version 2.5.

handle_comment(comment)
This method is called when a comment is encountered. The comment argument is a string containing the
text between the <!-- and --> delimiters, but not the delimiters themselves. For example, the comment
<!--text--> will cause this method to be called with the argument ’text’. The default method does
nothing.

handle_decl(data)
Method called when an SGML declaration is read by the parser. In practice, the DOCTYPE declaration is the
only thing observed in HTML, but the parser does not discriminate among different (or broken) declarations.
Internal subsets in a DOCTYPE declaration are not supported. The data parameter will be the entire contents of
the declaration inside the <!...> markup. The default implementation does nothing.

report_unbalanced(tag)
This method is called when an end tag is found which does not correspond to any open element.

unknown_starttag(tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown_endtag(tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown_charref(ref)
This method is called to process unresolvable numeric character references. Refer to handle_charref()
to determine what is handled by default. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown_entityref(ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods of the following
form to define processing of specific tags. Tag names in the input stream are case independent; the tag occurring in
method names must be in lower case:

start_tag(attributes)
This method is called to process an opening tag tag. It has preference over do_tag(). The attributes argument
has the same meaning as described for handle_starttag() above.

19.2. sgmllib — Simple SGML parser 707

The Python Library Reference, Release 2.6.9

do_tag(attributes)
This method is called to process an opening tag tag for which no start_tag() method is defined. The
attributes argument has the same meaning as described for handle_starttag() above.

end_tag()
This method is called to process a closing tag tag.

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only tags processed
by start_tag() are pushed on this stack. Definition of an end_tag() method is optional for these tags. For tags
processed by do_tag() or by unknown_tag(), no end_tag() method must be defined; if defined, it will not be
used. If both start_tag() and do_tag() methods exist for a tag, the start_tag() method takes precedence.

19.3 htmllib — A parser for HTML documents

Deprecated since version 2.6: The htmllib module has been removed in Python 3.0. This module defines a class
which can serve as a base for parsing text files formatted in the HyperText Mark-up Language (HTML). The class
is not directly concerned with I/O — it must be provided with input in string form via a method, and makes calls to
methods of a “formatter” object in order to produce output. The HTMLParser class is designed to be used as a base
class for other classes in order to add functionality, and allows most of its methods to be extended or overridden. In
turn, this class is derived from and extends the SGMLParser class defined in module sgmllib. The HTMLParser
implementation supports the HTML 2.0 language as described in RFC 1866. Two implementations of formatter
objects are provided in the formatter module; refer to the documentation for that module for information on the
formatter interface.

The following is a summary of the interface defined by sgmllib.SGMLParser:

• The interface to feed data to an instance is through the feed() method, which takes a string argument. This
can be called with as little or as much text at a time as desired; p.feed(a); p.feed(b) has the same
effect as p.feed(a+b). When the data contains complete HTML markup constructs, these are processed
immediately; incomplete constructs are saved in a buffer. To force processing of all unprocessed data, call the
close() method.

For example, to parse the entire contents of a file, use:

parser.feed(open(’myfile.html’).read())
parser.close()

• The interface to define semantics for HTML tags is very simple: derive a class and define methods
called start_tag(), end_tag(), or do_tag(). The parser will call these at appropriate moments:
start_tag() or do_tag() is called when an opening tag of the form <tag ...> is encountered;
end_tag() is called when a closing tag of the form <tag> is encountered. If an opening tag requires a
corresponding closing tag, like <H1> ... </H1>, the class should define the start_tag() method; if a tag
requires no closing tag, like <P>, the class should define the do_tag() method.

The module defines a parser class and an exception:

class HTMLParser(formatter)
This is the basic HTML parser class. It supports all entity names required by the XHTML 1.0 Recommenda-
tion (http://www.w3.org/TR/xhtml1). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2
elements.

exception HTMLParseError
Exception raised by the HTMLParser class when it encounters an error while parsing. New in version 2.4.

See Also:

Module formatter Interface definition for transforming an abstract flow of formatting events into specific output
events on writer objects.

708 Chapter 19. Structured Markup Processing Tools

http://tools.ietf.org/html/rfc1866.html
http://www.w3.org/TR/xhtml1

The Python Library Reference, Release 2.6.9

Module HTMLParser Alternate HTML parser that offers a slightly lower-level view of the input, but is designed to
work with XHTML, and does not implement some of the SGML syntax not used in “HTML as deployed” and
which isn’t legal for XHTML.

Module htmlentitydefs Definition of replacement text for XHTML 1.0 entities.

Module sgmllib Base class for HTMLParser.

19.3.1 HTMLParser Objects

In addition to tag methods, the HTMLParser class provides some additional methods and instance variables for use
within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should be. In
general, this should only be true when character data is to be treated as “preformatted” text, as within a <PRE>
element. The default value is false. This affects the operation of handle_data() and save_end().

anchor_bgn(href, name, type)
This method is called at the start of an anchor region. The arguments correspond to the attributes of the <A> tag
with the same names. The default implementation maintains a list of hyperlinks (defined by the HREF attribute
for <A> tags) within the document. The list of hyperlinks is available as the data attribute anchorlist.

anchor_end()
This method is called at the end of an anchor region. The default implementation adds a textual footnote marker
using an index into the list of hyperlinks created by anchor_bgn().

handle_image(source, alt, [ismap, [align, [width, [height]]]])
This method is called to handle images. The default implementation simply passes the alt value to the
handle_data() method.

save_bgn()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the stored data via
save_end(). Use of the save_bgn() / save_end() pair may not be nested.

save_end()
Ends buffering character data and returns all data saved since the preceding call to save_bgn(). If the
nofill flag is false, whitespace is collapsed to single spaces. A call to this method without a preceding
call to save_bgn() will raise a TypeError exception.

19.4 htmlentitydefs — Definitions of HTML general entities

Note: The htmlentitydefs module has been renamed to html.entities in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0.

This module defines three dictionaries, name2codepoint, codepoint2name, and entitydefs.
entitydefs is used by the htmllib module to provide the entitydefs member of the HTMLParser class.
The definition provided here contains all the entities defined by XHTML 1.0 that can be handled using simple textual
substitution in the Latin-1 character set (ISO-8859-1).

entitydefs
A dictionary mapping XHTML 1.0 entity definitions to their replacement text in ISO Latin-1.

19.4. htmlentitydefs — Definitions of HTML general entities 709

The Python Library Reference, Release 2.6.9

name2codepoint
A dictionary that maps HTML entity names to the Unicode codepoints. New in version 2.3.

codepoint2name
A dictionary that maps Unicode codepoints to HTML entity names. New in version 2.3.

19.5 xml.parsers.expat — Fast XML parsing using Expat

New in version 2.0. The xml.parsers.expat module is a Python interface to the Expat non-validating XML
parser. The module provides a single extension type, xmlparser, that represents the current state of an XML parser.
After an xmlparser object has been created, various attributes of the object can be set to handler functions. When
an XML document is then fed to the parser, the handler functions are called for the character data and markup in the
XML document. This module uses the pyexpat module to provide access to the Expat parser. Direct use of the
pyexpat module is deprecated.

This module provides one exception and one type object:

exception ExpatError
The exception raised when Expat reports an error. See section ExpatError Exceptions for more information on
interpreting Expat errors.

exception error
Alias for ExpatError.

XMLParserType
The type of the return values from the ParserCreate() function.

The xml.parsers.expat module contains two functions:

ErrorString(errno)
Returns an explanatory string for a given error number errno.

ParserCreate([encoding, [namespace_separator]])
Creates and returns a new xmlparser object. encoding, if specified, must be a string naming the encoding
used by the XML data. Expat doesn’t support as many encodings as Python does, and its repertoire of encodings
can’t be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1), and ASCII. If encoding 1 is given it will
override the implicit or explicit encoding of the document.

Expat can optionally do XML namespace processing for you, enabled by providing a value for names-
pace_separator. The value must be a one-character string; a ValueError will be raised if the string has
an illegal length (None is considered the same as omission). When namespace processing is enabled, element
type names and attribute names that belong to a namespace will be expanded. The element name passed to the
element handlers StartElementHandler and EndElementHandler will be the concatenation of the
namespace URI, the namespace separator character, and the local part of the name. If the namespace separator
is a zero byte (chr(0)) then the namespace URI and the local part will be concatenated without any separator.

For example, if namespace_separator is set to a space character (’ ’) and the following document is parsed:

<?xml version="1.0"?>
<root xmlns = "http://default-namespace.org/"

xmlns:py = "http://www.python.org/ns/">
<py:elem1 />
<elem2 xmlns="" />

</root>

1 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but “UTF8” is not.
See http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and http://www.iana.org/assignments/character-sets .

710 Chapter 19. Structured Markup Processing Tools

http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets

The Python Library Reference, Release 2.6.9

StartElementHandler will receive the following strings for each element:

http://default-namespace.org/ root
http://www.python.org/ns/ elem1
elem2

See Also:

The Expat XML Parser Home page of the Expat project.

19.5.1 XMLParser Objects

xmlparser objects have the following methods:

Parse(data, [isfinal])
Parses the contents of the string data, calling the appropriate handler functions to process the parsed data. isfinal
must be true on the final call to this method. data can be the empty string at any time.

ParseFile(file)
Parse XML data reading from the object file. file only needs to provide the read(nbytes) method, returning
the empty string when there’s no more data.

SetBase(base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations. Re-
solving relative identifiers is left to the application: this value will be passed through as
the base argument to the ExternalEntityRefHandler(), NotationDeclHandler(), and
UnparsedEntityDeclHandler() functions.

GetBase()
Returns a string containing the base set by a previous call to SetBase(), or None if SetBase() hasn’t been
called.

GetInputContext()
Returns the input data that generated the current event as a string. The data is in the encoding of the entity which
contains the text. When called while an event handler is not active, the return value is None. New in version
2.1.

ExternalEntityParserCreate(context, [encoding])
Create a “child” parser which can be used to parse an external parsed entity referred to by content parsed by the
parent parser. The context parameter should be the string passed to the ExternalEntityRefHandler()
handler function, described below. The child parser is created with the ordered_attributes,
returns_unicode and specified_attributes set to the values of this parser.

UseForeignDTD([flag])
Calling this with a true value for flag (the default) will cause Expat to call the
ExternalEntityRefHandler with None for all arguments to allow an alternate DTD to be loaded. If
the document does not contain a document type declaration, the ExternalEntityRefHandler will still
be called, but the StartDoctypeDeclHandler and EndDoctypeDeclHandler will not be called.

Passing a false value for flag will cancel a previous call that passed a true value, but otherwise has no effect.

This method can only be called before the Parse() or ParseFile() methods are called; calling it
after either of those have been called causes ExpatError to be raised with the code attribute set to
errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING. New in version 2.3.

xmlparser objects have the following attributes:

buffer_size
The size of the buffer used when buffer_text is true. A new buffer size can be set by assigning a new

19.5. xml.parsers.expat — Fast XML parsing using Expat 711

http://www.libexpat.org/

The Python Library Reference, Release 2.6.9

integer value to this attribute. When the size is changed, the buffer will be flushed. New in version 2.3.Changed
in version 2.6: The buffer size can now be changed.

buffer_text
Setting this to true causes the xmlparser object to buffer textual content returned by Expat to avoid multiple
calls to the CharacterDataHandler() callback whenever possible. This can improve performance sub-
stantially since Expat normally breaks character data into chunks at every line ending. This attribute is false by
default, and may be changed at any time. New in version 2.3.

buffer_used
If buffer_text is enabled, the number of bytes stored in the buffer. These bytes represent UTF-8 encoded
text. This attribute has no meaningful interpretation when buffer_text is false. New in version 2.3.

ordered_attributes
Setting this attribute to a non-zero integer causes the attributes to be reported as a list rather than a dictionary.
The attributes are presented in the order found in the document text. For each attribute, two list entries are
presented: the attribute name and the attribute value. (Older versions of this module also used this format.) By
default, this attribute is false; it may be changed at any time. New in version 2.1.

returns_unicode
If this attribute is set to a non-zero integer, the handler functions will be passed Unicode strings. If
returns_unicode is False, 8-bit strings containing UTF-8 encoded data will be passed to the handlers.
This is True by default when Python is built with Unicode support. Changed in version 1.6: Can be changed
at any time to affect the result type.

specified_attributes
If set to a non-zero integer, the parser will report only those attributes which were specified in the document
instance and not those which were derived from attribute declarations. Applications which set this need to be
especially careful to use what additional information is available from the declarations as needed to comply with
the standards for the behavior of XML processors. By default, this attribute is false; it may be changed at any
time. New in version 2.1.

The following attributes contain values relating to the most recent error encountered by an xmlparser
object, and will only have correct values once a call to Parse() or ParseFile() has raised a
xml.parsers.expat.ExpatError exception.

ErrorByteIndex
Byte index at which an error occurred.

ErrorCode
Numeric code specifying the problem. This value can be passed to the ErrorString() function, or compared
to one of the constants defined in the errors object.

ErrorColumnNumber
Column number at which an error occurred.

ErrorLineNumber
Line number at which an error occurred.

The following attributes contain values relating to the current parse location in an xmlparser object. During a
callback reporting a parse event they indicate the location of the first of the sequence of characters that generated the
event. When called outside of a callback, the position indicated will be just past the last parse event (regardless of
whether there was an associated callback). New in version 2.4.

CurrentByteIndex
Current byte index in the parser input.

CurrentColumnNumber
Current column number in the parser input.

712 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

CurrentLineNumber
Current line number in the parser input.

Here is the list of handlers that can be set. To set a handler on an xmlparser object o, use o.handlername =
func. handlername must be taken from the following list, and func must be a callable object accepting the correct
number of arguments. The arguments are all strings, unless otherwise stated.

XmlDeclHandler(version, encoding, standalone)
Called when the XML declaration is parsed. The XML declaration is the (optional) declaration of the appli-
cable version of the XML recommendation, the encoding of the document text, and an optional “standalone”
declaration. version and encoding will be strings of the type dictated by the returns_unicode attribute, and
standalone will be 1 if the document is declared standalone, 0 if it is declared not to be standalone, or -1 if the
standalone clause was omitted. This is only available with Expat version 1.95.0 or newer. New in version 2.1.

StartDoctypeDeclHandler(doctypeName, systemId, publicId, has_internal_subset)
Called when Expat begins parsing the document type declaration (<!DOCTYPE ...). The doctypeName is
provided exactly as presented. The systemId and publicId parameters give the system and public identifiers if
specified, or None if omitted. has_internal_subset will be true if the document contains and internal document
declaration subset. This requires Expat version 1.2 or newer.

EndDoctypeDeclHandler()
Called when Expat is done parsing the document type declaration. This requires Expat version 1.2 or newer.

ElementDeclHandler(name, model)
Called once for each element type declaration. name is the name of the element type, and model is a represen-
tation of the content model.

AttlistDeclHandler(elname, attname, type, default, required)
Called for each declared attribute for an element type. If an attribute list declaration declares three attributes, this
handler is called three times, once for each attribute. elname is the name of the element to which the declaration
applies and attname is the name of the attribute declared. The attribute type is a string passed as type; the
possible values are ’CDATA’, ’ID’, ’IDREF’, ... default gives the default value for the attribute used when
the attribute is not specified by the document instance, or None if there is no default value (#IMPLIED values).
If the attribute is required to be given in the document instance, required will be true. This requires Expat
version 1.95.0 or newer.

StartElementHandler(name, attributes)
Called for the start of every element. name is a string containing the element name, and attributes is a dictionary
mapping attribute names to their values.

EndElementHandler(name)
Called for the end of every element.

ProcessingInstructionHandler(target, data)
Called for every processing instruction.

CharacterDataHandler(data)
Called for character data. This will be called for normal character data, CDATA marked content, and ignorable
whitespace. Applications which must distinguish these cases can use the StartCdataSectionHandler,
EndCdataSectionHandler, and ElementDeclHandler callbacks to collect the required information.

UnparsedEntityDeclHandler(entityName, base, systemId, publicId, notationName)
Called for unparsed (NDATA) entity declarations. This is only present for version 1.2 of the Expat library; for
more recent versions, use EntityDeclHandler instead. (The underlying function in the Expat library has
been declared obsolete.)

EntityDeclHandler(entityName, is_parameter_entity, value, base, systemId, publicId, notationName)
Called for all entity declarations. For parameter and internal entities, value will be a string giving the declared
contents of the entity; this will be None for external entities. The notationName parameter will be None for
parsed entities, and the name of the notation for unparsed entities. is_parameter_entity will be true if the entity

19.5. xml.parsers.expat — Fast XML parsing using Expat 713

The Python Library Reference, Release 2.6.9

is a parameter entity or false for general entities (most applications only need to be concerned with general
entities). This is only available starting with version 1.95.0 of the Expat library. New in version 2.1.

NotationDeclHandler(notationName, base, systemId, publicId)
Called for notation declarations. notationName, base, and systemId, and publicId are strings if given. If the
public identifier is omitted, publicId will be None.

StartNamespaceDeclHandler(prefix, uri)
Called when an element contains a namespace declaration. Namespace declarations are processed before the
StartElementHandler is called for the element on which declarations are placed.

EndNamespaceDeclHandler(prefix)
Called when the closing tag is reached for an element that contained a namespace declaration. This
is called once for each namespace declaration on the element in the reverse of the order for which the
StartNamespaceDeclHandler was called to indicate the start of each namespace declaration’s scope.
Calls to this handler are made after the corresponding EndElementHandler for the end of the element.

CommentHandler(data)
Called for comments. data is the text of the comment, excluding the leading ‘<!--‘ and trailing ‘-->‘.

StartCdataSectionHandler()
Called at the start of a CDATA section. This and EndCdataSectionHandler are needed to be able to
identify the syntactical start and end for CDATA sections.

EndCdataSectionHandler()
Called at the end of a CDATA section.

DefaultHandler(data)
Called for any characters in the XML document for which no applicable handler has been specified. This means
characters that are part of a construct which could be reported, but for which no handler has been supplied.

DefaultHandlerExpand(data)
This is the same as the DefaultHandler(), but doesn’t inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

NotStandaloneHandler()
Called if the XML document hasn’t been declared as being a standalone document. This happens when there is
an external subset or a reference to a parameter entity, but the XML declaration does not set standalone to yes in
an XML declaration. If this handler returns 0, then the parser will throw an XML_ERROR_NOT_STANDALONE
error. If this handler is not set, no exception is raised by the parser for this condition.

ExternalEntityRefHandler(context, base, systemId, publicId)
Called for references to external entities. base is the current base, as set by a previous call to SetBase(). The
public and system identifiers, systemId and publicId, are strings if given; if the public identifier is not given,
publicId will be None. The context value is opaque and should only be used as described below.

For external entities to be parsed, this handler must be implemented. It is responsible for creating the
sub-parser using ExternalEntityParserCreate(context), initializing it with the appropriate call-
backs, and parsing the entity. This handler should return an integer; if it returns 0, the parser will throw an
XML_ERROR_EXTERNAL_ENTITY_HANDLING error, otherwise parsing will continue.

If this handler is not provided, external entities are reported by the DefaultHandler callback, if provided.

19.5.2 ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

code
Expat’s internal error number for the specific error. This will match one of the constants defined in the errors
object from this module. New in version 2.1.

714 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

lineno
Line number on which the error was detected. The first line is numbered 1. New in version 2.1.

offset
Character offset into the line where the error occurred. The first column is numbered 0. New in version 2.1.

19.5.3 Example

The following program defines three handlers that just print out their arguments.

import xml.parsers.expat

3 handler functions
def start_element(name, attrs):

print ’Start element:’, name, attrs
def end_element(name):

print ’End element:’, name
def char_data(data):

print ’Character data:’, repr(data)

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>
<parent id="top"><child1 name="paul">Text goes here</child1>
<child2 name="fred">More text</child2>
</parent>""", 1)

The output from this program is:

Start element: parent {’id’: ’top’}
Start element: child1 {’name’: ’paul’}
Character data: ’Text goes here’
End element: child1
Character data: ’\n’
Start element: child2 {’name’: ’fred’}
Character data: ’More text’
End element: child2
Character data: ’\n’
End element: parent

19.5.4 Content Model Descriptions

Content modules are described using nested tuples. Each tuple contains four values: the type, the quantifier, the name,
and a tuple of children. Children are simply additional content module descriptions.

The values of the first two fields are constants defined in the model object of the xml.parsers.expat module.
These constants can be collected in two groups: the model type group and the quantifier group.

The constants in the model type group are:

XML_CTYPE_ANY
The element named by the model name was declared to have a content model of ANY.

19.5. xml.parsers.expat — Fast XML parsing using Expat 715

The Python Library Reference, Release 2.6.9

XML_CTYPE_CHOICE
The named element allows a choice from a number of options; this is used for content models such as (A | B
| C).

XML_CTYPE_EMPTY
Elements which are declared to be EMPTY have this model type.

XML_CTYPE_MIXED

XML_CTYPE_NAME

XML_CTYPE_SEQ
Models which represent a series of models which follow one after the other are indicated with this model type.
This is used for models such as (A, B, C).

The constants in the quantifier group are:

XML_CQUANT_NONE
No modifier is given, so it can appear exactly once, as for A.

XML_CQUANT_OPT
The model is optional: it can appear once or not at all, as for A?.

XML_CQUANT_PLUS
The model must occur one or more times (like A+).

XML_CQUANT_REP
The model must occur zero or more times, as for A*.

19.5.5 Expat error constants

The following constants are provided in the errors object of the xml.parsers.expat module. These constants
are useful in interpreting some of the attributes of the ExpatError exception objects raised when an error has
occurred.

The errors object has the following attributes:

XML_ERROR_ASYNC_ENTITY

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF
An entity reference in an attribute value referred to an external entity instead of an internal entity.

XML_ERROR_BAD_CHAR_REF
A character reference referred to a character which is illegal in XML (for example, character 0, or ‘�‘).

XML_ERROR_BINARY_ENTITY_REF
An entity reference referred to an entity which was declared with a notation, so cannot be parsed.

XML_ERROR_DUPLICATE_ATTRIBUTE
An attribute was used more than once in a start tag.

XML_ERROR_INCORRECT_ENCODING

XML_ERROR_INVALID_TOKEN
Raised when an input byte could not properly be assigned to a character; for example, a NUL byte (value 0) in
a UTF-8 input stream.

XML_ERROR_JUNK_AFTER_DOC_ELEMENT
Something other than whitespace occurred after the document element.

XML_ERROR_MISPLACED_XML_PI
An XML declaration was found somewhere other than the start of the input data.

716 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

XML_ERROR_NO_ELEMENTS
The document contains no elements (XML requires all documents to contain exactly one top-level element)..

XML_ERROR_NO_MEMORY
Expat was not able to allocate memory internally.

XML_ERROR_PARAM_ENTITY_REF
A parameter entity reference was found where it was not allowed.

XML_ERROR_PARTIAL_CHAR
An incomplete character was found in the input.

XML_ERROR_RECURSIVE_ENTITY_REF
An entity reference contained another reference to the same entity; possibly via a different name, and possibly
indirectly.

XML_ERROR_SYNTAX
Some unspecified syntax error was encountered.

XML_ERROR_TAG_MISMATCH
An end tag did not match the innermost open start tag.

XML_ERROR_UNCLOSED_TOKEN
Some token (such as a start tag) was not closed before the end of the stream or the next token was encountered.

XML_ERROR_UNDEFINED_ENTITY
A reference was made to a entity which was not defined.

XML_ERROR_UNKNOWN_ENCODING
The document encoding is not supported by Expat.

XML_ERROR_UNCLOSED_CDATA_SECTION
A CDATA marked section was not closed.

XML_ERROR_EXTERNAL_ENTITY_HANDLING

XML_ERROR_NOT_STANDALONE
The parser determined that the document was not “standalone” though it declared itself to be in the XML
declaration, and the NotStandaloneHandler was set and returned 0.

XML_ERROR_UNEXPECTED_STATE

XML_ERROR_ENTITY_DECLARED_IN_PE

XML_ERROR_FEATURE_REQUIRES_XML_DTD
An operation was requested that requires DTD support to be compiled in, but Expat was configured without
DTD support. This should never be reported by a standard build of the xml.parsers.expat module.

XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING
A behavioral change was requested after parsing started that can only be changed before parsing has started.
This is (currently) only raised by UseForeignDTD().

XML_ERROR_UNBOUND_PREFIX
An undeclared prefix was found when namespace processing was enabled.

XML_ERROR_UNDECLARING_PREFIX
The document attempted to remove the namespace declaration associated with a prefix.

XML_ERROR_INCOMPLETE_PE
A parameter entity contained incomplete markup.

XML_ERROR_XML_DECL
The document contained no document element at all.

19.5. xml.parsers.expat — Fast XML parsing using Expat 717

The Python Library Reference, Release 2.6.9

XML_ERROR_TEXT_DECL
There was an error parsing a text declaration in an external entity.

XML_ERROR_PUBLICID
Characters were found in the public id that are not allowed.

XML_ERROR_SUSPENDED
The requested operation was made on a suspended parser, but isn’t allowed. This includes attempts to provide
additional input or to stop the parser.

XML_ERROR_NOT_SUSPENDED
An attempt to resume the parser was made when the parser had not been suspended.

XML_ERROR_ABORTED
This should not be reported to Python applications.

XML_ERROR_FINISHED
The requested operation was made on a parser which was finished parsing input, but isn’t allowed. This includes
attempts to provide additional input or to stop the parser.

XML_ERROR_SUSPEND_PE

19.6 xml.dom — The Document Object Model API

New in version 2.0. The Document Object Model, or “DOM,” is a cross-language API from the World Wide Web
Consortium (W3C) for accessing and modifying XML documents. A DOM implementation presents an XML docu-
ment as a tree structure, or allows client code to build such a structure from scratch. It then gives access to the structure
through a set of objects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a view of one bit of the document
at a time. If you are looking at one SAX element, you have no access to another. If you are looking at a text node, you
have no access to a containing element. When you write a SAX application, you need to keep track of your program’s
position in the document somewhere in your own code. SAX does not do it for you. Also, if you need to look ahead
in the XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access to a tree. Of course you could build
some sort of tree yourself in SAX events, but the DOM allows you to avoid writing that code. The DOM is a standard
tree representation for XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in their terminology. The Python
mapping of the API is substantially based on the DOM Level 2 recommendation.

DOM applications typically start by parsing some XML into a DOM. How this is accomplished is not covered at all
by DOM Level 1, and Level 2 provides only limited improvements: There is a DOMImplementation object class
which provides access to Document creation methods, but no way to access an XML reader/parser/Document builder
in an implementation-independent way. There is also no well-defined way to access these methods without an existing
Document object. In Python, each DOM implementation will provide a function getDOMImplementation().
DOM Level 3 adds a Load/Store specification, which defines an interface to the reader, but this is not yet available in
the Python standard library.

Once you have a DOM document object, you can access the parts of your XML document through its properties and
methods. These properties are defined in the DOM specification; this portion of the reference manual describes the
interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, and OMG IDL. The Python
mapping defined here is based in large part on the IDL version of the specification, but strict compliance is not
required (though implementations are free to support the strict mapping from IDL). See section Conformance for a
detailed discussion of mapping requirements.

718 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

See Also:

Document Object Model (DOM) Level 2 Specification The W3C recommendation upon which the Python DOM
API is based.

Document Object Model (DOM) Level 1 Specification The W3C recommendation for the DOM supported by
xml.dom.minidom.

Python Language Mapping Specification This specifies the mapping from OMG IDL to Python.

19.6.1 Module Contents

The xml.dom contains the following functions:

registerDOMImplementation(name, factory)
Register the factory function with the name name. The factory function should return an object which imple-
ments the DOMImplementation interface. The factory function can return the same object every time, or a
new one for each call, as appropriate for the specific implementation (e.g. if that implementation supports some
customization).

getDOMImplementation([name, [features]])
Return a suitable DOM implementation. The name is either well-known, the module name of a DOM implemen-
tation, or None. If it is not None, imports the corresponding module and returns a DOMImplementation
object if the import succeeds. If no name is given, and if the environment variable PYTHON_DOM is set, this
variable is used to find the implementation.

If name is not given, this examines the available implementations to find one with the required feature set. If no
implementation can be found, raise an ImportError. The features list must be a sequence of (feature,
version) pairs which are passed to the hasFeature() method on available DOMImplementation ob-
jects.

Some convenience constants are also provided:

EMPTY_NAMESPACE
The value used to indicate that no namespace is associated with a node in the DOM. This is typically found
as the namespaceURI of a node, or used as the namespaceURI parameter to a namespaces-specific method.
New in version 2.2.

XML_NAMESPACE
The namespace URI associated with the reserved prefix xml, as defined by Namespaces in XML (section 4).
New in version 2.2.

XMLNS_NAMESPACE
The namespace URI for namespace declarations, as defined by Document Object Model (DOM) Level 2 Core
Specification (section 1.1.8). New in version 2.2.

XHTML_NAMESPACE
The URI of the XHTML namespace as defined by XHTML 1.0: The Extensible HyperText Markup Language
(section 3.1.1). New in version 2.2.

In addition, xml.dom contains a base Node class and the DOM exception classes. The Node class provided by
this module does not implement any of the methods or attributes defined by the DOM specification; concrete DOM
implementations must provide those. The Node class provided as part of this module does provide the constants used
for the nodeType attribute on concrete Node objects; they are located within the class rather than at the module level
to conform with the DOM specifications.

19.6. xml.dom — The Document Object Model API 719

http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.omg.org/spec/PYTH/1.2/PDF
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/xhtml1/

The Python Library Reference, Release 2.6.9

19.6.2 Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple strings. It is fairly rare that you must
do this, however, so this usage is not yet documented.

Interface Section Purpose
DOMImplementation DOMImplementation

Objects
Interface to the underlying implementation.

Node Node Objects Base interface for most objects in a document.
NodeList NodeList Objects Interface for a sequence of nodes.
DocumentType DocumentType Objects Information about the declarations needed to process a

document.
Document Document Objects Object which represents an entire document.
Element Element Objects Element nodes in the document hierarchy.
Attr Attr Objects Attribute value nodes on element nodes.
Comment Comment Objects Representation of comments in the source document.
Text Text and CDATASection

Objects
Nodes containing textual content from the document.

ProcessingInstructionProcessingInstruction
Objects

Processing instruction representation.

An additional section describes the exceptions defined for working with the DOM in Python.

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the availability of particular
features in the DOM they are using. DOM Level 2 added the ability to create new Document and DocumentType
objects using the DOMImplementation as well.

hasFeature(feature, version)
Return true if the feature identified by the pair of strings feature and version is implemented.

createDocument(namespaceUri, qualifiedName, doctype)
Return a new Document object (the root of the DOM), with a child Element object having the
given namespaceUri and qualifiedName. The doctype must be a DocumentType object created by
createDocumentType(), or None. In the Python DOM API, the first two arguments can also be None in
order to indicate that no Element child is to be created.

createDocumentType(qualifiedName, publicId, systemId)
Return a new DocumentType object that encapsulates the given qualifiedName, publicId, and systemId strings,
representing the information contained in an XML document type declaration.

Node Objects

All of the components of an XML document are subclasses of Node.

nodeType
An integer representing the node type. Symbolic constants for the types are on the Node ob-
ject: ELEMENT_NODE, ATTRIBUTE_NODE, TEXT_NODE, CDATA_SECTION_NODE, ENTITY_NODE,
PROCESSING_INSTRUCTION_NODE, COMMENT_NODE, DOCUMENT_NODE, DOCUMENT_TYPE_NODE,
NOTATION_NODE. This is a read-only attribute.

parentNode
The parent of the current node, or None for the document node. The value is always a Node object or None.

720 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

For Element nodes, this will be the parent element, except for the root element, in which case it will be the
Document object. For Attr nodes, this is always None. This is a read-only attribute.

attributes
A NamedNodeMap of attribute objects. Only elements have actual values for this; others provide None for
this attribute. This is a read-only attribute.

previousSibling
The node that immediately precedes this one with the same parent. For instance the element with an end-tag
that comes just before the self element’s start-tag. Of course, XML documents are made up of more than just
elements so the previous sibling could be text, a comment, or something else. If this node is the first child of the
parent, this attribute will be None. This is a read-only attribute.

nextSibling
The node that immediately follows this one with the same parent. See also previousSibling. If this is the
last child of the parent, this attribute will be None. This is a read-only attribute.

childNodes
A list of nodes contained within this node. This is a read-only attribute.

firstChild
The first child of the node, if there are any, or None. This is a read-only attribute.

lastChild
The last child of the node, if there are any, or None. This is a read-only attribute.

localName
The part of the tagName following the colon if there is one, else the entire tagName. The value is a string.

prefix
The part of the tagName preceding the colon if there is one, else the empty string. The value is a string, or
None

namespaceURI
The namespace associated with the element name. This will be a string or None. This is a read-only attribute.

nodeName
This has a different meaning for each node type; see the DOM specification for details. You can always get the
information you would get here from another property such as the tagName property for elements or the name
property for attributes. For all node types, the value of this attribute will be either a string or None. This is a
read-only attribute.

nodeValue
This has a different meaning for each node type; see the DOM specification for details. The situation is similar
to that with nodeName. The value is a string or None.

hasAttributes()
Returns true if the node has any attributes.

hasChildNodes()
Returns true if the node has any child nodes.

isSameNode(other)
Returns true if other refers to the same node as this node. This is especially useful for DOM implementations
which use any sort of proxy architecture (because more than one object can refer to the same node).

Note: This is based on a proposed DOM Level 3 API which is still in the “working draft” stage, but this
particular interface appears uncontroversial. Changes from the W3C will not necessarily affect this method in
the Python DOM interface (though any new W3C API for this would also be supported).

19.6. xml.dom — The Document Object Model API 721

The Python Library Reference, Release 2.6.9

appendChild(newChild)
Add a new child node to this node at the end of the list of children, returning newChild. If the node was already
in in the tree, it is removed first.

insertBefore(newChild, refChild)
Insert a new child node before an existing child. It must be the case that refChild is a child of this node; if
not, ValueError is raised. newChild is returned. If refChild is None, it inserts newChild at the end of the
children’s list.

removeChild(oldChild)
Remove a child node. oldChild must be a child of this node; if not, ValueError is raised. oldChild is returned
on success. If oldChild will not be used further, its unlink() method should be called.

replaceChild(newChild, oldChild)
Replace an existing node with a new node. It must be the case that oldChild is a child of this node; if not,
ValueError is raised.

normalize()
Join adjacent text nodes so that all stretches of text are stored as single Text instances. This simplifies process-
ing text from a DOM tree for many applications. New in version 2.1.

cloneNode(deep)
Clone this node. Setting deep means to clone all child nodes as well. This returns the clone.

NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in the DOM Core recommen-
dation: the Element objects provides one as its list of child nodes, and the getElementsByTagName() and
getElementsByTagNameNS() methods of Node return objects with this interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these objects:

item(i)
Return the i‘th item from the sequence, if there is one, or None. The index i is not allowed to be less then zero
or greater than or equal to the length of the sequence.

length
The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided to allow NodeList ob-
jects to be used as Python sequences. All NodeList implementations must include support for __len__() and
__getitem__(); this allows iteration over the NodeList in for statements and proper support for the len()
built-in function.

If a DOM implementation supports modification of the document, the NodeList implementation must also support
the __setitem__() and __delitem__() methods.

DocumentType Objects

Information about the notations and entities declared by a document (including the external subset if the parser uses it
and can provide the information) is available from a DocumentType object. The DocumentType for a document
is available from the Document object’s doctype attribute; if there is no DOCTYPE declaration for the document,
the document’s doctype attribute will be set to None instead of an instance of this interface.

DocumentType is a specialization of Node, and adds the following attributes:

publicId
The public identifier for the external subset of the document type definition. This will be a string or None.

722 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

systemId
The system identifier for the external subset of the document type definition. This will be a URI as a string, or
None.

internalSubset
A string giving the complete internal subset from the document. This does not include the brackets which
enclose the subset. If the document has no internal subset, this should be None.

name
The name of the root element as given in the DOCTYPE declaration, if present.

entities
This is a NamedNodeMap giving the definitions of external entities. For entity names defined more than once,
only the first definition is provided (others are ignored as required by the XML recommendation). This may be
None if the information is not provided by the parser, or if no entities are defined.

notations
This is a NamedNodeMap giving the definitions of notations. For notation names defined more than once, only
the first definition is provided (others are ignored as required by the XML recommendation). This may be None
if the information is not provided by the parser, or if no notations are defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, attributes, processing instruc-
tions, comments etc. Remember that it inherits properties from Node.

documentElement
The one and only root element of the document.

createElement(tagName)
Create and return a new element node. The element is not inserted into the document when it is created. You
need to explicitly insert it with one of the other methods such as insertBefore() or appendChild().

createElementNS(namespaceURI, tagName)
Create and return a new element with a namespace. The tagName may have a prefix. The element is not
inserted into the document when it is created. You need to explicitly insert it with one of the other methods such
as insertBefore() or appendChild().

createTextNode(data)
Create and return a text node containing the data passed as a parameter. As with the other creation methods, this
one does not insert the node into the tree.

createComment(data)
Create and return a comment node containing the data passed as a parameter. As with the other creation methods,
this one does not insert the node into the tree.

createProcessingInstruction(target, data)
Create and return a processing instruction node containing the target and data passed as parameters. As with
the other creation methods, this one does not insert the node into the tree.

createAttribute(name)
Create and return an attribute node. This method does not associate the attribute node with any particular
element. You must use setAttributeNode() on the appropriate Element object to use the newly created
attribute instance.

createAttributeNS(namespaceURI, qualifiedName)
Create and return an attribute node with a namespace. The tagName may have a prefix. This method does
not associate the attribute node with any particular element. You must use setAttributeNode() on the
appropriate Element object to use the newly created attribute instance.

19.6. xml.dom — The Document Object Model API 723

The Python Library Reference, Release 2.6.9

getElementsByTagName(tagName)
Search for all descendants (direct children, children’s children, etc.) with a particular element type name.

getElementsByTagNameNS(namespaceURI, localName)
Search for all descendants (direct children, children’s children, etc.) with a particular namespace URI and
localname. The localname is the part of the namespace after the prefix.

Element Objects

Element is a subclass of Node, so inherits all the attributes of that class.

tagName
The element type name. In a namespace-using document it may have colons in it. The value is a string.

getElementsByTagName(tagName)
Same as equivalent method in the Document class.

getElementsByTagNameNS(namespaceURI, localName)
Same as equivalent method in the Document class.

hasAttribute(name)
Returns true if the element has an attribute named by name.

hasAttributeNS(namespaceURI, localName)
Returns true if the element has an attribute named by namespaceURI and localName.

getAttribute(name)
Return the value of the attribute named by name as a string. If no such attribute exists, an empty string is
returned, as if the attribute had no value.

getAttributeNode(attrname)
Return the Attr node for the attribute named by attrname.

getAttributeNS(namespaceURI, localName)
Return the value of the attribute named by namespaceURI and localName as a string. If no such attribute exists,
an empty string is returned, as if the attribute had no value.

getAttributeNodeNS(namespaceURI, localName)
Return an attribute value as a node, given a namespaceURI and localName.

removeAttribute(name)
Remove an attribute by name. If there is no matching attribute, a NotFoundErr is raised.

removeAttributeNode(oldAttr)
Remove and return oldAttr from the attribute list, if present. If oldAttr is not present, NotFoundErr is raised.

removeAttributeNS(namespaceURI, localName)
Remove an attribute by name. Note that it uses a localName, not a qname. No exception is raised if there is no
matching attribute.

setAttribute(name, value)
Set an attribute value from a string.

setAttributeNode(newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the name attribute
matches. If a replacement occurs, the old attribute node will be returned. If newAttr is already in use,
InuseAttributeErr will be raised.

setAttributeNodeNS(newAttr)
Add a new attribute node to the element, replacing an existing attribute if necessary if the namespaceURI and

724 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

localName attributes match. If a replacement occurs, the old attribute node will be returned. If newAttr is
already in use, InuseAttributeErr will be raised.

setAttributeNS(namespaceURI, qname, value)
Set an attribute value from a string, given a namespaceURI and a qname. Note that a qname is the whole
attribute name. This is different than above.

Attr Objects

Attr inherits from Node, so inherits all its attributes.

name
The attribute name. In a namespace-using document it may have colons in it.

localName
The part of the name following the colon if there is one, else the entire name. This is a read-only attribute.

prefix
The part of the name preceding the colon if there is one, else the empty string.

NamedNodeMap Objects

NamedNodeMap does not inherit from Node.

length
The length of the attribute list.

item(index)
Return an attribute with a particular index. The order you get the attributes in is arbitrary but will be consistent
for the life of a DOM. Each item is an attribute node. Get its value with the value attribute.

There are also experimental methods that give this class more mapping behavior. You can use them or you can use the
standardized getAttribute*() family of methods on the Element objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass of Node, but cannot have child nodes.

data
The content of the comment as a string. The attribute contains all characters between the leading <!-- and
trailing -->, but does not include them.

Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser and DOM implementation support the DOM’s
XML extension, portions of the text enclosed in CDATA marked sections are stored in CDATASection objects.
These two interfaces are identical, but provide different values for the nodeType attribute.

These interfaces extend the Node interface. They cannot have child nodes.

data
The content of the text node as a string.

Note: The use of a CDATASection node does not indicate that the node represents a complete CDATA marked
section, only that the content of the node was part of a CDATA section. A single CDATA section may be represented
by more than one node in the document tree. There is no way to determine whether two adjacent CDATASection
nodes represent different CDATA marked sections.

19.6. xml.dom — The Document Object Model API 725

The Python Library Reference, Release 2.6.9

ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from the Node interface and cannot have child
nodes.

target
The content of the processing instruction up to the first whitespace character. This is a read-only attribute.

data
The content of the processing instruction following the first whitespace character.

Exceptions

New in version 2.1. The DOM Level 2 recommendation defines a single exception, DOMException, and a number
of constants that allow applications to determine what sort of error occurred. DOMException instances carry a code
attribute that provides the appropriate value for the specific exception.

The Python DOM interface provides the constants, but also expands the set of exceptions so that a specific exception
exists for each of the exception codes defined by the DOM. The implementations must raise the appropriate specific
exception, each of which carries the appropriate value for the code attribute.

exception DOMException
Base exception class used for all specific DOM exceptions. This exception class cannot be directly instantiated.

exception DomstringSizeErr
Raised when a specified range of text does not fit into a string. This is not known to be used in the Python DOM
implementations, but may be received from DOM implementations not written in Python.

exception HierarchyRequestErr
Raised when an attempt is made to insert a node where the node type is not allowed.

exception IndexSizeErr
Raised when an index or size parameter to a method is negative or exceeds the allowed values.

exception InuseAttributeErr
Raised when an attempt is made to insert an Attr node that is already present elsewhere in the document.

exception InvalidAccessErr
Raised if a parameter or an operation is not supported on the underlying object.

exception InvalidCharacterErr
This exception is raised when a string parameter contains a character that is not permitted in the context it’s
being used in by the XML 1.0 recommendation. For example, attempting to create an Element node with a
space in the element type name will cause this error to be raised.

exception InvalidModificationErr
Raised when an attempt is made to modify the type of a node.

exception InvalidStateErr
Raised when an attempt is made to use an object that is not defined or is no longer usable.

exception NamespaceErr
If an attempt is made to change any object in a way that is not permitted with regard to the Namespaces in XML
recommendation, this exception is raised.

exception NotFoundErr
Exception when a node does not exist in the referenced context. For example,
NamedNodeMap.removeNamedItem() will raise this if the node passed in does not exist in the
map.

726 Chapter 19. Structured Markup Processing Tools

http://www.w3.org/TR/REC-xml-names/

The Python Library Reference, Release 2.6.9

exception NotSupportedErr
Raised when the implementation does not support the requested type of object or operation.

exception NoDataAllowedErr
This is raised if data is specified for a node which does not support data.

exception NoModificationAllowedErr
Raised on attempts to modify an object where modifications are not allowed (such as for read-only nodes).

exception SyntaxErr
Raised when an invalid or illegal string is specified.

exception WrongDocumentErr
Raised when a node is inserted in a different document than it currently belongs to, and the implementation does
not support migrating the node from one document to the other.

The exception codes defined in the DOM recommendation map to the exceptions described above according to this
table:

Constant Exception
DOMSTRING_SIZE_ERR DomstringSizeErr
HIERARCHY_REQUEST_ERR HierarchyRequestErr
INDEX_SIZE_ERR IndexSizeErr
INUSE_ATTRIBUTE_ERR InuseAttributeErr
INVALID_ACCESS_ERR InvalidAccessErr
INVALID_CHARACTER_ERR InvalidCharacterErr
INVALID_MODIFICATION_ERR InvalidModificationErr
INVALID_STATE_ERR InvalidStateErr
NAMESPACE_ERR NamespaceErr
NOT_FOUND_ERR NotFoundErr
NOT_SUPPORTED_ERR NotSupportedErr
NO_DATA_ALLOWED_ERR NoDataAllowedErr
NO_MODIFICATION_ALLOWED_ERR NoModificationAllowedErr
SYNTAX_ERR SyntaxErr
WRONG_DOCUMENT_ERR WrongDocumentErr

19.6.3 Conformance

This section describes the conformance requirements and relationships between the Python DOM API, the W3C DOM
recommendations, and the OMG IDL mapping for Python.

Type Mapping

The primitive IDL types used in the DOM specification are mapped to Python types according to the following table.

IDL Type Python Type
boolean IntegerType (with a value of 0 or 1)
int IntegerType
long int IntegerType
unsigned int IntegerType

Additionally, the DOMString defined in the recommendation is mapped to a Python string or Unicode string. Appli-
cations should be able to handle Unicode whenever a string is returned from the DOM.

The IDL null value is mapped to None, which may be accepted or provided by the implementation whenever null
is allowed by the API.

19.6. xml.dom — The Document Object Model API 727

The Python Library Reference, Release 2.6.9

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDL attribute declarations in much the
way the Java mapping does. Mapping the IDL declarations

readonly attribute string someValue;
attribute string anotherValue;

yields three accessor functions: a “get” method for someValue (_get_someValue()), and “get” and “set” meth-
ods for anotherValue (_get_anotherValue() and _set_anotherValue()). The mapping, in particular,
does not require that the IDL attributes are accessible as normal Python attributes: object.someValue is not re-
quired to work, and may raise an AttributeError.

The Python DOM API, however, does require that normal attribute access work. This means that the typical surrogates
generated by Python IDL compilers are not likely to work, and wrapper objects may be needed on the client if the
DOM objects are accessed via CORBA. While this does require some additional consideration for CORBA DOM
clients, the implementers with experience using DOM over CORBA from Python do not consider this a problem.
Attributes that are declared readonly may not restrict write access in all DOM implementations.

In the Python DOM API, accessor functions are not required. If provided, they should take the form defined by the
Python IDL mapping, but these methods are considered unnecessary since the attributes are accessible directly from
Python. “Set” accessors should never be provided for readonly attributes.

The IDL definitions do not fully embody the requirements of the W3C DOM API, such as the notion of certain
objects, such as the return value of getElementsByTagName(), being “live”. The Python DOM API does not
require implementations to enforce such requirements.

19.7 xml.dom.minidom — Lightweight DOM implementation

New in version 2.0. xml.dom.minidom is a light-weight implementation of the Document Object Model interface.
It is intended to be simpler than the full DOM and also significantly smaller.

DOM applications typically start by parsing some XML into a DOM. With xml.dom.minidom, this is done through
the parse functions:

from xml.dom.minidom import parse, parseString

dom1 = parse(’c:\\temp\\mydata.xml’) # parse an XML file by name

datasource = open(’c:\\temp\\mydata.xml’)
dom2 = parse(datasource) # parse an open file

dom3 = parseString(’<myxml>Some data<empty/> some more data</myxml>’)

The parse() function can take either a filename or an open file object.

parse(filename_or_file, [parser, [bufsize]])
Return a Document from the given input. filename_or_file may be either a file name, or a file-like object.
parser, if given, must be a SAX2 parser object. This function will change the document handler of the parser
and activate namespace support; other parser configuration (like setting an entity resolver) must have been done
in advance.

If you have XML in a string, you can use the parseString() function instead:

parseString(string, [parser])
Return a Document that represents the string. This method creates a StringIO object for the string and
passes that on to parse().

728 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

Both functions return a Document object representing the content of the document.

What the parse() and parseString() functions do is connect an XML parser with a “DOM builder” that can
accept parse events from any SAX parser and convert them into a DOM tree. The name of the functions are perhaps
misleading, but are easy to grasp when learning the interfaces. The parsing of the document will be completed before
these functions return; it’s simply that these functions do not provide a parser implementation themselves.

You can also create a Document by calling a method on a “DOM Implementation” object. You can get this object
either by calling the getDOMImplementation() function in the xml.dom package or the xml.dom.minidom
module. Using the implementation from the xml.dom.minidom module will always return a Document instance
from the minidom implementation, while the version from xml.dom may provide an alternate implementation (this
is likely if you have the PyXML package installed). Once you have a Document, you can add child nodes to it to
populate the DOM:

from xml.dom.minidom import getDOMImplementation

impl = getDOMImplementation()

newdoc = impl.createDocument(None, "some_tag", None)
top_element = newdoc.documentElement
text = newdoc.createTextNode(’Some textual content.’)
top_element.appendChild(text)

Once you have a DOM document object, you can access the parts of your XML document through its properties and
methods. These properties are defined in the DOM specification. The main property of the document object is the
documentElement property. It gives you the main element in the XML document: the one that holds all others.
Here is an example program:

dom3 = parseString("<myxml>Some data</myxml>")
assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM tree, you may optionally call the unlink() method to encourage early cleanup
of the now-unneeded objects. unlink() is a xml.dom.minidom-specific extension to the DOM API that renders
the node and its descendants are essentially useless. Otherwise, Python’s garbage collector will eventually take care
of the objects in the tree.

See Also:

Document Object Model (DOM) Level 1 Specification The W3C recommendation for the DOM supported by
xml.dom.minidom.

19.7.1 DOM Objects

The definition of the DOM API for Python is given as part of the xml.dom module documentation. This section lists
the differences between the API and xml.dom.minidom.

unlink()
Break internal references within the DOM so that it will be garbage collected on versions of Python without
cyclic GC. Even when cyclic GC is available, using this can make large amounts of memory available sooner,
so calling this on DOM objects as soon as they are no longer needed is good practice. This only needs to be
called on the Document object, but may be called on child nodes to discard children of that node.

writexml(writer, [indent="", [addindent="", [newl="", [encoding=""]]]])
Write XML to the writer object. The writer should have a write() method which matches that of the file
object interface. The indent parameter is the indentation of the current node. The addindent parameter is the
incremental indentation to use for subnodes of the current one. The newl parameter specifies the string to use
to terminate newlines. Changed in version 2.1: The optional keyword parameters indent, addindent, and newl

19.7. xml.dom.minidom — Lightweight DOM implementation 729

http://pyxml.sourceforge.net/
http://www.w3.org/TR/REC-DOM-Level-1/

The Python Library Reference, Release 2.6.9

were added to support pretty output.Changed in version 2.3: For the Document node, an additional keyword
argument encoding can be used to specify the encoding field of the XML header.

toxml([encoding])
Return the XML that the DOM represents as a string.

With no argument, the XML header does not specify an encoding, and the result is Unicode string if the default
encoding cannot represent all characters in the document. Encoding this string in an encoding other than UTF-8
is likely incorrect, since UTF-8 is the default encoding of XML.

With an explicit encoding 2 argument, the result is a byte string in the specified encoding. It is recommended
that this argument is always specified. To avoid UnicodeError exceptions in case of unrepresentable text
data, the encoding argument should be specified as “utf-8”. Changed in version 2.3: the encoding argument was
introduced; see writexml().

toprettyxml([indent="", [newl="", [encoding=""]]])
Return a pretty-printed version of the document. indent specifies the indentation string and defaults to a tabula-
tor; newl specifies the string emitted at the end of each line and defaults to \n. New in version 2.1.Changed in
version 2.3: the encoding argument was introduced; see writexml().

The following standard DOM methods have special considerations with xml.dom.minidom:

cloneNode(deep)
Although this method was present in the version of xml.dom.minidom packaged with Python 2.0, it was
seriously broken. This has been corrected for subsequent releases.

19.7.2 DOM Example

This example program is a fairly realistic example of a simple program. In this particular case, we do not take much
advantage of the flexibility of the DOM.

import xml.dom.minidom

document = """\
<slideshow>
<title>Demo slideshow</title>
<slide><title>Slide title</title>
<point>This is a demo</point>
<point>Of a program for processing slides</point>
</slide>

<slide><title>Another demo slide</title>
<point>It is important</point>
<point>To have more than</point>
<point>one slide</point>
</slide>
</slideshow>
"""

dom = xml.dom.minidom.parseString(document)

def getText(nodelist):
rc = []
for node in nodelist:

2 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but “UTF8” is not.
See http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and http://www.iana.org/assignments/character-sets .

730 Chapter 19. Structured Markup Processing Tools

http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets

The Python Library Reference, Release 2.6.9

if node.nodeType == node.TEXT_NODE:
rc.append(node.data)

return ’’.join(rc)

def handleSlideshow(slideshow):
print "<html>"
handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])
slides = slideshow.getElementsByTagName("slide")
handleToc(slides)
handleSlides(slides)
print "</html>"

def handleSlides(slides):
for slide in slides:

handleSlide(slide)

def handleSlide(slide):
handleSlideTitle(slide.getElementsByTagName("title")[0])
handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):
print "<title>%s</title>" % getText(title.childNodes)

def handleSlideTitle(title):
print "<h2>%s</h2>" % getText(title.childNodes)

def handlePoints(points):
print ""
for point in points:

handlePoint(point)
print ""

def handlePoint(point):
print "%s" % getText(point.childNodes)

def handleToc(slides):
for slide in slides:

title = slide.getElementsByTagName("title")[0]
print "<p>%s</p>" % getText(title.childNodes)

handleSlideshow(dom)

19.7.3 minidom and the DOM standard

The xml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some DOM 2 features (primarily
namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules apply:

• Interfaces are accessed through instance objects. Applications should not instantiate the classes themselves; they
should use the creator functions available on the Document object. Derived interfaces support all operations
(and attributes) from the base interfaces, plus any new operations.

• Operations are used as methods. Since the DOM uses only in parameters, the arguments are passed in normal
order (from left to right). There are no optional arguments. void operations return None.

19.7. xml.dom.minidom — Lightweight DOM implementation 731

The Python Library Reference, Release 2.6.9

• IDL attributes map to instance attributes. For compatibility with the OMG IDL language mapping for Python, an
attribute foo can also be accessed through accessor methods _get_foo() and _set_foo(). readonly
attributes must not be changed; this is not enforced at runtime.

• The types short int, unsigned int, unsigned long long, and boolean all map to Python inte-
ger objects.

• The type DOMString maps to Python strings. xml.dom.minidom supports either byte or Unicode strings,
but will normally produce Unicode strings. Values of type DOMString may also be None where allowed to
have the IDL null value by the DOM specification from the W3C.

• const declarations map to variables in their respective scope (e.g.
xml.dom.minidom.Node.PROCESSING_INSTRUCTION_NODE); they must not be changed.

• DOMException is currently not supported in xml.dom.minidom. Instead, xml.dom.minidom uses
standard Python exceptions such as TypeError and AttributeError.

• NodeList objects are implemented using Python’s built-in list type. Starting with Python 2.2, these objects
provide the interface defined in the DOM specification, but with earlier versions of Python they do not support
the official API. They are, however, much more “Pythonic” than the interface defined in the W3C recommenda-
tions.

The following interfaces have no implementation in xml.dom.minidom:

• DOMTimeStamp

• DocumentType (added in Python 2.1)

• DOMImplementation (added in Python 2.1)

• CharacterData

• CDATASection

• Notation

• Entity

• EntityReference

• DocumentFragment

Most of these reflect information in the XML document that is not of general utility to most DOM users.

19.8 xml.dom.pulldom — Support for building partial DOM trees

New in version 2.0. xml.dom.pulldom allows building only selected portions of a Document Object Model repre-
sentation of a document from SAX events.

class PullDOM([documentFactory])
xml.sax.handler.ContentHandler implementation that ...

class DOMEventStream(stream, parser, bufsize)
...

class SAX2DOM([documentFactory])
xml.sax.handler.ContentHandler implementation that ...

parse(stream_or_string, [parser, [bufsize]])
...

parseString(string, [parser])
...

732 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

default_bufsize
Default value for the bufsize parameter to parse(). Changed in version 2.1: The value of this variable can be
changed before calling parse() and the new value will take effect.

19.8.1 DOMEventStream Objects

getEvent()
...

expandNode(node)
...

reset()
...

19.9 xml.sax — Support for SAX2 parsers

New in version 2.0. The xml.sax package provides a number of modules which implement the Simple API for XML
(SAX) interface for Python. The package itself provides the SAX exceptions and the convenience functions which
will be most used by users of the SAX API.

The convenience functions are:

make_parser([parser_list])
Create and return a SAX XMLReader object. The first parser found will be used. If parser_list is provided, it
must be a sequence of strings which name modules that have a function named create_parser(). Modules
listed in parser_list will be used before modules in the default list of parsers.

parse(filename_or_stream, handler, [error_handler])
Create a SAX parser and use it to parse a document. The document, passed in as filename_or_stream, can
be a filename or a file object. The handler parameter needs to be a SAX ContentHandler instance. If
error_handler is given, it must be a SAX ErrorHandler instance; if omitted, SAXParseException will
be raised on all errors. There is no return value; all work must be done by the handler passed in.

parseString(string, handler, [error_handler])
Similar to parse(), but parses from a buffer string received as a parameter.

A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in this context is
another term for parser, i.e. some piece of code that reads the bytes or characters from the input source, and produces
a sequence of events. The events then get distributed to the handler objects, i.e. the reader invokes a method on the
handler. A SAX application must therefore obtain a reader object, create or open the input sources, create the handlers,
and connect these objects all together. As the final step of preparation, the reader is called to parse the input. During
parsing, methods on the handler objects are called based on structural and syntactic events from the input data.

For these objects, only the interfaces are relevant; they are normally not instantiated by the application itself. Since
Python does not have an explicit notion of interface, they are formally introduced as classes, but applications may use
implementations which do not inherit from the provided classes. The InputSource, Locator, Attributes,
AttributesNS, and XMLReader interfaces are defined in the module xml.sax.xmlreader. The handler in-
terfaces are defined in xml.sax.handler. For convenience, InputSource (which is often instantiated directly)
and the handler classes are also available from xml.sax. These interfaces are described below.

In addition to these classes, xml.sax provides the following exception classes.

exception SAXException
Encapsulate an XML error or warning. This class can contain basic error or warning information from either the
XML parser or the application: it can be subclassed to provide additional functionality or to add localization.

19.9. xml.sax — Support for SAX2 parsers 733

The Python Library Reference, Release 2.6.9

Note that although the handlers defined in the ErrorHandler interface receive instances of this exception, it
is not required to actually raise the exception — it is also useful as a container for information.

When instantiated, msg should be a human-readable description of the error. The optional exception parameter,
if given, should be None or an exception that was caught by the parsing code and is being passed along as
information.

This is the base class for the other SAX exception classes.

exception SAXParseException
Subclass of SAXException raised on parse errors. Instances of this class are passed to the methods of the
SAX ErrorHandler interface to provide information about the parse error. This class supports the SAX
Locator interface as well as the SAXException interface.

exception SAXNotRecognizedException
Subclass of SAXException raised when a SAX XMLReader is confronted with an unrecognized feature or
property. SAX applications and extensions may use this class for similar purposes.

exception SAXNotSupportedException
Subclass of SAXException raised when a SAX XMLReader is asked to enable a feature that is not supported,
or to set a property to a value that the implementation does not support. SAX applications and extensions may
use this class for similar purposes.

See Also:

SAX: The Simple API for XML This site is the focal point for the definition of the SAX API. It provides a Java im-
plementation and online documentation. Links to implementations and historical information are also available.

Module xml.sax.handler Definitions of the interfaces for application-provided objects.

Module xml.sax.saxutils Convenience functions for use in SAX applications.

Module xml.sax.xmlreader Definitions of the interfaces for parser-provided objects.

19.9.1 SAXException Objects

The SAXException exception class supports the following methods:

getMessage()
Return a human-readable message describing the error condition.

getException()
Return an encapsulated exception object, or None.

19.10 xml.sax.handler — Base classes for SAX handlers

New in version 2.0. The SAX API defines four kinds of handlers: content handlers, DTD handlers, error handlers,
and entity resolvers. Applications normally only need to implement those interfaces whose events they are interested
in; they can implement the interfaces in a single object or in multiple objects. Handler implementations should inherit
from the base classes provided in the module xml.sax.handler, so that all methods get default implementations.

class ContentHandler()
This is the main callback interface in SAX, and the one most important to applications. The order of events in
this interface mirrors the order of the information in the document.

class DTDHandler()
Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and attributes).

734 Chapter 19. Structured Markup Processing Tools

http://www.saxproject.org/

The Python Library Reference, Release 2.6.9

class EntityResolver()
Basic interface for resolving entities. If you create an object implementing this interface, then register the object
with your Parser, the parser will call the method in your object to resolve all external entities.

class ErrorHandler()
Interface used by the parser to present error and warning messages to the application. The methods of this object
control whether errors are immediately converted to exceptions or are handled in some other way.

In addition to these classes, xml.sax.handler provides symbolic constants for the feature and property names.

feature_namespaces
Value: "http://xml.org/sax/features/namespaces" — true: Perform Namespace processing.
— false: Optionally do not perform Namespace processing (implies namespace-prefixes; default). — access:
(parsing) read-only; (not parsing) read/write

feature_namespace_prefixes
Value: "http://xml.org/sax/features/namespace-prefixes"— true: Report the original pre-
fixed names and attributes used for Namespace declarations. — false: Do not report attributes used for Names-
pace declarations, and optionally do not report original prefixed names (default). — access: (parsing) read-only;
(not parsing) read/write

feature_string_interning
Value: "http://xml.org/sax/features/string-interning" — true: All element names, pre-
fixes, attribute names, Namespace URIs, and local names are interned using the built-in intern function. —
false: Names are not necessarily interned, although they may be (default). — access: (parsing) read-only; (not
parsing) read/write

feature_validation
Value: "http://xml.org/sax/features/validation"— true: Report all validation errors (implies
external-general-entities and external-parameter-entities). — false: Do not report validation errors. — access:
(parsing) read-only; (not parsing) read/write

feature_external_ges
Value: "http://xml.org/sax/features/external-general-entities" — true: Include all
external general (text) entities. — false: Do not include external general entities. — access: (parsing) read-
only; (not parsing) read/write

feature_external_pes
Value: "http://xml.org/sax/features/external-parameter-entities" — true: Include
all external parameter entities, including the external DTD subset. — false: Do not include any external param-
eter entities, even the external DTD subset. — access: (parsing) read-only; (not parsing) read/write

all_features
List of all features.

property_lexical_handler
Value: "http://xml.org/sax/properties/lexical-handler" — data type:
xml.sax.sax2lib.LexicalHandler (not supported in Python 2) — description: An optional extension han-
dler for lexical events like comments. — access: read/write

property_declaration_handler
Value: "http://xml.org/sax/properties/declaration-handler" — data type:
xml.sax.sax2lib.DeclHandler (not supported in Python 2) — description: An optional extension handler
for DTD-related events other than notations and unparsed entities. — access: read/write

property_dom_node
Value: "http://xml.org/sax/properties/dom-node" — data type: org.w3c.dom.Node (not sup-
ported in Python 2) — description: When parsing, the current DOM node being visited if this is a DOM iterator;
when not parsing, the root DOM node for iteration. — access: (parsing) read-only; (not parsing) read/write

19.10. xml.sax.handler — Base classes for SAX handlers 735

The Python Library Reference, Release 2.6.9

property_xml_string
Value: "http://xml.org/sax/properties/xml-string" — data type: String — description: The
literal string of characters that was the source for the current event. — access: read-only

all_properties
List of all known property names.

19.10.1 ContentHandler Objects

Users are expected to subclass ContentHandler to support their application. The following methods are called by
the parser on the appropriate events in the input document:

setDocumentLocator(locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it does so, it must
supply the locator to the application by invoking this method before invoking any of the other methods in the
DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event, even if the parser
is not reporting an error. Typically, the application will use this information for reporting its own errors (such as
character content that does not match an application’s business rules). The information returned by the locator
is probably not sufficient for use with a search engine.

Note that the locator will return correct information only during the invocation of the events in this interface.
The application should not attempt to use it at any other time.

startDocument()
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in this interface or in DTDHandler
(except for setDocumentLocator()).

endDocument()
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during the parse. The
parser shall not invoke this method until it has either abandoned parsing (because of an unrecoverable error) or
reached the end of input.

startPrefixMapping(prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace processing: the SAX XML reader will
automatically replace prefixes for element and attribute names when the feature_namespaces feature is
enabled (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute values, where
they cannot safely be expanded automatically; the startPrefixMapping() and endPrefixMapping()
events supply the information to the application to expand prefixes in those contexts itself, if necessary.

Note that startPrefixMapping() and endPrefixMapping() events are not guaranteed to be prop-
erly nested relative to each-other: all startPrefixMapping() events will occur before the correspond-
ing startElement() event, and all endPrefixMapping() events will occur after the corresponding
endElement() event, but their order is not guaranteed.

endPrefixMapping(prefix)
End the scope of a prefix-URI mapping.

See startPrefixMapping() for details. This event will always occur after the corresponding
endElement() event, but the order of endPrefixMapping() events is not otherwise guaranteed.

736 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

startElement(name, attrs)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the attrs parameter
holds an object of the Attributes interface (see The Attributes Interface) containing the attributes of the
element. The object passed as attrs may be re-used by the parser; holding on to a reference to it is not a reliable
way to keep a copy of the attributes. To keep a copy of the attributes, use the copy() method of the attrs
object.

endElement(name)
Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the startElement() event.

startElementNS(name, qname, attrs)
Signals the start of an element in namespace mode.

The name parameter contains the name of the element type as a (uri, localname) tuple, the qname pa-
rameter contains the raw XML 1.0 name used in the source document, and the attrs parameter holds an instance
of the AttributesNS interface (see The AttributesNS Interface) containing the attributes of the element. If
no namespace is associated with the element, the uri component of name will be None. The object passed as
attrs may be re-used by the parser; holding on to a reference to it is not a reliable way to keep a copy of the
attributes. To keep a copy of the attributes, use the copy() method of the attrs object.

Parsers may set the qname parameter to None, unless the feature_namespace_prefixes feature is
activated.

endElementNS(name, qname)
Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with the startElementNS() method,
likewise the qname parameter.

characters(content)
Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX parsers may return all contiguous
character data in a single chunk, or they may split it into several chunks; however, all of the characters in any
single event must come from the same external entity so that the Locator provides useful information.

content may be a Unicode string or a byte string; the expat reader module produces always Unicode strings.

Note: The earlier SAX 1 interface provided by the Python XML Special Interest Group used a more Java-like
interface for this method. Since most parsers used from Python did not take advantage of the older interface,
the simpler signature was chosen to replace it. To convert old code to the new interface, use content instead of
slicing content with the old offset and length parameters.

ignorableWhitespace(whitespace)
Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the W3C XML 1.0
recommendation, section 2.10): non-validating parsers may also use this method if they are capable of parsing
and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several chunks;
however, all of the characters in any single event must come from the same external entity, so that the Locator
provides useful information.

processingInstruction(target, data)
Receive notification of a processing instruction.

19.10. xml.sax.handler — Base classes for SAX handlers 737

The Python Library Reference, Release 2.6.9

The Parser will invoke this method once for each processing instruction found: note that processing instructions
may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration (XML 1.0,
section 4.3.1) using this method.

skippedEntity(name)
Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating processors may skip entities if
they have not seen the declarations (because, for example, the entity was declared in an external DTD subset).
All processors may skip external entities, depending on the values of the feature_external_ges and the
feature_external_pes properties.

19.10.2 DTDHandler Objects

DTDHandler instances provide the following methods:

notationDecl(name, publicId, systemId)
Handle a notation declaration event.

unparsedEntityDecl(name, publicId, systemId, ndata)
Handle an unparsed entity declaration event.

19.10.3 EntityResolver Objects

resolveEntity(publicId, systemId)
Resolve the system identifier of an entity and return either the system identifier to read from as a string, or an
InputSource to read from. The default implementation returns systemId.

19.10.4 ErrorHandler Objects

Objects with this interface are used to receive error and warning information from the XMLReader. If you create an
object that implements this interface, then register the object with your XMLReader, the parser will call the methods
in your object to report all warnings and errors. There are three levels of errors available: warnings, (possibly)
recoverable errors, and unrecoverable errors. All methods take a SAXParseException as the only parameter.
Errors and warnings may be converted to an exception by raising the passed-in exception object.

error(exception)
Called when the parser encounters a recoverable error. If this method does not raise an exception, parsing may
continue, but further document information should not be expected by the application. Allowing the parser to
continue may allow additional errors to be discovered in the input document.

fatalError(exception)
Called when the parser encounters an error it cannot recover from; parsing is expected to terminate when this
method returns.

warning(exception)
Called when the parser presents minor warning information to the application. Parsing is expected to continue
when this method returns, and document information will continue to be passed to the application. Raising an
exception in this method will cause parsing to end.

738 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

19.11 xml.sax.saxutils — SAX Utilities

New in version 2.0. The module xml.sax.saxutils contains a number of classes and functions that are commonly
useful when creating SAX applications, either in direct use, or as base classes.

escape(data, [entities])
Escape ’&’, ’<’, and ’>’ in a string of data.

You can escape other strings of data by passing a dictionary as the optional entities parameter. The keys and
values must all be strings; each key will be replaced with its corresponding value. The characters ’&’, ’<’ and
’>’ are always escaped, even if entities is provided.

unescape(data, [entities])
Unescape ’&’, ’<’, and ’>’ in a string of data.

You can unescape other strings of data by passing a dictionary as the optional entities parameter. The keys and
values must all be strings; each key will be replaced with its corresponding value. ’&’, ’<’, and
’>’ are always unescaped, even if entities is provided. New in version 2.3.

quoteattr(data, [entities])
Similar to escape(), but also prepares data to be used as an attribute value. The return value is a quoted ver-
sion of data with any additional required replacements. quoteattr() will select a quote character based on
the content of data, attempting to avoid encoding any quote characters in the string. If both single- and double-
quote characters are already in data, the double-quote characters will be encoded and data will be wrapped in
double-quotes. The resulting string can be used directly as an attribute value:

>>> print "<element attr=%s>" % quoteattr("ab ’ cd \" ef")
<element attr="ab ’ cd " ef">

This function is useful when generating attribute values for HTML or any SGML using the reference concrete
syntax. New in version 2.2.

class XMLGenerator([out, [encoding]])
This class implements the ContentHandler interface by writing SAX events back into an XML document.
In other words, using an XMLGenerator as the content handler will reproduce the original document being
parsed. out should be a file-like object which will default to sys.stdout. encoding is the encoding of the output
stream which defaults to ’iso-8859-1’.

class XMLFilterBase(base)
This class is designed to sit between an XMLReader and the client application’s event handlers. By default,
it does nothing but pass requests up to the reader and events on to the handlers unmodified, but subclasses can
override specific methods to modify the event stream or the configuration requests as they pass through.

prepare_input_source(source, [base])
This function takes an input source and an optional base URL and returns a fully resolved InputSource
object ready for reading. The input source can be given as a string, a file-like object, or an InputSource
object; parsers will use this function to implement the polymorphic source argument to their parse() method.

19.12 xml.sax.xmlreader — Interface for XML parsers

New in version 2.0. SAX parsers implement the XMLReader interface. They are implemented in a Python module,
which must provide a function create_parser(). This function is invoked by xml.sax.make_parser()
with no arguments to create a new parser object.

class XMLReader()
Base class which can be inherited by SAX parsers.

19.11. xml.sax.saxutils — SAX Utilities 739

The Python Library Reference, Release 2.6.9

class IncrementalParser()
In some cases, it is desirable not to parse an input source at once, but to feed chunks of the document as they get
available. Note that the reader will normally not read the entire file, but read it in chunks as well; still parse()
won’t return until the entire document is processed. So these interfaces should be used if the blocking behaviour
of parse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immediately. After
parsing has been finished with a call to close the reset method must be called to make the parser ready to accept
new data, either from feed or using the parse method.

Note that these methods must not be called during parsing, that is, after parse has been called and before it
returns.

By default, the class also implements the parse method of the XMLReader interface using the feed, close and
reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver writers.

class Locator()
Interface for associating a SAX event with a document location. A locator object will return valid results only
during calls to DocumentHandler methods; at any other time, the results are unpredictable. If information is not
available, methods may return None.

class InputSource([systemId])
Encapsulation of the information needed by the XMLReader to read entities.

This class may include information about the public identifier, system identifier, byte stream (possibly with
character encoding information) and/or the character stream of an entity.

Applications will create objects of this class for use in the XMLReader.parse() method and for returning
from EntityResolver.resolveEntity.

An InputSource belongs to the application, the XMLReader is not allowed to modify InputSource
objects passed to it from the application, although it may make copies and modify those.

class AttributesImpl(attrs)
This is an implementation of the Attributes interface (see section The Attributes Interface). This is a
dictionary-like object which represents the element attributes in a startElement() call. In addition to the
most useful dictionary operations, it supports a number of other methods as described by the interface. Objects
of this class should be instantiated by readers; attrs must be a dictionary-like object containing a mapping from
attribute names to attribute values.

class AttributesNSImpl(attrs, qnames)
Namespace-aware variant of AttributesImpl, which will be passed to startElementNS(). It is derived
from AttributesImpl, but understands attribute names as two-tuples of namespaceURI and localname. In
addition, it provides a number of methods expecting qualified names as they appear in the original document.
This class implements the AttributesNS interface (see section The AttributesNS Interface).

19.12.1 XMLReader Objects

The XMLReader interface supports the following methods:

parse(source)
Process an input source, producing SAX events. The source object can be a system identifier (a string identifying
the input source – typically a file name or an URL), a file-like object, or an InputSource object. When
parse() returns, the input is completely processed, and the parser object can be discarded or reset. As a
limitation, the current implementation only accepts byte streams; processing of character streams is for further
study.

getContentHandler()
Return the current ContentHandler.

740 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

setContentHandler(handler)
Set the current ContentHandler. If no ContentHandler is set, content events will be discarded.

getDTDHandler()
Return the current DTDHandler.

setDTDHandler(handler)
Set the current DTDHandler. If no DTDHandler is set, DTD events will be discarded.

getEntityResolver()
Return the current EntityResolver.

setEntityResolver(handler)
Set the current EntityResolver. If no EntityResolver is set, attempts to resolve an external entity will
result in opening the system identifier for the entity, and fail if it is not available.

getErrorHandler()
Return the current ErrorHandler.

setErrorHandler(handler)
Set the current error handler. If no ErrorHandler is set, errors will be raised as exceptions, and warnings
will be printed.

setLocale(locale)
Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if they cannot support the requested
locale, however, they must throw a SAX exception. Applications may request a locale change in the middle of
a parse.

getFeature(featurename)
Return the current setting for feature featurename. If the feature is not recognized,
SAXNotRecognizedException is raised. The well-known featurenames are listed in the module
xml.sax.handler.

setFeature(featurename, value)
Set the featurename to value. If the feature is not recognized, SAXNotRecognizedException is raised. If
the feature or its setting is not supported by the parser, SAXNotSupportedException is raised.

getProperty(propertyname)
Return the current setting for property propertyname. If the property is not recognized, a
SAXNotRecognizedException is raised. The well-known propertynames are listed in the module
xml.sax.handler.

setProperty(propertyname, value)
Set the propertyname to value. If the property is not recognized, SAXNotRecognizedException is raised.
If the property or its setting is not supported by the parser, SAXNotSupportedException is raised.

19.12.2 IncrementalParser Objects

Instances of IncrementalParser offer the following additional methods:

feed(data)
Process a chunk of data.

close()
Assume the end of the document. That will check well-formedness conditions that can be checked only at the
end, invoke handlers, and may clean up resources allocated during parsing.

19.12. xml.sax.xmlreader — Interface for XML parsers 741

The Python Library Reference, Release 2.6.9

reset()
This method is called after close has been called to reset the parser so that it is ready to parse new documents.
The results of calling parse or feed after close without calling reset are undefined.

19.12.3 Locator Objects

Instances of Locator provide these methods:

getColumnNumber()
Return the column number where the current event ends.

getLineNumber()
Return the line number where the current event ends.

getPublicId()
Return the public identifier for the current event.

getSystemId()
Return the system identifier for the current event.

19.12.4 InputSource Objects

setPublicId(id)
Sets the public identifier of this InputSource.

getPublicId()
Returns the public identifier of this InputSource.

setSystemId(id)
Sets the system identifier of this InputSource.

getSystemId()
Returns the system identifier of this InputSource.

setEncoding(encoding)
Sets the character encoding of this InputSource.

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of the XML
recommendation).

The encoding attribute of the InputSource is ignored if the InputSource also contains a character stream.

getEncoding()
Get the character encoding of this InputSource.

setByteStream(bytefile)
Set the byte stream (a Python file-like object which does not perform byte-to-character conversion) for this input
source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte stream in
preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the setEncoding method.

getByteStream()
Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if unknown.

742 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

setCharacterStream(charfile)
Set the character stream for this input source. (The stream must be a Python 1.6 Unicode-wrapped file-like that
performs conversion to Unicode strings.)

If there is a character stream specified, the SAX parser will ignore any byte stream and will not attempt to open
a URI connection to the system identifier.

getCharacterStream()
Get the character stream for this input source.

19.12.5 The Attributes Interface

Attributes objects implement a portion of the mapping protocol, including the methods copy(), get(),
has_key(), items(), keys(), and values(). The following methods are also provided:

getLength()
Return the number of attributes.

getNames()
Return the names of the attributes.

getType(name)
Returns the type of the attribute name, which is normally ’CDATA’.

getValue(name)
Return the value of attribute name.

19.12.6 The AttributesNS Interface

This interface is a subtype of the Attributes interface (see section The Attributes Interface). All methods supported
by that interface are also available on AttributesNS objects.

The following methods are also available:

getValueByQName(name)
Return the value for a qualified name.

getNameByQName(name)
Return the (namespace, localname) pair for a qualified name.

getQNameByName(name)
Return the qualified name for a (namespace, localname) pair.

getQNames()
Return the qualified names of all attributes.

19.13 xml.etree.ElementTree — The ElementTree XML API

New in version 2.5. The Element type is a flexible container object, designed to store hierarchical data structures in
memory. The type can be described as a cross between a list and a dictionary.

Each element has a number of properties associated with it:

• a tag which is a string identifying what kind of data this element represents (the element type, in other words).

• a number of attributes, stored in a Python dictionary.

• a text string.

19.13. xml.etree.ElementTree — The ElementTree XML API 743

The Python Library Reference, Release 2.6.9

• an optional tail string.

• a number of child elements, stored in a Python sequence

To create an element instance, use the Element or SubElement factory functions.

The ElementTree class can be used to wrap an element structure, and convert it from and to XML.

A C implementation of this API is available as xml.etree.cElementTree.

See http://effbot.org/zone/element-index.htm for tutorials and links to other docs. Fredrik Lundh’s page is also the
location of the development version of the xml.etree.ElementTree.

19.13.1 Functions

Comment([text])
Comment element factory. This factory function creates a special element that will be serialized as an XML
comment. The comment string can be either an 8-bit ASCII string or a Unicode string. text is a string containing
the comment string. Returns an element instance representing a comment.

dump(elem)
Writes an element tree or element structure to sys.stdout. This function should be used for debugging only.

The exact output format is implementation dependent. In this version, it’s written as an ordinary XML file.

elem is an element tree or an individual element.

Element(tag, [attrib], [**extra])
Element factory. This function returns an object implementing the standard Element interface. The exact class
or type of that object is implementation dependent, but it will always be compatible with the _ElementInterface
class in this module.

The element name, attribute names, and attribute values can be either 8-bit ASCII strings or Unicode strings.
tag is the element name. attrib is an optional dictionary, containing element attributes. extra contains additional
attributes, given as keyword arguments. Returns an element instance.

fromstring(text)
Parses an XML section from a string constant. Same as XML. text is a string containing XML data. Returns an
Element instance.

iselement(element)
Checks if an object appears to be a valid element object. element is an element instance. Returns a true value if
this is an element object.

iterparse(source, [events])
Parses an XML section into an element tree incrementally, and reports what’s going on to the user. source is
a filename or file object containing XML data. events is a list of events to report back. If omitted, only “end”
events are reported. Returns an iterator providing (event, elem) pairs.

Note: iterparse() only guarantees that it has seen the “>” character of a starting tag when it emits a “start”
event, so the attributes are defined, but the contents of the text and tail attributes are undefined at that point. The
same applies to the element children; they may or may not be present.

If you need a fully populated element, look for “end” events instead.

parse(source, [parser])
Parses an XML section into an element tree. source is a filename or file object containing XML data. parser is
an optional parser instance. If not given, the standard XMLTreeBuilder parser is used. Returns an ElementTree
instance.

744 Chapter 19. Structured Markup Processing Tools

http://effbot.org/zone/element-index.htm

The Python Library Reference, Release 2.6.9

ProcessingInstruction(target, [text])
PI element factory. This factory function creates a special element that will be serialized as an XML processing
instruction. target is a string containing the PI target. text is a string containing the PI contents, if given. Returns
an element instance, representing a processing instruction.

SubElement(parent, tag, [attrib, [**extra]])
Subelement factory. This function creates an element instance, and appends it to an existing element.

The element name, attribute names, and attribute values can be either 8-bit ASCII strings or Unicode strings.
parent is the parent element. tag is the subelement name. attrib is an optional dictionary, containing element
attributes. extra contains additional attributes, given as keyword arguments. Returns an element instance.

tostring(element, [encoding])
Generates a string representation of an XML element, including all subelements. element is an Element instance.
encoding is the output encoding (default is US-ASCII). Returns an encoded string containing the XML data.

XML(text)
Parses an XML section from a string constant. This function can be used to embed “XML literals” in Python
code. text is a string containing XML data. Returns an Element instance.

XMLID(text)
Parses an XML section from a string constant, and also returns a dictionary which maps from element id:s to
elements. text is a string containing XML data. Returns a tuple containing an Element instance and a dictionary.

19.13.2 The Element Interface

Element objects returned by Element or SubElement have the following methods and attributes.

tag
A string identifying what kind of data this element represents (the element type, in other words).

text
The text attribute can be used to hold additional data associated with the element. As the name implies this
attribute is usually a string but may be any application-specific object. If the element is created from an XML
file the attribute will contain any text found between the element tags.

tail
The tail attribute can be used to hold additional data associated with the element. This attribute is usually a
string but may be any application-specific object. If the element is created from an XML file the attribute will
contain any text found after the element’s end tag and before the next tag.

attrib
A dictionary containing the element’s attributes. Note that while the attrib value is always a real mutable Python
dictionary, an ElementTree implementation may choose to use another internal representation, and create the
dictionary only if someone asks for it. To take advantage of such implementations, use the dictionary methods
below whenever possible.

The following dictionary-like methods work on the element attributes.

clear()
Resets an element. This function removes all subelements, clears all attributes, and sets the text and tail attributes
to None.

get(key, [default=None])
Gets the element attribute named key.

Returns the attribute value, or default if the attribute was not found.

19.13. xml.etree.ElementTree — The ElementTree XML API 745

The Python Library Reference, Release 2.6.9

items()
Returns the element attributes as a sequence of (name, value) pairs. The attributes are returned in an arbitrary
order.

keys()
Returns the elements attribute names as a list. The names are returned in an arbitrary order.

set(key, value)
Set the attribute key on the element to value.

The following methods work on the element’s children (subelements).

append(subelement)
Adds the element subelement to the end of this elements internal list of subelements.

find(match)
Finds the first subelement matching match. match may be a tag name or path. Returns an element instance or
None.

findall(match)
Finds all subelements matching match. match may be a tag name or path. Returns an iterable yielding all
matching elements in document order.

findtext(condition, [default=None])
Finds text for the first subelement matching condition. condition may be a tag name or path. Returns the text
content of the first matching element, or default if no element was found. Note that if the matching element has
no text content an empty string is returned.

getchildren()
Returns all subelements. The elements are returned in document order.

getiterator([tag=None])
Creates a tree iterator with the current element as the root. The iterator iterates over this element and all elements
below it, in document (depth first) order. If tag is not None or ’*’, only elements whose tag equals tag are
returned from the iterator.

insert(index, element)
Inserts a subelement at the given position in this element.

makeelement(tag, attrib)
Creates a new element object of the same type as this element. Do not call this method, use the SubElement
factory function instead.

remove(subelement)
Removes subelement from the element. Unlike the findXYZ methods this method compares elements based on
the instance identity, not on tag value or contents.

Element objects also support the following sequence type methods for working with subelements: __delitem__(),
__getitem__(), __setitem__(), __len__().

Caution: Because Element objects do not define a __nonzero__() method, elements with no subelements will test
as False.

element = root.find(’foo’)

if not element: # careful!
print "element not found, or element has no subelements"

if element is None:
print "element not found"

746 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

19.13.3 ElementTree Objects

class ElementTree([element], [file])
ElementTree wrapper class. This class represents an entire element hierarchy, and adds some extra support for
serialization to and from standard XML.

element is the root element. The tree is initialized with the contents of the XML file if given.

_setroot(element)
Replaces the root element for this tree. This discards the current contents of the tree, and replaces it with
the given element. Use with care. element is an element instance.

find(path)
Finds the first toplevel element with given tag. Same as getroot().find(path). path is the element to look
for. Returns the first matching element, or None if no element was found.

findall(path)
Finds all toplevel elements with the given tag. Same as getroot().findall(path). path is the element to look
for. Returns a list or iterator containing all matching elements, in document order.

findtext(path, [default])
Finds the element text for the first toplevel element with given tag. Same as getroot().findtext(path). path
is the toplevel element to look for. default is the value to return if the element was not found. Returns
the text content of the first matching element, or the default value no element was found. Note that if the
element has is found, but has no text content, this method returns an empty string.

getiterator([tag])
Creates and returns a tree iterator for the root element. The iterator loops over all elements in this tree, in
section order. tag is the tag to look for (default is to return all elements)

getroot()
Returns the root element for this tree.

parse(source, [parser])
Loads an external XML section into this element tree. source is a file name or file object. parser is an
optional parser instance. If not given, the standard XMLTreeBuilder parser is used. Returns the section
root element.

write(file, [encoding])
Writes the element tree to a file, as XML. file is a file name, or a file object opened for writing. encoding 3

is the output encoding (default is US-ASCII).

This is the XML file that is going to be manipulated:

<html>
<head>

<title>Example page</title>
</head>
<body>

<p>Moved to example.org
or example.com.</p>

</body>
</html>

Example of changing the attribute “target” of every link in first paragraph:

>>> from xml.etree.ElementTree import ElementTree
>>> tree = ElementTree()

3 The encoding string included in XML output should conform to the appropriate standards. For example, “UTF-8” is valid, but “UTF8” is not.
See http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl and http://www.iana.org/assignments/character-sets.

19.13. xml.etree.ElementTree — The ElementTree XML API 747

http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets

The Python Library Reference, Release 2.6.9

>>> tree.parse("index.xhtml")
<Element html at b7d3f1ec>
>>> p = tree.find("body/p") # Finds first occurrence of tag p in body
>>> p
<Element p at 8416e0c>
>>> links = p.getiterator("a") # Returns list of all links
>>> links
[<Element a at b7d4f9ec>, <Element a at b7d4fb0c>]
>>> for i in links: # Iterates through all found links
... i.attrib["target"] = "blank"
>>> tree.write("output.xhtml")

19.13.4 QName Objects

class QName(text_or_uri, [tag])
QName wrapper. This can be used to wrap a QName attribute value, in order to get proper namespace handling
on output. text_or_uri is a string containing the QName value, in the form {uri}local, or, if the tag argument is
given, the URI part of a QName. If tag is given, the first argument is interpreted as an URI, and this argument is
interpreted as a local name. QName instances are opaque.

19.13.5 TreeBuilder Objects

class TreeBuilder([element_factory])
Generic element structure builder. This builder converts a sequence of start, data, and end method calls to a
well-formed element structure. You can use this class to build an element structure using a custom XML parser,
or a parser for some other XML-like format. The element_factory is called to create new Element instances
when given.

close()
Flushes the parser buffers, and returns the toplevel document element. Returns an Element instance.

data(data)
Adds text to the current element. data is a string. This should be either an 8-bit string containing ASCII
text, or a Unicode string.

end(tag)
Closes the current element. tag is the element name. Returns the closed element.

start(tag, attrs)
Opens a new element. tag is the element name. attrs is a dictionary containing element attributes. Returns
the opened element.

19.13.6 XMLTreeBuilder Objects

class XMLTreeBuilder([html], [target])
Element structure builder for XML source data, based on the expat parser. html are predefined HTML entities.
This flag is not supported by the current implementation. target is the target object. If omitted, the builder uses
an instance of the standard TreeBuilder class.

close()
Finishes feeding data to the parser. Returns an element structure.

748 Chapter 19. Structured Markup Processing Tools

The Python Library Reference, Release 2.6.9

doctype(name, pubid, system)
Handles a doctype declaration. name is the doctype name. pubid is the public identifier. system is the
system identifier.

feed(data)
Feeds data to the parser. data is encoded data.

XMLTreeBuilder.feed() calls target‘s start()method for each opening tag, its end()method for each clos-
ing tag, and data is processed by method data(). XMLTreeBuilder.close() calls target‘s method close().
XMLTreeBuilder can be used not only for building a tree structure. This is an example of counting the maximum
depth of an XML file:

>>> from xml.etree.ElementTree import XMLTreeBuilder
>>> class MaxDepth: # The target object of the parser
... maxDepth = 0
... depth = 0
... def start(self, tag, attrib): # Called for each opening tag.
... self.depth += 1
... if self.depth > self.maxDepth:
... self.maxDepth = self.depth
... def end(self, tag): # Called for each closing tag.
... self.depth -= 1
... def data(self, data):
... pass # We do not need to do anything with data.
... def close(self): # Called when all data has been parsed.
... return self.maxDepth
...
>>> target = MaxDepth()
>>> parser = XMLTreeBuilder(target=target)
>>> exampleXml = """
... <a>
...
...
...
... <c>
... <d>
... </d>
... </c>
...
... """
>>> parser.feed(exampleXml)
>>> parser.close()
4

19.13. xml.etree.ElementTree — The ElementTree XML API 749

The Python Library Reference, Release 2.6.9

750 Chapter 19. Structured Markup Processing Tools

CHAPTER

TWENTY

INTERNET PROTOCOLS AND
SUPPORT

The modules described in this chapter implement Internet protocols and support for related technology. They are all
implemented in Python. Most of these modules require the presence of the system-dependent module socket, which
is currently supported on most popular platforms. Here is an overview:

20.1 webbrowser — Convenient Web-browser controller

The webbrowser module provides a high-level interface to allow displaying Web-based documents to users. Under
most circumstances, simply calling the open() function from this module will do the right thing.

Under Unix, graphical browsers are preferred under X11, but text-mode browsers will be used if graphical browsers
are not available or an X11 display isn’t available. If text-mode browsers are used, the calling process will block until
the user exits the browser.

If the environment variable BROWSER exists, it is interpreted to override the platform default list of browsers, as a
os.pathsep-separated list of browsers to try in order. When the value of a list part contains the string %s, then it
is interpreted as a literal browser command line to be used with the argument URL substituted for %s; if the part does
not contain %s, it is simply interpreted as the name of the browser to launch. 1

For non-Unix platforms, or when a remote browser is available on Unix, the controlling process will not wait for the
user to finish with the browser, but allow the remote browser to maintain its own windows on the display. If remote
browsers are not available on Unix, the controlling process will launch a new browser and wait.

The script webbrowser can be used as a command-line interface for the module. It accepts an URL as the argument.
It accepts the following optional parameters: -n opens the URL in a new browser window, if possible; -t opens the
URL in a new browser page (“tab”). The options are, naturally, mutually exclusive.

The following exception is defined:

exception Error
Exception raised when a browser control error occurs.

The following functions are defined:

open(url, [new=0, [autoraise=True]])
Display url using the default browser. If new is 0, the url is opened in the same browser window if possible.
If new is 1, a new browser window is opened if possible. If new is 2, a new browser page (“tab”) is opened if
possible. If autoraise is True, the window is raised if possible (note that under many window managers this
will occur regardless of the setting of this variable).

1 Executables named here without a full path will be searched in the directories given in the PATH environment variable.

751

The Python Library Reference, Release 2.6.9

Note that on some platforms, trying to open a filename using this function, may work and start the operating
system’s associated program. However, this is neither supported nor portable. Changed in version 2.5: new can
now be 2.

open_new(url)
Open url in a new window of the default browser, if possible, otherwise, open url in the only browser window.

open_new_tab(url)
Open url in a new page (“tab”) of the default browser, if possible, otherwise equivalent to open_new(). New
in version 2.5.

get([name])
Return a controller object for the browser type name. If name is empty, return a controller for a default browser
appropriate to the caller’s environment.

register(name, constructor, [instance])
Register the browser type name. Once a browser type is registered, the get() function can return a controller
for that browser type. If instance is not provided, or is None, constructor will be called without parameters to
create an instance when needed. If instance is provided, constructor will never be called, and may be None.

This entry point is only useful if you plan to either set the BROWSER variable or call get() with a nonempty
argument matching the name of a handler you declare.

A number of browser types are predefined. This table gives the type names that may be passed to the get() function
and the corresponding instantiations for the controller classes, all defined in this module.

Type Name Class Name Notes
’mozilla’ Mozilla(’mozilla’)
’firefox’ Mozilla(’mozilla’)
’netscape’ Mozilla(’netscape’)
’galeon’ Galeon(’galeon’)
’epiphany’ Galeon(’epiphany’)
’skipstone’ BackgroundBrowser(’skipstone’)
’kfmclient’ Konqueror() (1)
’konqueror’ Konqueror() (1)
’kfm’ Konqueror() (1)
’mosaic’ BackgroundBrowser(’mosaic’)
’opera’ Opera()
’grail’ Grail()
’links’ GenericBrowser(’links’)
’elinks’ Elinks(’elinks’)
’lynx’ GenericBrowser(’lynx’)
’w3m’ GenericBrowser(’w3m’)
’windows-default’ WindowsDefault (2)
’internet-config’ InternetConfig (3)
’macosx’ MacOSX(’default’) (4)

Notes:

1. “Konqueror” is the file manager for the KDE desktop environment for Unix, and only makes sense to use if KDE
is running. Some way of reliably detecting KDE would be nice; the KDEDIR variable is not sufficient. Note
also that the name “kfm” is used even when using the konqueror command with KDE 2 — the implementation
selects the best strategy for running Konqueror.

2. Only on Windows platforms.

3. Only on Mac OS platforms; requires the standard MacPython ic module.

4. Only on Mac OS X platform.

752 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

Here are some simple examples:

url = ’http://www.python.org/’

Open URL in a new tab, if a browser window is already open.
webbrowser.open_new_tab(url + ’doc/’)

Open URL in new window, raising the window if possible.
webbrowser.open_new(url)

20.1.1 Browser Controller Objects

Browser controllers provide these methods which parallel three of the module-level convenience functions:

open(url, [new=0, [autoraise=True]])
Display url using the browser handled by this controller. If new is 1, a new browser window is opened if possible.
If new is 2, a new browser page (“tab”) is opened if possible.

open_new(url)
Open url in a new window of the browser handled by this controller, if possible, otherwise, open url in the only
browser window. Alias open_new().

open_new_tab(url)
Open url in a new page (“tab”) of the browser handled by this controller, if possible, otherwise equivalent to
open_new(). New in version 2.5.

20.2 cgi — Common Gateway Interface support

Support module for Common Gateway Interface (CGI) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

20.2.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML <FORM> or
<ISINDEX> element.

Most often, CGI scripts live in the server’s special cgi-bin directory. The HTTP server places all sorts of informa-
tion about the request (such as the client’s hostname, the requested URL, the query string, and lots of other goodies)
in the script’s shell environment, executes the script, and sends the script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the form
data is passed via the “query string” part of the URL. This module is intended to take care of the different cases and
provide a simpler interface to the Python script. It also provides a number of utilities that help in debugging scripts,
and the latest addition is support for file uploads from a form (if your browser supports it).

The output of a CGI script should consist of two sections, separated by a blank line. The first section contains a number
of headers, telling the client what kind of data is following. Python code to generate a minimal header section looks
like this:

print "Content-Type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with header,
in-line images, etc. Here’s Python code that prints a simple piece of HTML:

20.2. cgi — Common Gateway Interface support 753

The Python Library Reference, Release 2.6.9

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!"

20.2.2 Using the cgi module

Begin by writing import cgi. Do not use from cgi import * — the module defines all sorts of names for its
own use or for backward compatibility that you don’t want in your namespace.

When you write a new script, consider adding these lines:

import cgitb
cgitb.enable()

This activates a special exception handler that will display detailed reports in the Web browser if any errors occur. If
you’d rather not show the guts of your program to users of your script, you can have the reports saved to files instead,
with code like this:

import cgitb
cgitb.enable(display=0, logdir="/tmp")

It’s very helpful to use this feature during script development. The reports produced by cgitb provide information
that can save you a lot of time in tracking down bugs. You can always remove the cgitb line later when you have
tested your script and are confident that it works correctly.

To get at submitted form data, it’s best to use the FieldStorage class. The other classes defined in this module are
provided mostly for backward compatibility. Instantiate it exactly once, without arguments. This reads the form con-
tents from standard input or the environment (depending on the value of various environment variables set according
to the CGI standard). Since it may consume standard input, it should be instantiated only once.

The FieldStorage instance can be indexed like a Python dictionary. It allows membership testing with the in
operator, and also supports the standard dictionary method keys() and the built-in function len(). Form fields
containing empty strings are ignored and do not appear in the dictionary; to keep such values, provide a true value for
the optional keep_blank_values keyword parameter when creating the FieldStorage instance.

For instance, the following code (which assumes that the Content-Type header and blank line have already been
printed) checks that the fields name and addr are both set to a non-empty string:

form = cgi.FieldStorage()
if "name" not in form or "addr" not in form:

print "<H1>Error</H1>"
print "Please fill in the name and addr fields."
return

print "<p>name:", form["name"].value
print "<p>addr:", form["addr"].value
...further form processing here...

Here the fields, accessed through form[key], are themselves instances of FieldStorage (or
MiniFieldStorage, depending on the form encoding). The value attribute of the instance yields the
string value of the field. The getvalue() method returns this string value directly; it also accepts an optional
second argument as a default to return if the requested key is not present.

If the submitted form data contains more than one field with the same name, the object retrieved by form[key] is
not a FieldStorage or MiniFieldStorage instance but a list of such instances. Similarly, in this situation,
form.getvalue(key) would return a list of strings. If you expect this possibility (when your HTML form con-
tains multiple fields with the same name), use the getlist() function, which always returns a list of values (so that
you do not need to special-case the single item case). For example, this code concatenates any number of username
fields, separated by commas:

754 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

value = form.getlist("username")
usernames = ",".join(value)

If a field represents an uploaded file, accessing the value via the value attribute or the getvalue() method reads
the entire file in memory as a string. This may not be what you want. You can test for an uploaded file by testing either
the filename attribute or the file attribute. You can then read the data at leisure from the file attribute:

fileitem = form["userfile"]
if fileitem.file:

It’s an uploaded file; count lines
linecount = 0
while 1:

line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

If an error is encountered when obtaining the contents of an uploaded file (for example, when the user interrupts the
form submission by clicking on a Back or Cancel button) the done attribute of the object for the field will be set to
the value -1.

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-like FieldStorage item. This can
be determined by testing its type attribute, which should be multipart/form-data (or perhaps another MIME
type matching multipart/*). In this case, it can be iterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part of
type application/x-www-form-urlencoded), the items will actually be instances of the class
MiniFieldStorage. In this case, the list, file, and filename attributes are always None.

A form submitted via POST that also has a query string will contain both FieldStorage and
MiniFieldStorage items.

20.2.3 Higher Level Interface

New in version 2.2. The previous section explains how to read CGI form data using the FieldStorage class. This
section describes a higher level interface which was added to this class to allow one to do it in a more readable and
intuitive way. The interface doesn’t make the techniques described in previous sections obsolete — they are still useful
to process file uploads efficiently, for example.

The interface consists of two simple methods. Using the methods you can process form data in a generic way, without
the need to worry whether only one or more values were posted under one name.

In the previous section, you learned to write following code anytime you expected a user to post more than one value
under one name:

item = form.getvalue("item")
if isinstance(item, list):

The user is requesting more than one item.
else:

The user is requesting only one item.

This situation is common for example when a form contains a group of multiple checkboxes with the same name:

<input type="checkbox" name="item" value="1" />
<input type="checkbox" name="item" value="2" />

In most situations, however, there’s only one form control with a particular name in a form and then you expect and
need only one value associated with this name. So you write a script containing for example this code:

user = form.getvalue("user").upper()

20.2. cgi — Common Gateway Interface support 755

The Python Library Reference, Release 2.6.9

The problem with the code is that you should never expect that a client will provide valid input to your scripts. For
example, if a curious user appends another user=foo pair to the query string, then the script would crash, because in
this situation the getvalue("user") method call returns a list instead of a string. Calling the upper() method
on a list is not valid (since lists do not have a method of this name) and results in an AttributeError exception.

Therefore, the appropriate way to read form data values was to always use the code which checks whether the obtained
value is a single value or a list of values. That’s annoying and leads to less readable scripts.

A more convenient approach is to use the methods getfirst() and getlist() provided by this higher level
interface.

getfirst(name, [default])
This method always returns only one value associated with form field name. The method returns only the first
value in case that more values were posted under such name. Please note that the order in which the values are
received may vary from browser to browser and should not be counted on. 2 If no such form field or value exists
then the method returns the value specified by the optional parameter default. This parameter defaults to None
if not specified.

getlist(name)
This method always returns a list of values associated with form field name. The method returns an empty list if
no such form field or value exists for name. It returns a list consisting of one item if only one such value exists.

Using these methods you can write nice compact code:

import cgi
form = cgi.FieldStorage()
user = form.getfirst("user", "").upper() # This way it’s safe.
for item in form.getlist("item"):

do_something(item)

20.2.4 Old classes

Deprecated since version 2.6. SvFormContentDict stores single value form content as dictionary; it assumes each
field name occurs in the form only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values). Useful if
your form contains multiple fields with the same name.

Other classes (FormContent, InterpFormContentDict) are present for backwards compatibility with really
old applications only.

20.2.5 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
module in other circumstances.

parse(fp, [keep_blank_values, [strict_parsing]])
Parse a query in the environment or from a file (the file defaults to sys.stdin). The keep_blank_values and
strict_parsing parameters are passed to urlparse.parse_qs() unchanged.

parse_qs(qs, [keep_blank_values, [strict_parsing]])
This function is deprecated in this module. Use urlparse.parse_qs() instead. It is maintained here only
for backward compatiblity.

2 Note that some recent versions of the HTML specification do state what order the field values should be supplied in, but knowing whether a
request was received from a conforming browser, or even from a browser at all, is tedious and error-prone.

756 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

parse_qsl(qs, [keep_blank_values, [strict_parsing]])
This function is deprecated in this module. Use urlparse.parse_qsl() instead. It is maintained here
only for backward compatiblity.

parse_multipart(fp, pdict)
Parse input of type multipart/form-data (for file uploads). Arguments are fp for the input file and pdict
for a dictionary containing other parameters in the Content-Type header.

Returns a dictionary just like urlparse.parse_qs() keys are the field names, each value is a list of values
for that field. This is easy to use but not much good if you are expecting megabytes to be uploaded — in that
case, use the FieldStorage class instead which is much more flexible.

Note that this does not parse nested multipart parts — use FieldStorage for that.

parse_header(string)
Parse a MIME header (such as Content-Type) into a main value and a dictionary of parameters.

test()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all information
provided to the script in HTML form.

print_environ()
Format the shell environment in HTML.

print_form(form)
Format a form in HTML.

print_directory()
Format the current directory in HTML.

print_environ_usage()
Print a list of useful (used by CGI) environment variables in HTML.

escape(s, [quote])
Convert the characters ’&’, ’<’ and ’>’ in string s to HTML-safe sequences. Use this if you need to display
text that might contain such characters in HTML. If the optional flag quote is true, the quotation mark character
(") is also translated; this helps for inclusion in an HTML attribute value delimited by double quotes, as in . Note that single quotes are never translated.

If the value to be quoted might include single- or double-quote characters, or both, consider using the
quoteattr() function in the xml.sax.saxutils module instead.

20.2.6 Caring about security

There’s one important rule: if you invoke an external program (via the os.system() or os.popen() functions.
or others with similar functionality), make very sure you don’t pass arbitrary strings received from the client to the
shell. This is a well-known security hole whereby clever hackers anywhere on the Web can exploit a gullible CGI
script to invoke arbitrary shell commands. Even parts of the URL or field names cannot be trusted, since the request
doesn’t have to come from your form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make sure the
string contains only alphanumeric characters, dashes, underscores, and periods.

20.2.7 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find the directory
where CGI scripts should be installed; usually this is in a directory cgi-bin in the server tree.

20.2. cgi — Common Gateway Interface support 757

The Python Library Reference, Release 2.6.9

Make sure that your script is readable and executable by “others”; the Unix file mode should be 0755 octal (use
chmod 0755 filename). Make sure that the first line of the script contains #! starting in column 1 followed by
the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others” —
their mode should be 0644 for readable and 0666 for writable. This is because, for security reasons, the HTTP
server executes your script as user “nobody”, without any special privileges. It can only read (write, execute) files
that everybody can read (write, execute). The current directory at execution time is also different (it is usually the
server’s cgi-bin directory) and the set of environment variables is also different from what you get when you log
in. In particular, don’t count on the shell’s search path for executables (PATH) or the Python module search path
(PYTHONPATH) to be set to anything interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you can change the
path in your script, before importing other modules. For example:

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-Unix systems will vary; check your HTTP server’s documentation (it will usually have a section
on CGI scripts).

20.2.8 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script that works
perfectly from the command line may fail mysteriously when run from the server. There’s one reason why you should
still test your script from the command line: if it contains a syntax error, the Python interpreter won’t execute it at all,
and the HTTP server will most likely send a cryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next section.

20.2.9 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI script carefully can
save you a lot of time. If you wonder whether you have understood the installation procedure correctly, try installing
a copy of this module file (cgi.py) as a CGI script. When invoked as a script, the file will dump its environment
and the contents of the form in HTML form. Give it the right mode etc, and send it a request. If it’s installed in the
standard cgi-bin directory, it should be possible to send it a request by entering a URL into your browser of the
form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a different directory.
If it gives another error, there’s an installation problem that you should fix before trying to go any further. If you get
a nicely formatted listing of the environment and form content (in this example, the fields should be listed as “addr”
with value “At Home” and “name” with value “Joe Blow”), the cgi.py script has been installed correctly. If you
follow the same procedure for your own script, you should now be able to debug it.

The next step could be to call the cgi module’s test() function from your script: replace its main code with the
single statement

cgi.test()

758 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

This should produce the same results as those gotten from installing the cgi.py file itself.

When an ordinary Python script raises an unhandled exception (for whatever reason: of a typo in a module name, a
file that can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the Python interpreter
will still do this when your CGI script raises an exception, most likely the traceback will end up in one of the HTTP
server’s log files, or be discarded altogether.

Fortunately, once you have managed to get your script to execute some code, you can easily send tracebacks to the
Web browser using the cgitb module. If you haven’t done so already, just add the lines:

import cgitb
cgitb.enable()

to the top of your script. Then try running it again; when a problem occurs, you should see a detailed report that will
likely make apparent the cause of the crash.

If you suspect that there may be a problem in importing the cgitb module, you can use an even more robust approach
(which only uses built-in modules):

import sys
sys.stderr = sys.stdout
print "Content-Type: text/plain"
print
...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain text, which
disables all HTML processing. If your script works, the raw HTML will be displayed by your client. If it raises an
exception, most likely after the first two lines have been printed, a traceback will be displayed. Because no HTML
interpretation is going on, the traceback will be readable.

20.2.10 Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that it is not
possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (tail -f logfile in a separate window may be useful!)

• Always check a script for syntax errors first, by doing something like python script.py.

• If your script does not have any syntax errors, try adding import cgitb; cgitb.enable() to the top
of the script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute path names
— PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by the userid under which your
CGI script will be running: this is typically the userid under which the web server is running, or some explicitly
specified userid for a web server’s suexec feature.

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security liability as
well.

20.3 cgitb — Traceback manager for CGI scripts

New in version 2.2. The cgitb module provides a special exception handler for Python scripts. (Its name is a bit
misleading. It was originally designed to display extensive traceback information in HTML for CGI scripts. It was

20.3. cgitb — Traceback manager for CGI scripts 759

The Python Library Reference, Release 2.6.9

later generalized to also display this information in plain text.) After this module is activated, if an uncaught exception
occurs, a detailed, formatted report will be displayed. The report includes a traceback showing excerpts of the source
code for each level, as well as the values of the arguments and local variables to currently running functions, to help
you debug the problem. Optionally, you can save this information to a file instead of sending it to the browser.

To enable this feature, simply add this to the top of your CGI script:

import cgitb
cgitb.enable()

The options to the enable() function control whether the report is displayed in the browser and whether the report
is logged to a file for later analysis.

enable([display, [logdir, [context, [format]]]])
This function causes the cgitb module to take over the interpreter’s default handling for exceptions by setting
the value of sys.excepthook.

The optional argument display defaults to 1 and can be set to 0 to suppress sending the traceback to the browser.
If the argument logdir is present, the traceback reports are written to files. The value of logdir should be a
directory where these files will be placed. The optional argument context is the number of lines of context to
display around the current line of source code in the traceback; this defaults to 5. If the optional argument
format is "html", the output is formatted as HTML. Any other value forces plain text output. The default
value is "html".

handler([info])
This function handles an exception using the default settings (that is, show a report in the browser, but don’t log
to a file). This can be used when you’ve caught an exception and want to report it using cgitb. The optional
info argument should be a 3-tuple containing an exception type, exception value, and traceback object, exactly
like the tuple returned by sys.exc_info(). If the info argument is not supplied, the current exception is
obtained from sys.exc_info().

20.4 wsgiref — WSGI Utilities and Reference Implementation

New in version 2.5. The Web Server Gateway Interface (WSGI) is a standard interface between web server software
and web applications written in Python. Having a standard interface makes it easy to use an application that supports
WSGI with a number of different web servers.

Only authors of web servers and programming frameworks need to know every detail and corner case of the WSGI
design. You don’t need to understand every detail of WSGI just to install a WSGI application or to write a web
application using an existing framework.

wsgiref is a reference implementation of the WSGI specification that can be used to add WSGI support to a web
server or framework. It provides utilities for manipulating WSGI environment variables and response headers, base
classes for implementing WSGI servers, a demo HTTP server that serves WSGI applications, and a validation tool
that checks WSGI servers and applications for conformance to the WSGI specification (PEP 333).

See http://www.wsgi.org for more information about WSGI, and links to tutorials and other resources.

20.4.1 wsgiref.util – WSGI environment utilities

This module provides a variety of utility functions for working with WSGI environments. A WSGI environment
is a dictionary containing HTTP request variables as described in PEP 333. All of the functions taking an environ
parameter expect a WSGI-compliant dictionary to be supplied; please see PEP 333 for a detailed specification.

760 Chapter 20. Internet Protocols and Support

http://www.python.org/dev/peps/pep-0333
http://www.wsgi.org
http://www.python.org/dev/peps/pep-0333
http://www.python.org/dev/peps/pep-0333

The Python Library Reference, Release 2.6.9

guess_scheme(environ)
Return a guess for whether wsgi.url_scheme should be “http” or “https”, by checking for a HTTPS envi-
ronment variable in the environ dictionary. The return value is a string.

This function is useful when creating a gateway that wraps CGI or a CGI-like protocol such as FastCGI. Typi-
cally, servers providing such protocols will include a HTTPS variable with a value of “1” “yes”, or “on” when a
request is received via SSL. So, this function returns “https” if such a value is found, and “http” otherwise.

request_uri(environ, [include_query=1])
Return the full request URI, optionally including the query string, using the algorithm found in the “URL
Reconstruction” section of PEP 333. If include_query is false, the query string is not included in the resulting
URI.

application_uri(environ)
Similar to request_uri(), except that the PATH_INFO and QUERY_STRING variables are ignored. The
result is the base URI of the application object addressed by the request.

shift_path_info(environ)
Shift a single name from PATH_INFO to SCRIPT_NAME and return the name. The environ dictionary is
modified in-place; use a copy if you need to keep the original PATH_INFO or SCRIPT_NAME intact.

If there are no remaining path segments in PATH_INFO, None is returned.

Typically, this routine is used to process each portion of a request URI path, for example to treat the path as a se-
ries of dictionary keys. This routine modifies the passed-in environment to make it suitable for invoking another
WSGI application that is located at the target URI. For example, if there is a WSGI application at /foo, and
the request URI path is /foo/bar/baz, and the WSGI application at /foo calls shift_path_info(),
it will receive the string “bar”, and the environment will be updated to be suitable for passing to a WSGI appli-
cation at /foo/bar. That is, SCRIPT_NAME will change from /foo to /foo/bar, and PATH_INFO will
change from /bar/baz to /baz.

When PATH_INFO is just a “/”, this routine returns an empty string and appends a trailing slash to
SCRIPT_NAME, even though empty path segments are normally ignored, and SCRIPT_NAME doesn’t nor-
mally end in a slash. This is intentional behavior, to ensure that an application can tell the difference between
URIs ending in /x from ones ending in /x/ when using this routine to do object traversal.

setup_testing_defaults(environ)
Update environ with trivial defaults for testing purposes.

This routine adds various parameters required for WSGI, including HTTP_HOST, SERVER_NAME,
SERVER_PORT, REQUEST_METHOD, SCRIPT_NAME, PATH_INFO, and all of the PEP 333-defined
wsgi.* variables. It only supplies default values, and does not replace any existing settings for these vari-
ables.

This routine is intended to make it easier for unit tests of WSGI servers and applications to set up dummy
environments. It should NOT be used by actual WSGI servers or applications, since the data is fake!

Example usage:

from wsgiref.util import setup_testing_defaults
from wsgiref.simple_server import make_server

A relatively simple WSGI application. It’s going to print out the
environment dictionary after being updated by setup_testing_defaults
def simple_app(environ, start_response):

setup_testing_defaults(environ)

status = ’200 OK’
headers = [(’Content-type’, ’text/plain’)]

20.4. wsgiref — WSGI Utilities and Reference Implementation 761

http://www.python.org/dev/peps/pep-0333
http://www.python.org/dev/peps/pep-0333

The Python Library Reference, Release 2.6.9

start_response(status, headers)

ret = ["%s: %s\n" % (key, value)
for key, value in environ.iteritems()]

return ret

httpd = make_server(’’, 8000, simple_app)
print "Serving on port 8000..."
httpd.serve_forever()

In addition to the environment functions above, the wsgiref.util module also provides these miscellaneous utili-
ties:

is_hop_by_hop(header_name)
Return true if ‘header_name’ is an HTTP/1.1 “Hop-by-Hop” header, as defined by RFC 2616.

class FileWrapper(filelike, [blksize=8192])
A wrapper to convert a file-like object to an iterator. The resulting objects support both __getitem__() and
__iter__() iteration styles, for compatibility with Python 2.1 and Jython. As the object is iterated over, the
optional blksize parameter will be repeatedly passed to the filelike object’s read() method to obtain strings to
yield. When read() returns an empty string, iteration is ended and is not resumable.

If filelike has a close() method, the returned object will also have a close() method, and it will invoke the
filelike object’s close() method when called.

Example usage:

from StringIO import StringIO
from wsgiref.util import FileWrapper

We’re using a StringIO-buffer for as the file-like object
filelike = StringIO("This is an example file-like object"*10)
wrapper = FileWrapper(filelike, blksize=5)

for chunk in wrapper:
print chunk

20.4.2 wsgiref.headers – WSGI response header tools

This module provides a single class, Headers, for convenient manipulation of WSGI response headers using a
mapping-like interface.

class Headers(headers)
Create a mapping-like object wrapping headers, which must be a list of header name/value tuples as described
in PEP 333. Any changes made to the new Headers object will directly update the headers list it was created
with.

Headers objects support typical mapping operations including __getitem__(), get(),
__setitem__(), setdefault(), __delitem__(), __contains__() and has_key(). For
each of these methods, the key is the header name (treated case-insensitively), and the value is the first value
associated with that header name. Setting a header deletes any existing values for that header, then adds a new
value at the end of the wrapped header list. Headers’ existing order is generally maintained, with new headers
added to the end of the wrapped list.

762 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2616.html
http://www.python.org/dev/peps/pep-0333

The Python Library Reference, Release 2.6.9

Unlike a dictionary, Headers objects do not raise an error when you try to get or delete a key that isn’t in the
wrapped header list. Getting a nonexistent header just returns None, and deleting a nonexistent header does
nothing.

Headers objects also support keys(), values(), and items() methods. The lists returned by keys()
and items() can include the same key more than once if there is a multi-valued header. The len() of a
Headers object is the same as the length of its items(), which is the same as the length of the wrapped
header list. In fact, the items() method just returns a copy of the wrapped header list.

Calling str() on a Headers object returns a formatted string suitable for transmission as HTTP response
headers. Each header is placed on a line with its value, separated by a colon and a space. Each line is terminated
by a carriage return and line feed, and the string is terminated with a blank line.

In addition to their mapping interface and formatting features, Headers objects also have the following meth-
ods for querying and adding multi-valued headers, and for adding headers with MIME parameters:

get_all(name)
Return a list of all the values for the named header.

The returned list will be sorted in the order they appeared in the original header list or were added to this
instance, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header
list. If no fields exist with the given name, returns an empty list.

add_header(name, value, **_params)
Add a (possibly multi-valued) header, with optional MIME parameters specified via keyword arguments.

name is the header field to add. Keyword arguments can be used to set MIME parameters for the header
field. Each parameter must be a string or None. Underscores in parameter names are converted to dashes,
since dashes are illegal in Python identifiers, but many MIME parameter names include dashes. If the
parameter value is a string, it is added to the header value parameters in the form name="value". If it is
None, only the parameter name is added. (This is used for MIME parameters without a value.) Example
usage:

h.add_header(’content-disposition’, ’attachment’, filename=’bud.gif’)

The above will add a header that looks like this:

Content-Disposition: attachment; filename="bud.gif"

20.4.3 wsgiref.simple_server – a simple WSGI HTTP server

This module implements a simple HTTP server (based on BaseHTTPServer) that serves WSGI applications. Each
server instance serves a single WSGI application on a given host and port. If you want to serve multiple applications
on a single host and port, you should create a WSGI application that parses PATH_INFO to select which application
to invoke for each request. (E.g., using the shift_path_info() function from wsgiref.util.)

make_server(host, port, app, [server_class=WSGIServer, [handler_class=WSGIRequestHandler]])
Create a new WSGI server listening on host and port, accepting connections for app. The return value is an
instance of the supplied server_class, and will process requests using the specified handler_class. app must be
a WSGI application object, as defined by PEP 333.

Example usage:

from wsgiref.simple_server import make_server, demo_app

httpd = make_server(’’, 8000, demo_app)
print "Serving HTTP on port 8000..."

20.4. wsgiref — WSGI Utilities and Reference Implementation 763

http://www.python.org/dev/peps/pep-0333

The Python Library Reference, Release 2.6.9

Respond to requests until process is killed
httpd.serve_forever()

Alternative: serve one request, then exit
httpd.handle_request()

demo_app(environ, start_response)
This function is a small but complete WSGI application that returns a text page containing the message “Hello
world!” and a list of the key/value pairs provided in the environ parameter. It’s useful for verifying that a WSGI
server (such as wsgiref.simple_server) is able to run a simple WSGI application correctly.

class WSGIServer(server_address, RequestHandlerClass)
Create a WSGIServer instance. server_address should be a (host,port) tuple, and RequestHandlerClass
should be the subclass of BaseHTTPServer.BaseHTTPRequestHandler that will be used to process
requests.

You do not normally need to call this constructor, as the make_server() function can handle all the details
for you.

WSGIServer is a subclass of BaseHTTPServer.HTTPServer, so all of its methods (such as
serve_forever() and handle_request()) are available. WSGIServer also provides these WSGI-
specific methods:

set_app(application)
Sets the callable application as the WSGI application that will receive requests.

get_app()
Returns the currently-set application callable.

Normally, however, you do not need to use these additional methods, as set_app() is normally called by
make_server(), and the get_app() exists mainly for the benefit of request handler instances.

class WSGIRequestHandler(request, client_address, server)
Create an HTTP handler for the given request (i.e. a socket), client_address (a (host,port) tuple), and
server (WSGIServer instance).

You do not need to create instances of this class directly; they are automatically created as needed by
WSGIServer objects. You can, however, subclass this class and supply it as a handler_class to the
make_server() function. Some possibly relevant methods for overriding in subclasses:

get_environ()
Returns a dictionary containing the WSGI environment for a request. The default implementation copies
the contents of the WSGIServer object’s base_environ dictionary attribute and then adds various
headers derived from the HTTP request. Each call to this method should return a new dictionary containing
all of the relevant CGI environment variables as specified in PEP 333.

get_stderr()
Return the object that should be used as the wsgi.errors stream. The default implementation just
returns sys.stderr.

handle()
Process the HTTP request. The default implementation creates a handler instance using a
wsgiref.handlers class to implement the actual WSGI application interface.

20.4.4 wsgiref.validate — WSGI conformance checker

When creating new WSGI application objects, frameworks, servers, or middleware, it can be useful to validate the new
code’s conformance using wsgiref.validate. This module provides a function that creates WSGI application

764 Chapter 20. Internet Protocols and Support

http://www.python.org/dev/peps/pep-0333

The Python Library Reference, Release 2.6.9

objects that validate communications between a WSGI server or gateway and a WSGI application object, to check
both sides for protocol conformance.

Note that this utility does not guarantee complete PEP 333 compliance; an absence of errors from this module does
not necessarily mean that errors do not exist. However, if this module does produce an error, then it is virtually certain
that either the server or application is not 100% compliant.

This module is based on the paste.lint module from Ian Bicking’s “Python Paste” library.

validator(application)
Wrap application and return a new WSGI application object. The returned application will forward all requests
to the original application, and will check that both the application and the server invoking it are conforming to
the WSGI specification and to RFC 2616.

Any detected nonconformance results in an AssertionError being raised; note, however, that how these
errors are handled is server-dependent. For example, wsgiref.simple_server and other servers based on
wsgiref.handlers (that don’t override the error handling methods to do something else) will simply output
a message that an error has occurred, and dump the traceback to sys.stderr or some other error stream.

This wrapper may also generate output using the warnings module to indicate behaviors that are questionable
but which may not actually be prohibited by PEP 333. Unless they are suppressed using Python command-
line options or the warnings API, any such warnings will be written to sys.stderr (not wsgi.errors,
unless they happen to be the same object).

Example usage:

from wsgiref.validate import validator
from wsgiref.simple_server import make_server

Our callable object which is intentionally not compliant to the
standard, so the validator is going to break
def simple_app(environ, start_response):

status = ’200 OK’ # HTTP Status
headers = [(’Content-type’, ’text/plain’)] # HTTP Headers
start_response(status, headers)

This is going to break because we need to return a list, and
the validator is going to inform us
return "Hello World"

This is the application wrapped in a validator
validator_app = validator(simple_app)

httpd = make_server(’’, 8000, validator_app)
print "Listening on port 8000...."
httpd.serve_forever()

20.4.5 wsgiref.handlers – server/gateway base classes

This module provides base handler classes for implementing WSGI servers and gateways. These base classes handle
most of the work of communicating with a WSGI application, as long as they are given a CGI-like environment, along
with input, output, and error streams.

class CGIHandler()
CGI-based invocation via sys.stdin, sys.stdout, sys.stderr and os.environ. This is
useful when you have a WSGI application and want to run it as a CGI script. Simply invoke
CGIHandler().run(app), where app is the WSGI application object you wish to invoke.

20.4. wsgiref — WSGI Utilities and Reference Implementation 765

http://www.python.org/dev/peps/pep-0333
http://www.python.org/dev/peps/pep-0333

The Python Library Reference, Release 2.6.9

This class is a subclass of BaseCGIHandler that sets wsgi.run_once to true, wsgi.multithread to
false, and wsgi.multiprocess to true, and always uses sys and os to obtain the necessary CGI streams
and environment.

class BaseCGIHandler(stdin, stdout, stderr, environ, [multithread=True, [multiprocess=False]])
Similar to CGIHandler, but instead of using the sys and os modules, the CGI environment and I/O streams
are specified explicitly. The multithread and multiprocess values are used to set the wsgi.multithread and
wsgi.multiprocess flags for any applications run by the handler instance.

This class is a subclass of SimpleHandler intended for use with software other than HTTP “origin servers”.
If you are writing a gateway protocol implementation (such as CGI, FastCGI, SCGI, etc.) that uses a Status:
header to send an HTTP status, you probably want to subclass this instead of SimpleHandler.

class SimpleHandler(stdin, stdout, stderr, environ, [multithread=True, [multiprocess=False]])
Similar to BaseCGIHandler, but designed for use with HTTP origin servers. If you are writing an HTTP
server implementation, you will probably want to subclass this instead of BaseCGIHandler

This class is a subclass of BaseHandler. It overrides the __init__(), get_stdin(), get_stderr(),
add_cgi_vars(), _write(), and _flush() methods to support explicitly setting the environment and
streams via the constructor. The supplied environment and streams are stored in the stdin, stdout, stderr,
and environ attributes.

class BaseHandler()
This is an abstract base class for running WSGI applications. Each instance will handle a single HTTP request,
although in principle you could create a subclass that was reusable for multiple requests.

BaseHandler instances have only one method intended for external use:

run(app)
Run the specified WSGI application, app.

All of the other BaseHandler methods are invoked by this method in the process of running the application,
and thus exist primarily to allow customizing the process.

The following methods MUST be overridden in a subclass:

_write(data)
Buffer the string data for transmission to the client. It’s okay if this method actually transmits the data;
BaseHandler just separates write and flush operations for greater efficiency when the underlying system
actually has such a distinction.

_flush()
Force buffered data to be transmitted to the client. It’s okay if this method is a no-op (i.e., if _write()
actually sends the data).

get_stdin()
Return an input stream object suitable for use as the wsgi.input of the request currently being pro-
cessed.

get_stderr()
Return an output stream object suitable for use as the wsgi.errors of the request currently being
processed.

add_cgi_vars()
Insert CGI variables for the current request into the environ attribute.

Here are some other methods and attributes you may wish to override. This list is only a summary, however,
and does not include every method that can be overridden. You should consult the docstrings and source code
for additional information before attempting to create a customized BaseHandler subclass.

Attributes and methods for customizing the WSGI environment:

766 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

wsgi_multithread
The value to be used for the wsgi.multithread environment variable. It defaults to true in
BaseHandler, but may have a different default (or be set by the constructor) in the other subclasses.

wsgi_multiprocess
The value to be used for the wsgi.multiprocess environment variable. It defaults to true in
BaseHandler, but may have a different default (or be set by the constructor) in the other subclasses.

wsgi_run_once
The value to be used for the wsgi.run_once environment variable. It defaults to false in
BaseHandler, but CGIHandler sets it to true by default.

os_environ
The default environment variables to be included in every request’s WSGI environment. By default, this is
a copy of os.environ at the time that wsgiref.handlers was imported, but subclasses can either
create their own at the class or instance level. Note that the dictionary should be considered read-only,
since the default value is shared between multiple classes and instances.

server_software
If the origin_server attribute is set, this attribute’s value is used to set the default
SERVER_SOFTWARE WSGI environment variable, and also to set a default Server: header in HTTP
responses. It is ignored for handlers (such as BaseCGIHandler and CGIHandler) that are not HTTP
origin servers.

get_scheme()
Return the URL scheme being used for the current request. The default implementation uses the
guess_scheme() function from wsgiref.util to guess whether the scheme should be “http” or
“https”, based on the current request’s environ variables.

setup_environ()
Set the environ attribute to a fully-populated WSGI environment. The default implementation uses all of
the above methods and attributes, plus the get_stdin(), get_stderr(), and add_cgi_vars()
methods and the wsgi_file_wrapper attribute. It also inserts a SERVER_SOFTWARE key if not
present, as long as the origin_server attribute is a true value and the server_software attribute
is set.

Methods and attributes for customizing exception handling:

log_exception(exc_info)
Log the exc_info tuple in the server log. exc_info is a (type, value, traceback) tuple. The
default implementation simply writes the traceback to the request’s wsgi.errors stream and flushes it.
Subclasses can override this method to change the format or retarget the output, mail the traceback to an
administrator, or whatever other action may be deemed suitable.

traceback_limit
The maximum number of frames to include in tracebacks output by the default log_exception()
method. If None, all frames are included.

error_output(environ, start_response)
This method is a WSGI application to generate an error page for the user. It is only invoked if an error
occurs before headers are sent to the client.

This method can access the current error information using sys.exc_info(), and should pass that
information to start_response when calling it (as described in the “Error Handling” section of PEP 333).

The default implementation just uses the error_status, error_headers, and error_body at-
tributes to generate an output page. Subclasses can override this to produce more dynamic error output.

Note, however, that it’s not recommended from a security perspective to spit out diagnostics to any old
user; ideally, you should have to do something special to enable diagnostic output, which is why the

20.4. wsgiref — WSGI Utilities and Reference Implementation 767

http://www.python.org/dev/peps/pep-0333

The Python Library Reference, Release 2.6.9

default implementation doesn’t include any.

error_status
The HTTP status used for error responses. This should be a status string as defined in PEP 333; it defaults
to a 500 code and message.

error_headers
The HTTP headers used for error responses. This should be a list of WSGI response headers ((name,
value) tuples), as described in PEP 333. The default list just sets the content type to text/plain.

error_body
The error response body. This should be an HTTP response body string. It defaults to the plain text, “A
server error occurred. Please contact the administrator.”

Methods and attributes for PEP 333‘s “Optional Platform-Specific File Handling” feature:

wsgi_file_wrapper
A wsgi.file_wrapper factory, or None. The default value of this attribute is the FileWrapper
class from wsgiref.util.

sendfile()
Override to implement platform-specific file transmission. This method is called only if the application’s
return value is an instance of the class specified by the wsgi_file_wrapper attribute. It should return
a true value if it was able to successfully transmit the file, so that the default transmission code will not be
executed. The default implementation of this method just returns a false value.

Miscellaneous methods and attributes:

origin_server
This attribute should be set to a true value if the handler’s _write() and _flush() are being used to
communicate directly to the client, rather than via a CGI-like gateway protocol that wants the HTTP status
in a special Status: header.

This attribute’s default value is true in BaseHandler, but false in BaseCGIHandler and
CGIHandler.

http_version
If origin_server is true, this string attribute is used to set the HTTP version of the response set to the
client. It defaults to "1.0".

20.4.6 Examples

This is a working “Hello World” WSGI application:

from wsgiref.simple_server import make_server

Every WSGI application must have an application object - a callable
object that accepts two arguments. For that purpose, we’re going to
use a function (note that you’re not limited to a function, you can
use a class for example). The first argument passed to the function
is a dictionary containing CGI-style envrironment variables and the
second variable is the callable object (see :pep:‘333‘)
def hello_world_app(environ, start_response):

status = ’200 OK’ # HTTP Status
headers = [(’Content-type’, ’text/plain’)] # HTTP Headers
start_response(status, headers)

The returned object is going to be printed
return ["Hello World"]

768 Chapter 20. Internet Protocols and Support

http://www.python.org/dev/peps/pep-0333
http://www.python.org/dev/peps/pep-0333
http://www.python.org/dev/peps/pep-0333

The Python Library Reference, Release 2.6.9

httpd = make_server(’’, 8000, hello_world_app)
print "Serving on port 8000..."

Serve until process is killed
httpd.serve_forever()

20.5 urllib — Open arbitrary resources by URL

Note: The urllib module has been split into parts and renamed in Python 3.0 to urllib.request,
urllib.parse, and urllib.error. The 2to3 tool will automatically adapt imports when converting your
sources to 3.0. Also note that the urllib.urlopen() function has been removed in Python 3.0 in favor of
urllib2.urlopen(). This module provides a high-level interface for fetching data across the World Wide
Web. In particular, the urlopen() function is similar to the built-in function open(), but accepts Universal Re-
source Locators (URLs) instead of filenames. Some restrictions apply — it can only open URLs for reading, and no
seek operations are available.

20.5.1 High-level interface

urlopen(url, [data, [proxies]])
Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier, or if it has
file: as its scheme identifier, this opens a local file (without universal newlines); otherwise it opens a socket
to a server somewhere on the network. If the connection cannot be made the IOError exception is raised.
If all went well, a file-like object is returned. This supports the following methods: read(), readline(),
readlines(), fileno(), close(), info(), getcode() and geturl(). It also has proper support
for the iterator protocol. One caveat: the read() method, if the size argument is omitted or negative, may not
read until the end of the data stream; there is no good way to determine that the entire stream from a socket has
been read in the general case.

Except for the info(), getcode() and geturl() methods, these methods have the same interface as for
file objects — see section File Objects in this manual. (It is not a built-in file object, however, so it can’t be
used at those few places where a true built-in file object is required.) The info() method returns an instance
of the class mimetools.Message containing meta-information associated with the URL. When the method
is HTTP, these headers are those returned by the server at the head of the retrieved HTML page (including
Content-Length and Content-Type). When the method is FTP, a Content-Length header will be present if (as is
now usual) the server passed back a file length in response to the FTP retrieval request. A Content-Type header
will be present if the MIME type can be guessed. When the method is local-file, returned headers will include a
Date representing the file’s last-modified time, a Content-Length giving file size, and a Content-Type containing
a guess at the file’s type. See also the description of the mimetools module.

The geturl() method returns the real URL of the page. In some cases, the HTTP server redirects a client to
another URL. The urlopen() function handles this transparently, but in some cases the caller needs to know
which URL the client was redirected to. The geturl() method can be used to get at this redirected URL.

The getcode() method returns the HTTP status code that was sent with the response, or None if the URL is
no HTTP URL.

If the url uses the http: scheme identifier, the optional data argument may be given to spec-
ify a POST request (normally the request type is GET). The data argument must be in standard
application/x-www-form-urlencoded format; see the urlencode() function below.

The urlopen() function works transparently with proxies which do not require authentication. In a Unix or
Windows environment, set the http_proxy, or ftp_proxy environment variables to a URL that identifies the
proxy server before starting the Python interpreter. For example (the ’%’ is the command prompt):

20.5. urllib — Open arbitrary resources by URL 769

The Python Library Reference, Release 2.6.9

% http_proxy="http://www.someproxy.com:3128"
% export http_proxy
% python
...

The no_proxy environment variable can be used to specify hosts which shouldn’t be reached via proxy; if
set, it should be a comma-separated list of hostname suffixes, optionally with :port appended, for example
cern.ch,ncsa.uiuc.edu,some.host:8080.

In a Windows environment, if no proxy environment variables are set, proxy settings are obtained from the
registry’s Internet Settings section. In a Mac OS X environment, urlopen() will retrieve proxy information
from the OS X System Configuration Framework, which can be managed with Network System Preferences
panel.

Alternatively, the optional proxies argument may be used to explicitly specify proxies. It must be a dictionary
mapping scheme names to proxy URLs, where an empty dictionary causes no proxies to be used, and None
(the default value) causes environmental proxy settings to be used as discussed above. For example:

Use http://www.someproxy.com:3128 for http proxying
proxies = {’http’: ’http://www.someproxy.com:3128’}
filehandle = urllib.urlopen(some_url, proxies=proxies)
Don’t use any proxies
filehandle = urllib.urlopen(some_url, proxies={})
Use proxies from environment - both versions are equivalent
filehandle = urllib.urlopen(some_url, proxies=None)
filehandle = urllib.urlopen(some_url)

Proxies which require authentication for use are not currently supported; this is considered an implementation
limitation. Changed in version 2.3: Added the proxies support.Changed in version 2.6: Added getcode()
to returned object and support for the no_proxy environment variable.Deprecated since version 2.6: The
urlopen() function has been removed in Python 3.0 in favor of urllib2.urlopen().

urlretrieve(url, [filename, [reporthook, [data]]])
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local file, or a
valid cached copy of the object exists, the object is not copied. Return a tuple (filename, headers)
where filename is the local file name under which the object can be found, and headers is whatever the info()
method of the object returned by urlopen() returned (for a remote object, possibly cached). Exceptions are
the same as for urlopen().

The second argument, if present, specifies the file location to copy to (if absent, the location will be a tempfile
with a generated name). The third argument, if present, is a hook function that will be called once on estab-
lishment of the network connection and once after each block read thereafter. The hook will be passed three
arguments; a count of blocks transferred so far, a block size in bytes, and the total size of the file. The third
argument may be -1 on older FTP servers which do not return a file size in response to a retrieval request.

If the url uses the http: scheme identifier, the optional data argument may be given to spec-
ify a POST request (normally the request type is GET). The data argument must in standard
application/x-www-form-urlencoded format; see the urlencode() function below. Changed
in version 2.5: urlretrieve() will raise ContentTooShortError when it detects that the amount of
data available was less than the expected amount (which is the size reported by a Content-Length header). This
can occur, for example, when the download is interrupted. The Content-Length is treated as a lower bound: if
there’s more data to read, urlretrieve reads more data, but if less data is available, it raises the exception.

You can still retrieve the downloaded data in this case, it is stored in the content attribute of the exception
instance.

770 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

If no Content-Length header was supplied, urlretrieve can not check the size of the data it has downloaded, and
just returns it. In this case you just have to assume that the download was successful.

_urlopener
The public functions urlopen() and urlretrieve() create an instance of the FancyURLopener class
and use it to perform their requested actions. To override this functionality, programmers can create a subclass
of URLopener or FancyURLopener, then assign an instance of that class to the urllib._urlopener
variable before calling the desired function. For example, applications may want to specify a different
User-Agent header than URLopener defines. This can be accomplished with the following code:

import urllib

class AppURLopener(urllib.FancyURLopener):
version = "App/1.7"

urllib._urlopener = AppURLopener()

urlcleanup()
Clear the cache that may have been built up by previous calls to urlretrieve().

20.5.2 Utility functions

quote(string, [safe])
Replace special characters in string using the %xx escape. Letters, digits, and the characters ’_.-’ are never
quoted. By default, this function is intended for quoting the path section of the URL.The optional safe parameter
specifies additional characters that should not be quoted — its default value is ’/’.

Example: quote(’/~connolly/’) yields ’/%7econnolly/’.

quote_plus(string, [safe])
Like quote(), but also replaces spaces by plus signs, as required for quoting HTML form values when building
up a query string to go into a URL. Plus signs in the original string are escaped unless they are included in safe.
It also does not have safe default to ’/’.

unquote(string)
Replace %xx escapes by their single-character equivalent.

Example: unquote(’/%7Econnolly/’) yields ’/~connolly/’.

unquote_plus(string)
Like unquote(), but also replaces plus signs by spaces, as required for unquoting HTML form values.

urlencode(query, [doseq])
Convert a mapping object or a sequence of two-element tuples to a “url-encoded” string, suitable to pass to
urlopen() above as the optional data argument. This is useful to pass a dictionary of form fields to a
POST request. The resulting string is a series of key=value pairs separated by ’&’ characters, where both
key and value are quoted using quote_plus() above. When a sequence of two-element tuples is used as
the query argument, the first element of each tuple is a key and the second is a value. The value element
in itself can be a sequence and in that case, if the optional parameter doseq is evaluates to True, individual
key=value pairs separated by ’&’ are generated for each element of the value sequence for the key. The order
of parameters in the encoded string will match the order of parameter tuples in the sequence. The urlparse
module provides the functions parse_qs() and parse_qsl() which are used to parse query strings into
Python data structures.

pathname2url(path)
Convert the pathname path from the local syntax for a path to the form used in the path component of a URL.
This does not produce a complete URL. The return value will already be quoted using the quote() function.

20.5. urllib — Open arbitrary resources by URL 771

The Python Library Reference, Release 2.6.9

url2pathname(path)
Convert the path component path from an encoded URL to the local syntax for a path. This does not accept a
complete URL. This function uses unquote() to decode path.

getproxies()
This helper function returns a dictionary of scheme to proxy server URL mappings. It scans the environment for
variables named <scheme>_proxy for all operating systems first, and when it cannot find it, looks for proxy
information from Mac OSX System Configuration for Mac OS X and Windows Systems Registry for Windows.

20.5.3 URL Opener objects

class URLopener([proxies, [**x509]])
Base class for opening and reading URLs. Unless you need to support opening objects using schemes other than
http:, ftp:, or file:, you probably want to use FancyURLopener.

By default, the URLopener class sends a User-Agent header of urllib/VVV, where VVV is the urllib
version number. Applications can define their own User-Agent header by subclassing URLopener or
FancyURLopener and setting the class attribute version to an appropriate string value in the subclass
definition.

The optional proxies parameter should be a dictionary mapping scheme names to proxy URLs, where an empty
dictionary turns proxies off completely. Its default value is None, in which case environmental proxy settings
will be used if present, as discussed in the definition of urlopen(), above.

Additional keyword parameters, collected in x509, may be used for authentication of the client when using the
https: scheme. The keywords key_file and cert_file are supported to provide an SSL key and certificate; both
are needed to support client authentication.

URLopener objects will raise an IOError exception if the server returns an error code.

open(fullurl, [data])
Open fullurl using the appropriate protocol. This method sets up cache and proxy information,
then calls the appropriate open method with its input arguments. If the scheme is not recognized,
open_unknown() is called. The data argument has the same meaning as the data argument
of urlopen().

open_unknown(fullurl, [data])
Overridable interface to open unknown URL types.

retrieve(url, [filename, [reporthook, [data]]])
Retrieves the contents of url and places it in filename. The return value is a tuple consisting of
a local filename and either a mimetools.Message object containing the response headers
(for remote URLs) or None (for local URLs). The caller must then open and read the contents
of filename. If filename is not given and the URL refers to a local file, the input filename
is returned. If the URL is non-local and filename is not given, the filename is the output of
tempfile.mktemp() with a suffix that matches the suffix of the last path component of the
input URL. If reporthook is given, it must be a function accepting three numeric parameters. It
will be called after each chunk of data is read from the network. reporthook is ignored for local
URLs.

If the url uses the http: scheme identifier, the optional data argument may be given to spec-
ify a POST request (normally the request type is GET). The data argument must in standard
application/x-www-form-urlencoded format; see the urlencode() function be-
low.

version
Variable that specifies the user agent of the opener object. To get urllib to tell servers that

772 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

it is a particular user agent, set this in a subclass as a class variable or in the constructor before
calling the base constructor.

class FancyURLopener(...)
FancyURLopener subclasses URLopener providing default handling for the following HTTP response
codes: 301, 302, 303, 307 and 401. For the 30x response codes listed above, the Location header is used
to fetch the actual URL. For 401 response codes (authentication required), basic HTTP authentication is per-
formed. For the 30x response codes, recursion is bounded by the value of the maxtries attribute, which defaults
to 10.

For all other response codes, the method http_error_default() is called which you can override in
subclasses to handle the error appropriately.

Note: According to the letter of RFC 2616, 301 and 302 responses to POST requests must not be automati-
cally redirected without confirmation by the user. In reality, browsers do allow automatic redirection of these
responses, changing the POST to a GET, and urllib reproduces this behaviour.

The parameters to the constructor are the same as those for URLopener.

Note:

When performing basic authentication, a FancyURLopener instance calls its
prompt_user_passwd() method. The default implementation asks the users for the re-
quired information on the controlling terminal. A subclass may override this method to support
more appropriate behavior if needed.

The FancyURLopener class offers one additional method that should be overloaded to provide the appropriate
behavior:

prompt_user_passwd(host, realm)
Return information needed to authenticate the user at the given host in the specified security realm. The
return value should be a tuple, (user, password), which can be used for basic authentication.

The implementation prompts for this information on the terminal; an application should override this
method to use an appropriate interaction model in the local environment.

exception ContentTooShortError
This exception is raised when the urlretrieve() function detects that the amount of the downloaded data
is less than the expected amount (given by the Content-Length header). The content attribute stores the
downloaded (and supposedly truncated) data. New in version 2.5.

20.5.4 urllib Restrictions

• Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), FTP, and local files.

• The caching feature of urlretrieve() has been disabled until I find the time to hack proper processing of
Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the URL is
re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• The urlopen() and urlretrieve() functions can cause arbitrarily long delays while waiting for a net-
work connection to be set up. This means that it is difficult to build an interactive Web client using these
functions without using threads.

• The data returned by urlopen() or urlretrieve() is the raw data returned by the server. This may be
binary data (such as an image), plain text or (for example) HTML. The HTTP protocol provides type information

20.5. urllib — Open arbitrary resources by URL 773

http://tools.ietf.org/html/rfc2616.html

The Python Library Reference, Release 2.6.9

in the reply header, which can be inspected by looking at the Content-Type header. If the returned data is
HTML, you can use the module htmllib to parse it.

• The code handling the FTP protocol cannot differentiate between a file and a directory. This can lead to un-
expected behavior when attempting to read a URL that points to a file that is not accessible. If the URL ends
in a /, it is assumed to refer to a directory and will be handled accordingly. But if an attempt to read a file
leads to a 550 error (meaning the URL cannot be found or is not accessible, often for permission reasons), then
the path is treated as a directory in order to handle the case when a directory is specified by a URL but the
trailing / has been left off. This can cause misleading results when you try to fetch a file whose read permis-
sions make it inaccessible; the FTP code will try to read it, fail with a 550 error, and then perform a directory
listing for the unreadable file. If fine-grained control is needed, consider using the ftplib module, subclassing
FancyURLOpener, or changing _urlopener to meet your needs.

• This module does not support the use of proxies which require authentication. This may be implemented in the
future.

• Although the urllib module contains (undocumented) routines to parse and unparse URL strings, the recom-
mended interface for URL manipulation is in module urlparse.

20.5.5 Examples

Here is an example session that uses the GET method to retrieve a URL containing parameters:

>>> import urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)
>>> print f.read()

The following example uses the POST method instead:

>>> import urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)
>>> print f.read()

The following example uses an explicitly specified HTTP proxy, overriding environment settings:

>>> import urllib
>>> proxies = {’http’: ’http://proxy.example.com:8080/’}
>>> opener = urllib.FancyURLopener(proxies)
>>> f = opener.open("http://www.python.org")
>>> f.read()

The following example uses no proxies at all, overriding environment settings:

>>> import urllib
>>> opener = urllib.FancyURLopener({})
>>> f = opener.open("http://www.python.org/")
>>> f.read()

20.6 urllib2 — extensible library for opening URLs

Note: The urllib2 module has been split across several modules in Python 3.0 named urllib.request and
urllib.error. The 2to3 tool will automatically adapt imports when converting your sources to 3.0.

The urllib2 module defines functions and classes which help in opening URLs (mostly HTTP) in a complex world
— basic and digest authentication, redirections, cookies and more.

774 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

The urllib2 module defines the following functions:

urlopen(url, [data], [timeout])
Open the URL url, which can be either a string or a Request object.

data may be a string specifying additional data to send to the server, or None if no such data is needed. Currently
HTTP requests are the only ones that use data; the HTTP request will be a POST instead of a GET when the data
parameter is provided. data should be a buffer in the standard application/x-www-form-urlencoded
format. The urllib.urlencode() function takes a mapping or sequence of 2-tuples and returns a string in
this format.

The optional timeout parameter specifies a timeout in seconds for blocking operations like the connection at-
tempt (if not specified, the global default timeout setting will be used). This actually only works for HTTP,
HTTPS, FTP and FTPS connections.

This function returns a file-like object with two additional methods:

•geturl() — return the URL of the resource retrieved, commonly used to determine if a redirect was
followed

•info() — return the meta-information of the page, such as headers, in the form of an
mimetools.Message instance (see Quick Reference to HTTP Headers)

Raises URLError on errors.

Note that None may be returned if no handler handles the request (though the default installed global
OpenerDirector uses UnknownHandler to ensure this never happens).

In addition, default installed ProxyHandler makes sure the requests are handled through the proxy when
they are set. Changed in version 2.6: timeout was added.

install_opener(opener)
Install an OpenerDirector instance as the default global opener. Installing an opener is only necessary if you
want urlopen to use that opener; otherwise, simply call OpenerDirector.open() instead of urlopen().
The code does not check for a real OpenerDirector, and any class with the appropriate interface will work.

build_opener([handler, ...])
Return an OpenerDirector instance, which chains the handlers in the order given. handlers
can be either instances of BaseHandler, or subclasses of BaseHandler (in which case it must
be possible to call the constructor without any parameters). Instances of the following classes will
be in front of the handlers, unless the handlers contain them, instances of them or subclasses
of them: ProxyHandler, UnknownHandler, HTTPHandler, HTTPDefaultErrorHandler,
HTTPRedirectHandler, FTPHandler, FileHandler, HTTPErrorProcessor.

If the Python installation has SSL support (i.e., if the ssl module can be imported), HTTPSHandler will also
be added.

Beginning in Python 2.3, a BaseHandler subclass may also change its handler_order member variable
to modify its position in the handlers list.

The following exceptions are raised as appropriate:

exception URLError
The handlers raise this exception (or derived exceptions) when they run into a problem. It is a subclass of
IOError.

reason
The reason for this error. It can be a message string or another exception instance (socket.error for
remote URLs, OSError for local URLs).

exception HTTPError
Though being an exception (a subclass of URLError), an HTTPError can also function as a non-exceptional

20.6. urllib2 — extensible library for opening URLs 775

http://www.cs.tut.fi/~jkorpela/http.html

The Python Library Reference, Release 2.6.9

file-like return value (the same thing that urlopen() returns). This is useful when handling exotic HTTP
errors, such as requests for authentication.

code
An HTTP status code as defined in RFC 2616. This numeric value corresponds to a value found in the
dictionary of codes as found in BaseHTTPServer.BaseHTTPRequestHandler.responses.

The following classes are provided:

class Request(url, [data], [headers], [origin_req_host], [unverifiable])
This class is an abstraction of a URL request.

url should be a string containing a valid URL.

data may be a string specifying additional data to send to the server, or None if no such data is needed. Currently
HTTP requests are the only ones that use data; the HTTP request will be a POST instead of a GET when the data
parameter is provided. data should be a buffer in the standard application/x-www-form-urlencoded
format. The urllib.urlencode() function takes a mapping or sequence of 2-tuples and returns a string in
this format.

headers should be a dictionary, and will be treated as if add_header() was called with each key and value as
arguments. This is often used to “spoof” the User-Agent header, which is used by a browser to identify itself
– some HTTP servers only allow requests coming from common browsers as opposed to scripts. For example,
Mozilla Firefox may identify itself as "Mozilla/5.0 (X11; U; Linux i686) Gecko/20071127
Firefox/2.0.0.11", while urllib2‘s default user agent string is "Python-urllib/2.6" (on
Python 2.6).

The final two arguments are only of interest for correct handling of third-party HTTP cookies:

origin_req_host should be the request-host of the origin transaction, as defined by RFC 2965. It defaults to
cookielib.request_host(self). This is the host name or IP address of the original request that was
initiated by the user. For example, if the request is for an image in an HTML document, this should be the
request-host of the request for the page containing the image.

unverifiable should indicate whether the request is unverifiable, as defined by RFC 2965. It defaults to False. An
unverifiable request is one whose URL the user did not have the option to approve. For example, if the request is
for an image in an HTML document, and the user had no option to approve the automatic fetching of the image,
this should be true.

class OpenerDirector()
The OpenerDirector class opens URLs via BaseHandlers chained together. It manages the chaining of
handlers, and recovery from errors.

class BaseHandler()
This is the base class for all registered handlers — and handles only the simple mechanics of registration.

class HTTPDefaultErrorHandler()
A class which defines a default handler for HTTP error responses; all responses are turned into HTTPError
exceptions.

class HTTPRedirectHandler()
A class to handle redirections.

class HTTPCookieProcessor([cookiejar])
A class to handle HTTP Cookies.

class ProxyHandler([proxies])
Cause requests to go through a proxy. If proxies is given, it must be a dictionary mapping protocol names
to URLs of proxies. The default is to read the list of proxies from the environment variables . If no proxy
environment variables are set, in a Windows environment, proxy settings are obtained from the registry’s In-

776 Chapter 20. Internet Protocols and Support

http://www.faqs.org/rfcs/rfc2616.html
http://tools.ietf.org/html/rfc2965.html

The Python Library Reference, Release 2.6.9

ternet Settings section and in a Mac OS X environment, proxy information is retrieved from the OS X System
Configuration Framework.

To disable autodetected proxy pass an empty dictionary.

class HTTPPasswordMgr()
Keep a database of (realm, uri) -> (user, password) mappings.

class HTTPPasswordMgrWithDefaultRealm()
Keep a database of (realm, uri) -> (user, password) mappings. A realm of None is considered
a catch-all realm, which is searched if no other realm fits.

class AbstractBasicAuthHandler([password_mgr])
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy. password_mgr,
if given, should be something that is compatible with HTTPPasswordMgr; refer to section HTTPPassword-
Mgr Objects for information on the interface that must be supported.

class HTTPBasicAuthHandler([password_mgr])
Handle authentication with the remote host. password_mgr, if given, should be something that is compatible
with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that
must be supported.

class ProxyBasicAuthHandler([password_mgr])
Handle authentication with the proxy. password_mgr, if given, should be something that is compatible with
HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that must
be supported.

class AbstractDigestAuthHandler([password_mgr])
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy. password_mgr,
if given, should be something that is compatible with HTTPPasswordMgr; refer to section HTTPPassword-
Mgr Objects for information on the interface that must be supported.

class HTTPDigestAuthHandler([password_mgr])
Handle authentication with the remote host. password_mgr, if given, should be something that is compatible
with HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that
must be supported.

class ProxyDigestAuthHandler([password_mgr])
Handle authentication with the proxy. password_mgr, if given, should be something that is compatible with
HTTPPasswordMgr; refer to section HTTPPasswordMgr Objects for information on the interface that must
be supported.

class HTTPHandler()
A class to handle opening of HTTP URLs.

class HTTPSHandler()
A class to handle opening of HTTPS URLs.

class FileHandler()
Open local files.

class FTPHandler()
Open FTP URLs.

class CacheFTPHandler()
Open FTP URLs, keeping a cache of open FTP connections to minimize delays.

class UnknownHandler()
A catch-all class to handle unknown URLs.

20.6. urllib2 — extensible library for opening URLs 777

The Python Library Reference, Release 2.6.9

20.6.1 Request Objects

The following methods describe all of Request‘s public interface, and so all must be overridden in subclasses.

add_data(data)
Set the Request data to data. This is ignored by all handlers except HTTP handlers — and there it should be
a byte string, and will change the request to be POST rather than GET.

get_method()
Return a string indicating the HTTP request method. This is only meaningful for HTTP requests, and currently
always returns ’GET’ or ’POST’.

has_data()
Return whether the instance has a non-None data.

get_data()
Return the instance’s data.

add_header(key, val)
Add another header to the request. Headers are currently ignored by all handlers except HTTP handlers, where
they are added to the list of headers sent to the server. Note that there cannot be more than one header with the
same name, and later calls will overwrite previous calls in case the key collides. Currently, this is no loss of
HTTP functionality, since all headers which have meaning when used more than once have a (header-specific)
way of gaining the same functionality using only one header.

add_unredirected_header(key, header)
Add a header that will not be added to a redirected request. New in version 2.4.

has_header(header)
Return whether the instance has the named header (checks both regular and unredirected). New in version 2.4.

get_full_url()
Return the URL given in the constructor.

get_type()
Return the type of the URL — also known as the scheme.

get_host()
Return the host to which a connection will be made.

get_selector()
Return the selector — the part of the URL that is sent to the server.

set_proxy(host, type)
Prepare the request by connecting to a proxy server. The host and type will replace those of the instance, and
the instance’s selector will be the original URL given in the constructor.

get_origin_req_host()
Return the request-host of the origin transaction, as defined by RFC 2965. See the documentation for the
Request constructor.

is_unverifiable()
Return whether the request is unverifiable, as defined by RFC 2965. See the documentation for the Request
constructor.

20.6.2 OpenerDirector Objects

OpenerDirector instances have the following methods:

778 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2965.html

The Python Library Reference, Release 2.6.9

add_handler(handler)
handler should be an instance of BaseHandler. The following methods are searched, and added to the
possible chains (note that HTTP errors are a special case).

•‘protocol_open’ — signal that the handler knows how to open protocol URLs.

•‘http_error_type’ — signal that the handler knows how to handle HTTP errors with HTTP error
code type.

•‘protocol_error’ — signal that the handler knows how to handle errors from (non-http) protocol.

•‘protocol_request’ — signal that the handler knows how to pre-process protocol requests.

•‘protocol_response’ — signal that the handler knows how to post-process protocol responses.

open(url, [data], [timeout])
Open the given url (which can be a request object or a string), optionally passing the given data. Arguments,
return values and exceptions raised are the same as those of urlopen() (which simply calls the open()
method on the currently installed global OpenerDirector). The optional timeout parameter specifies a
timeout in seconds for blocking operations like the connection attempt (if not specified, the global default
timeout setting will be used). The timeout feature actually works only for HTTP, HTTPS, FTP and FTPS
connections). Changed in version 2.6: timeout was added.

error(proto, [arg, [...]])
Handle an error of the given protocol. This will call the registered error handlers for the given protocol with
the given arguments (which are protocol specific). The HTTP protocol is a special case which uses the HTTP
response code to determine the specific error handler; refer to the http_error_*() methods of the handler
classes.

Return values and exceptions raised are the same as those of urlopen().

OpenerDirector objects open URLs in three stages:

The order in which these methods are called within each stage is determined by sorting the handler instances.

1. Every handler with a method named like ‘protocol_request’ has that method called to pre-process the
request.

2. Handlers with a method named like ‘protocol_open’ are called to handle the request. This stage ends
when a handler either returns a non-None value (ie. a response), or raises an exception (usually URLError).
Exceptions are allowed to propagate.

In fact, the above algorithm is first tried for methods named default_open(). If all such methods return
None, the algorithm is repeated for methods named like ‘protocol_open’. If all such methods return None,
the algorithm is repeated for methods named unknown_open().

Note that the implementation of these methods may involve calls of the parent OpenerDirector instance’s
open() and error() methods.

3. Every handler with a method named like ‘protocol_response’ has that method called to post-process the
response.

20.6.3 BaseHandler Objects

BaseHandler objects provide a couple of methods that are directly useful, and others that are meant to be used by
derived classes. These are intended for direct use:

add_parent(director)
Add a director as parent.

close()
Remove any parents.

20.6. urllib2 — extensible library for opening URLs 779

The Python Library Reference, Release 2.6.9

The following members and methods should only be used by classes derived from BaseHandler.

Note: The convention has been adopted that subclasses defining protocol_request() or
protocol_response() methods are named *Processor; all others are named *Handler.

parent
A valid OpenerDirector, which can be used to open using a different protocol, or handle errors.

default_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch all URLs.

This method, if implemented, will be called by the parent OpenerDirector. It should return a file-like object
as described in the return value of the open() of OpenerDirector, or None. It should raise URLError,
unless a truly exceptional thing happens (for example, MemoryError should not be mapped to URLError).

This method will be called before any protocol-specific open method.

protocol_open(req)
(“protocol” is to be replaced by the protocol name.)

This method is not defined in BaseHandler, but subclasses should define it if they want to handle URLs with
the given protocol.

This method, if defined, will be called by the parent OpenerDirector. Return values should be the same as
for default_open().

unknown_open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch all URLs
with no specific registered handler to open it.

This method, if implemented, will be called by the parent OpenerDirector. Return values should be the
same as for default_open().

http_error_default(req, fp, code, msg, hdrs)
This method is not defined in BaseHandler, but subclasses should override it if they intend to provide a catch-
all for otherwise unhandled HTTP errors. It will be called automatically by the OpenerDirector getting the
error, and should not normally be called in other circumstances.

req will be a Request object, fp will be a file-like object with the HTTP error body, code will be the three-digit
code of the error, msg will be the user-visible explanation of the code and hdrs will be a mapping object with
the headers of the error.

Return values and exceptions raised should be the same as those of urlopen().

http_error_nnn(req, fp, code, msg, hdrs)
nnn should be a three-digit HTTP error code. This method is also not defined in BaseHandler, but will be
called, if it exists, on an instance of a subclass, when an HTTP error with code nnn occurs.

Subclasses should override this method to handle specific HTTP errors.

Arguments, return values and exceptions raised should be the same as for http_error_default().

protocol_request(req)
(“protocol” is to be replaced by the protocol name.)

This method is not defined in BaseHandler, but subclasses should define it if they want to pre-process
requests of the given protocol.

This method, if defined, will be called by the parent OpenerDirector. req will be a Request object. The
return value should be a Request object.

protocol_response(req, response)
(“protocol” is to be replaced by the protocol name.)

780 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

This method is not defined in BaseHandler, but subclasses should define it if they want to post-process
responses of the given protocol.

This method, if defined, will be called by the parent OpenerDirector. req will be a Request object.
response will be an object implementing the same interface as the return value of urlopen(). The return
value should implement the same interface as the return value of urlopen().

20.6.4 HTTPRedirectHandler Objects

Note: Some HTTP redirections require action from this module’s client code. If this is the case, HTTPError is
raised. See RFC 2616 for details of the precise meanings of the various redirection codes.

redirect_request(req, fp, code, msg, hdrs, newurl)
Return a Request or None in response to a redirect. This is called by the default implementations of the
http_error_30*() methods when a redirection is received from the server. If a redirection should take
place, return a new Request to allow http_error_30*() to perform the redirect to newurl. Otherwise,
raise HTTPError if no other handler should try to handle this URL, or return None if you can’t but another
handler might.

Note: The default implementation of this method does not strictly follow RFC 2616, which says that 301
and 302 responses to POST requests must not be automatically redirected without confirmation by the user. In
reality, browsers do allow automatic redirection of these responses, changing the POST to a GET, and the default
implementation reproduces this behavior.

http_error_301(req, fp, code, msg, hdrs)
Redirect to the Location: or URI: URL. This method is called by the parent OpenerDirector when
getting an HTTP ‘moved permanently’ response.

http_error_302(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘found’ response.

http_error_303(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘see other’ response.

http_error_307(req, fp, code, msg, hdrs)
The same as http_error_301(), but called for the ‘temporary redirect’ response.

20.6.5 HTTPCookieProcessor Objects

New in version 2.4. HTTPCookieProcessor instances have one attribute:

cookiejar
The cookielib.CookieJar in which cookies are stored.

20.6.6 ProxyHandler Objects

protocol_open(request)
(“protocol” is to be replaced by the protocol name.)

The ProxyHandler will have a method ‘protocol_open’ for every protocol which has a proxy in the
proxies dictionary given in the constructor. The method will modify requests to go through the proxy, by calling
request.set_proxy(), and call the next handler in the chain to actually execute the protocol.

20.6. urllib2 — extensible library for opening URLs 781

http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2616.html

The Python Library Reference, Release 2.6.9

20.6.7 HTTPPasswordMgr Objects

These methods are available on HTTPPasswordMgr and HTTPPasswordMgrWithDefaultRealm objects.

add_password(realm, uri, user, passwd)
uri can be either a single URI, or a sequence of URIs. realm, user and passwd must be strings. This causes
(user, passwd) to be used as authentication tokens when authentication for realm and a super-URI of any
of the given URIs is given.

find_user_password(realm, authuri)
Get user/password for given realm and URI, if any. This method will return (None, None) if there is no
matching user/password.

For HTTPPasswordMgrWithDefaultRealm objects, the realm None will be searched if the given realm
has no matching user/password.

20.6.8 AbstractBasicAuthHandler Objects

http_error_auth_reqed(authreq, host, req, headers)
Handle an authentication request by getting a user/password pair, and re-trying the request. authreq should
be the name of the header where the information about the realm is included in the request, host specifies the
URL and path to authenticate for, req should be the (failed) Request object, and headers should be the error
headers.

host is either an authority (e.g. "python.org") or a URL containing an authority component (e.g.
"http://python.org/"). In either case, the authority must not contain a userinfo component (so,
"python.org" and "python.org:80" are fine, "joe:password@python.org" is not).

20.6.9 HTTPBasicAuthHandler Objects

http_error_401(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

20.6.10 ProxyBasicAuthHandler Objects

http_error_407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

20.6.11 AbstractDigestAuthHandler Objects

http_error_auth_reqed(authreq, host, req, headers)
authreq should be the name of the header where the information about the realm is included in the request, host
should be the host to authenticate to, req should be the (failed) Request object, and headers should be the
error headers.

20.6.12 HTTPDigestAuthHandler Objects

http_error_401(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

782 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

20.6.13 ProxyDigestAuthHandler Objects

http_error_407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

20.6.14 HTTPHandler Objects

http_open(req)
Send an HTTP request, which can be either GET or POST, depending on req.has_data().

20.6.15 HTTPSHandler Objects

https_open(req)
Send an HTTPS request, which can be either GET or POST, depending on req.has_data().

20.6.16 FileHandler Objects

file_open(req)
Open the file locally, if there is no host name, or the host name is ’localhost’. Change the protocol to ftp
otherwise, and retry opening it using parent.

20.6.17 FTPHandler Objects

ftp_open(req)
Open the FTP file indicated by req. The login is always done with empty username and password.

20.6.18 CacheFTPHandler Objects

CacheFTPHandler objects are FTPHandler objects with the following additional methods:

setTimeout(t)
Set timeout of connections to t seconds.

setMaxConns(m)
Set maximum number of cached connections to m.

20.6.19 UnknownHandler Objects

unknown_open()
Raise a URLError exception.

20.6.20 HTTPErrorProcessor Objects

New in version 2.4.

unknown_open()
Process HTTP error responses.

For 200 error codes, the response object is returned immediately.

20.6. urllib2 — extensible library for opening URLs 783

The Python Library Reference, Release 2.6.9

For non-200 error codes, this simply passes the job on to the ‘protocol_error_code’ handler methods,
via OpenerDirector.error(). Eventually, urllib2.HTTPDefaultErrorHandler will raise an
HTTPError if no other handler handles the error.

20.6.21 Examples

This example gets the python.org main page and displays the first 100 bytes of it:

>>> import urllib2
>>> f = urllib2.urlopen(’http://www.python.org/’)
>>> print f.read(100)
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<?xml-stylesheet href="./css/ht2html

Here we are sending a data-stream to the stdin of a CGI and reading the data it returns to us. Note that this example
will only work when the Python installation supports SSL.

>>> import urllib2
>>> req = urllib2.Request(url=’https://localhost/cgi-bin/test.cgi’,
... data=’This data is passed to stdin of the CGI’)
>>> f = urllib2.urlopen(req)
>>> print f.read()
Got Data: "This data is passed to stdin of the CGI"

The code for the sample CGI used in the above example is:

#!/usr/bin/env python
import sys
data = sys.stdin.read()
print ’Content-type: text-plain\n\nGot Data: "%s"’ % data

Use of Basic HTTP Authentication:

import urllib2
Create an OpenerDirector with support for Basic HTTP Authentication...
auth_handler = urllib2.HTTPBasicAuthHandler()
auth_handler.add_password(realm=’PDQ Application’,

uri=’https://mahler:8092/site-updates.py’,
user=’klem’,
passwd=’kadidd!ehopper’)

opener = urllib2.build_opener(auth_handler)
...and install it globally so it can be used with urlopen.
urllib2.install_opener(opener)
urllib2.urlopen(’http://www.example.com/login.html’)

build_opener() provides many handlers by default, including a ProxyHandler. By default, ProxyHandler
uses the environment variables named <scheme>_proxy, where <scheme> is the URL scheme involved. For
example, the http_proxy environment variable is read to obtain the HTTP proxy’s URL.

This example replaces the default ProxyHandler with one that uses programmatically-supplied proxy URLs, and
adds proxy authorization support with ProxyBasicAuthHandler.

proxy_handler = urllib2.ProxyHandler({’http’: ’http://www.example.com:3128/’})
proxy_auth_handler = urllib2.ProxyBasicAuthHandler()
proxy_auth_handler.add_password(’realm’, ’host’, ’username’, ’password’)

opener = urllib2.build_opener(proxy_handler, proxy_auth_handler)

784 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

This time, rather than install the OpenerDirector, we use it directly:
opener.open(’http://www.example.com/login.html’)

Adding HTTP headers:

Use the headers argument to the Request constructor, or:

import urllib2
req = urllib2.Request(’http://www.example.com/’)
req.add_header(’Referer’, ’http://www.python.org/’)
r = urllib2.urlopen(req)

OpenerDirector automatically adds a User-Agent header to every Request. To change this:

import urllib2
opener = urllib2.build_opener()
opener.addheaders = [(’User-agent’, ’Mozilla/5.0’)]
opener.open(’http://www.example.com/’)

Also, remember that a few standard headers (Content-Length, Content-Type and Host) are added when the
Request is passed to urlopen() (or OpenerDirector.open()).

20.7 httplib — HTTP protocol client

Note: The httplib module has been renamed to http.client in Python 3.0. The 2to3 tool will automatically
adapt imports when converting your sources to 3.0. This module defines classes which implement the client side of
the HTTP and HTTPS protocols. It is normally not used directly — the module urllib uses it to handle URLs that
use HTTP and HTTPS.

Note: HTTPS support is only available if the socket module was compiled with SSL support.

Note: The public interface for this module changed substantially in Python 2.0. The HTTP class is retained only for
backward compatibility with 1.5.2. It should not be used in new code. Refer to the online docstrings for usage.

The module provides the following classes:

class HTTPConnection(host, [port, [strict, [timeout]]])
An HTTPConnection instance represents one transaction with an HTTP server. It should be instantiated
passing it a host and optional port number. If no port number is passed, the port is extracted from the host string
if it has the form host:port, else the default HTTP port (80) is used. When True, the optional parameter
strict (which defaults to a false value) causes BadStatusLine to be raised if the status line can’t be parsed
as a valid HTTP/1.0 or 1.1 status line. If the optional timeout parameter is given, blocking operations (like
connection attempts) will timeout after that many seconds (if it is not given, the global default timeout setting is
used).

For example, the following calls all create instances that connect to the server at the same host and port:

>>> h1 = httplib.HTTPConnection(’www.cwi.nl’)
>>> h2 = httplib.HTTPConnection(’www.cwi.nl:80’)
>>> h3 = httplib.HTTPConnection(’www.cwi.nl’, 80)
>>> h3 = httplib.HTTPConnection(’www.cwi.nl’, 80, timeout=10)

New in version 2.0.Changed in version 2.6: timeout was added.

class HTTPSConnection(host, [port, [key_file, [cert_file, [strict, [timeout]]]]])
A subclass of HTTPConnection that uses SSL for communication with secure servers. Default port is 443.
key_file is the name of a PEM formatted file that contains your private key. cert_file is a PEM formatted certifi-
cate chain file.

20.7. httplib — HTTP protocol client 785

The Python Library Reference, Release 2.6.9

Note: This does not do any certificate verification. New in version 2.0.Changed in version 2.6: timeout was
added.

class HTTPResponse(sock, [debuglevel=0], [strict=0])
Class whose instances are returned upon successful connection. Not instantiated directly by user. New in version
2.0.

class HTTPMessage()
An HTTPMessage instance is used to hold the headers from an HTTP response. It is implemented using the
mimetools.Message class and provides utility functions to deal with HTTP Headers. It is not directly
instantiated by the users.

The following exceptions are raised as appropriate:

exception HTTPException
The base class of the other exceptions in this module. It is a subclass of Exception. New in version 2.0.

exception NotConnected
A subclass of HTTPException. New in version 2.0.

exception InvalidURL
A subclass of HTTPException, raised if a port is given and is either non-numeric or empty. New in version
2.3.

exception UnknownProtocol
A subclass of HTTPException. New in version 2.0.

exception UnknownTransferEncoding
A subclass of HTTPException. New in version 2.0.

exception UnimplementedFileMode
A subclass of HTTPException. New in version 2.0.

exception IncompleteRead
A subclass of HTTPException. New in version 2.0.

exception ImproperConnectionState
A subclass of HTTPException. New in version 2.0.

exception CannotSendRequest
A subclass of ImproperConnectionState. New in version 2.0.

exception CannotSendHeader
A subclass of ImproperConnectionState. New in version 2.0.

exception ResponseNotReady
A subclass of ImproperConnectionState. New in version 2.0.

exception BadStatusLine
A subclass of HTTPException. Raised if a server responds with a HTTP status code that we don’t understand.
New in version 2.0.

The constants defined in this module are:

HTTP_PORT
The default port for the HTTP protocol (always 80).

HTTPS_PORT
The default port for the HTTPS protocol (always 443).

and also the following constants for integer status codes:
Continued on next page

786 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

Table 20.1 – continued from previous page

Constant Value Definition
CONTINUE 100 HTTP/1.1, RFC 2616, Section 10.1.1
SWITCHING_PROTOCOLS 101 HTTP/1.1, RFC 2616, Section 10.1.2
PROCESSING 102 WEBDAV, RFC 2518, Section 10.1
OK 200 HTTP/1.1, RFC 2616, Section 10.2.1
CREATED 201 HTTP/1.1, RFC 2616, Section 10.2.2
ACCEPTED 202 HTTP/1.1, RFC 2616, Section 10.2.3
NON_AUTHORITATIVE_INFORMATION 203 HTTP/1.1, RFC 2616, Section 10.2.4
NO_CONTENT 204 HTTP/1.1, RFC 2616, Section 10.2.5
RESET_CONTENT 205 HTTP/1.1, RFC 2616, Section 10.2.6
PARTIAL_CONTENT 206 HTTP/1.1, RFC 2616, Section 10.2.7
MULTI_STATUS 207 WEBDAV RFC 2518, Section 10.2
IM_USED 226 Delta encoding in HTTP, RFC 3229, Section 10.4.1
MULTIPLE_CHOICES 300 HTTP/1.1, RFC 2616, Section 10.3.1
MOVED_PERMANENTLY 301 HTTP/1.1, RFC 2616, Section 10.3.2
FOUND 302 HTTP/1.1, RFC 2616, Section 10.3.3
SEE_OTHER 303 HTTP/1.1, RFC 2616, Section 10.3.4
NOT_MODIFIED 304 HTTP/1.1, RFC 2616, Section 10.3.5
USE_PROXY 305 HTTP/1.1, RFC 2616, Section 10.3.6
TEMPORARY_REDIRECT 307 HTTP/1.1, RFC 2616, Section 10.3.8
BAD_REQUEST 400 HTTP/1.1, RFC 2616, Section 10.4.1
UNAUTHORIZED 401 HTTP/1.1, RFC 2616, Section 10.4.2
PAYMENT_REQUIRED 402 HTTP/1.1, RFC 2616, Section 10.4.3
FORBIDDEN 403 HTTP/1.1, RFC 2616, Section 10.4.4
NOT_FOUND 404 HTTP/1.1, RFC 2616, Section 10.4.5
METHOD_NOT_ALLOWED 405 HTTP/1.1, RFC 2616, Section 10.4.6
NOT_ACCEPTABLE 406 HTTP/1.1, RFC 2616, Section 10.4.7
PROXY_AUTHENTICATION_REQUIRED 407 HTTP/1.1, RFC 2616, Section 10.4.8
REQUEST_TIMEOUT 408 HTTP/1.1, RFC 2616, Section 10.4.9
CONFLICT 409 HTTP/1.1, RFC 2616, Section 10.4.10
GONE 410 HTTP/1.1, RFC 2616, Section 10.4.11
LENGTH_REQUIRED 411 HTTP/1.1, RFC 2616, Section 10.4.12
PRECONDITION_FAILED 412 HTTP/1.1, RFC 2616, Section 10.4.13
REQUEST_ENTITY_TOO_LARGE 413 HTTP/1.1, RFC 2616, Section 10.4.14
REQUEST_URI_TOO_LONG 414 HTTP/1.1, RFC 2616, Section 10.4.15
UNSUPPORTED_MEDIA_TYPE 415 HTTP/1.1, RFC 2616, Section 10.4.16
REQUESTED_RANGE_NOT_SATISFIABLE 416 HTTP/1.1, RFC 2616, Section 10.4.17
EXPECTATION_FAILED 417 HTTP/1.1, RFC 2616, Section 10.4.18
UNPROCESSABLE_ENTITY 422 WEBDAV, RFC 2518, Section 10.3
LOCKED 423 WEBDAV RFC 2518, Section 10.4
FAILED_DEPENDENCY 424 WEBDAV, RFC 2518, Section 10.5
UPGRADE_REQUIRED 426 HTTP Upgrade to TLS, RFC 2817, Section 6
INTERNAL_SERVER_ERROR 500 HTTP/1.1, RFC 2616, Section 10.5.1
NOT_IMPLEMENTED 501 HTTP/1.1, RFC 2616, Section 10.5.2
BAD_GATEWAY 502 HTTP/1.1 RFC 2616, Section 10.5.3
SERVICE_UNAVAILABLE 503 HTTP/1.1, RFC 2616, Section 10.5.4
GATEWAY_TIMEOUT 504 HTTP/1.1 RFC 2616, Section 10.5.5
HTTP_VERSION_NOT_SUPPORTED 505 HTTP/1.1, RFC 2616, Section 10.5.6
INSUFFICIENT_STORAGE 507 WEBDAV, RFC 2518, Section 10.6
NOT_EXTENDED 510 An HTTP Extension Framework, RFC 2774, Section 7

20.7. httplib — HTTP protocol client 787

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.2
http://www.webdav.org/specs/rfc2518.html#STATUS_102
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7
http://www.webdav.org/specs/rfc2518.html#STATUS_207
http://tools.ietf.org/html/rfc3229.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.12
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.15
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.18
http://www.webdav.org/specs/rfc2518.html#STATUS_422
http://www.webdav.org/specs/rfc2518.html#STATUS_423
http://www.webdav.org/specs/rfc2518.html#STATUS_424
http://tools.ietf.org/html/rfc2817.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.6
http://www.webdav.org/specs/rfc2518.html#STATUS_507
http://tools.ietf.org/html/rfc2774.html

The Python Library Reference, Release 2.6.9

responses
This dictionary maps the HTTP 1.1 status codes to the W3C names.

Example: httplib.responses[httplib.NOT_FOUND] is ’Not Found’. New in version 2.5.

20.7.1 HTTPConnection Objects

HTTPConnection instances have the following methods:

request(method, url, [body, [headers]])
This will send a request to the server using the HTTP request method method and the selector url. If the body
argument is present, it should be a string of data to send after the headers are finished. Alternatively, it may be
an open file object, in which case the contents of the file is sent; this file object should support fileno() and
read() methods. The header Content-Length is automatically set to the correct value. The headers argument
should be a mapping of extra HTTP headers to send with the request. Changed in version 2.6: body can be a file
object.

getresponse()
Should be called after a request is sent to get the response from the server. Returns an HTTPResponse instance.

Note: Note that you must have read the whole response before you can send a new request to the server.

set_debuglevel(level)
Set the debugging level (the amount of debugging output printed). The default debug level is 0, meaning no
debugging output is printed.

connect()
Connect to the server specified when the object was created.

close()
Close the connection to the server.

As an alternative to using the request() method described above, you can also send your request step by step, by
using the four functions below.

putrequest(request, selector, [skip_host, [skip_accept_encoding]])
This should be the first call after the connection to the server has been made. It sends a line to the server consist-
ing of the request string, the selector string, and the HTTP version (HTTP/1.1). To disable automatic sending
of Host: or Accept-Encoding: headers (for example to accept additional content encodings), specify
skip_host or skip_accept_encoding with non-False values. Changed in version 2.4: skip_accept_encoding argu-
ment added.

putheader(header, argument, [...])
Send an RFC 822-style header to the server. It sends a line to the server consisting of the header, a colon and a
space, and the first argument. If more arguments are given, continuation lines are sent, each consisting of a tab
and an argument.

endheaders()
Send a blank line to the server, signalling the end of the headers.

send(data)
Send data to the server. This should be used directly only after the endheaders() method has been called
and before getresponse() is called.

20.7.2 HTTPResponse Objects

HTTPResponse instances have the following methods and attributes:

788 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 2.6.9

read([amt])
Reads and returns the response body, or up to the next amt bytes.

getheader(name, [default])
Get the contents of the header name, or default if there is no matching header.

getheaders()
Return a list of (header, value) tuples. New in version 2.4.

msg
A mimetools.Message instance containing the response headers.

version
HTTP protocol version used by server. 10 for HTTP/1.0, 11 for HTTP/1.1.

status
Status code returned by server.

reason
Reason phrase returned by server.

20.7.3 Examples

Here is an example session that uses the GET method:

>>> import httplib
>>> conn = httplib.HTTPConnection("www.python.org")
>>> conn.request("GET", "/index.html")
>>> r1 = conn.getresponse()
>>> print r1.status, r1.reason
200 OK
>>> data1 = r1.read()
>>> conn.request("GET", "/parrot.spam")
>>> r2 = conn.getresponse()
>>> print r2.status, r2.reason
404 Not Found
>>> data2 = r2.read()
>>> conn.close()

Here is an example session that uses HEAD method. Note that HEAD method never returns any data.

>>> import httplib
>>> conn = httplib.HTTPConnection("www.python.org")
>>> conn.request("HEAD","/index.html")
>>> res = conn.getresponse()
>>> print res.status, res.reason
200 OK
>>> data = res.read()
>>> print len(data)
0
>>> data == ’’
True

Here is an example session that shows how to POST requests:

>>> import httplib, urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> headers = {"Content-type": "application/x-www-form-urlencoded",
... "Accept": "text/plain"}

20.7. httplib — HTTP protocol client 789

The Python Library Reference, Release 2.6.9

>>> conn = httplib.HTTPConnection("musi-cal.mojam.com:80")
>>> conn.request("POST", "/cgi-bin/query", params, headers)
>>> response = conn.getresponse()
>>> print response.status, response.reason
200 OK
>>> data = response.read()
>>> conn.close()

20.8 ftplib — FTP protocol client

This module defines the class FTP and a few related items. The FTP class implements the client side of the FTP
protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such as mirroring
other ftp servers. It is also used by the module urllib to handle URLs that use FTP. For more information on FTP
(File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using the ftplib module:

>>> from ftplib import FTP
>>> ftp = FTP(’ftp.cwi.nl’) # connect to host, default port
>>> ftp.login() # user anonymous, passwd anonymous@
>>> ftp.retrlines(’LIST’) # list directory contents
total 24418
drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .
dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..
-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX
.
.
.

>>> ftp.retrbinary(’RETR README’, open(’README’, ’wb’).write)
’226 Transfer complete.’
>>> ftp.quit()

The module defines the following items:

class FTP([host, [user, [passwd, [acct, [timeout]]]]])
Return a new instance of the FTP class. When host is given, the method call connect(host) is made. When
user is given, additionally the method call login(user, passwd, acct) is made (where passwd and
acct default to the empty string when not given). The optional timeout parameter specifies a timeout in seconds
for blocking operations like the connection attempt (if is not specified, the global default timeout setting will be
used). Changed in version 2.6: timeout was added.

exception error_reply
Exception raised when an unexpected reply is received from the server.

exception error_temp
Exception raised when an error code in the range 400–499 is received.

exception error_perm
Exception raised when an error code in the range 500–599 is received.

exception error_proto
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.

all_errors
The set of all exceptions (as a tuple) that methods of FTP instances may raise as a result of problems with the
FTP connection (as opposed to programming errors made by the caller). This set includes the four exceptions
listed below as well as socket.error and IOError.

790 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc959.html

The Python Library Reference, Release 2.6.9

See Also:

Module netrc Parser for the .netrc file format. The file .netrc is typically used by FTP clients to load user
authentication information before prompting the user.

The file Tools/scripts/ftpmirror.py in the Python source distribution is a script that can mirror FTP sites,
or portions thereof, using the ftplib module. It can be used as an extended example that applies this module.

20.8.1 FTP Objects

Several methods are available in two flavors: one for handling text files and another for binary files. These are named
for the command which is used followed by lines for the text version or binary for the binary version.

FTP instances have the following methods:

set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, 0,
produces no debugging output. A value of 1 produces a moderate amount of debugging output, generally a
single line per request. A value of 2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

connect(host, [port, [timeout]])
Connect to the given host and port. The default port number is 21, as specified by the FTP protocol specification.
It is rarely needed to specify a different port number. This function should be called only once for each instance;
it should not be called at all if a host was given when the instance was created. All other methods can only be
used after a connection has been made.

The optional timeout parameter specifies a timeout in seconds for the connection attempt. If no timeout is
passed, the global default timeout setting will be used. Changed in version 2.6: timeout was added.

getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

login([user, [passwd, [acct]]])
Log in as the given user. The passwd and acct parameters are optional and default to the empty string. If no user
is specified, it defaults to ’anonymous’. If user is ’anonymous’, the default passwd is ’anonymous@’.
This function should be called only once for each instance, after a connection has been established; it should
not be called at all if a host and user were given when the instance was created. Most FTP commands are
only allowed after the client has logged in. The acct parameter supplies “accounting information”; few systems
implement this.

abort()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

sendcmd(command)
Send a simple command string to the server and return the response string.

voidcmd(command)
Send a simple command string to the server and handle the response. Return nothing if a response code in the
range 200–299 is received. Raise an exception otherwise.

retrbinary(command, callback, [maxblocksize, [rest]])
Retrieve a file in binary transfer mode. command should be an appropriate RETR command: ’RETR
filename’. The callback function is called for each block of data received, with a single string argument
giving the data block. The optional maxblocksize argument specifies the maximum chunk size to read on the
low-level socket object created to do the actual transfer (which will also be the largest size of the data blocks
passed to callback). A reasonable default is chosen. rest means the same thing as in the transfercmd()
method.

20.8. ftplib — FTP protocol client 791

The Python Library Reference, Release 2.6.9

retrlines(command, [callback])
Retrieve a file or directory listing in ASCII transfer mode. command should be an appropriate RETR command
(see retrbinary()) or a command such as LIST, NLST or MLSD (usually just the string ’LIST’). The
callback function is called for each line with a string argument containing the line with the trailing CRLF
stripped. The default callback prints the line to sys.stdout.

set_pasv(boolean)
Enable “passive” mode if boolean is true, other disable passive mode. (In Python 2.0 and before, passive mode
was off by default; in Python 2.1 and later, it is on by default.)

storbinary(command, file, [blocksize, callback])
Store a file in binary transfer mode. command should be an appropriate STOR command: "STOR filename".
file is an open file object which is read until EOF using its read() method in blocks of size blocksize to provide
the data to be stored. The blocksize argument defaults to 8192. callback is an optional single parameter callable
that is called on each block of data after it is sent. Changed in version 2.1: default for blocksize added.Changed
in version 2.6: callback parameter added.

storlines(command, file, [callback])
Store a file in ASCII transfer mode. command should be an appropriate STOR command (see storbinary()).
Lines are read until EOF from the open file object file using its readline() method to provide the data to be
stored. callback is an optional single parameter callable that is called on each line after it is sent. Changed in
version 2.6: callback parameter added.

transfercmd(cmd, [rest])
Initiate a transfer over the data connection. If the transfer is active, send a EPRT or PORT command and the
transfer command specified by cmd, and accept the connection. If the server is passive, send a EPSV or PASV
command, connect to it, and start the transfer command. Either way, return the socket for the connection.

If optional rest is given, a REST command is sent to the server, passing rest as an argument. rest is usually a byte
offset into the requested file, telling the server to restart sending the file’s bytes at the requested offset, skipping
over the initial bytes. Note however that RFC 959 requires only that rest be a string containing characters in the
printable range from ASCII code 33 to ASCII code 126. The transfercmd() method, therefore, converts
rest to a string, but no check is performed on the string’s contents. If the server does not recognize the REST
command, an error_reply exception will be raised. If this happens, simply call transfercmd() without
a rest argument.

ntransfercmd(cmd, [rest])
Like transfercmd(), but returns a tuple of the data connection and the expected size of the data. If the
expected size could not be computed, None will be returned as the expected size. cmd and rest means the same
thing as in transfercmd().

nlst(argument, [...])
Return a list of files as returned by the NLST command. The optional argument is a directory to list (default
is the current server directory). Multiple arguments can be used to pass non-standard options to the NLST
command.

dir(argument, [...])
Produce a directory listing as returned by the LIST command, printing it to standard output. The optional
argument is a directory to list (default is the current server directory). Multiple arguments can be used to pass
non-standard options to the LIST command. If the last argument is a function, it is used as a callback function
as for retrlines(); the default prints to sys.stdout. This method returns None.

rename(fromname, toname)
Rename file fromname on the server to toname.

delete(filename)
Remove the file named filename from the server. If successful, returns the text of the response, otherwise raises
error_perm on permission errors or error_reply on other errors.

792 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

pwd()
Return the pathname of the current directory on the server.

rmd(dirname)
Remove the directory named dirname on the server.

size(filename)
Request the size of the file named filename on the server. On success, the size of the file is returned as an
integer, otherwise None is returned. Note that the SIZE command is not standardized, but is supported by
many common server implementations.

quit()
Send a QUIT command to the server and close the connection. This is the “polite” way to close a connection,
but it may raise an exception if the server responds with an error to the QUIT command. This implies a call to
the close() method which renders the FTP instance useless for subsequent calls (see below).

close()
Close the connection unilaterally. This should not be applied to an already closed connection such as after
a successful call to quit(). After this call the FTP instance should not be used any more (after a call to
close() or quit() you cannot reopen the connection by issuing another login() method).

20.9 poplib — POP3 protocol client

This module defines a class, POP3, which encapsulates a connection to a POP3 server and implements the protocol
as defined in RFC 1725. The POP3 class supports both the minimal and optional command sets. Additionally, this
module provides a class POP3_SSL, which provides support for connecting to POP3 servers that use SSL as an
underlying protocol layer.

Note that POP3, though widely supported, is obsolescent. The implementation quality of POP3 servers varies widely,
and too many are quite poor. If your mailserver supports IMAP, you would be better off using the imaplib.IMAP4
class, as IMAP servers tend to be better implemented.

A single class is provided by the poplib module:

class POP3(host, [port, [timeout]])
This class implements the actual POP3 protocol. The connection is created when the instance is initialized. If
port is omitted, the standard POP3 port (110) is used. The optional timeout parameter specifies a timeout in
seconds for the connection attempt (if not specified, the global default timeout setting will be used). Changed in
version 2.6: timeout was added.

class POP3_SSL(host, [port, [keyfile, [certfile]]])
This is a subclass of POP3 that connects to the server over an SSL encrypted socket. If port is not specified,
995, the standard POP3-over-SSL port is used. keyfile and certfile are also optional - they can contain a PEM
formatted private key and certificate chain file for the SSL connection. New in version 2.4.

One exception is defined as an attribute of the poplib module:

exception error_proto
Exception raised on any errors from this module (errors from socket module are not caught). The reason for
the exception is passed to the constructor as a string.

See Also:

20.9. poplib — POP3 protocol client 793

http://tools.ietf.org/html/rfc1725.html

The Python Library Reference, Release 2.6.9

Module imaplib The standard Python IMAP module.

Frequently Asked Questions About Fetchmail The FAQ for the fetchmail POP/IMAP client collects information
on POP3 server variations and RFC noncompliance that may be useful if you need to write an application based
on the POP protocol.

20.9.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case; most return the response text sent
by the server.

An POP3 instance has the following methods:

set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, 0,
produces no debugging output. A value of 1 produces a moderate amount of debugging output, generally a
single line per request. A value of 2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

getwelcome()
Returns the greeting string sent by the POP3 server.

user(username)
Send user command, response should indicate that a password is required.

pass_(password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server is locked
until quit() is called.

apop(user, secret)
Use the more secure APOP authentication to log into the POP3 server.

rpop(user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

stat()
Get mailbox status. The result is a tuple of 2 integers: (message count, mailbox size).

list([which])
Request message list, result is in the form (response, [’mesg_num octets’, ...], octets). If
which is set, it is the message to list.

retr(which)
Retrieve whole message number which, and set its seen flag. Result is in form (response, [’line’,
...], octets).

dele(which)
Flag message number which for deletion. On most servers deletions are not actually performed until QUIT
(the major exception is Eudora QPOP, which deliberately violates the RFCs by doing pending deletes on any
disconnect).

rset()
Remove any deletion marks for the mailbox.

noop()
Do nothing. Might be used as a keep-alive.

quit()
Signoff: commit changes, unlock mailbox, drop connection.

794 Chapter 20. Internet Protocols and Support

http://www.catb.org/~esr/fetchmail/fetchmail-FAQ.html

The Python Library Reference, Release 2.6.9

top(which, howmuch)
Retrieves the message header plus howmuch lines of the message after the header of message number which.
Result is in form (response, [’line’, ...], octets).

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the message’s seen flag;
unfortunately, TOP is poorly specified in the RFCs and is frequently broken in off-brand servers. Test this
method by hand against the POP3 servers you will use before trusting it.

uidl([which])
Return message digest (unique id) list. If which is specified, result contains the unique id for that message in the
form ’response mesgnum uid, otherwise result is list (response, [’mesgnum uid’, ...],
octets).

Instances of POP3_SSL have no additional methods. The interface of this subclass is identical to its parent.

20.9.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, poplib

M = poplib.POP3(’localhost’)
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):

for j in M.retr(i+1)[1]:
print j

At the end of the module, there is a test section that contains a more extensive example of usage.

20.10 imaplib — IMAP4 protocol client

This module defines three classes, IMAP4, IMAP4_SSL and IMAP4_stream, which encapsulate a connection to an
IMAP4 server and implement a large subset of the IMAP4rev1 client protocol as defined in RFC 2060. It is backward
compatible with IMAP4 (RFC 1730) servers, but note that the STATUS command is not supported in IMAP4.

Three classes are provided by the imaplib module, IMAP4 is the base class:

class IMAP4([host, [port]])
This class implements the actual IMAP4 protocol. The connection is created and protocol version (IMAP4 or
IMAP4rev1) is determined when the instance is initialized. If host is not specified, ” (the local host) is used. If
port is omitted, the standard IMAP4 port (143) is used.

Three exceptions are defined as attributes of the IMAP4 class:

exception error
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

exception abort
IMAP4 server errors cause this exception to be raised. This is a sub-class of IMAP4.error. Note that closing
the instance and instantiating a new one will usually allow recovery from this exception.

exception readonly
This exception is raised when a writable mailbox has its status changed by the server. This is a sub-class of
IMAP4.error. Some other client now has write permission, and the mailbox will need to be re-opened to
re-obtain write permission.

20.10. imaplib — IMAP4 protocol client 795

http://tools.ietf.org/html/rfc2060.html
http://tools.ietf.org/html/rfc1730.html

The Python Library Reference, Release 2.6.9

There’s also a subclass for secure connections:

class IMAP4_SSL([host, [port, [keyfile, [certfile]]]])
This is a subclass derived from IMAP4 that connects over an SSL encrypted socket (to use this class you need
a socket module that was compiled with SSL support). If host is not specified, ” (the local host) is used. If
port is omitted, the standard IMAP4-over-SSL port (993) is used. keyfile and certfile are also optional - they can
contain a PEM formatted private key and certificate chain file for the SSL connection.

The second subclass allows for connections created by a child process:

class IMAP4_stream(command)
This is a subclass derived from IMAP4 that connects to the stdin/stdout file descriptors created by passing
command to os.popen2(). New in version 2.3.

The following utility functions are defined:

Internaldate2tuple(datestr)
Converts an IMAP4 INTERNALDATE string to Coordinated Universal Time. Returns a time module tuple.

Int2AP(num)
Converts an integer into a string representation using characters from the set [A .. P].

ParseFlags(flagstr)
Converts an IMAP4 FLAGS response to a tuple of individual flags.

Time2Internaldate(date_time)
Converts a time module tuple to an IMAP4 INTERNALDATE representation. Returns a string in the form:
"DD-Mmm-YYYY HH:MM:SS +HHMM" (including double-quotes).

Note that IMAP4 message numbers change as the mailbox changes; in particular, after an EXPUNGE command per-
forms deletions the remaining messages are renumbered. So it is highly advisable to use UIDs instead, with the UID
command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found at the
University of Washington’s IMAP Information Center (http://www.washington.edu/imap/).

20.10.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

All arguments to commands are converted to strings, except for AUTHENTICATE, and the last argument to APPEND
which is passed as an IMAP4 literal. If necessary (the string contains IMAP4 protocol-sensitive characters and isn’t
enclosed with either parentheses or double quotes) each string is quoted. However, the password argument to the
LOGIN command is always quoted. If you want to avoid having an argument string quoted (eg: the flags argument to
STORE) then enclose the string in parentheses (eg: r’(\Deleted)’).

Each command returns a tuple: (type, [data, ...]) where type is usually ’OK’ or ’NO’, and data is either
the text from the command response, or mandated results from the command. Each data is either a string, or a tuple.
If a tuple, then the first part is the header of the response, and the second part contains the data (ie: ‘literal’ value).

The message_set options to commands below is a string specifying one or more messages to be acted upon. It may be a
simple message number (’1’), a range of message numbers (’2:4’), or a group of non-contiguous ranges separated
by commas (’1:3,6:9’). A range can contain an asterisk to indicate an infinite upper bound (’3:*’).

An IMAP4 instance has the following methods:

append(mailbox, flags, date_time, message)
Append message to named mailbox.

796 Chapter 20. Internet Protocols and Support

http://www.washington.edu/imap/

The Python Library Reference, Release 2.6.9

authenticate(mechanism, authobject)
Authenticate command — requires response processing.

mechanism specifies which authentication mechanism is to be used - it should appear in the instance variable
capabilities in the form AUTH=mechanism.

authobject must be a callable object:

data = authobject(response)

It will be called to process server continuation responses. It should return data that will be encoded and sent
to server. It should return None if the client abort response * should be sent instead.

check()
Checkpoint mailbox on server.

close()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the recom-
mended command before LOGOUT.

copy(message_set, new_mailbox)
Copy message_set messages onto end of new_mailbox.

create(mailbox)
Create new mailbox named mailbox.

delete(mailbox)
Delete old mailbox named mailbox.

deleteacl(mailbox, who)
Delete the ACLs (remove any rights) set for who on mailbox. New in version 2.4.

expunge()
Permanently remove deleted items from selected mailbox. Generates an EXPUNGE response for each deleted
message. Returned data contains a list of EXPUNGE message numbers in order received.

fetch(message_set, message_parts)
Fetch (parts of) messages. message_parts should be a string of message part names enclosed within parentheses,
eg: "(UID BODY[TEXT])". Returned data are tuples of message part envelope and data.

getacl(mailbox)
Get the ACLs for mailbox. The method is non-standard, but is supported by the Cyrus server.

getannotation(mailbox, entry, attribute)
Retrieve the specified ANNOTATIONs for mailbox. The method is non-standard, but is supported by the Cyrus
server. New in version 2.5.

getquota(root)
Get the quota root‘s resource usage and limits. This method is part of the IMAP4 QUOTA extension defined
in rfc2087. New in version 2.3.

getquotaroot(mailbox)
Get the list of quota roots for the named mailbox. This method is part of the IMAP4 QUOTA extension
defined in rfc2087. New in version 2.3.

list([directory, [pattern]])
List mailbox names in directory matching pattern. directory defaults to the top-level mail folder, and pattern
defaults to match anything. Returned data contains a list of LIST responses.

login(user, password)
Identify the client using a plaintext password. The password will be quoted.

20.10. imaplib — IMAP4 protocol client 797

The Python Library Reference, Release 2.6.9

login_cram_md5(user, password)
Force use of CRAM-MD5 authentication when identifying the client to protect the password. Will only work if
the server CAPABILITY response includes the phrase AUTH=CRAM-MD5. New in version 2.3.

logout()
Shutdown connection to server. Returns server BYE response.

lsub([directory, [pattern]])
List subscribed mailbox names in directory matching pattern. directory defaults to the top level directory and
pattern defaults to match any mailbox. Returned data are tuples of message part envelope and data.

myrights(mailbox)
Show my ACLs for a mailbox (i.e. the rights that I have on mailbox). New in version 2.4.

namespace()
Returns IMAP namespaces as defined in RFC2342. New in version 2.3.

noop()
Send NOOP to server.

open(host, port)
Opens socket to port at host. The connection objects established by this method will be used in the read,
readline, send, and shutdown methods. You may override this method.

partial(message_num, message_part, start, length)
Fetch truncated part of a message. Returned data is a tuple of message part envelope and data.

proxyauth(user)
Assume authentication as user. Allows an authorised administrator to proxy into any user’s mailbox. New in
version 2.3.

read(size)
Reads size bytes from the remote server. You may override this method.

readline()
Reads one line from the remote server. You may override this method.

recent()
Prompt server for an update. Returned data is None if no new messages, else value of RECENT response.

rename(oldmailbox, newmailbox)
Rename mailbox named oldmailbox to newmailbox.

response(code)
Return data for response code if received, or None. Returns the given code, instead of the usual type.

search(charset, criterion, [...])
Search mailbox for matching messages. charset may be None, in which case no CHARSET will be specified in
the request to the server. The IMAP protocol requires that at least one criterion be specified; an exception will
be raised when the server returns an error.

Example:

M is a connected IMAP4 instance...
typ, msgnums = M.search(None, ’FROM’, ’"LDJ"’)

or:
typ, msgnums = M.search(None, ’(FROM "LDJ")’)

798 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

select([mailbox, [readonly]])
Select a mailbox. Returned data is the count of messages in mailbox (EXISTS response). The default mailbox
is ’INBOX’. If the readonly flag is set, modifications to the mailbox are not allowed.

send(data)
Sends data to the remote server. You may override this method.

setacl(mailbox, who, what)
Set an ACL for mailbox. The method is non-standard, but is supported by the Cyrus server.

setannotation(mailbox, entry, attribute, [...])
Set ANNOTATIONs for mailbox. The method is non-standard, but is supported by the Cyrus server. New in
version 2.5.

setquota(root, limits)
Set the quota root‘s resource limits. This method is part of the IMAP4 QUOTA extension defined in rfc2087.
New in version 2.3.

shutdown()
Close connection established in open. You may override this method.

socket()
Returns socket instance used to connect to server.

sort(sort_criteria, charset, search_criterion, [...])
The sort command is a variant of search with sorting semantics for the results. Returned data contains a
space separated list of matching message numbers.

Sort has two arguments before the search_criterion argument(s); a parenthesized list of sort_criteria, and the
searching charset. Note that unlike search, the searching charset argument is mandatory. There is also a uid
sort command which corresponds to sort the way that uid search corresponds to search. The sort
command first searches the mailbox for messages that match the given searching criteria using the charset
argument for the interpretation of strings in the searching criteria. It then returns the numbers of matching
messages.

This is an IMAP4rev1 extension command.

status(mailbox, names)
Request named status conditions for mailbox.

store(message_set, command, flag_list)
Alters flag dispositions for messages in mailbox. command is specified by section 6.4.6 of RFC 2060 as being
one of “FLAGS”, “+FLAGS”, or “-FLAGS”, optionally with a suffix of “.SILENT”.

For example, to set the delete flag on all messages:

typ, data = M.search(None, ’ALL’)
for num in data[0].split():

M.store(num, ’+FLAGS’, ’\\Deleted’)
M.expunge()

subscribe(mailbox)
Subscribe to new mailbox.

thread(threading_algorithm, charset, search_criterion, [...])
The thread command is a variant of search with threading semantics for the results. Returned data contains
a space separated list of thread members.

Thread members consist of zero or more messages numbers, delimited by spaces, indicating successive parent
and child.

20.10. imaplib — IMAP4 protocol client 799

http://tools.ietf.org/html/rfc2060.html

The Python Library Reference, Release 2.6.9

Thread has two arguments before the search_criterion argument(s); a threading_algorithm, and the searching
charset. Note that unlike search, the searching charset argument is mandatory. There is also a uid thread
command which corresponds to thread the way that uid search corresponds to search. The thread
command first searches the mailbox for messages that match the given searching criteria using the charset
argument for the interpretation of strings in the searching criteria. It then returns the matching messages threaded
according to the specified threading algorithm.

This is an IMAP4rev1 extension command. New in version 2.4.

uid(command, arg, [...])
Execute command args with messages identified by UID, rather than message number. Returns response appro-
priate to command. At least one argument must be supplied; if none are provided, the server will return an error
and an exception will be raised.

unsubscribe(mailbox)
Unsubscribe from old mailbox.

xatom(name, [arg, [...]])
Allow simple extension commands notified by server in CAPABILITY response.

Instances of IMAP4_SSL have just one additional method:

ssl()
Returns SSLObject instance used for the secure connection with the server.

The following attributes are defined on instances of IMAP4:

PROTOCOL_VERSION
The most recent supported protocol in the CAPABILITY response from the server.

debug
Integer value to control debugging output. The initialize value is taken from the module variable Debug. Values
greater than three trace each command.

20.10.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, imaplib

M = imaplib.IMAP4()
M.login(getpass.getuser(), getpass.getpass())
M.select()
typ, data = M.search(None, ’ALL’)
for num in data[0].split():

typ, data = M.fetch(num, ’(RFC822)’)
print ’Message %s\n%s\n’ % (num, data[0][1])

M.close()
M.logout()

20.11 nntplib — NNTP protocol client

This module defines the class NNTP which implements the client side of the NNTP protocol. It can be used to
implement a news reader or poster, or automated news processors. For more information on NNTP (Network News
Transfer Protocol), see Internet RFC 977.

800 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc977.html

The Python Library Reference, Release 2.6.9

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects of
the last 10 articles:

>>> s = NNTP(’news.cwi.nl’)
>>> resp, count, first, last, name = s.group(’comp.lang.python’)
>>> print ’Group’, name, ’has’, count, ’articles, range’, first, ’to’, last
Group comp.lang.python has 59 articles, range 3742 to 3803
>>> resp, subs = s.xhdr(’subject’, first + ’-’ + last)
>>> for id, sub in subs[-10:]: print id, sub
...
3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?
3794 Emacs and doc strings
3795 a few questions about the Mac implementation
3796 Re: executable python scripts
3797 Re: executable python scripts
3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules
3802 Re: executable python scripts
3803 Re: \POSIX{} wait and SIGCHLD
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP(’news.cwi.nl’)
>>> f = open(’/tmp/article’)
>>> s.post(f)
’240 Article posted successfully.’
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

The module itself defines the following items:

class NNTP(host, [port, [user, [password, [readermode], [usenetrc]]]])
Return a new instance of the NNTP class, representing a connection to the NNTP server running on host host,
listening at port port. The default port is 119. If the optional user and password are provided, or if suitable
credentials are present in /.netrc and the optional flag usenetrc is true (the default), the AUTHINFO USER
and AUTHINFO PASS commands are used to identify and authenticate the user to the server. If the optional
flag readermode is true, then a mode reader command is sent before authentication is performed. Reader
mode is sometimes necessary if you are connecting to an NNTP server on the local machine and intend to call
reader-specific commands, such as group. If you get unexpected NNTPPermanentErrors, you might need
to set readermode. readermode defaults to None. usenetrc defaults to True. Changed in version 2.4: usenetrc
argument added.

exception NNTPError
Derived from the standard exception Exception, this is the base class for all exceptions raised by the
nntplib module.

exception NNTPReplyError
Exception raised when an unexpected reply is received from the server. For backwards compatibility, the excep-
tion error_reply is equivalent to this class.

exception NNTPTemporaryError
Exception raised when an error code in the range 400–499 is received. For backwards compatibility, the excep-
tion error_temp is equivalent to this class.

exception NNTPPermanentError

20.11. nntplib — NNTP protocol client 801

The Python Library Reference, Release 2.6.9

Exception raised when an error code in the range 500–599 is received. For backwards compatibility, the excep-
tion error_perm is equivalent to this class.

exception NNTPProtocolError
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5. For
backwards compatibility, the exception error_proto is equivalent to this class.

exception NNTPDataError
Exception raised when there is some error in the response data. For backwards compatibility, the exception
error_data is equivalent to this class.

20.11.1 NNTP Objects

NNTP instances have the following methods. The response that is returned as the first item in the return tuple of almost
all methods is the server’s response: a string beginning with a three-digit code. If the server’s response indicates an
error, the method raises one of the above exceptions.

getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

set_debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default, 0,
produces no debugging output. A value of 1 produces a moderate amount of debugging output, generally a
single line per request or response. A value of 2 or higher produces the maximum amount of debugging output,
logging each line sent and received on the connection (including message text).

newgroups(date, time, [file])
Send a NEWGROUPS command. The date argument should be a string of the form ’yymmdd’ indicating the
date, and time should be a string of the form ’hhmmss’ indicating the time. Return a pair (response,
groups) where groups is a list of group names that are new since the given date and time. If the file parameter
is supplied, then the output of the NEWGROUPS command is stored in a file. If file is a string, then the method
will open a file object with that name, write to it then close it. If file is a file object, then it will start calling
write() on it to store the lines of the command output. If file is supplied, then the returned list is an empty
list.

newnews(group, date, time, [file])
Send a NEWNEWS command. Here, group is a group name or ’*’, and date and time have the same meaning as
for newgroups(). Return a pair (response, articles) where articles is a list of message ids. If the
file parameter is supplied, then the output of the NEWNEWS command is stored in a file. If file is a string, then
the method will open a file object with that name, write to it then close it. If file is a file object, then it will start
calling write() on it to store the lines of the command output. If file is supplied, then the returned list is an
empty list.

list([file])
Send a LIST command. Return a pair (response, list) where list is a list of tuples. Each tuple has
the form (group, last, first, flag), where group is a group name, last and first are the last and
first article numbers (as strings), and flag is ’y’ if posting is allowed, ’n’ if not, and ’m’ if the newsgroup
is moderated. (Note the ordering: last, first.) If the file parameter is supplied, then the output of the LIST
command is stored in a file. If file is a string, then the method will open a file object with that name, write to it
then close it. If file is a file object, then it will start calling write() on it to store the lines of the command
output. If file is supplied, then the returned list is an empty list.

descriptions(grouppattern)
Send a LIST NEWSGROUPS command, where grouppattern is a wildmat string as specified in RFC2980 (it’s
essentially the same as DOS or UNIX shell wildcard strings). Return a pair (response, list), where list
is a list of tuples containing (name, title). New in version 2.4.

802 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

description(group)
Get a description for a single group group. If more than one group matches (if ‘group’ is a real wildmat string),
return the first match. If no group matches, return an empty string.

This elides the response code from the server. If the response code is needed, use descriptions(). New in
version 2.4.

group(name)
Send a GROUP command, where name is the group name. Return a tuple (response, count, first,
last, name) where count is the (estimated) number of articles in the group, first is the first article number
in the group, last is the last article number in the group, and name is the group name. The numbers are returned
as strings.

help([file])
Send a HELP command. Return a pair (response, list) where list is a list of help strings. If the file
parameter is supplied, then the output of the HELP command is stored in a file. If file is a string, then the method
will open a file object with that name, write to it then close it. If file is a file object, then it will start calling
write() on it to store the lines of the command output. If file is supplied, then the returned list is an empty
list.

stat(id)
Send a STAT command, where id is the message id (enclosed in ’<’ and ’>’) or an article number (as a
string). Return a triple (response, number, id) where number is the article number (as a string) and id
is the message id (enclosed in ’<’ and ’>’).

next()
Send a NEXT command. Return as for stat().

last()
Send a LAST command. Return as for stat().

head(id)
Send a HEAD command, where id has the same meaning as for stat(). Return a tuple (response,
number, id, list) where the first three are the same as for stat(), and list is a list of the article’s
headers (an uninterpreted list of lines, without trailing newlines).

body(id, [file])
Send a BODY command, where id has the same meaning as for stat(). If the file parameter is supplied, then
the body is stored in a file. If file is a string, then the method will open a file object with that name, write to it
then close it. If file is a file object, then it will start calling write() on it to store the lines of the body. Return
as for head(). If file is supplied, then the returned list is an empty list.

article(id)
Send an ARTICLE command, where id has the same meaning as for stat(). Return as for head().

slave()
Send a SLAVE command. Return the server’s response.

xhdr(header, string, [file])
Send an XHDR command. This command is not defined in the RFC but is a common extension. The header
argument is a header keyword, e.g. ’subject’. The string argument should have the form ’first-last’
where first and last are the first and last article numbers to search. Return a pair (response, list), where
list is a list of pairs (id, text), where id is an article number (as a string) and text is the text of the requested
header for that article. If the file parameter is supplied, then the output of the XHDR command is stored in a file.
If file is a string, then the method will open a file object with that name, write to it then close it. If file is a file
object, then it will start calling write() on it to store the lines of the command output. If file is supplied, then
the returned list is an empty list.

post(file)
Post an article using the POST command. The file argument is an open file object which is read until EOF

20.11. nntplib — NNTP protocol client 803

The Python Library Reference, Release 2.6.9

using its readline() method. It should be a well-formed news article, including the required headers. The
post() method automatically escapes lines beginning with ..

ihave(id, file)
Send an IHAVE command. id is a message id (enclosed in ’<’ and ’>’). If the response is not an error, treat
file exactly as for the post() method.

date()
Return a triple (response, date, time), containing the current date and time in a form suitable for the
newnews() and newgroups() methods. This is an optional NNTP extension, and may not be supported by
all servers.

xgtitle(name, [file])
Process an XGTITLE command, returning a pair (response, list), where list is a list of tuples containing
(name, title). If the file parameter is supplied, then the output of the XGTITLE command is stored in a
file. If file is a string, then the method will open a file object with that name, write to it then close it. If file is a
file object, then it will start calling write() on it to store the lines of the command output. If file is supplied,
then the returned list is an empty list. This is an optional NNTP extension, and may not be supported by all
servers.

RFC2980 says “It is suggested that this extension be deprecated”. Use descriptions() or
description() instead.

xover(start, end, [file])
Return a pair (resp, list). list is a list of tuples, one for each article in the range delimited by the start and
end article numbers. Each tuple is of the form (article number, subject, poster, date, id,
references, size, lines). If the file parameter is supplied, then the output of the XOVER command is
stored in a file. If file is a string, then the method will open a file object with that name, write to it then close it.
If file is a file object, then it will start calling write() on it to store the lines of the command output. If file is
supplied, then the returned list is an empty list. This is an optional NNTP extension, and may not be supported
by all servers.

xpath(id)
Return a pair (resp, path), where path is the directory path to the article with message ID id. This is an
optional NNTP extension, and may not be supported by all servers.

quit()
Send a QUIT command and close the connection. Once this method has been called, no other methods of the
NNTP object should be called.

20.12 smtplib — SMTP protocol client

The smtplib module defines an SMTP client session object that can be used to send mail to any Internet machine
with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult RFC 821 (Simple
Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

class SMTP([host, [port, [local_hostname, [timeout]]]])
A SMTP instance encapsulates an SMTP connection. It has methods that support a full repertoire of SMTP and
ESMTP operations. If the optional host and port parameters are given, the SMTP connect() method is called
with those parameters during initialization. An SMTPConnectError is raised if the specified host doesn’t
respond correctly. The optional timeout parameter specifies a timeout in seconds for blocking operations like
the connection attempt (if not specified, the global default timeout setting will be used).

For normal use, you should only require the initialization/connect, sendmail(), and quit() methods. An
example is included below. Changed in version 2.6: timeout was added.

804 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc821.html
http://tools.ietf.org/html/rfc1869.html

The Python Library Reference, Release 2.6.9

class SMTP_SSL([host, [port, [local_hostname, [keyfile, [certfile, [timeout]]]]]])
A SMTP_SSL instance behaves exactly the same as instances of SMTP. SMTP_SSL should be used for situations
where SSL is required from the beginning of the connection and using starttls() is not appropriate. If host
is not specified, the local host is used. If port is omitted, the standard SMTP-over-SSL port (465) is used. keyfile
and certfile are also optional, and can contain a PEM formatted private key and certificate chain file for the
SSL connection. The optional timeout parameter specifies a timeout in seconds for blocking operations like the
connection attempt (if not specified, the global default timeout setting will be used). Changed in version 2.6:
timeout was added.

class LMTP([host, [port, [local_hostname]]])
The LMTP protocol, which is very similar to ESMTP, is heavily based on the standard SMTP client. It’s
common to use Unix sockets for LMTP, so our connect() method must support that as well as a regular
host:port server. To specify a Unix socket, you must use an absolute path for host, starting with a ‘/’.

Authentication is supported, using the regular SMTP mechanism. When using a Unix socket, LMTP generally
don’t support or require any authentication, but your mileage might vary. New in version 2.6.

A nice selection of exceptions is defined as well:

exception SMTPException
Base exception class for all exceptions raised by this module.

exception SMTPServerDisconnected
This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use the SMTP
instance before connecting it to a server.

exception SMTPResponseException
Base class for all exceptions that include an SMTP error code. These exceptions are generated in some instances
when the SMTP server returns an error code. The error code is stored in the smtp_code attribute of the error,
and the smtp_error attribute is set to the error message.

exception SMTPSenderRefused
Sender address refused. In addition to the attributes set by on all SMTPResponseException exceptions,
this sets ‘sender’ to the string that the SMTP server refused.

exception SMTPRecipientsRefused
All recipient addresses refused. The errors for each recipient are accessible through the attribute recipients,
which is a dictionary of exactly the same sort as SMTP.sendmail() returns.

exception SMTPDataError
The SMTP server refused to accept the message data.

exception SMTPConnectError
Error occurred during establishment of a connection with the server.

exception SMTPHeloError
The server refused our HELO message.

exception SMTPAuthenticationError
SMTP authentication went wrong. Most probably the server didn’t accept the username/password combination
provided.

See Also:

RFC 821 - Simple Mail Transfer Protocol Protocol definition for SMTP. This document covers the model, operat-
ing procedure, and protocol details for SMTP.

RFC 1869 - SMTP Service Extensions Definition of the ESMTP extensions for SMTP. This describes a framework
for extending SMTP with new commands, supporting dynamic discovery of the commands provided by the
server, and defines a few additional commands.

20.12. smtplib — SMTP protocol client 805

http://tools.ietf.org/html/rfc821.html
http://tools.ietf.org/html/rfc1869.html

The Python Library Reference, Release 2.6.9

20.12.1 SMTP Objects

An SMTP instance has the following methods:

set_debuglevel(level)
Set the debug output level. A true value for level results in debug messages for connection and for all messages
sent to and received from the server.

connect([host, [port]])
Connect to a host on a given port. The defaults are to connect to the local host at the standard SMTP port
(25). If the hostname ends with a colon (’:’) followed by a number, that suffix will be stripped off and the
number interpreted as the port number to use. This method is automatically invoked by the constructor if a host
is specified during instantiation.

docmd(cmd, [argstring])
Send a command cmd to the server. The optional argument argstring is simply concatenated to the command,
separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual response line (multiline responses
are joined into one long line.)

In normal operation it should not be necessary to call this method explicitly. It is used to implement other
methods and may be useful for testing private extensions.

If the connection to the server is lost while waiting for the reply, SMTPServerDisconnected will be raised.

helo([hostname])
Identify yourself to the SMTP server using HELO. The hostname argument defaults to the fully qualified domain
name of the local host. The message returned by the server is stored as the helo_resp attribute of the object.

In normal operation it should not be necessary to call this method explicitly. It will be implicitly called by the
sendmail() when necessary.

ehlo([hostname])
Identify yourself to an ESMTP server using EHLO. The hostname argument defaults to the fully qualified domain
name of the local host. Examine the response for ESMTP option and store them for use by has_extn(). Also
sets several informational attributes: the message returned by the server is stored as the ehlo_resp attribute,
does_esmtp is set to true or false depending on whether the server supports ESMTP, and esmtp_features
will be a dictionary containing the names of the SMTP service extensions this server supports, and their param-
eters (if any).

Unless you wish to use has_extn() before sending mail, it should not be necessary to call this method
explicitly. It will be implicitly called by sendmail() when necessary.

ehlo_or_helo_if_needed()
This method call ehlo() and or helo() if there has been no previous EHLO or HELO command this session.
It tries ESMTP EHLO first.

SMTPHeloError The server didn’t reply properly to the HELO greeting.

New in version 2.6.

has_extn(name)
Return True if name is in the set of SMTP service extensions returned by the server, False otherwise. Case
is ignored.

verify(address)
Check the validity of an address on this server using SMTP VRFY. Returns a tuple consisting of code 250 and
a full RFC 822 address (including human name) if the user address is valid. Otherwise returns an SMTP error
code of 400 or greater and an error string.

Note: Many sites disable SMTP VRFY in order to foil spammers.

806 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 2.6.9

login(user, password)
Log in on an SMTP server that requires authentication. The arguments are the username and the password to
authenticate with. If there has been no previous EHLO or HELO command this session, this method tries ESMTP
EHLO first. This method will return normally if the authentication was successful, or may raise the following
exceptions:

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPAuthenticationError The server didn’t accept the username/password combination.

SMTPException No suitable authentication method was found.

starttls([keyfile, [certfile]])
Put the SMTP connection in TLS (Transport Layer Security) mode. All SMTP commands that follow will be
encrypted. You should then call ehlo() again.

If keyfile and certfile are provided, these are passed to the socket module’s ssl() function.

If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first.
Changed in version 2.6.

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPException The server does not support the STARTTLS extension.

Changed in version 2.6.

RuntimeError SSL/TLS support is not available to your Python interpreter.

sendmail(from_addr, to_addrs, msg, [mail_options, rcpt_options])
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-address strings (a
bare string will be treated as a list with 1 address), and a message string. The caller may pass a list of ESMTP
options (such as 8bitmime) to be used in MAIL FROM commands as mail_options. ESMTP options (such
as DSN commands) that should be used with all RCPT commands can be passed as rcpt_options. (If you need
to use different ESMTP options to different recipients you have to use the low-level methods such as mail(),
rcpt() and data() to send the message.)

Note: The from_addr and to_addrs parameters are used to construct the message envelope used by the transport
agents. The SMTP does not modify the message headers in any way.

If there has been no previous EHLO or HELO command this session, this method tries ESMTP EHLO first. If the
server does ESMTP, message size and each of the specified options will be passed to it (if the option is in the
feature set the server advertises). If EHLO fails, HELO will be tried and ESMTP options suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it will throw an
exception. That is, if this method does not throw an exception, then someone should get your mail. If this
method does not throw an exception, it returns a dictionary, with one entry for each recipient that was refused.
Each entry contains a tuple of the SMTP error code and the accompanying error message sent by the server.

This method may raise the following exceptions:

SMTPRecipientsRefused All recipients were refused. Nobody got the mail. The recipients attribute
of the exception object is a dictionary with information about the refused recipients (like the one returned
when at least one recipient was accepted).

SMTPHeloError The server didn’t reply properly to the HELO greeting.

SMTPSenderRefused The server didn’t accept the from_addr.

SMTPDataError The server replied with an unexpected error code (other than a refusal of a recipient).

Unless otherwise noted, the connection will be open even after an exception is raised.

20.12. smtplib — SMTP protocol client 807

http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 2.6.9

quit()
Terminate the SMTP session and close the connection. Return the result of the SMTP QUIT command. Changed
in version 2.6: Return a value.

Low-level methods corresponding to the standard SMTP/ESMTP commands HELP, RSET, NOOP, MAIL, RCPT, and
DATA are also supported. Normally these do not need to be called directly, so they are not documented here. For
details, consult the module code.

20.12.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses), and the
message to be delivered. Note that the headers to be included with the message must be included in the message as
entered; this example doesn’t do any processing of the RFC 822 headers. In particular, the ‘To’ and ‘From’ addresses
must be included in the message headers explicitly.

import smtplib

def prompt(prompt):
return raw_input(prompt).strip()

fromaddr = prompt("From: ")
toaddrs = prompt("To: ").split()
print "Enter message, end with ^D (Unix) or ^Z (Windows):"

Add the From: and To: headers at the start!
msg = ("From: %s\r\nTo: %s\r\n\r\n"

% (fromaddr, ", ".join(toaddrs)))
while 1:

try:
line = raw_input()

except EOFError:
break

if not line:
break

msg = msg + line

print "Message length is " + repr(len(msg))

server = smtplib.SMTP(’localhost’)
server.set_debuglevel(1)
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

Note: In general, you will want to use the email package’s features to construct an email message, which you can
then convert to a string and send via sendmail(); see email: Examples.

20.13 smtpd — SMTP Server

This module offers several classes to implement SMTP servers. One is a generic do-nothing implementation, which
can be overridden, while the other two offer specific mail-sending strategies.

808 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 2.6.9

20.13.1 SMTPServer Objects

class SMTPServer(localaddr, remoteaddr)
Create a new SMTPServer object, which binds to local address localaddr. It will treat remoteaddr as an
upstream SMTP relayer. It inherits from asyncore.dispatcher, and so will insert itself into asyncore‘s
event loop on instantiation.

process_message(peer, mailfrom, rcpttos, data)
Raise NotImplementedError exception. Override this in subclasses to do something useful with this
message. Whatever was passed in the constructor as remoteaddr will be available as the _remoteaddr
attribute. peer is the remote host’s address, mailfrom is the envelope originator, rcpttos are the envelope
recipients and data is a string containing the contents of the e-mail (which should be in RFC 2822 format).

20.13.2 DebuggingServer Objects

class DebuggingServer(localaddr, remoteaddr)
Create a new debugging server. Arguments are as per SMTPServer. Messages will be discarded, and printed
on stdout.

20.13.3 PureProxy Objects

class PureProxy(localaddr, remoteaddr)
Create a new pure proxy server. Arguments are as per SMTPServer. Everything will be relayed to remoteaddr.
Note that running this has a good chance to make you into an open relay, so please be careful.

20.13.4 MailmanProxy Objects

class MailmanProxy(localaddr, remoteaddr)
Create a new pure proxy server. Arguments are as per SMTPServer. Everything will be relayed to remoteaddr,
unless local mailman configurations knows about an address, in which case it will be handled via mailman. Note
that running this has a good chance to make you into an open relay, so please be careful.

20.14 telnetlib — Telnet client

The telnetlib module provides a Telnet class that implements the Telnet protocol. See RFC 854 for details
about the protocol. In addition, it provides symbolic constants for the protocol characters (see below), and for the
telnet options. The symbolic names of the telnet options follow the definitions in arpa/telnet.h, with the leading
TELOPT_ removed. For symbolic names of options which are traditionally not included in arpa/telnet.h, see
the module source itself.

The symbolic constants for the telnet commands are: IAC, DONT, DO, WONT, WILL, SE (Subnegotiation End), NOP
(No Operation), DM (Data Mark), BRK (Break), IP (Interrupt process), AO (Abort output), AYT (Are You There),
EC (Erase Character), EL (Erase Line), GA (Go Ahead), SB (Subnegotiation Begin).

class Telnet([host, [port, [timeout]]])
Telnet represents a connection to a Telnet server. The instance is initially not connected by default; the
open() method must be used to establish a connection. Alternatively, the host name and optional port number
can be passed to the constructor, to, in which case the connection to the server will be established before the
constructor returns. The optional timeout parameter specifies a timeout in seconds for blocking operations like
the connection attempt (if not specified, the global default timeout setting will be used).

Do not reopen an already connected instance.

20.14. telnetlib — Telnet client 809

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc854.html

The Python Library Reference, Release 2.6.9

This class has many read_*() methods. Note that some of them raise EOFError when the end of the
connection is read, because they can return an empty string for other reasons. See the individual descriptions
below. Changed in version 2.6: timeout was added.

See Also:

RFC 854 - Telnet Protocol Specification Definition of the Telnet protocol.

20.14.1 Telnet Objects

Telnet instances have the following methods:

read_until(expected, [timeout])
Read until a given string, expected, is encountered or until timeout seconds have passed.

When no match is found, return whatever is available instead, possibly the empty string. Raise EOFError if
the connection is closed and no cooked data is available.

read_all()
Read all data until EOF; block until connection closed.

read_some()
Read at least one byte of cooked data unless EOF is hit. Return ” if EOF is hit. Block if no data is immediately
available.

read_very_eager()
Read everything that can be without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data available. Return ” if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read_eager()
Read readily available data.

Raise EOFError if connection closed and no cooked data available. Return ” if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read_lazy()
Process and return data already in the queues (lazy).

Raise EOFError if connection closed and no data available. Return ” if no cooked data available otherwise.
Do not block unless in the midst of an IAC sequence.

read_very_lazy()
Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available. Return ” if no cooked data available otherwise.
This method never blocks.

read_sb_data()
Return the data collected between a SB/SE pair (suboption begin/end). The callback should access these data
when it was invoked with a SE command. This method never blocks. New in version 2.3.

open(host, [port, [timeout]])
Connect to a host. The optional second argument is the port number, which defaults to the standard Telnet port
(23). The optional timeout parameter specifies a timeout in seconds for blocking operations like the connection
attempt (if not specified, the global default timeout setting will be used).

Do not try to reopen an already connected instance. Changed in version 2.6: timeout was added.

810 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc854.html

The Python Library Reference, Release 2.6.9

msg(msg, [*args])
Print a debug message when the debug level is > 0. If extra arguments are present, they are substituted in the
message using the standard string formatting operator.

set_debuglevel(debuglevel)
Set the debug level. The higher the value of debuglevel, the more debug output you get (on sys.stdout).

close()
Close the connection.

get_socket()
Return the socket object used internally.

fileno()
Return the file descriptor of the socket object used internally.

write(buffer)
Write a string to the socket, doubling any IAC characters. This can block if the connection is blocked. May
raise socket.error if the connection is closed.

interact()
Interaction function, emulates a very dumb Telnet client.

mt_interact()
Multithreaded version of interact().

expect(list, [timeout])
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (re.RegexObject instances) or uncom-
piled (strings). The optional second argument is a timeout, in seconds; the default is to block indefinitely.

Return a tuple of three items: the index in the list of the first regular expression that matches; the match object
returned; and the text read up till and including the match.

If end of file is found and no text was read, raise EOFError. Otherwise, when nothing matches, return (-1,
None, text) where text is the text received so far (may be the empty string if a timeout happened).

If a regular expression ends with a greedy match (such as .*) or if more than one expression can match the
same input, the results are indeterministic, and may depend on the I/O timing.

set_option_negotiation_callback(callback)
Each time a telnet option is read on the input flow, this callback (if set) is called with the following parameters
: callback(telnet socket, command (DO/DONT/WILL/WONT), option). No other action is done afterwards by
telnetlib.

20.14.2 Telnet Example

A simple example illustrating typical use:

import getpass
import sys
import telnetlib

HOST = "localhost"
user = raw_input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

20.14. telnetlib — Telnet client 811

The Python Library Reference, Release 2.6.9

tn.read_until("login: ")
tn.write(user + "\n")
if password:

tn.read_until("Password: ")
tn.write(password + "\n")

tn.write("ls\n")
tn.write("exit\n")

print tn.read_all()

20.15 uuid — UUID objects according to RFC 4122

New in version 2.5. This module provides immutable UUID objects (the UUID class) and the functions uuid1(),
uuid3(), uuid4(), uuid5() for generating version 1, 3, 4, and 5 UUIDs as specified in RFC 4122.

If all you want is a unique ID, you should probably call uuid1() or uuid4(). Note that uuid1()may compromise
privacy since it creates a UUID containing the computer’s network address. uuid4() creates a random UUID.

class UUID([hex, [bytes, [bytes_le, [fields, [int, [version]]]]]])
Create a UUID from either a string of 32 hexadecimal digits, a string of 16 bytes as the bytes argument, a
string of 16 bytes in little-endian order as the bytes_le argument, a tuple of six integers (32-bit time_low, 16-bit
time_mid, 16-bit time_hi_version, 8-bit clock_seq_hi_variant, 8-bit clock_seq_low, 48-bit node) as the fields
argument, or a single 128-bit integer as the int argument. When a string of hex digits is given, curly braces,
hyphens, and a URN prefix are all optional. For example, these expressions all yield the same UUID:

UUID(’{12345678-1234-5678-1234-567812345678}’)
UUID(’12345678123456781234567812345678’)
UUID(’urn:uuid:12345678-1234-5678-1234-567812345678’)
UUID(bytes=’\x12\x34\x56\x78’*4)
UUID(bytes_le=’\x78\x56\x34\x12\x34\x12\x78\x56’ +

’\x12\x34\x56\x78\x12\x34\x56\x78’)
UUID(fields=(0x12345678, 0x1234, 0x5678, 0x12, 0x34, 0x567812345678))
UUID(int=0x12345678123456781234567812345678)

Exactly one of hex, bytes, bytes_le, fields, or int must be given. The version argument is optional; if given, the
resulting UUID will have its variant and version number set according to RFC 4122, overriding bits in the given
hex, bytes, bytes_le, fields, or int.

UUID instances have these read-only attributes:

bytes
The UUID as a 16-byte string (containing the six integer fields in big-endian byte order).

bytes_le
The UUID as a 16-byte string (with time_low, time_mid, and time_hi_version in little-endian byte order).

fields
A tuple of the six integer fields of the UUID, which are also available as six individual attributes and two derived
attributes:

812 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc4122.html

The Python Library Reference, Release 2.6.9

Field Meaning
time_low the first 32 bits of the UUID
time_mid the next 16 bits of the UUID
time_hi_version the next 16 bits of the UUID
clock_seq_hi_variant the next 8 bits of the UUID
clock_seq_low the next 8 bits of the UUID
node the last 48 bits of the UUID
time the 60-bit timestamp
clock_seq the 14-bit sequence number

hex
The UUID as a 32-character hexadecimal string.

int
The UUID as a 128-bit integer.

urn
The UUID as a URN as specified in RFC 4122.

variant
The UUID variant, which determines the internal layout of the UUID. This will be one of the integer constants
RESERVED_NCS, RFC_4122, RESERVED_MICROSOFT, or RESERVED_FUTURE.

version
The UUID version number (1 through 5, meaningful only when the variant is RFC_4122).

The uuid module defines the following functions:

getnode()
Get the hardware address as a 48-bit positive integer. The first time this runs, it may launch a separate program,
which could be quite slow. If all attempts to obtain the hardware address fail, we choose a random 48-bit number
with its eighth bit set to 1 as recommended in RFC 4122. “Hardware address” means the MAC address of a
network interface, and on a machine with multiple network interfaces the MAC address of any one of them may
be returned.

uuid1([node, [clock_seq]])
Generate a UUID from a host ID, sequence number, and the current time. If node is not given, getnode()
is used to obtain the hardware address. If clock_seq is given, it is used as the sequence number; otherwise a
random 14-bit sequence number is chosen.

uuid3(namespace, name)
Generate a UUID based on the MD5 hash of a namespace identifier (which is a UUID) and a name (which is a
string).

uuid4()
Generate a random UUID.

uuid5(namespace, name)
Generate a UUID based on the SHA-1 hash of a namespace identifier (which is a UUID) and a name (which is
a string).

The uuid module defines the following namespace identifiers for use with uuid3() or uuid5().

NAMESPACE_DNS
When this namespace is specified, the name string is a fully-qualified domain name.

NAMESPACE_URL
When this namespace is specified, the name string is a URL.

NAMESPACE_OID
When this namespace is specified, the name string is an ISO OID.

20.15. uuid — UUID objects according to RFC 4122 813

The Python Library Reference, Release 2.6.9

NAMESPACE_X500
When this namespace is specified, the name string is an X.500 DN in DER or a text output format.

The uuid module defines the following constants for the possible values of the variant attribute:

RESERVED_NCS
Reserved for NCS compatibility.

RFC_4122
Specifies the UUID layout given in RFC 4122.

RESERVED_MICROSOFT
Reserved for Microsoft compatibility.

RESERVED_FUTURE
Reserved for future definition.

See Also:

RFC 4122 - A Universally Unique IDentifier (UUID) URN Namespace This specification defines a Uniform Re-
source Name namespace for UUIDs, the internal format of UUIDs, and methods of generating UUIDs.

20.15.1 Example

Here are some examples of typical usage of the uuid module:

>>> import uuid

make a UUID based on the host ID and current time
>>> uuid.uuid1()
UUID(’a8098c1a-f86e-11da-bd1a-00112444be1e’)

make a UUID using an MD5 hash of a namespace UUID and a name
>>> uuid.uuid3(uuid.NAMESPACE_DNS, ’python.org’)
UUID(’6fa459ea-ee8a-3ca4-894e-db77e160355e’)

make a random UUID
>>> uuid.uuid4()
UUID(’16fd2706-8baf-433b-82eb-8c7fada847da’)

make a UUID using a SHA-1 hash of a namespace UUID and a name
>>> uuid.uuid5(uuid.NAMESPACE_DNS, ’python.org’)
UUID(’886313e1-3b8a-5372-9b90-0c9aee199e5d’)

make a UUID from a string of hex digits (braces and hyphens ignored)
>>> x = uuid.UUID(’{00010203-0405-0607-0809-0a0b0c0d0e0f}’)

convert a UUID to a string of hex digits in standard form
>>> str(x)
’00010203-0405-0607-0809-0a0b0c0d0e0f’

get the raw 16 bytes of the UUID
>>> x.bytes
’\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f’

make a UUID from a 16-byte string

814 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc4122.html
http://tools.ietf.org/html/rfc4122.html

The Python Library Reference, Release 2.6.9

>>> uuid.UUID(bytes=x.bytes)
UUID(’00010203-0405-0607-0809-0a0b0c0d0e0f’)

20.16 urlparse — Parse URLs into components

Note: The urlparse module is renamed to urllib.parse in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0.

This module defines a standard interface to break Uniform Resource Locator (URL) strings up in components (ad-
dressing scheme, network location, path etc.), to combine the components back into a URL string, and to convert a
“relative URL” to an absolute URL given a “base URL.”

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and discovered
a bug in an earlier draft!). It supports the following URL schemes: file, ftp, gopher, hdl, http, https,
imap, mailto, mms, news, nntp, prospero, rsync, rtsp, rtspu, sftp, shttp, sip, sips, snews,
svn, svn+ssh, telnet, wais. New in version 2.5: Support for the sftp and sips schemes. The urlparse
module defines the following functions:

urlparse(urlstring, [scheme, [allow_fragments]])
Parse a URL into six components, returning a 6-tuple. This corresponds to the general structure of a URL:
scheme://netloc/path;parameters?query#fragment. Each tuple item is a string, possibly
empty. The components are not broken up in smaller parts (for example, the network location is a single string),
and % escapes are not expanded. The delimiters as shown above are not part of the result, except for a leading
slash in the path component, which is retained if present. For example:

>>> from urlparse import urlparse
>>> o = urlparse(’http://www.cwi.nl:80/%7Eguido/Python.html’)
>>> o # doctest: +NORMALIZE_WHITESPACE
ParseResult(scheme=’http’, netloc=’www.cwi.nl:80’, path=’/%7Eguido/Python.html’,

params=’’, query=’’, fragment=’’)
>>> o.scheme
’http’
>>> o.port
80
>>> o.geturl()
’http://www.cwi.nl:80/%7Eguido/Python.html’

If the scheme argument is specified, it gives the default addressing scheme, to be used only if the URL does not
specify one. The default value for this argument is the empty string.

If the allow_fragments argument is false, fragment identifiers are not allowed, even if the URL’s addressing
scheme normally does support them. The default value for this argument is True.

The return value is actually an instance of a subclass of tuple. This class has the following additional read-only
convenience attributes:

20.16. urlparse — Parse URLs into components 815

The Python Library Reference, Release 2.6.9

Attribute Index Value Value if not present
scheme 0 URL scheme specifier empty string
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
params 3 Parameters for last path element empty string
query 4 Query component empty string
fragment 5 Fragment identifier empty string
username User name None
password Password None
hostname Host name (lower case) None
port Port number as integer, if present None

See section Results of urlparse() and urlsplit() for more information on the result object. Changed in version
2.5: Added attributes to return value.

parse_qs(qs, [keep_blank_values, [strict_parsing]])
Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a dictionary. The dictionary keys are the unique query variable names and the values are
lists of values for each name.

The optional argument keep_blank_values is a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argument strict_parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

Use the urllib.urlencode() function to convert such dictionaries into query strings. New in version 2.6:
Copied from the cgi module.

parse_qsl(qs, [keep_blank_values, [strict_parsing]])
Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a list of name, value pairs.

The optional argument keep_blank_values is a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argument strict_parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

Use the urllib.urlencode() function to convert such lists of pairs into query strings. New in version 2.6:
Copied from the cgi module.

urlunparse(parts)
Construct a URL from a tuple as returned by urlparse(). The parts argument can be any six-item iterable.
This may result in a slightly different, but equivalent URL, if the URL that was parsed originally had unnecessary
delimiters (for example, a ? with an empty query; the RFC states that these are equivalent).

urlsplit(urlstring, [scheme, [allow_fragments]])
This is similar to urlparse(), but does not split the params from the URL. This should generally be used
instead of urlparse() if the more recent URL syntax allowing parameters to be applied to each segment
of the path portion of the URL (see RFC 2396) is wanted. A separate function is needed to separate the path
segments and parameters. This function returns a 5-tuple: (addressing scheme, network location, path, query,
fragment identifier).

The return value is actually an instance of a subclass of tuple. This class has the following additional read-only
convenience attributes:

816 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2396.html

The Python Library Reference, Release 2.6.9

Attribute Index Value Value if not present
scheme 0 URL scheme specifier empty string
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
query 3 Query component empty string
fragment 4 Fragment identifier empty string
username User name None
password Password None
hostname Host name (lower case) None
port Port number as integer, if present None

See section Results of urlparse() and urlsplit() for more information on the result object. New in version
2.2.Changed in version 2.5: Added attributes to return value.

urlunsplit(parts)
Combine the elements of a tuple as returned by urlsplit() into a complete URL as a string. The parts
argument can be any five-item iterable. This may result in a slightly different, but equivalent URL, if the URL
that was parsed originally had unnecessary delimiters (for example, a ? with an empty query; the RFC states
that these are equivalent). New in version 2.2.

urljoin(base, url, [allow_fragments])
Construct a full (“absolute”) URL by combining a “base URL” (base) with another URL (url). Informally, this
uses components of the base URL, in particular the addressing scheme, the network location and (part of) the
path, to provide missing components in the relative URL. For example:

>>> from urlparse import urljoin
>>> urljoin(’http://www.cwi.nl/%7Eguido/Python.html’, ’FAQ.html’)
’http://www.cwi.nl/%7Eguido/FAQ.html’

The allow_fragments argument has the same meaning and default as for urlparse().

Note: If url is an absolute URL (that is, starting with // or scheme://), the url‘s host name and/or scheme
will be present in the result. For example:

>>> urljoin(’http://www.cwi.nl/%7Eguido/Python.html’,
... ’//www.python.org/%7Eguido’)
’http://www.python.org/%7Eguido’

If you do not want that behavior, preprocess the url with urlsplit() and urlunsplit(), removing pos-
sible scheme and netloc parts.

urldefrag(url)
If url contains a fragment identifier, returns a modified version of url with no fragment identifier, and the
fragment identifier as a separate string. If there is no fragment identifier in url, returns url unmodified and an
empty string.

See Also:

RFC 3986 - Uniform Resource Identifiers This is the current standard (STD66). Any changes to urlparse module
should conform to this. Certain deviations could be observed, which are mostly due backward compatiblity
purposes and for certain to de-facto parsing requirements as commonly observed in major browsers.

RFC 2396 - Uniform Resource Identifiers (URI): Generic Syntax Document describing the generic syntactic re-
quirements for both Uniform Resource Names (URNs) and Uniform Resource Locators (URLs).

RFC 2368 - The mailto URL scheme. Parsing requirements for mailto url schemes.

20.16. urlparse — Parse URLs into components 817

http://tools.ietf.org/html/rfc3986.html
http://tools.ietf.org/html/rfc2396.html
http://tools.ietf.org/html/rfc2368.html

The Python Library Reference, Release 2.6.9

RFC 1808 - Relative Uniform Resource Locators This Request For Comments includes the rules for joining an ab-
solute and a relative URL, including a fair number of “Abnormal Examples” which govern the treatment of
border cases.

RFC 1738 - Uniform Resource Locators (URL) This specifies the formal syntax and semantics of absolute URLs.

20.16.1 Results of urlparse() and urlsplit()

The result objects from the urlparse() and urlsplit() functions are subclasses of the tuple type. These
subclasses add the attributes described in those functions, as well as provide an additional method:

geturl()
Return the re-combined version of the original URL as a string. This may differ from the original URL in that
the scheme will always be normalized to lower case and empty components may be dropped. Specifically, empty
parameters, queries, and fragment identifiers will be removed.

The result of this method is a fixpoint if passed back through the original parsing function:

>>> import urlparse
>>> url = ’HTTP://www.Python.org/doc/#’

>>> r1 = urlparse.urlsplit(url)
>>> r1.geturl()
’http://www.Python.org/doc/’

>>> r2 = urlparse.urlsplit(r1.geturl())
>>> r2.geturl()
’http://www.Python.org/doc/’

New in version 2.5.

The following classes provide the implementations of the parse results:

class BaseResult()
Base class for the concrete result classes. This provides most of the attribute definitions. It does not provide
a geturl() method. It is derived from tuple, but does not override the __init__() or __new__()
methods.

class ParseResult(scheme, netloc, path, params, query, fragment)
Concrete class for urlparse() results. The __new__() method is overridden to support checking that the
right number of arguments are passed.

class SplitResult(scheme, netloc, path, query, fragment)
Concrete class for urlsplit() results. The __new__() method is overridden to support checking that the
right number of arguments are passed.

20.17 SocketServer — A framework for network servers

Note: The SocketServer module has been renamed to socketserver in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0.

The SocketServer module simplifies the task of writing network servers.

There are four basic server classes: TCPServer uses the Internet TCP protocol, which provides for continuous
streams of data between the client and server. UDPServer uses datagrams, which are discrete packets of infor-
mation that may arrive out of order or be lost while in transit. The more infrequently used UnixStreamServer

818 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc1808.html
http://tools.ietf.org/html/rfc1738.html

The Python Library Reference, Release 2.6.9

and UnixDatagramServer classes are similar, but use Unix domain sockets; they’re not available on non-Unix
platforms. For more details on network programming, consult a book such as W. Richard Steven’s UNIX Network
Programming or Ralph Davis’s Win32 Network Programming.

These four classes process requests synchronously; each request must be completed before the next request can be
started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The solution is to create a separate process or
thread to handle each request; the ForkingMixIn and ThreadingMixIn mix-in classes can be used to support
asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding its handle() method; this method will process incoming requests.
Second, you must instantiate one of the server classes, passing it the server’s address and the request handler class.
Finally, call the handle_request() or serve_forever() method of the server object to process one or many
requests.

When inheriting from ThreadingMixIn for threaded connection behavior, you should explicitly declare how
you want your threads to behave on an abrupt shutdown. The ThreadingMixIn class defines an attribute dae-
mon_threads, which indicates whether or not the server should wait for thread termination. You should set the flag
explicitly if you would like threads to behave autonomously; the default is False, meaning that Python will not exit
until all threads created by ThreadingMixIn have exited.

Server classes have the same external methods and attributes, no matter what network protocol they use.

20.17.1 Server Creation Notes

There are five classes in an inheritance diagram, four of which represent synchronous servers of four types:

+------------+
| BaseServer |
+------------+

|
v

+-----------+ +------------------+
| TCPServer |------->| UnixStreamServer |
+-----------+ +------------------+

|
v

+-----------+ +--------------------+
| UDPServer |------->| UnixDatagramServer |
+-----------+ +--------------------+

Note that UnixDatagramServer derives from UDPServer, not from UnixStreamServer — the only dif-
ference between an IP and a Unix stream server is the address family, which is simply repeated in both Unix server
classes.

Forking and threading versions of each type of server can be created using the ForkingMixIn and
ThreadingMixIn mix-in classes. For instance, a threading UDP server class is created as follows:

class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass

The mix-in class must come first, since it overrides a method defined in UDPServer. Setting the various member
variables also changes the behavior of the underlying server mechanism.

To implement a service, you must derive a class from BaseRequestHandler and redefine its handle() method.
You can then run various versions of the service by combining one of the server classes with your request handler
class. The request handler class must be different for datagram or stream services. This can be hidden by using the
handler subclasses StreamRequestHandler or DatagramRequestHandler.

20.17. SocketServer — A framework for network servers 819

The Python Library Reference, Release 2.6.9

Of course, you still have to use your head! For instance, it makes no sense to use a forking server if the service contains
state in memory that can be modified by different requests, since the modifications in the child process would never
reach the initial state kept in the parent process and passed to each child. In this case, you can use a threading server,
but you will probably have to use locks to protect the integrity of the shared data.

On the other hand, if you are building an HTTP server where all data is stored externally (for instance, in the file
system), a synchronous class will essentially render the service “deaf” while one request is being handled – which
may be for a very long time if a client is slow to receive all the data it has requested. Here a threading or forking server
is appropriate.

In some cases, it may be appropriate to process part of a request synchronously, but to finish processing in a forked
child depending on the request data. This can be implemented by using a synchronous server and doing an explicit
fork in the request handler class handle() method.

Another approach to handling multiple simultaneous requests in an environment that supports neither threads nor
fork() (or where these are too expensive or inappropriate for the service) is to maintain an explicit table of partially
finished requests and to use select() to decide which request to work on next (or whether to handle a new incoming
request). This is particularly important for stream services where each client can potentially be connected for a long
time (if threads or subprocesses cannot be used). See asyncore for another way to manage this.

20.17.2 Server Objects

class BaseServer()
This is the superclass of all Server objects in the module. It defines the interface, given below, but does not
implement most of the methods, which is done in subclasses.

fileno()
Return an integer file descriptor for the socket on which the server is listening. This function is most commonly
passed to select.select(), to allow monitoring multiple servers in the same process.

handle_request()
Process a single request. This function calls the following methods in order: get_request(),
verify_request(), and process_request(). If the user-provided handle() method of the han-
dler class raises an exception, the server’s handle_error() method will be called. If no request is received
within self.timeout seconds, handle_timeout() will be called and handle_request() will re-
turn.

serve_forever(poll_interval=0.5)
Handle requests until an explicit shutdown() request. Polls for shutdown every poll_interval seconds.

shutdown()
Tells the serve_forever() loop to stop and waits until it does. New in version 2.6.

address_family
The family of protocols to which the server’s socket belongs. Common examples are socket.AF_INET and
socket.AF_UNIX.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server_address
The address on which the server is listening. The format of addresses varies depending on the protocol family;
see the documentation for the socket module for details. For Internet protocols, this is a tuple containing a string
giving the address, and an integer port number: (’127.0.0.1’, 80), for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

820 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

allow_reuse_address
Whether the server will allow the reuse of an address. This defaults to False, and can be set in subclasses to
change the policy.

request_queue_size
The size of the request queue. If it takes a long time to process a single request, any requests that arrive while
the server is busy are placed into a queue, up to request_queue_size requests. Once the queue is full,
further requests from clients will get a “Connection denied” error. The default value is usually 5, but this can be
overridden by subclasses.

socket_type
The type of socket used by the server; socket.SOCK_STREAM and socket.SOCK_DGRAM are two com-
mon values.

timeout
Timeout duration, measured in seconds, or None if no timeout is desired. If handle_request() receives
no incoming requests within the timeout period, the handle_timeout() method is called.

There are various server methods that can be overridden by subclasses of base server classes like TCPServer; these
methods aren’t useful to external users of the server object.

finish_request()
Actually processes the request by instantiating RequestHandlerClass and calling its handle() method.

get_request()
Must accept a request from the socket, and return a 2-tuple containing the new socket object to be used to
communicate with the client, and the client’s address.

handle_error(request, client_address)
This function is called if the RequestHandlerClass‘s handle() method raises an exception. The default
action is to print the traceback to standard output and continue handling further requests.

handle_timeout()
This function is called when the timeout attribute has been set to a value other than None and the timeout
period has passed with no requests being received. The default action for forking servers is to collect the status
of any child processes that have exited, while in threading servers this method does nothing.

process_request(request, client_address)
Calls finish_request() to create an instance of the RequestHandlerClass. If desired, this function
can create a new process or thread to handle the request; the ForkingMixIn and ThreadingMixIn classes
do this.

server_activate()
Called by the server’s constructor to activate the server. The default behavior just listen()s to the server’s
socket. May be overridden.

server_bind()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify_request(request, client_address)
Must return a Boolean value; if the value is True, the request will be processed, and if it’s False, the re-
quest will be denied. This function can be overridden to implement access controls for a server. The default
implementation always returns True.

20.17.3 RequestHandler Objects

The request handler class must define a new handle() method, and can override any of the following methods. A
new instance is created for each request.

20.17. SocketServer — A framework for network servers 821

The Python Library Reference, Release 2.6.9

finish()
Called after the handle() method to perform any clean-up actions required. The default implementation does
nothing. If setup() or handle() raise an exception, this function will not be called.

handle()
This function must do all the work required to service a request. The default implementation does nothing.
Several instance attributes are available to it; the request is available as self.request; the client address as
self.client_address; and the server instance as self.server, in case it needs access to per-server
information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services, self.request is a pair of string and
socket. However, this can be hidden by using the request handler subclasses StreamRequestHandler
or DatagramRequestHandler, which override the setup() and finish() methods, and provide
self.rfile and self.wfile attributes. self.rfile and self.wfile can be read or written, re-
spectively, to get the request data or return data to the client.

setup()
Called before the handle()method to perform any initialization actions required. The default implementation
does nothing.

20.17.4 Examples

SocketServer.TCPServer Example

This is the server side:

import SocketServer

class MyTCPHandler(SocketServer.BaseRequestHandler):
"""
The RequestHandler class for our server.

It is instantiated once per connection to the server, and must
override the handle() method to implement communication to the
client.
"""

def handle(self):
self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print "%s wrote:" % self.client_address[0]
print self.data
just send back the same data, but upper-cased
self.request.send(self.data.upper())

if __name__ == "__main__":
HOST, PORT = "localhost", 9999

Create the server, binding to localhost on port 9999
server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

Activate the server; this will keep running until you
interrupt the program with Ctrl-C
server.serve_forever()

822 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

An alternative request handler class that makes use of streams (file-like objects that simplify communication by pro-
viding the standard file interface):

class MyTCPHandler(SocketServer.StreamRequestHandler):

def handle(self):
self.rfile is a file-like object created by the handler;
we can now use e.g. readline() instead of raw recv() calls
self.data = self.rfile.readline().strip()
print "%s wrote:" % self.client_address[0]
print self.data
Likewise, self.wfile is a file-like object used to write back
to the client
self.wfile.write(self.data.upper())

The difference is that the readline() call in the second handler will call recv() multiple times until it encounters
a newline character, while the single recv() call in the first handler will just return what has been sent from the client
in one send() call.

This is the client side:

import socket
import sys

HOST, PORT = "localhost", 9999
data = " ".join(sys.argv[1:])

Create a socket (SOCK_STREAM means a TCP socket)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect to server and send data
sock.connect((HOST, PORT))
sock.send(data + "\n")

Receive data from the server and shut down
received = sock.recv(1024)
sock.close()

print "Sent: %s" % data
print "Received: %s" % received

The output of the example should look something like this:

Server:

$ python TCPServer.py
127.0.0.1 wrote:
hello world with TCP
127.0.0.1 wrote:
python is nice

Client:

$ python TCPClient.py hello world with TCP
Sent: hello world with TCP
Received: HELLO WORLD WITH TCP
$ python TCPClient.py python is nice
Sent: python is nice

20.17. SocketServer — A framework for network servers 823

The Python Library Reference, Release 2.6.9

Received: PYTHON IS NICE

SocketServer.UDPServer Example

This is the server side:

import SocketServer

class MyUDPHandler(SocketServer.BaseRequestHandler):
"""
This class works similar to the TCP handler class, except that
self.request consists of a pair of data and client socket, and since
there is no connection the client address must be given explicitly
when sending data back via sendto().
"""

def handle(self):
data = self.request[0].strip()
socket = self.request[1]
print "%s wrote:" % self.client_address[0]
print data
socket.sendto(data.upper(), self.client_address)

if __name__ == "__main__":
HOST, PORT = "localhost", 9999
server = SocketServer.UDPServer((HOST, PORT), MyUDPHandler)
server.serve_forever()

This is the client side:

import socket
import sys

HOST, PORT = "localhost", 9999
data = " ".join(sys.argv[1:])

SOCK_DGRAM is the socket type to use for UDP sockets
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

As you can see, there is no connect() call; UDP has no connections.
Instead, data is directly sent to the recipient via sendto().
sock.sendto(data + "\n", (HOST, PORT))
received = sock.recv(1024)

print "Sent: %s" % data
print "Received: %s" % received

The output of the example should look exactly like for the TCP server example.

Asynchronous Mixins

To build asynchronous handlers, use the ThreadingMixIn and ForkingMixIn classes.

An example for the ThreadingMixIn class:

824 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

import socket
import threading
import SocketServer

class ThreadedTCPRequestHandler(SocketServer.BaseRequestHandler):

def handle(self):
data = self.request.recv(1024)
cur_thread = threading.currentThread()
response = "%s: %s" % (cur_thread.getName(), data)
self.request.send(response)

class ThreadedTCPServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer):
pass

def client(ip, port, message):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((ip, port))
sock.send(message)
response = sock.recv(1024)
print "Received: %s" % response
sock.close()

if __name__ == "__main__":
Port 0 means to select an arbitrary unused port
HOST, PORT = "localhost", 0

server = ThreadedTCPServer((HOST, PORT), ThreadedTCPRequestHandler)
ip, port = server.server_address

Start a thread with the server -- that thread will then start one
more thread for each request
server_thread = threading.Thread(target=server.serve_forever)
Exit the server thread when the main thread terminates
server_thread.setDaemon(True)
server_thread.start()
print "Server loop running in thread:", server_thread.getName()

client(ip, port, "Hello World 1")
client(ip, port, "Hello World 2")
client(ip, port, "Hello World 3")

server.shutdown()

The output of the example should look something like this:

$ python ThreadedTCPServer.py
Server loop running in thread: Thread-1
Received: Thread-2: Hello World 1
Received: Thread-3: Hello World 2
Received: Thread-4: Hello World 3

The ForkingMixIn class is used in the same way, except that the server will spawn a new process for each request.

20.17. SocketServer — A framework for network servers 825

The Python Library Reference, Release 2.6.9

20.18 BaseHTTPServer — Basic HTTP server

Note: The BaseHTTPServer module has been merged into http.server in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0. This module defines two classes for implementing
HTTP servers (Web servers). Usually, this module isn’t used directly, but is used as a basis for building functioning
Web servers. See the SimpleHTTPServer and CGIHTTPServer modules.

The first class, HTTPServer, is a SocketServer.TCPServer subclass, and therefore implements the
SocketServer.BaseServer interface. It creates and listens at the HTTP socket, dispatching the requests to
a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,
handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

server_address = (’’, 8000)
httpd = server_class(server_address, handler_class)
httpd.serve_forever()

class HTTPServer(server_address, RequestHandlerClass)
This class builds on the TCPServer class by storing the server address as instance variables named
server_name and server_port. The server is accessible by the handler, typically through the handler’s
server instance variable.

class BaseHTTPRequestHandler(request, client_address, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond to
any actual HTTP requests; it must be subclassed to handle each request method (e.g. GET or POST).
BaseHTTPRequestHandler provides a number of class and instance variables, and methods for use by
subclasses.

The handler will parse the request and the headers, then call a method specific to the request type. The method
name is constructed from the request. For example, for the request method SPAM, the do_SPAM() method
will be called with no arguments. All of the relevant information is stored in instance variables of the handler.
Subclasses should not need to override or extend the __init__() method.

BaseHTTPRequestHandler has the following instance variables:

client_address
Contains a tuple of the form (host, port) referring to the client’s address.

server
Contains the server instance.

command
Contains the command (request type). For example, ’GET’.

path
Contains the request path.

request_version
Contains the version string from the request. For example, ’HTTP/1.0’.

headers
Holds an instance of the class specified by the MessageClass class variable. This instance parses and
manages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherence to the HTTP protocol
must be used when writing to this stream.

826 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

BaseHTTPRequestHandler has the following class variables:

server_version
Specifies the server software version. You may want to override this. The format is multiple whitespace-
separated strings, where each string is of the form name[/version]. For example, ’BaseHTTP/0.2’.

sys_version
Contains the Python system version, in a form usable by the version_string method and the
server_version class variable. For example, ’Python/1.4’.

error_message_format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed format
specifiers, so the format operand must be a dictionary. The code key should be an integer, specifying the
numeric HTTP error code value. message should be a string containing a (detailed) error message of what
occurred, and explain should be an explanation of the error code number. Default message and explain
values can found in the responses class variable.

error_content_type
Specifies the Content-Type HTTP header of error responses sent to the client. The default value is
’text/html’. New in version 2.6: Previously, the content type was always ’text/html’.

protocol_version
This specifies the HTTP protocol version used in responses. If set to ’HTTP/1.1’, the server will permit
HTTP persistent connections; however, your server must then include an accurate Content-Length
header (using send_header()) in all of its responses to clients. For backwards compatibility, the
setting defaults to ’HTTP/1.0’.

MessageClass
Specifies a rfc822.Message-like class to parse HTTP headers. Typically, this is not overridden, and it
defaults to mimetools.Message.

responses
This variable contains a mapping of error code integers to two-element tuples containing a short and
long message. For example, {code: (shortmessage, longmessage)}. The shortmessage
is usually used as the message key in an error response, and longmessage as the explain key (see the
error_message_format class variable).

A BaseHTTPRequestHandler instance has the following methods:

handle()
Calls handle_one_request() once (or, if persistent connections are enabled, multiple times) to
handle incoming HTTP requests. You should never need to override it; instead, implement appropriate
do_*() methods.

handle_one_request()
This method will parse and dispatch the request to the appropriate do_*() method. You should never
need to override it.

send_error(code, [message])
Sends and logs a complete error reply to the client. The numeric code specifies the HTTP error code, with
message as optional, more specific text. A complete set of headers is sent, followed by text composed
using the error_message_format class variable.

send_response(code, [message])
Sends a response header and logs the accepted request. The HTTP response line is sent, followed by Server
and Date headers. The values for these two headers are picked up from the version_string() and
date_time_string() methods, respectively.

send_header(keyword, value)
Writes a specific HTTP header to the output stream. keyword should specify the header keyword, with

20.18. BaseHTTPServer — Basic HTTP server 827

The Python Library Reference, Release 2.6.9

value specifying its value.

end_headers()
Sends a blank line, indicating the end of the HTTP headers in the response.

log_request([code, [size]])
Logs an accepted (successful) request. code should specify the numeric HTTP code associated with the
response. If a size of the response is available, then it should be passed as the size parameter.

log_error(...)
Logs an error when a request cannot be fulfilled. By default, it passes the message to log_message(),
so it takes the same arguments (format and additional values).

log_message(format, ...)
Logs an arbitrary message to sys.stderr. This is typically overridden to create custom error logging
mechanisms. The format argument is a standard printf-style format string, where the additional arguments
to log_message() are applied as inputs to the formatting. The client address and current date and time
are prefixed to every message logged.

version_string()
Returns the server software’s version string. This is a combination of the server_version and
sys_version class variables.

date_time_string([timestamp])
Returns the date and time given by timestamp (which must be in the format returned by time.time()),
formatted for a message header. If timestamp is omitted, it uses the current date and time.

The result looks like ’Sun, 06 Nov 1994 08:49:37 GMT’. New in version 2.5: The timestamp
parameter.

log_date_time_string()
Returns the current date and time, formatted for logging.

address_string()
Returns the client address, formatted for logging. A name lookup is performed on the client’s IP address.

20.18.1 More examples

To create a server that doesn’t run forever, but until some condition is fulfilled:

def run_while_true(server_class=BaseHTTPServer.HTTPServer,
handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

"""
This assumes that keep_running() is a function of no arguments which
is tested initially and after each request. If its return value
is true, the server continues.
"""
server_address = (’’, 8000)
httpd = server_class(server_address, handler_class)
while keep_running():

httpd.handle_request()

See Also:

Module CGIHTTPServer Extended request handler that supports CGI scripts.

Module SimpleHTTPServer Basic request handler that limits response to files actually under the document root.

828 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

20.19 SimpleHTTPServer — Simple HTTP request handler

Note: The SimpleHTTPServer module has been merged into http.server in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0.

The SimpleHTTPServer module defines a single class, SimpleHTTPRequestHandler, which is interface-
compatible with BaseHTTPServer.BaseHTTPRequestHandler.

The SimpleHTTPServer module defines the following class:

class SimpleHTTPRequestHandler(request, client_address, server)
This class serves files from the current directory and below, directly mapping the directory structure to HTTP
requests.

A lot of the work, such as parsing the request, is done by the base class
BaseHTTPServer.BaseHTTPRequestHandler. This class implements the do_GET() and
do_HEAD() functions.

The following are defined as class-level attributes of SimpleHTTPRequestHandler:

server_version

This will be "SimpleHTTP/" + __version__, where __version__ is defined at the module level.

extensions_map
A dictionary mapping suffixes into MIME types. The default is signified by an empty string, and is con-
sidered to be application/octet-stream. The mapping is used case-insensitively, and so should
contain only lower-cased keys.

The SimpleHTTPRequestHandler class defines the following methods:

do_HEAD()
This method serves the ’HEAD’ request type: it sends the headers it would send for the equivalent GET
request. See the do_GET() method for a more complete explanation of the possible headers.

do_GET()
The request is mapped to a local file by interpreting the request as a path relative to the current working
directory.

If the request was mapped to a directory, the directory is checked for a file named index.html or
index.htm (in that order). If found, the file’s contents are returned; otherwise a directory listing is
generated by calling the list_directory() method. This method uses os.listdir() to scan the
directory, and returns a 404 error response if the listdir() fails.

If the request was mapped to a file, it is opened and the contents are returned. Any IOError exception in
opening the requested file is mapped to a 404, ’File not found’ error. Otherwise, the content type
is guessed by calling the guess_type() method, which in turn uses the extensions_map variable.

A ’Content-type:’ header with the guessed content type is output, followed by a
’Content-Length:’ header with the file’s size and a ’Last-Modified:’ header with the file’s
modification time.

Then follows a blank line signifying the end of the headers, and then the contents of the file are output. If
the file’s MIME type starts with text/ the file is opened in text mode; otherwise binary mode is used.

The test() function in the SimpleHTTPServer module is an example which creates a server using
the SimpleHTTPRequestHandler as the Handler. New in version 2.5: The ’Last-Modified’
header.

The SimpleHTTPServer module can be used the following manner in order to set up a very basic web server
serving files relative to the current directory.:

20.19. SimpleHTTPServer — Simple HTTP request handler 829

The Python Library Reference, Release 2.6.9

import SimpleHTTPServer
import SocketServer

PORT = 8000

Handler = SimpleHTTPServer.SimpleHTTPRequestHandler

httpd = SocketServer.TCPServer(("", PORT), Handler)

print "serving at port", PORT
httpd.serve_forever()

SimpleHTTPServer module can also be invoked directly using the -m switch of interpreter with a port number
argument. Similar to previous example, this serves the files relative to the current directory.:

python -m SimpleHTTPServer 8000

See Also:

Module BaseHTTPServer Base class implementation for Web server and request handler.

20.20 CGIHTTPServer — CGI-capable HTTP request handler

Note: The CGIHTTPServer module has been merged into http.server in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0.

The CGIHTTPServer module defines a request-handler class, interface compati-
ble with BaseHTTPServer.BaseHTTPRequestHandler and inherits behavior from
SimpleHTTPServer.SimpleHTTPRequestHandler but can also run CGI scripts.

Note: This module can run CGI scripts on Unix and Windows systems.

Note: CGI scripts run by the CGIHTTPRequestHandler class cannot execute redirects (HTTP code 302), because
code 200 (script output follows) is sent prior to execution of the CGI script. This pre-empts the status code.

The CGIHTTPServer module defines the following class:

class CGIHTTPRequestHandler(request, client_address, server)
This class is used to serve either files or output of CGI scripts from the current directory and be-
low. Note that mapping HTTP hierarchic structure to local directory structure is exactly as in
SimpleHTTPServer.SimpleHTTPRequestHandler.

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a CGI script. Only
directory-based CGI are used — the other common server configuration is to treat special extensions as denoting
CGI scripts.

The do_GET() and do_HEAD() functions are modified to run CGI scripts and serve the output, instead of
serving files, if the request leads to somewhere below the cgi_directories path.

The CGIHTTPRequestHandler defines the following data member:

cgi_directories
This defaults to [’/cgi-bin’, ’/htbin’] and describes directories to treat as containing CGI
scripts.

The CGIHTTPRequestHandler defines the following methods:

do_POST()
This method serves the ’POST’ request type, only allowed for CGI scripts. Error 501, “Can only POST
to CGI scripts”, is output when trying to POST to a non-CGI url.

830 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the CGI script will be
translated to error 403.

For example usage, see the implementation of the test() function.

See Also:

Module BaseHTTPServer Base class implementation for Web server and request handler.

20.21 cookielib — Cookie handling for HTTP clients

Note: The cookielib module has been renamed to http.cookiejar in Python 3.0. The 2to3 tool will auto-
matically adapt imports when converting your sources to 3.0. New in version 2.4. The cookielib module defines
classes for automatic handling of HTTP cookies. It is useful for accessing web sites that require small pieces of data
– cookies – to be set on the client machine by an HTTP response from a web server, and then returned to the server in
later HTTP requests.

Both the regular Netscape cookie protocol and the protocol defined by RFC 2965 are handled. RFC 2965 handling
is switched off by default. RFC 2109 cookies are parsed as Netscape cookies and subsequently treated either as
Netscape or RFC 2965 cookies according to the ‘policy’ in effect. Note that the great majority of cookies on the
Internet are Netscape cookies. cookielib attempts to follow the de-facto Netscape cookie protocol (which differs
substantially from that set out in the original Netscape specification), including taking note of the max-age and port
cookie-attributes introduced with RFC 2965.

Note: The various named parameters found in Set-Cookie and Set-Cookie2 headers (eg. domain and
expires) are conventionally referred to as attributes. To distinguish them from Python attributes, the documentation
for this module uses the term cookie-attribute instead.

The module defines the following exception:

exception LoadError
Instances of FileCookieJar raise this exception on failure to load cookies from a file.

Note: For backwards-compatibility with Python 2.4 (which raised an IOError), LoadError is a subclass
of IOError.

The following classes are provided:

class CookieJar(policy=None)
policy is an object implementing the CookiePolicy interface.

The CookieJar class stores HTTP cookies. It extracts cookies from HTTP requests, and returns them in
HTTP responses. CookieJar instances automatically expire contained cookies when necessary. Subclasses
are also responsible for storing and retrieving cookies from a file or database.

class FileCookieJar(filename, delayload=None, policy=None)
policy is an object implementing the CookiePolicy interface. For the other arguments, see the documenta-
tion for the corresponding attributes.

A CookieJar which can load cookies from, and perhaps save cookies to, a file on disk. Cookies are NOT
loaded from the named file until either the load() or revert() method is called. Subclasses of this class
are documented in section FileCookieJar subclasses and co-operation with web browsers.

class CookiePolicy()
This class is responsible for deciding whether each cookie should be accepted from / returned to the server.

20.21. cookielib — Cookie handling for HTTP clients 831

http://tools.ietf.org/html/rfc2965.html
http://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 2.6.9

class DefaultCookiePolicy(blocked_domains=None, allowed_domains=None, netscape=True,
rfc2965=False, rfc2109_as_netscape=None, hide_cookie2=False,
strict_domain=False, strict_rfc2965_unverifiable=True,
strict_ns_unverifiable=False, strict_ns_domain=DefaultCookiePolicy.DomainLiberal,
strict_ns_set_initial_dollar=False, strict_ns_set_path=False)

Constructor arguments should be passed as keyword arguments only. blocked_domains is a sequence of domain
names that we never accept cookies from, nor return cookies to. allowed_domains if not None, this is a sequence
of the only domains for which we accept and return cookies. For all other arguments, see the documentation for
CookiePolicy and DefaultCookiePolicy objects.

DefaultCookiePolicy implements the standard accept / reject rules for Netscape and RFC 2965 cook-
ies. By default, RFC 2109 cookies (ie. cookies received in a Set-Cookie header with a version cookie-
attribute of 1) are treated according to the RFC 2965 rules. However, if RFC 2965 handling is turned off
or rfc2109_as_netscape is True, RFC 2109 cookies are ‘downgraded’ by the CookieJar instance to
Netscape cookies, by setting the version attribute of the Cookie instance to 0. DefaultCookiePolicy
also provides some parameters to allow some fine-tuning of policy.

class Cookie()
This class represents Netscape, RFC 2109 and RFC 2965 cookies. It is not expected that users of cookielib
construct their own Cookie instances. Instead, if necessary, call make_cookies() on a CookieJar in-
stance.

See Also:

Module urllib2 URL opening with automatic cookie handling.

Module Cookie HTTP cookie classes, principally useful for server-side code. The cookielib and Cookie
modules do not depend on each other.

http://wp.netscape.com/newsref/std/cookie_spec.html The specification of the original Netscape cookie protocol.
Though this is still the dominant protocol, the ‘Netscape cookie protocol’ implemented by all the major browsers
(and cookielib) only bears a passing resemblance to the one sketched out in cookie_spec.html.

RFC 2109 - HTTP State Management Mechanism Obsoleted by RFC 2965. Uses Set-Cookie with version=1.

RFC 2965 - HTTP State Management Mechanism The Netscape protocol with the bugs fixed. Uses
Set-Cookie2 in place of Set-Cookie. Not widely used.

http://kristol.org/cookie/errata.html Unfinished errata to RFC 2965.

RFC 2964 - Use of HTTP State Management

20.21.1 CookieJar and FileCookieJar Objects

CookieJar objects support the iterator protocol for iterating over contained Cookie objects.

CookieJar has the following methods:

add_cookie_header(request)
Add correct Cookie header to request.

If policy allows (ie. the rfc2965 and hide_cookie2 attributes of the CookieJar‘s CookiePolicy
instance are true and false respectively), the Cookie2 header is also added when appropriate.

The request object (usually a urllib2.Request instance) must support the methods get_full_url(),
get_host(), get_type(), unverifiable(), get_origin_req_host(), has_header(),
get_header(), header_items(), and add_unredirected_header(),as documented by
urllib2.

extract_cookies(response, request)
Extract cookies from HTTP response and store them in the CookieJar, where allowed by policy.

832 Chapter 20. Internet Protocols and Support

http://wp.netscape.com/newsref/std/cookie_spec.html
http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2965.html
http://kristol.org/cookie/errata.html
http://tools.ietf.org/html/rfc2964.html

The Python Library Reference, Release 2.6.9

The CookieJarwill look for allowable Set-Cookie and Set-Cookie2 headers in the response argument,
and store cookies as appropriate (subject to the CookiePolicy.set_ok() method’s approval).

The response object (usually the result of a call to urllib2.urlopen(), or similar) should support
an info() method, which returns an object with a getallmatchingheaders() method (usually a
mimetools.Message instance).

The request object (usually a urllib2.Request instance) must support the methods get_full_url(),
get_host(), unverifiable(), and get_origin_req_host(), as documented by urllib2. The
request is used to set default values for cookie-attributes as well as for checking that the cookie is allowed to be
set.

set_policy(policy)
Set the CookiePolicy instance to be used.

make_cookies(response, request)
Return sequence of Cookie objects extracted from response object.

See the documentation for extract_cookies() for the interfaces required of the response and request
arguments.

set_cookie_if_ok(cookie, request)
Set a Cookie if policy says it’s OK to do so.

set_cookie(cookie)
Set a Cookie, without checking with policy to see whether or not it should be set.

clear([domain, [path, [name]]])
Clear some cookies.

If invoked without arguments, clear all cookies. If given a single argument, only cookies belonging to that
domain will be removed. If given two arguments, cookies belonging to the specified domain and URL path are
removed. If given three arguments, then the cookie with the specified domain, path and name is removed.

Raises KeyError if no matching cookie exists.

clear_session_cookies()
Discard all session cookies.

Discards all contained cookies that have a true discard attribute (usually because they had either no max-age
or expires cookie-attribute, or an explicit discard cookie-attribute). For interactive browsers, the end of a
session usually corresponds to closing the browser window.

Note that the save() method won’t save session cookies anyway, unless you ask otherwise by passing a true
ignore_discard argument.

FileCookieJar implements the following additional methods:

save(filename=None, ignore_discard=False, ignore_expires=False)
Save cookies to a file.

This base class raises NotImplementedError. Subclasses may leave this method unimplemented.

filename is the name of file in which to save cookies. If filename is not specified, self.filename is used
(whose default is the value passed to the constructor, if any); if self.filename is None, ValueError is
raised.

ignore_discard: save even cookies set to be discarded. ignore_expires: save even cookies that have expired

The file is overwritten if it already exists, thus wiping all the cookies it contains. Saved cookies can be restored
later using the load() or revert() methods.

load(filename=None, ignore_discard=False, ignore_expires=False)
Load cookies from a file.

20.21. cookielib — Cookie handling for HTTP clients 833

The Python Library Reference, Release 2.6.9

Old cookies are kept unless overwritten by newly loaded ones.

Arguments are as for save().

The named file must be in the format understood by the class, or LoadError will be raised. Also, IOError
may be raised, for example if the file does not exist.

Note: For backwards-compatibility with Python 2.4 (which raised an IOError), LoadError is a subclass
of IOError.

revert(filename=None, ignore_discard=False, ignore_expires=False)
Clear all cookies and reload cookies from a saved file.

revert() can raise the same exceptions as load(). If there is a failure, the object’s state will not be altered.

FileCookieJar instances have the following public attributes:

filename
Filename of default file in which to keep cookies. This attribute may be assigned to.

delayload
If true, load cookies lazily from disk. This attribute should not be assigned to. This is only a hint, since this
only affects performance, not behaviour (unless the cookies on disk are changing). A CookieJar object may
ignore it. None of the FileCookieJar classes included in the standard library lazily loads cookies.

20.21.2 FileCookieJar subclasses and co-operation with web browsers

The following CookieJar subclasses are provided for reading and writing .

class MozillaCookieJar(filename, delayload=None, policy=None)
A FileCookieJar that can load from and save cookies to disk in the Mozilla cookies.txt file format
(which is also used by the Lynx and Netscape browsers).

Note: Version 3 of the Firefox web browser no longer writes cookies in the cookies.txt file format.

Note: This loses information about RFC 2965 cookies, and also about newer or non-standard cookie-attributes
such as port.

Warning: Back up your cookies before saving if you have cookies whose loss / corruption would be
inconvenient (there are some subtleties which may lead to slight changes in the file over a load / save round-
trip).

Also note that cookies saved while Mozilla is running will get clobbered by Mozilla.

class LWPCookieJar(filename, delayload=None, policy=None)
A FileCookieJar that can load from and save cookies to disk in format compatible with the libwww-perl
library’s Set-Cookie3 file format. This is convenient if you want to store cookies in a human-readable file.

20.21.3 CookiePolicy Objects

Objects implementing the CookiePolicy interface have the following methods:

set_ok(cookie, request)
Return boolean value indicating whether cookie should be accepted from server.

cookie is a cookielib.Cookie instance. request is an object implementing the interface defined by the
documentation for CookieJar.extract_cookies().

834 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

return_ok(cookie, request)
Return boolean value indicating whether cookie should be returned to server.

cookie is a cookielib.Cookie instance. request is an object implementing the interface defined by the
documentation for CookieJar.add_cookie_header().

domain_return_ok(domain, request)
Return false if cookies should not be returned, given cookie domain.

This method is an optimization. It removes the need for checking every cookie with a particular domain (which
might involve reading many files). Returning true from domain_return_ok() and path_return_ok()
leaves all the work to return_ok().

If domain_return_ok() returns true for the cookie domain, path_return_ok() is called for the cookie
path. Otherwise, path_return_ok() and return_ok() are never called for that cookie domain. If
path_return_ok() returns true, return_ok() is called with the Cookie object itself for a full check.
Otherwise, return_ok() is never called for that cookie path.

Note that domain_return_ok() is called for every cookie domain, not just for the request domain. For ex-
ample, the function might be called with both ".example.com" and "www.example.com" if the request
domain is "www.example.com". The same goes for path_return_ok().

The request argument is as documented for return_ok().

path_return_ok(path, request)
Return false if cookies should not be returned, given cookie path.

See the documentation for domain_return_ok().

In addition to implementing the methods above, implementations of the CookiePolicy interface must also supply
the following attributes, indicating which protocols should be used, and how. All of these attributes may be assigned
to.

netscape
Implement Netscape protocol.

rfc2965
Implement RFC 2965 protocol.

hide_cookie2
Don’t add Cookie2 header to requests (the presence of this header indicates to the server that we understand
RFC 2965 cookies).

The most useful way to define a CookiePolicy class is by subclassing from DefaultCookiePolicy and
overriding some or all of the methods above. CookiePolicy itself may be used as a ‘null policy’ to allow setting
and receiving any and all cookies (this is unlikely to be useful).

20.21.4 DefaultCookiePolicy Objects

Implements the standard rules for accepting and returning cookies.

Both RFC 2965 and Netscape cookies are covered. RFC 2965 handling is switched off by default.

The easiest way to provide your own policy is to override this class and call its methods in your overridden implemen-
tations before adding your own additional checks:

import cookielib
class MyCookiePolicy(cookielib.DefaultCookiePolicy):

def set_ok(self, cookie, request):
if not cookielib.DefaultCookiePolicy.set_ok(self, cookie, request):

return False

20.21. cookielib — Cookie handling for HTTP clients 835

The Python Library Reference, Release 2.6.9

if i_dont_want_to_store_this_cookie(cookie):
return False

return True

In addition to the features required to implement the CookiePolicy interface, this class allows you to block and
allow domains from setting and receiving cookies. There are also some strictness switches that allow you to tighten
up the rather loose Netscape protocol rules a little bit (at the cost of blocking some benign cookies).

A domain blacklist and whitelist is provided (both off by default). Only domains not in the blacklist and present in the
whitelist (if the whitelist is active) participate in cookie setting and returning. Use the blocked_domains constructor ar-
gument, and blocked_domains() and set_blocked_domains() methods (and the corresponding argument
and methods for allowed_domains). If you set a whitelist, you can turn it off again by setting it to None.

Domains in block or allow lists that do not start with a dot must equal the cookie domain to be matched. For example,
"example.com" matches a blacklist entry of "example.com", but "www.example.com" does not. Domains
that do start with a dot are matched by more specific domains too. For example, both "www.example.com"
and "www.coyote.example.com" match ".example.com" (but "example.com" itself does not). IP ad-
dresses are an exception, and must match exactly. For example, if blocked_domains contains "192.168.1.2" and
".168.1.2", 192.168.1.2 is blocked, but 193.168.1.2 is not.

DefaultCookiePolicy implements the following additional methods:

blocked_domains()
Return the sequence of blocked domains (as a tuple).

set_blocked_domains(blocked_domains)
Set the sequence of blocked domains.

is_blocked(domain)
Return whether domain is on the blacklist for setting or receiving cookies.

allowed_domains()
Return None, or the sequence of allowed domains (as a tuple).

set_allowed_domains(allowed_domains)
Set the sequence of allowed domains, or None.

is_not_allowed(domain)
Return whether domain is not on the whitelist for setting or receiving cookies.

DefaultCookiePolicy instances have the following attributes, which are all initialised from the constructor
arguments of the same name, and which may all be assigned to.

rfc2109_as_netscape
If true, request that the CookieJar instance downgrade RFC 2109 cookies (ie. cookies received in a
Set-Cookie header with a version cookie-attribute of 1) to Netscape cookies by setting the version attribute
of the Cookie instance to 0. The default value is None, in which case RFC 2109 cookies are downgraded if
and only if RFC 2965 handling is turned off. Therefore, RFC 2109 cookies are downgraded by default. New in
version 2.5.

General strictness switches:

strict_domain
Don’t allow sites to set two-component domains with country-code top-level domains like .co.uk, .gov.uk,
.co.nz.etc. This is far from perfect and isn’t guaranteed to work!

RFC 2965 protocol strictness switches:

strict_rfc2965_unverifiable
Follow RFC 2965 rules on unverifiable transactions (usually, an unverifiable transaction is one resulting from a
redirect or a request for an image hosted on another site). If this is false, cookies are never blocked on the basis
of verifiability

836 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

Netscape protocol strictness switches:

strict_ns_unverifiable
apply RFC 2965 rules on unverifiable transactions even to Netscape cookies

strict_ns_domain
Flags indicating how strict to be with domain-matching rules for Netscape cookies. See below for acceptable
values.

strict_ns_set_initial_dollar
Ignore cookies in Set-Cookie: headers that have names starting with ’$’.

strict_ns_set_path
Don’t allow setting cookies whose path doesn’t path-match request URI.

strict_ns_domain is a collection of flags. Its value is constructed by or-ing together (for example,
DomainStrictNoDots|DomainStrictNonDomain means both flags are set).

DomainStrictNoDots
When setting cookies, the ‘host prefix’ must not contain a dot (eg. www.foo.bar.com can’t set a cookie for
.bar.com, because www.foo contains a dot).

DomainStrictNonDomain
Cookies that did not explicitly specify a domain cookie-attribute can only be returned to a domain equal to the
domain that set the cookie (eg. spam.example.com won’t be returned cookies from example.com that
had no domain cookie-attribute).

DomainRFC2965Match
When setting cookies, require a full RFC 2965 domain-match.

The following attributes are provided for convenience, and are the most useful combinations of the above flags:

DomainLiberal
Equivalent to 0 (ie. all of the above Netscape domain strictness flags switched off).

DomainStrict
Equivalent to DomainStrictNoDots|DomainStrictNonDomain.

20.21.5 Cookie Objects

Cookie instances have Python attributes roughly corresponding to the standard cookie-attributes specified in the
various cookie standards. The correspondence is not one-to-one, because there are complicated rules for assigning
default values, because the max-age and expires cookie-attributes contain equivalent information, and because
RFC 2109 cookies may be ‘downgraded’ by cookielib from version 1 to version 0 (Netscape) cookies.

Assignment to these attributes should not be necessary other than in rare circumstances in a CookiePolicy method.
The class does not enforce internal consistency, so you should know what you’re doing if you do that.

version
Integer or None. Netscape cookies have version 0. RFC 2965 and RFC 2109 cookies have a version
cookie-attribute of 1. However, note that cookielib may ‘downgrade’ RFC 2109 cookies to Netscape cook-
ies, in which case version is 0.

name
Cookie name (a string).

value
Cookie value (a string), or None.

port
String representing a port or a set of ports (eg. ‘80’, or ‘80,8080’), or None.

20.21. cookielib — Cookie handling for HTTP clients 837

The Python Library Reference, Release 2.6.9

path
Cookie path (a string, eg. ’/acme/rocket_launchers’).

secure
True if cookie should only be returned over a secure connection.

expires
Integer expiry date in seconds since epoch, or None. See also the is_expired() method.

discard
True if this is a session cookie.

comment
String comment from the server explaining the function of this cookie, or None.

comment_url
URL linking to a comment from the server explaining the function of this cookie, or None.

rfc2109
True if this cookie was received as an RFC 2109 cookie (ie. the cookie arrived in a Set-Cookie header, and
the value of the Version cookie-attribute in that header was 1). This attribute is provided because cookielib
may ‘downgrade’ RFC 2109 cookies to Netscape cookies, in which case version is 0. New in version 2.5.

port_specified
True if a port or set of ports was explicitly specified by the server (in the Set-Cookie / Set-Cookie2
header).

domain_specified
True if a domain was explicitly specified by the server.

domain_initial_dot
True if the domain explicitly specified by the server began with a dot (’.’).

Cookies may have additional non-standard cookie-attributes. These may be accessed using the following methods:

has_nonstandard_attr(name)
Return true if cookie has the named cookie-attribute.

get_nonstandard_attr(name, default=None)
If cookie has the named cookie-attribute, return its value. Otherwise, return default.

set_nonstandard_attr(name, value)
Set the value of the named cookie-attribute.

The Cookie class also defines the following method:

is_expired([now=None])
True if cookie has passed the time at which the server requested it should expire. If now is given (in seconds
since the epoch), return whether the cookie has expired at the specified time.

20.21.6 Examples

The first example shows the most common usage of cookielib:

import cookielib, urllib2
cj = cookielib.CookieJar()
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

This example illustrates how to open a URL using your Netscape, Mozilla, or Lynx cookies (assumes Unix/Netscape
convention for location of the cookies file):

838 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

import os, cookielib, urllib2
cj = cookielib.MozillaCookieJar()
cj.load(os.path.join(os.environ["HOME"], ".netscape/cookies.txt"))
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

The next example illustrates the use of DefaultCookiePolicy. Turn on RFC 2965 cookies, be more strict about
domains when setting and returning Netscape cookies, and block some domains from setting cookies or having them
returned:

import urllib2
from cookielib import CookieJar, DefaultCookiePolicy
policy = DefaultCookiePolicy(

rfc2965=True, strict_ns_domain=DefaultCookiePolicy.DomainStrict,
blocked_domains=["ads.net", ".ads.net"])

cj = CookieJar(policy)
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
r = opener.open("http://example.com/")

20.22 Cookie — HTTP state management

Note: The Cookie module has been renamed to http.cookies in Python 3.0. The 2to3 tool will automatically
adapt imports when converting your sources to 3.0.

The Cookie module defines classes for abstracting the concept of cookies, an HTTP state management mechanism.
It supports both simple string-only cookies, and provides an abstraction for having any serializable data-type as cookie
value.

The module formerly strictly applied the parsing rules described in the RFC 2109 and RFC 2068 specifications. It
has since been discovered that MSIE 3.0x doesn’t follow the character rules outlined in those specs. As a result, the
parsing rules used are a bit less strict.

Note: On encountering an invalid cookie, CookieError is raised, so if your cookie data comes from a browser
you should always prepare for invalid data and catch CookieError on parsing.

exception CookieError
Exception failing because of RFC 2109 invalidity: incorrect attributes, incorrect Set-Cookie header, etc.

class BaseCookie([input])
This class is a dictionary-like object whose keys are strings and whose values are Morsel instances. Note that
upon setting a key to a value, the value is first converted to a Morsel containing the key and the value.

If input is given, it is passed to the load() method.

class SimpleCookie([input])
This class derives from BaseCookie and overrides value_decode() and value_encode() to be the
identity and str() respectively.

class SerialCookie([input])
This class derives from BaseCookie and overrides value_decode() and value_encode() to be the
pickle.loads() and pickle.dumps(). Deprecated since version 2.3: Reading pickled values from
untrusted cookie data is a huge security hole, as pickle strings can be crafted to cause arbitrary code to execute
on your server. It is supported for backwards compatibility only, and may eventually go away.

class SmartCookie([input])
This class derives from BaseCookie. It overrides value_decode() to be pickle.loads() if it is a
valid pickle, and otherwise the value itself. It overrides value_encode() to be pickle.dumps() unless

20.22. Cookie — HTTP state management 839

http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2068.html
http://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 2.6.9

it is a string, in which case it returns the value itself. Deprecated since version 2.3: The same security warning
from SerialCookie applies here.

A further security note is warranted. For backwards compatibility, the Cookiemodule exports a class named Cookie
which is just an alias for SmartCookie. This is probably a mistake and will likely be removed in a future ver-
sion. You should not use the Cookie class in your applications, for the same reason why you should not use the
SerialCookie class.

See Also:

Module cookielib HTTP cookie handling for web clients. The cookielib and Cookiemodules do not depend
on each other.

RFC 2109 - HTTP State Management Mechanism This is the state management specification implemented by this
module.

20.22.1 Cookie Objects

value_decode(val)
Return a decoded value from a string representation. Return value can be any type. This method does nothing
in BaseCookie — it exists so it can be overridden.

value_encode(val)
Return an encoded value. val can be any type, but return value must be a string. This method does nothing in
BaseCookie — it exists so it can be overridden

In general, it should be the case that value_encode() and value_decode() are inverses on the range of
value_decode.

output([attrs, [header, [sep]]])
Return a string representation suitable to be sent as HTTP headers. attrs and header are sent to each Morsel‘s
output()method. sep is used to join the headers together, and is by default the combination ’\r\n’ (CRLF).
Changed in version 2.5: The default separator has been changed from ’\n’ to match the cookie specification.

js_output([attrs])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP headers was sent.

The meaning for attrs is the same as in output().

load(rawdata)
If rawdata is a string, parse it as an HTTP_COOKIE and add the values found there as Morsels. If it is a
dictionary, it is equivalent to:

for k, v in rawdata.items():
cookie[k] = v

20.22.2 Morsel Objects

class Morsel()
Abstract a key/value pair, which has some RFC 2109 attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid RFC 2109 attributes, which are

•expires

•path

•comment

840 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2109.html

The Python Library Reference, Release 2.6.9

•domain

•max-age

•secure

•version

•httponly

The attribute httponly specifies that the cookie is only transfered in HTTP requests, and is not accessible
through JavaScript. This is intended to mitigate some forms of cross-site scripting.

The keys are case-insensitive. New in version 2.6: The httponly attribute was added.

value
The value of the cookie.

coded_value
The encoded value of the cookie — this is what should be sent.

key
The name of the cookie.

set(key, value, coded_value)
Set the key, value and coded_value members.

isReservedKey(K)
Whether K is a member of the set of keys of a Morsel.

output([attrs, [header]])
Return a string representation of the Morsel, suitable to be sent as an HTTP header. By default, all the attributes
are included, unless attrs is given, in which case it should be a list of attributes to use. header is by default
"Set-Cookie:".

js_output([attrs])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP header was sent.

The meaning for attrs is the same as in output().

OutputString([attrs])
Return a string representing the Morsel, without any surrounding HTTP or JavaScript.

The meaning for attrs is the same as in output().

20.22.3 Example

The following example demonstrates how to use the Cookie module.

>>> import Cookie
>>> C = Cookie.SimpleCookie()
>>> C = Cookie.SerialCookie()
>>> C = Cookie.SmartCookie()
>>> C["fig"] = "newton"
>>> C["sugar"] = "wafer"
>>> print C # generate HTTP headers
Set-Cookie: fig=newton
Set-Cookie: sugar=wafer
>>> print C.output() # same thing
Set-Cookie: fig=newton
Set-Cookie: sugar=wafer

20.22. Cookie — HTTP state management 841

The Python Library Reference, Release 2.6.9

>>> C = Cookie.SmartCookie()
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> print C.output(header="Cookie:")
Cookie: rocky=road; Path=/cookie
>>> print C.output(attrs=[], header="Cookie:")
Cookie: rocky=road
>>> C = Cookie.SmartCookie()
>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)
>>> print C
Set-Cookie: chips=ahoy
Set-Cookie: vienna=finger
>>> C = Cookie.SmartCookie()
>>> C.load(’keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";’)
>>> print C
Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;"
>>> C = Cookie.SmartCookie()
>>> C["oreo"] = "doublestuff"
>>> C["oreo"]["path"] = "/"
>>> print C
Set-Cookie: oreo=doublestuff; Path=/
>>> C = Cookie.SmartCookie()
>>> C["twix"] = "none for you"
>>> C["twix"].value
’none for you’
>>> C = Cookie.SimpleCookie()
>>> C["number"] = 7 # equivalent to C["number"] = str(7)
>>> C["string"] = "seven"
>>> C["number"].value
’7’
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number=7
Set-Cookie: string=seven
>>> C = Cookie.SerialCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number="I7\012."
Set-Cookie: string="S’seven’\012p1\012."
>>> C = Cookie.SmartCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number="I7\012."

842 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

Set-Cookie: string=seven

20.23 xmlrpclib — XML-RPC client access

Note: The xmlrpclib module has been renamed to xmlrpc.client in Python 3.0. The 2to3 tool will automat-
ically adapt imports when converting your sources to 3.0. New in version 2.2. XML-RPC is a Remote Procedure Call
method that uses XML passed via HTTP as a transport. With it, a client can call methods with parameters on a remote
server (the server is named by a URI) and get back structured data. This module supports writing XML-RPC client
code; it handles all the details of translating between conformable Python objects and XML on the wire.

class ServerProxy(uri, [transport, [encoding, [verbose, [allow_none, [use_datetime]]]]])
A ServerProxy instance is an object that manages communication with a remote XML-RPC server. The
required first argument is a URI (Uniform Resource Indicator), and will normally be the URL of the server.
The optional second argument is a transport factory instance; by default it is an internal SafeTransport
instance for https: URLs and an internal HTTP Transport instance otherwise. The optional third argu-
ment is an encoding, by default UTF-8. The optional fourth argument is a debugging flag. If allow_none
is true, the Python constant None will be translated into XML; the default behaviour is for None to raise a
TypeError. This is a commonly-used extension to the XML-RPC specification, but isn’t supported by all
clients and servers; see http://ontosys.com/xml-rpc/extensions.php for a description. The use_datetime flag can
be used to cause date/time values to be presented as datetime.datetime objects; this is false by default.
datetime.datetime objects may be passed to calls.

Both the HTTP and HTTPS transports support the URL syntax extension for HTTP Basic Authentication:
http://user:pass@host:port/path. The user:pass portion will be base64-encoded as an HTTP
‘Authorization’ header, and sent to the remote server as part of the connection process when invoking an XML-
RPC method. You only need to use this if the remote server requires a Basic Authentication user and password.

The returned instance is a proxy object with methods that can be used to invoke corresponding RPC calls on
the remote server. If the remote server supports the introspection API, the proxy can also be used to query the
remote server for the methods it supports (service discovery) and fetch other server-associated metadata.

ServerProxy instance methods take Python basic types and objects as arguments and return Python basic
types and classes. Types that are conformable (e.g. that can be marshalled through XML), include the following
(and except where noted, they are unmarshalled as the same Python type):

Name Meaning
boolean The True and False constants
integers Pass in directly
floating-point
numbers

Pass in directly

strings Pass in directly
arrays Any Python sequence type containing conformable elements. Arrays are returned as lists
structures A Python dictionary. Keys must be strings, values may be any conformable type. Objects of

user-defined classes can be passed in; only their __dict__ attribute is transmitted.
dates in seconds since the epoch (pass in an instance of the DateTime class) or a

datetime.datetime instance.
binary data pass in an instance of the Binary wrapper class

This is the full set of data types supported by XML-RPC. Method calls may also raise a special Fault instance,
used to signal XML-RPC server errors, or ProtocolError used to signal an error in the HTTP/HTTPS
transport layer. Both Fault and ProtocolError derive from a base class called Error. Note that even
though starting with Python 2.2 you can subclass built-in types, the xmlrpclib module currently does not marshal
instances of such subclasses.

When passing strings, characters special to XML such as <, >, and & will be automatically escaped. However,
it’s the caller’s responsibility to ensure that the string is free of characters that aren’t allowed in XML, such as

20.23. xmlrpclib — XML-RPC client access 843

http://ontosys.com/xml-rpc/extensions.php

The Python Library Reference, Release 2.6.9

the control characters with ASCII values between 0 and 31 (except, of course, tab, newline and carriage return);
failing to do this will result in an XML-RPC request that isn’t well-formed XML. If you have to pass arbitrary
strings via XML-RPC, use the Binary wrapper class described below.

Server is retained as an alias for ServerProxy for backwards compatibility. New code should use
ServerProxy. Changed in version 2.5: The use_datetime flag was added.Changed in version 2.6: Instances
of new-style classes can be passed in if they have an __dict__ attribute and don’t have a base class that is
marshalled in a special way.

See Also:

XML-RPC HOWTO A good description of XML-RPC operation and client software in several languages. Contains
pretty much everything an XML-RPC client developer needs to know.

XML-RPC Introspection Describes the XML-RPC protocol extension for introspection.

XML-RPC Specification The official specification.

Unofficial XML-RPC Errata Fredrik Lundh’s “unofficial errata, intended to clarify certain details in the XML-RPC
specification, as well as hint at ‘best practices’ to use when designing your own XML-RPC implementations.”

20.23.1 ServerProxy Objects

A ServerProxy instance has a method corresponding to each remote procedure call accepted by the XML-RPC
server. Calling the method performs an RPC, dispatched by both name and argument signature (e.g. the same method
name can be overloaded with multiple argument signatures). The RPC finishes by returning a value, which may be
either returned data in a conformant type or a Fault or ProtocolError object indicating an error.

Servers that support the XML introspection API support some common methods grouped under the reserved system
member:

listMethods()
This method returns a list of strings, one for each (non-system) method supported by the XML-RPC server.

methodSignature(name)
This method takes one parameter, the name of a method implemented by the XML-RPC server. It returns an
array of possible signatures for this method. A signature is an array of types. The first of these types is the return
type of the method, the rest are parameters.

Because multiple signatures (ie. overloading) is permitted, this method returns a list of signatures rather than a
singleton.

Signatures themselves are restricted to the top level parameters expected by a method. For instance if a method
expects one array of structs as a parameter, and it returns a string, its signature is simply “string, array”. If it
expects three integers and returns a string, its signature is “string, int, int, int”.

If no signature is defined for the method, a non-array value is returned. In Python this means that the type of the
returned value will be something other than list.

methodHelp(name)
This method takes one parameter, the name of a method implemented by the XML-RPC server. It returns
a documentation string describing the use of that method. If no such string is available, an empty string is
returned. The documentation string may contain HTML markup.

20.23.2 Boolean Objects

This class may be initialized from any Python value; the instance returned depends only on its truth value. It supports
various Python operators through __cmp__(), __repr__(), __int__(), and __nonzero__() methods, all
implemented in the obvious ways.

844 Chapter 20. Internet Protocols and Support

http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html
http://xmlrpc-c.sourceforge.net/introspection.html
http://www.xmlrpc.com/spec
http://effbot.org/zone/xmlrpc-errata.htm

The Python Library Reference, Release 2.6.9

It also has the following method, supported mainly for internal use by the unmarshalling code:

encode(out)
Write the XML-RPC encoding of this Boolean item to the out stream object.

A working example follows. The server code:

import xmlrpclib
from SimpleXMLRPCServer import SimpleXMLRPCServer

def is_even(n):
return n%2 == 0

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(is_even, "is_even")
server.serve_forever()

The client code for the preceding server:

import xmlrpclib

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")
print "3 is even: %s" % str(proxy.is_even(3))
print "100 is even: %s" % str(proxy.is_even(100))

20.23.3 DateTime Objects

This class may be initialized with seconds since the epoch, a time tuple, an ISO 8601 time/date string, or a
datetime.datetime instance. It has the following methods, supported mainly for internal use by the mar-
shalling/unmarshalling code:

decode(string)
Accept a string as the instance’s new time value.

encode(out)
Write the XML-RPC encoding of this DateTime item to the out stream object.

It also supports certain of Python’s built-in operators through __cmp__() and __repr__() methods.

A working example follows. The server code:

import datetime
from SimpleXMLRPCServer import SimpleXMLRPCServer
import xmlrpclib

def today():
today = datetime.datetime.today()
return xmlrpclib.DateTime(today)

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(today, "today")
server.serve_forever()

The client code for the preceding server:

import xmlrpclib
import datetime

20.23. xmlrpclib — XML-RPC client access 845

The Python Library Reference, Release 2.6.9

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")

today = proxy.today()
convert the ISO8601 string to a datetime object
converted = datetime.datetime.strptime(today.value, "%Y%m%dT%H:%M:%S")
print "Today: %s" % converted.strftime("%d.%m.%Y, %H:%M")

20.23.4 Binary Objects

This class may be initialized from string data (which may include NULs). The primary access to the content of a
Binary object is provided by an attribute:

data
The binary data encapsulated by the Binary instance. The data is provided as an 8-bit string.

Binary objects have the following methods, supported mainly for internal use by the marshalling/unmarshalling
code:

decode(string)
Accept a base64 string and decode it as the instance’s new data.

encode(out)
Write the XML-RPC base 64 encoding of this binary item to the out stream object.

The encoded data will have newlines every 76 characters as per RFC 2045 section 6.8, which was the de facto
standard base64 specification when the XML-RPC spec was written.

It also supports certain of Python’s built-in operators through a __cmp__() method.

Example usage of the binary objects. We’re going to transfer an image over XMLRPC:

from SimpleXMLRPCServer import SimpleXMLRPCServer
import xmlrpclib

def python_logo():
with open("python_logo.jpg", "rb") as handle:

return xmlrpclib.Binary(handle.read())

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(python_logo, ’python_logo’)

server.serve_forever()

The client gets the image and saves it to a file:

import xmlrpclib

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")
with open("fetched_python_logo.jpg", "wb") as handle:

handle.write(proxy.python_logo().data)

20.23.5 Fault Objects

A Fault object encapsulates the content of an XML-RPC fault tag. Fault objects have the following members:

846 Chapter 20. Internet Protocols and Support

http://tools.ietf.org/html/rfc2045#section-6.8

The Python Library Reference, Release 2.6.9

faultCode
A string indicating the fault type.

faultString
A string containing a diagnostic message associated with the fault.

In the following example we’re going to intentionally cause a Fault by returning a complex type object. The server
code:

from SimpleXMLRPCServer import SimpleXMLRPCServer

A marshalling error is going to occur because we’re returning a
complex number
def add(x,y):

return x+y+0j

server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_function(add, ’add’)

server.serve_forever()

The client code for the preceding server:

import xmlrpclib

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")
try:

proxy.add(2, 5)
except xmlrpclib.Fault, err:

print "A fault occurred"
print "Fault code: %d" % err.faultCode
print "Fault string: %s" % err.faultString

20.23.6 ProtocolError Objects

A ProtocolError object describes a protocol error in the underlying transport layer (such as a 404 ‘not found’
error if the server named by the URI does not exist). It has the following members:

url
The URI or URL that triggered the error.

errcode
The error code.

errmsg
The error message or diagnostic string.

headers
A string containing the headers of the HTTP/HTTPS request that triggered the error.

In the following example we’re going to intentionally cause a ProtocolError by providing an URI that doesn’t
point to an XMLRPC server:

import xmlrpclib

create a ServerProxy with an URI that doesn’t respond to XMLRPC requests
proxy = xmlrpclib.ServerProxy("http://www.google.com/")

20.23. xmlrpclib — XML-RPC client access 847

The Python Library Reference, Release 2.6.9

try:
proxy.some_method()

except xmlrpclib.ProtocolError, err:
print "A protocol error occurred"
print "URL: %s" % err.url
print "HTTP/HTTPS headers: %s" % err.headers
print "Error code: %d" % err.errcode
print "Error message: %s" % err.errmsg

20.23.7 MultiCall Objects

New in version 2.4. In http://www.xmlrpc.com/discuss/msgReader%241208, an approach is presented to encapsulate
multiple calls to a remote server into a single request.

class MultiCall(server)
Create an object used to boxcar method calls. server is the eventual target of the call. Calls can be made
to the result object, but they will immediately return None, and only store the call name and parameters
in the MultiCall object. Calling the object itself causes all stored calls to be transmitted as a single
system.multicall request. The result of this call is a generator; iterating over this generator yields the
individual results.

A usage example of this class follows. The server code

from SimpleXMLRPCServer import SimpleXMLRPCServer

def add(x,y):
return x+y

def subtract(x, y):
return x-y

def multiply(x, y):
return x*y

def divide(x, y):
return x/y

A simple server with simple arithmetic functions
server = SimpleXMLRPCServer(("localhost", 8000))
print "Listening on port 8000..."
server.register_multicall_functions()
server.register_function(add, ’add’)
server.register_function(subtract, ’subtract’)
server.register_function(multiply, ’multiply’)
server.register_function(divide, ’divide’)
server.serve_forever()

The client code for the preceding server:

import xmlrpclib

proxy = xmlrpclib.ServerProxy("http://localhost:8000/")
multicall = xmlrpclib.MultiCall(proxy)
multicall.add(7,3)
multicall.subtract(7,3)
multicall.multiply(7,3)

848 Chapter 20. Internet Protocols and Support

http://www.xmlrpc.com/discuss/msgReader%241208

The Python Library Reference, Release 2.6.9

multicall.divide(7,3)
result = multicall()

print "7+3=%d, 7-3=%d, 7*3=%d, 7/3=%d" % tuple(result)

20.23.8 Convenience Functions

boolean(value)
Convert any Python value to one of the XML-RPC Boolean constants, True or False.

dumps(params, [methodname, [methodresponse, [encoding, [allow_none]]]])
Convert params into an XML-RPC request. or into a response if methodresponse is true. params can be either
a tuple of arguments or an instance of the Fault exception class. If methodresponse is true, only a single value
can be returned, meaning that params must be of length 1. encoding, if supplied, is the encoding to use in the
generated XML; the default is UTF-8. Python’s None value cannot be used in standard XML-RPC; to allow
using it via an extension, provide a true value for allow_none.

loads(data, [use_datetime])
Convert an XML-RPC request or response into Python objects, a (params, methodname). params is a
tuple of argument; methodname is a string, or None if no method name is present in the packet. If the XML-
RPC packet represents a fault condition, this function will raise a Fault exception. The use_datetime flag can
be used to cause date/time values to be presented as datetime.datetime objects; this is false by default.
Changed in version 2.5: The use_datetime flag was added.

20.23.9 Example of Client Usage

simple test program (from the XML-RPC specification)
from xmlrpclib import ServerProxy, Error

server = ServerProxy("http://localhost:8000") # local server
server = ServerProxy("http://betty.userland.com")

print server

try:
print server.examples.getStateName(41)

except Error, v:
print "ERROR", v

To access an XML-RPC server through a proxy, you need to define a custom transport. The following example shows
how:

import xmlrpclib, httplib

class ProxiedTransport(xmlrpclib.Transport):
def set_proxy(self, proxy):

self.proxy = proxy
def make_connection(self, host):

self.realhost = host
h = httplib.HTTP(self.proxy)
return h

def send_request(self, connection, handler, request_body):
connection.putrequest("POST", ’http://%s%s’ % (self.realhost, handler))

def send_host(self, connection, host):

20.23. xmlrpclib — XML-RPC client access 849

The Python Library Reference, Release 2.6.9

connection.putheader(’Host’, self.realhost)

p = ProxiedTransport()
p.set_proxy(’proxy-server:8080’)
server = xmlrpclib.Server(’http://time.xmlrpc.com/RPC2’, transport=p)
print server.currentTime.getCurrentTime()

20.23.10 Example of Client and Server Usage

See SimpleXMLRPCServer Example.

20.24 SimpleXMLRPCServer — Basic XML-RPC server

Note: The SimpleXMLRPCServer module has been merged into xmlrpc.server in Python 3.0. The
2to3 tool will automatically adapt imports when converting your sources to 3.0. New in version 2.2. The
SimpleXMLRPCServer module provides a basic server framework for XML-RPC servers written in Python.
Servers can either be free standing, using SimpleXMLRPCServer, or embedded in a CGI environment, using
CGIXMLRPCRequestHandler.

class SimpleXMLRPCServer(addr[, requestHandler[, logRequests[, allow_none[, encoding[, bind_and_activate]]]])()
Create a new server instance. This class provides methods for registration of functions that can be called by
the XML-RPC protocol. The requestHandler parameter should be a factory for request handler instances;
it defaults to SimpleXMLRPCRequestHandler. The addr and requestHandler parameters are passed to
the SocketServer.TCPServer constructor. If logRequests is true (the default), requests will be logged;
setting this parameter to false will turn off logging. The allow_none and encoding parameters are passed on to
xmlrpclib and control the XML-RPC responses that will be returned from the server. The bind_and_activate
parameter controls whether server_bind() and server_activate() are called immediately by the
constructor; it defaults to true. Setting it to false allows code to manipulate the allow_reuse_address class
variable before the address is bound. Changed in version 2.5: The allow_none and encoding parameters were
added.Changed in version 2.6: The bind_and_activate parameter was added.

class CGIXMLRPCRequestHandler([allow_none, [encoding]])
Create a new instance to handle XML-RPC requests in a CGI environment. The allow_none and encoding
parameters are passed on to xmlrpclib and control the XML-RPC responses that will be returned from the
server. New in version 2.3.Changed in version 2.5: The allow_none and encoding parameters were added.

class SimpleXMLRPCRequestHandler()
Create a new request handler instance. This request handler supports POST requests and modifies logging so
that the logRequests parameter to the SimpleXMLRPCServer constructor parameter is honored.

20.24.1 SimpleXMLRPCServer Objects

The SimpleXMLRPCServer class is based on SocketServer.TCPServer and provides a means of creating
simple, stand alone XML-RPC servers.

register_function(function, [name])
Register a function that can respond to XML-RPC requests. If name is given, it will be the method name
associated with function, otherwise function.__name__ will be used. name can be either a normal or
Unicode string, and may contain characters not legal in Python identifiers, including the period character.

register_instance(instance, [allow_dotted_names])
Register an object which is used to expose method names which have not been registered using
register_function(). If instance contains a _dispatch() method, it is called with the requested

850 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

method name and the parameters from the request. Its API is def _dispatch(self, method,
params) (note that params does not represent a variable argument list). If it calls an underlying function
to perform its task, that function is called as func(*params), expanding the parameter list. The return value
from _dispatch() is returned to the client as the result. If instance does not have a _dispatch() method,
it is searched for an attribute matching the name of the requested method.

If the optional allow_dotted_names argument is true and the instance does not have a _dispatch() method,
then if the requested method name contains periods, each component of the method name is searched for indi-
vidually, with the effect that a simple hierarchical search is performed. The value found from this search is then
called with the parameters from the request, and the return value is passed back to the client.

Warning: Enabling the allow_dotted_names option allows intruders to access your module’s global vari-
ables and may allow intruders to execute arbitrary code on your machine. Only use this option on a secure,
closed network.

Changed in version 2.3.5,: 2.4.1 allow_dotted_names was added to plug a security hole; prior versions are
insecure.

register_introspection_functions()
Registers the XML-RPC introspection functions system.listMethods, system.methodHelp and
system.methodSignature. New in version 2.3.

register_multicall_functions()
Registers the XML-RPC multicall function system.multicall.

rpc_paths
An attribute value that must be a tuple listing valid path portions of the URL for receiving XML-RPC requests.
Requests posted to other paths will result in a 404 “no such page” HTTP error. If this tuple is empty, all paths
will be considered valid. The default value is (’/’, ’/RPC2’). New in version 2.5.

SimpleXMLRPCServer Example

Server code:

from SimpleXMLRPCServer import SimpleXMLRPCServer
from SimpleXMLRPCServer import SimpleXMLRPCRequestHandler

Restrict to a particular path.
class RequestHandler(SimpleXMLRPCRequestHandler):

rpc_paths = (’/RPC2’,)

Create server
server = SimpleXMLRPCServer(("localhost", 8000),

requestHandler=RequestHandler)
server.register_introspection_functions()

Register pow() function; this will use the value of
pow.__name__ as the name, which is just ’pow’.
server.register_function(pow)

Register a function under a different name
def adder_function(x,y):

return x + y
server.register_function(adder_function, ’add’)

Register an instance; all the methods of the instance are

20.24. SimpleXMLRPCServer — Basic XML-RPC server 851

The Python Library Reference, Release 2.6.9

published as XML-RPC methods (in this case, just ’div’).
class MyFuncs:

def div(self, x, y):
return x // y

server.register_instance(MyFuncs())

Run the server’s main loop
server.serve_forever()

The following client code will call the methods made available by the preceding server:

import xmlrpclib

s = xmlrpclib.ServerProxy(’http://localhost:8000’)
print s.pow(2,3) # Returns 2**3 = 8
print s.add(2,3) # Returns 5
print s.div(5,2) # Returns 5//2 = 2

Print list of available methods
print s.system.listMethods()

20.24.2 CGIXMLRPCRequestHandler

The CGIXMLRPCRequestHandler class can be used to handle XML-RPC requests sent to Python CGI scripts.

register_function(function, [name])
Register a function that can respond to XML-RPC requests. If name is given, it will be the method name
associated with function, otherwise function.__name__ will be used. name can be either a normal or Unicode
string, and may contain characters not legal in Python identifiers, including the period character.

register_instance(instance)
Register an object which is used to expose method names which have not been registered using
register_function(). If instance contains a _dispatch() method, it is called with the requested
method name and the parameters from the request; the return value is returned to the client as the result. If in-
stance does not have a _dispatch()method, it is searched for an attribute matching the name of the requested
method; if the requested method name contains periods, each component of the method name is searched for
individually, with the effect that a simple hierarchical search is performed. The value found from this search is
then called with the parameters from the request, and the return value is passed back to the client.

register_introspection_functions()
Register the XML-RPC introspection functions system.listMethods, system.methodHelp and
system.methodSignature.

register_multicall_functions()
Register the XML-RPC multicall function system.multicall.

handle_request([request_text = None])
Handle a XML-RPC request. If request_text is given, it should be the POST data provided by the HTTP server,
otherwise the contents of stdin will be used.

Example:

class MyFuncs:
def div(self, x, y) : return x // y

handler = CGIXMLRPCRequestHandler()

852 Chapter 20. Internet Protocols and Support

The Python Library Reference, Release 2.6.9

handler.register_function(pow)
handler.register_function(lambda x,y: x+y, ’add’)
handler.register_introspection_functions()
handler.register_instance(MyFuncs())
handler.handle_request()

20.25 DocXMLRPCServer — Self-documenting XML-RPC server

Note: The DocXMLRPCServer module has been merged into xmlrpc.server in Python 3.0. The 2to3 tool will
automatically adapt imports when converting your sources to 3.0. New in version 2.3. The DocXMLRPCServer
module extends the classes found in SimpleXMLRPCServer to serve HTML documentation in response to HTTP
GET requests. Servers can either be free standing, using DocXMLRPCServer, or embedded in a CGI environment,
using DocCGIXMLRPCRequestHandler.

class DocXMLRPCServer(addr, [requestHandler, [logRequests, [allow_none, [encoding,
[bind_and_activate]]]]])

Create a new server instance. All parameters have the same meaning as
for SimpleXMLRPCServer.SimpleXMLRPCServer; requestHandler defaults to
DocXMLRPCRequestHandler.

class DocCGIXMLRPCRequestHandler()
Create a new instance to handle XML-RPC requests in a CGI environment.

class DocXMLRPCRequestHandler()
Create a new request handler instance. This request handler supports XML-RPC POST requests, documentation
GET requests, and modifies logging so that the logRequests parameter to the DocXMLRPCServer constructor
parameter is honored.

20.25.1 DocXMLRPCServer Objects

The DocXMLRPCServer class is derived from SimpleXMLRPCServer.SimpleXMLRPCServer and provides
a means of creating self-documenting, stand alone XML-RPC servers. HTTP POST requests are handled as XML-
RPC method calls. HTTP GET requests are handled by generating pydoc-style HTML documentation. This allows a
server to provide its own web-based documentation.

set_server_title(server_title)
Set the title used in the generated HTML documentation. This title will be used inside the HTML “title” element.

set_server_name(server_name)
Set the name used in the generated HTML documentation. This name will appear at the top of the generated
documentation inside a “h1” element.

set_server_documentation(server_documentation)
Set the description used in the generated HTML documentation. This description will appear as a paragraph,
below the server name, in the documentation.

20.25.2 DocCGIXMLRPCRequestHandler

The DocCGIXMLRPCRequestHandler class is derived from SimpleXMLRPCServer.CGIXMLRPCRequestHandler
and provides a means of creating self-documenting, XML-RPC CGI scripts. HTTP POST requests are handled as
XML-RPC method calls. HTTP GET requests are handled by generating pydoc-style HTML documentation. This
allows a server to provide its own web-based documentation.

20.25. DocXMLRPCServer — Self-documenting XML-RPC server 853

The Python Library Reference, Release 2.6.9

set_server_title(server_title)
Set the title used in the generated HTML documentation. This title will be used inside the HTML “title” element.

set_server_name(server_name)
Set the name used in the generated HTML documentation. This name will appear at the top of the generated
documentation inside a “h1” element.

set_server_documentation(server_documentation)
Set the description used in the generated HTML documentation. This description will appear as a paragraph,
below the server name, in the documentation.

854 Chapter 20. Internet Protocols and Support

CHAPTER

TWENTYONE

MULTIMEDIA SERVICES

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for multimedia
applications. They are available at the discretion of the installation. Here’s an overview:

21.1 audioop — Manipulate raw audio data

The audioopmodule contains some useful operations on sound fragments. It operates on sound fragments consisting
of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same format as used by the al and
sunaudiodev modules. All scalar items are integers, unless specified otherwise. This module provides support for
a-LAW, u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is always a
parameter of the operation.

The module defines the following variables and functions:

exception error
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add(fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters. width is the sample width in
bytes, either 1, 2 or 4. Both fragments should have the same length.

adpcm2lin(adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description of lin2adpcm() for
details on ADPCM coding. Return a tuple (sample, newstate) where the sample has the width specified
in width.

alaw2lin(fragment, width)
Convert sound fragments in a-LAW encoding to linearly encoded sound fragments. a-LAW encoding always
uses 8 bits samples, so width refers only to the sample width of the output fragment here. New in version 2.5.

avg(fragment, width)
Return the average over all samples in the fragment.

avgpp(fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the usefulness of
this routine is questionable.

bias(fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross(fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

855

The Python Library Reference, Release 2.6.9

findfactor(fragment, reference)
Return a factor F such that rms(add(fragment, mul(reference, -F))) is minimal, i.e., return the
factor with which you should multiply reference to make it match as well as possible to fragment. The fragments
should both contain 2-byte samples.

The time taken by this routine is proportional to len(fragment).

findfit(fragment, reference)
Try to match reference as well as possible to a portion of fragment (which should be the longer fragment). This
is (conceptually) done by taking slices out of fragment, using findfactor() to compute the best match,
and minimizing the result. The fragments should both contain 2-byte samples. Return a tuple (offset,
factor) where offset is the (integer) offset into fragment where the optimal match started and factor is the
(floating-point) factor as per findfactor().

findmax(fragment, length)
Search fragment for a slice of length length samples (not bytes!) with maximum energy, i.e., return i for which
rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain 2-byte samples.

The routine takes time proportional to len(fragment).

getsample(fragment, width, index)
Return the value of sample index from the fragment.

lin2adpcm(fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme, whereby
each 4 bit number is the difference between one sample and the next, divided by a (varying) step. The Intel/DVI
ADPCM algorithm has been selected for use by the IMA, so it may well become a standard.

state is a tuple containing the state of the coder. The coder returns a tuple (adpcmfrag, newstate), and
the newstate should be passed to the next call of lin2adpcm(). In the initial call, None can be passed as the
state. adpcmfrag is the ADPCM coded fragment packed 2 4-bit values per byte.

lin2alaw(fragment, width)
Convert samples in the audio fragment to a-LAW encoding and return this as a Python string. a-LAW is an
audio encoding format whereby you get a dynamic range of about 13 bits using only 8 bit samples. It is used by
the Sun audio hardware, among others. New in version 2.5.

lin2lin(fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

Note: In some audio formats, such as .WAV files, 16 and 32 bit samples are signed, but 8 bit samples are
unsigned. So when converting to 8 bit wide samples for these formats, you need to also add 128 to the result:

new_frames = audioop.lin2lin(frames, old_width, 1)
new_frames = audioop.bias(new_frames, 1, 128)

The same, in reverse, has to be applied when converting from 8 to 16 or 32 bit width samples.

lin2ulaw(fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string. u-LAW is an
audio encoding format whereby you get a dynamic range of about 14 bits using only 8 bit samples. It is used by
the Sun audio hardware, among others.

minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

max(fragment, width)
Return the maximum of the absolute value of all samples in a fragment.

maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

856 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

mul(fragment, width, factor)
Return a fragment that has all samples in the original fragment multiplied by the floating-point value factor.
Overflow is silently ignored.

ratecv(fragment, width, nchannels, inrate, outrate, state, [weightA, [weightB]])
Convert the frame rate of the input fragment.

state is a tuple containing the state of the converter. The converter returns a tuple (newfragment,
newstate), and newstate should be passed to the next call of ratecv(). The initial call should pass None
as the state.

The weightA and weightB arguments are parameters for a simple digital filter and default to 1 and 0 respectively.

reverse(fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

rms(fragment, width)
Return the root-mean-square of the fragment, i.e. sqrt(sum(S_i^2)/n).

This is a measure of the power in an audio signal.

tomono(fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied by lfactor and the right channel
by rfactor before adding the two channels to give a mono signal.

tostereo(fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment are computed
from the mono sample, whereby left channel samples are multiplied by lfactor and right channel samples by
rfactor.

ulaw2lin(fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encoding always
uses 8 bits samples, so width refers only to the sample width of the output fragment here.

Note that operations such as mul() or max() make no distinction between mono and stereo fragments, i.e. all
samples are treated equal. If this is a problem the stereo fragment should be split into two mono fragments first and
recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(sample, width, lfactor)
rsample = audioop.mul(sample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to be able to
tolerate packet loss) you should not only transmit the data but also the state. Note that you should send the initial state
(the one you passed to lin2adpcm()) along to the decoder, not the final state (as returned by the coder). If you want
to use struct.struct() to store the state in binary you can code the first element (the predicted value) in 16 bits
and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could well be
that I misinterpreted the standards in which case they will not be interoperable with the respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo cancellation. A
reasonably fast way to do this is to pick the most energetic piece of the output sample, locate that in the input sample
and subtract the whole output sample from the input sample:

21.1. audioop — Manipulate raw audio data 857

The Python Library Reference, Release 2.6.9

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = ’\0’*(pos+ipos)*2
postfill = ’\0’*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)

21.2 imageop — Manipulate raw image data

Deprecated since version 2.6: The imageopmodule has been removed in Python 3.0. The imageopmodule contains
some useful operations on images. It operates on images consisting of 8 or 32 bit pixels stored in Python strings. This
is the same format as used by gl.lrectwrite() and the imgfile module.

The module defines the following variables and functions:

exception error
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop(image, psize, width, height, x0, y0, x1, y1)
Return the selected part of image, which should be width by height in size and consist of pixels of psize bytes.
x0, y0, x1 and y1 are like the gl.lrectread() parameters, i.e. the boundary is included in the new image.
The new boundaries need not be inside the picture. Pixels that fall outside the old image will have their value
set to zero. If x0 is bigger than x1 the new image is mirrored. The same holds for the y coordinates.

scale(image, psize, width, height, newwidth, newheight)
Return image scaled to size newwidth by newheight. No interpolation is done, scaling is done by simple-minded
pixel duplication or removal. Therefore, computer-generated images or dithered images will not look nice after
scaling.

tovideo(image, psize, width, height)
Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the average of
two vertically-aligned source pixels. The main use of this routine is to forestall excessive flicker if the image is
displayed on a video device that uses interlacing, hence the name.

grey2mono(image, width, height, threshold)
Convert a 8-bit deep greyscale image to a 1-bit deep image by thresholding all the pixels. The resulting image
is tightly packed and is probably only useful as an argument to mono2grey().

dither2mono(image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering algorithm.

mono2grey(image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-valued on
input get value p0 on output and all one-value input pixels get value p1 on output. To convert a monochrome
black-and-white image to greyscale pass the values 0 and 255 respectively.

grey2grey4(image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey2(image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

858 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

dither2grey2(image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As for dither2mono(), the
dithering algorithm is currently very simple.

grey42grey(image, width, height)
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey(image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

backward_compatible
If set to 0, the functions in this module use a non-backward compatible way of representing multi-byte pixels on
little-endian systems. The SGI for which this module was originally written is a big-endian system, so setting
this variable will have no effect. However, the code wasn’t originally intended to run on anything else, so it
made assumptions about byte order which are not universal. Setting this variable to 0 will cause the byte order
to be reversed on little-endian systems, so that it then is the same as on big-endian systems.

21.3 aifc — Read and write AIFF and AIFC files

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange File Format,
a format for storing digital audio samples in a file. AIFF-C is a newer version of the format that includes the ability to
compress the audio data.

Note: Some operations may only work under IRIX; these will raise ImportError when attempting to import the
cl module, which is only available on IRIX.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is the number of
times per second the sound is sampled. The number of channels indicate if the audio is mono, stereo, or quadro. Each
frame consists of one sample per channel. The sample size is the size in bytes of each sample. Thus a frame consists of
nchannels**samplesize* bytes, and a second’s worth of audio consists of nchannels**samplesize***framerate* bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a frame rate
of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100 bytes
(176,400 bytes).

Module aifc defines the following function:

open(file, [mode])
Open an AIFF or AIFF-C file and return an object instance with methods that are described below. The argument
file is either a string naming a file or a file object. mode must be ’r’ or ’rb’ when the file must be opened for
reading, or ’w’ or ’wb’ when the file must be opened for writing. If omitted, file.mode is used if it exists,
otherwise ’rb’ is used. When used for writing, the file object should be seekable, unless you know ahead of
time how many samples you are going to write in total and use writeframesraw() and setnframes().

Objects returned by open() when a file is opened for reading have the following methods:

getnchannels()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth()
Return the size in bytes of individual samples.

getframerate()
Return the sampling rate (number of audio frames per second).

getnframes()
Return the number of audio frames in the file.

21.3. aifc — Read and write AIFF and AIFC files 859

The Python Library Reference, Release 2.6.9

getcomptype()
Return a four-character string describing the type of compression used in the audio file. For AIFF files, the
returned value is ’NONE’.

getcompname()
Return a human-readable description of the type of compression used in the audio file. For AIFF files, the
returned value is ’not compressed’.

getparams()
Return a tuple consisting of all of the above values in the above order.

getmarkers()
Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is the mark
ID (an integer), the second is the mark position in frames from the beginning of the data (an integer), the third
is the name of the mark (a string).

getmark(id)
Return the tuple as described in getmarkers() for the mark with the given id.

readframes(nframes)
Read and return the next nframes frames from the audio file. The returned data is a string containing for each
frame the uncompressed samples of all channels.

rewind()
Rewind the read pointer. The next readframes() will start from the beginning.

setpos(pos)
Seek to the specified frame number.

tell()
Return the current frame number.

close()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned by open()when a file is opened for writing have all the above methods, except for readframes()
and setpos(). In addition the following methods exist. The get*() methods can only be called after the corre-
sponding set*() methods have been called. Before the first writeframes() or writeframesraw(), all
parameters except for the number of frames must be filled in.

aiff()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends in ’.aiff’
in which case the default is an AIFF file.

aifc()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file ends in ’.aiff’
in which case the default is an AIFF file.

setnchannels(nchannels)
Specify the number of channels in the audio file.

setsampwidth(width)
Specify the size in bytes of audio samples.

setframerate(rate)
Specify the sampling frequency in frames per second.

setnframes(nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or not set
correctly, the file needs to support seeking.

860 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

setcomptype(type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files, com-

pression is not possible. The name parameter should be a human-readable description of the compression type,
the type parameter should be a four-character string. Currently the following compression types are supported:
NONE, ULAW, ALAW, G722.

setparams(nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters. This means
that it is possible to use the result of a getparams() call as argument to setparams().

setmark(id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This method can be
called at any time before close().

tell()
Return the current write position in the output file. Useful in combination with setmark().

writeframes(data)
Write data to the output file. This method can only be called after the audio file parameters have been set.

writeframesraw(data)
Like writeframes(), except that the header of the audio file is not updated.

close()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data. After calling
this method, the object can no longer be used.

21.4 sunau — Read and write Sun AU files

The sunau module provides a convenient interface to the Sun AU sound format. Note that this module is interface-
compatible with the modules aifc and wave.

An audio file consists of a header followed by the data. The fields of the header are:

Field Contents
magic word The four bytes .snd.
header size Size of the header, including info, in bytes.
data size Physical size of the data, in bytes.
encoding Indicates how the audio samples are encoded.
sample rate The sampling rate.
of channels The number of channels in the samples.
info ASCII string giving a description of the audio file (padded with null bytes).

Apart from the info field, all header fields are 4 bytes in size. They are all 32-bit unsigned integers encoded in
big-endian byte order.

The sunau module defines the following functions:

open(file, mode)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object. mode can be any of

’r’ Read only mode.

’w’ Write only mode.

Note that it does not allow read/write files.

A mode of ’r’ returns a AU_read object, while a mode of ’w’ or ’wb’ returns a AU_write object.

21.4. sunau — Read and write Sun AU files 861

The Python Library Reference, Release 2.6.9

openfp(file, mode)
A synonym for open(), maintained for backwards compatibility.

The sunau module defines the following exception:

exception Error
An error raised when something is impossible because of Sun AU specs or implementation deficiency.

The sunau module defines the following data items:

AUDIO_FILE_MAGIC
An integer every valid Sun AU file begins with, stored in big-endian form. This is the string .snd interpreted
as an integer.

AUDIO_FILE_ENCODING_MULAW_8
AUDIO_FILE_ENCODING_LINEAR_8
AUDIO_FILE_ENCODING_LINEAR_16
AUDIO_FILE_ENCODING_LINEAR_24
AUDIO_FILE_ENCODING_LINEAR_32
AUDIO_FILE_ENCODING_ALAW_8

Values of the encoding field from the AU header which are supported by this module.

AUDIO_FILE_ENCODING_FLOAT
AUDIO_FILE_ENCODING_DOUBLE
AUDIO_FILE_ENCODING_ADPCM_G721
AUDIO_FILE_ENCODING_ADPCM_G722
AUDIO_FILE_ENCODING_ADPCM_G723_3
AUDIO_FILE_ENCODING_ADPCM_G723_5

Additional known values of the encoding field from the AU header, but which are not supported by this module.

21.4.1 AU_read Objects

AU_read objects, as returned by open() above, have the following methods:

close()
Close the stream, and make the instance unusable. (This is called automatically on deletion.)

getnchannels()
Returns number of audio channels (1 for mone, 2 for stereo).

getsampwidth()
Returns sample width in bytes.

getframerate()
Returns sampling frequency.

getnframes()
Returns number of audio frames.

getcomptype()
Returns compression type. Supported compression types are ’ULAW’, ’ALAW’ and ’NONE’.

getcompname()
Human-readable version of getcomptype(). The supported types have the respective names ’CCITT
G.711 u-law’, ’CCITT G.711 A-law’ and ’not compressed’.

getparams()
Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype, compname),
equivalent to output of the get*() methods.

862 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

readframes(n)
Reads and returns at most n frames of audio, as a string of bytes. The data will be returned in linear format. If
the original data is in u-LAW format, it will be converted.

rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between them, and is otherwise implemen-
tation dependent.

setpos(pos)
Set the file pointer to the specified position. Only values returned from tell() should be used for pos.

tell()
Return current file pointer position. Note that the returned value has nothing to do with the actual position in the
file.

The following two functions are defined for compatibility with the aifc, and don’t do anything interesting.

getmarkers()
Returns None.

getmark(id)
Raise an error.

21.4.2 AU_write Objects

AU_write objects, as returned by open() above, have the following methods:

setnchannels(n)
Set the number of channels.

setsampwidth(n)
Set the sample width (in bytes.)

setframerate(n)
Set the frame rate.

setnframes(n)
Set the number of frames. This can be later changed, when and if more frames are written.

setcomptype(type, name)
Set the compression type and description. Only ’NONE’ and ’ULAW’ are supported on output.

setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype,
compname), with values valid for the set*() methods. Set all parameters.

tell()
Return current position in the file, with the same disclaimer for the AU_read.tell() and
AU_read.setpos() methods.

writeframesraw(data)
Write audio frames, without correcting nframes.

writeframes(data)
Write audio frames and make sure nframes is correct.

close()
Make sure nframes is correct, and close the file.

This method is called upon deletion.

21.4. sunau — Read and write Sun AU files 863

The Python Library Reference, Release 2.6.9

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw().

21.5 wave — Read and write WAV files

The wave module provides a convenient interface to the WAV sound format. It does not support compres-
sion/decompression, but it does support mono/stereo.

The wave module defines the following function and exception:

open(file, [mode])
If file is a string, open the file by that name, other treat it as a seekable file-like object. mode can be any of

’r’, ’rb’ Read only mode.

’w’, ’wb’ Write only mode.

Note that it does not allow read/write WAV files.

A mode of ’r’ or ’rb’ returns a Wave_read object, while a mode of ’w’ or ’wb’ returns a Wave_write
object. If mode is omitted and a file-like object is passed as file, file.mode is used as the default value for
mode (the ’b’ flag is still added if necessary).

openfp(file, mode)
A synonym for open(), maintained for backwards compatibility.

exception Error
An error raised when something is impossible because it violates the WAV specification or hits an implementa-
tion deficiency.

21.5.1 Wave_read Objects

Wave_read objects, as returned by open(), have the following methods:

close()
Close the stream, and make the instance unusable. This is called automatically on object collection.

getnchannels()
Returns number of audio channels (1 for mono, 2 for stereo).

getsampwidth()
Returns sample width in bytes.

getframerate()
Returns sampling frequency.

getnframes()
Returns number of audio frames.

getcomptype()
Returns compression type (’NONE’ is the only supported type).

getcompname()
Human-readable version of getcomptype(). Usually ’not compressed’ parallels ’NONE’.

getparams()
Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype, compname),
equivalent to output of the get*() methods.

readframes(n)
Reads and returns at most n frames of audio, as a string of bytes.

864 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with the aifc module, and don’t do anything interesting.

getmarkers()
Returns None.

getmark(id)
Raise an error.

The following two methods define a term “position” which is compatible between them, and is otherwise implemen-
tation dependent.

setpos(pos)
Set the file pointer to the specified position.

tell()
Return current file pointer position.

21.5.2 Wave_write Objects

Wave_write objects, as returned by open(), have the following methods:

close()
Make sure nframes is correct, and close the file. This method is called upon deletion.

setnchannels(n)
Set the number of channels.

setsampwidth(n)
Set the sample width to n bytes.

setframerate(n)
Set the frame rate to n.

setnframes(n)
Set the number of frames to n. This will be changed later if more frames are written.

setcomptype(type, name)
Set the compression type and description. At the moment, only compression type NONE is supported, meaning
no compression.

setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype,
compname), with values valid for the set*() methods. Sets all parameters.

tell()
Return current position in the file, with the same disclaimer for the Wave_read.tell() and
Wave_read.setpos() methods.

writeframesraw(data)
Write audio frames, without correcting nframes.

writeframes(data)
Write audio frames and make sure nframes is correct.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw(), and any
attempt to do so will raise wave.Error.

21.5. wave — Read and write WAV files 865

The Python Library Reference, Release 2.6.9

21.6 chunk — Read IFF chunked data

This module provides an interface for reading files that use EA IFF 85 chunks. 1 This format is used in at least the
Audio Interchange File Format (AIFF/AIFF-C) and the Real Media File Format (RMFF). The WAVE audio file format
is closely related and can also be read using this module.

A chunk has the following structure:

Offset Length Contents
0 4 Chunk ID
4 4 Size of chunk in big-endian byte order, not including the header
8 n Data bytes, where n is the size given in the preceding field
8 + n 0 or 1 Pad byte needed if n is odd and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order) gives the size of the chunk data, not including the
8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of the Chunk class defined here is to
instantiate an instance at the start of each chunk and read from the instance until it reaches the end, after which a new
instance can be instantiated. At the end of the file, creating a new instance will fail with a EOFError exception.

class Chunk(file, [align, bigendian, inclheader])
Class which represents a chunk. The file argument is expected to be a file-like object. An instance of this class
is specifically allowed. The only method that is needed is read(). If the methods seek() and tell() are
present and don’t raise an exception, they are also used. If these methods are present and raise an exception,
they are expected to not have altered the object. If the optional argument align is true, chunks are assumed to
be aligned on 2-byte boundaries. If align is false, no alignment is assumed. The default value is true. If the
optional argument bigendian is false, the chunk size is assumed to be in little-endian order. This is needed for
WAVE audio files. The default value is true. If the optional argument inclheader is true, the size given in the
chunk header includes the size of the header. The default value is false.

A Chunk object supports the following methods:

getname()
Returns the name (ID) of the chunk. This is the first 4 bytes of the chunk.

getsize()
Returns the size of the chunk.

close()
Close and skip to the end of the chunk. This does not close the underlying file.

The remaining methods will raise IOError if called after the close() method has been called.

isatty()
Returns False.

seek(pos, [whence])
Set the chunk’s current position. The whence argument is optional and defaults to 0 (absolute file position-
ing); other values are 1 (seek relative to the current position) and 2 (seek relative to the file’s end). There
is no return value. If the underlying file does not allow seek, only forward seeks are allowed.

tell()
Return the current position into the chunk.

read([size])
Read at most size bytes from the chunk (less if the read hits the end of the chunk before obtaining size

1 “EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic Arts, January 1985.

866 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

bytes). If the size argument is negative or omitted, read all data until the end of the chunk. The bytes
are returned as a string object. An empty string is returned when the end of the chunk is encountered
immediately.

skip()
Skip to the end of the chunk. All further calls to read() for the chunk will return ”. If you are not
interested in the contents of the chunk, this method should be called so that the file points to the start of
the next chunk.

21.7 colorsys — Conversions between color systems

The colorsys module defines bidirectional conversions of color values between colors expressed in the RGB (Red
Green Blue) color space used in computer monitors and three other coordinate systems: YIQ, HLS (Hue Lightness
Saturation) and HSV (Hue Saturation Value). Coordinates in all of these color spaces are floating point values. In the
YIQ space, the Y coordinate is between 0 and 1, but the I and Q coordinates can be positive or negative. In all other
spaces, the coordinates are all between 0 and 1.

See Also:

More information about color spaces can be found at http://www.poynton.com/ColorFAQ.html and
http://www.cambridgeincolour.com/tutorials/color-spaces.htm.

The colorsys module defines the following functions:

rgb_to_yiq(r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

yiq_to_rgb(y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

rgb_to_hls(r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

hls_to_rgb(h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

rgb_to_hsv(r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

hsv_to_rgb(h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys
>>> colorsys.rgb_to_hsv(.3, .4, .2)
(0.25, 0.5, 0.4)
>>> colorsys.hsv_to_rgb(0.25, 0.5, 0.4)
(0.3, 0.4, 0.2)

21.8 imghdr — Determine the type of an image

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

21.7. colorsys — Conversions between color systems 867

http://www.poynton.com/ColorFAQ.html
http://www.cambridgeincolour.com/tutorials/color-spaces.htm

The Python Library Reference, Release 2.6.9

what(filename, [h])
Tests the image data contained in the file named by filename, and returns a string describing the image type. If
optional h is provided, the filename is ignored and h is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value from what():

Value Image format
’rgb’ SGI ImgLib Files
’gif’ GIF 87a and 89a Files
’pbm’ Portable Bitmap Files
’pgm’ Portable Graymap Files
’ppm’ Portable Pixmap Files
’tiff’ TIFF Files
’rast’ Sun Raster Files
’xbm’ X Bitmap Files
’jpeg’ JPEG data in JFIF or Exif formats
’bmp’ BMP files
’png’ Portable Network Graphics

New in version 2.5: Exif detection. You can extend the list of file types imghdr can recognize by appending to this
variable:

tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-stream and an
open file-like object. When what() is called with a byte-stream, the file-like object will be None.

The test function should return a string describing the image type if the test succeeded, or None if it failed.

Example:

>>> import imghdr
>>> imghdr.what(’/tmp/bass.gif’)
’gif’

21.9 sndhdr — Determine type of sound file

The sndhdr provides utility functions which attempt to determine the type of sound data which is in a file. When
these functions are able to determine what type of sound data is stored in a file, they return a tuple (type,
sampling_rate, channels, frames, bits_per_sample). The value for type indicates the data type
and will be one of the strings ’aifc’, ’aiff’, ’au’, ’hcom’, ’sndr’, ’sndt’, ’voc’, ’wav’, ’8svx’,
’sb’, ’ub’, or ’ul’. The sampling_rate will be either the actual value or 0 if unknown or difficult to decode.
Similarly, channels will be either the number of channels or 0 if it cannot be determined or if the value is difficult to
decode. The value for frames will be either the number of frames or -1. The last item in the tuple, bits_per_sample,
will either be the sample size in bits or ’A’ for A-LAW or ’U’ for u-LAW.

what(filename)
Determines the type of sound data stored in the file filename using whathdr(). If it succeeds, returns a tuple
as described above, otherwise None is returned.

whathdr(filename)
Determines the type of sound data stored in a file based on the file header. The name of the file is given by
filename. This function returns a tuple as described above on success, or None.

868 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

21.10 ossaudiodev — Access to OSS-compatible audio devices

Platforms: Linux, FreeBSD New in version 2.3. This module allows you to access the OSS (Open Sound System)
audio interface. OSS is available for a wide range of open-source and commercial Unices, and is the standard audio
interface for Linux and recent versions of FreeBSD.

See Also:

Open Sound System Programmer’s Guide the official documentation for the OSS C API

The module defines a large number of constants supplied by the OSS device driver; see <sys/soundcard.h> on
either Linux or FreeBSD for a listing .

ossaudiodev defines the following variables and functions:

exception OSSAudioError
This exception is raised on certain errors. The argument is a string describing what went wrong.

(If ossaudiodev receives an error from a system call such as open(), write(), or ioctl(), it raises
IOError. Errors detected directly by ossaudiodev result in OSSAudioError.)

(For backwards compatibility, the exception class is also available as ossaudiodev.error.)

open([device], mode)
Open an audio device and return an OSS audio device object. This object supports many file-like methods,
such as read(), write(), and fileno() (although there are subtle differences between conventional Unix
read/write semantics and those of OSS audio devices). It also supports a number of audio-specific methods; see
below for the complete list of methods.

device is the audio device filename to use. If it is not specified, this module first looks in the environment
variable AUDIODEV for a device to use. If not found, it falls back to /dev/dsp.

mode is one of ’r’ for read-only (record) access, ’w’ for write-only (playback) access and ’rw’ for both.
Since many sound cards only allow one process to have the recorder or player open at a time, it is a good idea
to open the device only for the activity needed. Further, some sound cards are half-duplex: they can be opened
for reading or writing, but not both at once.

Note the unusual calling syntax: the first argument is optional, and the second is required. This is a historical
artifact for compatibility with the older linuxaudiodev module which ossaudiodev supersedes.

openmixer([device])
Open a mixer device and return an OSS mixer device object. device is the mixer device filename to use. If it is
not specified, this module first looks in the environment variable MIXERDEV for a device to use. If not found,
it falls back to /dev/mixer.

21.10.1 Audio Device Objects

Before you can write to or read from an audio device, you must call three methods in the correct order:

1. setfmt() to set the output format

2. channels() to set the number of channels

3. speed() to set the sample rate

Alternately, you can use the setparameters() method to set all three audio parameters at once. This is more
convenient, but may not be as flexible in all cases.

The audio device objects returned by open() define the following methods and (read-only) attributes:

21.10. ossaudiodev — Access to OSS-compatible audio devices 869

http://www.opensound.com/pguide/oss.pdf

The Python Library Reference, Release 2.6.9

close()
Explicitly close the audio device. When you are done writing to or reading from an audio device, you should
explicitly close it. A closed device cannot be used again.

fileno()
Return the file descriptor associated with the device.

read(size)
Read size bytes from the audio input and return them as a Python string. Unlike most Unix device drivers, OSS
audio devices in blocking mode (the default) will block read() until the entire requested amount of data is
available.

write(data)
Write the Python string data to the audio device and return the number of bytes written. If the audio device is in
blocking mode (the default), the entire string is always written (again, this is different from usual Unix device
semantics). If the device is in non-blocking mode, some data may not be written —see writeall().

writeall(data)
Write the entire Python string data to the audio device: waits until the audio device is able to accept data, writes
as much data as it will accept, and repeats until data has been completely written. If the device is in blocking
mode (the default), this has the same effect as write(); writeall() is only useful in non-blocking mode.
Has no return value, since the amount of data written is always equal to the amount of data supplied.

The following methods each map to exactly one ioctl() system call. The correspondence is obvious: for example,
setfmt() corresponds to the SNDCTL_DSP_SETFMT ioctl, and sync() to SNDCTL_DSP_SYNC (this can be
useful when consulting the OSS documentation). If the underlying ioctl() fails, they all raise IOError.

nonblock()
Put the device into non-blocking mode. Once in non-blocking mode, there is no way to return it to blocking
mode.

getfmts()
Return a bitmask of the audio output formats supported by the soundcard. Some of the formats supported by
OSS are:

Format Description
AFMT_MU_LAW a logarithmic encoding (used by Sun .au files and /dev/audio)
AFMT_A_LAW a logarithmic encoding
AFMT_IMA_ADPCM a 4:1 compressed format defined by the Interactive Multimedia Association
AFMT_U8 Unsigned, 8-bit audio
AFMT_S16_LE Signed, 16-bit audio, little-endian byte order (as used by Intel processors)
AFMT_S16_BE Signed, 16-bit audio, big-endian byte order (as used by 68k, PowerPC, Sparc)
AFMT_S8 Signed, 8 bit audio
AFMT_U16_LE Unsigned, 16-bit little-endian audio
AFMT_U16_BE Unsigned, 16-bit big-endian audio

Consult the OSS documentation for a full list of audio formats, and note that most devices support only a
subset of these formats. Some older devices only support AFMT_U8; the most common format used today is
AFMT_S16_LE.

setfmt(format)
Try to set the current audio format to format—see getfmts() for a list. Returns the audio format that the
device was set to, which may not be the requested format. May also be used to return the current audio format—
do this by passing an “audio format” of AFMT_QUERY.

channels(nchannels)
Set the number of output channels to nchannels. A value of 1 indicates monophonic sound, 2 stereophonic.
Some devices may have more than 2 channels, and some high-end devices may not support mono. Returns the
number of channels the device was set to.

870 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

speed(samplerate)
Try to set the audio sampling rate to samplerate samples per second. Returns the rate actually set. Most sound
devices don’t support arbitrary sampling rates. Common rates are:

Rate Description
8000 default rate for /dev/audio
11025 speech recording
22050
44100 CD quality audio (at 16 bits/sample and 2 channels)
96000 DVD quality audio (at 24 bits/sample)

sync()
Wait until the sound device has played every byte in its buffer. (This happens implicitly when the device is
closed.) The OSS documentation recommends closing and re-opening the device rather than using sync().

reset()
Immediately stop playing or recording and return the device to a state where it can accept commands. The OSS
documentation recommends closing and re-opening the device after calling reset().

post()
Tell the driver that there is likely to be a pause in the output, making it possible for the device to handle the
pause more intelligently. You might use this after playing a spot sound effect, before waiting for user input, or
before doing disk I/O.

The following convenience methods combine several ioctls, or one ioctl and some simple calculations.

setparameters(format, nchannels, samplerate, [strict=False])
Set the key audio sampling parameters—sample format, number of channels, and sampling rate—in one
method call. format, nchannels, and samplerate should be as specified in the setfmt(), channels(),
and speed() methods. If strict is true, setparameters() checks to see if each parameter was actually set
to the requested value, and raises OSSAudioError if not. Returns a tuple (format, nchannels, samplerate)
indicating the parameter values that were actually set by the device driver (i.e., the same as the return values of
setfmt(), channels(), and speed()).

For example,

(fmt, channels, rate) = dsp.setparameters(fmt, channels, rate)

is equivalent to

fmt = dsp.setfmt(fmt)
channels = dsp.channels(channels)
rate = dsp.rate(channels)

bufsize()
Returns the size of the hardware buffer, in samples.

obufcount()
Returns the number of samples that are in the hardware buffer yet to be played.

obuffree()
Returns the number of samples that could be queued into the hardware buffer to be played without blocking.

Audio device objects also support several read-only attributes:

closed
Boolean indicating whether the device has been closed.

name
String containing the name of the device file.

21.10. ossaudiodev — Access to OSS-compatible audio devices 871

The Python Library Reference, Release 2.6.9

mode
The I/O mode for the file, either "r", "rw", or "w".

21.10.2 Mixer Device Objects

The mixer object provides two file-like methods:

close()
This method closes the open mixer device file. Any further attempts to use the mixer after this file is closed will
raise an IOError.

fileno()
Returns the file handle number of the open mixer device file.

The remaining methods are specific to audio mixing:

controls()
This method returns a bitmask specifying the available mixer controls (“Control” being a specific mixable
“channel”, such as SOUND_MIXER_PCM or SOUND_MIXER_SYNTH). This bitmask indicates a subset of all
available mixer controls—the SOUND_MIXER_* constants defined at module level. To determine if, for exam-
ple, the current mixer object supports a PCM mixer, use the following Python code:

mixer=ossaudiodev.openmixer()
if mixer.controls() & (1 << ossaudiodev.SOUND_MIXER_PCM):

PCM is supported
... code ...

For most purposes, the SOUND_MIXER_VOLUME (master volume) and SOUND_MIXER_PCM controls should
suffice—but code that uses the mixer should be flexible when it comes to choosing mixer controls. On the Gravis
Ultrasound, for example, SOUND_MIXER_VOLUME does not exist.

stereocontrols()
Returns a bitmask indicating stereo mixer controls. If a bit is set, the corresponding control is stereo; if it is
unset, the control is either monophonic or not supported by the mixer (use in combination with controls()
to determine which).

See the code example for the controls() function for an example of getting data from a bitmask.

reccontrols()
Returns a bitmask specifying the mixer controls that may be used to record. See the code example for
controls() for an example of reading from a bitmask.

get(control)
Returns the volume of a given mixer control. The returned volume is a 2-tuple
(left_volume,right_volume). Volumes are specified as numbers from 0 (silent) to 100 (full
volume). If the control is monophonic, a 2-tuple is still returned, but both volumes are the same.

Raises OSSAudioError if an invalid control was is specified, or IOError if an unsupported control is
specified.

set(control, (left, right))
Sets the volume for a given mixer control to (left,right). left and right must be ints and between 0
(silent) and 100 (full volume). On success, the new volume is returned as a 2-tuple. Note that this may not be
exactly the same as the volume specified, because of the limited resolution of some soundcard’s mixers.

Raises OSSAudioError if an invalid mixer control was specified, or if the specified volumes were out-of-
range.

872 Chapter 21. Multimedia Services

The Python Library Reference, Release 2.6.9

get_recsrc()
This method returns a bitmask indicating which control(s) are currently being used as a recording source.

set_recsrc(bitmask)
Call this function to specify a recording source. Returns a bitmask indicating the new recording source (or
sources) if successful; raises IOError if an invalid source was specified. To set the current recording source
to the microphone input:

mixer.setrecsrc (1 << ossaudiodev.SOUND_MIXER_MIC)

21.10. ossaudiodev — Access to OSS-compatible audio devices 873

The Python Library Reference, Release 2.6.9

874 Chapter 21. Multimedia Services

CHAPTER

TWENTYTWO

INTERNATIONALIZATION

The modules described in this chapter help you write software that is independent of language and locale by providing
mechanisms for selecting a language to be used in program messages or by tailoring output to match local conventions.

The list of modules described in this chapter is:

22.1 gettext — Multilingual internationalization services

The gettextmodule provides internationalization (I18N) and localization (L10N) services for your Python modules
and applications. It supports both the GNU gettext message catalog API and a higher level, class-based API
that may be more appropriate for Python files. The interface described below allows you to write your module and
application messages in one natural language, and provide a catalog of translated messages for running under different
natural languages.

Some hints on localizing your Python modules and applications are also given.

22.1.1 GNU gettext API

The gettext module defines the following API, which is very similar to the GNU gettext API. If you use this API
you will affect the translation of your entire application globally. Often this is what you want if your application is
monolingual, with the choice of language dependent on the locale of your user. If you are localizing a Python module,
or if your application needs to switch languages on the fly, you probably want to use the class-based API instead.

bindtextdomain(domain, [localedir])
Bind the domain to the locale directory localedir. More concretely, gettext will look for binary .mo files for
the given domain using the path (on Unix): localedir/language/LC_MESSAGES/domain.mo, where
languages is searched for in the environment variables LANGUAGE, LC_ALL, LC_MESSAGES, and LANG
respectively.

If localedir is omitted or None, then the current binding for domain is returned. 1

bind_textdomain_codeset(domain, [codeset])
Bind the domain to codeset, changing the encoding of strings returned by the gettext() family of functions.
If codeset is omitted, then the current binding is returned. New in version 2.4.

textdomain([domain])
Change or query the current global domain. If domain is None, then the current global domain is returned,
otherwise the global domain is set to domain, which is returned.

1 The default locale directory is system dependent; for example, on RedHat Linux it is /usr/share/locale, but on Solaris
it is /usr/lib/locale. The gettext module does not try to support these system dependent defaults; instead its default is
sys.prefix/share/locale. For this reason, it is always best to call bindtextdomain() with an explicit absolute path at the start
of your application.

875

The Python Library Reference, Release 2.6.9

gettext(message)
Return the localized translation of message, based on the current global domain, language, and locale directory.
This function is usually aliased as _() in the local namespace (see examples below).

lgettext(message)
Equivalent to gettext(), but the translation is returned in the preferred system encoding, if no other encoding
was explicitly set with bind_textdomain_codeset(). New in version 2.4.

dgettext(domain, message)
Like gettext(), but look the message up in the specified domain.

ldgettext(domain, message)
Equivalent to dgettext(), but the translation is returned in the preferred system encoding, if no other encod-
ing was explicitly set with bind_textdomain_codeset(). New in version 2.4.

ngettext(singular, plural, n)
Like gettext(), but consider plural forms. If a translation is found, apply the plural formula to n, and return
the resulting message (some languages have more than two plural forms). If no translation is found, return
singular if n is 1; return plural otherwise.

The Plural formula is taken from the catalog header. It is a C or Python expression that has a free variable n; the
expression evaluates to the index of the plural in the catalog. See the GNU gettext documentation for the precise
syntax to be used in .po files and the formulas for a variety of languages. New in version 2.3.

lngettext(singular, plural, n)
Equivalent to ngettext(), but the translation is returned in the preferred system encoding, if no other encod-
ing was explicitly set with bind_textdomain_codeset(). New in version 2.4.

dngettext(domain, singular, plural, n)
Like ngettext(), but look the message up in the specified domain. New in version 2.3.

ldngettext(domain, singular, plural, n)
Equivalent to dngettext(), but the translation is returned in the preferred system encoding, if no other
encoding was explicitly set with bind_textdomain_codeset(). New in version 2.4.

Note that GNU gettext also defines a dcgettext() method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext
gettext.bindtextdomain(’myapplication’, ’/path/to/my/language/directory’)
gettext.textdomain(’myapplication’)
_ = gettext.gettext
...
print _(’This is a translatable string.’)

22.1.2 Class-based API

The class-based API of the gettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modules. gettext defines
a “translations” class which implements the parsing of GNU .mo format files, and has methods for returning either
standard 8-bit strings or Unicode strings. Instances of this “translations” class can also install themselves in the built-in
namespace as the function _().

find(domain, [localedir, [languages, [all]]])
This function implements the standard .mo file search algorithm. It takes a domain, identical to what
textdomain() takes. Optional localedir is as in bindtextdomain() Optional languages is a list of
strings, where each string is a language code.

876 Chapter 22. Internationalization

The Python Library Reference, Release 2.6.9

If localedir is not given, then the default system locale directory is used. 2 If languages is not given, then the
following environment variables are searched: LANGUAGE, LC_ALL, LC_MESSAGES, and LANG. The
first one returning a non-empty value is used for the languages variable. The environment variables should
contain a colon separated list of languages, which will be split on the colon to produce the expected list of
language code strings.

find() then expands and normalizes the languages, and then iterates through them, searching for an existing
file built of these components:

localedir/language/LC_MESSAGES/domain.mo

The first such file name that exists is returned by find(). If no such file is found, then None is returned.
If all is given, it returns a list of all file names, in the order in which they appear in the languages list or the
environment variables.

translation(domain, [localedir, [languages, [class_, [fallback, [codeset]]]]])
Return a Translations instance based on the domain, localedir, and languages, which are first passed to
find() to get a list of the associated .mo file paths. Instances with identical .mo file names are cached. The
actual class instantiated is either class_ if provided, otherwise GNUTranslations. The class’s constructor
must take a single file object argument. If provided, codeset will change the charset used to encode translated
strings.

If multiple files are found, later files are used as fallbacks for earlier ones. To allow setting the fallback,
copy.copy() is used to clone each translation object from the cache; the actual instance data is still shared
with the cache.

If no .mo file is found, this function raises IOError if fallback is false (which is the default), and returns a
NullTranslations instance if fallback is true. Changed in version 2.4: Added the codeset parameter.

install(domain, [localedir, [unicode, [codeset, [names]]]])
This installs the function _() in Python’s builtins namespace, based on domain, localedir, and codeset which
are passed to the function translation(). The unicode flag is passed to the resulting translation object’s
install() method.

For the names parameter, please see the description of the translation object’s install() method.

As seen below, you usually mark the strings in your application that are candidates for translation, by wrapping
them in a call to the _() function, like this:

print _(’This string will be translated.’)

For convenience, you want the _() function to be installed in Python’s builtins namespace, so it is easily
accessible in all modules of your application. Changed in version 2.4: Added the codeset parameter.Changed in
version 2.5: Added the names parameter.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to translated
message strings. The base class used by all translation classes is NullTranslations; this provides the basic inter-
face you can use to write your own specialized translation classes. Here are the methods of NullTranslations:

class NullTranslations([fp])
Takes an optional file object fp, which is ignored by the base class. Initializes “protected” instance variables _info
and _charset which are set by derived classes, as well as _fallback, which is set through add_fallback().
It then calls self._parse(fp) if fp is not None.

2 See the footnote for bindtextdomain() above.

22.1. gettext — Multilingual internationalization services 877

The Python Library Reference, Release 2.6.9

_parse(fp)
No-op’d in the base class, this method takes file object fp, and reads the data from the file, initializing its
message catalog. If you have an unsupported message catalog file format, you should override this method
to parse your format.

add_fallback(fallback)
Add fallback as the fallback object for the current translation object. A translation object should consult
the fallback if it cannot provide a translation for a given message.

gettext(message)
If a fallback has been set, forward gettext() to the fallback. Otherwise, return the translated message.
Overridden in derived classes.

lgettext(message)
If a fallback has been set, forward lgettext() to the fallback. Otherwise, return the translated message.
Overridden in derived classes. New in version 2.4.

ugettext(message)
If a fallback has been set, forward ugettext() to the fallback. Otherwise, return the translated message
as a Unicode string. Overridden in derived classes.

ngettext(singular, plural, n)
If a fallback has been set, forward ngettext() to the fallback. Otherwise, return the translated message.
Overridden in derived classes. New in version 2.3.

lngettext(singular, plural, n)
If a fallback has been set, forward ngettext() to the fallback. Otherwise, return the translated message.
Overridden in derived classes. New in version 2.4.

ungettext(singular, plural, n)
If a fallback has been set, forward ungettext() to the fallback. Otherwise, return the translated mes-
sage as a Unicode string. Overridden in derived classes. New in version 2.3.

info()
Return the “protected” _info variable.

charset()
Return the “protected” _charset variable.

output_charset()
Return the “protected” _output_charset variable, which defines the encoding used to return trans-
lated messages. New in version 2.4.

set_output_charset(charset)
Change the “protected” _output_charset variable, which defines the encoding used to return trans-
lated messages. New in version 2.4.

install([unicode, [names]])
If the unicode flag is false, this method installs self.gettext() into the built-in namespace, binding
it to _. If unicode is true, it binds self.ugettext() instead. By default, unicode is false.

If the names parameter is given, it must be a sequence containing the names of functions you want
to install in the builtins namespace in addition to _(). Supported names are ’gettext’ (bound to
self.gettext() or self.ugettext() according to the unicode flag), ’ngettext’ (bound
to self.ngettext() or self.ungettext() according to the unicode flag), ’lgettext’ and
’lngettext’.

Note that this is only one way, albeit the most convenient way, to make the _() function available to
your application. Because it affects the entire application globally, and specifically the built-in namespace,
localized modules should never install _(). Instead, they should use this code to make _() available to
their module:

878 Chapter 22. Internationalization

The Python Library Reference, Release 2.6.9

import gettext
t = gettext.translation(’mymodule’, ...)
_ = t.gettext

This puts _() only in the module’s global namespace and so only affects calls within this module.
Changed in version 2.5: Added the names parameter.

The GNUTranslations class

The gettext module provides one additional class derived from NullTranslations: GNUTranslations.
This class overrides _parse() to enable reading GNU gettext format .mo files in both big-endian and little-endian
format. It also coerces both message ids and message strings to Unicode.

GNUTranslations parses optional meta-data out of the translation catalog. It is convention with GNU gettext to
include meta-data as the translation for the empty string. This meta-data is in RFC 822-style key: value pairs,
and should contain the Project-Id-Version key. If the key Content-Type is found, then the charset
property is used to initialize the “protected” _charset instance variable, defaulting to None if not found. If the
charset encoding is specified, then all message ids and message strings read from the catalog are converted to Uni-
code using this encoding. The ugettext() method always returns a Unicode, while the gettext() returns an
encoded 8-bit string. For the message id arguments of both methods, either Unicode strings or 8-bit strings containing
only US-ASCII characters are acceptable. Note that the Unicode version of the methods (i.e. ugettext() and
ungettext()) are the recommended interface to use for internationalized Python programs.

The entire set of key/value pairs are placed into a dictionary and set as the “protected” _info instance variable.

If the .mo file’s magic number is invalid, or if other problems occur while reading the file, instantiating a
GNUTranslations class can raise IOError.

The following methods are overridden from the base class implementation:

gettext(message)
Look up the message id in the catalog and return the corresponding message string, as an 8-bit string encoded
with the catalog’s charset encoding, if known. If there is no entry in the catalog for the message id, and a
fallback has been set, the look up is forwarded to the fallback’s gettext() method. Otherwise, the message
id is returned.

lgettext(message)
Equivalent to gettext(), but the translation is returned in the preferred system encoding, if no other encoding
was explicitly set with set_output_charset(). New in version 2.4.

ugettext(message)
Look up the message id in the catalog and return the corresponding message string, as a Unicode string. If
there is no entry in the catalog for the message id, and a fallback has been set, the look up is forwarded to the
fallback’s ugettext() method. Otherwise, the message id is returned.

ngettext(singular, plural, n)
Do a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup in the
catalog, while n is used to determine which plural form to use. The returned message string is an 8-bit string
encoded with the catalog’s charset encoding, if known.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded to the fallback’s
ngettext() method. Otherwise, when n is 1 singular is returned, and plural is returned in all other cases.
New in version 2.3.

lngettext(singular, plural, n)
Equivalent to gettext(), but the translation is returned in the preferred system encoding, if no other encoding
was explicitly set with set_output_charset(). New in version 2.4.

22.1. gettext — Multilingual internationalization services 879

http://tools.ietf.org/html/rfc822.html

The Python Library Reference, Release 2.6.9

ungettext(singular, plural, n)
Do a plural-forms lookup of a message id. singular is used as the message id for purposes of lookup in the
catalog, while n is used to determine which plural form to use. The returned message string is a Unicode string.

If the message id is not found in the catalog, and a fallback is specified, the request is forwarded to the fallback’s
ungettext() method. Otherwise, when n is 1 singular is returned, and plural is returned in all other cases.

Here is an example:

n = len(os.listdir(’.’))
cat = GNUTranslations(somefile)
message = cat.ungettext(

’There is %(num)d file in this directory’,
’There are %(num)d files in this directory’,
n) % {’num’: n}

New in version 2.3.

Solaris message catalog support

The Solaris operating system defines its own binary .mo file format, but since no documentation can be found on this
format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of the gettext module by James Henstridge, but this version has a slightly different API.
Its documented usage was:

import gettext
cat = gettext.Catalog(domain, localedir)
_ = cat.gettext
print _(’hello world’)

For compatibility with this older module, the function Catalog() is an alias for the translation() function
described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping API,
but this appears to be unused and so is not currently supported.

22.1.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages. Localiza-
tion (L10N) refers to the adaptation of your program, once internationalized, to the local language and cultural habits.
In order to provide multilingual messages for your Python programs, you need to take the following steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language specific translations of the message catalogs

4. use the gettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that needs to be
translated should be marked by wrapping it in _(’...’) — that is, a call to the function _(). For example:

880 Chapter 22. Internationalization

The Python Library Reference, Release 2.6.9

filename = ’mylog.txt’
message = _(’writing a log message’)
fp = open(filename, ’w’)
fp.write(message)
fp.close()

In this example, the string ’writing a log message’ is marked as a candidate for translation, while the strings
’mylog.txt’ and ’w’ are not.

The Python distribution comes with two tools which help you generate the message catalogs once you’ve prepared
your source code. These may or may not be available from a binary distribution, but they can be found in a source
distribution, in the Tools/i18n directory.

The pygettext 3 program scans all your Python source code looking for the strings you previously marked as translat-
able. It is similar to the GNU gettext program except that it understands all the intricacies of Python source code, but
knows nothing about C or C++ source code. You don’t need GNU gettext unless you’re also going to be translating
C code (such as C extension modules).

pygettext generates textual Uniforum-style human readable message catalog .pot files, essentially structured human
readable files which contain every marked string in the source code, along with a placeholder for the translation strings.
pygettext is a command line script that supports a similar command line interface as xgettext; for details on its use,
run:

pygettext.py --help

Copies of these .pot files are then handed over to the individual human translators who write language-specific
versions for every supported natural language. They send you back the filled in language-specific versions as a .po
file. Using the msgfmt.py 4 program (in the Tools/i18n directory), you take the .po files from your translators
and generate the machine-readable .mo binary catalog files. The .mo files are what the gettext module uses for
the actual translation processing during run-time.

How you use the gettext module in your code depends on whether you are internationalizing a single module or
your entire application. The next two sections will discuss each case.

Localizing your module

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in namespace. You
should not use the GNU gettext API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation .mo files reside in
/usr/share/locale in GNU gettext format. Here’s what you would put at the top of your module:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.lgettext

If your translators were providing you with Unicode strings in their .po files, you’d instead do:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.ugettext

3 François Pinard has written a program called xpot which does a similar job. It is available as part of his po-utils package at http ://po-
utils.progiciels-bpi.ca/.

4 msgfmt.py is binary compatible with GNU msgfmt except that it provides a simpler, all-Python implementation. With this and pygettext.py,
you generally won’t need to install the GNU gettext package to internationalize your Python applications.

22.1. gettext — Multilingual internationalization services 881

The Python Library Reference, Release 2.6.9

Localizing your application

If you are localizing your application, you can install the _() function globally into the built-in namespace, usually
in the main driver file of your application. This will let all your application-specific files just use _(’...’) without
having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:

import gettext
gettext.install(’myapplication’)

If you need to set the locale directory or the unicode flag, you can pass these into the install() function:

import gettext
gettext.install(’myapplication’, ’/usr/share/locale’, unicode=1)

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple translation
instances and then switch between them explicitly, like so:

import gettext

lang1 = gettext.translation(’myapplication’, languages=[’en’])
lang2 = gettext.translation(’myapplication’, languages=[’fr’])
lang3 = gettext.translation(’myapplication’, languages=[’de’])

start by using language1
lang1.install()

... time goes by, user selects language 2
lang2.install()

... more time goes by, user selects language 3
lang3.install()

Deferred translations

In most coding situations, strings are translated where they are coded. Occasionally however, you need to mark strings
for translation, but defer actual translation until later. A classic example is:

animals = [’mollusk’,
’albatross’,
’rat’,
’penguin’,
’python’,]

...
for a in animals:

print a

Here, you want to mark the strings in the animals list as being translatable, but you don’t actually want to translate
them until they are printed.

Here is one way you can handle this situation:

def _(message): return message

882 Chapter 22. Internationalization

The Python Library Reference, Release 2.6.9

animals = [_(’mollusk’),
_(’albatross’),
_(’rat’),
_(’penguin’),
_(’python’),]

del _

...
for a in animals:

print _(a)

This works because the dummy definition of _() simply returns the string unchanged. And this dummy definition
will temporarily override any definition of _() in the built-in namespace (until the del command). Take care, though
if you have a previous definition of _() in the local namespace.

Note that the second use of _() will not identify “a” as being translatable to the pygettext program, since it is not a
string.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_(’mollusk’),
N_(’albatross’),
N_(’rat’),
N_(’penguin’),
N_(’python’),]

...
for a in animals:

print _(a)

In this case, you are marking translatable strings with the function N_(), 5 which won’t conflict with any definition of
_(). However, you will need to teach your message extraction program to look for translatable strings marked with
N_(). pygettext and xpot both support this through the use of command line switches.

gettext() vs. lgettext()

In Python 2.4 the lgettext() family of functions were introduced. The intention of these functions is to pro-
vide an alternative which is more compliant with the current implementation of GNU gettext. Unlike gettext(),
which returns strings encoded with the same codeset used in the translation file, lgettext() will return strings
encoded with the preferred system encoding, as returned by locale.getpreferredencoding(). Also notice
that Python 2.4 introduces new functions to explicitly choose the codeset used in translated strings. If a codeset is
explicitly set, even lgettext() will return translated strings in the requested codeset, as would be expected in the
GNU gettext implementation.

22.1.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and valuable experi-
ence to the creation of this module:

• Peter Funk
5 The choice of N_() here is totally arbitrary; it could have just as easily been MarkThisStringForTranslation().

22.1. gettext — Multilingual internationalization services 883

The Python Library Reference, Release 2.6.9

• James Henstridge

• Juan David Ibáñez Palomar

• Marc-André Lemburg

• Martin von Löwis

• François Pinard

• Barry Warsaw

• Gustavo Niemeyer

22.2 locale — Internationalization services

The locale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to know
all the specifics of each country where the software is executed. The locale module is implemented on top of the
_locale module, which in turn uses an ANSI C locale implementation if available.

The locale module defines the following exception and functions:

exception Error
Exception raised when setlocale() fails.

setlocale(category, [locale])
If locale is specified, it may be a string, a tuple of the form (language code, encoding), or None.
If it is a tuple, it is converted to a string using the locale aliasing engine. If locale is given and not None,
setlocale() modifies the locale setting for the category. The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings. If the
modification of the locale fails, the exception Error is raised. If successful, the new locale setting is returned.

If locale is omitted or None, the current setting for category is returned.

setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL, ’’)

This sets the locale for all categories to the user’s default setting (typically specified in the LANG environment
variable). If the locale is not changed thereafter, using multithreading should not cause problems. Changed in
version 2.0: Added support for tuple values of the locale parameter.

localeconv()
Returns the database of the local conventions as a dictionary. This dictionary has the following strings as keys:

884 Chapter 22. Internationalization

The Python Library Reference, Release 2.6.9

Cate-
gory

Key Meaning

LC_NUMERIC’decimal_point’ Decimal point character.
’grouping’ Sequence of numbers specifying which relative positions the

’thousands_sep’ is expected. If the sequence is terminated with
CHAR_MAX, no further grouping is performed. If the sequence terminates with
a 0, the last group size is repeatedly used.

’thousands_sep’ Character used between groups.
LC_MONETARY’int_curr_symbol’International currency symbol.

’currency_symbol’Local currency symbol.
’p_cs_precedes/n_cs_precedes’Whether the currency symbol precedes the value (for positive resp. negative

values).
’p_sep_by_space/n_sep_by_space’Whether the currency symbol is separated from the value by a space (for

positive resp. negative values).
’mon_decimal_point’Decimal point used for monetary values.
’frac_digits’ Number of fractional digits used in local formatting of monetary values.
’int_frac_digits’Number of fractional digits used in international formatting of monetary

values.
’mon_thousands_sep’Group separator used for monetary values.
’mon_grouping’ Equivalent to ’grouping’, used for monetary values.
’positive_sign’ Symbol used to annotate a positive monetary value.
’negative_sign’ Symbol used to annotate a negative monetary value.
’p_sign_posn/n_sign_posn’The position of the sign (for positive resp. negative values), see below.

All numeric values can be set to CHAR_MAX to indicate that there is no value specified in this locale.

The possible values for ’p_sign_posn’ and ’n_sign_posn’ are given below.

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
CHAR_MAX Nothing is specified in this locale.

nl_langinfo(option)
Return some locale-specific information as a string. This function is not available on all systems, and the set
of possible options might also vary across platforms. The possible argument values are numbers, for which
symbolic constants are available in the locale module.

The nl_langinfo() function accepts one of the following keys. Most descriptions are taken from the corre-
sponding description in the GNU C library.

CODESET
Get a string with the name of the character encoding used in the selected locale.

D_T_FMT
Get a string that can be used as a format string for strftime() to represent time and date in a locale-
specific way.

D_FMT
Get a string that can be used as a format string for strftime() to represent a date in a locale-specific
way.

T_FMT
Get a string that can be used as a format string for strftime() to represent a time in a locale-specific
way.

22.2. locale — Internationalization services 885

The Python Library Reference, Release 2.6.9

T_FMT_AMPM
Get a format string for strftime() to represent time in the am/pm format.

DAY_1 ... DAY_7
Get the name of the n-th day of the week.

Note: This follows the US convention of DAY_1 being Sunday, not the international convention (ISO
8601) that Monday is the first day of the week.

ABDAY_1 ... ABDAY_7
Get the abbreviated name of the n-th day of the week.

MON_1 ... MON_12
Get the name of the n-th month.

ABMON_1 ... ABMON_12
Get the abbreviated name of the n-th month.

RADIXCHAR
Get the radix character (decimal dot, decimal comma, etc.)

THOUSEP
Get the separator character for thousands (groups of three digits).

YESEXPR
Get a regular expression that can be used with the regex function to recognize a positive response to a
yes/no question.

Note: The expression is in the syntax suitable for the regex() function from the C library, which might
differ from the syntax used in re.

NOEXPR
Get a regular expression that can be used with the regex(3) function to recognize a negative response to a
yes/no question.

CRNCYSTR
Get the currency symbol, preceded by “-” if the symbol should appear before the value, “+” if the symbol
should appear after the value, or “.” if the symbol should replace the radix character.

ERA
Get a string that represents the era used in the current locale.

Most locales do not define this value. An example of a locale which does define this value is the Japanese
one. In Japan, the traditional representation of dates includes the name of the era corresponding to the
then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying the E modifier in their format
strings causes the strftime() function to use this information. The format of the returned string is not
specified, and therefore you should not assume knowledge of it on different systems.

ERA_D_T_FMT
Get a format string for strftime() to represent dates and times in a locale-specific era-based way.

ERA_D_FMT
Get a format string for strftime() to represent time in a locale-specific era-based way.

ALT_DIGITS
Get a representation of up to 100 values used to represent the values 0 to 99.

getdefaultlocale([envvars])
Tries to determine the default locale settings and returns them as a tuple of the form (language code,
encoding).

886 Chapter 22. Internationalization

The Python Library Reference, Release 2.6.9

According to POSIX, a program which has not called setlocale(LC_ALL, ”) runs using the portable ’C’
locale. Calling setlocale(LC_ALL, ”) lets it use the default locale as defined by the LANG variable.
Since we do not want to interfere with the current locale setting we thus emulate the behavior in the way
described above.

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of variables
given as envvars parameter. The first found to be defined will be used. envvars defaults to the search path
used in GNU gettext; it must always contain the variable name LANG. The GNU gettext search path contains
’LANGUAGE’, ’LC_ALL’, ’LC_CTYPE’, and ’LANG’, in that order.

Except for the code ’C’, the language code corresponds to RFC 1766. language code and encoding may be
None if their values cannot be determined. New in version 2.0.

getlocale([category])
Returns the current setting for the given locale category as sequence containing language code, encoding. cate-
gory may be one of the LC_* values except LC_ALL. It defaults to LC_CTYPE.

Except for the code ’C’, the language code corresponds to RFC 1766. language code and encoding may be
None if their values cannot be determined. New in version 2.0.

getpreferredencoding([do_setlocale])
Return the encoding used for text data, according to user preferences. User preferences are expressed differently
on different systems, and might not be available programmatically on some systems, so this function only returns
a guess.

On some systems, it is necessary to invoke setlocale() to obtain the user preferences, so this function is
not thread-safe. If invoking setlocale is not necessary or desired, do_setlocale should be set to False. New in
version 2.3.

normalize(localename)
Returns a normalized locale code for the given locale name. The returned locale code is formatted for use with
setlocale(). If normalization fails, the original name is returned unchanged.

If the given encoding is not known, the function defaults to the default encoding for the locale code just like
setlocale(). New in version 2.0.

resetlocale([category])
Sets the locale for category to the default setting.

The default setting is determined by calling getdefaultlocale(). category defaults to LC_ALL. New in
version 2.0.

strcoll(string1, string2)
Compares two strings according to the current LC_COLLATE setting. As any other compare function, returns a
negative, or a positive value, or 0, depending on whether string1 collates before or after string2 or is equal to it.

strxfrm(string)
Transforms a string to one that can be used for the built-in function cmp(), and still returns locale-aware

results. This function can be used when the same string is compared repeatedly, e.g. when collating a sequence
of strings.

format(format, val, [grouping, [monetary]])
Formats a number val according to the current LC_NUMERIC setting. The format follows the conventions of
the % operator. For floating point values, the decimal point is modified if appropriate. If grouping is true, also
takes the grouping into account.

If monetary is true, the conversion uses monetary thousands separator and grouping strings.

Please note that this function will only work for exactly one %char specifier. For whole format strings, use
format_string(). Changed in version 2.5: Added the monetary parameter.

22.2. locale — Internationalization services 887

http://tools.ietf.org/html/rfc1766.html
http://tools.ietf.org/html/rfc1766.html

The Python Library Reference, Release 2.6.9

format_string(format, val, [grouping])
Processes formatting specifiers as in format % val, but takes the current locale settings into account. New
in version 2.5.

currency(val, [symbol, [grouping, [international]]])
Formats a number val according to the current LC_MONETARY settings.

The returned string includes the currency symbol if symbol is true, which is the default. If grouping is true
(which is not the default), grouping is done with the value. If international is true (which is not the default), the
international currency symbol is used.

Note that this function will not work with the ‘C’ locale, so you have to set a locale via setlocale() first.
New in version 2.5.

str(float)
Formats a floating point number using the same format as the built-in function str(float), but takes the
decimal point into account.

atof(string)
Converts a string to a floating point number, following the LC_NUMERIC settings.

atoi(string)
Converts a string to an integer, following the LC_NUMERIC conventions.

LC_CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of

module string dealing with case change their behaviour.

LC_COLLATE
Locale category for sorting strings. The functions strcoll() and strxfrm() of the locale module are
affected.

LC_TIME
Locale category for the formatting of time. The function time.strftime() follows these conventions.

LC_MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, like those returned by os.strerror() might be affected
by this category.

LC_NUMERIC
Locale category for formatting numbers. The functions format(), atoi(), atof() and str() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LC_ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

CHAR_MAX
This is a symbolic constant used for different values returned by localeconv().

Example:

>>> import locale
>>> loc = locale.getlocale() # get current locale
use German locale; name might vary with platform

888 Chapter 22. Internationalization

The Python Library Reference, Release 2.6.9

>>> locale.setlocale(locale.LC_ALL, ’de_DE’)
>>> locale.strcoll(’f\xe4n’, ’foo’) # compare a string containing an umlaut
>>> locale.setlocale(locale.LC_ALL, ’’) # use user’s preferred locale
>>> locale.setlocale(locale.LC_ALL, ’C’) # use default (C) locale
>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

22.2.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top of
that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This makes
the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the C locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by calling setlocale(LC_ALL, ”).

It is generally a bad idea to call setlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected
by the locale (such as string.lower(), or certain formats used with time.strftime()), you will have to
find a way to do it without using the standard library routine. Even better is convincing yourself that using lo-
cale settings is okay. Only as a last resort should you document that your module is not compatible with non-
C locale settings. The case conversion functions in the string module are affected by the locale settings.
When a call to the setlocale() function changes the LC_CTYPE settings, the variables string.lowercase,
string.uppercase and string.letters are recalculated. Note that code that uses these variable through
‘from ... import ...’, e.g. from string import letters, is not affected by subsequent setlocale()
calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module: atof(), atoi(), format(), str().

22.2.2 For extension writers and programs that embed Python

Extension modules should never call setlocale(), except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not
the locale is C).

When Python code uses the locale module to change the locale, this also affects the embedding application. If the
embedding application doesn’t want this to happen, it should remove the _locale extension module (which does all
the work) from the table of built-in modules in the config.c file, and make sure that the _locale module is not
accessible as a shared library.

22.2.3 Access to message catalogs

The locale module exposes the C library’s gettext interface on systems that provide this interface. It consists
of the functions gettext(), dgettext(), dcgettext(), textdomain(), bindtextdomain(), and
bind_textdomain_codeset(). These are similar to the same functions in the gettext module, but use the C
library’s binary format for message catalogs, and the C library’s search algorithms for locating message catalogs.

Python applications should normally find no need to invoke these functions, and should use gettext instead. A
known exception to this rule are applications that link use additional C libraries which internally invoke gettext()
or dcgettext(). For these applications, it may be necessary to bind the text domain, so that the libraries can
properly locate their message catalogs.

22.2. locale — Internationalization services 889

The Python Library Reference, Release 2.6.9

890 Chapter 22. Internationalization

CHAPTER

TWENTYTHREE

PROGRAM FRAMEWORKS

The modules described in this chapter are frameworks that will largely dictate the structure of your program. Currently
the modules described here are all oriented toward writing command-line interfaces.

The full list of modules described in this chapter is:

23.1 cmd — Support for line-oriented command interpreters

The Cmd class provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

class Cmd([completekey, [stdin, [stdout]]])
A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good reason to instan-
tiate Cmd itself; rather, it’s useful as a superclass of an interpreter class you define yourself in order to inherit
Cmd‘s methods and encapsulate action methods.

The optional argument completekey is the readline name of a completion key; it defaults to Tab. If com-
pletekey is not None and readline is available, command completion is done automatically.

The optional arguments stdin and stdout specify the input and output file objects that the Cmd instance
or subclass instance will use for input and output. If not specified, they will default to sys.stdin and
sys.stdout.

If you want a given stdin to be used, make sure to set the instance’s use_rawinput attribute to False,
otherwise stdin will be ignored. Changed in version 2.3: The stdin and stdout parameters were added.

23.1.1 Cmd Objects

A Cmd instance has the following methods:

cmdloop([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides the intro
class member).

If the readline module is loaded, input will automatically inherit bash-like history-list editing (e.g.
Control-P scrolls back to the last command, Control-N forward to the next one, Control-F moves
the cursor to the right non-destructively, Control-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string ’EOF’.

891

The Python Library Reference, Release 2.6.9

An interpreter instance will recognize a command name foo if and only if it has a method do_foo(). As a
special case, a line beginning with the character ’?’ is dispatched to the method do_help(). As another
special case, a line beginning with the character ’!’ is dispatched to the method do_shell() (if such a
method is defined).

This method will return when the postcmd() method returns a true value. The stop argument to postcmd()
is the return value from the command’s corresponding do_*() method.

If completion is enabled, completing commands will be done automatically, and completing of commands args
is done by calling complete_foo() with arguments text, line, begidx, and endidx. text is the string prefix
we are attempting to match: all returned matches must begin with it. line is the current input line with leading
whitespace removed, begidx and endidx are the beginning and ending indexes of the prefix text, which could be
used to provide different completion depending upon which position the argument is in.

All subclasses of Cmd inherit a predefined do_help(). This method, called with an argument ’bar’, invokes
the corresponding method help_bar(), and if that is not present, prints the docstring of do_bar(), if avail-
able. With no argument, do_help() lists all available help topics (that is, all commands with corresponding
help_*() methods or commands that have docstrings), and also lists any undocumented commands.

onecmd(str)
Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but
should not normally need to be; see the precmd() and postcmd() methods for useful execution hooks. The
return value is a flag indicating whether interpretation of commands by the interpreter should stop. If there is
a do_*() method for the command str, the return value of that method is returned, otherwise the return value
from the default() method is returned.

emptyline()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

default(line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden, it
prints an error message and returns.

completedefault(text, line, begidx, endidx)
Method called to complete an input line when no command-specific complete_*() method is available. By
default, it returns an empty list.

precmd(line)
Hook method executed just before the command line line is interpreted, but after the input prompt is generated
and issued. This method is a stub in Cmd; it exists to be overridden by subclasses. The return value is used as
the command which will be executed by the onecmd() method; the precmd() implementation may re-write
the command or simply return line unchanged.

postcmd(stop, line)
Hook method executed just after a command dispatch is finished. This method is a stub in Cmd; it exists to
be overridden by subclasses. line is the command line which was executed, and stop is a flag which indi-
cates whether execution will be terminated after the call to postcmd(); this will be the return value of the
onecmd() method. The return value of this method will be used as the new value for the internal flag which
corresponds to stop; returning false will cause interpretation to continue.

preloop()
Hook method executed once when cmdloop() is called. This method is a stub in Cmd; it exists to be overrid-
den by subclasses.

postloop()
Hook method executed once when cmdloop() is about to return. This method is a stub in Cmd; it exists to be
overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:

892 Chapter 23. Program Frameworks

The Python Library Reference, Release 2.6.9

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by giving the cmdloop() method an argument.

doc_header
The header to issue if the help output has a section for documented commands.

misc_header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are help_*()
methods without corresponding do_*() methods).

undoc_header
The header to issue if the help output has a section for undocumented commands (that is, there are do_*()
methods without corresponding help_*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn. It
defaults to ’=’.

use_rawinput
A flag, defaulting to true. If true, cmdloop() uses raw_input() to display a prompt and read the next
command; if false, sys.stdout.write() and sys.stdin.readline() are used. (This means that by
importing readline, on systems that support it, the interpreter will automatically support Emacs-like line
editing and command-history keystrokes.)

23.2 shlex — Simple lexical analysis

New in version 1.5.2. The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that
of the Unix shell. This will often be useful for writing minilanguages, (for example, in run control files for Python
applications) or for parsing quoted strings.

Note: The shlex module currently does not support Unicode input.

The shlex module defines the following functions:

split(s, [comments, [posix]])
Split the string s using shell-like syntax. If comments is False (the default), the parsing of comments in the
given string will be disabled (setting the commenters member of the shlex instance to the empty string).
This function operates in POSIX mode by default, but uses non-POSIX mode if the posix argument is false.
New in version 2.3.Changed in version 2.6: Added the posix parameter.

Note: Since the split() function instantiates a shlex instance, passing None for s will read the string to
split from standard input.

The shlex module defines the following class:

class shlex([instream, [infile, [posix]]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file-/stream-like object with read() and readline()
methods, or a string (strings are accepted since Python 2.3). If no argument is given, input will be taken from
sys.stdin. The second optional argument is a filename string, which sets the initial value of the infile

23.2. shlex — Simple lexical analysis 893

The Python Library Reference, Release 2.6.9

member. If the instream argument is omitted or equal to sys.stdin, this second argument defaults to “stdin”.
The posix argument was introduced in Python 2.3, and defines the operational mode. When posix is not true
(default), the shlex instance will operate in compatibility mode. When operating in POSIX mode, shlex
will try to be as close as possible to the POSIX shell parsing rules.

See Also:

Module ConfigParser Parser for configuration files similar to the Windows .ini files.

23.2.1 shlex Objects

A shlex instance has the following methods:

get_token()
Return a token. If tokens have been stacked using push_token(), pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-of-file, self.eof is returned (the empty
string (”) in non-POSIX mode, and None in POSIX mode).

push_token(str)
Push the argument onto the token stack.

read_token()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook(filename)
When shlex detects a source request (see source below) this method is given the following token as argu-
ment, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or there was
no previous source request in effect, or the previous source was a stream (such as sys.stdin), the result is
left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the file immediately
before it on the source inclusion stack is prepended (this behavior is like the way the C preprocessor handles
#include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in
instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions, and
other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will call the close()
method of the sourced input stream when it returns EOF.

For more explicit control of source stacking, use the push_source() and pop_source() methods.

push_source(stream, [filename])
Push an input source stream onto the input stack. If the filename argument is specified it will later be available
for use in error messages. This is the same method used internally by the sourcehook() method. New in
version 2.1.

pop_source()
Pop the last-pushed input source from the input stack. This is the same method used internally when the lexer
reaches EOF on a stacked input stream. New in version 2.1.

error_leader([file, [line]])
This method generates an error message leader in the format of a Unix C compiler error label; the format is
’"%s", line %d: ’, where the %s is replaced with the name of the current source file and the %d with
the current input line number (the optional arguments can be used to override these).

894 Chapter 23. Program Frameworks

The Python Library Reference, Release 2.6.9

This convenience is provided to encourage shlex users to generate error messages in the standard, parseable
format understood by Emacs and other Unix tools.

Instances of shlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes just ’#’ by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes all ASCII al-
phanumerics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

escape
Characters that will be considered as escape. This will be only used in POSIX mode, and includes just ’\’ by
default. New in version 2.3.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, includes ASCII single and
double quotes.

escapedquotes
Characters in quotes that will interpret escape characters defined in escape. This is only used in POSIX
mode, and includes just ’"’ by default. New in version 2.3.

whitespace_split
If True, tokens will only be split in whitespaces. This is useful, for example, for parsing command lines with
shlex, getting tokens in a similar way to shell arguments. New in version 2.3.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source requests.
It may be useful to examine this when constructing error messages.

instream
The input stream from which this shlex instance is reading characters.

source
This member is None by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to the source keyword in various shells. That is, the immediately following token
will opened as a filename and input taken from that stream until EOF, at which point the close() method of
that stream will be called and the input source will again become the original input stream. Source requests may
be stacked any number of levels deep.

debug
If this member is numeric and 1 or more, a shlex instance will print verbose progress output on its behavior.
If you need to use this, you can read the module source code to learn the details.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

eof
Token used to determine end of file. This will be set to the empty string (”), in non-POSIX mode, and to None

23.2. shlex — Simple lexical analysis 895

The Python Library Reference, Release 2.6.9

in POSIX mode. New in version 2.3.

23.2.2 Parsing Rules

When operating in non-POSIX mode, shlex will try to obey to the following rules.

• Quote characters are not recognized within words (Do"Not"Separate is parsed as the single word
Do"Not"Separate);

• Escape characters are not recognized;

• Enclosing characters in quotes preserve the literal value of all characters within the quotes;

• Closing quotes separate words ("Do"Separate is parsed as "Do" and Separate);

• If whitespace_split is False, any character not declared to be a word character, whitespace, or a quote
will be returned as a single-character token. If it is True, shlex will only split words in whitespaces;

• EOF is signaled with an empty string (”);

• It’s not possible to parse empty strings, even if quoted.

When operating in POSIX mode, shlex will try to obey to the following parsing rules.

• Quotes are stripped out, and do not separate words ("Do"Not"Separate" is parsed as the single word
DoNotSeparate);

• Non-quoted escape characters (e.g. ’\’) preserve the literal value of the next character that follows;

• Enclosing characters in quotes which are not part of escapedquotes (e.g. "’") preserve the literal value of
all characters within the quotes;

• Enclosing characters in quotes which are part of escapedquotes (e.g. ’"’) preserves the literal value of all
characters within the quotes, with the exception of the characters mentioned in escape. The escape characters
retain its special meaning only when followed by the quote in use, or the escape character itself. Otherwise the
escape character will be considered a normal character.

• EOF is signaled with a None value;

• Quoted empty strings (”) are allowed;

896 Chapter 23. Program Frameworks

CHAPTER

TWENTYFOUR

GRAPHICAL USER INTERFACES WITH
TK

Tk/Tcl has long been an integral part of Python. It provides a robust and platform independent windowing toolkit, that
is available to Python programmers using the Tkinter module, and its extension, the Tix module.

The Tkinter module is a thin object-oriented layer on top of Tcl/Tk. To use Tkinter, you don’t need to write Tcl
code, but you will need to consult the Tk documentation, and occasionally the Tcl documentation. Tkinter is a set
of wrappers that implement the Tk widgets as Python classes. In addition, the internal module _tkinter provides a
threadsafe mechanism which allows Python and Tcl to interact.

Tkinter‘s chief virtues are that it is fast, and that it usually comes bundled with Python. Although its standard
documentation is weak, good material is available, which includes: references, tutorials, a book and others. Tkinter
is also famous for having an outdated look and feel, which has been vastly improved in Tk 8.5. Nevertheless, there
are many other GUI libraries that you could be interested in. For more information about alternatives, see the Other
Graphical User Interface Packages section.

24.1 Tkinter — Python interface to Tcl/Tk

The Tkinter module (“Tk interface”) is the standard Python interface to the Tk GUI toolkit. Both Tk and Tkinter
are available on most Unix platforms, as well as on Windows systems. (Tk itself is not part of Python; it is maintained
at ActiveState.)

Note: Tkinter has been renamed to tkinter in Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

See Also:

Python Tkinter Resources The Python Tkinter Topic Guide provides a great deal of information on using Tk from
Python and links to other sources of information on Tk.

An Introduction to Tkinter Fredrik Lundh’s on-line reference material.

Tkinter reference: a GUI for Python On-line reference material.

Python and Tkinter Programming The book by John Grayson (ISBN 1-884777-81-3).

24.1.1 Tkinter Modules

Most of the time, the Tkinter module is all you really need, but a number of additional modules are available as
well. The Tk interface is located in a binary module named _tkinter. This module contains the low-level interface

897

http://www.python.org/topics/tkinter/
http://www.pythonware.com/library/an-introduction-to-tkinter.htm
http://infohost.nmt.edu/tcc/help/pubs/lang.html
http://www.amazon.com/exec/obidos/ASIN/1884777813

The Python Library Reference, Release 2.6.9

to Tk, and should never be used directly by application programmers. It is usually a shared library (or DLL), but might
in some cases be statically linked with the Python interpreter.

In addition to the Tk interface module, Tkinter includes a number of Python modules. The two most important
modules are the Tkinter module itself, and a module called Tkconstants. The former automatically imports the
latter, so to use Tkinter, all you need to do is to import one module:

import Tkinter

Or, more often:

from Tkinter import *

class Tk(screenName=None, baseName=None, className=’Tk’, useTk=1)
The Tk class is instantiated without arguments. This creates a toplevel widget of Tk which usually is the main
window of an application. Each instance has its own associated Tcl interpreter. Changed in version 2.4: The
useTk parameter was added.

Tcl(screenName=None, baseName=None, className=’Tk’, useTk=0)
The Tcl() function is a factory function which creates an object much like that created by the Tk class,
except that it does not initialize the Tk subsystem. This is most often useful when driving the Tcl interpreter in
an environment where one doesn’t want to create extraneous toplevel windows, or where one cannot (such as
Unix/Linux systems without an X server). An object created by the Tcl() object can have a Toplevel window
created (and the Tk subsystem initialized) by calling its loadtk() method. New in version 2.4.

Other modules that provide Tk support include:

ScrolledText Text widget with a vertical scroll bar built in.

tkColorChooser Dialog to let the user choose a color.

tkCommonDialog Base class for the dialogs defined in the other modules listed here.

tkFileDialog Common dialogs to allow the user to specify a file to open or save.

tkFont Utilities to help work with fonts.

tkMessageBox Access to standard Tk dialog boxes.

tkSimpleDialog Basic dialogs and convenience functions.

Tkdnd Drag-and-drop support for Tkinter. This is experimental and should become deprecated when it is replaced
with the Tk DND.

turtle Turtle graphics in a Tk window.

These have been renamed as well in Python 3.0; they were all made submodules of the new tkinter package.

24.1.2 Tkinter Life Preserver

This section is not designed to be an exhaustive tutorial on either Tk or Tkinter. Rather, it is intended as a stop gap,
providing some introductory orientation on the system.

Credits:

• Tkinter was written by Steen Lumholt and Guido van Rossum.

• Tk was written by John Ousterhout while at Berkeley.

• This Life Preserver was written by Matt Conway at the University of Virginia.

• The html rendering, and some liberal editing, was produced from a FrameMaker version by Ken Manheimer.

• Fredrik Lundh elaborated and revised the class interface descriptions, to get them current with Tk 4.2.

898 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

• Mike Clarkson converted the documentation to LaTeX, and compiled the User Interface chapter of the reference
manual.

How To Use This Section

This section is designed in two parts: the first half (roughly) covers background material, while the second half can be
taken to the keyboard as a handy reference.

When trying to answer questions of the form “how do I do blah”, it is often best to find out how to do”blah” in straight
Tk, and then convert this back into the corresponding Tkinter call. Python programmers can often guess at the
correct Python command by looking at the Tk documentation. This means that in order to use Tkinter, you will have
to know a little bit about Tk. This document can’t fulfill that role, so the best we can do is point you to the best
documentation that exists. Here are some hints:

• The authors strongly suggest getting a copy of the Tk man pages. Specifically, the man pages in the mann
directory are most useful. The man3 man pages describe the C interface to the Tk library and thus are not
especially helpful for script writers.

• Addison-Wesley publishes a book called Tcl and the Tk Toolkit by John Ousterhout (ISBN 0-201-63337-X)
which is a good introduction to Tcl and Tk for the novice. The book is not exhaustive, and for many details it
defers to the man pages.

• Tkinter.py is a last resort for most, but can be a good place to go when nothing else makes sense.

See Also:

ActiveState Tcl Home Page The Tk/Tcl development is largely taking place at ActiveState.

Tcl and the Tk Toolkit The book by John Ousterhout, the inventor of Tcl .

Practical Programming in Tcl and Tk Brent Welch’s encyclopedic book.

A Simple Hello World Program

from Tkinter import *

class Application(Frame):
def say_hi(self):

print "hi there, everyone!"

def createWidgets(self):
self.QUIT = Button(self)
self.QUIT["text"] = "QUIT"
self.QUIT["fg"] = "red"
self.QUIT["command"] = self.quit

self.QUIT.pack({"side": "left"})

self.hi_there = Button(self)
self.hi_there["text"] = "Hello",
self.hi_there["command"] = self.say_hi

self.hi_there.pack({"side": "left"})

def __init__(self, master=None):
Frame.__init__(self, master)
self.pack()

24.1. Tkinter — Python interface to Tcl/Tk 899

http://tcl.activestate.com/
http://www.amazon.com/exec/obidos/ASIN/020163337X
http://www.amazon.com/exec/obidos/ASIN/0130220280

The Python Library Reference, Release 2.6.9

self.createWidgets()

root = Tk()
app = Application(master=root)
app.mainloop()
root.destroy()

24.1.3 A (Very) Quick Look at Tcl/Tk

The class hierarchy looks complicated, but in actual practice, application programmers almost always refer to the
classes at the very bottom of the hierarchy.

Notes:

• These classes are provided for the purposes of organizing certain functions under one namespace. They aren’t
meant to be instantiated independently.

• The Tk class is meant to be instantiated only once in an application. Application programmers need not instan-
tiate one explicitly, the system creates one whenever any of the other classes are instantiated.

• The Widget class is not meant to be instantiated, it is meant only for subclassing to make “real” widgets (in
C++, this is called an ‘abstract class’).

To make use of this reference material, there will be times when you will need to know how to read short passages
of Tk and how to identify the various parts of a Tk command. (See section Mapping Basic Tk into Tkinter for the
Tkinter equivalents of what’s below.)

Tk scripts are Tcl programs. Like all Tcl programs, Tk scripts are just lists of tokens separated by spaces. A Tk widget
is just its class, the options that help configure it, and the actions that make it do useful things.

To make a widget in Tk, the command is always of the form:

classCommand newPathname options

classCommand denotes which kind of widget to make (a button, a label, a menu...)

newPathname is the new name for this widget. All names in Tk must be unique. To help enforce this, widgets in Tk
are named with pathnames, just like files in a file system. The top level widget, the root, is called . (period)
and children are delimited by more periods. For example, .myApp.controlPanel.okButton might be
the name of a widget.

options configure the widget’s appearance and in some cases, its behavior. The options come in the form of a list of
flags and values. Flags are preceded by a ‘-‘, like Unix shell command flags, and values are put in quotes if they
are more than one word.

For example:

button .fred -fg red -text "hi there"
^ ^ _____________________/
| | |

class new options
command widget (-opt val -opt val ...)

Once created, the pathname to the widget becomes a new command. This new widget command is the programmer’s
handle for getting the new widget to perform some action. In C, you’d express this as someAction(fred, someOptions),
in C++, you would express this as fred.someAction(someOptions), and in Tk, you say:

.fred someAction someOptions

Note that the object name, .fred, starts with a dot.

900 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

As you’d expect, the legal values for someAction will depend on the widget’s class: .fred disable works if fred
is a button (fred gets greyed out), but does not work if fred is a label (disabling of labels is not supported in Tk).

The legal values of someOptions is action dependent. Some actions, like disable, require no arguments, others, like
a text-entry box’s delete command, would need arguments to specify what range of text to delete.

24.1.4 Mapping Basic Tk into Tkinter

Class commands in Tk correspond to class constructors in Tkinter.

button .fred =====> fred = Button()

The master of an object is implicit in the new name given to it at creation time. In Tkinter, masters are specified
explicitly.

button .panel.fred =====> fred = Button(panel)

The configuration options in Tk are given in lists of hyphened tags followed by values. In Tkinter, options are specified
as keyword-arguments in the instance constructor, and keyword-args for configure calls or as instance indices, in
dictionary style, for established instances. See section Setting Options on setting options.

button .fred -fg red =====> fred = Button(panel, fg = "red")
.fred configure -fg red =====> fred["fg"] = red

OR ==> fred.config(fg = "red")

In Tk, to perform an action on a widget, use the widget name as a command, and follow it with an action name,
possibly with arguments (options). In Tkinter, you call methods on the class instance to invoke actions on the widget.
The actions (methods) that a given widget can perform are listed in the Tkinter.py module.

.fred invoke =====> fred.invoke()

To give a widget to the packer (geometry manager), you call pack with optional arguments. In Tkinter, the Pack class
holds all this functionality, and the various forms of the pack command are implemented as methods. All widgets in
Tkinter are subclassed from the Packer, and so inherit all the packing methods. See the Tix module documentation
for additional information on the Form geometry manager.

pack .fred -side left =====> fred.pack(side = "left")

24.1.5 How Tk and Tkinter are Related

From the top down:

Your App Here (Python) A Python application makes a Tkinter call.

Tkinter (Python Module) This call (say, for example, creating a button widget), is implemented in the Tkinter mod-
ule, which is written in Python. This Python function will parse the commands and the arguments and convert
them into a form that makes them look as if they had come from a Tk script instead of a Python script.

tkinter (C) These commands and their arguments will be passed to a C function in the tkinter - note the lowercase -
extension module.

Tk Widgets (C and Tcl) This C function is able to make calls into other C modules, including the C functions that
make up the Tk library. Tk is implemented in C and some Tcl. The Tcl part of the Tk widgets is used to bind
certain default behaviors to widgets, and is executed once at the point where the Python Tkinter module is
imported. (The user never sees this stage).

Tk (C) The Tk part of the Tk Widgets implement the final mapping to ...

Xlib (C) the Xlib library to draw graphics on the screen.

24.1. Tkinter — Python interface to Tcl/Tk 901

The Python Library Reference, Release 2.6.9

24.1.6 Handy Reference

Setting Options

Options control things like the color and border width of a widget. Options can be set in three ways:

At object creation time, using keyword arguments

fred = Button(self, fg = "red", bg = "blue")

After object creation, treating the option name like a dictionary index

fred["fg"] = "red"
fred["bg"] = "blue"

Use the config() method to update multiple attrs subsequent to object creation

fred.config(fg = "red", bg = "blue")

For a complete explanation of a given option and its behavior, see the Tk man pages for the widget in question.

Note that the man pages list “STANDARD OPTIONS” and “WIDGET SPECIFIC OPTIONS” for each widget. The
former is a list of options that are common to many widgets, the latter are the options that are idiosyncratic to that
particular widget. The Standard Options are documented on the options(3) man page.

No distinction between standard and widget-specific options is made in this document. Some options don’t apply to
some kinds of widgets. Whether a given widget responds to a particular option depends on the class of the widget;
buttons have a command option, labels do not.

The options supported by a given widget are listed in that widget’s man page, or can be queried at runtime by calling
the config() method without arguments, or by calling the keys() method on that widget. The return value of
these calls is a dictionary whose key is the name of the option as a string (for example, ’relief’) and whose values
are 5-tuples.

Some options, like bg are synonyms for common options with long names (bg is shorthand for “background”).
Passing the config() method the name of a shorthand option will return a 2-tuple, not 5-tuple. The 2-tuple passed
back will contain the name of the synonym and the “real” option (such as (’bg’, ’background’)).

Index Meaning Example
0 option name ’relief’
1 option name for database lookup ’relief’
2 option class for database lookup ’Relief’
3 default value ’raised’
4 current value ’groove’

Example:

>>> print fred.config()
{’relief’ : (’relief’, ’relief’, ’Relief’, ’raised’, ’groove’)}

Of course, the dictionary printed will include all the options available and their values. This is meant only as an
example.

The Packer

The packer is one of Tk’s geometry-management mechanisms. Geometry managers are used to specify the relative
positioning of the positioning of widgets within their container - their mutual master. In contrast to the more cum-
bersome placer (which is used less commonly, and we do not cover here), the packer takes qualitative relationship
specification - above, to the left of, filling, etc - and works everything out to determine the exact placement coordinates
for you.

902 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

The size of any master widget is determined by the size of the “slave widgets” inside. The packer is used to control
where slave widgets appear inside the master into which they are packed. You can pack widgets into frames, and frames
into other frames, in order to achieve the kind of layout you desire. Additionally, the arrangement is dynamically
adjusted to accommodate incremental changes to the configuration, once it is packed.

Note that widgets do not appear until they have had their geometry specified with a geometry manager. It’s a common
early mistake to leave out the geometry specification, and then be surprised when the widget is created but nothing
appears. A widget will appear only after it has had, for example, the packer’s pack() method applied to it.

The pack() method can be called with keyword-option/value pairs that control where the widget is to appear within its
container, and how it is to behave when the main application window is resized. Here are some examples:

fred.pack() # defaults to side = "top"
fred.pack(side = "left")
fred.pack(expand = 1)

Packer Options

For more extensive information on the packer and the options that it can take, see the man pages and page 183 of John
Ousterhout’s book.

anchor Anchor type. Denotes where the packer is to place each slave in its parcel.

expand Boolean, 0 or 1.

fill Legal values: ’x’, ’y’, ’both’, ’none’.

ipadx and ipady A distance - designating internal padding on each side of the slave widget.

padx and pady A distance - designating external padding on each side of the slave widget.

side Legal values are: ’left’, ’right’, ’top’, ’bottom’.

Coupling Widget Variables

The current-value setting of some widgets (like text entry widgets) can be connected directly to application variables
by using special options. These options are variable, textvariable, onvalue, offvalue, and value.
This connection works both ways: if the variable changes for any reason, the widget it’s connected to will be updated
to reflect the new value.

Unfortunately, in the current implementation of Tkinter it is not possible to hand over an arbitrary Python variable
to a widget through a variable or textvariable option. The only kinds of variables for which this works are
variables that are subclassed from a class called Variable, defined in the Tkinter module.

There are many useful subclasses of Variable already defined: StringVar, IntVar, DoubleVar, and
BooleanVar. To read the current value of such a variable, call the get() method on it, and to change its value you
call the set() method. If you follow this protocol, the widget will always track the value of the variable, with no
further intervention on your part.

For example:

class App(Frame):
def __init__(self, master=None):

Frame.__init__(self, master)
self.pack()

self.entrythingy = Entry()
self.entrythingy.pack()

24.1. Tkinter — Python interface to Tcl/Tk 903

The Python Library Reference, Release 2.6.9

here is the application variable
self.contents = StringVar()
set it to some value
self.contents.set("this is a variable")
tell the entry widget to watch this variable
self.entrythingy["textvariable"] = self.contents

and here we get a callback when the user hits return.
we will have the program print out the value of the
application variable when the user hits return
self.entrythingy.bind(’<Key-Return>’,

self.print_contents)

def print_contents(self, event):
print "hi. contents of entry is now ---->", \

self.contents.get()

The Window Manager

In Tk, there is a utility command, wm, for interacting with the window manager. Options to the wm command allow
you to control things like titles, placement, icon bitmaps, and the like. In Tkinter, these commands have been
implemented as methods on the Wm class. Toplevel widgets are subclassed from the Wm class, and so can call the Wm
methods directly.

To get at the toplevel window that contains a given widget, you can often just refer to the widget’s master. Of course
if the widget has been packed inside of a frame, the master won’t represent a toplevel window. To get at the toplevel
window that contains an arbitrary widget, you can call the _root() method. This method begins with an underscore
to denote the fact that this function is part of the implementation, and not an interface to Tk functionality.

Here are some examples of typical usage:

from Tkinter import *
class App(Frame):

def __init__(self, master=None):
Frame.__init__(self, master)
self.pack()

create the application
myapp = App()

#
here are method calls to the window manager class
#
myapp.master.title("My Do-Nothing Application")
myapp.master.maxsize(1000, 400)

start the program
myapp.mainloop()

Tk Option Data Types

anchor Legal values are points of the compass: "n", "ne", "e", "se", "s", "sw", "w", "nw", and also
"center".

904 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

bitmap There are eight built-in, named bitmaps: ’error’, ’gray25’, ’gray50’, ’hourglass’, ’info’,
’questhead’, ’question’, ’warning’. To specify an X bitmap filename, give the full path to the file,
preceded with an @, as in "@/usr/contrib/bitmap/gumby.bit".

boolean You can pass integers 0 or 1 or the strings "yes" or "no" .

callback This is any Python function that takes no arguments. For example:

def print_it():
print "hi there"

fred["command"] = print_it

color Colors can be given as the names of X colors in the rgb.txt file, or as strings representing RGB values in 4 bit:
"#RGB", 8 bit: "#RRGGBB", 12 bit” "#RRRGGGBBB", or 16 bit "#RRRRGGGGBBBB" ranges, where R,G,B
here represent any legal hex digit. See page 160 of Ousterhout’s book for details.

cursor The standard X cursor names from cursorfont.h can be used, without the XC_ prefix. For example to get
a hand cursor (XC_hand2), use the string "hand2". You can also specify a bitmap and mask file of your own.
See page 179 of Ousterhout’s book.

distance Screen distances can be specified in either pixels or absolute distances. Pixels are given as numbers and
absolute distances as strings, with the trailing character denoting units: c for centimetres, i for inches, m for
millimetres, p for printer’s points. For example, 3.5 inches is expressed as "3.5i".

font Tk uses a list font name format, such as {courier 10 bold}. Font sizes with positive numbers are measured
in points; sizes with negative numbers are measured in pixels.

geometry This is a string of the form widthxheight, where width and height are measured in pixels for most
widgets (in characters for widgets displaying text). For example: fred["geometry"] = "200x100".

justify Legal values are the strings: "left", "center", "right", and "fill".

region This is a string with four space-delimited elements, each of which is a legal distance (see above). For example:
"2 3 4 5" and "3i 2i 4.5i 2i" and "3c 2c 4c 10.43c" are all legal regions.

relief Determines what the border style of a widget will be. Legal values are: "raised", "sunken", "flat",
"groove", and "ridge".

scrollcommand This is almost always the set() method of some scrollbar widget, but can be any widget method
that takes a single argument. Refer to the file Demo/tkinter/matt/canvas-with-scrollbars.py
in the Python source distribution for an example.

wrap: Must be one of: "none", "char", or "word".

Bindings and Events

The bind method from the widget command allows you to watch for certain events and to have a callback function
trigger when that event type occurs. The form of the bind method is:

def bind(self, sequence, func, add=’’):

where:

sequence is a string that denotes the target kind of event. (See the bind man page and page 201 of John Ousterhout’s
book for details).

func is a Python function, taking one argument, to be invoked when the event occurs. An Event instance will be
passed as the argument. (Functions deployed this way are commonly known as callbacks.)

add is optional, either ” or ’+’. Passing an empty string denotes that this binding is to replace any other bindings
that this event is associated with. Passing a ’+’ means that this function is to be added to the list of functions
bound to this event type.

24.1. Tkinter — Python interface to Tcl/Tk 905

The Python Library Reference, Release 2.6.9

For example:

def turnRed(self, event):
event.widget["activeforeground"] = "red"

self.button.bind("<Enter>", self.turnRed)

Notice how the widget field of the event is being accessed in the turnRed() callback. This field contains the widget
that caught the X event. The following table lists the other event fields you can access, and how they are denoted in
Tk, which can be useful when referring to the Tk man pages.

Tk Tkinter Event Field Tk Tkinter Event Field
-- ------------------- -- -------------------
%f focus %A char
%h height %E send_event
%k keycode %K keysym
%s state %N keysym_num
%t time %T type
%w width %W widget
%x x %X x_root
%y y %Y y_root

The index Parameter

A number of widgets require”index” parameters to be passed. These are used to point at a specific place in a Text
widget, or to particular characters in an Entry widget, or to particular menu items in a Menu widget.

Entry widget indexes (index, view index, etc.) Entry widgets have options that refer to character positions in the
text being displayed. You can use these Tkinter functions to access these special points in text widgets:

AtEnd() refers to the last position in the text

AtInsert() refers to the point where the text cursor is

AtSelFirst() indicates the beginning point of the selected text

AtSelLast() denotes the last point of the selected text and finally

At(x[, y]) refers to the character at pixel location x, y (with y not used in the case of a text entry widget, which
contains a single line of text).

Text widget indexes The index notation for Text widgets is very rich and is best described in the Tk man pages.

Menu indexes (menu.invoke(), menu.entryconfig(), etc.) Some options and methods for menus manipulate specific
menu entries. Anytime a menu index is needed for an option or a parameter, you may pass in:

• an integer which refers to the numeric position of the entry in the widget, counted from the top, starting
with 0;

• the string ’active’, which refers to the menu position that is currently under the cursor;

• the string "last" which refers to the last menu item;

• An integer preceded by @, as in @6, where the integer is interpreted as a y pixel coordinate in the menu’s
coordinate system;

• the string "none", which indicates no menu entry at all, most often used with menu.activate() to deactivate
all entries, and finally,

• a text string that is pattern matched against the label of the menu entry, as scanned from the top of the
menu to the bottom. Note that this index type is considered after all the others, which means that matches
for menu items labelled last, active, or none may be interpreted as the above literals, instead.

906 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

Images

Bitmap/Pixelmap images can be created through the subclasses of Tkinter.Image:

• BitmapImage can be used for X11 bitmap data.

• PhotoImage can be used for GIF and PPM/PGM color bitmaps.

Either type of image is created through either the file or the data option (other options are available as well).

The image object can then be used wherever an image option is supported by some widget (e.g. labels, buttons,
menus). In these cases, Tk will not keep a reference to the image. When the last Python reference to the image object
is deleted, the image data is deleted as well, and Tk will display an empty box wherever the image was used.

24.2 Tix — Extension widgets for Tk

The Tix (Tk Interface Extension) module provides an additional rich set of widgets. Although the standard Tk library
has many useful widgets, they are far from complete. The Tix library provides most of the commonly needed widgets
that are missing from standard Tk: HList, ComboBox, Control (a.k.a. SpinBox) and an assortment of scrollable
widgets. Tix also includes many more widgets that are generally useful in a wide range of applications: NoteBook,
FileEntry, PanedWindow, etc; there are more than 40 of them.

With all these new widgets, you can introduce new interaction techniques into applications, creating more useful and
more intuitive user interfaces. You can design your application by choosing the most appropriate widgets to match the
special needs of your application and users.

Note: Tix has been renamed to tkinter.tix in Python 3.0. The 2to3 tool will automatically adapt imports when
converting your sources to 3.0.

See Also:

Tix Homepage The home page for Tix. This includes links to additional documentation and downloads.

Tix Man Pages On-line version of the man pages and reference material.

Tix Programming Guide On-line version of the programmer’s reference material.

Tix Development Applications Tix applications for development of Tix and Tkinter programs. Tide applications
work under Tk or Tkinter, and include TixInspect, an inspector to remotely modify and debug Tix/Tk/Tkinter
applications.

24.2.1 Using Tix

class Tix(screenName, [baseName, [className]])
Toplevel widget of Tix which represents mostly the main window of an application. It has an associated Tcl
interpreter.

Classes in the Tix module subclasses the classes in the Tkinter module. The former imports the latter, so
to use Tix with Tkinter, all you need to do is to import one module. In general, you can just import Tix, and
replace the toplevel call to Tkinter.Tk with Tix.Tk:

import Tix
from Tkconstants import *
root = Tix.Tk()

To use Tix, you must have the Tix widgets installed, usually alongside your installation of the Tk widgets. To test
your installation, try the following:

24.2. Tix — Extension widgets for Tk 907

http://tix.sourceforge.net/
http://tix.sourceforge.net/dist/current/man/
http://tix.sourceforge.net/dist/current/docs/tix-book/tix.book.html
http://tix.sourceforge.net/Tixapps/src/Tide.html

The Python Library Reference, Release 2.6.9

import Tix
root = Tix.Tk()
root.tk.eval(’package require Tix’)

If this fails, you have a Tk installation problem which must be resolved before proceeding. Use the environment
variable TIX_LIBRARY to point to the installed Tix library directory, and make sure you have the dynamic object
library (tix8183.dll or libtix8183.so) in the same directory that contains your Tk dynamic object library
(tk8183.dll or libtk8183.so). The directory with the dynamic object library should also have a file called
pkgIndex.tcl (case sensitive), which contains the line:

package ifneeded Tix 8.1 [list load "[file join $dir tix8183.dll]" Tix]

24.2.2 Tix Widgets

Tix introduces over 40 widget classes to the Tkinter repertoire. There is a demo of all the Tix widgets in the
Demo/tix directory of the standard distribution.

Basic Widgets

class Balloon()
A Balloon that pops up over a widget to provide help. When the user moves the cursor inside a widget to which
a Balloon widget has been bound, a small pop-up window with a descriptive message will be shown on the
screen.

class ButtonBox()
The ButtonBox widget creates a box of buttons, such as is commonly used for Ok Cancel.

class ComboBox()
The ComboBox widget is similar to the combo box control in MS Windows. The user can select a choice by
either typing in the entry subwdget or selecting from the listbox subwidget.

class Control()
The Control widget is also known as the SpinBox widget. The user can adjust the value by pressing the
two arrow buttons or by entering the value directly into the entry. The new value will be checked against the
user-defined upper and lower limits.

class LabelEntry()
The LabelEntry widget packages an entry widget and a label into one mega widget. It can be used be used to
simplify the creation of “entry-form” type of interface.

class LabelFrame()
The LabelFrame widget packages a frame widget and a label into one mega widget. To create widgets inside a
LabelFrame widget, one creates the new widgets relative to the frame subwidget and manage them inside the
frame subwidget.

class Meter()
The Meter widget can be used to show the progress of a background job which may take a long time to execute.

class OptionMenu()
The OptionMenu creates a menu button of options.

class PopupMenu()
The PopupMenu widget can be used as a replacement of the tk_popup command. The advantage of the Tix
PopupMenu widget is it requires less application code to manipulate.

class Select()
The Select widget is a container of button subwidgets. It can be used to provide radio-box or check-box style of
selection options for the user.

908 Chapter 24. Graphical User Interfaces with Tk

http://tix.sourceforge.net/dist/current/man/html/TixCmd/TixIntro.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixBalloon.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixComboBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixControl.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelEntry.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelFrame.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixMeter.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixOptionMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPopupMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixSelect.htm

The Python Library Reference, Release 2.6.9

class StdButtonBox()
The StdButtonBox widget is a group of standard buttons for Motif-like dialog boxes.

File Selectors

class DirList()
The DirList widget displays a list view of a directory, its previous directories and its sub-directories. The user
can choose one of the directories displayed in the list or change to another directory.

class DirTree()
The DirTree widget displays a tree view of a directory, its previous directories and its sub-directories. The user
can choose one of the directories displayed in the list or change to another directory.

class DirSelectDialog()
The DirSelectDialog widget presents the directories in the file system in a dialog window. The user can use this
dialog window to navigate through the file system to select the desired directory.

class DirSelectBox()
The DirSelectBox is similar to the standard Motif(TM) directory-selection box. It is generally used for the
user to choose a directory. DirSelectBox stores the directories mostly recently selected into a ComboBox widget
so that they can be quickly selected again.

class ExFileSelectBox()
The ExFileSelectBox widget is usually embedded in a tixExFileSelectDialog widget. It provides an convenient
method for the user to select files. The style of the ExFileSelectBox widget is very similar to the standard
file dialog on MS Windows 3.1.

class FileSelectBox()
The FileSelectBox is similar to the standard Motif(TM) file-selection box. It is generally used for the user to
choose a file. FileSelectBox stores the files mostly recently selected into a ComboBox widget so that they can
be quickly selected again.

class FileEntry()
The FileEntry widget can be used to input a filename. The user can type in the filename manually. Alternatively,
the user can press the button widget that sits next to the entry, which will bring up a file selection dialog.

Hierarchical ListBox

class HList()
The HList widget can be used to display any data that have a hierarchical structure, for example, file system
directory trees. The list entries are indented and connected by branch lines according to their places in the
hierarchy.

class CheckList()
The CheckList widget displays a list of items to be selected by the user. CheckList acts similarly to the Tk
checkbutton or radiobutton widgets, except it is capable of handling many more items than checkbuttons or
radiobuttons.

class Tree()
The Tree widget can be used to display hierarchical data in a tree form. The user can adjust the view of the tree
by opening or closing parts of the tree.

Tabular ListBox

class TList()
The TList widget can be used to display data in a tabular format. The list entries of a TList widget are similar

24.2. Tix — Extension widgets for Tk 909

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixStdButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirSelectDialog.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixExFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileEntry.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixHList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixCheckList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTList.htm

The Python Library Reference, Release 2.6.9

to the entries in the Tk listbox widget. The main differences are (1) the TListwidget can display the list entries
in a two dimensional format and (2) you can use graphical images as well as multiple colors and fonts for the
list entries.

Manager Widgets

class PanedWindow()
The PanedWindow widget allows the user to interactively manipulate the sizes of several panes. The panes can
be arranged either vertically or horizontally. The user changes the sizes of the panes by dragging the resize
handle between two panes.

class ListNoteBook()
The ListNoteBook widget is very similar to the TixNoteBookwidget: it can be used to display many windows
in a limited space using a notebook metaphor. The notebook is divided into a stack of pages (windows). At one
time only one of these pages can be shown. The user can navigate through these pages by choosing the name of
the desired page in the hlist subwidget.

class NoteBook()
The NoteBook widget can be used to display many windows in a limited space using a notebook metaphor. The
notebook is divided into a stack of pages. At one time only one of these pages can be shown. The user can
navigate through these pages by choosing the visual “tabs” at the top of the NoteBook widget.

Image Types

The Tix module adds:

• pixmap capabilities to all Tix and Tkinter widgets to create color images from XPM files.

• Compound image types can be used to create images that consists of multiple horizontal lines; each line is
composed of a series of items (texts, bitmaps, images or spaces) arranged from left to right. For example, a
compound image can be used to display a bitmap and a text string simultaneously in a Tk Button widget.

Miscellaneous Widgets

class InputOnly()
The InputOnly widgets are to accept inputs from the user, which can be done with the bind command (Unix
only).

Form Geometry Manager

In addition, Tix augments Tkinter by providing:

class Form()
The Form geometry manager based on attachment rules for all Tk widgets.

24.2.3 Tix Commands

class tixCommand()
The tix commands provide access to miscellaneous elements of Tix‘s internal state and the Tix application
context. Most of the information manipulated by these methods pertains to the application as a whole, or to a
screen or display, rather than to a particular window.

To view the current settings, the common usage is:

910 Chapter 24. Graphical User Interfaces with Tk

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPanedWindow.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixListNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/pixmap.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/compound.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixInputOnly.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixForm.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tix.htm

The Python Library Reference, Release 2.6.9

import Tix
root = Tix.Tk()
print root.tix_configure()

tix_configure([cnf], **kw)
Query or modify the configuration options of the Tix application context. If no option is specified, returns
a dictionary all of the available options. If option is specified with no value, then the method returns a list
describing the one named option (this list will be identical to the corresponding sublist of the value returned
if no option is specified). If one or more option-value pairs are specified, then the method modifies the given
option(s) to have the given value(s); in this case the method returns an empty string. Option may be any of the
configuration options.

tix_cget(option)
Returns the current value of the configuration option given by option. Option may be any of the configuration
options.

tix_getbitmap(name)
Locates a bitmap file of the name name.xpm or name in one of the bitmap directories (see the
tix_addbitmapdir() method). By using tix_getbitmap(), you can avoid hard coding the path-
names of the bitmap files in your application. When successful, it returns the complete pathname of the bitmap
file, prefixed with the character @. The returned value can be used to configure the bitmap option of the Tk
and Tix widgets.

tix_addbitmapdir(directory)
Tix maintains a list of directories under which the tix_getimage() and tix_getbitmap() meth-
ods will search for image files. The standard bitmap directory is $TIX_LIBRARY/bitmaps. The
tix_addbitmapdir() method adds directory into this list. By using this method, the image files of an
applications can also be located using the tix_getimage() or tix_getbitmap() method.

tix_filedialog([dlgclass])
Returns the file selection dialog that may be shared among different calls from this application. This method
will create a file selection dialog widget when it is called the first time. This dialog will be returned by all
subsequent calls to tix_filedialog(). An optional dlgclass parameter can be passed as a string to spec-
ified what type of file selection dialog widget is desired. Possible options are tix, FileSelectDialog or
tixExFileSelectDialog.

tix_getimage(self, name)
Locates an image file of the name name.xpm, name.xbm or name.ppm in one of the bitmap directories
(see the tix_addbitmapdir() method above). If more than one file with the same name (but different
extensions) exist, then the image type is chosen according to the depth of the X display: xbm images are chosen
on monochrome displays and color images are chosen on color displays. By using tix_getimage(), you
can avoid hard coding the pathnames of the image files in your application. When successful, this method
returns the name of the newly created image, which can be used to configure the image option of the Tk and
Tix widgets.

tix_option_get(name)
Gets the options maintained by the Tix scheme mechanism.

tix_resetoptions(newScheme, newFontSet, [newScmPrio])
Resets the scheme and fontset of the Tix application to newScheme and newFontSet, respectively. This affects
only those widgets created after this call. Therefore, it is best to call the resetoptions method before the creation
of any widgets in a Tix application.

The optional parameter newScmPrio can be given to reset the priority level of the Tk options set by the Tix
schemes.

Because of the way Tk handles the X option database, after Tix has been has imported and inited, it is
not possible to reset the color schemes and font sets using the tix_config() method. Instead, the

24.2. Tix — Extension widgets for Tk 911

The Python Library Reference, Release 2.6.9

tix_resetoptions() method must be used.

24.3 ScrolledText — Scrolled Text Widget

Platforms: Tk

The ScrolledText module provides a class of the same name which implements a basic text widget which has a
vertical scroll bar configured to do the “right thing.” Using the ScrolledText class is a lot easier than setting up a
text widget and scroll bar directly. The constructor is the same as that of the Tkinter.Text class.

Note: ScrolledText has been renamed to tkinter.scrolledtext in Python 3.0. The 2to3 tool will auto-
matically adapt imports when converting your sources to 3.0.

The text widget and scrollbar are packed together in a Frame, and the methods of the Grid and Pack geometry
managers are acquired from the Frame object. This allows the ScrolledText widget to be used directly to achieve
most normal geometry management behavior.

Should more specific control be necessary, the following attributes are available:

frame
The frame which surrounds the text and scroll bar widgets.

vbar
The scroll bar widget.

24.4 turtle — Turtle graphics for Tk

24.4.1 Introduction

Turtle graphics is a popular way for introducing programming to kids. It was part of the original Logo programming
language developed by Wally Feurzig and Seymour Papert in 1966.

Imagine a robotic turtle starting at (0, 0) in the x-y plane. Give it the command turtle.forward(15), and
it moves (on-screen!) 15 pixels in the direction it is facing, drawing a line as it moves. Give it the command
turtle.left(25), and it rotates in-place 25 degrees clockwise.

By combining together these and similar commands, intricate shapes and pictures can easily be drawn.

The turtle module is an extended reimplementation of the same-named module from the Python standard distribu-
tion up to version Python 2.5.

It tries to keep the merits of the old turtle module and to be (nearly) 100% compatible with it. This means in the first
place to enable the learning programmer to use all the commands, classes and methods interactively when using the
module from within IDLE run with the -n switch.

The turtle module provides turtle graphics primitives, in both object-oriented and procedure-oriented ways. Because
it uses Tkinter for the underlying graphics, it needs a version of Python installed with Tk support.

The object-oriented interface uses essentially two+two classes:

1. The TurtleScreen class defines graphics windows as a playground for the drawing turtles. Its constructor
needs a Tkinter.Canvas or a ScrolledCanvas as argument. It should be used when turtle is used
as part of some application.

The function Screen() returns a singleton object of a TurtleScreen subclass. This function should be
used when turtle is used as a standalone tool for doing graphics. As a singleton object, inheriting from its
class is not possible.

912 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

All methods of TurtleScreen/Screen also exist as functions, i.e. as part of the procedure-oriented interface.

2. RawTurtle (alias: RawPen) defines Turtle objects which draw on a TurtleScreen. Its constructor needs
a Canvas, ScrolledCanvas or TurtleScreen as argument, so the RawTurtle objects know where to draw.

Derived from RawTurtle is the subclass Turtle (alias: Pen), which draws on “the” Screen - instance which
is automatically created, if not already present.

All methods of RawTurtle/Turtle also exist as functions, i.e. part of the procedure-oriented interface.

The procedural interface provides functions which are derived from the methods of the classes Screen and Turtle.
They have the same names as the corresponding methods. A screen object is automatically created whenever a function
derived from a Screen method is called. An (unnamed) turtle object is automatically created whenever any of the
functions derived from a Turtle method is called.

To use multiple turtles an a screen one has to use the object-oriented interface.

Note: In the following documentation the argument list for functions is given. Methods, of course, have the additional
first argument self which is omitted here.

24.4.2 Overview over available Turtle and Screen methods

Turtle methods

Turtle motion

Move and draw forward() | fd()
backward() | bk() | back()
right() | rt()
left() | lt()
goto() | setpos() | setposition()
setx()
sety()
setheading() | seth()
home()
circle()
dot()
stamp()
clearstamp()
clearstamps()
undo()
speed()

Tell Turtle’s state position() | pos()
towards()
xcor()
ycor()
heading()
distance()

Setting and measurement degrees()
radians()

Pen control

Drawing state pendown() | pd() | down()
penup() | pu() | up()
pensize() | width()

24.4. turtle — Turtle graphics for Tk 913

The Python Library Reference, Release 2.6.9

pen()
isdown()

Color control color()
pencolor()
fillcolor()

Filling fill()
begin_fill()
end_fill()

More drawing control reset()
clear()
write()

Turtle state

Visibility showturtle() | st()
hideturtle() | ht()
isvisible()

Appearance shape()
resizemode()
shapesize() | turtlesize()
settiltangle()
tiltangle()
tilt()

Using events onclick()
onrelease()
ondrag()

Special Turtle methods begin_poly()
end_poly()
get_poly()
clone()
getturtle() | getpen()
getscreen()
setundobuffer()
undobufferentries()
tracer()
window_width()
window_height()

Methods of TurtleScreen/Screen

Window control bgcolor()
bgpic()
clear() | clearscreen()
reset() | resetscreen()
screensize()
setworldcoordinates()

Animation control delay()
tracer()
update()

Using screen events listen()

914 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

onkey()
onclick() | onscreenclick()
ontimer()

Settings and special methods mode()
colormode()
getcanvas()
getshapes()
register_shape() | addshape()
turtles()
window_height()
window_width()

Methods specific to Screen bye()
exitonclick()
setup()
title()

24.4.3 Methods of RawTurtle/Turtle and corresponding functions

Most of the examples in this section refer to a Turtle instance called turtle.

Turtle motion

forward(distance)
fd(distance)

Parameter distance – a number (integer or float)

Move the turtle forward by the specified distance, in the direction the turtle is headed.

>>> turtle.position()
(0.00,0.00)
>>> turtle.forward(25)
>>> turtle.position()
(25.00,0.00)
>>> turtle.forward(-75)
>>> turtle.position()
(-50.00,0.00)

back(distance)
bk(distance)
backward(distance)

Parameter distance – a number

Move the turtle backward by distance, opposite to the direction the turtle is headed. Do not change the turtle’s
heading.

>>> turtle.position()
(0.00,0.00)
>>> turtle.backward(30)
>>> turtle.position()
(-30.00,0.00)

24.4. turtle — Turtle graphics for Tk 915

The Python Library Reference, Release 2.6.9

right(angle)
rt(angle)

Parameter angle – a number (integer or float)

Turn turtle right by angle units. (Units are by default degrees, but can be set via the degrees() and
radians() functions.) Angle orientation depends on the turtle mode, see mode().

>>> turtle.heading()
22.0
>>> turtle.right(45)
>>> turtle.heading()
337.0

left(angle)
lt(angle)

Parameter angle – a number (integer or float)

Turn turtle left by angle units. (Units are by default degrees, but can be set via the degrees() and
radians() functions.) Angle orientation depends on the turtle mode, see mode().

>>> turtle.heading()
22.0
>>> turtle.left(45)
>>> turtle.heading()
67.0

goto(x, y=None)
setpos(x, y=None)
setposition(x, y=None)

Parameters

• x – a number or a pair/vector of numbers

• y – a number or None

If y is None, x must be a pair of coordinates or a Vec2D (e.g. as returned by pos()).

Move turtle to an absolute position. If the pen is down, draw line. Do not change the turtle’s orientation.

>>> tp = turtle.pos()
>>> tp
(0.00,0.00)
>>> turtle.setpos(60,30)
>>> turtle.pos()
(60.00,30.00)
>>> turtle.setpos((20,80))
>>> turtle.pos()
(20.00,80.00)
>>> turtle.setpos(tp)
>>> turtle.pos()
(0.00,0.00)

setx(x)

Parameter x – a number (integer or float)

916 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

Set the turtle’s first coordinate to x, leave second coordinate unchanged.

>>> turtle.position()
(0.00,240.00)
>>> turtle.setx(10)
>>> turtle.position()
(10.00,240.00)

sety(y)

Parameter y – a number (integer or float)

Set the turtle’s second coordinate to y, leave first coordinate unchanged.

>>> turtle.position()
(0.00,40.00)
>>> turtle.sety(-10)
>>> turtle.position()
(0.00,-10.00)

setheading(to_angle)
seth(to_angle)

Parameter to_angle – a number (integer or float)

Set the orientation of the turtle to to_angle. Here are some common directions in degrees:

standard mode logo mode
0 - east 0 - north
90 - north 90 - east
180 - west 180 - south
270 - south 270 - west

>>> turtle.setheading(90)
>>> turtle.heading()
90.0

home()
Move turtle to the origin – coordinates (0,0) – and set its heading to its start-orientation (which depends on the
mode, see mode()).

>>> turtle.heading()
90.0
>>> turtle.position()
(0.00,-10.00)
>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

circle(radius, extent=None, steps=None)

Parameters

• radius – a number

• extent – a number (or None)

24.4. turtle — Turtle graphics for Tk 917

The Python Library Reference, Release 2.6.9

• steps – an integer (or None)

Draw a circle with given radius. The center is radius units left of the turtle; extent – an angle – determines
which part of the circle is drawn. If extent is not given, draw the entire circle. If extent is not a full circle, one
endpoint of the arc is the current pen position. Draw the arc in counterclockwise direction if radius is positive,
otherwise in clockwise direction. Finally the direction of the turtle is changed by the amount of extent.

As the circle is approximated by an inscribed regular polygon, steps determines the number of steps to use. If
not given, it will be calculated automatically. May be used to draw regular polygons.

>>> turtle.home()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(50)
>>> turtle.position()
(-0.00,0.00)
>>> turtle.heading()
0.0
>>> turtle.circle(120, 180) # draw a semicircle
>>> turtle.position()
(0.00,240.00)
>>> turtle.heading()
180.0

dot(size=None, *color)

Parameters

• size – an integer >= 1 (if given)

• color – a colorstring or a numeric color tuple

Draw a circular dot with diameter size, using color. If size is not given, the maximum of pensize+4 and 2*pensize
is used.

>>> turtle.home()
>>> turtle.dot()
>>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50)
>>> turtle.position()
(100.00,-0.00)
>>> turtle.heading()
0.0

stamp()
Stamp a copy of the turtle shape onto the canvas at the current turtle position. Return a stamp_id for that stamp,
which can be used to delete it by calling clearstamp(stamp_id).

>>> turtle.color("blue")
>>> turtle.stamp()
11
>>> turtle.fd(50)

clearstamp(stampid)

Parameter stampid – an integer, must be return value of previous stamp() call

918 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

Delete stamp with given stampid.

>>> turtle.position()
(150.00,-0.00)
>>> turtle.color("blue")
>>> astamp = turtle.stamp()
>>> turtle.fd(50)
>>> turtle.position()
(200.00,-0.00)
>>> turtle.clearstamp(astamp)
>>> turtle.position()
(200.00,-0.00)

clearstamps(n=None)

Parameter n – an integer (or None)

Delete all or first/last n of turtle’s stamps. If n is None, delete all stamps, if n > 0 delete first n stamps, else if n
< 0 delete last n stamps.

>>> for i in range(8):
... turtle.stamp(); turtle.fd(30)
13
14
15
16
17
18
19
20
>>> turtle.clearstamps(2)
>>> turtle.clearstamps(-2)
>>> turtle.clearstamps()

undo()
Undo (repeatedly) the last turtle action(s). Number of available undo actions is determined by the size of the
undobuffer.

>>> for i in range(4):
... turtle.fd(50); turtle.lt(80)
...
>>> for i in range(8):
... turtle.undo()

speed(speed=None)

Parameter speed – an integer in the range 0..10 or a speedstring (see below)

Set the turtle’s speed to an integer value in the range 0..10. If no argument is given, return current speed.

If input is a number greater than 10 or smaller than 0.5, speed is set to 0. Speedstrings are mapped to speedvalues
as follows:

•“fastest”: 0

•“fast”: 10

•“normal”: 6

24.4. turtle — Turtle graphics for Tk 919

The Python Library Reference, Release 2.6.9

•“slow”: 3

•“slowest”: 1

Speeds from 1 to 10 enforce increasingly faster animation of line drawing and turtle turning.

Attention: speed = 0 means that no animation takes place. forward/back makes turtle jump and likewise left/right
make the turtle turn instantly.

>>> turtle.speed()
3
>>> turtle.speed(’normal’)
>>> turtle.speed()
6
>>> turtle.speed(9)
>>> turtle.speed()
9

Tell Turtle’s state

position()
pos()

Return the turtle’s current location (x,y) (as a Vec2D vector).

>>> turtle.pos()
(440.00,-0.00)

towards(x, y=None)

Parameters

• x – a number or a pair/vector of numbers or a turtle instance

• y – a number if x is a number, else None

Return the angle between the line from turtle position to position specified by (x,y), the vector or the other turtle.
This depends on the turtle’s start orientation which depends on the mode - “standard”/”world” or “logo”).

>>> turtle.goto(10, 10)
>>> turtle.towards(0,0)
225.0

xcor()
Return the turtle’s x coordinate.

>>> turtle.home()
>>> turtle.left(50)
>>> turtle.forward(100)
>>> turtle.pos()
(64.28,76.60)
>>> print turtle.xcor()
64.2787609687

ycor()
Return the turtle’s y coordinate.

920 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

>>> turtle.home()
>>> turtle.left(60)
>>> turtle.forward(100)
>>> print turtle.pos()
(50.00,86.60)
>>> print turtle.ycor()
86.6025403784

heading()
Return the turtle’s current heading (value depends on the turtle mode, see mode()).

>>> turtle.home()
>>> turtle.left(67)
>>> turtle.heading()
67.0

distance(x, y=None)

Parameters

• x – a number or a pair/vector of numbers or a turtle instance

• y – a number if x is a number, else None

Return the distance from the turtle to (x,y), the given vector, or the given other turtle, in turtle step units.

>>> turtle.home()
>>> turtle.distance(30,40)
50.0
>>> turtle.distance((30,40))
50.0
>>> joe = Turtle()
>>> joe.forward(77)
>>> turtle.distance(joe)
77.0

Settings for measurement

degrees(fullcircle=360.0)

Parameter fullcircle – a number

Set angle measurement units, i.e. set number of “degrees” for a full circle. Default value is 360 degrees.

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
>>> turtle.degrees(400.0) # angle measurement in gon
>>> turtle.heading()
100.0
>>> turtle.degrees(360)
>>> turtle.heading()
90.0

24.4. turtle — Turtle graphics for Tk 921

The Python Library Reference, Release 2.6.9

radians()
Set the angle measurement units to radians. Equivalent to degrees(2*math.pi).

>>> turtle.home()
>>> turtle.left(90)
>>> turtle.heading()
90.0
>>> turtle.radians()
>>> turtle.heading()
1.5707963267948966

Pen control

Drawing state

pendown()
pd()
down()

Pull the pen down – drawing when moving.

penup()
pu()
up()

Pull the pen up – no drawing when moving.

pensize(width=None)
width(width=None)

Parameter width – a positive number

Set the line thickness to width or return it. If resizemode is set to “auto” and turtleshape is a polygon, that
polygon is drawn with the same line thickness. If no argument is given, the current pensize is returned.

>>> turtle.pensize()
1
>>> turtle.pensize(10) # from here on lines of width 10 are drawn

pen(pen=None, **pendict)

Parameters

• pen – a dictionary with some or all of the below listed keys

• pendict – one or more keyword-arguments with the below listed keys as keywords

Return or set the pen’s attributes in a “pen-dictionary” with the following key/value pairs:

•“shown”: True/False

•“pendown”: True/False

•“pencolor”: color-string or color-tuple

•“fillcolor”: color-string or color-tuple

•“pensize”: positive number

•“speed”: number in range 0..10

•“resizemode”: “auto” or “user” or “noresize”

922 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

•“stretchfactor”: (positive number, positive number)

•“outline”: positive number

•“tilt”: number

This dictionary can be used as argument for a subsequent call to pen() to restore the former pen-state. More-
over one or more of these attributes can be provided as keyword-arguments. This can be used to set several pen
attributes in one statement.

>>> turtle.pen(fillcolor="black", pencolor="red", pensize=10)
>>> sorted(turtle.pen().items())
[(’fillcolor’, ’black’), (’outline’, 1), (’pencolor’, ’red’),
(’pendown’, True), (’pensize’, 10), (’resizemode’, ’noresize’),
(’shown’, True), (’speed’, 9), (’stretchfactor’, (1, 1)), (’tilt’, 0)]
>>> penstate=turtle.pen()
>>> turtle.color("yellow", "")
>>> turtle.penup()
>>> sorted(turtle.pen().items())
[(’fillcolor’, ’’), (’outline’, 1), (’pencolor’, ’yellow’),
(’pendown’, False), (’pensize’, 10), (’resizemode’, ’noresize’),
(’shown’, True), (’speed’, 9), (’stretchfactor’, (1, 1)), (’tilt’, 0)]
>>> turtle.pen(penstate, fillcolor="green")
>>> sorted(turtle.pen().items())
[(’fillcolor’, ’green’), (’outline’, 1), (’pencolor’, ’red’),
(’pendown’, True), (’pensize’, 10), (’resizemode’, ’noresize’),
(’shown’, True), (’speed’, 9), (’stretchfactor’, (1, 1)), (’tilt’, 0)]

isdown()
Return True if pen is down, False if it’s up.

>>> turtle.penup()
>>> turtle.isdown()
False
>>> turtle.pendown()
>>> turtle.isdown()
True

Color control

pencolor(*args)
Return or set the pencolor.

Four input formats are allowed:

pencolor() Return the current pencolor as color specification string or as a tuple (see example). May be
used as input to another color/pencolor/fillcolor call.

pencolor(colorstring) Set pencolor to colorstring, which is a Tk color specification string, such as
"red", "yellow", or "#33cc8c".

pencolor((r, g, b)) Set pencolor to the RGB color represented by the tuple of r, g, and b. Each of r,
g, and b must be in the range 0..colormode, where colormode is either 1.0 or 255 (see colormode()).

pencolor(r, g, b)

24.4. turtle — Turtle graphics for Tk 923

The Python Library Reference, Release 2.6.9

Set pencolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in the range
0..colormode.

If turtleshape is a polygon, the outline of that polygon is drawn with the newly set pencolor.

>>> colormode()
1.0
>>> turtle.pencolor()
’red’
>>> turtle.pencolor("brown")
>>> turtle.pencolor()
’brown’
>>> tup = (0.2, 0.8, 0.55)
>>> turtle.pencolor(tup)
>>> turtle.pencolor()
(0.20000000000000001, 0.80000000000000004, 0.5490196078431373)
>>> colormode(255)
>>> turtle.pencolor()
(51, 204, 140)
>>> turtle.pencolor(’#32c18f’)
>>> turtle.pencolor()
(50, 193, 143)

fillcolor(*args)
Return or set the fillcolor.

Four input formats are allowed:

fillcolor() Return the current fillcolor as color specification string, possibly in tuple format (see example).
May be used as input to another color/pencolor/fillcolor call.

fillcolor(colorstring) Set fillcolor to colorstring, which is a Tk color specification string, such as
"red", "yellow", or "#33cc8c".

fillcolor((r, g, b)) Set fillcolor to the RGB color represented by the tuple of r, g, and b. Each of r,
g, and b must be in the range 0..colormode, where colormode is either 1.0 or 255 (see colormode()).

fillcolor(r, g, b)

Set fillcolor to the RGB color represented by r, g, and b. Each of r, g, and b must be in the range
0..colormode.

If turtleshape is a polygon, the interior of that polygon is drawn with the newly set fillcolor.

>>> turtle.fillcolor("violet")
>>> turtle.fillcolor()
’violet’
>>> col = turtle.pencolor()
>>> col
(50, 193, 143)
>>> turtle.fillcolor(col)
>>> turtle.fillcolor()
(50, 193, 143)
>>> turtle.fillcolor(’#ffffff’)
>>> turtle.fillcolor()
(255, 255, 255)

924 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

color(*args)
Return or set pencolor and fillcolor.

Several input formats are allowed. They use 0 to 3 arguments as follows:

color() Return the current pencolor and the current fillcolor as a pair of color specification strings or tuples
as returned by pencolor() and fillcolor().

color(colorstring), color((r,g,b)), color(r,g,b) Inputs as in pencolor(), set both, fill-
color and pencolor, to the given value.

color(colorstring1, colorstring2), color((r1,g1,b1), (r2,g2,b2))

Equivalent to pencolor(colorstring1) and fillcolor(colorstring2) and anal-
ogously if the other input format is used.

If turtleshape is a polygon, outline and interior of that polygon is drawn with the newly set colors.

>>> turtle.color("red", "green")
>>> turtle.color()
(’red’, ’green’)
>>> color("#285078", "#a0c8f0")
>>> color()
((40, 80, 120), (160, 200, 240))

See also: Screen method colormode().

Filling

fill(flag)

Parameter flag – True/False (or 1/0 respectively)

Call fill(True) before drawing the shape you want to fill, and fill(False) when done. When used
without argument: return fillstate (True if filling, False else).

>>> turtle.fill(True)
>>> for _ in range(3):
... turtle.forward(100)
... turtle.left(120)
...
>>> turtle.fill(False)

begin_fill()
Call just before drawing a shape to be filled. Equivalent to fill(True).

end_fill()
Fill the shape drawn after the last call to begin_fill(). Equivalent to fill(False).

>>> turtle.color("black", "red")
>>> turtle.begin_fill()
>>> turtle.circle(80)
>>> turtle.end_fill()

24.4. turtle — Turtle graphics for Tk 925

The Python Library Reference, Release 2.6.9

More drawing control

reset()
Delete the turtle’s drawings from the screen, re-center the turtle and set variables to the default values.

>>> turtle.goto(0,-22)
>>> turtle.left(100)
>>> turtle.position()
(0.00,-22.00)
>>> turtle.heading()
100.0
>>> turtle.reset()
>>> turtle.position()
(0.00,0.00)
>>> turtle.heading()
0.0

clear()
Delete the turtle’s drawings from the screen. Do not move turtle. State and position of the turtle as well as
drawings of other turtles are not affected.

write(arg, move=False, align="left", font=("Arial", 8, "normal"))

Parameters

• arg – object to be written to the TurtleScreen

• move – True/False

• align – one of the strings “left”, “center” or right”

• font – a triple (fontname, fontsize, fonttype)

Write text - the string representation of arg - at the current turtle position according to align (“left”, “center”
or right”) and with the given font. If move is True, the pen is moved to the bottom-right corner of the text. By
default, move is False.

>>> turtle.write("Home = ", True, align="center")
>>> turtle.write((0,0), True)

Turtle state

Visibility

hideturtle()
ht()

Make the turtle invisible. It’s a good idea to do this while you’re in the middle of doing some complex drawing,
because hiding the turtle speeds up the drawing observably.

>>> turtle.hideturtle()

showturtle()
st()

Make the turtle visible.

>>> turtle.showturtle()

926 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

isvisible()
Return True if the Turtle is shown, False if it’s hidden.

>>> turtle.hideturtle()
>>> turtle.isvisible()
False
>>> turtle.showturtle()
>>> turtle.isvisible()
True

Appearance

shape(name=None)

Parameter name – a string which is a valid shapename

Set turtle shape to shape with given name or, if name is not given, return name of current shape. Shape with name
must exist in the TurtleScreen’s shape dictionary. Initially there are the following polygon shapes: “arrow”,
“turtle”, “circle”, “square”, “triangle”, “classic”. To learn about how to deal with shapes see Screen method
register_shape().

>>> turtle.shape()
’classic’
>>> turtle.shape("turtle")
>>> turtle.shape()
’turtle’

resizemode(rmode=None)

Parameter rmode – one of the strings “auto”, “user”, “noresize”

Set resizemode to one of the values: “auto”, “user”, “noresize”. If rmode is not given, return current resizemode.
Different resizemodes have the following effects:

•“auto”: adapts the appearance of the turtle corresponding to the value of pensize.

•“user”: adapts the appearance of the turtle according to the values of stretchfactor and outlinewidth (out-
line), which are set by shapesize().

•“noresize”: no adaption of the turtle’s appearance takes place.

resizemode(“user”) is called by shapesize() when used with arguments.

>>> turtle.resizemode()
’noresize’
>>> turtle.resizemode("auto")
>>> turtle.resizemode()
’auto’

shapesize(stretch_wid=None, stretch_len=None, outline=None)
turtlesize(stretch_wid=None, stretch_len=None, outline=None)

Parameters

• stretch_wid – positive number

• stretch_len – positive number

• outline – positive number

24.4. turtle — Turtle graphics for Tk 927

The Python Library Reference, Release 2.6.9

Return or set the pen’s attributes x/y-stretchfactors and/or outline. Set resizemode to “user”. If and only if
resizemode is set to “user”, the turtle will be displayed stretched according to its stretchfactors: stretch_wid is
stretchfactor perpendicular to its orientation, stretch_len is stretchfactor in direction of its orientation, outline
determines the width of the shapes’s outline.

>>> turtle.shapesize()
(1, 1, 1)
>>> turtle.resizemode("user")
>>> turtle.shapesize(5, 5, 12)
>>> turtle.shapesize()
(5, 5, 12)
>>> turtle.shapesize(outline=8)
>>> turtle.shapesize()
(5, 5, 8)

tilt(angle)

Parameter angle – a number

Rotate the turtleshape by angle from its current tilt-angle, but do not change the turtle’s heading (direction of
movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(30)
>>> turtle.fd(50)
>>> turtle.tilt(30)
>>> turtle.fd(50)

settiltangle(angle)

Parameter angle – a number

Rotate the turtleshape to point in the direction specified by angle, regardless of its current tilt-angle. Do not
change the turtle’s heading (direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.settiltangle(45)
>>> turtle.fd(50)
>>> turtle.settiltangle(-45)
>>> turtle.fd(50)

tiltangle()
Return the current tilt-angle, i.e. the angle between the orientation of the turtleshape and the heading of the
turtle (its direction of movement).

>>> turtle.reset()
>>> turtle.shape("circle")
>>> turtle.shapesize(5,2)
>>> turtle.tilt(45)
>>> turtle.tiltangle()
45.0

928 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

Using events

onclick(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the clicked
point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace a
former binding

Bind fun to mouse-click events on this turtle. If fun is None, existing bindings are removed. Example for the
anonymous turtle, i.e. the procedural way:

>>> def turn(x, y):
... left(180)
...
>>> onclick(turn) # Now clicking into the turtle will turn it.
>>> onclick(None) # event-binding will be removed

onrelease(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the clicked
point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace a
former binding

Bind fun to mouse-button-release events on this turtle. If fun is None, existing bindings are removed.

>>> class MyTurtle(Turtle):
... def glow(self,x,y):
... self.fillcolor("red")
... def unglow(self,x,y):
... self.fillcolor("")
...
>>> turtle = MyTurtle()
>>> turtle.onclick(turtle.glow) # clicking on turtle turns fillcolor red,
>>> turtle.onrelease(turtle.unglow) # releasing turns it to transparent.

ondrag(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the clicked
point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace a
former binding

Bind fun to mouse-move events on this turtle. If fun is None, existing bindings are removed.

Remark: Every sequence of mouse-move-events on a turtle is preceded by a mouse-click event on that turtle.

24.4. turtle — Turtle graphics for Tk 929

The Python Library Reference, Release 2.6.9

>>> turtle.ondrag(turtle.goto)

Subsequently, clicking and dragging the Turtle will move it across the screen thereby producing handdrawings
(if pen is down).

Special Turtle methods

begin_poly()
Start recording the vertices of a polygon. Current turtle position is first vertex of polygon.

end_poly()
Stop recording the vertices of a polygon. Current turtle position is last vertex of polygon. This will be connected
with the first vertex.

get_poly()
Return the last recorded polygon.

>>> turtle.home()
>>> turtle.begin_poly()
>>> turtle.fd(100)
>>> turtle.left(20)
>>> turtle.fd(30)
>>> turtle.left(60)
>>> turtle.fd(50)
>>> turtle.end_poly()
>>> p = turtle.get_poly()
>>> register_shape("myFavouriteShape", p)

clone()
Create and return a clone of the turtle with same position, heading and turtle properties.

>>> mick = Turtle()
>>> joe = mick.clone()

getturtle()
getpen()

Return the Turtle object itself. Only reasonable use: as a function to return the “anonymous turtle”:

>>> pet = getturtle()
>>> pet.fd(50)
>>> pet
<turtle.Turtle object at 0x...>

getscreen()
Return the TurtleScreen object the turtle is drawing on. TurtleScreen methods can then be called for that
object.

>>> ts = turtle.getscreen()
>>> ts
<turtle._Screen object at 0x...>
>>> ts.bgcolor("pink")

setundobuffer(size)

Parameter size – an integer or None

930 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

Set or disable undobuffer. If size is an integer an empty undobuffer of given size is installed. size gives the
maximum number of turtle actions that can be undone by the undo() method/function. If size is None, the
undobuffer is disabled.

>>> turtle.setundobuffer(42)

undobufferentries()
Return number of entries in the undobuffer.

>>> while undobufferentries():
... undo()

tracer(flag=None, delay=None)
A replica of the corresponding TurtleScreen method. Deprecated since version 2.6.

window_width()
window_height()

Both are replicas of the corresponding TurtleScreen methods. Deprecated since version 2.6.

Excursus about the use of compound shapes

To use compound turtle shapes, which consist of several polygons of different color, you must use the helper class
Shape explicitly as described below:

1. Create an empty Shape object of type “compound”.

2. Add as many components to this object as desired, using the addcomponent() method.

For example:

>>> s = Shape("compound")
>>> poly1 = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s.addcomponent(poly1, "red", "blue")
>>> poly2 = ((0,0),(10,-5),(-10,-5))
>>> s.addcomponent(poly2, "blue", "red")

3. Now add the Shape to the Screen’s shapelist and use it:

>>> register_shape("myshape", s)
>>> shape("myshape")

Note: The Shape class is used internally by the register_shape() method in different ways. The application
programmer has to deal with the Shape class only when using compound shapes like shown above!

24.4.4 Methods of TurtleScreen/Screen and corresponding functions

Most of the examples in this section refer to a TurtleScreen instance called screen.

Window control

bgcolor(*args)

Parameter args – a color string or three numbers in the range 0..colormode or a 3-tuple of such
numbers

Set or return background color of the TurtleScreen.

24.4. turtle — Turtle graphics for Tk 931

The Python Library Reference, Release 2.6.9

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
’orange’
>>> screen.bgcolor("#800080")
>>> screen.bgcolor()
(128, 0, 128)

bgpic(picname=None)

Parameter picname – a string, name of a gif-file or "nopic", or None

Set background image or return name of current backgroundimage. If picname is a filename, set the correspond-
ing image as background. If picname is "nopic", delete background image, if present. If picname is None,
return the filename of the current backgroundimage.

>>> screen.bgpic()
’nopic’
>>> screen.bgpic("landscape.gif")
>>> screen.bgpic()
"landscape.gif"

clear()
clearscreen()

Delete all drawings and all turtles from the TurtleScreen. Reset the now empty TurtleScreen to its initial state:
white background, no background image, no event bindings and tracing on.

Note: This TurtleScreen method is available as a global function only under the name clearscreen. The
global function clear is another one derived from the Turtle method clear.

reset()
resetscreen()

Reset all Turtles on the Screen to their initial state.

Note: This TurtleScreen method is available as a global function only under the name resetscreen. The
global function reset is another one derived from the Turtle method reset.

screensize(canvwidth=None, canvheight=None, bg=None)

Parameters

• canvwidth – positive integer, new width of canvas in pixels

• canvheight – positive integer, new height of canvas in pixels

• bg – colorstring or color-tuple, new background color

If no arguments are given, return current (canvaswidth, canvasheight). Else resize the canvas the turtles are
drawing on. Do not alter the drawing window. To observe hidden parts of the canvas, use the scrollbars. With
this method, one can make visible those parts of a drawing which were outside the canvas before.

>>> screen.screensize()
(400, 300)
>>> screen.screensize(2000,1500)
>>> screen.screensize()
(2000, 1500)

e.g. to search for an erroneously escaped turtle ;-)

setworldcoordinates(llx, lly, urx, ury)

932 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

Parameters

• llx – a number, x-coordinate of lower left corner of canvas

• lly – a number, y-coordinate of lower left corner of canvas

• urx – a number, x-coordinate of upper right corner of canvas

• ury – a number, y-coordinate of upper right corner of canvas

Set up user-defined coordinate system and switch to mode “world” if necessary. This performs a
screen.reset(). If mode “world” is already active, all drawings are redrawn according to the new co-
ordinates.

ATTENTION: in user-defined coordinate systems angles may appear distorted.

>>> screen.reset()
>>> screen.setworldcoordinates(-50,-7.5,50,7.5)
>>> for _ in range(72):
... left(10)
...
>>> for _ in range(8):
... left(45); fd(2) # a regular octagon

Animation control

delay(delay=None)

Parameter delay – positive integer

Set or return the drawing delay in milliseconds. (This is approximately the time interval between two consecutive
canvas updates.) The longer the drawing delay, the slower the animation.

Optional argument:

>>> screen.delay()
10
>>> screen.delay(5)
>>> screen.delay()
5

tracer(n=None, delay=None)

Parameters

• n – nonnegative integer

• delay – nonnegative integer

Turn turtle animation on/off and set delay for update drawings. If n is given, only each n-th regular screen update
is really performed. (Can be used to accelerate the drawing of complex graphics.) Second argument sets delay
value (see delay()).

>>> screen.tracer(8, 25)
>>> dist = 2
>>> for i in range(200):
... fd(dist)
... rt(90)
... dist += 2

24.4. turtle — Turtle graphics for Tk 933

The Python Library Reference, Release 2.6.9

update()
Perform a TurtleScreen update. To be used when tracer is turned off.

See also the RawTurtle/Turtle method speed().

Using screen events

listen(xdummy=None, ydummy=None)
Set focus on TurtleScreen (in order to collect key-events). Dummy arguments are provided in order to be able
to pass listen() to the onclick method.

onkey(fun, key)

Parameters

• fun – a function with no arguments or None

• key – a string: key (e.g. “a”) or key-symbol (e.g. “space”)

Bind fun to key-release event of key. If fun is None, event bindings are removed. Remark: in order to be able
to register key-events, TurtleScreen must have the focus. (See method listen().)

>>> def f():
... fd(50)
... lt(60)
...
>>> screen.onkey(f, "Up")
>>> screen.listen()

onclick(fun, btn=1, add=None)
onscreenclick(fun, btn=1, add=None)

Parameters

• fun – a function with two arguments which will be called with the coordinates of the clicked
point on the canvas

• num – number of the mouse-button, defaults to 1 (left mouse button)

• add – True or False – if True, a new binding will be added, otherwise it will replace a
former binding

Bind fun to mouse-click events on this screen. If fun is None, existing bindings are removed.

Example for a TurtleScreen instance named screen and a Turtle instance named turtle:

>>> screen.onclick(turtle.goto) # Subsequently clicking into the TurtleScreen will
>>> # make the turtle move to the clicked point.
>>> screen.onclick(None) # remove event binding again

Note: This TurtleScreen method is available as a global function only under the name onscreenclick. The
global function onclick is another one derived from the Turtle method onclick.

ontimer(fun, t=0)

Parameters

• fun – a function with no arguments

• t – a number >= 0

Install a timer that calls fun after t milliseconds.

934 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

>>> running = True
>>> def f():
... if running:
... fd(50)
... lt(60)
... screen.ontimer(f, 250)
>>> f() ### makes the turtle march around
>>> running = False

Settings and special methods

mode(mode=None)

Parameter mode – one of the strings “standard”, “logo” or “world”

Set turtle mode (“standard”, “logo” or “world”) and perform reset. If mode is not given, current mode is returned.

Mode “standard” is compatible with old turtle. Mode “logo” is compatible with most Logo turtle graphics.
Mode “world” uses user-defined “world coordinates”. Attention: in this mode angles appear distorted if x/y
unit-ratio doesn’t equal 1.

Mode Initial turtle heading positive angles
“standard” to the right (east) counterclockwise
“logo” upward (north) clockwise

>>> mode("logo") # resets turtle heading to north
>>> mode()
’logo’

colormode(cmode=None)

Parameter cmode – one of the values 1.0 or 255

Return the colormode or set it to 1.0 or 255. Subsequently r, g, b values of color triples have to be in the range
0..cmode.

>>> screen.colormode(1)
>>> turtle.pencolor(240, 160, 80)
Traceback (most recent call last):

...
TurtleGraphicsError: bad color sequence: (240, 160, 80)
>>> screen.colormode()
1.0
>>> screen.colormode(255)
>>> screen.colormode()
255
>>> turtle.pencolor(240,160,80)

getcanvas()
Return the Canvas of this TurtleScreen. Useful for insiders who know what to do with a Tkinter Canvas.

>>> cv = screen.getcanvas()
>>> cv
<turtle.ScrolledCanvas instance at 0x...>

24.4. turtle — Turtle graphics for Tk 935

The Python Library Reference, Release 2.6.9

getshapes()
Return a list of names of all currently available turtle shapes.

>>> screen.getshapes()
[’arrow’, ’blank’, ’circle’, ..., ’turtle’]

register_shape(name, shape=None)
addshape(name, shape=None)

There are three different ways to call this function:

1.name is the name of a gif-file and shape is None: Install the corresponding image shape.

>>> screen.register_shape("turtle.gif")

Note: Image shapes do not rotate when turning the turtle, so they do not display the heading of the turtle!

2.name is an arbitrary string and shape is a tuple of pairs of coordinates: Install the corresponding polygon
shape.

>>> screen.register_shape("triangle", ((5,-3), (0,5), (-5,-3)))

3.name is an arbitrary string and shape is a (compound) Shape object: Install the corresponding compound
shape.

Add a turtle shape to TurtleScreen’s shapelist. Only thusly registered shapes can be used by issuing the command
shape(shapename).

turtles()
Return the list of turtles on the screen.

>>> for turtle in screen.turtles():
... turtle.color("red")

window_height()
Return the height of the turtle window.

>>> screen.window_height()
480

window_width()
Return the width of the turtle window.

>>> screen.window_width()
640

Methods specific to Screen, not inherited from TurtleScreen

bye()
Shut the turtlegraphics window.

exitonclick()
Bind bye() method to mouse clicks on the Screen.

If the value “using_IDLE” in the configuration dictionary is False (default value), also enter mainloop. Re-
mark: If IDLE with the -n switch (no subprocess) is used, this value should be set to True in turtle.cfg.
In this case IDLE’s own mainloop is active also for the client script.

936 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

setup(width=_CFG, ["width"], height=_CFG, ["height"], startx=_CFG, ["leftright"], starty=_CFG, ["topbot-
tom"])

Set the size and position of the main window. Default values of arguments are stored in the configuration
dicionary and can be changed via a turtle.cfg file.

Parameters

• width – if an integer, a size in pixels, if a float, a fraction of the screen; default is 50% of
screen

• height – if an integer, the height in pixels, if a float, a fraction of the screen; default is 75%
of screen

• startx – if positive, starting position in pixels from the left edge of the screen, if negative
from the right edge, if None, center window horizontally

• startx – if positive, starting position in pixels from the top edge of the screen, if negative
from the bottom edge, if None, center window vertically

>>> screen.setup (width=200, height=200, startx=0, starty=0)
>>> # sets window to 200x200 pixels, in upper left of screen
>>> screen.setup(width=.75, height=0.5, startx=None, starty=None)
>>> # sets window to 75% of screen by 50% of screen and centers

title(titlestring)

Parameter titlestring – a string that is shown in the titlebar of the turtle graphics window

Set title of turtle window to titlestring.

>>> screen.title("Welcome to the turtle zoo!")

24.4.5 The public classes of the module turtle

class RawTurtle(canvas)
class RawPen(canvas)

Parameter canvas – a Tkinter.Canvas, a ScrolledCanvas or a TurtleScreen

Create a turtle. The turtle has all methods described above as “methods of Turtle/RawTurtle”.

class Turtle()
Subclass of RawTurtle, has the same interface but draws on a default Screen object created automatically
when needed for the first time.

class TurtleScreen(cv)

Parameter cv – a Tkinter.Canvas

Provides screen oriented methods like setbg() etc. that are described above.

class Screen()
Subclass of TurtleScreen, with four methods added.

class ScrolledCanvas(master)

Parameter master – some Tkinter widget to contain the ScrolledCanvas, i.e. a Tkinter-canvas with
scrollbars added

Used by class Screen, which thus automatically provides a ScrolledCanvas as playground for the turtles.

class Shape(type_, data)

24.4. turtle — Turtle graphics for Tk 937

The Python Library Reference, Release 2.6.9

Parameter type_ – one of the strings “polygon”, “image”, “compound”

Data structure modeling shapes. The pair (type_, data) must follow this specification:

type_ data
“polygon” a polygon-tuple, i.e. a tuple of pairs of coordinates
“image” an image (in this form only used internally!)
“compound” None (a compound shape has to be constructed using the addcomponent() method)

addcomponent(poly, fill, outline=None)

Parameters

• poly – a polygon, i.e. a tuple of pairs of numbers

• fill – a color the poly will be filled with

• outline – a color for the poly’s outline (if given)

Example:

>>> poly = ((0,0),(10,-5),(0,10),(-10,-5))
>>> s = Shape("compound")
>>> s.addcomponent(poly, "red", "blue")
>>> # ... add more components and then use register_shape()

See Excursus about the use of compound shapes.

class Vec2D(x, y)
A two-dimensional vector class, used as a helper class for implementing turtle graphics. May be useful for turtle
graphics programs too. Derived from tuple, so a vector is a tuple!

Provides (for a, b vectors, k number):

•a + b vector addition

•a - b vector subtraction

•a * b inner product

•k * a and a * k multiplication with scalar

•abs(a) absolute value of a

•a.rotate(angle) rotation

24.4.6 Help and configuration

How to use help

The public methods of the Screen and Turtle classes are documented extensively via docstrings. So these can be used
as online-help via the Python help facilities:

• When using IDLE, tooltips show the signatures and first lines of the docstrings of typed in function-/method
calls.

• Calling help() on methods or functions displays the docstrings:

>>> help(Screen.bgcolor)
Help on method bgcolor in module turtle:

bgcolor(self, *args) unbound turtle.Screen method

938 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

Set or return backgroundcolor of the TurtleScreen.

Arguments (if given): a color string or three numbers
in the range 0..colormode or a 3-tuple of such numbers.

>>> screen.bgcolor("orange")
>>> screen.bgcolor()
"orange"
>>> screen.bgcolor(0.5,0,0.5)
>>> screen.bgcolor()
"#800080"

>>> help(Turtle.penup)
Help on method penup in module turtle:

penup(self) unbound turtle.Turtle method
Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up

No argument

>>> turtle.penup()

• The docstrings of the functions which are derived from methods have a modified form:

>>> help(bgcolor)
Help on function bgcolor in module turtle:

bgcolor(*args)
Set or return backgroundcolor of the TurtleScreen.

Arguments (if given): a color string or three numbers
in the range 0..colormode or a 3-tuple of such numbers.

Example::

>>> bgcolor("orange")
>>> bgcolor()
"orange"
>>> bgcolor(0.5,0,0.5)
>>> bgcolor()
"#800080"

>>> help(penup)
Help on function penup in module turtle:

penup()
Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up

No argument

24.4. turtle — Turtle graphics for Tk 939

The Python Library Reference, Release 2.6.9

Example:
>>> penup()

These modified docstrings are created automatically together with the function definitions that are derived from the
methods at import time.

Translation of docstrings into different languages

There is a utility to create a dictionary the keys of which are the method names and the values of which are the
docstrings of the public methods of the classes Screen and Turtle.

write_docstringdict(filename="turtle_docstringdict")

Parameter filename – a string, used as filename

Create and write docstring-dictionary to a Python script with the given filename. This function has to be called
explicitly (it is not used by the turtle graphics classes). The docstring dictionary will be written to the Python
script filename.py. It is intended to serve as a template for translation of the docstrings into different
languages.

If you (or your students) want to use turtle with online help in your native language, you have to translate the
docstrings and save the resulting file as e.g. turtle_docstringdict_german.py.

If you have an appropriate entry in your turtle.cfg file this dictionary will be read in at import time and will
replace the original English docstrings.

At the time of this writing there are docstring dictionaries in German and in Italian. (Requests please to glingl@aon.at.)

How to configure Screen and Turtles

The built-in default configuration mimics the appearance and behaviour of the old turtle module in order to retain best
possible compatibility with it.

If you want to use a different configuration which better reflects the features of this module or which better fits to your
needs, e.g. for use in a classroom, you can prepare a configuration file turtle.cfg which will be read at import
time and modify the configuration according to its settings.

The built in configuration would correspond to the following turtle.cfg:

width = 0.5
height = 0.75
leftright = None
topbottom = None
canvwidth = 400
canvheight = 300
mode = standard
colormode = 1.0
delay = 10
undobuffersize = 1000
shape = classic
pencolor = black
fillcolor = black
resizemode = noresize
visible = True
language = english
exampleturtle = turtle
examplescreen = screen

940 Chapter 24. Graphical User Interfaces with Tk

mailto:glingl@aon.at

The Python Library Reference, Release 2.6.9

title = Python Turtle Graphics
using_IDLE = False

Short explanation of selected entries:

• The first four lines correspond to the arguments of the Screen.setup() method.

• Line 5 and 6 correspond to the arguments of the method Screen.screensize().

• shape can be any of the built-in shapes, e.g: arrow, turtle, etc. For more info try help(shape).

• If you want to use no fillcolor (i.e. make the turtle transparent), you have to write fillcolor = "" (but all
nonempty strings must not have quotes in the cfg-file).

• If you want to reflect the turtle its state, you have to use resizemode = auto.

• If you set e.g. language = italian the docstringdict turtle_docstringdict_italian.py will
be loaded at import time (if present on the import path, e.g. in the same directory as turtle.

• The entries exampleturtle and examplescreen define the names of these objects as they occur in the docstrings.
The transformation of method-docstrings to function-docstrings will delete these names from the docstrings.

• using_IDLE: Set this to True if you regularly work with IDLE and its -n switch (“no subprocess”). This will
prevent exitonclick() to enter the mainloop.

There can be a turtle.cfg file in the directory where turtle is stored and an additional one in the current
working directory. The latter will override the settings of the first one.

The Demo/turtle directory contains a turtle.cfg file. You can study it as an example and see its effects when
running the demos (preferably not from within the demo-viewer).

24.4.7 Demo scripts

There is a set of demo scripts in the turtledemo directory located in the Demo/turtle directory in the source
distribution.

It contains:

• a set of 15 demo scripts demonstrating different features of the new module turtle

• a demo viewer turtleDemo.py which can be used to view the sourcecode of the scripts and run them at the
same time. 14 of the examples can be accessed via the Examples menu; all of them can also be run standalone.

• The example turtledemo_two_canvases.py demonstrates the simultaneous use of two canvases with
the turtle module. Therefore it only can be run standalone.

• There is a turtle.cfg file in this directory, which also serves as an example for how to write and use such
files.

The demoscripts are:

24.4. turtle — Turtle graphics for Tk 941

The Python Library Reference, Release 2.6.9

Name Description Features
bytedesign complex classical turtlegraphics pattern tracer(), delay, update()
chaos graphs verhust dynamics, proves that you must not trust

computers’ computations
world coordinates

clock analog clock showing time of your computer turtles as clock’s hands, ontimer
colormixer experiment with r, g, b ondrag()
fractal-
curves

Hilbert & Koch curves recursion

lindenmayer ethnomathematics (indian kolams) L-System
mini-
mal_hanoi

Towers of Hanoi Rectangular Turtles as Hanoi discs
(shape, shapesize)

paint super minimalistic drawing program onclick()
peace elementary turtle: appearance and animation
penrose aperiodic tiling with kites and darts stamp()
planet_and_moonsimulation of gravitational system compound shapes, Vec2D
tree a (graphical) breadth first tree (using generators) clone()
wikipedia a pattern from the wikipedia article on turtle graphics clone(), undo()
yingyang another elementary example circle()

Have fun!

24.5 IDLE

IDLE is the Python IDE built with the tkinter GUI toolkit.

IDLE has the following features:

• coded in 100% pure Python, using the tkinter GUI toolkit

• cross-platform: works on Windows and Unix

• multi-window text editor with multiple undo, Python colorizing and many other features, e.g. smart indent and
call tips

• Python shell window (a.k.a. interactive interpreter)

• debugger (not complete, but you can set breakpoints, view and step)

24.5.1 Menus

File menu

New window create a new editing window

Open... open an existing file

Open module... open an existing module (searches sys.path)

Class browser show classes and methods in current file

Path browser show sys.path directories, modules, classes and methods

Save save current window to the associated file (unsaved windows have a * before and after the window title)

Save As... save current window to new file, which becomes the associated file

Save Copy As... save current window to different file without changing the associated file

Close close current window (asks to save if unsaved)

942 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

Exit close all windows and quit IDLE (asks to save if unsaved)

Edit menu

Undo Undo last change to current window (max 1000 changes)

Redo Redo last undone change to current window

Cut Copy selection into system-wide clipboard; then delete selection

Copy Copy selection into system-wide clipboard

Paste Insert system-wide clipboard into window

Select All Select the entire contents of the edit buffer

Find... Open a search dialog box with many options

Find again Repeat last search

Find selection Search for the string in the selection

Find in Files... Open a search dialog box for searching files

Replace... Open a search-and-replace dialog box

Go to line Ask for a line number and show that line

Indent region Shift selected lines right 4 spaces

Dedent region Shift selected lines left 4 spaces

Comment out region Insert ## in front of selected lines

Uncomment region Remove leading # or ## from selected lines

Tabify region Turns leading stretches of spaces into tabs

Untabify region Turn all tabs into the right number of spaces

Expand word Expand the word you have typed to match another word in the same buffer; repeat to get a different
expansion

Format Paragraph Reformat the current blank-line-separated paragraph

Import module Import or reload the current module

Run script Execute the current file in the __main__ namespace

Windows menu

Zoom Height toggles the window between normal size (24x80) and maximum height.

The rest of this menu lists the names of all open windows; select one to bring it to the foreground (deiconifying it if
necessary).

Debug menu (in the Python Shell window only)

Go to file/line look around the insert point for a filename and linenumber, open the file, and show the line.

Open stack viewer show the stack traceback of the last exception

Debugger toggle Run commands in the shell under the debugger

24.5. IDLE 943

The Python Library Reference, Release 2.6.9

JIT Stack viewer toggle Open stack viewer on traceback

24.5.2 Basic editing and navigation

• Backspace deletes to the left; Del deletes to the right

• Arrow keys and Page Up/Page Down to move around

• Home/End go to begin/end of line

• C-Home/C-End go to begin/end of file

• Some Emacs bindings may also work, including C-B, C-P, C-A, C-E, C-D, C-L

Automatic indentation

After a block-opening statement, the next line is indented by 4 spaces (in the Python Shell window by one tab). After
certain keywords (break, return etc.) the next line is dedented. In leading indentation, Backspace deletes up to 4
spaces if they are there. Tab inserts 1-4 spaces (in the Python Shell window one tab). See also the indent/dedent
region commands in the edit menu.

Python Shell window

• C-C interrupts executing command

• C-D sends end-of-file; closes window if typed at a >>> prompt

• Alt-p retrieves previous command matching what you have typed

• Alt-n retrieves next

• Return while on any previous command retrieves that command

• Alt-/ (Expand word) is also useful here

24.5.3 Syntax colors

The coloring is applied in a background “thread,” so you may occasionally see uncolorized text. To change the color
scheme, edit the [Colors] section in config.txt.

Python syntax colors:

Keywords orange

Strings green

Comments red

Definitions blue

Shell colors:

Console output brown

stdout blue

stderr dark green

stdin black

944 Chapter 24. Graphical User Interfaces with Tk

The Python Library Reference, Release 2.6.9

24.5.4 Startup

Upon startup with the -s option, IDLE will execute the file referenced by the environment variables IDLESTARTUP
or PYTHONSTARTUP. Idle first checks for IDLESTARTUP; if IDLESTARTUP is present the file referenced is run.
If IDLESTARTUP is not present, Idle checks for PYTHONSTARTUP. Files referenced by these environment variables
are convenient places to store functions that are used frequently from the Idle shell, or for executing import statements
to import common modules.

In addition, Tk also loads a startup file if it is present. Note that the Tk file is loaded unconditionally. This additional
file is .Idle.py and is looked for in the user’s home directory. Statements in this file will be executed in the Tk
namespace, so this file is not useful for importing functions to be used from Idle’s Python shell.

Command line usage

idle.py [-c command] [-d] [-e] [-s] [-t title] [arg] ...

-c command run this command
-d enable debugger
-e edit mode; arguments are files to be edited
-s run $IDLESTARTUP or $PYTHONSTARTUP first
-t title set title of shell window

If there are arguments:

1. If -e is used, arguments are files opened for editing and sys.argv reflects the arguments passed to IDLE
itself.

2. Otherwise, if -c is used, all arguments are placed in sys.argv[1:...], with sys.argv[0] set to ’-c’.

3. Otherwise, if neither -e nor -c is used, the first argument is a script which is executed with the remaining
arguments in sys.argv[1:...] and sys.argv[0] set to the script name. If the script name is ‘-‘, no
script is executed but an interactive Python session is started; the arguments are still available in sys.argv.

24.6 Other Graphical User Interface Packages

There are an number of extension widget sets to Tkinter.

See Also:

Python megawidgets is a toolkit for building high-level compound widgets in Python using the Tkinter module.
It consists of a set of base classes and a library of flexible and extensible megawidgets built on this foundation.
These megawidgets include notebooks, comboboxes, selection widgets, paned widgets, scrolled widgets, dialog
windows, etc. Also, with the Pmw.Blt interface to BLT, the busy, graph, stripchart, tabset and vector commands
are be available.

The initial ideas for Pmw were taken from the Tk itcl extensions [incr Tk] by Michael McLennan and
[incr Widgets] by Mark Ulferts. Several of the megawidgets are direct translations from the itcl to Python.
It offers most of the range of widgets that [incr Widgets] does, and is almost as complete as Tix, lacking
however Tix’s fast HList widget for drawing trees.

Tkinter3000 Widget Construction Kit (WCK) is a library that allows you to write new Tkinter widgets in pure
Python. The WCK framework gives you full control over widget creation, configuration, screen appearance,
and event handling. WCK widgets can be very fast and light-weight, since they can operate directly on Python
data structures, without having to transfer data through the Tk/Tcl layer.

24.6. Other Graphical User Interface Packages 945

http://pmw.sourceforge.net/
http://tkinter.effbot.org/

The Python Library Reference, Release 2.6.9

The major cross-platform (Windows, Mac OS X, Unix-like) GUI toolkits that are also available for Python:

See Also:

PyGTK is a set of bindings for the GTK widget set. It provides an object oriented interface that is slightly higher level
than the C one. It comes with many more widgets than Tkinter provides, and has good Python-specific reference
documentation. There are also bindings to GNOME. One well known PyGTK application is PythonCAD. An
online tutorial is available.

PyQt PyQt is a sip-wrapped binding to the Qt toolkit. Qt is an extensive C++ GUI application development framework
that is available for Unix, Windows and Mac OS X. sip is a tool for generating bindings for C++ libraries as
Python classes, and is specifically designed for Python. The PyQt3 bindings have a book, GUI Programming
with Python: QT Edition by Boudewijn Rempt. The PyQt4 bindings also have a book, Rapid GUI Programming
with Python and Qt, by Mark Summerfield.

wxPython wxPython is a cross-platform GUI toolkit for Python that is built around the popular wxWidgets (formerly
wxWindows) C++ toolkit. It provides a native look and feel for applications on Windows, Mac OS X, and Unix
systems by using each platform’s native widgets where ever possible, (GTK+ on Unix-like systems). In addition
to an extensive set of widgets, wxPython provides classes for online documentation and context sensitive help,
printing, HTML viewing, low-level device context drawing, drag and drop, system clipboard access, an XML-
based resource format and more, including an ever growing library of user-contributed modules. wxPython has
a book, wxPython in Action, by Noel Rappin and Robin Dunn.

PyGTK, PyQt, and wxPython, all have a modern look and feel and more widgets than Tkinter. In addition, there are
many other GUI toolkits for Python, both cross-platform, and platform-specific. See the GUI Programming page in
the Python Wiki for a much more complete list, and also for links to documents where the different GUI toolkits are
compared.

946 Chapter 24. Graphical User Interfaces with Tk

http://www.pygtk.org/
http://www.gtk.org/
http://www.gnome.org
http://www.pythoncad.org/
http://www.pygtk.org/pygtk2tutorial/index.html
http://www.riverbankcomputing.co.uk/software/pyqt/
http://www.commandprompt.com/community/pyqt/
http://www.commandprompt.com/community/pyqt/
http://www.qtrac.eu/pyqtbook.html
http://www.qtrac.eu/pyqtbook.html
http://www.wxpython.org
http://www.wxwidgets.org/
http://www.amazon.com/exec/obidos/ASIN/1932394621
http://wiki.python.org/moin/GuiProgramming

CHAPTER

TWENTYFIVE

DEVELOPMENT TOOLS

The modules described in this chapter help you write software. For example, the pydoc module takes a module
and generates documentation based on the module’s contents. The doctest and unittest modules contains
frameworks for writing unit tests that automatically exercise code and verify that the expected output is produced.
2to3 can translate Python 2.x source code into valid Python 3.x code.

The list of modules described in this chapter is:

25.1 pydoc — Documentation generator and online help system

New in version 2.1. The pydoc module automatically generates documentation from Python modules. The docu-
mentation can be presented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in function help() invokes the online help system in the interactive interpreter, which uses pydoc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside the
Python interpreter by running pydoc as a script at the operating system’s command prompt. For example, running

pydoc sys

at a shell prompt will display documentation on the sys module, in a style similar to the manual pages shown by the
Unix man command. The argument to pydoc can be the name of a function, module, or package, or a dotted reference
to a class, method, or function within a module or module in a package. If the argument to pydoc looks like a path
(that is, it contains the path separator for your operating system, such as a slash in Unix), and refers to an existing
Python source file, then documentation is produced for that file.

Note: In order to find objects and their documentation, pydoc imports the module(s) to be documented. Therefore,
any code on module level will be executed on that occasion. Use an if __name__ == ’__main__’: guard to
only execute code when a file is invoked as a script and not just imported.

Specifying a -w flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying a -k flag before the argument will search the synopsis lines of all available modules for the keyword given
as the argument, again in a manner similar to the Unix man command. The synopsis line of a module is the first line
of its documentation string.

You can also use pydoc to start an HTTP server on the local machine that will serve documentation to visiting Web
browsers. pydoc -p 1234 will start a HTTP server on port 1234, allowing you to browse the documentation at
http://localhost:1234/ in your preferred Web browser. pydoc -g will start the server and additionally bring
up a small Tkinter-based graphical interface to help you search for documentation pages.

When pydoc generates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spam documents precisely the version of the module you would get if you started the Python interpreter and
typed import spam.

947

The Python Library Reference, Release 2.6.9

Module docs for core modules are assumed to reside in http://docs.python.org/library/. This can be overridden by
setting the PYTHONDOCS environment variable to a different URL or to a local directory containing the Library
Reference Manual pages.

25.2 doctest — Test interactive Python examples

The doctest module searches for pieces of text that look like interactive Python sessions, and then executes those
sessions to verify that they work exactly as shown. There are several common ways to use doctest:

• To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as docu-
mented.

• To perform regression testing by verifying that interactive examples from a test file or a test object work as
expected.

• To write tutorial documentation for a package, liberally illustrated with input-output examples. Depending on
whether the examples or the expository text are emphasized, this has the flavor of “literate testing” or “executable
documentation”.

Here’s a complete but small example module:

"""
This is the "example" module.

The example module supplies one function, factorial(). For example,

>>> factorial(5)
120
"""

def factorial(n):
"""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)
Traceback (most recent call last):

...
ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

...
ValueError: n must be exact integer
>>> factorial(30.0)

948 Chapter 25. Development Tools

http://docs.python.org/library/

The Python Library Reference, Release 2.6.9

265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

...
OverflowError: n too large
"""

import math
if not n >= 0:

raise ValueError("n must be >= 0")
if math.floor(n) != n:

raise ValueError("n must be exact integer")
if n+1 == n: # catch a value like 1e300

raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:

result *= factor
factor += 1

return result

if __name__ == "__main__":
import doctest
doctest.testmod()

If you run example.py directly from the command line, doctest works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script, and doctest prints
a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v
Trying:

factorial(5)
Expecting:

120
ok
Trying:

[factorial(n) for n in range(6)]
Expecting:

[1, 1, 2, 6, 24, 120]
ok
Trying:

[factorial(long(n)) for n in range(6)]
Expecting:

[1, 1, 2, 6, 24, 120]
ok

And so on, eventually ending with:

Trying:
factorial(1e100)

25.2. doctest — Test interactive Python examples 949

The Python Library Reference, Release 2.6.9

Expecting:
Traceback (most recent call last):

...
OverflowError: n too large

ok
2 items passed all tests:

1 tests in __main__
8 tests in __main__.factorial

9 tests in 2 items.
9 passed and 0 failed.
Test passed.
$

That’s all you need to know to start making productive use of doctest! Jump in. The following sections provide
full details. Note that there are many examples of doctests in the standard Python test suite and libraries. Especially
useful examples can be found in the standard test file Lib/test/test_doctest.py.

25.2.1 Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you’ll continue to do it) is to end each module M
with:

if __name__ == "__main__":
import doctest
doctest.testmod()

doctest then examines docstrings in module M.

Running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of output is ***Test Failed*** N failures., where N is
the number of examples that failed.

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passing verbose=True to testmod(), or prohibit it by passing
verbose=False. In either of those cases, sys.argv is not examined by testmod() (so passing -v or not
has no effect).

Since Python 2.6, there is also a command line shortcut for running testmod(). You can instruct the Python
interpreter to run the doctest module directly from the standard library and pass the module name(s) on the command
line:

python -m doctest -v example.py

This will import example.py as a standalone module and run testmod() on it. Note that this may not work
correctly if the file is part of a package and imports other submodules from that package.

For more information on testmod(), see section Basic API.

950 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

25.2.2 Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can be done with the
testfile() function:

import doctest
doctest.testfile("example.txt")

That short script executes and verifies any interactive Python examples contained in the file example.txt. The file
content is treated as if it were a single giant docstring; the file doesn’t need to contain a Python program! For example,
perhaps example.txt contains this:

The ‘‘example‘‘ module
======================

Using ‘‘factorial‘‘

This is an example text file in reStructuredText format. First import
‘‘factorial‘‘ from the ‘‘example‘‘ module:

>>> from example import factorial

Now use it:

>>> factorial(6)
120

Running doctest.testfile("example.txt") then finds the error in this documentation:

File "./example.txt", line 14, in example.txt
Failed example:

factorial(6)
Expected:

120
Got:

720

As with testmod(), testfile() won’t display anything unless an example fails. If an example does fail, then
the failing example(s) and the cause(s) of the failure(s) are printed to stdout, using the same format as testmod().

By default, testfile() looks for files in the calling module’s directory. See section Basic API for a description of
the optional arguments that can be used to tell it to look for files in other locations.

Like testmod(), testfile()‘s verbosity can be set with the -v command-line switch or with the optional
keyword argument verbose.

Since Python 2.6, there is also a command line shortcut for running testfile(). You can instruct the Python
interpreter to run the doctest module directly from the standard library and pass the file name(s) on the command line:

python -m doctest -v example.txt

Because the file name does not end with .py, doctest infers that it must be run with testfile(), not
testmod().

For more information on testfile(), see section Basic API.

25.2. doctest — Test interactive Python examples 951

The Python Library Reference, Release 2.6.9

25.2.3 How It Works

This section examines in detail how doctest works: which docstrings it looks at, how it finds interactive examples,
what execution context it uses, how it handles exceptions, and how option flags can be used to control its behavior.
This is the information that you need to know to write doctest examples; for information about actually running doctest
on these examples, see the following sections.

Which Docstrings Are Examined?

The module docstring, and all function, class and method docstrings are searched. Objects imported into the module
are not searched.

In addition, if M.__test__ exists and “is true”, it must be a dict, and each entry maps a (string) name to a function
object, class object, or string. Function and class object docstrings found from M.__test__ are searched, and strings
are treated as if they were docstrings. In output, a key K in M.__test__ appears with name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested classes.
Changed in version 2.4: A “private name” concept is deprecated and no longer documented.

How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine, but doctest isn’t trying to do an exact
emulation of any specific Python shell.

>>> # comments are ignored
>>> x = 12
>>> x
12
>>> if x == 13:
... print "yes"
... else:
... print "no"
... print "NO"
... print "NO!!!"
...
no
NO
NO!!!
>>>

Any expected output must immediately follow the final ’>>> ’ or ’... ’ line containing the code, and the
expected output (if any) extends to the next ’>>> ’ or all-whitespace line.

The fine print:

• Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected
output. If expected output does contain a blank line, put <BLANKLINE> in your doctest example each place a
blank line is expected. Changed in version 2.4: <BLANKLINE> was added; there was no way to use expected
output containing empty lines in previous versions.

• All hard tab characters are expanded to spaces, using 8-column tab stops. Tabs in output generated by the tested
code are not modified. Because any hard tabs in the sample output are expanded, this means that if the code
output includes hard tabs, the only way the doctest can pass is if the NORMALIZE_WHITESPACE option or
directive is in effect. Alternatively, the test can be rewritten to capture the output and compare it to an expected

952 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

value as part of the test. This handling of tabs in the source was arrived at through trial and error, and has proven
to be the least error prone way of handling them. It is possible to use a different algorithm for handling tabs by
writing a custom DocTestParser class. Changed in version 2.4: Expanding tabs to spaces is new; previous
versions tried to preserve hard tabs, with confusing results.

• Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different means).

• If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
should use a raw docstring, which will preserve your backslashes exactly as you type them:

>>> def f(x):
... r’’’Backslashes in a raw docstring: m\n’’’
>>> print f.__doc__
Backslashes in a raw docstring: m\n

Otherwise, the backslash will be interpreted as part of the string. For example, the “\” above would be interpreted
as a newline character. Alternatively, you can double each backslash in the doctest version (and not use a raw
string):

>>> def f(x):
... ’’’Backslashes in a raw docstring: m\\n’’’
>>> print f.__doc__
Backslashes in a raw docstring: m\n

• The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math

>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial ’>>>
’ line that started the example.

What’s the Execution Context?

By default, each time doctest finds a docstring to test, it uses a shallow copy of M‘s globals, so that running tests
doesn’t change the module’s real globals, and so that one test in M can’t leave behind crumbs that accidentally allow
another test to work. This means examples can freely use any names defined at top-level in M, and names defined
earlier in the docstring being run. Examples cannot see names defined in other docstrings.

You can force use of your own dict as the execution context by passing globs=your_dict to testmod() or
testfile() instead.

What About Exceptions?

No problem, provided that the traceback is the only output produced by the example: just paste in the traceback. 1

Since tracebacks contain details that are likely to change rapidly (for example, exact file paths and line numbers), this
is one case where doctest works hard to be flexible in what it accepts.

Simple example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

1 Examples containing both expected output and an exception are not supported. Trying to guess where one ends and the other begins is too
error-prone, and that also makes for a confusing test.

25.2. doctest — Test interactive Python examples 953

The Python Library Reference, Release 2.6.9

That doctest succeeds if ValueError is raised, with the list.remove(x): x not in list detail as
shown.

The expected output for an exception must start with a traceback header, which may be either of the following two
lines, indented the same as the first line of the example:

Traceback (most recent call last):
Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents are ignored by doctest. The traceback
stack is typically omitted, or copied verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s) containing the exception type and detail. This
is usually the last line of a traceback, but can extend across multiple lines if the exception has a multi-line detail:

>>> raise ValueError(’multi\n line\ndetail’)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: multi

line
detail

The last three lines (starting with ValueError) are compared against the exception’s type and detail, and the rest
are ignored.

Best practice is to omit the traceback stack, unless it adds significant documentation value to the example. So the last
example is probably better as:

>>> raise ValueError(’multi\n line\ndetail’)
Traceback (most recent call last):

...
ValueError: multi

line
detail

Note that tracebacks are treated very specially. In particular, in the rewritten example, the use of ... is independent
of doctest’s ELLIPSIS option. The ellipsis in that example could be left out, or could just as well be three (or three
hundred) commas or digits, or an indented transcript of a Monty Python skit.

Some details you should read once, but won’t need to remember:

• Doctest can’t guess whether your expected output came from an exception traceback or from ordinary printing.
So, e.g., an example that expects ValueError: 42 is prime will pass whether ValueError is actu-
ally raised or if the example merely prints that traceback text. In practice, ordinary output rarely begins with a
traceback header line, so this doesn’t create real problems.

• Each line of the traceback stack (if present) must be indented further than the first line of the example, or start
with a non-alphanumeric character. The first line following the traceback header indented the same and starting
with an alphanumeric is taken to be the start of the exception detail. Of course this does the right thing for
genuine tracebacks.

• When the IGNORE_EXCEPTION_DETAIL doctest option is is specified, everything following the leftmost
colon is ignored.

• The interactive shell omits the traceback header line for some SyntaxErrors. But doctest uses the trace-
back header line to distinguish exceptions from non-exceptions. So in the rare case where you need to test a
SyntaxError that omits the traceback header, you will need to manually add the traceback header line to
your test example.

• For some SyntaxErrors, Python displays the character position of the syntax error, using a ^ marker:

954 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

>>> 1 1
File "<stdin>", line 1

1 1
^

SyntaxError: invalid syntax

Since the lines showing the position of the error come before the exception type and detail, they are not checked
by doctest. For example, the following test would pass, even though it puts the ^ marker in the wrong location:

>>> 1 1
File "<stdin>", line 1

1 1
^

SyntaxError: invalid syntax

Changed in version 2.4: The ability to handle a multi-line exception detail, and the IGNORE_EXCEPTION_DETAIL
doctest option, were added.

Option Flags and Directives

A number of option flags control various aspects of doctest’s behavior. Symbolic names for the flags are supplied as
module constants, which can be or’ed together and passed to various functions. The names can also be used in doctest
directives (see below).

The first group of options define test semantics, controlling aspects of how doctest decides whether actual output
matches an example’s expected output:

DONT_ACCEPT_TRUE_FOR_1
By default, if an expected output block contains just 1, an actual output block containing just 1 or just True
is considered to be a match, and similarly for 0 versus False. When DONT_ACCEPT_TRUE_FOR_1 is
specified, neither substitution is allowed. The default behavior caters to that Python changed the return type of
many functions from integer to boolean; doctests expecting “little integer” output still work in these cases. This
option will probably go away, but not for several years.

DONT_ACCEPT_BLANKLINE
By default, if an expected output block contains a line containing only the string <BLANKLINE>, then that line
will match a blank line in the actual output. Because a genuinely blank line delimits the expected output, this is
the only way to communicate that a blank line is expected. When DONT_ACCEPT_BLANKLINE is specified,
this substitution is not allowed.

NORMALIZE_WHITESPACE
When specified, all sequences of whitespace (blanks and newlines) are treated as equal. Any sequence of
whitespace within the expected output will match any sequence of whitespace within the actual output. By de-
fault, whitespace must match exactly. NORMALIZE_WHITESPACE is especially useful when a line of expected
output is very long, and you want to wrap it across multiple lines in your source.

ELLIPSIS
When specified, an ellipsis marker (...) in the expected output can match any substring in the actual output.
This includes substrings that span line boundaries, and empty substrings, so it’s best to keep usage of this simple.
Complicated uses can lead to the same kinds of “oops, it matched too much!” surprises that .* is prone to in
regular expressions.

IGNORE_EXCEPTION_DETAIL
When specified, an example that expects an exception passes if an exception of the expected type is raised, even
if the exception detail does not match. For example, an example expecting ValueError: 42 will pass if
the actual exception raised is ValueError: 3*14, but will fail, e.g., if TypeError is raised.

25.2. doctest — Test interactive Python examples 955

The Python Library Reference, Release 2.6.9

Note that a similar effect can be obtained using ELLIPSIS, and IGNORE_EXCEPTION_DETAIL may go
away when Python releases prior to 2.4 become uninteresting. Until then, IGNORE_EXCEPTION_DETAIL
is the only clear way to write a doctest that doesn’t care about the exception detail yet continues to pass under
Python releases prior to 2.4 (doctest directives appear to be comments to them). For example,

>>> (1, 2)[3] = ’moo’ #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment

passes under Python 2.4 and Python 2.3. The detail changed in 2.4, to say “does not” instead of “doesn’t”.

SKIP
When specified, do not run the example at all. This can be useful in contexts where doctest examples serve as
both documentation and test cases, and an example should be included for documentation purposes, but should
not be checked. E.g., the example’s output might be random; or the example might depend on resources which
would be unavailable to the test driver.

The SKIP flag can also be used for temporarily “commenting out” examples.

COMPARISON_FLAGS
A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

REPORT_UDIFF
When specified, failures that involve multi-line expected and actual outputs are displayed using a unified diff.

REPORT_CDIFF
When specified, failures that involve multi-line expected and actual outputs will be displayed using a context
diff.

REPORT_NDIFF
When specified, differences are computed by difflib.Differ, using the same algorithm as the popular
ndiff.py utility. This is the only method that marks differences within lines as well as across lines. For
example, if a line of expected output contains digit 1 where actual output contains letter l, a line is inserted with
a caret marking the mismatching column positions.

REPORT_ONLY_FIRST_FAILURE
When specified, display the first failing example in each doctest, but suppress output for all remaining examples.
This will prevent doctest from reporting correct examples that break because of earlier failures; but it might also
hide incorrect examples that fail independently of the first failure. When REPORT_ONLY_FIRST_FAILURE
is specified, the remaining examples are still run, and still count towards the total number of failures reported;
only the output is suppressed.

REPORTING_FLAGS
A bitmask or’ing together all the reporting flags above.

“Doctest directives” may be used to modify the option flags for individual examples. Doctest directives are expressed
as a special Python comment following an example’s source code:

directive ::= “#” “doctest:” directive_options
directive_options ::= directive_option (“,” directive_option)*
directive_option ::= on_or_off directive_option_name
on_or_off ::= “+” \| “-“
directive_option_name ::= “DONT_ACCEPT_BLANKLINE” \| “NORMALIZE_WHITESPACE” \| ...

Whitespace is not allowed between the + or - and the directive option name. The directive option name can be any of
the option flag names explained above.

956 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

An example’s doctest directives modify doctest’s behavior for that single example. Use + to enable the named behavior,
or - to disable it.

For example, this test passes:

>>> print range(20) #doctest: +NORMALIZE_WHITESPACE
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have two blanks before the single-digit list
elements, and because the actual output is on a single line. This test also passes, and also requires a directive to do so:

>>> print range(20) # doctest:+ELLIPSIS
[0, 1, ..., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print range(20) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[0, 1, ..., 18, 19]

If multiple directive comments are used for a single example, then they are combined:

>>> print range(20) # doctest: +ELLIPSIS
... # doctest: +NORMALIZE_WHITESPACE
[0, 1, ..., 18, 19]

As the previous example shows, you can add ... lines to your example containing only directives. This can be useful
when an example is too long for a directive to comfortably fit on the same line:

>>> print range(5) + range(10,20) + range(30,40) + range(50,60)
... # doctest: +ELLIPSIS
[0, ..., 4, 10, ..., 19, 30, ..., 39, 50, ..., 59]

Note that since all options are disabled by default, and directives apply only to the example they appear in, enabling
options (via + in a directive) is usually the only meaningful choice. However, option flags can also be passed to
functions that run doctests, establishing different defaults. In such cases, disabling an option via - in a directive can
be useful. Changed in version 2.4: Constants DONT_ACCEPT_BLANKLINE, NORMALIZE_WHITESPACE,
ELLIPSIS, IGNORE_EXCEPTION_DETAIL, REPORT_UDIFF, REPORT_CDIFF, REPORT_NDIFF,
REPORT_ONLY_FIRST_FAILURE, COMPARISON_FLAGS and REPORTING_FLAGS were added; by de-
fault <BLANKLINE> in expected output matches an empty line in actual output; and doctest directives were
added.Changed in version 2.5: Constant SKIP was added. There’s also a way to register new option flag names,
although this isn’t useful unless you intend to extend doctest internals via subclassing:

register_optionflag(name)
Create a new option flag with a given name, and return the new flag’s integer value.
register_optionflag() can be used when subclassing OutputChecker or DocTestRunner
to create new options that are supported by your subclasses. register_optionflag() should always be
called using the following idiom:

MY_FLAG = register_optionflag(’MY_FLAG’)

New in version 2.4.

Warnings

doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match, the
test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t guarantee
about output. For example, when printing a dict, Python doesn’t guarantee that the key-value pairs will be printed in
any particular order, so a test like

25.2. doctest — Test interactive Python examples 957

The Python Library Reference, Release 2.6.9

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>> d
[(’Harry’, ’broomstick’), (’Hermione’, ’hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>> class C: pass
>>> C() # the default repr() for instances embeds an address
<__main__.C instance at 0x00AC18F0>

The ELLIPSIS directive gives a nice approach for the last example:

>>> C() #doctest: +ELLIPSIS
<__main__.C instance at 0x...>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to the
platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285
>>> print 1./7 # safer
0.142857142857
>>> print round(1./7, 6) # much safer
0.142857

Numbers of the form I/2.**J are safe across all platforms, and I often contrive doctest examples to produce numbers
of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

25.2.4 Basic API

The functions testmod() and testfile() provide a simple interface to doctest that should be sufficient for most
basic uses. For a less formal introduction to these two functions, see sections Simple Usage: Checking Examples in
Docstrings and Simple Usage: Checking Examples in a Text File.

testfile(filename, [module_relative], [name], [package], [globs], [verbose], [report], [optionflags], [extra-
globs], [raise_on_error], [parser], [encoding])

All arguments except filename are optional, and should be specified in keyword form.

Test examples in the file named filename. Return (failure_count, test_count).

Optional argument module_relative specifies how the filename should be interpreted:

958 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

•If module_relative is True (the default), then filename specifies an OS-independent module-relative path.
By default, this path is relative to the calling module’s directory; but if the package argument is specified,
then it is relative to that package. To ensure OS-independence, filename should use / characters to separate
path segments, and may not be an absolute path (i.e., it may not begin with /).

•If module_relative is False, then filename specifies an OS-specific path. The path may be absolute or
relative; relative paths are resolved with respect to the current working directory.

Optional argument name gives the name of the test; by default, or if None,
os.path.basename(filename) is used.

Optional argument package is a Python package or the name of a Python package whose directory should be
used as the base directory for a module-relative filename. If no package is specified, then the calling mod-
ule’s directory is used as the base directory for module-relative filenames. It is an error to specify package if
module_relative is False.

Optional argument globs gives a dict to be used as the globals when executing examples. A new shallow copy of
this dict is created for the doctest, so its examples start with a clean slate. By default, or if None, a new empty
dict is used.

Optional argument extraglobs gives a dict merged into the globals used to execute examples. This works like
dict.update(): if globs and extraglobs have a common key, the associated value in extraglobs appears in
the combined dict. By default, or if None, no extra globals are used. This is an advanced feature that allows
parameterization of doctests. For example, a doctest can be written for a base class, using a generic name for
the class, then reused to test any number of subclasses by passing an extraglobs dict mapping the generic name
to the subclass to be tested.

Optional argument verbose prints lots of stuff if true, and prints only failures if false; by default, or if None, it’s
true if and only if ’-v’ is in sys.argv.

Optional argument report prints a summary at the end when true, else prints nothing at the end. In verbose
mode, the summary is detailed, else the summary is very brief (in fact, empty if all tests passed).

Optional argument optionflags or’s together option flags. See section Option Flags and Directives.

Optional argument raise_on_error defaults to false. If true, an exception is raised upon the first failure or
unexpected exception in an example. This allows failures to be post-mortem debugged. Default behavior is to
continue running examples.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to convert the file to unicode. New in
version 2.4.Changed in version 2.5: The parameter encoding was added.

testmod([m], [name], [globs], [verbose], [report], [optionflags], [extraglobs], [raise_on_error], [ex-
clude_empty])

All arguments are optional, and all except for m should be specified in keyword form.

Test examples in docstrings in functions and classes reachable from module m (or module __main__ if m is
not supplied or is None), starting with m.__doc__.

Also test examples reachable from dict m.__test__, if it exists and is not None. m.__test__ maps names
(strings) to functions, classes and strings; function and class docstrings are searched for examples; strings are
searched directly, as if they were docstrings.

Only docstrings attached to objects belonging to module m are searched.

Return (failure_count, test_count).

Optional argument name gives the name of the module; by default, or if None, m.__name__ is used.

25.2. doctest — Test interactive Python examples 959

The Python Library Reference, Release 2.6.9

Optional argument exclude_empty defaults to false. If true, objects for which no doctests are found
are excluded from consideration. The default is a backward compatibility hack, so that code still using
doctest.master.summarize() in conjunction with testmod() continues to get output for objects
with no tests. The exclude_empty argument to the newer DocTestFinder constructor defaults to true.

Optional arguments extraglobs, verbose, report, optionflags, raise_on_error, and globs are the same as for func-
tion testfile() above, except that globs defaults to m.__dict__. Changed in version 2.3: The parameter
optionflags was added.Changed in version 2.4: The parameters extraglobs, raise_on_error and exclude_empty
were added.Changed in version 2.5: The optional argument isprivate, deprecated in 2.4, was removed.

There’s also a function to run the doctests associated with a single object. This function is provided for backward
compatibility. There are no plans to deprecate it, but it’s rarely useful:

run_docstring_examples(f, globs, [verbose], [name], [compileflags], [optionflags])
Test examples associated with object f ; for example, f may be a module, function, or class object.

A shallow copy of dictionary argument globs is used for the execution context.

Optional argument name is used in failure messages, and defaults to "NoName".

If optional argument verbose is true, output is generated even if there are no failures. By default, output is
generated only in case of an example failure.

Optional argument compileflags gives the set of flags that should be used by the Python compiler when running
the examples. By default, or if None, flags are deduced corresponding to the set of future features found in
globs.

Optional argument optionflags works as for function testfile() above.

25.2.5 Unittest API

As your collection of doctest’ed modules grows, you’ll want a way to run all their doctests systematically. Prior to
Python 2.4, doctest had a barely documented Tester class that supplied a rudimentary way to combine doctests
from multiple modules. Tester was feeble, and in practice most serious Python testing frameworks build on the
unittest module, which supplies many flexible ways to combine tests from multiple sources. So, in Python 2.4,
doctest‘s Tester class is deprecated, and doctest provides two functions that can be used to create unittest
test suites from modules and text files containing doctests. These test suites can then be run using unittest test
runners:

import unittest
import doctest
import my_module_with_doctests, and_another

suite = unittest.TestSuite()
for mod in my_module_with_doctests, and_another:

suite.addTest(doctest.DocTestSuite(mod))
runner = unittest.TextTestRunner()
runner.run(suite)

There are two main functions for creating unittest.TestSuite instances from text files and modules with
doctests:

DocFileSuite(*paths, [module_relative], [package], [setUp], [tearDown], [globs], [optionflags], [parser], [en-
coding])

Convert doctest tests from one or more text files to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs the interactive examples
in each file. If an example in any file fails, then the synthesized unit test fails, and a failureException
exception is raised showing the name of the file containing the test and a (sometimes approximate) line number.

960 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

Pass one or more paths (as strings) to text files to be examined.

Options may be provided as keyword arguments:

Optional argument module_relative specifies how the filenames in paths should be interpreted:

•If module_relative is True (the default), then each filename in paths specifies an OS-independent module-
relative path. By default, this path is relative to the calling module’s directory; but if the package argument
is specified, then it is relative to that package. To ensure OS-independence, each filename should use /
characters to separate path segments, and may not be an absolute path (i.e., it may not begin with /).

•If module_relative is False, then each filename in paths specifies an OS-specific path. The path may be
absolute or relative; relative paths are resolved with respect to the current working directory.

Optional argument package is a Python package or the name of a Python package whose directory should be
used as the base directory for module-relative filenames in paths. If no package is specified, then the calling
module’s directory is used as the base directory for module-relative filenames. It is an error to specify package
if module_relative is False.

Optional argument setUp specifies a set-up function for the test suite. This is called before running the tests in
each file. The setUp function will be passed a DocTest object. The setUp function can access the test globals
as the globs attribute of the test passed.

Optional argument tearDown specifies a tear-down function for the test suite. This is called after running the
tests in each file. The tearDown function will be passed a DocTest object. The setUp function can access the
test globals as the globs attribute of the test passed.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument optionflags specifies the default doctest options for the tests, created by or-
ing together individual option flags. See section Option Flags and Directives. See function
set_unittest_reportflags() below for a better way to set reporting options.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (i.e., DocTestParser()).

Optional argument encoding specifies an encoding that should be used to convert the file to unicode. New in
version 2.4.Changed in version 2.5: The global __file__was added to the globals provided to doctests loaded
from a text file using DocFileSuite().Changed in version 2.5: The parameter encoding was added.

DocTestSuite([module], [globs], [extraglobs], [test_finder], [setUp], [tearDown], [checker])
Convert doctest tests for a module to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs each doctest in the
module. If any of the doctests fail, then the synthesized unit test fails, and a failureException exception
is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Optional argument module provides the module to be tested. It can be a module object or a (possibly dotted)
module name. If not specified, the module calling this function is used.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument extraglobs specifies an extra set of global variables, which is merged into globs. By default,
no extra globals are used.

Optional argument test_finder is the DocTestFinder object (or a drop-in replacement) that is used to extract
doctests from the module.

Optional arguments setUp, tearDown, and optionflags are the same as for function DocFileSuite() above.
New in version 2.3.Changed in version 2.4: The parameters globs, extraglobs, test_finder, setUp, tearDown,
and optionflags were added; this function now uses the same search technique as testmod().

25.2. doctest — Test interactive Python examples 961

The Python Library Reference, Release 2.6.9

Under the covers, DocTestSuite() creates a unittest.TestSuite out of doctest.DocTestCase in-
stances, and DocTestCase is a subclass of unittest.TestCase. DocTestCase isn’t documented here (it’s
an internal detail), but studying its code can answer questions about the exact details of unittest integration.

Similarly, DocFileSuite() creates a unittest.TestSuite out of doctest.DocFileCase instances, and
DocFileCase is a subclass of DocTestCase.

So both ways of creating a unittest.TestSuite run instances of DocTestCase. This is important for a
subtle reason: when you run doctest functions yourself, you can control the doctest options in use directly,
by passing option flags to doctest functions. However, if you’re writing a unittest framework, unittest
ultimately controls when and how tests get run. The framework author typically wants to control doctest reporting
options (perhaps, e.g., specified by command line options), but there’s no way to pass options through unittest to
doctest test runners.

For this reason, doctest also supports a notion of doctest reporting flags specific to unittest support, via this
function:

set_unittest_reportflags(flags)
Set the doctest reporting flags to use.

Argument flags or’s together option flags. See section Option Flags and Directives. Only “reporting flags” can
be used.

This is a module-global setting, and affects all future doctests run by module unittest: the runTest()
method of DocTestCase looks at the option flags specified for the test case when the DocTestCase instance
was constructed. If no reporting flags were specified (which is the typical and expected case), doctest‘s
unittest reporting flags are or’ed into the option flags, and the option flags so augmented are passed to
the DocTestRunner instance created to run the doctest. If any reporting flags were specified when the
DocTestCase instance was constructed, doctest‘s unittest reporting flags are ignored.

The value of the unittest reporting flags in effect before the function was called is returned by the function.
New in version 2.4.

25.2.6 Advanced API

The basic API is a simple wrapper that’s intended to make doctest easy to use. It is fairly flexible, and should meet most
users’ needs; however, if you require more fine-grained control over testing, or wish to extend doctest’s capabilities,
then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store the interactive examples extracted
from doctest cases:

• Example: A single Python statement, paired with its expected output.

• DocTest: A collection of Examples, typically extracted from a single docstring or text file.

Additional processing classes are defined to find, parse, and run, and check doctest examples:

• DocTestFinder: Finds all docstrings in a given module, and uses a DocTestParser to create a DocTest
from every docstring that contains interactive examples.

• DocTestParser: Creates a DocTest object from a string (such as an object’s docstring).

• DocTestRunner: Executes the examples in a DocTest, and uses an OutputChecker to verify their
output.

• OutputChecker: Compares the actual output from a doctest example with the expected output, and decides
whether they match.

The relationships among these processing classes are summarized in the following diagram:

962 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

list of:
+------+ +---------+
|module| --DocTestFinder-> | DocTest | --DocTestRunner-> results
+------+ | ^ +---------+ | ^ (printed)

| | | Example | | |
v | | ... | v |

DocTestParser | Example | OutputChecker
+---------+

DocTest Objects

class DocTest(examples, globs, name, filename, lineno, docstring)
A collection of doctest examples that should be run in a single namespace. The constructor arguments are used
to initialize the member variables of the same names. New in version 2.4. DocTest defines the following
member variables. They are initialized by the constructor, and should not be modified directly.

examples
A list of Example objects encoding the individual interactive Python examples that should be run by this
test.

globs
The namespace (aka globals) that the examples should be run in. This is a dictionary mapping names to
values. Any changes to the namespace made by the examples (such as binding new variables) will be
reflected in globs after the test is run.

name
A string name identifying the DocTest. Typically, this is the name of the object or file that the test was
extracted from.

filename
The name of the file that this DocTest was extracted from; or None if the filename is unknown, or if the
DocTest was not extracted from a file.

lineno
The line number within filename where this DocTest begins, or None if the line number is unavail-
able. This line number is zero-based with respect to the beginning of the file.

docstring
The string that the test was extracted from, or ‘None’ if the string is unavailable, or if the test was not
extracted from a string.

Example Objects

class Example(source, want, [exc_msg], [lineno], [indent], [options])
A single interactive example, consisting of a Python statement and its expected output. The constructor argu-
ments are used to initialize the member variables of the same names. New in version 2.4. Example defines the
following member variables. They are initialized by the constructor, and should not be modified directly.

source
A string containing the example’s source code. This source code consists of a single Python statement,
and always ends with a newline; the constructor adds a newline when necessary.

want
The expected output from running the example’s source code (either from stdout, or a traceback in case
of exception). want ends with a newline unless no output is expected, in which case it’s an empty string.
The constructor adds a newline when necessary.

25.2. doctest — Test interactive Python examples 963

The Python Library Reference, Release 2.6.9

exc_msg
The exception message generated by the example, if the example is expected to generate an exception;
or None if it is not expected to generate an exception. This exception message is compared against the
return value of traceback.format_exception_only(). exc_msg ends with a newline unless
it’s None. The constructor adds a newline if needed.

lineno
The line number within the string containing this example where the example begins. This line number is
zero-based with respect to the beginning of the containing string.

indent
The example’s indentation in the containing string, i.e., the number of space characters that precede the
example’s first prompt.

options
A dictionary mapping from option flags to True or False, which is used to override default options for
this example. Any option flags not contained in this dictionary are left at their default value (as specified
by the DocTestRunner‘s optionflags). By default, no options are set.

DocTestFinder objects

class DocTestFinder([verbose], [parser], [recurse], [exclude_empty])
A processing class used to extract the DocTests that are relevant to a given object, from its docstring and
the docstrings of its contained objects. DocTests can currently be extracted from the following object types:
modules, functions, classes, methods, staticmethods, classmethods, and properties.

The optional argument verbose can be used to display the objects searched by the finder. It defaults to False
(no output).

The optional argument parser specifies the DocTestParser object (or a drop-in replacement) that is used to
extract doctests from docstrings.

If the optional argument recurse is false, then DocTestFinder.find() will only examine the given object,
and not any contained objects.

If the optional argument exclude_empty is false, then DocTestFinder.find() will include tests for objects
with empty docstrings. New in version 2.4. DocTestFinder defines the following method:

find(obj, [name], [module], [globs], [extraglobs])
Return a list of the DocTests that are defined by obj‘s docstring, or by any of its contained objects’
docstrings.

The optional argument name specifies the object’s name; this name will be used to construct names for the
returned DocTests. If name is not specified, then obj.__name__ is used.

The optional parameter module is the module that contains the given object. If the module is not specified
or is None, then the test finder will attempt to automatically determine the correct module. The object’s
module is used:

•As a default namespace, if globs is not specified.

•To prevent the DocTestFinder from extracting DocTests from objects that are imported from other
modules. (Contained objects with modules other than module are ignored.)

•To find the name of the file containing the object.

•To help find the line number of the object within its file.

If module is False, no attempt to find the module will be made. This is obscure, of use mostly in testing
doctest itself: if module is False, or is None but cannot be found automatically, then all objects are

964 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

considered to belong to the (non-existent) module, so all contained objects will (recursively) be searched
for doctests.

The globals for each DocTest is formed by combining globs and extraglobs (bindings in extraglobs
override bindings in globs). A new shallow copy of the globals dictionary is created for each DocTest. If
globs is not specified, then it defaults to the module’s __dict__, if specified, or {} otherwise. If extraglobs
is not specified, then it defaults to {}.

DocTestParser objects

class DocTestParser()
A processing class used to extract interactive examples from a string, and use them to create a DocTest object.
New in version 2.4. DocTestParser defines the following methods:

get_doctest(string, globs, name, filename, lineno)
Extract all doctest examples from the given string, and collect them into a DocTest object.

globs, name, filename, and lineno are attributes for the new DocTest object. See the documentation for
DocTest for more information.

get_examples(string, [name])
Extract all doctest examples from the given string, and return them as a list of Example objects. Line
numbers are 0-based. The optional argument name is a name identifying this string, and is only used for
error messages.

parse(string, [name])
Divide the given string into examples and intervening text, and return them as a list of alternating
Examples and strings. Line numbers for the Examples are 0-based. The optional argument name is
a name identifying this string, and is only used for error messages.

DocTestRunner objects

class DocTestRunner([checker], [verbose], [optionflags])
A processing class used to execute and verify the interactive examples in a DocTest.

The comparison between expected outputs and actual outputs is done by an OutputChecker. This com-
parison may be customized with a number of option flags; see section Option Flags and Directives for more
information. If the option flags are insufficient, then the comparison may also be customized by passing a
subclass of OutputChecker to the constructor.

The test runner’s display output can be controlled in two ways. First, an output function can be passed
to TestRunner.run(); this function will be called with strings that should be displayed. It defaults to
sys.stdout.write. If capturing the output is not sufficient, then the display output can be also customized
by subclassing DocTestRunner, and overriding the methods report_start(), report_success(),
report_unexpected_exception(), and report_failure().

The optional keyword argument checker specifies the OutputChecker object (or drop-in replacement) that
should be used to compare the expected outputs to the actual outputs of doctest examples.

The optional keyword argument verbose controls the DocTestRunner‘s verbosity. If verbose is True, then
information is printed about each example, as it is run. If verbose is False, then only failures are printed. If
verbose is unspecified, or None, then verbose output is used iff the command-line switch -v is used.

The optional keyword argument optionflags can be used to control how the test runner compares expected output
to actual output, and how it displays failures. For more information, see section Option Flags and Directives.
New in version 2.4. DocTestParser defines the following methods:

25.2. doctest — Test interactive Python examples 965

The Python Library Reference, Release 2.6.9

report_start(out, test, example)
Report that the test runner is about to process the given example. This method is provided to allow sub-
classes of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. test is the test containing example. out is the output function
that was passed to DocTestRunner.run().

report_success(out, test, example, got)
Report that the given example ran successfully. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. test is the test
containing example. out is the output function that was passed to DocTestRunner.run().

report_failure(out, test, example, got)
Report that the given example failed. This method is provided to allow subclasses of DocTestRunner
to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. test is the test
containing example. out is the output function that was passed to DocTestRunner.run().

report_unexpected_exception(out, test, example, exc_info)
Report that the given example raised an unexpected exception. This method is provided to allow subclasses
of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. exc_info is a tuple containing information about the un-
expected exception (as returned by sys.exc_info()). test is the test containing example. out is the
output function that was passed to DocTestRunner.run().

run(test, [compileflags], [out], [clear_globs])
Run the examples in test (a DocTest object), and display the results using the writer function out.

The examples are run in the namespace test.globs. If clear_globs is true (the default), then this
namespace will be cleared after the test runs, to help with garbage collection. If you would like to examine
the namespace after the test completes, then use clear_globs=False.

compileflags gives the set of flags that should be used by the Python compiler when running the examples.
If not specified, then it will default to the set of future-import flags that apply to globs.

The output of each example is checked using the DocTestRunner‘s output checker, and the results are
formatted by the DocTestRunner.report_*() methods.

summarize([verbose])
Print a summary of all the test cases that have been run by this DocTestRunner, and return a named tuple
TestResults(failed, attempted).

The optional verbose argument controls how detailed the summary is. If the verbosity is not specified, then
the DocTestRunner‘s verbosity is used. Changed in version 2.6: Use a named tuple.

OutputChecker objects

class OutputChecker()
A class used to check the whether the actual output from a doctest example matches the expected output.
OutputChecker defines two methods: check_output(), which compares a given pair of outputs, and
returns true if they match; and output_difference(), which returns a string describing the differences
between two outputs. New in version 2.4. OutputChecker defines the following methods:

check_output(want, got, optionflags)
Return True iff the actual output from an example (got) matches the expected output (want). These strings
are always considered to match if they are identical; but depending on what option flags the test runner is

966 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

using, several non-exact match types are also possible. See section Option Flags and Directives for more
information about option flags.

output_difference(example, got, optionflags)
Return a string describing the differences between the expected output for a given example (example) and
the actual output (got). optionflags is the set of option flags used to compare want and got.

25.2.7 Debugging

Doctest provides several mechanisms for debugging doctest examples:

• Several functions convert doctests to executable Python programs, which can be run under the Python debugger,
pdb.

• The DebugRunner class is a subclass of DocTestRunner that raises an exception for the first failing exam-
ple, containing information about that example. This information can be used to perform post-mortem debug-
ging on the example.

• The unittest cases generated by DocTestSuite() support the debug() method defined by
unittest.TestCase.

• You can add a call to pdb.set_trace() in a doctest example, and you’ll drop into the Python debugger
when that line is executed. Then you can inspect current values of variables, and so on. For example, suppose
a.py contains just this module docstring:

"""
>>> def f(x):
... g(x*2)
>>> def g(x):
... print x+3
... import pdb; pdb.set_trace()
>>> f(3)
9
"""

Then an interactive Python session may look like this:

>>> import a, doctest
>>> doctest.testmod(a)
--Return--
> <doctest a[1]>(3)g()->None
-> import pdb; pdb.set_trace()
(Pdb) list

1 def g(x):
2 print x+3
3 -> import pdb; pdb.set_trace()

[EOF]
(Pdb) print x
6
(Pdb) step
--Return--
> <doctest a[0]>(2)f()->None
-> g(x*2)
(Pdb) list

1 def f(x):
2 -> g(x*2)

[EOF]

25.2. doctest — Test interactive Python examples 967

The Python Library Reference, Release 2.6.9

(Pdb) print x
3
(Pdb) step
--Return--
> <doctest a[2]>(1)?()->None
-> f(3)
(Pdb) cont
(0, 3)
>>>

Changed in version 2.4: The ability to use pdb.set_trace() usefully inside doctests was added.

Functions that convert doctests to Python code, and possibly run the synthesized code under the debugger:

script_from_examples(s)
Convert text with examples to a script.

Argument s is a string containing doctest examples. The string is converted to a Python script, where doctest
examples in s are converted to regular code, and everything else is converted to Python comments. The generated
script is returned as a string. For example,

import doctest
print doctest.script_from_examples(r"""

Set x and y to 1 and 2.
>>> x, y = 1, 2

Print their sum:
>>> print x+y
3

""")

displays:

Set x and y to 1 and 2.
x, y = 1, 2
#
Print their sum:
print x+y
Expected:
3

This function is used internally by other functions (see below), but can also be useful when you want to transform
an interactive Python session into a Python script. New in version 2.4.

testsource(module, name)
Convert the doctest for an object to a script.

Argument module is a module object, or dotted name of a module, containing the object whose doctests
are of interest. Argument name is the name (within the module) of the object with the doctests of inter-
est. The result is a string, containing the object’s docstring converted to a Python script, as described for
script_from_examples() above. For example, if module a.py contains a top-level function f(), then

import a, doctest
print doctest.testsource(a, "a.f")

prints a script version of function f()‘s docstring, with doctests converted to code, and the rest placed in
comments. New in version 2.3.

968 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

debug(module, name, [pm])
Debug the doctests for an object.

The module and name arguments are the same as for function testsource() above. The synthesized Python
script for the named object’s docstring is written to a temporary file, and then that file is run under the control
of the Python debugger, pdb.

A shallow copy of module.__dict__ is used for both local and global execution context.

Optional argument pm controls whether post-mortem debugging is used. If pm has a true value, the script file
is run directly, and the debugger gets involved only if the script terminates via raising an unhandled exception.
If it does, then post-mortem debugging is invoked, via pdb.post_mortem(), passing the traceback object
from the unhandled exception. If pm is not specified, or is false, the script is run under the debugger from the
start, via passing an appropriate execfile() call to pdb.run(). New in version 2.3.Changed in version
2.4: The pm argument was added.

debug_src(src, [pm], [globs])
Debug the doctests in a string.

This is like function debug() above, except that a string containing doctest examples is specified directly, via
the src argument.

Optional argument pm has the same meaning as in function debug() above.

Optional argument globs gives a dictionary to use as both local and global execution context. If not specified,
or None, an empty dictionary is used. If specified, a shallow copy of the dictionary is used. New in version 2.4.

The DebugRunner class, and the special exceptions it may raise, are of most interest to testing framework authors,
and will only be sketched here. See the source code, and especially DebugRunner‘s docstring (which is a doctest!)
for more details:

class DebugRunner([checker], [verbose], [optionflags])
A subclass of DocTestRunner that raises an exception as soon as a failure is encountered. If an unexpected
exception occurs, an UnexpectedException exception is raised, containing the test, the example, and the
original exception. If the output doesn’t match, then a DocTestFailure exception is raised, containing the
test, the example, and the actual output.

For information about the constructor parameters and methods, see the documentation for DocTestRunner
in section Advanced API.

There are two exceptions that may be raised by DebugRunner instances:

exception DocTestFailure
An exception thrown by DocTestRunner to signal that a doctest example’s actual output did not match its
expected output. The constructor arguments are used to initialize the member variables of the same names.

DocTestFailure defines the following member variables:

test
The DocTest object that was being run when the example failed.

example
The Example that failed.

got
The example’s actual output.

exception UnexpectedException
An exception thrown by DocTestRunner to signal that a doctest example raised an unexpected exception.
The constructor arguments are used to initialize the member variables of the same names.

UnexpectedException defines the following member variables:

25.2. doctest — Test interactive Python examples 969

The Python Library Reference, Release 2.6.9

test
The DocTest object that was being run when the example failed.

example
The Example that failed.

exc_info
A tuple containing information about the unexpected exception, as returned by sys.exc_info().

25.2.8 Soapbox

As mentioned in the introduction, doctest has grown to have three primary uses:

1. Checking examples in docstrings.

2. Regression testing.

3. Executable documentation / literate testing.

These uses have different requirements, and it is important to distinguish them. In particular, filling your docstrings
with obscure test cases makes for bad documentation.

When writing a docstring, choose docstring examples with care. There’s an art to this that needs to be learned—it
may not be natural at first. Examples should add genuine value to the documentation. A good example can often be
worth many words. If done with care, the examples will be invaluable for your users, and will pay back the time it
takes to collect them many times over as the years go by and things change. I’m still amazed at how often one of my
doctest examples stops working after a “harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you don’t skimp on explanatory text. By
interleaving prose and examples, it becomes much easier to keep track of what’s actually being tested, and why. When
a test fails, good prose can make it much easier to figure out what the problem is, and how it should be fixed. It’s
true that you could write extensive comments in code-based testing, but few programmers do. Many have found that
using doctest approaches instead leads to much clearer tests. Perhaps this is simply because doctest makes writing
prose a little easier than writing code, while writing comments in code is a little harder. I think it goes deeper than just
that: the natural attitude when writing a doctest-based test is that you want to explain the fine points of your software,
and illustrate them with examples. This in turn naturally leads to test files that start with the simplest features, and
logically progress to complications and edge cases. A coherent narrative is the result, instead of a collection of isolated
functions that test isolated bits of functionality seemingly at random. It’s a different attitude, and produces different
results, blurring the distinction between testing and explaining.

Regression testing is best confined to dedicated objects or files. There are several options for organizing tests:

• Write text files containing test cases as interactive examples, and test the files using testfile() or
DocFileSuite(). This is recommended, although is easiest to do for new projects, designed from the
start to use doctest.

• Define functions named _regrtest_topic that consist of single docstrings, containing test cases for the
named topics. These functions can be included in the same file as the module, or separated out into a separate
test file.

• Define a __test__ dictionary mapping from regression test topics to docstrings containing test cases.

25.3 unittest — Unit testing framework

New in version 2.1. The Python unit testing framework, sometimes referred to as “PyUnit,” is a Python language
version of JUnit, by Kent Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’s Smalltalk testing
framework. Each is the de facto standard unit testing framework for its respective language.

970 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

unittest supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collec-
tions, and independence of the tests from the reporting framework. The unittest module provides classes that
make it easy to support these qualities for a set of tests.

To achieve this, unittest supports some important concepts:

test fixture A test fixture represents the preparation needed to perform one or more tests, and any associate cleanup
actions. This may involve, for example, creating temporary or proxy databases, directories, or starting a server
process.

test case A test case is the smallest unit of testing. It checks for a specific response to a particular set of inputs.
unittest provides a base class, TestCase, which may be used to create new test cases.

test suite A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests that should be
executed together.

test runner A test runner is a component which orchestrates the execution of tests and provides the outcome to the
user. The runner may use a graphical interface, a textual interface, or return a special value to indicate the results
of executing the tests.

The test case and test fixture concepts are supported through the TestCase and FunctionTestCase classes; the
former should be used when creating new tests, and the latter can be used when integrating existing test code with
a unittest-driven framework. When building test fixtures using TestCase, the setUp() and tearDown()
methods can be overridden to provide initialization and cleanup for the fixture. With FunctionTestCase, existing
functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization is run first;
if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of the test. Each
instance of the TestCase will only be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by the TestSuite class. This class allows individual tests and test suites to be aggre-
gated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single method, run(), which accepts a TestCase or TestSuite object as
a parameter, and returns a result object. The class TestResult is provided for use as the result object. unittest
provides the TextTestRunner as an example test runner which reports test results on the standard error stream by
default. Alternate runners can be implemented for other environments (such as graphical environments) without any
need to derive from a specific class.

See Also:

Module doctest Another test-support module with a very different flavor.

Simple Smalltalk Testing: With Patterns Kent Beck’s original paper on testing frameworks using the pattern shared
by unittest.

Nose and py.test Third-party unittest frameworks with a lighter-weight syntax for writing tests. For example,
assert func(10) == 42.

python-mock and minimock Tools for creating mock test objects (objects simulating external resources).

25.3.1 Basic example

The unittest module provides a rich set of tools for constructing and running tests. This section demonstrates that
a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three functions from the random module:

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

25.3. unittest — Unit testing framework 971

http://www.XProgramming.com/testfram.htm
http://code.google.com/p/python-nose/
http://pytest.org
http://python-mock.sourceforge.net/
http://blog.ianbicking.org/minimock.html

The Python Library Reference, Release 2.6.9

def setUp(self):
self.seq = range(10)

def test_shuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, range(10))

def test_choice(self):
element = random.choice(self.seq)
self.assertTrue(element in self.seq)

def test_sample(self):
self.assertRaises(ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):

self.assertTrue(element in self.seq)

if __name__ == ’__main__’:
unittest.main()

A testcase is created by subclassing unittest.TestCase. The three individual tests are defined with methods
whose names start with the letters test. This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call to assertEqual() to check for an expected result; assert_() to verify a condition;
or assertRaises() to verify that an expected exception gets raised. These methods are used instead of the
assert statement so the test runner can accumulate all test results and produce a report.

When a setUp() method is defined, the test runner will run that method prior to each test. Likewise, if a
tearDown() method is defined, the test runner will invoke that method after each test. In the example, setUp()
was used to create a fresh sequence for each test.

The final block shows a simple way to run the tests. unittest.main() provides a command line interface to the
test script. When run from the command line, the above script produces an output that looks like this:

...
--
Ran 3 tests in 0.000s

OK

Instead of unittest.main(), there are other ways to run the tests with a finer level of control, less terse output,
and no requirement to be run from the command line. For example, the last two lines may be replaced with:

suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)
unittest.TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

test_choice (__main__.TestSequenceFunctions) ... ok
test_sample (__main__.TestSequenceFunctions) ... ok
test_shuffle (__main__.TestSequenceFunctions) ... ok

--
Ran 3 tests in 0.110s

OK

972 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

The above examples show the most commonly used unittest features which are sufficient to meet many everyday
testing needs. The remainder of the documentation explores the full feature set from first principles.

25.3.2 Organizing test code

The basic building blocks of unit testing are test cases — single scenarios that must be set up and checked for correct-
ness. In unittest, test cases are represented by instances of unittest‘s TestCase class. To make your own
test cases you must write subclasses of TestCase, or use FunctionTestCase.

An instance of a TestCase-derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of a TestCase instance should be entirely self contained, such that it can be run either in isolation
or in arbitrary combination with any number of other test cases.

The simplest TestCase subclass will simply override the runTest() method in order to perform specific testing
code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
def runTest(self):

widget = Widget(’The widget’)
self.assertEqual(widget.size(), (50, 50), ’incorrect default size’)

Note that in order to test something, we use the one of the assert*() or fail*() methods provided by the
TestCase base class. If the test fails, an exception will be raised, and unittest will identify the test case as a
failure. Any other exceptions will be treated as errors. This helps you identify where the problem is: failures are
caused by incorrect results - a 5 where you expected a 6. Errors are caused by incorrect code - e.g., a TypeError
caused by an incorrect function call.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case, we
call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a Widget in
each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method called setUp(), which the testing framework
will automatically call for us when we run the test:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget(’The widget’)

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):

self.assertEqual(self.widget.size(), (50,50),
’incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):

self.widget.resize(100,150)
self.assertEqual(self.widget.size(), (100,150),

’wrong size after resize’)

25.3. unittest — Unit testing framework 973

The Python Library Reference, Release 2.6.9

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and the runTest() method will not be executed.

Similarly, we can provide a tearDown() method that tidies up after the runTest() method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget(’The widget’)

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, the tearDown() method will be run whether runTest() succeeded or not.

Such a working environment for the testing code is called a fixture.

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes such as DefaultWidgetSizeTestCase.
This is time-consuming and discouraging, so in the same vein as JUnit, unittest provides a simpler mechanism:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget(’The widget’)

def tearDown(self):
self.widget.dispose()
self.widget = None

def test_default_size(self):
self.assertEqual(self.widget.size(), (50,50),

’incorrect default size’)

def test_resize(self):
self.widget.resize(100,150)
self.assertEqual(self.widget.size(), (100,150),

’wrong size after resize’)

Here we have not provided a runTest() method, but have instead provided two different test methods. Class
instances will now each run one of the test_*() methods, with self.widget created and destroyed separately
for each instance. When creating an instance we must specify the test method it is to run. We do this by passing the
method name in the constructor:

defaultSizeTestCase = WidgetTestCase(’test_default_size’)
resizeTestCase = WidgetTestCase(’test_resize’)

Test case instances are grouped together according to the features they test. unittest provides a mechanism for
this: the test suite, represented by unittest‘s TestSuite class:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase(’test_default_size’))
widgetTestSuite.addTest(WidgetTestCase(’test_resize’))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object that
returns a pre-built test suite:

974 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase(’test_default_size’))
suite.addTest(WidgetTestCase(’test_resize’))
return suite

or even:

def suite():
tests = [’test_default_size’, ’test_resize’]

return unittest.TestSuite(map(WidgetTestCase, tests))

Since it is a common pattern to create a TestCase subclass with many similarly named test functions, unittest
provides a TestLoader class that can be used to automate the process of creating a test suite and populating it with
individual tests. For example,

suite = unittest.TestLoader().loadTestsFromTestCase(WidgetTestCase)

will create a test suite that will run WidgetTestCase.test_default_size() and
WidgetTestCase.test_resize. TestLoader uses the ’test’ method name prefix to identify test
methods automatically.

Note that the order in which the various test cases will be run is determined by sorting the test function names with
the built-in cmp() function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, since TestSuite instances can be added to a TestSuite just as TestCase instances can be added to a
TestSuite:

suite1 = module1.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest.TestSuite([suite1, suite2])

You can place the definitions of test cases and test suites in the same modules as the code they are to test
(such as widget.py), but there are several advantages to placing the test code in a separate module, such as
test_widget.py:

• The test module can be run standalone from the command line.

• The test code can more easily be separated from shipped code.

• There is less temptation to change test code to fit the code it tests without a good reason.

• Test code should be modified much less frequently than the code it tests.

• Tested code can be refactored more easily.

• Tests for modules written in C must be in separate modules anyway, so why not be consistent?

• If the testing strategy changes, there is no need to change the source code.

25.3.3 Re-using old test code

Some users will find that they have existing test code that they would like to run from unittest, without converting
every old test function to a TestCase subclass.

For this reason, unittest provides a FunctionTestCase class. This subclass of TestCase can be used to
wrap an existing test function. Set-up and tear-down functions can also be provided.

Given the following test function:

25.3. unittest — Unit testing framework 975

The Python Library Reference, Release 2.6.9

def testSomething():
something = makeSomething()
assert something.name is not None
...

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they can
also be provided like so:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

To make migrating existing test suites easier, unittest supports tests raising AssertionError to indicate test
failure. However, it is recommended that you use the explicit TestCase.fail*() and TestCase.assert*()
methods instead, as future versions of unittest may treat AssertionError differently.

Note: Even though FunctionTestCase can be used to quickly convert an existing test base over to a unittest-
based system, this approach is not recommended. Taking the time to set up proper TestCase subclasses will make
future test refactorings infinitely easier.

25.3.4 Classes and functions

class TestCase([methodName])
Instances of the TestCase class represent the smallest testable units in the unittest universe. This class
is intended to be used as a base class, with specific tests being implemented by concrete subclasses. This class
implements the interface needed by the test runner to allow it to drive the test, and methods that the test code
can use to check for and report various kinds of failure.

Each instance of TestCase will run a single test method: the method named methodName. If you remember,
we had an earlier example that went something like this:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase(’test_default_size’))
suite.addTest(WidgetTestCase(’test_resize’))
return suite

Here, we create two instances of WidgetTestCase, each of which runs a single test.

methodName defaults to ’runTest’.

class FunctionTestCase(testFunc, [setUp, [tearDown, [description]]])
This class implements the portion of the TestCase interface which allows the test runner to drive the test, but
does not provide the methods which test code can use to check and report errors. This is used to create test cases
using legacy test code, allowing it to be integrated into a unittest-based test framework.

class TestSuite([tests])
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case. Running a TestSuite instance is the
same as iterating over the suite, running each test individually.

If tests is given, it must be an iterable of individual test cases or other test suites that will be used to build the
suite initially. Additional methods are provided to add test cases and suites to the collection later on.

976 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

class TestLoader()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite. It can load all tests within a given module or TestCase subclass.

class TestResult()
This class is used to compile information about which tests have succeeded and which have failed.

defaultTestLoader
Instance of the TestLoader class intended to be shared. If no customization of the TestLoader is needed,
this instance can be used instead of repeatedly creating new instances.

class TextTestRunner([stream, [descriptions, [verbosity]]])
A basic test runner implementation which prints results on standard error. It has a few configurable parameters,
but is essentially very simple. Graphical applications which run test suites should provide alternate implemen-
tations.

main([module, [defaultTest, [argv, [testRunner, [testLoader]]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently exe-
cutable. The simplest use for this function is to include the following line at the end of a test script:

if __name__ == ’__main__’:
unittest.main()

The testRunner argument can either be a test runner class or an already created instance of it.

In some cases, the existing tests may have been written using the doctest module. If so, that module provides a
DocTestSuite class that can automatically build unittest.TestSuite instances from the existing doctest-
based tests. New in version 2.3.

25.3.5 TestCase Objects

Each TestCase instance represents a single test, but each concrete subclass may be used to define multiple tests —
the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the test
itself to be gathered.

Methods in the first group (running the test) are:

setUp()
Method called to prepare the test fixture. This is called immediately before calling the test method; any exception
raised by this method will be considered an error rather than a test failure. The default implementation does
nothing.

tearDown()
Method called immediately after the test method has been called and the result recorded. This is called even
if the test method raised an exception, so the implementation in subclasses may need to be particularly careful
about checking internal state. Any exception raised by this method will be considered an error rather than a test
failure. This method will only be called if the setUp() succeeds, regardless of the outcome of the test method.
The default implementation does nothing.

run([result])
Run the test, collecting the result into the test result object passed as result. If result is omitted or None, a
temporary result object is created (by calling the defaultTestCase() method) and used; this result object
is not returned to run()‘s caller.

The same effect may be had by simply calling the TestCase instance.

25.3. unittest — Unit testing framework 977

The Python Library Reference, Release 2.6.9

debug()
Run the test without collecting the result. This allows exceptions raised by the test to be propagated to the caller,
and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert_(expr, [msg])
failUnless(expr, [msg])
assertTrue(expr, [msg])

Signal a test failure if expr is false; the explanation for the error will be msg if given, otherwise it will be None.

assertEqual(first, second, [msg])
failUnlessEqual(first, second, [msg])

Test that first and second are equal. If the values do not compare equal, the test will fail with the explanation
given by msg, or None. Note that using failUnlessEqual() improves upon doing the comparison as the
first parameter to failUnless(): the default value for msg can be computed to include representations of
both first and second.

assertNotEqual(first, second, [msg])
failIfEqual(first, second, [msg])

Test that first and second are not equal. If the values do compare equal, the test will fail with the explanation
given by msg, or None. Note that using failIfEqual() improves upon doing the comparison as the first
parameter to failUnless() is that the default value for msg can be computed to include representations of
both first and second.

assertAlmostEqual(first, second, [places, [msg]])
failUnlessAlmostEqual(first, second, [places, [msg]])

Test that first and second are approximately equal by computing the difference, rounding to the given number
of decimal places (default 7), and comparing to zero. Note that comparing a given number of decimal places is
not the same as comparing a given number of significant digits. If the values do not compare equal, the test will
fail with the explanation given by msg, or None.

assertNotAlmostEqual(first, second, [places, [msg]])
failIfAlmostEqual(first, second, [places, [msg]])

Test that first and second are not approximately equal by computing the difference, rounding to the given number
of decimal places (default 7), and comparing to zero. Note that comparing a given number of decimal places is
not the same as comparing a given number of significant digits. If the values do not compare equal, the test will
fail with the explanation given by msg, or None.

assertRaises(exception, callable, ...)
failUnlessRaises(exception, callable, ...)

Test that an exception is raised when callable is called with any positional or keyword arguments that are also
passed to assertRaises(). The test passes if exception is raised, is an error if another exception is raised,
or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes
may be passed as exception.

failIf(expr, [msg])
assertFalse(expr, [msg])

The inverse of the failUnless() method is the failIf() method. This signals a test failure if expr is true,
with msg or None for the error message.

fail([msg])
Signals a test failure unconditionally, with msg or None for the error message.

failureException
This class attribute gives the exception raised by the test() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to “play
fair” with the framework. The initial value of this attribute is AssertionError.

978 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

Testing frameworks can use the following methods to collect information on the test:

countTestCases()
Return the number of tests represented by this test object. For TestCase instances, this will always be 1.

defaultTestResult()
Return an instance of the test result class that should be used for this test case class (if no other result instance
is provided to the run() method).

For TestCase instances, this will always be an instance of TestResult; subclasses of TestCase should
override this as necessary.

id()
Return a string identifying the specific test case. This is usually the full name of the test method, including the
module and class name.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided. The default implemen-
tation of this method returns the first line of the test method’s docstring, if available, or None.

25.3.6 TestSuite Objects

TestSuite objects behave much like TestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups of tests that should be run together. Some additional methods are available
to add tests to TestSuite instances:

addTest(test)
Add a TestCase or TestSuite to the suite.

addTests(tests)
Add all the tests from an iterable of TestCase and TestSuite instances to this test suite.

This is equivalent to iterating over tests, calling addTest() for each element.

TestSuite shares the following methods with TestCase:

run(result)
Run the tests associated with this suite, collecting the result into the test result object passed as result. Note that
unlike TestCase.run(), TestSuite.run() requires the result object to be passed in.

debug()
Run the tests associated with this suite without collecting the result. This allows exceptions raised by the test to
be propagated to the caller and can be used to support running tests under a debugger.

countTestCases()
Return the number of tests represented by this test object, including all individual tests and sub-suites.

In the typical usage of a TestSuite object, the run() method is invoked by a TestRunner rather than by the
end-user test harness.

25.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. The TestCase and TestSuite classes ensure that
results are properly recorded; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top of unittest may want access to the TestResult object generated by running
a set of tests for reporting purposes; a TestResult instance is returned by the TestRunner.run() method for
this purpose.

25.3. unittest — Unit testing framework 979

The Python Library Reference, Release 2.6.9

TestResult instances have the following attributes that will be of interest when inspecting the results of running a
set of tests:

errors
A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each tuple rep-
resents a test which raised an unexpected exception. Changed in version 2.2: Contains formatted tracebacks
instead of sys.exc_info() results.

failures
A list containing 2-tuples of TestCase instances and strings holding formatted tracebacks. Each
tuple represents a test where a failure was explicitly signalled using the TestCase.fail*() or
TestCase.assert*() methods. Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc_info() results.

testsRun
The total number of tests run so far.

wasSuccessful()
Returns True if all tests run so far have passed, otherwise returns False.

stop()
This method can be called to signal that the set of tests being run should be aborted by setting the
TestResult‘s shouldStop attribute to True. TestRunner objects should respect this flag and return
without running any additional tests.

For example, this feature is used by the TextTestRunner class to stop the test framework when the user
signals an interrupt from the keyboard. Interactive tools which provide TestRunner implementations can use
this in a similar manner.

The following methods of the TestResult class are used to maintain the internal data structures, and may be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools which
support interactive reporting while tests are being run.

startTest(test)
Called when the test case test is about to be run.

The default implementation simply increments the instance’s testsRun counter.

stopTest(test)
Called after the test case test has been executed, regardless of the outcome.

The default implementation does nothing.

addError(test, err)
Called when the test case test raises an unexpected exception err is a tuple of the form returned by
sys.exc_info(): (type, value, traceback).

The default implementation appends a tuple (test, formatted_err) to the instance’s errors attribute,
where formatted_err is a formatted traceback derived from err.

addFailure(test, err)
Called when the test case test signals a failure. err is a tuple of the form returned by sys.exc_info():
(type, value, traceback).

The default implementation appends a tuple (test, formatted_err) to the instance’s failures at-
tribute, where formatted_err is a formatted traceback derived from err.

addSuccess(test)
Called when the test case test succeeds.

The default implementation does nothing.

980 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

25.3.8 TestLoader Objects

The TestLoader class is used to create test suites from classes and modules. Normally, there is no
need to create an instance of this class; the unittest module provides an instance that can be shared as
unittest.defaultTestLoader. Using a subclass or instance, however, allows customization of some con-
figurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase(testCaseClass)
Return a suite of all tests cases contained in the TestCase-derived testCaseClass.

loadTestsFromModule(module)
Return a suite of all tests cases contained in the given module. This method searches module for classes derived
from TestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy of TestCase-derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does
not play well with this method. Doing so, however, can be useful when the fixtures are different and defined
in subclasses.

loadTestsFromName(name, [module])
Return a suite of all tests cases given a string specifier.

The specifier name is a “dotted name” that may resolve either to a module, a test case class, a test method within
a test case class, a TestSuite instance, or a callable object which returns a TestCase or TestSuite
instance. These checks are applied in the order listed here; that is, a method on a possible test case class will be
picked up as “a test method within a test case class”, rather than “a callable object”.

For example, if you have a module SampleTests containing a TestCase-derived class SampleTestCase
with three test methods (test_one(), test_two(), and test_three()), the specifier
’SampleTests.SampleTestCase’ would cause this method to return a suite which will run all
three test methods. Using the specifier ’SampleTests.SampleTestCase.test_two’ would cause it
to return a test suite which will run only the test_two() test method. The specifier can refer to modules and
packages which have not been imported; they will be imported as a side-effect.

The method optionally resolves name relative to the given module.

loadTestsFromNames(names, [module])
Similar to loadTestsFromName(), but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames(testCaseClass)
Return a sorted sequence of method names found within testCaseClass; this should be a subclass of TestCase.

The following attributes of a TestLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
’test’.

This affects getTestCaseNames() and all the loadTestsFrom*() methods.

sortTestMethodsUsing
Function to be used to compare method names when sorting them in getTestCaseNames() and all the
loadTestsFrom*() methods. The default value is the built-in cmp() function; the attribute can also be set
to None to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is the TestSuite class.

25.3. unittest — Unit testing framework 981

The Python Library Reference, Release 2.6.9

This affects all the loadTestsFrom*() methods.

25.4 2to3 - Automated Python 2 to 3 code translation

2to3 is a Python program that reads Python 2.x source code and applies a series of fixers to transform it into valid
Python 3.x code. The standard library contains a rich set of fixers that will handle almost all code. 2to3 support-
ing library lib2to3 is, however, a flexible and generic library, so it is possible to write your own fixers for 2to3.
lib2to3 could also be adapted to custom applications in which Python code needs to be edited automatically.

25.4.1 Using 2to3

2to3 will usually be installed with the Python interpreter as a script. It is also located in the Tools/scripts
directory of the Python root.

2to3’s basic arguments are a list of files or directories to transform. The directories are to recursively traversed for
Python sources.

Here is a sample Python 2.x source file, example.py:

def greet(name):
print "Hello, {0}!".format(name)

print "What’s your name?"
name = raw_input()
greet(name)

It can be converted to Python 3.x code via 2to3 on the command line:

$ 2to3 example.py

A diff against the original source file is printed. 2to3 can also write the needed modifications right back to the source
file. (A backup of the original file is made unless -n is also given.) Writing the changes back is enabled with the -w
flag:

$ 2to3 -w example.py

After transformation, example.py looks like this:

def greet(name):
print("Hello, {0}!".format(name))

print("What’s your name?")
name = input()
greet(name)

Comments and exact indentation are preserved throughout the translation process.

By default, 2to3 runs a set of predefined fixers. The -l flag lists all available fixers. An explicit set of fixers to run
can be given with -f. Likewise the -x explicitly disables a fixer. The following example runs only the imports and
has_key fixers:

$ 2to3 -f imports -f has_key example.py

This command runs every fixer except the apply fixer:

$ 2to3 -x apply example.py

Some fixers are explicit, meaning they aren’t run by default and must be listed on the command line to be run. Here,
in addition to the default fixers, the idioms fixer is run:

$ 2to3 -f all -f idioms example.py

982 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

Notice how passing all enables all default fixers.

Sometimes 2to3 will find a place in your source code that needs to be changed, but 2to3 cannot fix automatically.
In this case, 2to3 will print a warning beneath the diff for a file. You should address the warning in order to have
compliant 3.x code.

2to3 can also refactor doctests. To enable this mode, use the -d flag. Note that only doctests will be refactored. This
also doesn’t require the module to be valid Python. For example, doctest like examples in a reST document could also
be refactored with this option.

The -v option enables output of more information on the translation process.

Since some print statements can be parsed as function calls or statements, 2to3 cannot always read files containing the
print function. When 2to3 detects the presence of the from __future__ import print_function compiler
directive, it modifies its internal grammar to interpert print() as a function. This change can also be enabled
manually with the -p flag. Use -p to run fixers on code that already has had its print statements converted.

25.4.2 Fixers

Each step of transforming code is encapsulated in a fixer. The command 2to3 -l lists them. As documented above,
each can be turned on and off individually. They are described here in more detail.

apply
Removes usage of apply(). For example apply(function, *args, **kwargs) is converted to
function(*args, **kwargs).

basestring
Converts basestring to str.

buffer
Converts buffer to memoryview. This fixer is optional because the memoryview API is similar but not
exactly the same as that of buffer.

callable
Converts callable(x) to isinstance(x, collections.Callable), adding an import to
collections if needed.

dict
Fixes dictionary iteration methods. dict.iteritems() is converted to dict.items(),
dict.iterkeys() to dict.keys(), and dict.itervalues() to dict.values(). Similarly,
dict.viewitems(), dict.viewkeys() and dict.viewvalues() are converted respectively to
dict.items(), dict.keys() and dict.values(). It also wraps existing usages of dict.items(),
dict.keys(), and dict.values() in a call to list.

except
Converts except X, T to except X as T.

exec
Converts the exec statement to the exec() function.

execfile
Removes usage of execfile(). The argument to execfile() is wrapped in calls to open(),
compile(), and exec().

exitfunc
Changes assignment of sys.exitfunc to use of the atexit module.

filter
Wraps filter() usage in a list call.

25.4. 2to3 - Automated Python 2 to 3 code translation 983

The Python Library Reference, Release 2.6.9

funcattrs
Fixes function attributes that have been renamed. For example, my_function.func_closure is converted
to my_function.__closure__.

future
Removes from __future__ import new_feature statements.

getcwdu
Renames os.getcwdu() to os.getcwd().

has_key
Changes dict.has_key(key) to key in dict.

idioms
This optional fixer performs several transformations that make Python code more idiomatic. Type compar-
isons like type(x) is SomeClass and type(x) == SomeClass are converted to isinstance(x,
SomeClass). while 1 becomes while True. This fixer also tries to make use of sorted() in appro-
priate places. For example, this block

L = list(some_iterable)
L.sort()

is changed to

L = sorted(some_iterable)

import
Detects sibling imports and converts them to relative imports.

imports
Handles module renames in the standard library.

imports2
Handles other modules renames in the standard library. It is separate from the imports fixer only because of
technical limitations.

input
Converts input(prompt) to eval(input(prompt))

intern
Converts intern() to sys.intern().

isinstance
Fixes duplicate types in the second argument of isinstance(). For example, isinstance(x, (int,
int)) is converted to isinstance(x, (int)).

itertools_imports
Removes imports of itertools.ifilter(), itertools.izip(), and itertools.imap(). Im-
ports of itertools.ifilterfalse() are also changed to itertools.filterfalse().

itertools
Changes usage of itertools.ifilter(), itertools.izip(), and itertools.imap() to their
built-in equivalents. itertools.ifilterfalse() is changed to itertools.filterfalse().

long
Strips the L prefix on long literals and renames long to int.

map
Wraps map() in a list call. It also changes map(None, x) to list(x). Using from
future_builtins import map disables this fixer.

984 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

metaclass
Converts the old metaclass syntax (__metaclass__ = Meta in the class body) to the new (class
X(metaclass=Meta)).

methodattrs
Fixes old method attribute names. For example, meth.im_func is converted to meth.__func__.

ne
Converts the old not-equal syntax, <>, to !=.

next
Converts the use of iterator’s next() methods to the next() function. It also renames next() methods to
__next__().

nonzero
Renames __nonzero__() to __bool__().

numliterals
Converts octal literals into the new syntax.

paren
Add extra parenthesis where they are required in list comprehensions. For example, [x for x in 1, 2]
becomes [x for x in (1, 2)].

print
Converts the print statement to the print() function.

raise
Converts raise E, V to raise E(V), and raise E, V, T to raise
E(V).with_traceback(T). If E is a tuple, the translation will be incorrect because substituting
tuples for exceptions has been removed in 3.0.

raw_input
Converts raw_input() to input().

reduce
Handles the move of reduce() to functools.reduce().

renames
Changes sys.maxint to sys.maxsize.

repr
Replaces backtick repr with the repr() function.

set_literal
Replaces use of the set constructor with set literals. This fixer is optional.

standard_error
Renames StandardError to Exception.

sys_exc
Changes the deprecated sys.exc_value, sys.exc_type, sys.exc_traceback to use
sys.exc_info().

throw
Fixes the API change in generator’s throw() method.

tuple_params
Removes implicit tuple parameter unpacking. This fixer inserts temporary variables.

types
Fixes code broken from the removal of some members in the types module.

25.4. 2to3 - Automated Python 2 to 3 code translation 985

The Python Library Reference, Release 2.6.9

unicode
Renames unicode to str.

urllib
Handles the rename of urllib and urllib2 to the urllib package.

ws_comma
Removes excess whitespace from comma separated items. This fixer is optional.

xrange
Renames xrange() to range() and wraps existing range() calls with list.

xreadlines
Changes for x in file.xreadlines() to for x in file.

zip
Wraps zip() usage in a list call. This is disabled when from future_builtins import zip
appears.

25.4.3 lib2to3 - 2to3’s library

Note: The lib2to3 API should be considered unstable and may change drastically in the future.

25.5 test — Regression tests package for Python

Note: The test package is meant for internal use by Python only. It is documented for the benefit of the core
developers of Python. Any use of this package outside of Python’s standard library is discouraged as code mentioned
here can change or be removed without notice between releases of Python.

The test package contains all regression tests for Python as well as the modules test.test_support and
test.regrtest. test.test_support is used to enhance your tests while test.regrtest drives the test-
ing suite.

Each module in the test package whose name starts with test_ is a testing suite for a specific module or feature.
All new tests should be written using the unittest or doctest module. Some older tests are written using a
“traditional” testing style that compares output printed to sys.stdout; this style of test is considered deprecated.

See Also:

Module unittest Writing PyUnit regression tests.

Module doctest Tests embedded in documentation strings.

25.5.1 Writing Unit Tests for the test package

It is preferred that tests that use the unittest module follow a few guidelines. One is to name the test module by
starting it with test_ and end it with the name of the module being tested. The test methods in the test module
should start with test_ and end with a description of what the method is testing. This is needed so that the methods
are recognized by the test driver as test methods. Also, no documentation string for the method should be included. A
comment (such as # Tests function returns only True or False) should be used to provide docu-
mentation for test methods. This is done because documentation strings get printed out if they exist and thus what test
is being run is not stated.

A basic boilerplate is often used:

986 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

import unittest
from test import test_support

class MyTestCase1(unittest.TestCase):

Only use setUp() and tearDown() if necessary

def setUp(self):
... code to execute in preparation for tests ...

def tearDown(self):
... code to execute to clean up after tests ...

def test_feature_one(self):
Test feature one.
... testing code ...

def test_feature_two(self):
Test feature two.
... testing code ...

... more test methods ...

class MyTestCase2(unittest.TestCase):
... same structure as MyTestCase1 ...

... more test classes ...

def test_main():
test_support.run_unittest(MyTestCase1,

MyTestCase2,
... list other tests ...
)

if __name__ == ’__main__’:
test_main()

This boilerplate code allows the testing suite to be run by test.regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

• The testing suite should exercise all classes, functions, and constants. This includes not just the external API
that is to be presented to the outside world but also “private” code.

• Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and edge
cases are tested.

• Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

• Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as many
different paths through the code are taken.

• Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not crop
up again if the code is changed in the future.

• Make sure to clean up after your tests (such as close and remove all temporary files).

25.5. test — Regression tests package for Python 987

The Python Library Reference, Release 2.6.9

• If a test is dependent on a specific condition of the operating system then verify the condition already exists
before attempting the test.

• Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of tests
and also minimizes possible anomalous behavior from side-effects of importing a module.

• Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is used.
Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):

func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1,2,3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = ’abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1,2,3)

See Also:

Test Driven Development A book by Kent Beck on writing tests before code.

25.5.2 Running tests using test.regrtest

test.regrtest can be used as a script to drive Python’s regression test suite. Running the script by itself automat-
ically starts running all regression tests in the test package. It does this by finding all modules in the package whose
name starts with test_, importing them, and executing the function test_main() if present. The names of tests
to execute may also be passed to the script. Specifying a single regression test (python regrtest.py test_spam.py)
will minimize output and only print whether the test passed or failed and thus minimize output.

Running test.regrtest directly allows what resources are available for tests to use to be set. You do this
by using the -u command-line option. Run python regrtest.py -uall to turn on all resources; specifying all
as an option for -u enables all possible resources. If all but one resource is desired (a more common case), a
comma-separated list of resources that are not desired may be listed after all. The command python regrtest.py
-uall,-audio,-largefilewill run test.regrtestwith all resources except the audio and largefile
resources. For a list of all resources and more command-line options, run python regrtest.py -h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on. On Unix,
you can run make test at the top-level directory where Python was built. On Windows, executing rt.bat from your
PCBuild directory will run all regression tests.

25.6 test.test_support — Utility functions for tests

Note: The test.test_support module has been renamed to test.support in Python 3.x.

The test.test_support module provides support for Python’s regression tests.

This module defines the following exceptions:

988 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

exception TestFailed
Exception to be raised when a test fails. This is deprecated in favor of unittest-based tests and
unittest.TestCase‘s assertion methods.

exception TestSkipped
Subclass of TestFailed. Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exception ResourceDenied
Subclass of TestSkipped. Raised when a resource (such as a network connection) is not available. Raised
by the requires() function.

The test.test_support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about a
running test. verbose is set by test.regrtest.

have_unicode
True when Unicode support is available.

is_jython
True if the running interpreter is Jython.

TESTFN
Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

The test.test_support module defines the following functions:

forget(module_name)
Removes the module named module_name from sys.modules and deletes any byte-compiled files of the
module.

is_resource_enabled(resource)
Returns True if resource is enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

requires(resource, [msg])
Raises ResourceDenied if resource is not available. msg is the argument to ResourceDenied if it is
raised. Always returns true if called by a function whose __name__ is ’__main__’. Used when tests are
executed by test.regrtest.

findfile(filename)
Return the path to the file named filename. If no match is found filename is returned. This does not equal a
failure since it could be the path to the file.

run_unittest(*classes)
Execute unittest.TestCase subclasses passed to the function. The function scans the classes for methods
starting with the prefix test_ and executes the tests individually.

It is also legal to pass strings as parameters; these should be keys in sys.modules. Each associated module
will be scanned by unittest.TestLoader.loadTestsFromModule(). This is usually seen in the
following test_main() function:

def test_main():
test_support.run_unittest(__name__)

This will run all tests defined in the named module.

25.6. test.test_support — Utility functions for tests 989

The Python Library Reference, Release 2.6.9

check_warnings()
A convenience wrapper for warnings.catch_warnings() that makes it easier to test that a
warning was correctly raised with a single assertion. It is approximately equivalent to calling
warnings.catch_warnings(record=True).

The main difference is that on entry to the context manager, a WarningRecorder instance is returned instead
of a simple list. The underlying warnings list is available via the recorder object’s warnings attribute, while
the attributes of the last raised warning are also accessible directly on the object. If no warning has been raised,
then the latter attributes will all be None.

A reset() method is also provided on the recorder object. This method simply clears the warning list.

The context manager is used like this:

with check_warnings() as w:
warnings.simplefilter("always")
warnings.warn("foo")
assert str(w.message) == "foo"
warnings.warn("bar")
assert str(w.message) == "bar"
assert str(w.warnings[0].message) == "foo"
assert str(w.warnings[1].message) == "bar"
w.reset()
assert len(w.warnings) == 0

New in version 2.6.

captured_stdout()
This is a context manager that runs the with statement body using a StringIO.StringIO object as
sys.stdout. That object can be retrieved using the as clause of the with statement.

Example use:

with captured_stdout() as s:
print "hello"

assert s.getvalue() == "hello"

New in version 2.6.

The test.test_support module defines the following classes:

class TransientResource(exc, [**kwargs])
Instances are a context manager that raises ResourceDenied if the specified exception type is raised. Any
keyword arguments are treated as attribute/value pairs to be compared against any exception raised within the
with statement. Only if all pairs match properly against attributes on the exception is ResourceDenied
raised. New in version 2.6.

class EnvironmentVarGuard()
Class used to temporarily set or unset environment variables. Instances can be used as a context manager. New
in version 2.6.

set(envvar, value)
Temporarily set the environment variable envvar to the value of value.

unset(envvar)
Temporarily unset the environment variable envvar.

990 Chapter 25. Development Tools

The Python Library Reference, Release 2.6.9

class WarningsRecorder()
Class used to record warnings for unit tests. See documentation of check_warnings() above for more
details. New in version 2.6.

25.6. test.test_support — Utility functions for tests 991

The Python Library Reference, Release 2.6.9

992 Chapter 25. Development Tools

CHAPTER

TWENTYSIX

DEBUGGING AND PROFILING

These libraries help you with Python development: the debugger enables you to step through code, analyze stack
frames and set breakpoints etc., and the profilers run code and give you a detailed breakdown of execution times,
allowing you to identify bottlenecks in your programs.

26.1 bdb — Debugger framework

The bdb module handles basic debugger functions, like setting breakpoints or managing execution via the debugger.

The following exception is defined:

exception BdbQuit
Exception raised by the Bdb class for quitting the debugger.

The bdb module also defines two classes:

class Breakpoint(self, file, line, [temporary=0, [cond=None, [funcname=None]]])
This class implements temporary breakpoints, ignore counts, disabling and (re-)enabling, and conditionals.

Breakpoints are indexed by number through a list called bpbynumber and by (file, line) pairs through
bplist. The former points to a single instance of class Breakpoint. The latter points to a list of such
instances since there may be more than one breakpoint per line.

When creating a breakpoint, its associated filename should be in canonical form. If a funcname is defined, a
breakpoint hit will be counted when the first line of that function is executed. A conditional breakpoint always
counts a hit.

Breakpoint instances have the following methods:

deleteMe()
Delete the breakpoint from the list associated to a file/line. If it is the last breakpoint in that position, it
also deletes the entry for the file/line.

enable()
Mark the breakpoint as enabled.

disable()
Mark the breakpoint as disabled.

pprint([out])
Print all the information about the breakpoint:

•The breakpoint number.

•If it is temporary or not.

993

The Python Library Reference, Release 2.6.9

•Its file,line position.

•The condition that causes a break.

•If it must be ignored the next N times.

•The breakpoint hit count.

class Bdb(skip=None)
The Bdb class acts as a generic Python debugger base class.

This class takes care of the details of the trace facility; a derived class should implement user interaction. The
standard debugger class (pdb.Pdb) is an example.

The skip argument, if given, must be an iterable of glob-style module name patterns. The debugger will not
step into frames that originate in a module that matches one of these patterns. Whether a frame is considered to
originate in a certain module is determined by the __name__ in the frame globals. New in version 2.7: The
skip argument. The following methods of Bdb normally don’t need to be overridden.

canonic(filename)
Auxiliary method for getting a filename in a canonical form, that is, as a case-normalized (on case-
insensitive filesystems) absolute path, stripped of surrounding angle brackets.

reset()
Set the botframe, stopframe, returnframe and quitting attributes with values ready to start
debugging.

trace_dispatch(frame, event, arg)
This function is installed as the trace function of debugged frames. Its return value is the new trace function
(in most cases, that is, itself).

The default implementation decides how to dispatch a frame, depending on the type of event (passed as a
string) that is about to be executed. event can be one of the following:

•"line": A new line of code is going to be executed.

•"call": A function is about to be called, or another code block entered.

•"return": A function or other code block is about to return.

•"exception": An exception has occurred.

•"c_call": A C function is about to be called.

•"c_return": A C function has returned.

•"c_exception": A C function has thrown an exception.

For the Python events, specialized functions (see below) are called. For the C events, no action is taken.

The arg parameter depends on the previous event.

See the documentation for sys.settrace() for more information on the trace function. For more
information on code and frame objects, refer to The standard type hierarchy (in The Python Language
Reference).

dispatch_line(frame)
If the debugger should stop on the current line, invoke the user_line() method (which should be
overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can be
set from user_line()). Return a reference to the trace_dispatch() method for further tracing in
that scope.

dispatch_call(frame, arg)
If the debugger should stop on this function call, invoke the user_call() method (which should be
overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can be

994 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

set from user_call()). Return a reference to the trace_dispatch() method for further tracing in
that scope.

dispatch_return(frame, arg)
If the debugger should stop on this function return, invoke the user_return() method (which should
be overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can
be set from user_return()). Return a reference to the trace_dispatch() method for further
tracing in that scope.

dispatch_exception(frame, arg)
If the debugger should stop at this exception, invokes the user_exception() method (which should
be overridden in subclasses). Raise a BdbQuit exception if the Bdb.quitting flag is set (which can
be set from user_exception()). Return a reference to the trace_dispatch() method for further
tracing in that scope.

Normally derived classes don’t override the following methods, but they may if they want to redefine the defini-
tion of stopping and breakpoints.

stop_here(frame)
This method checks if the frame is somewhere below botframe in the call stack. botframe is the
frame in which debugging started.

break_here(frame)
This method checks if there is a breakpoint in the filename and line belonging to frame or, at least, in the
current function. If the breakpoint is a temporary one, this method deletes it.

break_anywhere(frame)
This method checks if there is a breakpoint in the filename of the current frame.

Derived classes should override these methods to gain control over debugger operation.

user_call(frame, argument_list)
This method is called from dispatch_call() when there is the possibility that a break might be
necessary anywhere inside the called function.

user_line(frame)
This method is called from dispatch_line() when either stop_here() or break_here()
yields True.

user_return(frame, return_value)
This method is called from dispatch_return() when stop_here() yields True.

user_exception(frame, exc_info)
This method is called from dispatch_exception() when stop_here() yields True.

do_clear(arg)
Handle how a breakpoint must be removed when it is a temporary one.

This method must be implemented by derived classes.

Derived classes and clients can call the following methods to affect the stepping state.

set_step()
Stop after one line of code.

set_next(frame)
Stop on the next line in or below the given frame.

set_return(frame)
Stop when returning from the given frame.

26.1. bdb — Debugger framework 995

The Python Library Reference, Release 2.6.9

set_until(frame)
Stop when the line with the line no greater than the current one is reached or when returning from current
frame

set_trace([frame])
Start debugging from frame. If frame is not specified, debugging starts from caller’s frame.

set_continue()
Stop only at breakpoints or when finished. If there are no breakpoints, set the system trace function to
None.

set_quit()
Set the quitting attribute to True. This raises BdbQuit in the next call to one of the dispatch_*()
methods.

Derived classes and clients can call the following methods to manipulate breakpoints. These methods return a
string containing an error message if something went wrong, or None if all is well.

set_break(filename, lineno, [temporary=0, [cond, [funcname]]])
Set a new breakpoint. If the lineno line doesn’t exist for the filename passed as argument, return an error
message. The filename should be in canonical form, as described in the canonic() method.

clear_break(filename, lineno)
Delete the breakpoints in filename and lineno. If none were set, an error message is returned.

clear_bpbynumber(arg)
Delete the breakpoint which has the index arg in the Breakpoint.bpbynumber. If arg is not numeric
or out of range, return an error message.

clear_all_file_breaks(filename)
Delete all breakpoints in filename. If none were set, an error message is returned.

clear_all_breaks()
Delete all existing breakpoints.

get_break(filename, lineno)
Check if there is a breakpoint for lineno of filename.

get_breaks(filename, lineno)
Return all breakpoints for lineno in filename, or an empty list if none are set.

get_file_breaks(filename)
Return all breakpoints in filename, or an empty list if none are set.

get_all_breaks()
Return all breakpoints that are set.

Derived classes and clients can call the following methods to get a data structure representing a stack trace.

get_stack(f, t)
Get a list of records for a frame and all higher (calling) and lower frames, and the size of the higher part.

format_stack_entry(frame_lineno, [lprefix=’: ’])
Return a string with information about a stack entry, identified by a (frame, lineno) tuple:

•The canonical form of the filename which contains the frame.

•The function name, or "<lambda>".

•The input arguments.

•The return value.

•The line of code (if it exists).

996 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

The following two methods can be called by clients to use a debugger to debug a statement, given as a string.

run(cmd, [globals, [locals]])
Debug a statement executed via the exec statement. globals defaults to __main__.__dict__, locals
defaults to globals.

runeval(expr, [globals, [locals]])
Debug an expression executed via the eval() function. globals and locals have the same meaning as in
run().

runctx(cmd, globals, locals)
For backwards compatibility. Calls the run() method.

runcall(func, *args, **kwds)
Debug a single function call, and return its result.

Finally, the module defines the following functions:

checkfuncname(b, frame)
Check whether we should break here, depending on the way the breakpoint b was set.

If it was set via line number, it checks if b.line is the same as the one in the frame also passed as argument.
If the breakpoint was set via function name, we have to check we are in the right frame (the right function) and
if we are in its first executable line.

effective(file, line, frame)
Determine if there is an effective (active) breakpoint at this line of code. Return breakpoint number or 0 if none.

Called only if we know there is a breakpoint at this location. Returns the breakpoint that was triggered and a
flag that indicates if it is ok to delete a temporary breakpoint.

set_trace()
Starts debugging with a Bdb instance from caller’s frame.

26.2 pdb — The Python Debugger

The module pdb defines an interactive source code debugger for Python programs. It supports setting (conditional)
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and evaluation
of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and can be called
under program control. The debugger is extensible — it is actually defined as the class Pdb. This is currently
undocumented but easily understood by reading the source. The extension interface uses the modules bdb and cmd.

The debugger’s prompt is (Pdb). Typical usage to run a program under control of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run(’mymodule.test()’)
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: ’spam’
> <string>(1)?()
(Pdb)

pdb.py can also be invoked as a script to debug other scripts. For example:

python -m pdb myscript.py

26.2. pdb — The Python Debugger 997

The Python Library Reference, Release 2.6.9

When invoked as a script, pdb will automatically enter post-mortem debugging if the program being debugged exits
abnormally. After post-mortem debugging (or after normal exit of the program), pdb will restart the program. Auto-
matic restarting preserves pdb’s state (such as breakpoints) and in most cases is more useful than quitting the debugger
upon program’s exit. New in version 2.4: Restarting post-mortem behavior added. The typical usage to break into the
debugger from a running program is to insert

import pdb; pdb.set_trace()

at the location you want to break into the debugger. You can then step through the code following this statement, and
continue running without the debugger using the c command.

The typical usage to inspect a crashed program is:

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "./mymodule.py", line 4, in test

test2()
File "./mymodule.py", line 3, in test2

print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

run(statement, [globals, [locals]])
Execute the statement (given as a string) under debugger control. The debugger prompt appears before any code
is executed; you can set breakpoints and type continue, or you can step through the statement using step
or next (all these commands are explained below). The optional globals and locals arguments specify the
environment in which the code is executed; by default the dictionary of the module __main__ is used. (See
the explanation of the exec statement or the eval() built-in function.)

runeval(expression, [globals, [locals]])
Evaluate the expression (given as a string) under debugger control. When runeval() returns, it returns the
value of the expression. Otherwise this function is similar to run().

runcall(function, [argument, ...])
Call the function (a function or method object, not a string) with the given arguments. When runcall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function is
entered.

set_trace()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post_mortem([traceback])
Enter post-mortem debugging of the given traceback object. If no traceback is given, it uses the one of the
exception that is currently being handled (an exception must be being handled if the default is to be used).

pm()
Enter post-mortem debugging of the traceback found in sys.last_traceback.

998 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

26.3 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two letters; e.g.
h(elp) means that either h or help can be used to enter the help command (but not he or hel, nor H or Help or
HELP). Arguments to commands must be separated by whitespace (spaces or tabs). Optional arguments are enclosed
in square brackets ([]) in the command syntax; the square brackets must not be typed. Alternatives in the command
syntax are separated by a vertical bar (|).

Entering a blank line repeats the last command entered. Exception: if the last command was a list command, the
next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the context
of the program being debugged. Python statements can also be prefixed with an exclamation point (!). This is a
powerful way to inspect the program being debugged; it is even possible to change a variable or call a function. When
an exception occurs in such a statement, the exception name is printed but the debugger’s state is not changed.

Multiple commands may be entered on a single line, separated by ;;. (A single ; is not used as it is the separator
for multiple commands in a line that is passed to the Python parser.) No intelligence is applied to separating the
commands; the input is split at the first ;; pair, even if it is in the middle of a quoted string.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adaptability to the
context under examination. If a file .pdbrc exists in the user’s home directory or in the current directory, it is read
in and executed as if it had been typed at the debugger prompt. This is particularly useful for aliases. If both files exist,
the one in the home directory is read first and aliases defined there can be overridden by the local file.

h(elp) [command] Without argument, print the list of available commands. With a command as argument, print help
about that command. help pdb displays the full documentation file; if the environment variable PAGER is
defined, the file is piped through that command instead. Since the command argument must be an identifier,
help exec must be entered to get help on the ! command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to a newer frame).

u(p) Move the current frame one level up in the stack trace (to an older frame).

b(reak) [[filename:]lineno | function[, condition]] With a lineno argument, set a break there in the current file. With
a function argument, set a break at the first executable statement within that function. The line number may
be prefixed with a filename and a colon, to specify a breakpoint in another file (probably one that hasn’t been
loaded yet). The file is searched on sys.path. Note that each breakpoint is assigned a number to which all
the other breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint is honored.

Without argument, list all breaks, including for each breakpoint, the number of times that breakpoint has been
hit, the current ignore count, and the associated condition if any.

tbreak [[filename:]lineno | function[, condition]] Temporary breakpoint, which is removed automatically when it is
first hit. The arguments are the same as break.

cl(ear) [bpnumber [bpnumber ...]] With a space separated list of breakpoint numbers, clear those breakpoints. With-
out argument, clear all breaks (but first ask confirmation).

disable [bpnumber [bpnumber ...]] Disables the breakpoints given as a space separated list of breakpoint numbers.
Disabling a breakpoint means it cannot cause the program to stop execution, but unlike clearing a breakpoint, it
remains in the list of breakpoints and can be (re-)enabled.

enable [bpnumber [bpnumber ...]] Enables the breakpoints specified.

26.3. Debugger Commands 999

The Python Library Reference, Release 2.6.9

ignore bpnumber [count] Sets the ignore count for the given breakpoint number. If count is omitted, the ignore count
is set to 0. A breakpoint becomes active when the ignore count is zero. When non-zero, the count is decremented
each time the breakpoint is reached and the breakpoint is not disabled and any associated condition evaluates to
true.

condition bpnumber [condition] Condition is an expression which must evaluate to true before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made unconditional.

commands [bpnumber] Specify a list of commands for breakpoint number bpnumber. The commands themselves
appear on the following lines. Type a line containing just ‘end’ to terminate the commands. An example:

(Pdb) commands 1
(com) print some_variable
(com) end
(Pdb)

To remove all commands from a breakpoint, type commands and follow it immediately with end; that is, give
no commands.

With no bpnumber argument, commands refers to the last breakpoint set.

You can use breakpoint commands to start your program up again. Simply use the continue command, or step,
or any other command that resumes execution.

Specifying any command resuming execution (currently continue, step, next, return, jump, quit and their abbre-
viations) terminates the command list (as if that command was immediately followed by end). This is because
any time you resume execution (even with a simple next or step), you may encounter another breakpoint–which
could have its own command list, leading to ambiguities about which list to execute.

If you use the ‘silent’ command in the command list, the usual message about stopping at a breakpoint is not
printed. This may be desirable for breakpoints that are to print a specific message and then continue. If none of
the other commands print anything, you see no sign that the breakpoint was reached. New in version 2.5.

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or on the next line
in the current function).

n(ext) Continue execution until the next line in the current function is reached or it returns. (The difference between
next and step is that step stops inside a called function, while next executes called functions at (nearly)
full speed, only stopping at the next line in the current function.)

unt(il) Continue execution until the line with the line number greater than the current one is reached or when returning
from current frame. New in version 2.6.

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

j(ump) lineno Set the next line that will be executed. Only available in the bottom-most frame. This lets you jump
back and execute code again, or jump forward to skip code that you don’t want to run.

It should be noted that not all jumps are allowed — for instance it is not possible to jump into the middle of a
for loop or out of a finally clause.

l(ist) [first[, last]] List source code for the current file. Without arguments, list 11 lines around the current line or
continue the previous listing. With one argument, list 11 lines around at that line. With two arguments, list the
given range; if the second argument is less than the first, it is interpreted as a count.

a(rgs) Print the argument list of the current function.

p expression Evaluate the expression in the current context and print its value.

Note: print can also be used, but is not a debugger command — this executes the Python print statement.

pp expression Like the p command, except the value of the expression is pretty-printed using the pprint module.

1000 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

alias [name [command]] Creates an alias called name that executes command. The command must not be enclosed
in quotes. Replaceable parameters can be indicated by %1, %2, and so on, while %* is replaced by all the
parameters. If no command is given, the current alias for name is shown. If no arguments are given, all aliases
are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note that internal
pdb commands can be overridden by aliases. Such a command is then hidden until the alias is removed. Aliasing
is recursively applied to the first word of the command line; all other words in the line are left alone.

As an example, here are two useful aliases (especially when placed in the .pdbrc file):

#Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print "%1.",k,"=",%1.__dict__[k]
#Print instance variables in self
alias ps pi self

unalias name Deletes the specified alias.

[!]statement Execute the (one-line) statement in the context of the current stack frame. The exclamation point can be
omitted unless the first word of the statement resembles a debugger command. To set a global variable, you can
prefix the assignment command with a global command on the same line, e.g.:

(Pdb) global list_options; list_options = [’-l’]
(Pdb)

run [args ...] Restart the debugged Python program. If an argument is supplied, it is split with “shlex” and the result
is used as the new sys.argv. History, breakpoints, actions and debugger options are preserved. “restart” is an
alias for “run”. New in version 2.6.

q(uit) Quit from the debugger. The program being executed is aborted.

26.4 The Python Profilers

26.4.1 Introduction to the profilers

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the modules cProfile, profile and pstats.
This profiler provides deterministic profiling of Python programs. It also provides a series of report generation tools
to allow users to rapidly examine the results of a profile operation.

The Python standard library provides three different profilers:

1. cProfile is recommended for most users; it’s a C extension with reasonable overhead that makes it suitable
for profiling long-running programs. Based on lsprof, contributed by Brett Rosen and Ted Czotter. New in
version 2.5.

2. profile, a pure Python module whose interface is imitated by cProfile. Adds significant overhead to
profiled programs. If you’re trying to extend the profiler in some way, the task might be easier with this module.
Changed in version 2.4: Now also reports the time spent in calls to built-in functions and methods.

3. hotshot was an experimental C module that focused on minimizing the overhead of profiling, at the expense
of longer data post-processing times. It is no longer maintained and may be dropped in a future version of
Python. Changed in version 2.5: The results should be more meaningful than in the past: the timing core
contained a critical bug.

The profile and cProfile modules export the same interface, so they are mostly interchangeable; cProfile
has a much lower overhead but is newer and might not be available on all systems. cProfile is really a compatibility
layer on top of the internal _lsprof module. The hotshot module is reserved for specialized usage.

26.4. The Python Profilers 1001

The Python Library Reference, Release 2.6.9

26.4.2 Instant User’s Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and allows a
user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of foo(), you would add the following to your module:

import cProfile
cProfile.run(’foo()’)

(Use profile instead of cProfile if the latter is not available on your system.)

The above action would cause foo() to be run, and a series of informative lines (the profile) to be printed. The above
approach is most useful when working with the interpreter. If you would like to save the results of a profile into a file
for later examination, you can supply a file name as the second argument to the run() function:

import cProfile
cProfile.run(’foo()’, ’fooprof’)

The file cProfile.py can also be invoked as a script to profile another script. For example:

python -m cProfile myscript.py

cProfile.py accepts two optional arguments on the command line:

cProfile.py [-o output_file] [-s sort_order]

-s only applies to standard output (-o is not supplied). Look in the Stats documentation for valid sort values.

When you wish to review the profile, you should use the methods in the pstats module. Typically you would load
the statistics data as follows:

import pstats
p = pstats.Stats(’fooprof’)

The class Stats (the above code just created an instance of this class) has a variety of methods for manipulating and
printing the data that was just read into p. When you ran cProfile.run() above, what was printed was the result
of three method calls:

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all the entries
according to the standard module/line/name string that is printed. The third method printed out all the statistics. You
might try the following sort calls:

p.sort_stats(’name’)
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The following
are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want
to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(’time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats(’__init__’)

1002 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

This will sort all the statistics by file name, and then print out statistics for only the class init methods (since they are
spelled with __init__ in them). As one final example, you could try:

p.sort_stats(’time’, ’cum’).print_stats(.5, ’init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out
some of the statistics. To be specific, the list is first culled down to 50% (re: .5) of its original size, then only lines
containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (p is still sorted according to the last
criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following functions do:

p.print_callees()
p.add(’fooprof’)

Invoked as a script, the pstats module is a statistics browser for reading and examining profile dumps. It has a
simple line-oriented interface (implemented using cmd) and interactive help.

26.4.3 What Is Deterministic Profiling?

Deterministic profiling is meant to reflect the fact that all function call, function return, and exception events are
monitored, and precise timings are made for the intervals between these events (during which time the user’s code
is executing). In contrast, statistical profiling (which is not done by this module) randomly samples the effective
instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead
(as the code does not need to be instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required to
do deterministic profiling. Python automatically provides a hook (optional callback) for each event. In addition, the
interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to only add
small processing overhead in typical applications. The result is that deterministic profiling is not that expensive, yet
provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion
points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized.
Cumulative time statistics should be used to identify high level errors in the selection of algorithms. Note that the
unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to
be directly compared to iterative implementations.

26.4.4 Reference Manual – profile and cProfile

The primary entry point for the profiler is the global function profile.run() (resp. cProfile.run()). It is
typically used to create any profile information. The reports are formatted and printed using methods of the class
pstats.Stats. The following is a description of all of these standard entry points and functions. For a more
in-depth view of some of the code, consider reading the later section on Profiler Extensions, which includes discussion
of how to derive “better” profilers from the classes presented, or reading the source code for these modules.

run(command, [filename])
This function takes a single argument that can be passed to the exec statement, and an optional file name. In
all cases this routine attempts to exec its first argument, and gather profiling statistics from the execution. If
no file name is present, then this function automatically prints a simple profiling report, sorted by the standard
name string (file/line/function-name) that is presented in each line. The following is a typical output from such
a call:

26.4. The Python Profilers 1003

The Python Library Reference, Release 2.6.9

2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
...

The first line indicates that 2706 calls were monitored. Of those calls, 2004 were primitive. We define primitive
to mean that the call was not induced via recursion. The next line: Ordered by: standard name,
indicates that the text string in the far right column was used to sort the output. The column headings include:

ncalls for the number of calls,

tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),

percall is the quotient of tottime divided by ncalls

cumtime is the total time spent in this and all subfunctions (from invocation till exit). This figure is accurate
even for recursive functions.

percall is the quotient of cumtime divided by primitive calls

filename:lineno(function) provides the respective data of each function

When there are two numbers in the first column (for example, 43/3), then the latter is the number of primitive
calls, and the former is the actual number of calls. Note that when the function does not recurse, these two
values are the same, and only the single figure is printed.

runctx(command, globals, locals, [filename])
This function is similar to run(), with added arguments to supply the globals and locals dictionaries for the
command string.

Analysis of the profiler data is done using the Stats class.

Note: The Stats class is defined in the pstats module.

class Stats(filename, [stream=sys.stdout, [...]])
This class constructor creates an instance of a “statistics object” from a filename (or set of filenames). Stats
objects are manipulated by methods, in order to print useful reports. You may specify an alternate output stream
by giving the keyword argument, stream.

The file selected by the above constructor must have been created by the corresponding version of profile
or cProfile. To be specific, there is no file compatibility guaranteed with future versions of this profiler, and
there is no compatibility with files produced by other profilers. If several files are provided, all the statistics for
identical functions will be coalesced, so that an overall view of several processes can be considered in a single
report. If additional files need to be combined with data in an existing Stats object, the add() method can
be used. Changed in version 2.5: The stream parameter was added.

The Stats Class

Stats objects have the following methods:

strip_dirs()
This method for the Stats class removes all leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entries in a
“random” order, as it was just after object initialization and loading. If strip_dirs() causes two function

1004 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

names to be indistinguishable (they are on the same line of the same filename, and have the same function
name), then the statistics for these two entries are accumulated into a single entry.

add(filename, [...])
This method of the Stats class accumulates additional profiling information into the current profiling ob-
ject. Its arguments should refer to filenames created by the corresponding version of profile.run() or
cProfile.run(). Statistics for identically named (re: file, line, name) functions are automatically accumu-
lated into single function statistics.

dump_stats(filename)
Save the data loaded into the Stats object to a file named filename. The file is created if it does not exist, and is
overwritten if it already exists. This is equivalent to the method of the same name on the profile.Profile
and cProfile.Profile classes. New in version 2.3.

sort_stats(key, [...])
This method modifies the Stats object by sorting it according to the supplied criteria. The argument is typically
a string identifying the basis of a sort (example: ’time’ or ’name’).

When more than one key is provided, then additional keys are used as secondary criteria when there is equality
in all keys selected before them. For example, sort_stats(’name’, ’file’) will sort all the entries
according to their function name, and resolve all ties (identical function names) by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are
the keys currently defined:

Valid Arg Meaning
’calls’ call count
’cumulative’ cumulative time
’file’ file name
’module’ file name
’pcalls’ primitive call count
’line’ line number
’name’ function name
’nfl’ name/file/line
’stdname’ standard name
’time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name,
file, and line number searches are in ascending order (alphabetical). The subtle distinction between ’nfl’ and
’stdname’ is that the standard name is a sort of the name as printed, which means that the embedded line
numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same)
appear in the string order 20, 3 and 40. In contrast, ’nfl’ does a numeric compare of the line numbers. In fact,
sort_stats(’nfl’) is the same as sort_stats(’name’, ’file’, ’line’).

For backward-compatibility reasons, the numeric arguments -1, 0, 1, and 2 are permitted. They are interpreted
as ’stdname’, ’calls’, ’time’, and ’cumulative’ respectively. If this old style format (numeric) is
used, only one sort key (the numeric key) will be used, and additional arguments will be silently ignored.

reverse_order()
This method for the Stats class reverses the ordering of the basic list within the object. Note that by default
ascending vs descending order is properly selected based on the sort key of choice.

print_stats([restriction, ...])
This method for the Stats class prints out a report as described in the profile.run() definition.

The order of the printing is based on the last sort_stats() operation done on the object (subject to caveats
in add() and strip_dirs()).

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is
taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines),

26.4. The Python Profilers 1005

The Python Library Reference, Release 2.6.9

or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to
pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style regular expression
syntax defined by the re module). If several restrictions are provided, then they are applied sequentially. For
example:

print_stats(.1, ’foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of filename .*foo:.
In contrast, the command:

print_stats(’foo:’, .1)

would limit the list to all functions having file names .*foo:, and then proceed to only print the first 10% of
them.

print_callers([restriction, ...])
This method for the Stats class prints a list of all functions that called each function in the profiled database.
The ordering is identical to that provided by print_stats(), and the definition of the restricting argument
is also identical. Each caller is reported on its own line. The format differs slightly depending on the profiler
that produced the stats:

•With profile, a number is shown in parentheses after each caller to show how many times this specific
call was made. For convenience, a second non-parenthesized number repeats the cumulative time spent in
the function at the right.

•With cProfile, each caller is preceded by three numbers: the number of times this specific call was
made, and the total and cumulative times spent in the current function while it was invoked by this specific
caller.

print_callees([restriction, ...])
This method for the Stats class prints a list of all function that were called by the indicated function. Aside
from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to
the print_callers() method.

26.4.5 Limitations

One limitation has to do with accuracy of timing information. There is a fundamental problem with deterministic
profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate than the underlying clock. If enough
measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error induces a
second source of error.

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the time
actually gets the state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As
a result, functions that are called many times, or call many functions, will typically accumulate this error. The error
that accumulates in this fashion is typically less than the accuracy of the clock (less than one clock tick), but it can
accumulate and become very significant.

The problem is more important with profile than with the lower-overhead cProfile. For this reason, profile
provides a means of calibrating itself for a given platform so that this error can be probabilistically (on the average)
removed. After the profiler is calibrated, it will be more accurate (in a least square sense), but it will sometimes
produce negative numbers (when call counts are exceptionally low, and the gods of probability work against you :-).
) Do not be alarmed by negative numbers in the profile. They should only appear if you have calibrated your profiler,
and the results are actually better than without calibration.

1006 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

26.4.6 Calibration

The profiler of the profile module subtracts a constant from each event handling time to compensate for the over-
head of calling the time function, and socking away the results. By default, the constant is 0. The following procedure
can be used to obtain a better constant for a given platform (see discussion in section Limitations above).

import profile
pr = profile.Profile()
for i in range(5):

print pr.calibrate(10000)

The method executes the number of Python calls given by the argument, directly and again under the profiler, measur-
ing the time for both. It then computes the hidden overhead per profiler event, and returns that as a float. For example,
on an 800 MHz Pentium running Windows 2000, and using Python’s time.clock() as the timer, the magical number is
about 12.5e-6.

The object of this exercise is to get a fairly consistent result. If your computer is very fast, or your timer function has
poor resolution, you might have to pass 100000, or even 1000000, to get consistent results.

When you have a consistent answer, there are three ways you can use it: 1

import profile

1. Apply computed bias to all Profile instances created hereafter.
profile.Profile.bias = your_computed_bias

2. Apply computed bias to a specific Profile instance.
pr = profile.Profile()
pr.bias = your_computed_bias

3. Specify computed bias in instance constructor.
pr = profile.Profile(bias=your_computed_bias)

If you have a choice, you are better off choosing a smaller constant, and then your results will “less often” show up as
negative in profile statistics.

26.4.7 Extensions — Deriving Better Profilers

The Profile class of both modules, profile and cProfile, were written so that derived classes could be
developed to extend the profiler. The details are not described here, as doing this successfully requires an expert
understanding of how the Profile class works internally. Study the source code of the module carefully if you want
to pursue this.

If all you want to do is change how current time is determined (for example, to force use of wall-clock time or elapsed
process time), pass the timing function you want to the Profile class constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will then call your_time_func().

profile.Profile your_time_func() should return a single number, or a list of numbers whose sum is the
current time (like what os.times() returns). If the function returns a single time number, or the list of
returned numbers has length 2, then you will get an especially fast version of the dispatch routine.

Be warned that you should calibrate the profiler class for the timer function that you choose. For most machines,
a timer that returns a lone integer value will provide the best results in terms of low overhead during profiling.

1 Updated and converted to LaTeX by Guido van Rossum. Further updated by Armin Rigo to integrate the documentation for the new cProfile
module of Python 2.5.

26.4. The Python Profilers 1007

The Python Library Reference, Release 2.6.9

(os.times() is pretty bad, as it returns a tuple of floating point values). If you want to substitute a better
timer in the cleanest fashion, derive a class and hardwire a replacement dispatch method that best handles your
timer call, along with the appropriate calibration constant.

cProfile.Profile your_time_func() should return a single number. If it returns plain integers, you can
also invoke the class constructor with a second argument specifying the real duration of one unit of time. For
example, if your_integer_time_func() returns times measured in thousands of seconds, you would
constuct the Profile instance as follows:

pr = profile.Profile(your_integer_time_func, 0.001)

As the cProfile.Profile class cannot be calibrated, custom timer functions should be used with care and
should be as fast as possible. For the best results with a custom timer, it might be necessary to hard-code it in
the C source of the internal _lsprof module.

26.5 hotshot — High performance logging profiler

New in version 2.2. This module provides a nicer interface to the _hotshot C module. Hotshot is a replacement
for the existing profile module. As it’s written mostly in C, it should result in a much smaller performance impact
than the existing profile module.

Note: The hotshot module focuses on minimizing the overhead while profiling, at the expense of long data post-
processing times. For common usage it is recommended to use cProfile instead. hotshot is not maintained
and might be removed from the standard library in the future. Changed in version 2.5: The results should be more
meaningful than in the past: the timing core contained a critical bug.

Note: The hotshot profiler does not yet work well with threads. It is useful to use an unthreaded script to run the
profiler over the code you’re interested in measuring if at all possible.

class Profile(logfile, [lineevents, [linetimings]])
The profiler object. The argument logfile is the name of a log file to use for logged profile data. The argument
lineevents specifies whether to generate events for every source line, or just on function call/return. It defaults
to 0 (only log function call/return). The argument linetimings specifies whether to record timing information. It
defaults to 1 (store timing information).

26.5.1 Profile Objects

Profile objects have the following methods:

addinfo(key, value)
Add an arbitrary labelled value to the profile output.

close()
Close the logfile and terminate the profiler.

fileno()
Return the file descriptor of the profiler’s log file.

run(cmd)
Profile an exec-compatible string in the script environment. The globals from the __main__ module are used
as both the globals and locals for the script.

runcall(func, *args, **keywords)
Profile a single call of a callable. Additional positional and keyword arguments may be passed along; the result
of the call is returned, and exceptions are allowed to propagate cleanly, while ensuring that profiling is disabled
on the way out.

1008 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

runctx(cmd, globals, locals)
Evaluate an exec-compatible string in a specific environment. The string is compiled before profiling begins.

start()
Start the profiler.

stop()
Stop the profiler.

26.5.2 Using hotshot data

New in version 2.2. This module loads hotshot profiling data into the standard pstats Stats objects.

load(filename)
Load hotshot data from filename. Returns an instance of the pstats.Stats class.

See Also:

Module profile The profile module’s Stats class

26.5.3 Example Usage

Note that this example runs the Python “benchmark” pystones. It can take some time to run, and will produce large
output files.

>>> import hotshot, hotshot.stats, test.pystone
>>> prof = hotshot.Profile("stones.prof")
>>> benchtime, stones = prof.runcall(test.pystone.pystones)
>>> prof.close()
>>> stats = hotshot.stats.load("stones.prof")
>>> stats.strip_dirs()
>>> stats.sort_stats(’time’, ’calls’)
>>> stats.print_stats(20)

850004 function calls in 10.090 CPU seconds

Ordered by: internal time, call count

ncalls tottime percall cumtime percall filename:lineno(function)
1 3.295 3.295 10.090 10.090 pystone.py:79(Proc0)

150000 1.315 0.000 1.315 0.000 pystone.py:203(Proc7)
50000 1.313 0.000 1.463 0.000 pystone.py:229(Func2)

.

.

.

26.6 timeit — Measure execution time of small code snippets

New in version 2.3. This module provides a simple way to time small bits of Python code. It has both command line
as well as callable interfaces. It avoids a number of common traps for measuring execution times. See also Tim Peters’
introduction to the “Algorithms” chapter in the Python Cookbook, published by O’Reilly.

The module defines the following public class:

26.6. timeit — Measure execution time of small code snippets 1009

The Python Library Reference, Release 2.6.9

class Timer([stmt=’pass’, [setup=’pass’, [timer=<timer function>]]])
Class for timing execution speed of small code snippets.

The constructor takes a statement to be timed, an additional statement used for setup, and a timer function. Both
statements default to ’pass’; the timer function is platform-dependent (see the module doc string). stmt and
setup may also contain multiple statements separated by ; or newlines, as long as they don’t contain multi-line
string literals.

To measure the execution time of the first statement, use the timeit() method. The repeat() method is a
convenience to call timeit() multiple times and return a list of results. Changed in version 2.6: The stmt and
setup parameters can now also take objects that are callable without arguments. This will embed calls to them
in a timer function that will then be executed by timeit(). Note that the timing overhead is a little larger in
this case because of the extra function calls.

print_exc([file=None])
Helper to print a traceback from the timed code.

Typical use:

t = Timer(...) # outside the try/except
try:

t.timeit(...) # or t.repeat(...)
except:

t.print_exc()

The advantage over the standard traceback is that source lines in the compiled template will be displayed. The
optional file argument directs where the traceback is sent; it defaults to sys.stderr.

repeat([repeat=3, [number=1000000]])
Call timeit() a few times.

This is a convenience function that calls the timeit() repeatedly, returning a list of results. The first argu-
ment specifies how many times to call timeit(). The second argument specifies the number argument for
timeit().

Note: It’s tempting to calculate mean and standard deviation from the result vector and report these. However,
this is not very useful. In a typical case, the lowest value gives a lower bound for how fast your machine can
run the given code snippet; higher values in the result vector are typically not caused by variability in Python’s
speed, but by other processes interfering with your timing accuracy. So the min() of the result is probably the
only number you should be interested in. After that, you should look at the entire vector and apply common
sense rather than statistics.

timeit([number=1000000])
Time number executions of the main statement. This executes the setup statement once, and then returns the
time it takes to execute the main statement a number of times, measured in seconds as a float. The argument is
the number of times through the loop, defaulting to one million. The main statement, the setup statement and
the timer function to be used are passed to the constructor.

Note: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of
this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an
important component of the performance of the function being measured. If so, GC can be re-enabled as the
first statement in the setup string. For example:

timeit.Timer(’for i in xrange(10): oct(i)’, ’gc.enable()’).timeit()

Starting with version 2.6, the module also defines two convenience functions:

1010 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

repeat(stmt, [setup, [timer, [repeat=3, [number=1000000]]]])
Create a Timer instance with the given statement, setup code and timer function and run its repeat()method
with the given repeat count and number executions. New in version 2.6.

timeit(stmt, [setup, [timer, [number=1000000]]])
Create a Timer instance with the given statement, setup code and timer function and run its timeit()method
with number executions. New in version 2.6.

26.6.1 Command Line Interface

When called as a program from the command line, the following form is used:

python -m timeit [-n N] [-r N] [-s S] [-t] [-c] [-h] [statement ...]

where the following options are understood:

-n N/--number=N how many times to execute ‘statement’

-r N/--repeat=N how many times to repeat the timer (default 3)

-s S/--setup=S statement to be executed once initially (default ’pass’)

-t/--time use time.time() (default on all platforms but Windows)

-c/--clock use time.clock() (default on Windows)

-v/--verbose print raw timing results; repeat for more digits precision

-h/--help print a short usage message and exit

A multi-line statement may be given by specifying each line as a separate statement argument; indented lines are
possible by enclosing an argument in quotes and using leading spaces. Multiple -s options are treated similarly.

If -n is not given, a suitable number of loops is calculated by trying successive powers of 10 until the total time is at
least 0.2 seconds.

The default timer function is platform dependent. On Windows, time.clock() has microsecond granularity but
time.time()‘s granularity is 1/60th of a second; on Unix, time.clock() has 1/100th of a second granularity
and time.time() is much more precise. On either platform, the default timer functions measure wall clock time,
not the CPU time. This means that other processes running on the same computer may interfere with the timing.
The best thing to do when accurate timing is necessary is to repeat the timing a few times and use the best time.
The -r option is good for this; the default of 3 repetitions is probably enough in most cases. On Unix, you can use
time.clock() to measure CPU time.

Note: There is a certain baseline overhead associated with executing a pass statement. The code here doesn’t try
to hide it, but you should be aware of it. The baseline overhead can be measured by invoking the program without
arguments.

The baseline overhead differs between Python versions! Also, to fairly compare older Python versions to Python 2.3,
you may want to use Python’s -O option for the older versions to avoid timing SET_LINENO instructions.

26.6.2 Examples

Here are two example sessions (one using the command line, one using the module interface) that compare the cost of
using hasattr() vs. try/except to test for missing and present object attributes.

% timeit.py ’try:’ ’ str.__nonzero__’ ’except AttributeError:’ ’ pass’
100000 loops, best of 3: 15.7 usec per loop
% timeit.py ’if hasattr(str, "__nonzero__"): pass’
100000 loops, best of 3: 4.26 usec per loop

26.6. timeit — Measure execution time of small code snippets 1011

The Python Library Reference, Release 2.6.9

% timeit.py ’try:’ ’ int.__nonzero__’ ’except AttributeError:’ ’ pass’
1000000 loops, best of 3: 1.43 usec per loop
% timeit.py ’if hasattr(int, "__nonzero__"): pass’
100000 loops, best of 3: 2.23 usec per loop

>>> import timeit
>>> s = """\
... try:
... str.__nonzero__
... except AttributeError:
... pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
17.09 usec/pass
>>> s = """\
... if hasattr(str, ’__nonzero__’): pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
4.85 usec/pass
>>> s = """\
... try:
... int.__nonzero__
... except AttributeError:
... pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
1.97 usec/pass
>>> s = """\
... if hasattr(int, ’__nonzero__’): pass
... """
>>> t = timeit.Timer(stmt=s)
>>> print "%.2f usec/pass" % (1000000 * t.timeit(number=100000)/100000)
3.15 usec/pass

To give the timeit module access to functions you define, you can pass a setup parameter which contains an
import statement:

def test():
"Stupid test function"
L = []
for i in range(100):

L.append(i)

if __name__==’__main__’:
from timeit import Timer
t = Timer("test()", "from __main__ import test")
print t.timeit()

26.7 trace — Trace or track Python statement execution

1012 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

The trace module allows you to trace program execution, generate annotated statement coverage listings, print
caller/callee relationships and list functions executed during a program run. It can be used in another program or from
the command line.

26.7.1 Command Line Usage

The trace module can be invoked from the command line. It can be as simple as

python -m trace --count -C . somefile.py ...

The above will execute somefile.py and generate annotated listings of all Python modules imported during the
execution into the current directory.

Meta-options

--help

Display usage and exit.

--version

Display the version of the module and exit.

Main options

The --listfuncs option is mutually exclusive with the --trace and --count options . When --listfuncs
is provided, neither --counts nor --trace are accepted, and vice versa.

--count, -c

Produce a set of annotated listing files upon program completion that shows how many times each state-
ment was executed. See also --coverdir, --file, --no-report below.

--trace, -t

Display lines as they are executed.

--listfuncs, -l

Display the functions executed by running the program.

--report, -r

Produce an annotated list from an earlier program run that used the --count and --file option. Do
not execute any code.

--trackcalls, -T

Display the calling relationships exposed by running the program.

Modifiers

--file=<file>, -f

Name of a file to accumulate counts over several tracing runs. Should be used with the --count option.

--coverdir=<dir>, -C

Directory where the report files go. The coverage report for package.module is written to file
dir/package/module.cover.

26.7. trace — Trace or track Python statement execution 1013

The Python Library Reference, Release 2.6.9

--missing, -m

When generating annotated listings, mark lines which were not executed with ‘>>>>>>‘.

--summary, -s

When using --count or --report, write a brief summary to stdout for each file processed.

--no-report, -R

Do not generate annotated listings. This is useful if you intend to make several runs with --count then
produce a single set of annotated listings at the end.

--timing, -g

Prefix each line with the time since the program started. Only used while tracing.

Filters

These options may be repeated multiple times.

--ignore-module=<mod>

Accepts comma separated list of module names. Ignore each of the named modules and its submodules
(if it is a package).

--ignore-dir=<dir>

Ignore all modules and packages in the named directory and subdirectories (multiple directories can be
joined by os.pathsep).

26.7.2 Programming Interface

class Trace(count=1, trace=1, countfuncs=0, countcallers=0, ignoremods=(), ignoredirs=(), infile=None, out-
file=None, timing=False)

Create an object to trace execution of a single statement or expression. All parameters are optional. count
enables counting of line numbers. trace enables line execution tracing. countfuncs enables listing of the func-
tions called during the run. countcallers enables call relationship tracking. ignoremods is a list of modules or
packages to ignore. ignoredirs is a list of directories whose modules or packages should be ignored. infile is the
name of the file from which to read stored count information. outfile is the name of the file in which to write
updated count information. timing enables a timestamp relative to when tracing was started to be displayed.

run(cmd)
Run cmd under control of the Trace object with the current tracing parameters. cmd must be a string or code
object, suitable for passing into exec().

runctx(cmd, globals=None, locals=None)
Run cmd under control of the Trace object with the current tracing parameters in the defined global and local
environments. If not defined, globals and locals default to empty dictionaries.

runfunc(func, *args, **kwds)
Call func with the given arguments under control of the Trace object with the current tracing parameters.

results()
Return a CoverageResults object that contains the cumulative results of all previous calls to run, runctx
and runfunc for the given Trace instance. Does not reset the accumulated trace results.

class CoverageResults()
A container for coverage results, created by Trace.results(). Should not be created directly by the user.

1014 Chapter 26. Debugging and Profiling

The Python Library Reference, Release 2.6.9

update(other)
Merge in data from another CoverageResults object.

write_results(show_missing=True, summary=False, coverdir=None)
Write coverage results. Set show_missing to show lines that had no hits. Set summary to include in the output
the coverage summary per module. coverdir specifies the directory into which the coverage result files will be
output. If None, the results for each source file are placed in its directory.

A simple example demonstrating the use of the programming interface:

import sys
import trace

create a Trace object, telling it what to ignore, and whether to
do tracing or line-counting or both.
tracer = trace.Trace(

ignoredirs=[sys.prefix, sys.exec_prefix],
trace=0,
count=1)

run the new command using the given tracer
tracer.run(’main()’)

make a report, placing output in /tmp
r = tracer.results()
r.write_results(show_missing=True, coverdir="/tmp")

26.7. trace — Trace or track Python statement execution 1015

The Python Library Reference, Release 2.6.9

1016 Chapter 26. Debugging and Profiling

CHAPTER

TWENTYSEVEN

PYTHON RUNTIME SERVICES

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

27.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the -c command
line option to the interpreter, argv[0] is set to the string ’-c’. If no script name was passed to the Python
interpreter, argv[0] is the empty string.

To loop over the standard input, or the list of files given on the command line, see the fileinput module.

byteorder
An indicator of the native byte order. This will have the value ’big’ on big-endian (most-significant byte first)
platforms, and ’little’ on little-endian (least-significant byte first) platforms. New in version 2.0.

subversion
A triple (repo, branch, version) representing the Subversion information of the Python interpreter. repo is the
name of the repository, ’CPython’. branch is a string of one of the forms ’trunk’, ’branches/name’
or ’tags/name’. version is the output of svnversion, if the interpreter was built from a Subversion
checkout; it contains the revision number (range) and possibly a trailing ‘M’ if there were local modifications.
If the tree was exported (or svnversion was not available), it is the revision of Include/patchlevel.h if
the branch is a tag. Otherwise, it is None. New in version 2.5.

builtin_module_names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way — modules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

_clear_type_cache()
Clear the internal type cache. The type cache is used to speed up attribute and method lookups. Use the function
only to drop unnecessary references during reference leak debugging.

This function should be used for internal and specialized purposes only. New in version 2.6.

_current_frames()
Return a dictionary mapping each thread’s identifier to the topmost stack frame currently active in that thread

1017

The Python Library Reference, Release 2.6.9

at the time the function is called. Note that functions in the traceback module can build the call stack given
such a frame.

This is most useful for debugging deadlock: this function does not require the deadlocked threads’ cooperation,
and such threads’ call stacks are frozen for as long as they remain deadlocked. The frame returned for a non-
deadlocked thread may bear no relationship to that thread’s current activity by the time calling code examines
the frame.

This function should be used for internal and specialized purposes only. New in version 2.5.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook(value)
If value is not None, this function prints it to sys.stdout, and saves it in __builtin__._.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook.

excepthook(type, value, traceback)
This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three arguments,
the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook.

__displayhook__
__excepthook__

These objects contain the original values of displayhook and excepthook at the start of the program.
They are saved so that displayhook and excepthook can be restored in case they happen to get replaced
with broken objects.

exc_info()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is de-
fined as “executing or having executed an except clause.” For any stack frame, only information about the most
recently handled exception is accessible. If no exception is being handled anywhere on the stack, a tuple con-
taining three None values is returned. Otherwise, the values returned are (type, value, traceback).
Their meaning is: type gets the exception type of the exception being handled (a class object); value gets the
exception parameter (its associated value or the second argument to raise, which is always a class instance
if the exception type is a class object); traceback gets a traceback object (see the Reference Manual) which
encapsulates the call stack at the point where the exception originally occurred.

If exc_clear() is called, this function will return three None values until either another exception is raised
in the current thread or the execution stack returns to a frame where another exception is being handled.

Warning: Assigning the traceback return value to a local variable in a function that is handling an exception
will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback,
the best solution is to use something like exctype, value = sys.exc_info()[:2] to extract
only the exception type and value. If you do need the traceback, make sure to delete it after use (best done
with a try ... finally statement) or to call exc_info() in a function that does not itself handle an
exception.

1018 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

Note: Beginning with Python 2.2, such cycles are automatically reclaimed when garbage collection is enabled
and they become unreachable, but it remains more efficient to avoid creating cycles.

exc_clear()
This function clears all information relating to the current or last exception that occurred in the current thread.
After calling this function, exc_info() will return three None values until another exception is raised in the
current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling systems
that report information on the last or current exception. This function can also be used to try to free resources
and trigger object finalization, though no guarantee is made as to what objects will be freed, if any. New in
version 2.3.

exc_type
exc_value
exc_traceback

Deprecated since version 1.5: Use exc_info() instead. Since they are global variables, they are not specific
to the current thread, so their use is not safe in a multi-threaded program. When no exception is being handled,
exc_type is set to None and the other two are undefined.

exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is also ’/usr/local’. This can be set at build time with the --exec-prefix argument
to the configure script. Specifically, all configuration files (e.g. the pyconfig.h header file) are installed
in the directory exec_prefix + ’/lib/pythonversion/config’, and shared library modules are
installed in exec_prefix + ’/lib/pythonversion/lib-dynload’, where version is equal to
version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit([arg])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions specified by
finally clauses of try statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argument arg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is passed, None is equivalent to passing zero, and any other
object is printed to sys.stderr and results in an exit code of 1. In particular, sys.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use the atexit module.

Note: The exit function is not called when the program is killed by a signal, when a Python fatal internal error
is detected, or when os._exit() is called. Deprecated since version 2.4: Use atexit instead.

flags
The struct sequence flags exposes the status of command line flags. The attributes are read only.

27.1. sys — System-specific parameters and functions 1019

The Python Library Reference, Release 2.6.9

attribute flag
debug -d
py3k_warning -3
division_warning -Q
division_new -Qnew
inspect -i
interactive -i
optimize -O or -OO
dont_write_bytecode -B
no_user_site -s
no_site -S
ignore_environment -E
tabcheck -t or -tt
verbose -v
unicode -U
bytes_warning -b

hash_randomization -R New in version 2.6.8.

New in version 2.6.

float_info
A structseq holding information about the float type. It contains low level information about the precision and
internal representation. The values correspond to the various floating-point constants defined in the standard
header file float.h for the ‘C’ programming language; see section 5.2.4.2.2 of the 1999 ISO/IEC C standard
[C99], ‘Characteristics of floating types’, for details.

attribute float.h macro explanation
epsilon DBL_EPSILON difference between 1 and the least value greater than 1 that is representable

as a float
dig DBL_DIG maximum number of decimal digits that can be faithfully represented in a

float; see below
mant_dig DBL_MANT_DIG float precision: the number of base-radix digits in the significand of a float
max DBL_MAX maximum representable finite float
max_exp DBL_MAX_EXP maximum integer e such that radix**(e-1) is a representable finite float
max_10_exp DBL_MAX_10_EXPmaximum integer e such that 10**e is in the range of representable finite

floats
min DBL_MIN minimum positive normalized float
min_exp DBL_MIN_EXP minimum integer e such that radix**(e-1) is a normalized float
min_10_exp DBL_MIN_10_EXP minimum integer e such that 10**e is a normalized float
radix FLT_RADIX radix of exponent representation
rounds FLT_ROUNDS constant representing rounding mode used for arithmetic operations

The attribute sys.float_info.dig needs further explanation. If s is any string representing a decimal
number with at most sys.float_info.dig significant digits, then converting s to a float and back again
will recover a string representing the same decimal value:

>>> import sys
>>> sys.float_info.dig
15
>>> s = ’3.14159265358979’ # decimal string with 15 significant digits
>>> format(float(s), ’.15g’) # convert to float and back -> same value
’3.14159265358979’

But for strings with more than sys.float_info.dig significant digits, this isn’t always true:

1020 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

>>> s = ’9876543211234567’ # 16 significant digits is too many!
>>> format(float(s), ’.16g’) # conversion changes value
’9876543211234568’

New in version 2.6.

getcheckinterval()
Return the interpreter’s “check interval”; see setcheckinterval(). New in version 2.3.

getdefaultencoding()
Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getdlopenflags()
Return the current value of the flags that are used for dlopen() calls. The flag constants are defined in the dl
and DLFCN modules. Availability: Unix. New in version 2.2.

getfilesystemencoding()
Return the name of the encoding used to convert Unicode filenames into system file names, or None if the
system default encoding is used. The result value depends on the operating system:

•On Mac OS X, the encoding is ’utf-8’.

•On Unix, the encoding is the user’s preference according to the result of nl_langinfo(CODESET), or None
if the nl_langinfo(CODESET) failed.

•On Windows NT+, file names are Unicode natively, so no conversion is performed.
getfilesystemencoding() still returns ’mbcs’, as this is the encoding that applications
should use when they explicitly want to convert Unicode strings to byte strings that are equivalent when
used as file names.

•On Windows 9x, the encoding is ’mbcs’.

New in version 2.3.

getrefcount(object)
Return the reference count of the object. The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argument to getrefcount().

getrecursionlimit()
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit().

getsizeof(object, [default])
Return the size of an object in bytes. The object can be any type of object. All built-in objects will return correct
results, but this does not have to hold true for third-party extensions as it is implementation specific.

If given, default will be returned if the object does not provide means to retrieve the size. Otherwise a
TypeError will be raised.

getsizeof() calls the object’s __sizeof__ method and adds an additional garbage collector overhead if
the object is managed by the garbage collector. New in version 2.6.

_getframe([depth])
Return a frame object from the call stack. If optional integer depth is given, return the frame object that many
calls below the top of the stack. If that is deeper than the call stack, ValueError is raised. The default for
depth is zero, returning the frame at the top of the call stack.

CPython implementation detail: This function should be used for internal and specialized purposes only. It is
not guaranteed to exist in all implementations of Python.

27.1. sys — System-specific parameters and functions 1021

The Python Library Reference, Release 2.6.9

getprofile()
Get the profiler function as set by setprofile(). New in version 2.6.

gettrace()
Get the trace function as set by settrace().

CPython implementation detail: The gettrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than part of the
language definition, and thus may not be available in all Python implementations. New in version 2.6.

getwindowsversion()
Return a tuple containing five components, describing the Windows version currently running. The elements
are major, minor, build, platform, and text. text contains a string while all other values are integers.

platform may be one of the following values:

Constant Platform
0 (VER_PLATFORM_WIN32s) Win32s on Windows 3.1
1 (VER_PLATFORM_WIN32_WINDOWS) Windows 95/98/ME
2 (VER_PLATFORM_WIN32_NT) Windows NT/2000/XP/x64
3 (VER_PLATFORM_WIN32_CE) Windows CE

This function wraps the Win32 GetVersionEx() function; see the Microsoft documentation for more infor-
mation about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502F0:
use some advanced feature
...

else:
use an alternative implementation or warn the user
...

This is called hexversion since it only really looks meaningful when viewed as the result of passing it to the
built-in hex() function. The version_info value may be used for a more human-friendly encoding of the
same information. New in version 1.5.2.

last_type
last_value
last_traceback

These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use is import pdb; pdb.pm() to enter the post-mortem debugger; see chapter pdb —
The Python Debugger for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unlike for exc_type etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer is -maxint-1 — the asymmetry results from the use of 2’s complement binary arithmetic.

1022 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

maxsize
The largest positive integer supported by the platform’s Py_ssize_t type, and thus the maximum size lists, strings,
dicts, and many other containers can have.

maxunicode
An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

meta_path
A list of finder objects that have their find_module() methods called to see if one of the objects can find the
module to be imported. The find_module() method is called at least with the absolute name of the module
being imported. If the module to be imported is contained in package then the parent package’s __path__
attribute is passed in as a second argument. The method returns None if the module cannot be found, else
returns a loader.

sys.meta_path is searched before any implicit default finders or sys.path.

See PEP 302 for the original specification.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-

ulated to force reloading of modules and other tricks. Note that removing a module from this dictionary is not
the same as calling reload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this list, path[0], is the directory containing the script
that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter is
invoked interactively or if the script is read from standard input), path[0] is the empty string, which directs
Python to search modules in the current directory first. Notice that the script directory is inserted before the
entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes. Changed in version 2.3: Unicode strings are no longer
ignored.

See Also:

Module site This describes how to use .pth files to extend sys.path.

path_hooks
A list of callables that take a path argument to try to create a finder for the path. If a finder can be created, it is
to be returned by the callable, else raise ImportError.

Originally specified in PEP 302.

path_importer_cache
A dictionary acting as a cache for finder objects. The keys are paths that have been passed to
sys.path_hooks and the values are the finders that are found. If a path is a valid file system path but
no explicit finder is found on sys.path_hooks then None is stored to represent the implicit default finder
should be used. If the path is not an existing path then imp.NullImporter is set.

Originally specified in PEP 302.

platform
This string contains a platform identifier that can be used to append platform-specific components to
sys.path, for instance.

For Unix systems, this is the lowercased OS name as returned by uname -s with the first part of the version
as returned by uname -r appended, e.g. ’sunos5’ or ’linux2’, at the time when Python was built. For
other systems, the values are:

27.1. sys — System-specific parameters and functions 1023

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

System platform value
Windows ’win32’
Windows/Cygwin ’cygwin’
Mac OS X ’darwin’
OS/2 ’os2’
OS/2 EMX ’os2emx’
RiscOS ’riscos’
AtheOS ’atheos’

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed; by
default, this is the string ’/usr/local’. This can be set at build time with the --prefix argument to
the configure script. The main collection of Python library modules is installed in the directory prefix +
’/lib/pythonversion’ while the platform independent header files (all except pyconfig.h) are stored
in prefix + ’/include/pythonversion’, where version is equal to version[:3].

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case are ’>>> ’ and ’... ’. If a non-string object is
assigned to either variable, its str() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

py3kwarning
Bool containing the status of the Python 3.0 warning flag. It’s True when Python is started with the -3 op-
tion. (This should be considered read-only; setting it to a different value doesn’t have an effect on Python 3.0
warnings.) New in version 2.6.

dont_write_bytecode
If this is true, Python won’t try to write .pyc or .pyo files on the import of source modules.
This value is initially set to True or False depending on the -B command line option and the
PYTHONDONTWRITEBYTECODE environment variable, but you can set it yourself to control bytecode file
generation. New in version 2.6.

setcheckinterval(interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The default is 100, meaning the check is performed every
100 Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a value <= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding(name)
Set the current default string encoding used by the Unicode implementation. If name does not match any
available encoding, LookupError is raised. This function is only intended to be used by the site module
implementation and, where needed, by sitecustomize. Once used by the site module, it is removed from
the sys module’s namespace. New in version 2.0.

setdlopenflags(n)
Set the flags used by the interpreter for dlopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called as sys.setdlopenflags(0). To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD_NOW | dl.RTLD_GLOBAL). Symbolic names for the flag modules
can be either found in the dl module, or in the DLFCN module. If DLFCN is not available, it can be generated
from /usr/include/dlfcn.h using the h2py script. Availability: Unix. New in version 2.2.

setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See

chapter The Python Profilers for more information on the Python profiler. The system’s profile function is called
similarly to the system’s trace function (see settrace()), but it isn’t called for each executed line of code

1024 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

(only on call and return, but the return event is reported even when an exception has been set). The function is
thread-specific, but there is no way for the profiler to know about context switches between threads, so it does
not make sense to use this in the presence of multiple threads. Also, its return value is not used, so it can simply
return None.

setrecursionlimit(limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace(tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. The
function is thread-specific; for a debugger to support multiple threads, it must be registered using settrace()
for each thread being debugged.

Trace functions should have three arguments: frame, event, and arg. frame is the current stack frame. event is a
string: ’call’, ’line’, ’return’, ’exception’, ’c_call’, ’c_return’, or ’c_exception’.
arg depends on the event type.

The trace function is invoked (with event set to ’call’) whenever a new local scope is entered; it should return
a reference to a local trace function to be used that scope, or None if the scope shouldn’t be traced.

The local trace function should return a reference to itself (or to another function for further tracing in that
scope), or None to turn off tracing in that scope.

The events have the following meaning:

’call’ A function is called (or some other code block entered). The global trace function is called; arg is
None; the return value specifies the local trace function.

’line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one line
exist). The local trace function is called; arg is None; the return value specifies the new local trace
function.

’return’ A function (or other code block) is about to return. The local trace function is called; arg is the
value that will be returned. The trace function’s return value is ignored.

’exception’ An exception has occurred. The local trace function is called; arg is a tuple (exception,
value, traceback); the return value specifies the new local trace function.

’c_call’ A C function is about to be called. This may be an extension function or a built-in. arg is the C
function object.

’c_return’ A C function has returned. arg is None.

’c_exception’ A C function has thrown an exception. arg is None.

Note that as an exception is propagated down the chain of callers, an ’exception’ event is generated at each
level.

For more information on code and frame objects, refer to The standard type hierarchy (in The Python Language
Reference).

CPython implementation detail: The settrace() function is intended only for implementing debuggers,
profilers, coverage tools and the like. Its behavior is part of the implementation platform, rather than part of the
language definition, and thus may not be available in all Python implementations.

settscdump(on_flag)
Activate dumping of VM measurements using the Pentium timestamp counter, if on_flag is true. Deactivate
these dumps if on_flag is off. The function is available only if Python was compiled with --with-tsc.

27.1. sys — System-specific parameters and functions 1025

The Python Library Reference, Release 2.6.9

To understand the output of this dump, read Python/ceval.c in the Python sources. New in version 2.4.
CPython implementation detail: This function is intimately bound to CPython implementation details and
thus not likely to be implemented elsewhere.

stdin
stdout
stderr

File objects corresponding to the interpreter’s standard input, output and error streams. stdin is used for
all interpreter input except for scripts but including calls to input() and raw_input(). stdout is used
for the output of print and expression statements and for the prompts of input() and raw_input().
The interpreter’s own prompts and (almost all of) its error messages go to stderr. stdout and stderr
needn’t be built-in file objects: any object is acceptable as long as it has a write() method that takes a
string argument. (Changing these objects doesn’t affect the standard I/O streams of processes executed by
os.popen(), os.system() or the exec*() family of functions in the os module.)

__stdin__
__stdout__
__stderr__

These objects contain the original values of stdin, stderr and stdout at the start of the program. They are
used during finalization, and could be useful to print to the actual standard stream no matter if the sys.std*
object has been redirected.

It can also be used to restore the actual files to known working file objects in case they have been overwritten
with a broken object. However, the preferred way to do this is to explicitly save the previous stream before
replacing it, and restore the saved object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The default is 1000. When set to 0 or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build number
and compiler used. This string is displayed when the interactive interpreter is started. Do not extract version
information out of it, rather, use version_info and the functions provided by the platform module.

api_version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version_info
A tuple containing the five components of the version number: major, minor, micro, releaselevel, and serial. All
values except releaselevel are integers; the release level is ’alpha’, ’beta’, ’candidate’, or ’final’.
The version_info value corresponding to the Python version 2.0 is (2, 0, 0, ’final’, 0). New
in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the warnings
module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three characters of version. It is provided in the sys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

1026 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

Citations

27.2 __builtin__ — Built-in objects

This module provides direct access to all ‘built-in’ identifiers of Python; for example, __builtin__.open is the
full name for the built-in function open().

This module is not normally accessed explicitly by most applications, but can be useful in modules that provide objects
with the same name as a built-in value, but in which the built-in of that name is also needed. For example, in a module
that wants to implement an open() function that wraps the built-in open(), this module can be used directly:

import __builtin__

def open(path):
f = __builtin__.open(path, ’r’)
return UpperCaser(f)

class UpperCaser:
’’’Wrapper around a file that converts output to upper-case.’’’

def __init__(self, f):
self._f = f

def read(self, count=-1):
return self._f.read(count).upper()

...

CPython implementation detail: Most modules have the name __builtins__ (note the ’s’) made available as
part of their globals. The value of __builtins__ is normally either this module or the value of this modules’s
__dict__ attribute. Since this is an implementation detail, it may not be used by alternate implementations of
Python.

27.3 future_builtins — Python 3 builtins

New in version 2.6. This module provides functions that exist in 2.x, but have different behavior in Python 3, so they
cannot be put into the 2.x builtins namespace.

Instead, if you want to write code compatible with Python 3 builtins, import them from this module, like this:

from future_builtins import map, filter

... code using Python 3-style map and filter ...

The 2to3 tool that ports Python 2 code to Python 3 will recognize this usage and leave the new builtins alone.

Note: The Python 3 print() function is already in the builtins, but cannot be accessed from Python 2 code unless
you use the appropriate future statement:

from __future__ import print_function

Available builtins are:

ascii(object)
Returns the same as repr(). In Python 3, repr() will return printable Unicode characters unescaped, while

27.2. __builtin__ — Built-in objects 1027

The Python Library Reference, Release 2.6.9

ascii() will always backslash-escape them. Using future_builtins.ascii() instead of repr() in
2.6 code makes it clear that you need a pure ASCII return value.

filter(function, iterable)
Works like itertools.ifilter().

hex(object)
Works like the built-in hex(), but instead of __hex__() it will use the __index__() method on its argu-
ment to get an integer that is then converted to hexadecimal.

map(function, iterable, ...)
Works like itertools.imap().

oct(object)
Works like the built-in oct(), but instead of __oct__() it will use the __index__() method on its argu-
ment to get an integer that is then converted to octal.

zip(*iterables)
Works like itertools.izip().

27.4 __main__ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if __name__ == "__main__":
main()

27.5 warnings — Warning control

New in version 2.1. Warning messages are typically issued in situations where it is useful to alert the user of some
condition in a program, where that condition (normally) doesn’t warrant raising an exception and terminating the
program. For example, one might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by calling the warn() function defined in this module. (C programmers use
PyErr_WarnEx(); see Exception Handling (in The Python/C API) for details).

Warning messages are normally written to sys.stderr, but their disposition can be changed flexibly, from ignoring
all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by calling filterwarnings() and reset to its default
state by calling resetwarnings().

The printing of warning messages is done by calling showwarning(), which may be overridden; the default im-
plementation of this function formats the message by calling formatwarning(), which is also available for use by
custom implementations.

1028 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

27.5.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

Class Description
Warning This is the base class of all warning category classes. It is a subclass of

Exception.
UserWarning The default category for warn().
DeprecationWarning Base category for warnings about deprecated features.
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.
FutureWarning Base category for warnings about constructs that will change semantically in the

future.
PendingDeprecationWarningBase category for warnings about features that will be deprecated in the future

(ignored by default).
ImportWarning Base category for warnings triggered during the process of importing a module

(ignored by default).
UnicodeWarning Base category for warnings related to Unicode.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of the Warning class.

27.5.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the form (action, message, category, module, lineno), where:

• action is one of the following strings:

Value Disposition
"error" turn matching warnings into exceptions
"ignore" never print matching warnings
"always" always print matching warnings
"default" print the first occurrence of matching warnings for each location where the warning is issued
"module" print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

• message is a string containing a regular expression that the warning message must match (the match is compiled
to always be case-insensitive).

• category is a class (a subclass of Warning) of which the warning category must be a subclass in order to match.

• module is a string containing a regular expression that the module name must match (the match is compiled to
be case-sensitive).

• lineno is an integer that the line number where the warning occurred must match, or 0 to match all line numbers.

Since the Warning class is derived from the built-in Exception class, to turn a warning into an error we simply
raise category(message).

27.5. warnings — Warning control 1029

The Python Library Reference, Release 2.6.9

The warnings filter is initialized by -W options passed to the Python interpreter command line. The interpreter saves
the arguments for all -W options without interpretation in sys.warnoptions; the warnings module parses these
when it is first imported (invalid options are ignored, after printing a message to sys.stderr).

The warnings that are ignored by default may be enabled by passing -Wd to the interpreter. This enables default
handling for all warnings, including those that are normally ignored by default. This is particular useful for enabling
ImportWarning when debugging problems importing a developed package. ImportWarning can also be enabled ex-
plicitly in Python code using:

warnings.simplefilter(’default’, ImportWarning)

27.5.3 Temporarily Suppressing Warnings

If you are using code that you know will raise a warning, such as a deprecated function, but do not want to see the
warning, then it is possible to suppress the warning using the catch_warnings context manager:

import warnings

def fxn():
warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings():
warnings.simplefilter("ignore")
fxn()

While within the context manager all warnings will simply be ignored. This allows you to use known-deprecated code
without having to see the warning while not suppressing the warning for other code that might not be aware of its use
of deprecated code. Note: this can only be guaranteed in a single-threaded application. If two or more threads use the
catch_warnings context manager at the same time, the behavior is undefined.

27.5.4 Testing Warnings

To test warnings raised by code, use the catch_warnings context manager. With it you can temporarily mutate
the warnings filter to facilitate your testing. For instance, do the following to capture all raised warnings to check:

import warnings

def fxn():
warnings.warn("deprecated", DeprecationWarning)

with warnings.catch_warnings(record=True) as w:
Cause all warnings to always be triggered.
warnings.simplefilter("always")
Trigger a warning.
fxn()
Verify some things
assert len(w) == 1
assert issubclass(w[-1].category, DeprecationWarning)
assert "deprecated" in str(w[-1].message)

One can also cause all warnings to be exceptions by using error instead of always. One thing to be aware of is that
if a warning has already been raised because of a once/default rule, then no matter what filters are set the warning
will not be seen again unless the warnings registry related to the warning has been cleared.

Once the context manager exits, the warnings filter is restored to its state when the context was entered. This prevents
tests from changing the warnings filter in unexpected ways between tests and leading to indeterminate test results. The

1030 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

showwarning() function in the module is also restored to its original value. Note: this can only be guaranteed in
a single-threaded application. If two or more threads use the catch_warnings context manager at the same time,
the behavior is undefined.

When testing multiple operations that raise the same kind of warning, it is important to test them in a manner that
confirms each operation is raising a new warning (e.g. set warnings to be raised as exceptions and check the operations
raise exceptions, check that the length of the warning list continues to increase after each operation, or else delete the
previous entries from the warnings list before each new operation).

27.5.5 Available Functions

warn(message, [category, [stacklevel]])
Issue a warning, or maybe ignore it or raise an exception. The category argument, if given, must be a warning
category class (see above); it defaults to UserWarning. Alternatively message can be a Warning instance,
in which case category will be ignored and message.__class__ will be used. In this case the message text
will be str(message). This function raises an exception if the particular warning issued is changed into an
error by the warnings filter see above. The stacklevel argument can be used by wrapper functions written in
Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer to deprecation()‘s caller, rather than to the source of deprecation()
itself (since the latter would defeat the purpose of the warning message).

warn_explicit(message, category, filename, lineno, [module, [registry, [module_globals]]])
This is a low-level interface to the functionality of warn(), passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry__ dictionary of the module). The module name defaults to the filename with .py
stripped; if no registry is passed, the warning is never suppressed. message must be a string and category a
subclass of Warning or message may be a Warning instance, in which case category will be ignored.

module_globals, if supplied, should be the global namespace in use by the code for which the warning is issued.
(This argument is used to support displaying source for modules found in zipfiles or other non-filesystem import
sources). Changed in version 2.5: Added the module_globals parameter.

warnpy3k(message, [category, [stacklevel]])
Issue a warning related to Python 3.x deprecation. Warnings are only shown when Python is started with the -3
option. Like warn() message must be a string and category a subclass of Warning. warnpy3k() is using
DeprecationWarning as default warning class. New in version 2.6.

showwarning(message, category, filename, lineno, [file, [line]])
Write a warning to a file. The default implementation calls formatwarning(message, category,
filename, lineno, line) and writes the resulting string to file, which defaults to sys.stderr. You
may replace this function with an alternative implementation by assigning to warnings.showwarning.
line is a line of source code to be included in the warning message; if line is not supplied, showwarning()
will try to read the line specified by filename and lineno. Changed in version 2.6: Added the line argument.
Implementations that lack the new argument will trigger a DeprecationWarning.

formatwarning(message, category, filename, lineno, [line])
Format a warning the standard way. This returns a string which may contain embedded newlines and ends
in a newline. line is a line of source code to be included in the warning message; if line is not supplied,
formatwarning() will try to read the line specified by filename and lineno. Changed in version 2.6: Added
the line argument.

filterwarnings(action, [message, [category, [module, [lineno, [append]]]]])
Insert an entry into the list of warnings filter specifications. The entry is inserted at the front by default; if

27.5. warnings — Warning control 1031

The Python Library Reference, Release 2.6.9

append is true, it is inserted at the end. This checks the types of the arguments, compiles the message and
module regular expressions, and inserts them as a tuple in the list of warnings filters. Entries closer to the front
of the list override entries later in the list, if both match a particular warning. Omitted arguments default to a
value that matches everything.

simplefilter(action, [category, [lineno, [append]]])
Insert a simple entry into the list of warnings filter specifications. The meaning of the function parameters is
as for filterwarnings(), but regular expressions are not needed as the filter inserted always matches any
message in any module as long as the category and line number match.

resetwarnings()
Reset the warnings filter. This discards the effect of all previous calls to filterwarnings(), including that
of the -W command line options and calls to simplefilter().

27.5.6 Available Context Managers

class catch_warnings([*, record=False, module=None])
A context manager that copies and, upon exit, restores the warnings filter and the showwarning() function.
If the record argument is False (the default) the context manager returns None on entry. If record is True,
a list is returned that is progressively populated with objects as seen by a custom showwarning() function
(which also suppresses output to sys.stdout). Each object in the list has attributes with the same names as
the arguments to showwarning().

The module argument takes a module that will be used instead of the module returned when you import
warnings whose filter will be protected. This argument exists primarily for testing the warnings mod-
ule itself.

Note: The catch_warnings manager works by replacing and then later restoring the module’s
showwarning() function and internal list of filter specifications. This means the context manager is modify-
ing global state and therefore is not thread-safe.

Note: In Python 3.0, the arguments to the constructor for catch_warnings are keyword-only arguments.
New in version 2.6.

27.6 contextlib — Utilities for with-statement contexts

New in version 2.5. This module provides utilities for common tasks involving the with statement. For more infor-
mation see also Context Manager Types and With Statement Context Managers (in The Python Language Reference).

Functions provided:

contextmanager(func)
This function is a decorator that can be used to define a factory function for with statement context managers,
without needing to create a class or separate __enter__() and __exit__() methods.

A simple example (this is not recommended as a real way of generating HTML!):

from contextlib import contextmanager

@contextmanager
def tag(name):

print "<%s>" % name
yield
print "</%s>" % name

1032 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

>>> with tag("h1"):
... print "foo"
...
<h1>
foo
</h1>

The function being decorated must return a generator-iterator when called. This iterator must yield exactly one
value, which will be bound to the targets in the with statement’s as clause, if any.

At the point where the generator yields, the block nested in the with statement is executed. The generator is then
resumed after the block is exited. If an unhandled exception occurs in the block, it is reraised inside the generator
at the point where the yield occurred. Thus, you can use a try...except...finally statement to trap the
error (if any), or ensure that some cleanup takes place. If an exception is trapped merely in order to log it or to
perform some action (rather than to suppress it entirely), the generator must reraise that exception. Otherwise
the generator context manager will indicate to the with statement that the exception has been handled, and
execution will resume with the statement immediately following the with statement.

nested(mgr1, [mgr2, [...]])
Combine multiple context managers into a single nested context manager.

Code like this:

from contextlib import nested

with nested(A(), B(), C()) as (X, Y, Z):
do_something()

is equivalent to this:

m1, m2, m3 = A(), B(), C()
with m1 as X:

with m2 as Y:
with m3 as Z:

do_something()

Note that if the __exit__() method of one of the nested context managers indicates an exception should be
suppressed, no exception information will be passed to any remaining outer context managers. Similarly, if the
__exit__() method of one of the nested managers raises an exception, any previous exception state will be
lost; the new exception will be passed to the __exit__() methods of any remaining outer context managers.
In general, __exit__() methods should avoid raising exceptions, and in particular they should not re-raise a
passed-in exception.

closing(thing)
Return a context manager that closes thing upon completion of the block. This is basically equivalent to:

from contextlib import contextmanager

@contextmanager
def closing(thing):

try:
yield thing

finally:
thing.close()

And lets you write code like this:

27.6. contextlib — Utilities for with-statement contexts 1033

The Python Library Reference, Release 2.6.9

from contextlib import closing
import urllib

with closing(urllib.urlopen(’http://www.python.org’)) as page:
for line in page:

print line

without needing to explicitly close page. Even if an error occurs, page.close() will be called when the
with block is exited.

See Also:

PEP 0343 - The “with” statement The specification, background, and examples for the Python with statement.

27.7 abc — Abstract Base Classes

New in version 2.6. This module provides the infrastructure for defining an abstract base class (ABCs) in Python, as
outlined in PEP 3119; see the PEP for why this was added to Python. (See also PEP 3141 and the numbers module
regarding a type hierarchy for numbers based on ABCs.)

The collectionsmodule has some concrete classes that derive from ABCs; these can, of course, be further derived.
In addition the collections module has some ABCs that can be used to test whether a class or instance provides
a particular interface, for example, is it hashable or a mapping.

This module provides the following class:

class ABCMeta()
Metaclass for defining Abstract Base Classes (ABCs).

Use this metaclass to create an ABC. An ABC can be subclassed directly, and then acts as a mix-in class. You can
also register unrelated concrete classes (even built-in classes) and unrelated ABCs as “virtual subclasses” – these
and their descendants will be considered subclasses of the registering ABC by the built-in issubclass()
function, but the registering ABC won’t show up in their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not even via super()). 1

Classes created with a metaclass of ABCMeta have the following method:

register(subclass)
Register subclass as a “virtual subclass” of this ABC. For example:

from abc import ABCMeta

class MyABC:
__metaclass__ = ABCMeta

MyABC.register(tuple)

assert issubclass(tuple, MyABC)
assert isinstance((), MyABC)

You can also override this method in an abstract base class:

__subclasshook__(subclass)
(Must be defined as a class method.)

1 C++ programmers should note that Python’s virtual base class concept is not the same as C++’s.

1034 Chapter 27. Python Runtime Services

http://www.python.org/dev/peps/pep-0343
http://www.python.org/dev/peps/pep-3119
http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 2.6.9

Check whether subclass is considered a subclass of this ABC. This means that you can customize the
behavior of issubclass further without the need to call register() on every class you want to
consider a subclass of the ABC. (This class method is called from the __subclasscheck__() method
of the ABC.)

This method should return True, False or NotImplemented. If it returns True, the subclass is
considered a subclass of this ABC. If it returns False, the subclass is not considered a subclass of this
ABC, even if it would normally be one. If it returns NotImplemented, the subclass check is continued
with the usual mechanism.

For a demonstration of these concepts, look at this example ABC definition:

class Foo(object):
def __getitem__(self, index):

...
def __len__(self):

...
def get_iterator(self):

return iter(self)

class MyIterable:
__metaclass__ = ABCMeta

@abstractmethod
def __iter__(self):

while False:
yield None

def get_iterator(self):
return self.__iter__()

@classmethod
def __subclasshook__(cls, C):

if cls is MyIterable:
if any("__iter__" in B.__dict__ for B in C.__mro__):

return True
return NotImplemented

MyIterable.register(Foo)

The ABC MyIterable defines the standard iterable method, __iter__(), as an abstract method. The
implementation given here can still be called from subclasses. The get_iterator() method is also part of
the MyIterable abstract base class, but it does not have to be overridden in non-abstract derived classes.

The __subclasshook__() class method defined here says that any class that has an __iter__() method
in its __dict__ (or in that of one of its base classes, accessed via the __mro__ list) is considered a
MyIterable too.

Finally, the last line makes Foo a virtual subclass of MyIterable, even though it does not define
an __iter__() method (it uses the old-style iterable protocol, defined in terms of __len__() and
__getitem__()). Note that this will not make get_iterator available as a method of Foo, so it is
provided separately.

It also provides the following decorators:

abstractmethod(function)
A decorator indicating abstract methods.

27.7. abc — Abstract Base Classes 1035

The Python Library Reference, Release 2.6.9

Using this decorator requires that the class’s metaclass is ABCMeta or is derived from it. A class that has a
metaclass derived from ABCMeta cannot be instantiated unless all of its abstract methods and properties are
overridden. The abstract methods can be called using any of the normal ‘super’ call mechanisms.

Dynamically adding abstract methods to a class, or attempting to modify the abstraction status of a method or
class once it is created, are not supported. The abstractmethod() only affects subclasses derived using
regular inheritance; “virtual subclasses” registered with the ABC’s register() method are not affected.

Usage:

class C:
__metaclass__ = ABCMeta
@abstractmethod
def my_abstract_method(self, ...):

...

Note: Unlike Java abstract methods, these abstract methods may have an implementation. This implementation
can be called via the super() mechanism from the class that overrides it. This could be useful as an end-point
for a super-call in a framework that uses cooperative multiple-inheritance.

abstractproperty([fget, [fset, [fdel, [doc]]]])
A subclass of the built-in property(), indicating an abstract property.

Using this function requires that the class’s metaclass is ABCMeta or is derived from it. A class that has a
metaclass derived from ABCMeta cannot be instantiated unless all of its abstract methods and properties are
overridden. The abstract properties can be called using any of the normal ‘super’ call mechanisms.

Usage:

class C:
__metaclass__ = ABCMeta
@abstractproperty
def my_abstract_property(self):

...

This defines a read-only property; you can also define a read-write abstract property using the ‘long’ form of
property declaration:

class C:
__metaclass__ = ABCMeta
def getx(self): ...
def setx(self, value): ...
x = abstractproperty(getx, setx)

27.8 atexit — Exit handlers

New in version 2.0. The atexit module defines a single function to register cleanup functions. Functions thus
registered are automatically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or when os._exit() is called. This is an alternate interface to the functionality
provided by the sys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that sets sys.exitfunc. In partic-
ular, other core Python modules are free to use atexit without the programmer’s knowledge. Authors who use

1036 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

sys.exitfunc should convert their code to use atexit instead. The simplest way to convert code that sets
sys.exitfunc is to import atexit and register the function that had been bound to sys.exitfunc.

register(func, [*args, [**kargs]])
Register func as a function to be executed at termination. Any optional arguments that are to be passed to func
must be passed as arguments to register().

At normal program termination (for instance, if sys.exit() is called or the main module’s execution com-
pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed (unless SystemExit is
raised) and the exception information is saved. After all exit handlers have had a chance to run the last exception
to be raised is re-raised. Changed in version 2.6: This function now returns func which makes it possible to use
it as a decorator without binding the original name to None.

See Also:

Module readline Useful example of atexit to read and write readline history files.

27.8.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:
_count = int(open("/tmp/counter").read())

except IOError:
_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter", "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passed to register() to be passed along to the registered function
when it is called:

def goodbye(name, adjective):
print ’Goodbye, %s, it was %s to meet you.’ % (name, adjective)

import atexit
atexit.register(goodbye, ’Donny’, ’nice’)

or:
atexit.register(goodbye, adjective=’nice’, name=’Donny’)

Usage as a decorator:

import atexit

@atexit.register

27.8. atexit — Exit handlers 1037

The Python Library Reference, Release 2.6.9

def goodbye():
print "You are now leaving the Python sector."

This obviously only works with functions that don’t take arguments.

27.9 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, such as in a “wrapper” around the interpreter. The module uses traceback objects — this
is the object type that is stored in the variables sys.exc_traceback (deprecated) and sys.last_traceback
and returned as the third item from sys.exc_info().

The module defines the following functions:

print_tb(traceback, [limit, [file]])
Print up to limit stack trace entries from traceback. If limit is omitted or None, all entries are printed. If file
is omitted or None, the output goes to sys.stderr; otherwise it should be an open file or file-like object to
receive the output.

print_exception(type, value, traceback, [limit, [file]])
Print exception information and up to limit stack trace entries from traceback to file. This differs from
print_tb() in the following ways: (1) if traceback is not None, it prints a header Traceback (most
recent call last):; (2) it prints the exception type and value after the stack trace; (3) if type is
SyntaxError and value has the appropriate format, it prints the line where the syntax error occurred with a
caret indicating the approximate position of the error.

print_exc([limit, [file]])
This is a shorthand for print_exception(sys.exc_type, sys.exc_value,
sys.exc_traceback, limit, file). (In fact, it uses sys.exc_info() to retrieve the same
information in a thread-safe way instead of using the deprecated variables.)

format_exc([limit])
This is like print_exc(limit) but returns a string instead of printing to a file. New in version 2.4.

print_last([limit, [file]])
This is a shorthand for print_exception(sys.last_type, sys.last_value,
sys.last_traceback, limit, file). In general it will work only after an exception has reached an
interactive prompt (see sys.last_type).

print_stack([f, [limit, [file]]])
This function prints a stack trace from its invocation point. The optional f argument can be used to spec-
ify an alternate stack frame to start. The optional limit and file arguments have the same meaning as for
print_exception().

extract_tb(traceback, [limit])
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object traceback.
It is useful for alternate formatting of stack traces. If limit is omitted or None, all entries are extracted. A
“pre-processed” stack trace entry is a quadruple (filename, line number, function name, text) representing the
information that is usually printed for a stack trace. The text is a string with leading and trailing whitespace
stripped; if the source is not available it is None.

extract_stack([f, [limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb(). The optional f and limit arguments have the same meaning as for print_stack().

format_list(list)
Given a list of tuples as returned by extract_tb() or extract_stack(), return a list of strings ready

1038 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is not None.

format_exception_only(type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last_type and sys.last_value. The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, for SyntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format_exception(type, value, tb, [limit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments to print_exception(). The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
does print_exception().

format_tb(tb, [limit])
A shorthand for format_list(extract_tb(tb, limit)).

format_stack([f, [limit]])
A shorthand for format_list(extract_stack(f, limit)).

tb_lineno(tb)
This function returns the current line number set in the traceback object. This function was necessary because
in versions of Python prior to 2.3 when the -O flag was passed to Python the tb.tb_lineno was not updated
correctly. This function has no use in versions past 2.3.

27.9.1 Traceback Examples

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refer to the code module.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")
try:

exec source in envdir
except:

print "Exception in user code:"
print ’-’*60
traceback.print_exc(file=sys.stdout)
print ’-’*60

envdir = {}
while 1:

run_user_code(envdir)

The following example demonstrates the different ways to print and format the exception and traceback:

import sys, traceback

def lumberjack():
bright_side_of_death()

def bright_side_of_death():

27.9. traceback — Print or retrieve a stack traceback 1039

The Python Library Reference, Release 2.6.9

return tuple()[0]

try:
lumberjack()

except IndexError:
exc_type, exc_value, exc_traceback = sys.exc_info()
print "*** print_tb:"
traceback.print_tb(exc_traceback, limit=1, file=sys.stdout)
print "*** print_exception:"
traceback.print_exception(exc_type, exc_value, exc_traceback,

limit=2, file=sys.stdout)
print "*** print_exc:"
traceback.print_exc()
print "*** format_exc, first and last line:"
formatted_lines = traceback.format_exc().splitlines()
print formatted_lines[0]
print formatted_lines[-1]
print "*** format_exception:"
print repr(traceback.format_exception(exc_type, exc_value,

exc_traceback))
print "*** extract_tb:"
print repr(traceback.extract_tb(exc_traceback))
print "*** format_tb:"
print repr(traceback.format_tb(exc_traceback))
print "*** tb_lineno:", exc_traceback.tb_lineno

The output for the example would look similar to this:

*** print_tb:
File "<doctest...>", line 10, in <module>

lumberjack()

*** print_exception:
Traceback (most recent call last):

File "<doctest...>", line 10, in <module>
lumberjack()

File "<doctest...>", line 4, in lumberjack
bright_side_of_death()

IndexError: tuple index out of range

*** print_exc:
Traceback (most recent call last):

File "<doctest...>", line 10, in <module>
lumberjack()

File "<doctest...>", line 4, in lumberjack
bright_side_of_death()

IndexError: tuple index out of range

*** format_exc, first and last line:
Traceback (most recent call last):
IndexError: tuple index out of range

*** format_exception:
[’Traceback (most recent call last):\n’,
’ File "<doctest...>", line 10, in <module>\n lumberjack()\n’,
’ File "<doctest...>", line 4, in lumberjack\n bright_side_of_death()\n’,
’ File "<doctest...>", line 7, in bright_side_of_death\n return tuple()[0]\n’,
’IndexError: tuple index out of range\n’]

*** extract_tb:

1040 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

[(’<doctest...>’, 10, ’<module>’, ’lumberjack()’),
(’<doctest...>’, 4, ’lumberjack’, ’bright_side_of_death()’),
(’<doctest...>’, 7, ’bright_side_of_death’, ’return tuple()[0]’)]

*** format_tb:
[’ File "<doctest...>", line 10, in <module>\n lumberjack()\n’,
’ File "<doctest...>", line 4, in lumberjack\n bright_side_of_death()\n’,
’ File "<doctest...>", line 7, in bright_side_of_death\n return tuple()[0]\n’]

*** tb_lineno: 10

The following example shows the different ways to print and format the stack:

>>> import traceback
>>> def another_function():
... lumberstack()
...
>>> def lumberstack():
... traceback.print_stack()
... print repr(traceback.extract_stack())
... print repr(traceback.format_stack())
...
>>> another_function()
File "<doctest>", line 10, in <module>

another_function()
File "<doctest>", line 3, in another_function

lumberstack()
File "<doctest>", line 6, in lumberstack

traceback.print_stack()
[(’<doctest>’, 10, ’<module>’, ’another_function()’),
(’<doctest>’, 3, ’another_function’, ’lumberstack()’),
(’<doctest>’, 7, ’lumberstack’, ’print repr(traceback.extract_stack())’)]

[’ File "<doctest>", line 10, in <module>\n another_function()\n’,
’ File "<doctest>", line 3, in another_function\n lumberstack()\n’,
’ File "<doctest>", line 8, in lumberstack\n print repr(traceback.format_stack())\n’]

This last example demonstrates the final few formatting functions:

>>> import traceback
>>> traceback.format_list([(’spam.py’, 3, ’<module>’, ’spam.eggs()’),
... (’eggs.py’, 42, ’eggs’, ’return "bacon"’)])
[’ File "spam.py", line 3, in <module>\n spam.eggs()\n’,
’ File "eggs.py", line 42, in eggs\n return "bacon"\n’]

>>> an_error = IndexError(’tuple index out of range’)
>>> traceback.format_exception_only(type(an_error), an_error)
[’IndexError: tuple index out of range\n’]

27.10 __future__ — Future statement definitions

__future__ is a real module, and serves three purposes:

• To avoid confusing existing tools that analyze import statements and expect to find the modules they’re import-
ing.

• To ensure that future statements (in The Python Language Reference) run under releases prior to 2.1 at least
yield runtime exceptions (the import of __future__ will fail, because there was no module of that name prior
to 2.1).

27.10. __future__ — Future statement definitions 1041

The Python Library Reference, Release 2.6.9

• To document when incompatible changes were introduced, and when they will be — or were — made manda-
tory. This is a form of executable documentation, and can be inspected programmatically via importing
__future__ and examining its contents.

Each statement in __future__.py is of the form:

FeatureName = _Feature(OptionalRelease, MandatoryRelease,
CompilerFlag)

where, normally, OptionalRelease is less than MandatoryRelease, and both are 5-tuples of the same form as
sys.version_info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int
PY_MICRO_VERSION, # the 0; an int
PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int

)

OptionalRelease records the first release in which the feature was accepted.

In the case of a MandatoryRelease that has not yet occurred, MandatoryRelease predicts the release in which the
feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules no
longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also be None, meaning that a planned feature got dropped.

Instances of class _Feature have two corresponding methods, getOptionalRelease() and
getMandatoryRelease().

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the built-in function compile() to
enable the feature in dynamically compiled code. This flag is stored in the compiler_flag attribute on _Feature
instances.

No feature description will ever be deleted from __future__. Since its introduction in Python 2.1 the following
features have found their way into the language using this mechanism:

feature optional in mandatory in effect
nested_scopes 2.1.0b1 2.2

PEP 227: Statically Nested Scopes
generators 2.2.0a1 2.3

PEP 255: Simple Generators
division 2.2.0a2 3.0

PEP 238: Changing the Division Operator
absolute_import 2.5.0a1 2.7

PEP 328: Imports: Multi-Line and Absolute/Relative
with_statement 2.5.0a1 2.6

PEP 343: The “with” Statement
print_function 2.6.0a2 3.0

PEP 3105: Make print a function
unicode_literals 2.6.0a2 3.0

PEP 3112: Bytes literals in Python 3000

See Also:

Future statements (in The Python Language Reference) How the compiler treats future imports.

27.11 gc — Garbage Collector interface

1042 Chapter 27. Python Runtime Services

http://www.python.org/dev/peps/pep-0227
http://www.python.org/dev/peps/pep-0255
http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0328
http://www.python.org/dev/peps/pep-0343
http://www.python.org/dev/peps/pep-3105
http://www.python.org/dev/peps/pep-3112

The Python Library Reference, Release 2.6.9

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
calling gc.disable(). To debug a leaking program call gc.set_debug(gc.DEBUG_LEAK). Notice that this
includes gc.DEBUG_SAVEALL, causing garbage-collected objects to be saved in gc.garbage for inspection.

The gc module provides the following functions:

enable()
Enable automatic garbage collection.

disable()
Disable automatic garbage collection.

isenabled()
Returns true if automatic collection is enabled.

collect([generation])
With no arguments, run a full collection. The optional argument generation may be an integer specifying
which generation to collect (from 0 to 2). A ValueError is raised if the generation number is invalid. The
number of unreachable objects found is returned. Changed in version 2.5: The optional generation argument
was added.Changed in version 2.6: The free lists maintained for a number of built-in types are cleared whenever
a full collection or collection of the highest generation (2) is run. Not all items in some free lists may be freed
due to the particular implementation, in particular int and float.

set_debug(flags)
Set the garbage collection debugging flags. Debugging information will be written to sys.stderr. See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get_debug()
Return the debugging flags currently set.

get_objects()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set_threshold(threshold0, [threshold1, [threshold2]])
Set the garbage collection thresholds (the collection frequency). Setting threshold0 to zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (generation 0). If an object survives a collection it is moved
into the next older generation. Since generation 2 is the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceeds threshold0, collection starts. Initially only generation 0 is examined. If generation 0 has been examined
more than threshold1 times since generation 1 has been examined, then generation 1 is examined as well.
Similarly, threshold2 controls the number of collections of generation 1 before collecting generation 2.

get_count()
Return the current collection counts as a tuple of (count0, count1, count2). New in version 2.5.

get_threshold()
Return the current collection thresholds as a tuple of (threshold0, threshold1, threshold2).

get_referrers(*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers which
support garbage collection; extension types which do refer to other objects but do not support garbage collection
will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been collected
by the garbage collector can be listed among the resulting referrers. To get only currently live objects, call

27.11. gc — Garbage Collector interface 1043

The Python Library Reference, Release 2.6.9

collect() before calling get_referrers().

Care must be taken when using objects returned by get_referrers() because some of them could still be
under construction and hence in a temporarily invalid state. Avoid using get_referrers() for any purpose
other than debugging. New in version 2.2.

get_referents(*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-level tp_traverse methods (if any), and may not be all objects actually directly
reachable. tp_traverse methods are supported only by objects that support garbage collection, and are only
required to visit objects that may be involved in a cycle. So, for example, if an integer is directly reachable from
an argument, that integer object may or may not appear in the result list. New in version 2.3.

The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects). By
default, this list contains only objects with __del__() methods. 2 Objects that have __del__() methods
and are part of a reference cycle cause the entire reference cycle to be uncollectable, including objects not
necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automatically because, in
general, it isn’t possible for Python to guess a safe order in which to run the __del__() methods. If you know
a safe order, you can force the issue by examining the garbage list, and explicitly breaking cycles due to your
objects within the list. Note that these objects are kept alive even so by virtue of being in the garbage list, so
they should be removed from garbage too. For example, after breaking cycles, do del gc.garbage[:] to
empty the list. It’s generally better to avoid the issue by not creating cycles containing objects with __del__()
methods, and garbage can be examined in that case to verify that no such cycles are being created.

If DEBUG_SAVEALL is set, then all unreachable objects will be added to this list rather than freed.

The following constants are provided for use with set_debug():

DEBUG_STATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUG_COLLECTABLE
Print information on collectable objects found.

DEBUG_UNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to the garbage list.

DEBUG_INSTANCES
When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about instance objects
found.

DEBUG_OBJECTS
When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about objects other than
instance objects found.

DEBUG_SAVEALL
When set, all unreachable objects found will be appended to garbage rather than being freed. This can be useful
for debugging a leaking program.

DEBUG_LEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE | DEBUG_INSTANCES | DEBUG_OBJECTS
| DEBUG_SAVEALL).

2 Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only those with __del__() methods.

1044 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

27.12 inspect — Inspect live objects

New in version 2.1. The inspect module provides several useful functions to help get information about live objects
such as modules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help
you examine the contents of a class, retrieve the source code of a method, extract and format the argument list for a
function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

27.12.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The sixteen functions
whose names begin with “is” are mainly provided as convenient choices for the second argument to getmembers().
They also help you determine when you can expect to find the following special attributes:

Type Attribute Description Notes
module __doc__ documentation string

__file__ filename (missing for built-in modules)
class __doc__ documentation string

__module__ name of module in which this class was defined
method __doc__ documentation string

__name__ name with which this method was defined
im_class class object that asked for this method (1)
im_func or __func__ function object containing implementation of method
im_self or __self__ instance to which this method is bound, or None

function __doc__ documentation string
__name__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as __doc__)
func_globals global namespace in which this function was defined
func_name (same as __name__)

generator __iter__ defined to support iteration over container
close raises new GeneratorExit exception inside the generator to terminate the iteration
gi_code code object
gi_frame frame object or possibly None once the generator has been exhausted
gi_running set to 1 when generator is executing, 0 otherwise
next return the next item from the container
send resumes the generator and “sends” a value that becomes the result of the current yield-expression
throw used to raise an exception inside the generator

traceback tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)

frame f_back next outer frame object (this frame’s caller)
f_builtins builtins namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback traceback if raised in this frame, or None
f_exc_type exception type if raised in this frame, or None
f_exc_value exception value if raised in this frame, or None
f_globals global namespace seen by this frame

Continued on next page

27.12. inspect — Inspect live objects 1045

The Python Library Reference, Release 2.6.9

Table 27.1 – continued from previous page
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, or None

code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables

builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound, or None

Note:

1. Changed in version 2.2: im_class used to refer to the class that defined the method.

getmembers(object, [predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional predicate
argument is supplied, only members for which the predicate returns a true value are included.

Note: getmembers() does not return metaclass attributes when the argument is a class (this behavior is
inherited from the dir() function).

getmoduleinfo(path)
Return a tuple of values that describe how Python will interpret the file identified by path if it is a module,
or None if it would not be identified as a module. The return tuple is (name, suffix, mode, mtype),
where name is the name of the module without the name of any enclosing package, suffix is the trailing part of the
file name (which may not be a dot-delimited extension), mode is the open() mode that would be used (’r’ or
’rb’), and mtype is an integer giving the type of the module. mtype will have a value which can be compared
to the constants defined in the imp module; see the documentation for that module for more information on
module types. Changed in version 2.6: Returns a named tuple ModuleInfo(name, suffix, mode,
module_type).

getmodulename(path)
Return the name of the module named by the file path, without including the names of enclosing packages. This
uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s rules, None is returned.

ismodule(object)
Return true if the object is a module.

isclass(object)
Return true if the object is a class.

ismethod(object)
Return true if the object is a method.

1046 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

isfunction(object)
Return true if the object is a Python function or unnamed (lambda) function.

isgeneratorfunction(object)
Return true if the object is a Python generator function. New in version 2.6.

isgenerator(object)
Return true if the object is a generator. New in version 2.6.

istraceback(object)
Return true if the object is a traceback.

isframe(object)
Return true if the object is a frame.

iscode(object)
Return true if the object is a code.

isbuiltin(object)
Return true if the object is a built-in function.

isroutine(object)
Return true if the object is a user-defined or built-in function or method.

isabstract(object)
Return true if the object is an abstract base class. New in version 2.6.

ismethoddescriptor(object)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction()
are true.

This is new as of Python 2.2, and, for example, is true of int.__add__. An object passing this test has a
__get__ attribute but not a __set__ attribute, but beyond that the set of attributes varies. __name__ is
usually sensible, and __doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the
ismethoddescriptor() test, simply because the other tests promise more – you can, e.g., count on having
the im_func attribute (etc) when an object passes ismethod().

isdatadescriptor(object)
Return true if the object is a data descriptor.

Data descriptors have both a __get__ and a __set__ attribute. Examples are properties (defined in Python),
getsets, and members. The latter two are defined in C and there are more specific tests available for those types,
which is robust across Python implementations. Typically, data descriptors will also have __name__ and
__doc__ attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed.
New in version 2.3.

isgetsetdescriptor(object)
Return true if the object is a getset descriptor.

CPython implementation detail: getsets are attributes defined in extension modules via PyGetSetDef struc-
tures. For Python implementations without such types, this method will always return False. New in version
2.5.

ismemberdescriptor(object)
Return true if the object is a member descriptor.

CPython implementation detail: Member descriptors are attributes defined in extension modules via
PyMemberDef structures. For Python implementations without such types, this method will always return
False. New in version 2.5.

27.12. inspect — Inspect live objects 1047

The Python Library Reference, Release 2.6.9

27.12.2 Retrieving source code

getdoc(object)
Get the documentation string for an object, cleaned up with cleandoc().

getcomments(object)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile(object)
Return the name of the (text or binary) file in which an object was defined. This will fail with a TypeError if
the object is a built-in module, class, or function.

getmodule(object)
Try to guess which module an object was defined in.

getsourcefile(object)
Return the name of the Python source file in which an object was defined. This will fail with a TypeError if
the object is a built-in module, class, or function.

getsourcelines(object)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError is raised if the source code cannot be retrieved.

getsource(object)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single string. An IOError is raised if the
source code cannot be retrieved.

cleandoc(doc)
Clean up indentation from docstrings that are indented to line up with blocks of code. Any whitespace that can
be uniformly removed from the second line onwards is removed. Also, all tabs are expanded to spaces. New in
version 2.6.

27.12.3 Classes and functions

getclasstree(classes, [unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If the unique argument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec(func)
Get the names and default values of a Python function’s arguments. A tuple of four things is returned: (args,
varargs, varkw, defaults). args is a list of the argument names (it may contain nested lists). varargs
and varkw are the names of the * and ** arguments or None. defaults is a tuple of default argument values
or None if there are no default arguments; if this tuple has n elements, they correspond to the last n elements
listed in args. Changed in version 2.6: Returns a named tuple ArgSpec(args, varargs, keywords,
defaults).

getargvalues(frame)
Get information about arguments passed into a particular frame. A tuple of four things is returned: (args,
varargs, varkw, locals). args is a list of the argument names (it may contain nested lists). varargs
and varkw are the names of the * and ** arguments or None. locals is the locals dictionary of the given frame.
Changed in version 2.6: Returns a named tuple ArgInfo(args, varargs, keywords, locals).

1048 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

formatargspec(args, [varargs, varkw, defaults, formatarg, formatvarargs, formatvarkw, formatvalue, join])
Format a pretty argument spec from the four values returned by getargspec(). The format* arguments are
the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues(args, [varargs, varkw, locals, formatarg, formatvarargs, formatvarkw, formatvalue, join])
Format a pretty argument spec from the four values returned by getargvalues(). The format* arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

getmro(cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

27.12.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list.

Note: Keeping references to frame objects, as found in the first element of the frame records these functions return,
can cause your program to create reference cycles. Once a reference cycle has been created, the lifespan of all objects
which can be accessed from the objects which form the cycle can become much longer even if Python’s optional cycle
detector is enabled. If such cycles must be created, it is important to ensure they are explicitly broken to avoid the
delayed destruction of objects and increased memory consumption which occurs.

Though the cycle detector will catch these, destruction of the frames (and local variables) can be made deterministic
by removing the cycle in a finally clause. This is also important if the cycle detector was disabled when Python
was compiled or using gc.disable(). For example:

def handle_stackframe_without_leak():
frame = inspect.currentframe()
try:

do something with the frame
finally:

del frame

The optional context argument supported by most of these functions specifies the number of lines of context to return,
which are centered around the current line.

getframeinfo(frame, [context])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the
frame’s frame record. Changed in version 2.6: Returns a named tuple Traceback(filename, lineno,
function, code_context, index).

getouterframes(frame, [context])
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation of frame. The first entry in the returned list represents frame; the last entry represents the outermost
call on frame‘s stack.

getinnerframes(traceback, [context])
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence of frame. The first entry in the list represents traceback; the last entry represents where the
exception was raised.

currentframe()
Return the frame object for the caller’s stack frame.

27.12. inspect — Inspect live objects 1049

The Python Library Reference, Release 2.6.9

CPython implementation detail: This function relies on Python stack frame support in the interpreter, which
isn’t guaranteed to exist in all implementations of Python. If running in an implementation without Python stack
frame support this function returns None.

stack([context])
Return a list of frame records for the caller’s stack. The first entry in the returned list represents the caller; the
last entry represents the outermost call on the stack.

trace([context])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

27.13 site — Site-specific configuration hook

This module is automatically imported during initialization. The automatic import can be suppressed us-
ing the interpreter’s -S option. Importing this module will append site-specific paths to the module search
path. It starts by constructing up to four directories from a head and a tail part. For the head part, it
uses sys.prefix and sys.exec_prefix; empty heads are skipped. For the tail part, it uses the empty
string and then lib/site-packages (on Windows) or lib/python|version|/site-packages and then
lib/site-python (on Unix and Macintosh). For each of the distinct head-tail combinations, it sees if it refers to
an existing directory, and if so, adds it to sys.path and also inspects the newly added path for configuration files.

A path configuration file is a file whose name has the form package.pth and exists in one of the four direc-
tories mentioned above; its contents are additional items (one per line) to be added to sys.path. Non-existing
items are never added to sys.path, but no check is made that the item refers to a directory (rather than a file).
No item is added to sys.path more than once. Blank lines and lines beginning with # are skipped. Lines
starting with import (followed by space or tab) are executed. Changed in version 2.6: A space or tab is now
required after the import keyword. For example, suppose sys.prefix and sys.exec_prefix are set to
/usr/local. The Python X.Y library is then installed in /usr/local/lib/pythonX.Y (where only the first
three characters of sys.version are used to form the installation path name). Suppose this has a subdirectory
/usr/local/lib/pythonX.Y/site-packages with three subsubdirectories, foo, bar and spam, and two
path configuration files, foo.pth and bar.pth. Assume foo.pth contains the following:

foo package configuration

foo
bar
bletch

and bar.pth contains:

bar package configuration

bar

Then the following version-specific directories are added to sys.path, in this order:

/usr/local/lib/pythonX.Y/site-packages/bar
/usr/local/lib/pythonX.Y/site-packages/foo

Note that bletch is omitted because it doesn’t exist; the bar directory precedes the foo directory because bar.pth
comes alphabetically before foo.pth; and spam is omitted because it is not mentioned in either path configuration
file. After these path manipulations, an attempt is made to import a module named sitecustomize, which can
perform arbitrary site-specific customizations. If this import fails with an ImportError exception, it is silently
ignored. Note that for some non-Unix systems, sys.prefix and sys.exec_prefix are empty, and the path
manipulations are skipped; however the import of sitecustomize is still attempted.

1050 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

PREFIXES
A list of prefixes for site package directories New in version 2.6.

ENABLE_USER_SITE
Flag showing the status of the user site directory. True means the user site directory is enabled and added to
sys.path. When the flag is None the user site directory is disabled for security reasons. New in version 2.6.

USER_SITE
Path to the user site directory for the current Python version or None New in version 2.6.

USER_BASE
Path to the base directory for user site directories New in version 2.6.

PYTHONNOUSERSITE
New in version 2.6.

PYTHONUSERBASE
New in version 2.6.

addsitedir(sitedir, known_paths=None)
Adds a directory to sys.path and processes its pth files.

27.14 user — User-specific configuration hook

Deprecated since version 2.6: The user module has been removed in Python 3.0. As a policy, Python doesn’t
run user-specified code on startup of Python programs. (Only interactive sessions execute the script specified in the
PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

The user module looks for a file .pythonrc.py in the user’s home directory and if it can be opened, executes
it (using execfile()) in its own (the module user‘s) global namespace. Errors during this phase are not caught;
that’s up to the program that imports the user module, if it wishes. The home directory is assumed to be named by
the HOME environment variable; if this is not set, the current directory is used.

The user’s .pythonrc.py could conceivably test for sys.version if it wishes to do different things depending
on the Python version.

A warning to users: be very conservative in what you place in your .pythonrc.py file. Since you don’t know
which programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in their .pythonrc.py file that you test in your module. For example, a
module spam that has a verbosity level can look for a variable user.spam_verbose, as follows:

import user

verbose = bool(getattr(user, "spam_verbose", 0))

(The three-argument form of getattr() is used in case the user has not defined spam_verbose in their
.pythonrc.py file.)

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns should not import this module; a user can easily break into a program by
placing arbitrary code in the .pythonrc.py file.

27.14. user — User-specific configuration hook 1051

The Python Library Reference, Release 2.6.9

Modules for general use should not import this module; it may interfere with the operation of the importing program.

See Also:

Module site Site-wide customization mechanism.

27.15 fpectl — Floating point exception control

Platforms: Unix

Note: The fpectl module is not built by default, and its usage is discouraged and may be dangerous except in the
hands of experts. See also the section Limitations and other considerations on limitations for more details. Most
computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real
computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

>>> import math
>>> math.exp(1000)
inf
>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) “Inf” is a special, non-numeric
value in IEEE-754 that stands for “infinity”, and “nan” means “not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. The fpectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generation of SIGFPE whenever any of
the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python system, SIGFPE is trapped and converted into the
Python FloatingPointError exception.

The fpectl module defines the following functions and may raise the given exception:

turnon_sigfpe()
Turn on the generation of SIGFPE, and set up an appropriate signal handler.

turnoff_sigfpe()
Reset default handling of floating point exceptions.

exception FloatingPointError
After turnon_sigfpe() has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

27.15.1 Example

The following example demonstrates how to start up and test operation of the fpectl module.

>>> import fpectl
>>> import fpetest
>>> fpectl.turnon_sigfpe()
>>> fpetest.test()
overflow PASS
FloatingPointError: Overflow

1052 Chapter 27. Python Runtime Services

The Python Library Reference, Release 2.6.9

div by 0 PASS
FloatingPointError: Division by zero

[more output from test elided]
>>> import math
>>> math.exp(1000)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
FloatingPointError: in math_1

27.15.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modify fpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECT and PyFPE_END_PROTECT be inserted into your code in an appropriate fashion.
Python itself has been modified to support the fpectl module, but many other codes of interest to numerical
analysts have not.

The fpectl module is not thread-safe.

See Also:

Some files in the source distribution may be interesting in learning more about how this module oper-
ates. The include file Include/pyfpe.h discusses the implementation of this module at some length.
Modules/fpetestmodule.c gives several examples of use. Many additional examples can be found in
Objects/floatobject.c.

27.16 distutils — Building and installing Python modules

The distutils package provides support for building and installing additional modules into a Python installation.
The new modules may be either 100%-pure Python, or may be extension modules written in C, or may be collections
of Python packages which include modules coded in both Python and C.

This package is discussed in two separate chapters:

See Also:

Distributing Python Modules (in Distributing Python Modules) The manual for developers and packagers of Python
modules. This describes how to prepare distutils-based packages so that they may be easily installed into
an existing Python installation.

Installing Python Modules (in Installing Python Modules) An “administrators” manual which includes information
on installing modules into an existing Python installation. You do not need to be a Python programmer to read
this manual.

27.16. distutils — Building and installing Python modules 1053

The Python Library Reference, Release 2.6.9

1054 Chapter 27. Python Runtime Services

CHAPTER

TWENTYEIGHT

CUSTOM PYTHON INTERPRETERS

The modules described in this chapter allow writing interfaces similar to Python’s interactive interpreter. If you want a
Python interpreter that supports some special feature in addition to the Python language, you should look at the code
module. (The codeop module is lower-level, used to support compiling a possibly-incomplete chunk of Python
code.)

The full list of modules described in this chapter is:

28.1 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

class InteractiveInterpreter([locals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optional locals argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
’__name__’ set to ’__console__’ and key ’__doc__’ set to None.

class InteractiveConsole([locals, [filename]])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and
input buffering.

interact([banner, [readfunc, [local]]])
Convenience function to run a read-eval-print loop. This creates a new instance of InteractiveConsole
and sets readfunc to be used as the raw_input() method, if provided. If local is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run with banner passed as the banner to use, if provided. The
console object is discarded after use.

compile_command(source, [filename, [symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This function almost
always makes the same decision as the real interpreter main loop.

source is the source string; filename is the optional filename from which source was read, defaulting to
’<input>’; and symbol is the optional grammar start symbol, which should be either ’single’ (the default)
or ’eval’.

Returns a code object (the same as compile(source, filename, symbol)) if the command is com-
plete and valid; None if the command is incomplete; raises SyntaxError if the command is complete and

1055

The Python Library Reference, Release 2.6.9

contains a syntax error, or raises OverflowError or ValueError if the command contains an invalid
literal.

28.1.1 Interactive Interpreter Objects

runsource(source, [filename, [symbol]])
Compile and run some source in the interpreter. Arguments are the same as for compile_command(); the
default for filename is ’<input>’, and for symbol is ’single’. One several things can happen:

•The input is incorrect; compile_command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror()
method. runsource() returns False.

•The input is incomplete, and more input is required; compile_command() returned None.
runsource() returns True.

•The input is complete; compile_command() returned a code object. The code is executed by calling
the runcode() (which also handles run-time exceptions, except for SystemExit). runsource()
returns False.

The return value can be used to decide whether to use sys.ps1 or sys.ps2 to prompt the next line.

runcode(code)
Execute a code object. When an exception occurs, showtraceback() is called to display a traceback. All
exceptions are caught except SystemExit, which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror([filename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. If filename is given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always uses ’<string>’when reading from a string. The output is written by the write()
method.

showtraceback()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by the write() method.

write(data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

28.1.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the methods
of the interpreter objects as well as the following additions.

interact([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
– since it’s so close!).

push(line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreter’s runsource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid, the

1056 Chapter 28. Custom Python Interpreters

The Python Library Reference, Release 2.6.9

buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was appended.
The return value is True if more input is required, False if the line was dealt with in some way (this is the
same as runsource()).

resetbuffer()
Remove any unhandled source text from the input buffer.

raw_input([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequence, EOFError is raised. The base implementation uses the built-in function raw_input();
a subclass may replace this with a different implementation.

28.2 codeop — Compile Python code

The codeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in the
code module. As a result, you probably don’t want to use the module directly; if you want to include such a loop in
your program you probably want to use the code module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to print ‘>>>‘ or
‘...‘ next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these in
effect.

The codeop module provides a way of doing each of these things, and a way of doing them both.

To do just the former:

compile_command(source, [filename, [symbol]])
Tries to compile source, which should be a string of Python code and return a code object if source is valid
Python code. In that case, the filename attribute of the code object will be filename, which defaults to
’<input>’. Returns None if source is not valid Python code, but is a prefix of valid Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is invalid Python
syntax, and OverflowError or ValueError if there is an invalid literal.

The symbol argument determines whether source is compiled as a statement (’single’, the default) or as an
expression (’eval’). Any other value will cause ValueError to be raised.

Note: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

class Compile()
Instances of this class have __call__() methods identical in signature to the built-in function compile(),
but with the difference that if the instance compiles program text containing a __future__ statement, the
instance ‘remembers’ and compiles all subsequent program texts with the statement in force.

class CommandCompiler()
Instances of this class have __call__() methods identical in signature to compile_command(); the dif-
ference is that if the instance compiles program text containing a __future__ statement, the instance ‘re-
members’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: the Compile and CommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you can
either write

28.2. codeop — Compile Python code 1057

The Python Library Reference, Release 2.6.9

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler

except ImportError:
def CommandCompiler():

from codeop import compile_command
return compile_command

and then call CommandCompiler every time you need a fresh compiler object.

1058 Chapter 28. Custom Python Interpreters

CHAPTER

TWENTYNINE

RESTRICTED EXECUTION

Warning: In Python 2.3 these modules have been disabled due to various known and not readily fixable security
holes. The modules are still documented here to help in reading old code that uses the rexec and Bastion
modules.

Restricted execution is the basic framework in Python that allows for the segregation of trusted and untrusted code. The
framework is based on the notion that trusted Python code (a supervisor) can create a “padded cell’ (or environment)
with limited permissions, and run the untrusted code within this cell. The untrusted code cannot break out of its cell,
and can only interact with sensitive system resources through interfaces defined and managed by the trusted code. The
term “restricted execution” is favored over “safe-Python” since true safety is hard to define, and is determined by the
way the restricted environment is created. Note that the restricted environments can be nested, with inner cells creating
subcells of lesser, but never greater, privilege.

An interesting aspect of Python’s restricted execution model is that the interfaces presented to untrusted code usually
have the same names as those presented to trusted code. Therefore no special interfaces need to be learned to write
code designed to run in a restricted environment. And because the exact nature of the padded cell is determined by
the supervisor, different restrictions can be imposed, depending on the application. For example, it might be deemed
“safe” for untrusted code to read any file within a specified directory, but never to write a file. In this case, the
supervisor may redefine the built-in open() function so that it raises an exception whenever the mode parameter is
’w’. It might also perform a chroot()-like operation on the filename parameter, such that root is always relative
to some safe “sandbox” area of the filesystem. In this case, the untrusted code would still see an built-in open()
function in its environment, with the same calling interface. The semantics would be identical too, with IOErrors
being raised when the supervisor determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted execution mode based on the
identity of the __builtins__ object in its global variables: if this is (the dictionary of) the standard __builtin__
module, the code is deemed to be unrestricted, else it is deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it from escaping
from the padded cell. For instance, the function object attribute func_globals and the class and instance object
attribute __dict__ are unavailable.

Two modules provide the framework for setting up restricted execution environments:

29.1 rexec — Restricted execution framework

Deprecated since version 2.6: The rexec module has been removed in Python 3.0.Changed in version 2.3: Disabled

module. Warning: The documentation has been left in place to help in reading old code that uses the module.

1059

The Python Library Reference, Release 2.6.9

This module contains the RExec class, which supports r_eval(), r_execfile(), r_exec(), and
r_import() methods, which are restricted versions of the standard Python functions eval(), execfile()
and the exec and import statements. Code executed in this restricted environment will only have access to modules
and functions that are deemed safe; you can subclass RExec to add or remove capabilities as desired.

Warning: While the rexec module is designed to perform as described below, it does have a few known vul-
nerabilities which could be exploited by carefully written code. Thus it should not be relied upon in situations
requiring “production ready” security. In such situations, execution via sub-processes or very careful “cleans-
ing” of both code and data to be processed may be necessary. Alternatively, help in patching known rexec
vulnerabilities would be welcomed.

Note: The RExec class can prevent code from performing unsafe operations like reading or writing disk files,
or using TCP/IP sockets. However, it does not protect against code using extremely large amounts of memory or
processor time.

class RExec([hooks, [verbose]])
Returns an instance of the RExec class.

hooks is an instance of the RHooks class or a subclass of it. If it is omitted or None, the default RHooks class
is instantiated. Whenever the rexec module searches for a module (even a built-in one) or reads a module’s
code, it doesn’t actually go out to the file system itself. Rather, it calls methods of an RHooks instance that was
passed to or created by its constructor. (Actually, the RExec object doesn’t make these calls — they are made
by a module loader object that’s part of the RExec object. This allows another level of flexibility, which can be
useful when changing the mechanics of import within the restricted environment.)

By providing an alternate RHooks object, we can control the file system accesses made to import a module,
without changing the actual algorithm that controls the order in which those accesses are made. For instance, we
could substitute an RHooks object that passes all filesystem requests to a file server elsewhere, via some RPC
mechanism such as ILU. Grail’s applet loader uses this to support importing applets from a URL for a directory.

If verbose is true, additional debugging output may be sent to standard output.

It is important to be aware that code running in a restricted environment can still call the sys.exit() function.
To disallow restricted code from exiting the interpreter, always protect calls that cause restricted code to run with
a try/except statement that catches the SystemExit exception. Removing the sys.exit() function from
the restricted environment is not sufficient — the restricted code could still use raise SystemExit. Removing
SystemExit is not a reasonable option; some library code makes use of this and would break were it not available.

See Also:

Grail Home Page Grail is a Web browser written entirely in Python. It uses the rexec module as a foundation for
supporting Python applets, and can be used as an example usage of this module.

29.1.1 RExec Objects

RExec instances support the following methods:

r_eval(code)
code must either be a string containing a Python expression, or a compiled code object, which will be evaluated
in the restricted environment’s __main__ module. The value of the expression or code object will be returned.

r_exec(code)
code must either be a string containing one or more lines of Python code, or a compiled code object, which will
be executed in the restricted environment’s __main__ module.

r_execfile(filename)
Execute the Python code contained in the file filename in the restricted environment’s __main__ module.

1060 Chapter 29. Restricted Execution

http://grail.sourceforge.net/

The Python Library Reference, Release 2.6.9

Methods whose names begin with s_ are similar to the functions beginning with r_, but the code will be granted
access to restricted versions of the standard I/O streams sys.stdin, sys.stderr, and sys.stdout.

s_eval(code)
code must be a string containing a Python expression, which will be evaluated in the restricted environment.

s_exec(code)
code must be a string containing one or more lines of Python code, which will be executed in the restricted
environment.

s_execfile(code)
Execute the Python code contained in the file filename in the restricted environment.

RExec objects must also support various methods which will be implicitly called by code executing in the restricted
environment. Overriding these methods in a subclass is used to change the policies enforced by a restricted environ-
ment.

r_import(modulename, [globals, [locals, [fromlist]]])
Import the module modulename, raising an ImportError exception if the module is considered unsafe.

r_open(filename, [mode, [bufsize]])
Method called when open() is called in the restricted environment. The arguments are identical to those of
open(), and a file object (or a class instance compatible with file objects) should be returned. RExec‘s default
behaviour is allow opening any file for reading, but forbidding any attempt to write a file. See the example below
for an implementation of a less restrictive r_open().

r_reload(module)
Reload the module object module, re-parsing and re-initializing it.

r_unload(module)
Unload the module object module (remove it from the restricted environment’s sys.modules dictionary).

And their equivalents with access to restricted standard I/O streams:

s_import(modulename, [globals, [locals, [fromlist]]])
Import the module modulename, raising an ImportError exception if the module is considered unsafe.

s_reload(module)
Reload the module object module, re-parsing and re-initializing it.

s_unload(module)
Unload the module object module.

29.1.2 Defining restricted environments

The RExec class has the following class attributes, which are used by the __init__() method. Changing them
on an existing instance won’t have any effect; instead, create a subclass of RExec and assign them new values in the
class definition. Instances of the new class will then use those new values. All these attributes are tuples of strings.

nok_builtin_names
Contains the names of built-in functions which will not be available to programs running in the restricted envi-
ronment. The value for RExec is (’open’, ’reload’, ’__import__’). (This gives the exceptions,
because by far the majority of built-in functions are harmless. A subclass that wants to override this variable
should probably start with the value from the base class and concatenate additional forbidden functions — when
new dangerous built-in functions are added to Python, they will also be added to this module.)

ok_builtin_modules
Contains the names of built-in modules which can be safely imported. The value for RExec is (’audioop’,
’array’, ’binascii’, ’cmath’, ’errno’, ’imageop’, ’marshal’, ’math’,
’md5’, ’operator’, ’parser’, ’regex’, ’select’, ’sha’, ’_sre’, ’strop’,

29.1. rexec — Restricted execution framework 1061

The Python Library Reference, Release 2.6.9

’struct’, ’time’). A similar remark about overriding this variable applies — use the value from the
base class as a starting point.

ok_path
Contains the directories which will be searched when an import is performed in the restricted environment.
The value for RExec is the same as sys.path (at the time the module is loaded) for unrestricted code.

ok_posix_names
Contains the names of the functions in the os module which will be available to programs running in the
restricted environment. The value for RExec is (’error’, ’fstat’, ’listdir’, ’lstat’,
’readlink’, ’stat’, ’times’, ’uname’, ’getpid’, ’getppid’, ’getcwd’,
’getuid’, ’getgid’, ’geteuid’, ’getegid’).

ok_sys_names
Contains the names of the functions and variables in the sys module which will be available to pro-
grams running in the restricted environment. The value for RExec is (’ps1’, ’ps2’, ’copyright’,
’version’, ’platform’, ’exit’, ’maxint’).

ok_file_types
Contains the file types from which modules are allowed to be loaded. Each file type is an integer constant defined
in the imp module. The meaningful values are PY_SOURCE, PY_COMPILED, and C_EXTENSION. The value
for RExec is (C_EXTENSION, PY_SOURCE). Adding PY_COMPILED in subclasses is not recommended;
an attacker could exit the restricted execution mode by putting a forged byte-compiled file (.pyc) anywhere in
your file system, for example by writing it to /tmp or uploading it to the /incoming directory of your public
FTP server.

29.1.3 An example

Let us say that we want a slightly more relaxed policy than the standard RExec class. For example, if we’re willing
to allow files in /tmp to be written, we can subclass the RExec class:

class TmpWriterRExec(rexec.RExec):
def r_open(self, file, mode=’r’, buf=-1):

if mode in (’r’, ’rb’):
pass

elif mode in (’w’, ’wb’, ’a’, ’ab’):
check filename : must begin with /tmp/
if file[:5]!=’/tmp/’:

raise IOError("can’t write outside /tmp")
elif (string.find(file, ’/../’) >= 0 or

file[:3] == ’../’ or file[-3:] == ’/..’):
raise IOError("’..’ in filename forbidden")

else: raise IOError("Illegal open() mode")
return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the restricted
environment won’t be able to open a file called /tmp/foo/../bar. To fix this, the r_open() method would
have to simplify the filename to /tmp/bar, which would require splitting apart the filename and performing various
operations on it. In cases where security is at stake, it may be preferable to write simple code which is sometimes
overly restrictive, instead of more general code that is also more complex and may harbor a subtle security hole.

29.2 Bastion — Restricting access to objects

1062 Chapter 29. Restricted Execution

The Python Library Reference, Release 2.6.9

Deprecated since version 2.6: The Bastion module has been removed in Python 3.0.Changed in version 2.3: Dis-
abled module.

Note: The documentation has been left in place to help in reading old code that uses the module.

According to the dictionary, a bastion is “a fortified area or position”, or “something that is considered a stronghold.”
It’s a suitable name for this module, which provides a way to forbid access to certain attributes of an object. It must
always be used with the rexec module, in order to allow restricted-mode programs access to certain safe attributes
of an object, while denying access to other, unsafe attributes.

Bastion(object, [filter, [name, [class]]])
Protect the object object, returning a bastion for the object. Any attempt to access one of the object’s attributes
will have to be approved by the filter function; if the access is denied an AttributeError exception will be
raised.

If present, filter must be a function that accepts a string containing an attribute name, and returns true if access
to that attribute will be permitted; if filter returns false, the access is denied. The default filter denies access to
any function beginning with an underscore (’_’). The bastion’s string representation will be <Bastion for
name> if a value for name is provided; otherwise, repr(object) will be used.

class, if present, should be a subclass of BastionClass; see the code in bastion.py for the details.
Overriding the default BastionClass will rarely be required.

class BastionClass(getfunc, name)
Class which actually implements bastion objects. This is the default class used by Bastion(). The getfunc
parameter is a function which returns the value of an attribute which should be exposed to the restricted execution
environment when called with the name of the attribute as the only parameter. name is used to construct the
repr() of the BastionClass instance.

See Also:

Grail Home Page Grail, an Internet browser written in Python, uses these modules to support Python applets. More
information on the use of Python’s restricted execution mode in Grail is available on the Web site.

29.2. Bastion — Restricting access to objects 1063

http://grail.sourceforge.net/

The Python Library Reference, Release 2.6.9

1064 Chapter 29. Restricted Execution

CHAPTER

THIRTY

IMPORTING MODULES

The modules described in this chapter provide new ways to import other Python modules and hooks for customizing
the import process.

The full list of modules described in this chapter is:

30.1 imp — Access the import internals

This module provides an interface to the mechanisms used to implement the import statement. It defines the follow-
ing constants and functions:

get_magic()
Return the magic string value used to recognize byte-compiled code files (.pyc files). (This value may be

different for each Python version.)

get_suffixes()
Return a list of 3-element tuples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the file-
name to search for, mode is the mode string to pass to the built-in open() function to open the file (this can be
’r’ for text files or ’rb’ for binary files), and type is the file type, which has one of the values PY_SOURCE,
PY_COMPILED, or C_EXTENSION, described below.

find_module(name, [path])
Try to find the module name. If path is omitted or None, the list of directory names given by sys.path is
searched, but first a few special places are searched: the function tries to find a built-in module with the given
name (C_BUILTIN), then a frozen module (PY_FROZEN), and on some systems some other places are looked
in as well (on Windows, it looks in the registry which may point to a specific file).

Otherwise, path must be a list of directory names; each directory is searched for files with any of the suffixes
returned by get_suffixes() above. Invalid names in the list are silently ignored (but all list items must be
strings).

If search is successful, the return value is a 3-element tuple (file, pathname, description):

file is an open file object positioned at the beginning, pathname is the pathname of the file found, and description
is a 3-element tuple as contained in the list returned by get_suffixes() describing the kind of module
found.

If the module does not live in a file, the returned file is None, pathname is the empty string, and the description
tuple contains empty strings for its suffix and mode; the module type is indicated as given in parentheses above.
If the search is unsuccessful, ImportError is raised. Other exceptions indicate problems with the arguments
or environment.

1065

The Python Library Reference, Release 2.6.9

If the module is a package, file is None, pathname is the package path and the last item in the description tuple
is PKG_DIRECTORY.

This function does not handle hierarchical module names (names containing dots). In order to find P.*M*, that
is, submodule M of package P, use find_module() and load_module() to find and load package P, and
then use find_module() with the path argument set to P.__path__. When P itself has a dotted name,
apply this recipe recursively.

load_module(name, file, pathname, description)
Load a module that was previously found by find_module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to a reload()! The name argument indicates the full module name (including the package
name, if this is a submodule of a package). The file argument is an open file, and pathname is the corresponding
file name; these can be None and ”, respectively, when the module is a package or not being loaded from a
file. The description argument is a tuple, as would be returned by get_suffixes(), describing what kind of
module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually ImportError)
is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when an exception
is raised. This is best done using a try ... finally statement.

new_module(name)
Return a new empty module object called name. This object is not inserted in sys.modules.

lock_held()
Return True if the import lock is currently held, else False. On platforms without threads, always return
False.

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn prevents
other threads from seeing incomplete module objects constructed by the original thread while in the process of
completing its import (and the imports, if any, triggered by that).

acquire_lock()
Acquire the interpreter’s import lock for the current thread. This lock should be used by import hooks to ensure
thread-safety when importing modules. On platforms without threads, this function does nothing.

Once a thread has acquired the import lock, the same thread may acquire it again without blocking; the thread
must release it once for each time it has acquired it.

On platforms without threads, this function does nothing. New in version 2.3.

release_lock()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in version
2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find_module().

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PKG_DIRECTORY
The module was found as a package directory.

1066 Chapter 30. Importing Modules

The Python Library Reference, Release 2.6.9

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as a frozen module (see init_frozen()).

The following constant and functions are obsolete; their functionality is available through find_module() or
load_module(). They are kept around for backward compatibility:

SEARCH_ERROR
Unused.

init_builtin(name)
Initialize the built-in module called name and return its module object along with storing it in sys.modules.
If the module was already initialized, it will be initialized again. Re-initialization involves the copying of the
built-in module’s __dict__ from the cached module over the module’s entry in sys.modules. If there is
no built-in module called name, None is returned.

init_frozen(name)
Initialize the frozen module called name and return its module object. If the module was already initialized,
it will be initialized again. If there is no frozen module called name, None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’s freeze utility. See Tools/freeze/ for now.)

is_builtin(name)
Return 1 if there is a built-in module called name which can be initialized again. Return -1 if there is a built-in
module called name which cannot be initialized again (see init_builtin()). Return 0 if there is no built-in
module called name.

is_frozen(name)
Return True if there is a frozen module (see init_frozen()) called name, or False if there is no such
module.

load_compiled(name, pathname, [file])
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the

module was already initialized, it will be initialized again. The name argument is used to create or access a
module object. The pathname argument points to the byte-compiled code file. The file argument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load_dynamic(name, pathname, [file])
Load and initialize a module implemented as a dynamically loadable shared library and return its module
object. If the module was already initialized, it will be initialized again. Re-initialization involves copying
the __dict__ attribute of the cached instance of the module over the value used in the module cached in
sys.modules. The pathname argument must point to the shared library. The name argument is used to con-
struct the name of the initialization function: an external C function called initname() in the shared library
is called. The optional file argument is ignored. (Note: using shared libraries is highly system dependent, and
not all systems support it.)

load_source(name, pathname, [file])
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initialized again. The name argument is used to create or access a module
object. The pathname argument points to the source file. The file argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffix .pyc or .pyo) exists, it will be used instead
of parsing the given source file.

class NullImporter(path_string)
The NullImporter type is a PEP 302 import hook that handles non-directory path strings by failing to find

30.1. imp — Access the import internals 1067

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

any modules. Calling this type with an existing directory or empty string raises ImportError. Otherwise, a
NullImporter instance is returned.

Python adds instances of this type to sys.path_importer_cache for any path entries that are not direc-
tories and are not handled by any other path hooks on sys.path_hooks. Instances have only one method:

find_module(fullname, [path])
This method always returns None, indicating that the requested module could not be found.

New in version 2.5.

30.1.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical mod-
ule names). (This implementation wouldn’t work in that version, since find_module() has been extended and
load_module() has been added in 1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:

return sys.modules[name]
except KeyError:

pass

If any of the following calls raises an exception,
there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)

finally:
Since we may exit via an exception, close fp explicitly.
if fp:

fp.close()

A more complete example that implements hierarchical module names and includes a reload() function can be
found in the module knee. The knee module can be found in Demo/imputil/ in the Python source distribution.

30.2 imputil — Import utilities

Deprecated since version 2.6: The imputil module has been removed in Python 3.0. This module provides a very
handy and useful mechanism for custom import hooks. Compared to the older ihooks module, imputil takes a
dramatically simpler and more straight-forward approach to custom import functions.

class ImportManager([fs_imp])
Manage the import process.

install([namespace])
Install this ImportManager into the specified namespace.

1068 Chapter 30. Importing Modules

The Python Library Reference, Release 2.6.9

uninstall()
Restore the previous import mechanism.

add_suffix(suffix, importFunc)
Undocumented.

class Importer()
Base class for replacing standard import functions.

import_top(name)
Import a top-level module.

get_code(parent, modname, fqname)
Find and retrieve the code for the given module.

parent specifies a parent module to define a context for importing. It may be None, indicating no particular
context for the search.

modname specifies a single module (not dotted) within the parent.

fqname specifies the fully-qualified module name. This is a (potentially) dotted name from the “root” of
the module namespace down to the modname.

If there is no parent, then modname==fqname.

This method should return None, or a 3-tuple.

•If the module was not found, then None should be returned.

•The first item of the 2- or 3-tuple should be the integer 0 or 1, specifying whether the module that was
found is a package or not.

•The second item is the code object for the module (it will be executed within the new module’s
namespace). This item can also be a fully-loaded module object (e.g. loaded from a shared lib).

•The third item is a dictionary of name/value pairs that will be inserted into new module before the
code object is executed. This is provided in case the module’s code expects certain values (such as
where the module was found). When the second item is a module object, then these names/values will
be inserted after the module has been loaded/initialized.

class BuiltinImporter()
Emulate the import mechanism for built-in and frozen modules. This is a sub-class of the Importer class.

get_code(parent, modname, fqname)
Undocumented.

py_suffix_importer(filename, finfo, fqname)
Undocumented.

class DynLoadSuffixImporter([desc])
Undocumented.

import_file(filename, finfo, fqname)
Undocumented.

30.2.1 Examples

This is a re-implementation of hierarchical module import.

This code is intended to be read, not executed. However, it does work – all you need to do to enable it is “import
knee”.

(The name is a pun on the clunkier predecessor of this module, “ni”.)

30.2. imputil — Import utilities 1069

The Python Library Reference, Release 2.6.9

import sys, imp, __builtin__

Replacement for __import__()
def import_hook(name, globals=None, locals=None, fromlist=None):

parent = determine_parent(globals)
q, tail = find_head_package(parent, name)
m = load_tail(q, tail)
if not fromlist:

return q
if hasattr(m, "__path__"):

ensure_fromlist(m, fromlist)
return m

def determine_parent(globals):
if not globals or not globals.has_key("__name__"):

return None
pname = globals[’__name__’]
if globals.has_key("__path__"):

parent = sys.modules[pname]
assert globals is parent.__dict__
return parent

if ’.’ in pname:
i = pname.rfind(’.’)
pname = pname[:i]
parent = sys.modules[pname]
assert parent.__name__ == pname
return parent

return None

def find_head_package(parent, name):
if ’.’ in name:

i = name.find(’.’)
head = name[:i]
tail = name[i+1:]

else:
head = name
tail = ""

if parent:
qname = "%s.%s" % (parent.__name__, head)

else:
qname = head

q = import_module(head, qname, parent)
if q: return q, tail
if parent:

qname = head
parent = None
q = import_module(head, qname, parent)
if q: return q, tail

raise ImportError("No module named " + qname)

def load_tail(q, tail):
m = q
while tail:

i = tail.find(’.’)

1070 Chapter 30. Importing Modules

The Python Library Reference, Release 2.6.9

if i < 0: i = len(tail)
head, tail = tail[:i], tail[i+1:]
mname = "%s.%s" % (m.__name__, head)
m = import_module(head, mname, m)
if not m:

raise ImportError("No module named " + mname)
return m

def ensure_fromlist(m, fromlist, recursive=0):
for sub in fromlist:

if sub == "*":
if not recursive:

try:
all = m.__all__

except AttributeError:
pass

else:
ensure_fromlist(m, all, 1)

continue
if sub != "*" and not hasattr(m, sub):

subname = "%s.%s" % (m.__name__, sub)
submod = import_module(sub, subname, m)
if not submod:

raise ImportError("No module named " + subname)

def import_module(partname, fqname, parent):
try:

return sys.modules[fqname]
except KeyError:

pass
try:

fp, pathname, stuff = imp.find_module(partname,
parent and parent.__path__)

except ImportError:
return None

try:
m = imp.load_module(fqname, fp, pathname, stuff)

finally:
if fp: fp.close()

if parent:
setattr(parent, partname, m)

return m

Replacement for reload()
def reload_hook(module):

name = module.__name__
if ’.’ not in name:

return import_module(name, name, None)
i = name.rfind(’.’)
pname = name[:i]
parent = sys.modules[pname]
return import_module(name[i+1:], name, parent)

30.2. imputil — Import utilities 1071

The Python Library Reference, Release 2.6.9

Save the original hooks
original_import = __builtin__.__import__
original_reload = __builtin__.reload

Now install our hooks
__builtin__.__import__ = import_hook
__builtin__.reload = reload_hook

Also see the importers module (which can be found in Demo/imputil/ in the Python source distribution) for
additional examples.

30.3 zipimport — Import modules from Zip archives

New in version 2.3. This module adds the ability to import Python modules (*.py, *.py[co]) and packages from
ZIP-format archives. It is usually not needed to use the zipimport module explicitly; it is automatically used by
the built-in import mechanism for sys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an item of sys.path to
be a string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package im-
ports, and a path within the archive can be specified to only import from a subdirectory. For example, the path
/tmp/example.zip/lib/ would only import from the lib/ subdirectory within the archive.

Any files may be present in the ZIP archive, but only files .py and .py[co] are available for import. ZIP import of
dynamic modules (.pyd, .so) is disallowed. Note that if an archive only contains .py files, Python will not attempt
to modify the archive by adding the corresponding .pyc or .pyo file, meaning that if a ZIP archive doesn’t contain
.pyc files, importing may be rather slow.

Using the built-in reload() function will fail if called on a module loaded from a ZIP archive; it is unlikely that
reload() would be needed, since this would imply that the ZIP has been altered during runtime.

ZIP archives with an archive comment are currently not supported.

See Also:

PKZIP Application Note Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms
used.

PEP 273 - Import Modules from Zip Archives Written by James C. Ahlstrom, who also provided an implementa-
tion. Python 2.3 follows the specification in PEP 273, but uses an implementation written by Just van Rossum
that uses the import hooks described in PEP 302.

PEP 302 - New Import Hooks The PEP to add the import hooks that help this module work.

This module defines an exception:

exception ZipImportError
Exception raised by zipimporter objects. It’s a subclass of ImportError, so it can be caught as
ImportError, too.

30.3.1 zipimporter Objects

zipimporter is the class for importing ZIP files.

class zipimporter(archivepath)
Create a new zipimporter instance. archivepath must be a path to a ZIP file, or to a specific path within a ZIP

1072 Chapter 30. Importing Modules

http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.python.org/dev/peps/pep-0273
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

file. For example, an archivepath of foo/bar.zip/lib will look for modules in the lib directory inside
the ZIP file foo/bar.zip (provided that it exists).

ZipImportError is raised if archivepath doesn’t point to a valid ZIP archive.

find_module(fullname, [path])
Search for a module specified by fullname. fullname must be the fully qualified (dotted) module name. It
returns the zipimporter instance itself if the module was found, or None if it wasn’t. The optional path
argument is ignored—it’s there for compatibility with the importer protocol.

get_code(fullname)
Return the code object for the specified module. Raise ZipImportError if the module couldn’t be
found.

get_data(pathname)
Return the data associated with pathname. Raise IOError if the file wasn’t found.

get_source(fullname)
Return the source code for the specified module. Raise ZipImportError if the module couldn’t be
found, return None if the archive does contain the module, but has no source for it.

is_package(fullname)
Return True if the module specified by fullname is a package. Raise ZipImportError if the module
couldn’t be found.

load_module(fullname)
Load the module specified by fullname. fullname must be the fully qualified (dotted) module name. It
returns the imported module, or raises ZipImportError if it wasn’t found.

archive
The file name of the importer’s associated ZIP file, without a possible subpath.

prefix
The subpath within the ZIP file where modules are searched. This is the empty string for zipimporter
objects which point to the root of the ZIP file.

The archive and prefix attributes, when combined with a slash, equal the original archivepath argument
given to the zipimporter constructor.

30.3.2 Examples

Here is an example that imports a module from a ZIP archive - note that the zipimport module is not explicitly
used.

$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip

Length Date Time Name
-------- ---- ---- ----

8467 11-26-02 22:30 jwzthreading.py
-------- -------

8467 1 file
$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, ’/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
’/tmp/example.zip/jwzthreading.py’

30.3. zipimport — Import modules from Zip archives 1073

The Python Library Reference, Release 2.6.9

30.4 pkgutil — Package extension utility

New in version 2.3. This module provides functions to manipulate packages:

extend_path(path, name)
Extend the search path for the modules which comprise a package. Intended use is to place the following code
in a package’s __init__.py:

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

This will add to the package’s __path__ all subdirectories of directories on sys.path named after the pack-
age. This is useful if one wants to distribute different parts of a single logical package as multiple directories.

It also looks for *.pkg files beginning where * matches the name argument. This feature is similar to *.pth
files (see the sitemodule for more information), except that it doesn’t special-case lines starting with import.
A *.pkg file is trusted at face value: apart from checking for duplicates, all entries found in a *.pkg file are
added to the path, regardless of whether they exist on the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is not
modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed that sys.path is a sequence. Items of sys.path that are not (Unicode or 8-bit) strings referring
to existing directories are ignored. Unicode items on sys.path that cause errors when used as filenames may
cause this function to raise an exception (in line with os.path.isdir() behavior).

get_data(package, resource)
Get a resource from a package.

This is a wrapper for the PEP 302 loader get_data() API. The package argument should be the name of
a package, in standard module format (foo.bar). The resource argument should be in the form of a relative
filename, using / as the path separator. The parent directory name .. is not allowed, and nor is a rooted name
(starting with a /).

The function returns a binary string that is the contents of the specified resource.

For packages located in the filesystem, which have already been imported, this is the rough equivalent of:

d = os.path.dirname(sys.modules[package].__file__)
data = open(os.path.join(d, resource), ’rb’).read()

If the package cannot be located or loaded, or it uses a PEP 302 loader which does not support get_data(),
then None is returned.

30.5 modulefinder — Find modules used by a script

New in version 2.3. This module provides a ModuleFinder class that can be used to determine the set of modules
imported by a script. modulefinder.py can also be run as a script, giving the filename of a Python script as its
argument, after which a report of the imported modules will be printed.

AddPackagePath(pkg_name, path)
Record that the package named pkg_name can be found in the specified path.

ReplacePackage(oldname, newname)
Allows specifying that the module named oldname is in fact the package named newname. The most common
usage would be to handle how the _xmlplus package replaces the xml package.

1074 Chapter 30. Importing Modules

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

class ModuleFinder([path=None, debug=0, excludes=, [], replace_paths=, []])
This class provides run_script() and report() methods to determine the set of modules imported by a
script. path can be a list of directories to search for modules; if not specified, sys.path is used. debug sets
the debugging level; higher values make the class print debugging messages about what it’s doing. excludes is
a list of module names to exclude from the analysis. replace_paths is a list of (oldpath, newpath) tuples
that will be replaced in module paths.

report()
Print a report to standard output that lists the modules imported by the script and their paths, as well as
modules that are missing or seem to be missing.

run_script(pathname)
Analyze the contents of the pathname file, which must contain Python code.

modules
A dictionary mapping module names to modules. See Example usage of ModuleFinder

30.5.1 Example usage of ModuleFinder

The script that is going to get analyzed later on (bacon.py):

import re, itertools

try:
import baconhameggs

except ImportError:
pass

try:
import guido.python.ham

except ImportError:
pass

The script that will output the report of bacon.py:

from modulefinder import ModuleFinder

finder = ModuleFinder()
finder.run_script(’bacon.py’)

print ’Loaded modules:’
for name, mod in finder.modules.iteritems():

print ’%s: ’ % name,
print ’,’.join(mod.globalnames.keys()[:3])

print ’-’*50
print ’Modules not imported:’
print ’\n’.join(finder.badmodules.iterkeys())

Sample output (may vary depending on the architecture):

Loaded modules:
_types:
copy_reg: _inverted_registry,_slotnames,__all__
sre_compile: isstring,_sre,_optimize_unicode
_sre:
sre_constants: REPEAT_ONE,makedict,AT_END_LINE

30.5. modulefinder — Find modules used by a script 1075

The Python Library Reference, Release 2.6.9

sys:
re: __module__,finditer,_expand
itertools:
__main__: re,itertools,baconhameggs
sre_parse: __getslice__,_PATTERNENDERS,SRE_FLAG_UNICODE
array:
types: __module__,IntType,TypeType

Modules not imported:
guido.python.ham
baconhameggs

30.6 runpy — Locating and executing Python modules

New in version 2.5. The runpy module is used to locate and run Python modules without importing them first. Its
main use is to implement the -m command line switch that allows scripts to be located using the Python module
namespace rather than the filesystem.

When executed as a script, the module effectively operates as follows:

del sys.argv[0] # Remove the runpy module from the arguments
run_module(sys.argv[0], run_name="__main__", alter_sys=True)

The runpy module provides a single function:

run_module(mod_name, [init_globals], [run_name], [alter_sys])
Execute the code of the specified module and return the resulting module globals dictionary. The module’s code
is first located using the standard import mechanism (refer to PEP 302 for details) and then executed in a fresh
module namespace.

The optional dictionary argument init_globals may be used to pre-populate the globals dictionary before the
code is executed. The supplied dictionary will not be modified. If any of the special global variables below are
defined in the supplied dictionary, those definitions are overridden by the run_module function.

The special global variables __name__, __file__, __loader__ and __builtins__ are set in the glob-
als dictionary before the module code is executed.

__name__ is set to run_name if this optional argument is supplied, and the mod_name argument otherwise.

__loader__ is set to the PEP 302 module loader used to retrieve the code for the module (This loader may
be a wrapper around the standard import mechanism).

__file__ is set to the name provided by the module loader. If the loader does not make filename information
available, this variable is set to None.

__builtins__ is automatically initialised with a reference to the top level namespace of the __builtin__
module.

If the argument alter_sys is supplied and evaluates to True, then sys.argv[0] is updated with the value
of __file__ and sys.modules[__name__] is updated with a temporary module object for the module
being executed. Both sys.argv[0] and sys.modules[__name__] are restored to their original values
before the function returns.

Note that this manipulation of sys is not thread-safe. Other threads may see the partially initialised module, as
well as the altered list of arguments. It is recommended that the sys module be left alone when invoking this
function from threaded code.

See Also:

1076 Chapter 30. Importing Modules

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

PEP 338 - Executing modules as scripts PEP written and implemented by Nick Coghlan.

30.6. runpy — Locating and executing Python modules 1077

http://www.python.org/dev/peps/pep-0338

The Python Library Reference, Release 2.6.9

1078 Chapter 30. Importing Modules

CHAPTER

THIRTYONE

PYTHON LANGUAGE SERVICES

Python provides a number of modules to assist in working with the Python language. These modules support tokeniz-
ing, parsing, syntax analysis, bytecode disassembly, and various other facilities.

These modules include:

31.1 parser — Access Python parse trees

The parser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

Note: From Python 2.5 onward, it’s much more convenient to cut in at the Abstract Syntax Tree (AST) generation
and compilation stage, using the ast module.

The parser module exports the names documented here also with “st” replaced by “ast”; this is a legacy from the
time when there was no other AST and has nothing to do with the AST found in Python 2.5. This is also the reason
for the functions’ keyword arguments being called ast, not st. The “ast” functions will be removed in Python 3.0.

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of using the parser module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For full
information on the language syntax, refer to The Python Language Reference (in The Python Language Reference).
The parser itself is created from a grammar specification defined in the file Grammar/Grammar in the standard
Python distribution. The parse trees stored in the ST objects created by this module are the actual output from the
internal parser when created by the expr() or suite() functions, described below. The ST objects created by
sequence2st() faithfully simulate those structures. Be aware that the values of the sequences which are considered
“correct” will vary from one version of Python to another as the formal grammar for the language is revised. However,
transporting code from one Python version to another as source text will always allow correct parse trees to be created
in the target version, with the only restriction being that migrating to an older version of the interpreter will not support
more recent language constructs. The parse trees are not typically compatible from one version to another, whereas
source code has always been forward-compatible.

Each element of the sequences returned by st2list() or st2tuple() has a simple form. Sequences repre-
senting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file
Include/graminit.h and the Python module symbol. Each additional element of the sequence represents a
component of the production as recognized in the input string: these are always sequences which have the same form
as the parent. An important aspect of this structure which should be noted is that keywords used to identify the parent

1079

The Python Library Reference, Release 2.6.9

node type, such as the keyword if in an if_stmt, are included in the node tree without any special treatment. For
example, the if keyword is represented by the tuple (1, ’if’), where 1 is the numeric value associated with
all NAME tokens, including variable and function names defined by the user. In an alternate form returned when line
number information is requested, the same token might be represented as (1, ’if’, 12), where the 12 represents
the line number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of the if keyword above is representative. The various types of
terminal symbols are defined in the C header file Include/token.h and the Python module token.

The ST objects are not required to support the functionality of this module, but are provided for three purposes: to
allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of ST objects.

The parser module defines functions for a few distinct purposes. The most important purposes are to create ST
objects and to convert ST objects to other representations such as parse trees and compiled code objects, but there are
also functions which serve to query the type of parse tree represented by an ST object.

See Also:

Module symbol Useful constants representing internal nodes of the parse tree.

Module token Useful constants representing leaf nodes of the parse tree and functions for testing node values.

31.1.1 Creating ST Objects

ST objects may be created from source code or from a parse tree. When creating an ST object from source, different
functions are used to create the ’eval’ and ’exec’ forms.

expr(source)
The expr() function parses the parameter source as if it were an input to compile(source,
’file.py’, ’eval’). If the parse succeeds, an ST object is created to hold the internal parse tree rep-
resentation, otherwise an appropriate exception is thrown.

suite(source)
The suite() function parses the parameter source as if it were an input to compile(source,
’file.py’, ’exec’). If the parse succeeds, an ST object is created to hold the internal parse tree rep-
resentation, otherwise an appropriate exception is thrown.

sequence2st(sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an ST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be validated, a ParserError exception is
thrown. An ST object created this way should not be assumed to compile correctly; normal exceptions thrown by
compilation may still be initiated when the ST object is passed to compilest(). This may indicate problems
not related to syntax (such as a MemoryError exception), but may also be due to constructs such as the result
of parsing del f(0), which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form (1,
’name’) or as three-element lists of the form (1, ’name’, 56). If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols in
the input tree.

tuple2st(sequence)
This is the same function as sequence2st(). This entry point is maintained for backward compatibility.

1080 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

31.1.2 Converting ST Objects

ST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

st2list(ast, [line_info])
This function accepts an ST object from the caller in ast and returns a Python list representing the equivalent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspection, st2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which the token ends. This
information is omitted if the flag is false or omitted.

st2tuple(ast, [line_info])
This function accepts an ST object from the caller in ast and returns a Python tuple representing the equivalent
parse tree. Other than returning a tuple instead of a list, this function is identical to st2list().

If line_info is true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compilest(ast, [filename=’<syntax-tree>’])
The Python byte compiler can be invoked on an ST object to produce code objects which can be used as part

of an exec statement or a call to the built-in eval() function. This function provides the interface to the
compiler, passing the internal parse tree from ast to the parser, using the source file name specified by the
filename parameter. The default value supplied for filename indicates that the source was an ST object.

Compiling an ST object may result in exceptions related to compilation; an example would be a SyntaxError
caused by the parse tree for del f(0): this statement is considered legal within the formal grammar for Python
but is not a legal language construct. The SyntaxError raised for this condition is actually generated by the
Python byte-compiler normally, which is why it can be raised at this point by the parser module. Most causes
of compilation failure can be diagnosed programmatically by inspection of the parse tree.

31.1.3 Queries on ST Objects

Two functions are provided which allow an application to determine if an ST was created as an expression or a suite.
Neither of these functions can be used to determine if an ST was created from source code via expr() or suite()
or from a parse tree via sequence2st().

isexpr(ast)
When ast represents an ’eval’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created by compilest() cannot be queried like this either, and are identical to those created by
the built-in compile() function.

issuite(ast)
This function mirrors isexpr() in that it reports whether an ST object represents an ’exec’ form, commonly
known as a “suite.” It is not safe to assume that this function is equivalent to not isexpr(ast), as additional
syntactic fragments may be supported in the future.

31.1. parser — Access Python parse trees 1081

The Python Library Reference, Release 2.6.9

31.1.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

exception ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built in SyntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse tree
passed to sequence2st() and an explanatory string. Calls to sequence2st() need to be able to handle
either type of exception, while calls to other functions in the module will only need to be aware of the simple
string values.

Note that the functions compilest(), expr(), and suite() may throw exceptions which are normally thrown
by the parsing and compilation process. These include the built in exceptions MemoryError, OverflowError,
SyntaxError, and SystemError. In these cases, these exceptions carry all the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

31.1.5 ST Objects

Ordered and equality comparisons are supported between ST objects. Pickling of ST objects (using the pickle
module) is also supported.

STType
The type of the objects returned by expr(), suite() and sequence2st().

ST objects have the following methods:

compile([filename])
Same as compilest(st, filename).

isexpr()
Same as isexpr(st).

issuite()
Same as issuite(st).

tolist([line_info])
Same as st2list(st, line_info).

totuple([line_info])
Same as st2tuple(st, line_info).

31.1.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulation of the compile() built-in function and the complex example
shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using the parser module to produce an intermediate data structure is equivalent to the
code

1082 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

>>> code = compile(’a + 5’, ’file.py’, ’eval’)
>>> a = 5
>>> eval(code)
10

The equivalent operation using the parser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an ST object:

>>> import parser
>>> st = parser.expr(’a + 5’)
>>> code = st.compile(’file.py’)
>>> a = 5
>>> eval(code)
10

An application which needs both ST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
st = parser.suite(source_string)
return st, st.compile()

def load_expression(source_string):
st = parser.expr(source_string)
return st, st.compile()

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter via import. This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located in the Demo/parser/ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited
measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defined by a def statement at
column zero of a module, but not a function defined within a branch of an if ... else construct, though there are
some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large
number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the file Grammar/Grammar in the distribution. Consider the simplest case of interest when searching
for docstrings: a module consisting of a docstring and nothing else. (See file docstring.py.)

"""Some documentation.
"""

31.1. parser — Access Python parse trees 1083

The Python Library Reference, Release 2.6.9

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> import parser
>>> import pprint
>>> st = parser.suite(open(’docstring.py’).read())
>>> tup = st.totuple()
>>> pprint.pprint(tup)
(257,
(264,
(265,
(266,
(267,
(307,
(287,
(288,
(289,
(290,
(292,
(293,
(294,
(295,
(296,
(297,
(298,
(299,
(300, (3, ’"""Some documentation.\n"""’))))))))))))))))),

(4, ’’))),
(4, ’’),
(0, ’’))

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. However, the symbol and token modules provide symbolic
names for the node types and dictionaries which map from the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the integer 257 and three additional tuples.
Node type 257 has the symbolic name file_input. Each of these inner tuples contains an integer as the first
element; these integers, 264, 4, and 0, represent the node types stmt, NEWLINE, and ENDMARKER, respectively.
Note that these values may change depending on the version of Python you are using; consult symbol.py and
token.py for details of the mapping. It should be fairly clear that the outermost node is related primarily to the
input source rather than the contents of the file, and may be disregarded for the moment. The stmt node is much
more interesting. In particular, all docstrings are found in subtrees which are formed exactly as this node is formed,
with the only difference being the string itself. The association between the docstring in a similar tree and the defined
entity (class, function, or module) which it describes is given by the position of the docstring subtree within the tree
defining the described structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple pattern
matching approach to check any given subtree for equivalence to the general pattern for docstrings. Since the example
demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form, allowing
a simple variable representation to be [’variable_name’]. A simple recursive function can implement the pattern
matching, returning a Boolean and a dictionary of variable name to value mappings. (See file example.py.)

from types import ListType, TupleType

def match(pattern, data, vars=None):

1084 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

if vars is None:
vars = {}

if type(pattern) is ListType:
vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (See file example.py.)

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,
(symbol.small_stmt,
(symbol.expr_stmt,
(symbol.testlist,
(symbol.test,
(symbol.and_test,
(symbol.not_test,
(symbol.comparison,
(symbol.expr,
(symbol.xor_expr,
(symbol.and_expr,
(symbol.shift_expr,
(symbol.arith_expr,
(symbol.term,
(symbol.factor,
(symbol.power,
(symbol.atom,
(token.STRING, [’docstring’])
)))))))))))))))),

(token.NEWLINE, ’’)
))

Using the match() function with this pattern, extracting the module docstring from the parse tree created previously
is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found
1
>>> vars
{’docstring’: ’"""Some documentation.\n"""’}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first

31.1. parser — Access Python parse trees 1085

The Python Library Reference, Release 2.6.9

stmt node in a code block (file_input or suite node types). A module consists of a single file_input node,
and class and function definitions each contain exactly one suite node. Classes and functions are readily identified
as subtrees of code block nodes which start with (stmt, (compound_stmt, (classdef, ... or (stmt,
(compound_stmt, (funcdef, Note that these subtrees cannot be matched by match() since it does
not support multiple sibling nodes to match without regard to number. A more elaborate matching function could be
used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it represents. The ModuleInfo constructor accepts an optional
name parameter since it cannot otherwise determine the name of the module.

The public classes include ClassInfo, FunctionInfo, and ModuleInfo. All objects provide the
methods get_name(), get_docstring(), get_class_names(), and get_class_info(). The
ClassInfo objects support get_method_names() and get_method_info() while the other classes pro-
vide get_function_names() and get_function_info().

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base class, SuiteInfoBase, with the accessors for function
and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of the def statement to define both types of elements.

Most of the accessor functions are declared in SuiteInfoBase and do not need to be overridden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuiteInfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of the SuiteInfoBase definition from example.py:

class SuiteInfoBase:
_docstring = ’’
_name = ’’

def __init__(self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:

self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])
else:

found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:

self._docstring = eval(vars[’docstring’])
discover inner definitions
for node in tree[1:]:

found, vars = match(COMPOUND_STMT_PATTERN, node)

1086 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

if found:
cstmt = vars[’compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]
self._function_info[name] = FunctionInfo(cstmt)

elif cstmt[0] == symbol.classdef:
name = cstmt[2][1]
self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls the _extract_info() method. This method performs
the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp‘."
def raiser(x, y=exp):

return x ** y
return raiser

When the short form is used, the code block may contain a docstring as the first, and possibly only, small_stmt
element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is only one small_stmt node
in the simple_stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds using the match() function as described
above, and the value of the docstring is stored as an attribute of the SuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on the stmt nodes of the suite node.
The special case of the short form is not tested; since there are no stmt nodes in the short form, the algorithm will
silently skip the single simple_stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The representation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provided by the
SuiteInfoBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-
level function can be used to extract the complete set of information from a source file. (See file example.py.)

def get_docs(fileName):
import os
import parser

source = open(fileName).read()
basename = os.path.basename(os.path.splitext(fileName)[0])
st = parser.suite(source)
return ModuleInfo(st.totuple(), basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

31.1. parser — Access Python parse trees 1087

The Python Library Reference, Release 2.6.9

31.2 Abstract Syntax Trees

New in version 2.5: The low-level _ast module containing only the node classes.New in version 2.6: The high-level
ast module containing all helpers. The ast module helps Python applications to process trees of the Python abstract
syntax grammar. The abstract syntax itself might change with each Python release; this module helps to find out
programmatically what the current grammar looks like.

An abstract syntax tree can be generated by passing ast.PyCF_ONLY_AST as a flag to the compile() built-in
function, or using the parse() helper provided in this module. The result will be a tree of objects whose classes
all inherit from ast.AST. An abstract syntax tree can be compiled into a Python code object using the built-in
compile() function.

31.2.1 Node classes

class AST()
This is the base of all AST node classes. The actual node classes are derived from the Parser/Python.asdl
file, which is reproduced below. They are defined in the _ast C module and re-exported in ast.

There is one class defined for each left-hand side symbol in the abstract grammar (for example, ast.stmt or
ast.expr). In addition, there is one class defined for each constructor on the right-hand side; these classes
inherit from the classes for the left-hand side trees. For example, ast.BinOp inherits from ast.expr. For
production rules with alternatives (aka “sums”), the left-hand side class is abstract: only instances of specific
constructor nodes are ever created.

_fields
Each concrete class has an attribute _fields which gives the names of all child nodes.

Each instance of a concrete class has one attribute for each child node, of the type as defined in the
grammar. For example, ast.BinOp instances have an attribute left of type ast.expr.

If these attributes are marked as optional in the grammar (using a question mark), the value might be
None. If the attributes can have zero-or-more values (marked with an asterisk), the values are represented
as Python lists. All possible attributes must be present and have valid values when compiling an AST with
compile().

lineno
col_offset

Instances of ast.expr and ast.stmt subclasses have lineno and col_offset attributes. The
lineno is the line number of source text (1-indexed so the first line is line 1) and the col_offset is
the UTF-8 byte offset of the first token that generated the node. The UTF-8 offset is recorded because the
parser uses UTF-8 internally.

The constructor of a class ast.T parses its arguments as follows:

•If there are positional arguments, there must be as many as there are items in T._fields; they will be
assigned as attributes of these names.

•If there are keyword arguments, they will set the attributes of the same names to the given values.

For example, to create and populate an ast.UnaryOp node, you could use

node = ast.UnaryOp()
node.op = ast.USub()
node.operand = ast.Num()
node.operand.n = 5
node.operand.lineno = 0
node.operand.col_offset = 0

1088 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

node.lineno = 0
node.col_offset = 0

or the more compact

node = ast.UnaryOp(ast.USub(), ast.Num(5, lineno=0, col_offset=0),
lineno=0, col_offset=0)

New in version 2.6: The constructor as explained above was added. In Python 2.5 nodes had to be created by
calling the class constructor without arguments and setting the attributes afterwards.

31.2.2 Abstract Grammar

The module defines a string constant __version__ which is the decimal Subversion revision number of the file
shown below.

The abstract grammar is currently defined as follows:

-- ASDL’s five builtin types are identifier, int, string, object, bool

module Python version "$Revision$"
{

mod = Module(stmt* body)
| Interactive(stmt* body)
| Expression(expr body)

-- not really an actual node but useful in Jython’s typesystem.
| Suite(stmt* body)

stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list)

| ClassDef(identifier name, expr* bases, stmt* body, expr *decorator_list)
| Return(expr? value)

| Delete(expr* targets)
| Assign(expr* targets, expr value)
| AugAssign(expr target, operator op, expr value)

-- not sure if bool is allowed, can always use int
| Print(expr? dest, expr* values, bool nl)

-- use ’orelse’ because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse)
| While(expr test, stmt* body, stmt* orelse)
| If(expr test, stmt* body, stmt* orelse)
| With(expr context_expr, expr? optional_vars, stmt* body)

-- ’type’ is a bad name
| Raise(expr? type, expr? inst, expr? tback)
| TryExcept(stmt* body, excepthandler* handlers, stmt* orelse)
| TryFinally(stmt* body, stmt* finalbody)
| Assert(expr test, expr? msg)

| Import(alias* names)

31.2. Abstract Syntax Trees 1089

The Python Library Reference, Release 2.6.9

| ImportFrom(identifier module, alias* names, int? level)

-- Doesn’t capture requirement that locals must be
-- defined if globals is
-- still supports use as a function!
| Exec(expr body, expr? globals, expr? locals)

| Global(identifier* names)
| Expr(expr value)
| Pass | Break | Continue

-- XXX Jython will be different
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset)

-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)

| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr* keys, expr* values)
| ListComp(expr elt, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Yield(expr? value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3
| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords,

expr? starargs, expr? kwargs)
| Repr(expr value)
| Num(object n) -- a number as a PyObject.
| Str(string s) -- need to specify raw, unicode, etc?
-- other literals? bools?

-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, slice slice, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)

-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset)

expr_context = Load | Store | Del | AugLoad | AugStore | Param

slice = Ellipsis | Slice(expr? lower, expr? upper, expr? step)
| ExtSlice(slice* dims)
| Index(expr value)

boolop = And | Or

1090 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

operator = Add | Sub | Mult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv

unaryop = Invert | Not | UAdd | USub

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

comprehension = (expr target, expr iter, expr* ifs)

-- not sure what to call the first argument for raise and except
excepthandler = ExceptHandler(expr? type, expr? name, stmt* body)

attributes (int lineno, int col_offset)

arguments = (expr* args, identifier? vararg,
identifier? kwarg, expr* defaults)

-- keyword arguments supplied to call
keyword = (identifier arg, expr value)

-- import name with optional ’as’ alias.
alias = (identifier name, identifier? asname)

}

31.2.3 ast Helpers

New in version 2.6. Apart from the node classes, ast module defines these utility functions and classes for traversing
abstract syntax trees:

parse(expr, filename=’<unknown>’, mode=’exec’)
Parse an expression into an AST node. Equivalent to compile(expr, filename, mode,
ast.PyCF_ONLY_AST).

literal_eval(node_or_string)
Safely evaluate an expression node or a string containing a Python expression. The string or node provided may
only consist of the following Python literal structures: strings, numbers, tuples, lists, dicts, booleans, and None.

This can be used for safely evaluating strings containing Python expressions from untrusted sources without the
need to parse the values oneself.

get_docstring(node, clean=True)
Return the docstring of the given node (which must be a FunctionDef, ClassDef or Module node), or
None if it has no docstring. If clean is true, clean up the docstring’s indentation with inspect.cleandoc().

fix_missing_locations(node)
When you compile a node tree with compile(), the compiler expects lineno and col_offset attributes
for every node that supports them. This is rather tedious to fill in for generated nodes, so this helper adds these
attributes recursively where not already set, by setting them to the values of the parent node. It works recursively
starting at node.

increment_lineno(node, n=1)
Increment the line number of each node in the tree starting at node by n. This is useful to “move code” to a
different location in a file.

copy_location(new_node, old_node)
Copy source location (lineno and col_offset) from old_node to new_node if possible, and return
new_node.

31.2. Abstract Syntax Trees 1091

The Python Library Reference, Release 2.6.9

iter_fields(node)
Yield a tuple of (fieldname, value) for each field in node._fields that is present on node.

iter_child_nodes(node)
Yield all direct child nodes of node, that is, all fields that are nodes and all items of fields that are lists of nodes.

walk(node)
Recursively yield all child nodes of node, in no specified order. This is useful if you only want to modify nodes
in place and don’t care about the context.

class NodeVisitor()
A node visitor base class that walks the abstract syntax tree and calls a visitor function for every node found.
This function may return a value which is forwarded by the visit() method.

This class is meant to be subclassed, with the subclass adding visitor methods.

visit(node)
Visit a node. The default implementation calls the method called ‘self.visit_classname’ where
classname is the name of the node class, or generic_visit() if that method doesn’t exist.

generic_visit(node)
This visitor calls visit() on all children of the node.

Note that child nodes of nodes that have a custom visitor method won’t be visited unless the visitor calls
generic_visit() or visits them itself.

Don’t use the NodeVisitor if you want to apply changes to nodes during traversal. For this a special visitor
exists (NodeTransformer) that allows modifications.

class NodeTransformer()
A NodeVisitor subclass that walks the abstract syntax tree and allows modification of nodes.

The NodeTransformer will walk the AST and use the return value of the visitor methods to replace or
remove the old node. If the return value of the visitor method is None, the node will be removed from its
location, otherwise it is replaced with the return value. The return value may be the original node in which case
no replacement takes place.

Here is an example transformer that rewrites all occurrences of name lookups (foo) to data[’foo’]:

class RewriteName(NodeTransformer):

def visit_Name(self, node):
return copy_location(Subscript(

value=Name(id=’data’, ctx=Load()),
slice=Index(value=Str(s=node.id)),
ctx=node.ctx

), node)

Keep in mind that if the node you’re operating on has child nodes you must either transform the child nodes
yourself or call the generic_visit() method for the node first.

For nodes that were part of a collection of statements (that applies to all statement nodes), the visitor may also
return a list of nodes rather than just a single node.

Usually you use the transformer like this:

node = YourTransformer().visit(node)

dump(node, annotate_fields=True, include_attributes=False)
Return a formatted dump of the tree in node. This is mainly useful for debugging purposes. The returned string

1092 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

will show the names and the values for fields. This makes the code impossible to evaluate, so if evaluation is
wanted annotate_fields must be set to False. Attributes such as line numbers and column offsets are not dumped
by default. If this is wanted, include_attributes can be set to True.

31.3 symtable — Access to the compiler’s symbol tables

Symbol tables are generated by the compiler from AST just before bytecode is generated. The symbol table is re-
sponsible for calculating the scope of every identifier in the code. symtable provides an interface to examine these
tables.

31.3.1 Generating Symbol Tables

symtable(code, filename, compile_type)
Return the toplevel SymbolTable for the Python source code. filename is the name of the file containing the
code. compile_type is like the mode argument to compile().

31.3.2 Examining Symbol Tables

class SymbolTable()
A namespace table for a block. The constructor is not public.

get_type()
Return the type of the symbol table. Possible values are ’class’, ’module’, and ’function’.

get_id()
Return the table’s identifier.

get_name()
Return the table’s name. This is the name of the class if the table is for a class, the name of the function if
the table is for a function, or ’top’ if the table is global (get_type() returns ’module’).

get_lineno()
Return the number of the first line in the block this table represents.

is_optimized()
Return True if the locals in this table can be optimized.

is_nested()
Return True if the block is a nested class or function.

has_children()
Return True if the block has nested namespaces within it. These can be obtained with
get_children().

has_exec()
Return True if the block uses exec.

has_import_star()
Return True if the block uses a starred from-import.

get_identifiers()
Return a list of names of symbols in this table.

lookup(name)
Lookup name in the table and return a Symbol instance.

31.3. symtable — Access to the compiler’s symbol tables 1093

The Python Library Reference, Release 2.6.9

get_symbols()
Return a list of Symbol instances for names in the table.

get_children()
Return a list of the nested symbol tables.

class Function()
A namespace for a function or method. This class inherits SymbolTable.

get_parameters()
Return a tuple containing names of parameters to this function.

get_locals()
Return a tuple containing names of locals in this function.

get_globals()
Return a tuple containing names of globals in this function.

get_frees()
Return a tuple containing names of free variables in this function.

class Class()
A namespace of a class. This class inherits SymbolTable.

get_methods()
Return a tuple containing the names of methods declared in the class.

class Symbol()
An entry in a SymbolTable corresponding to an identifier in the source. The constructor is not public.

get_name()
Return the symbol’s name.

is_referenced()
Return True if the symbol is used in its block.

is_imported()
Return True if the symbol is created from an import statement.

is_parameter()
Return True if the symbol is a parameter.

is_global()
Return True if the symbol is global.

is_declared_global()
Return True if the symbol is declared global with a global statement.

is_local()
Return True if the symbol is local to its block.

is_free()
Return True if the symbol is referenced in its block, but not assigned to.

is_assigned()
Return True if the symbol is assigned to in its block.

is_namespace()
Return True if name binding introduces new namespace.

If the name is used as the target of a function or class statement, this will be true.

For example:

1094 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

>>> table = symtable.symtable("def some_func(): pass", "string", "exec")
>>> table.lookup("some_func").is_namespace()
True

Note that a single name can be bound to multiple objects. If the result is True, the name may also be
bound to other objects, like an int or list, that does not introduce a new namespace.

get_namespaces()
Return a list of namespaces bound to this name.

get_namespace()
Return the namespace bound to this name. If more than one namespace is bound, a ValueError is
raised.

31.4 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to the file Grammar/Grammar in the Python distribution for
the definitions of the names in the context of the language grammar. The specific numeric values which the names
map to may change between Python versions.

This module also provides one additional data object:

sym_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

Module parser The second example for the parser module shows how to use the symbol module.

31.5 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file Grammar/Grammar in the Python distribution for the definitions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

tok_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(x)
Return true for terminal token values.

ISNONTERMINAL(x)
Return true for non-terminal token values.

ISEOF(x)
Return true if x is the marker indicating the end of input.

See Also:

Module parser The second example for the parser module shows how to use the symbol module.

31.4. symbol — Constants used with Python parse trees 1095

The Python Library Reference, Release 2.6.9

31.6 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword.

iskeyword(s)
Return true if s is a Python keyword.

kwlist
Sequence containing all the keywords defined for the interpreter. If any keywords are defined to only be active
when particular __future__ statements are in effect, these will be included as well.

31.7 tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,” including
colorizers for on-screen displays.

The primary entry point is a generator:

generate_tokens(readline)
The generate_tokens() generator requires one argument, readline, which must be a callable object which
provides the same interface as the readline() method of built-in file objects (see section File Objects). Each
call to the function should return one line of input as a string.

The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple (srow,
scol) of ints specifying the row and column where the token begins in the source; a 2-tuple (erow, ecol)
of ints specifying the row and column where the token ends in the source; and the line on which the token was
found. The line passed (the last tuple item) is the logical line; continuation lines are included. New in version
2.2.

An older entry point is retained for backward compatibility:

tokenize(readline, [tokeneater])
The tokenize() function accepts two parameters: one representing the input stream, and one providing an
output mechanism for tokenize().

The first parameter, readline, must be a callable object which provides the same interface as the readline()
method of built-in file objects (see section File Objects). Each call to the function should return one line of input
as a string. Alternately, readline may be a callable object that signals completion by raising StopIteration.
Changed in version 2.5: Added StopIteration support. The second parameter, tokeneater, must also be a
callable object. It is called once for each token, with five arguments, corresponding to the tuples generated by
generate_tokens().

All constants from the token module are also exported from tokenize, as are two additional token type values that
might be passed to the tokeneater function by tokenize():

COMMENT
Token value used to indicate a comment.

NL
Token value used to indicate a non-terminating newline. The NEWLINE token indicates the end of a logical
line of Python code; NL tokens are generated when a logical line of code is continued over multiple physical
lines.

Another function is provided to reverse the tokenization process. This is useful for creating tools that tokenize a script,
modify the token stream, and write back the modified script.

1096 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

untokenize(iterable)
Converts tokens back into Python source code. The iterable must return sequences with at least two elements,
the token type and the token string. Any additional sequence elements are ignored.

The reconstructed script is returned as a single string. The result is guaranteed to tokenize back to match the
input so that the conversion is lossless and round-trips are assured. The guarantee applies only to the token type
and token string as the spacing between tokens (column positions) may change. New in version 2.5.

Example of a script re-writer that transforms float literals into Decimal objects:

def decistmt(s):
"""Substitute Decimals for floats in a string of statements.

>>> from decimal import Decimal
>>> s = ’print +21.3e-5*-.1234/81.7’
>>> decistmt(s)
"print +Decimal (’21.3e-5’)*-Decimal (’.1234’)/Decimal (’81.7’)"

>>> exec(s)
-3.21716034272e-007
>>> exec(decistmt(s))
-3.217160342717258261933904529E-7

"""
result = []
g = generate_tokens(StringIO(s).readline) # tokenize the string
for toknum, tokval, _, _, _ in g:

if toknum == NUMBER and ’.’ in tokval: # replace NUMBER tokens
result.extend([

(NAME, ’Decimal’),
(OP, ’(’),
(STRING, repr(tokval)),
(OP, ’)’)

])
else:

result.append((toknum, tokval))
return untokenize(result)

31.8 tabnanny — Detection of ambiguous indentation

For the time being this module is intended to be called as a script. However it is possible to import it into an IDE and
use the function check() described below.

Note: The API provided by this module is likely to change in future releases; such changes may not be backward
compatible.

check(file_or_dir)
If file_or_dir is a directory and not a symbolic link, then recursively descend the directory tree named by
file_or_dir, checking all .py files along the way. If file_or_dir is an ordinary Python source file, it is checked for
whitespace related problems. The diagnostic messages are written to standard output using the print statement.

verbose
Flag indicating whether to print verbose messages. This is incremented by the -v option if called as a script.

filename_only
Flag indicating whether to print only the filenames of files containing whitespace related problems. This is set

31.8. tabnanny — Detection of ambiguous indentation 1097

The Python Library Reference, Release 2.6.9

to true by the -q option if called as a script.

exception NannyNag
Raised by tokeneater() if detecting an ambiguous indent. Captured and handled in check().

tokeneater(type, token, start, end, line)
This function is used by check() as a callback parameter to the function tokenize.tokenize().

See Also:

Module tokenize Lexical scanner for Python source code.

31.9 pyclbr — Python class browser support

The pyclbr module can be used to determine some limited information about the classes, methods and top-level
functions defined in a module. The information provided is sufficient to implement a traditional three-pane class
browser. The information is extracted from the source code rather than by importing the module, so this module is
safe to use with untrusted code. This restriction makes it impossible to use this module with modules not implemented
in Python, including all standard and optional extension modules.

readmodule(module, [path=None])
Read a module and return a dictionary mapping class names to class descriptor objects. The parameter module
should be the name of a module as a string; it may be the name of a module within a package. The path parameter
should be a sequence, and is used to augment the value of sys.path, which is used to locate module source
code.

readmodule_ex(module, [path=None])
Like readmodule(), but the returned dictionary, in addition to mapping class names to class descriptor
objects, also maps top-level function names to function descriptor objects. Moreover, if the module being read
is a package, the key ’__path__’ in the returned dictionary has as its value a list which contains the package
search path.

31.9.1 Class Objects

The Class objects used as values in the dictionary returned by readmodule() and readmodule_ex() provide
the following data members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of Class objects which describe the immediate base classes of the class being described. Classes which
are named as superclasses but which are not discoverable by readmodule() are listed as a string with the
class name instead of as Class objects.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file named by file.

1098 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

31.9.2 Function Objects

The Function objects used as values in the dictionary returned by readmodule_ex() provide the following data
members:

module
The name of the module defining the function described by the function descriptor.

name
The name of the function.

file
Name of the file containing the def statement defining the function.

lineno
The line number of the def statement within the file named by file.

31.10 py_compile — Compile Python source files

The py_compile module provides a function to generate a byte-code file from a source file, and another function
used when the module source file is invoked as a script.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of the
users may not have permission to write the byte-code cache files in the directory containing the source code.

exception PyCompileError
Exception raised when an error occurs while attempting to compile the file.

compile(file, [cfile, [dfile, [doraise]]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from the
file name file. The byte-code is written to cfile, which defaults to file + ’c’ (’o’ if optimization is enabled in
the current interpreter). If dfile is specified, it is used as the name of the source file in error messages instead
of file. If doraise is true, a PyCompileError is raised when an error is encountered while compiling file. If
doraise is false (the default), an error string is written to sys.stderr, but no exception is raised.

main([args])
Compile several source files. The files named in args (or on the command line, if args is not specified) are
compiled and the resulting bytecode is cached in the normal manner. This function does not search a directory
structure to locate source files; it only compiles files named explicitly.

When this module is run as a script, the main() is used to compile all the files named on the command line. The
exit status is nonzero if one of the files could not be compiled. Changed in version 2.6: Added the nonzero exit status
when module is run as a script.

See Also:

Module compileall Utilities to compile all Python source files in a directory tree.

31.11 compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree, allowing users without permission to write to the libraries to take advantage of cached
byte-code files.

This module may also be used as a script (using the -m Python flag) to compile Python sources. Directories to
recursively traverse (passing -l stops the recursive behavior) for sources are listed on the command line. If no
arguments are given, the invocation is equivalent to -l sys.path. Printing lists of the files compiled can be

31.10. py_compile — Compile Python source files 1099

The Python Library Reference, Release 2.6.9

disabled with the -q flag. In addition, the -x option takes a regular expression argument. All files that match the
expression will be skipped.

compile_dir(dir, [maxlevels, [ddir, [force, [rx, [quiet]]]]])
Recursively descend the directory tree named by dir, compiling all .py files along the way. The maxlevels
parameter is used to limit the depth of the recursion; it defaults to 10. If ddir is given, it is used as the base path
from which the filenames used in error messages will be generated. If force is true, modules are re-compiled
even if the timestamps are up to date.

If rx is given, it specifies a regular expression of file names to exclude from the search; that expression is
searched for in the full path.

If quiet is true, nothing is printed to the standard output in normal operation.

compile_path([skip_curdir, [maxlevels, [force]]])
Byte-compile all the .py files found along sys.path. If skip_curdir is true (the default), the current di-
rectory is not included in the search. The maxlevels and force parameters default to 0 and are passed to the
compile_dir() function.

To force a recompile of all the .py files in the Lib/ subdirectory and all its subdirectories:

import compileall

compileall.compile_dir(’Lib/’, force=True)

Perform same compilation, excluding files in .svn directories.
import re
compileall.compile_dir(’Lib/’, rx=re.compile(’/[.]svn’), force=True)

See Also:

Module py_compile Byte-compile a single source file.

31.12 dis — Disassembler for Python bytecode

The dis module supports the analysis of CPython bytecode by disassembling it. The CPython bytecode which this
module takes as an input is defined in the file Include/opcode.h and used by the compiler and the interpreter.

CPython implementation detail: Bytecode is an implementation detail of the CPython interpreter! No guarantees
are made that bytecode will not be added, removed, or changed between versions of Python. Use of this module should
not be considered to work across Python VMs or Python releases.

Example: Given the function myfunc():

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembly of myfunc():

>>> dis.dis(myfunc)
2 0 LOAD_GLOBAL 0 (len)

3 LOAD_FAST 0 (alist)
6 CALL_FUNCTION 1
9 RETURN_VALUE

(The “2” is a line number).

The dis module defines the following functions and constants:

1100 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

dis([bytesource])
Disassemble the bytesource object. bytesource can denote either a module, a class, a method, a function, or a
code object. For a module, it disassembles all functions. For a class, it disassembles all methods. For a single
code sequence, it prints one line per bytecode instruction. If no object is provided, it disassembles the last
traceback.

distb([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble(code, [lasti])
Disassembles a code object, indicating the last instruction if lasti was provided. The output is divided in the
following columns:

1.the line number, for the first instruction of each line

2.the current instruction, indicated as -->,

3.a labelled instruction, indicated with >>,

4.the address of the instruction,

5.the operation code name,

6.operation parameters, and

7.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco(code, [lasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

opname
Sequence of operation names, indexable using the bytecode.

opmap
Dictionary mapping bytecodes to operation names.

cmp_op
Sequence of all compare operation names.

hasconst
Sequence of bytecodes that have a constant parameter.

hasfree
Sequence of bytecodes that access a free variable.

hasname
Sequence of bytecodes that access an attribute by name.

hasjrel
Sequence of bytecodes that have a relative jump target.

hasjabs
Sequence of bytecodes that have an absolute jump target.

haslocal
Sequence of bytecodes that access a local variable.

hascompare
Sequence of bytecodes of Boolean operations.

31.12. dis — Disassembler for Python bytecode 1101

The Python Library Reference, Release 2.6.9

31.12.1 Python Bytecode Instructions

The Python compiler currently generates the following bytecode instructions.

STOP_CODE
Indicates end-of-code to the compiler, not used by the interpreter.

NOP
Do nothing code. Used as a placeholder by the bytecode optimizer.

POP_TOP
Removes the top-of-stack (TOS) item.

ROT_TWO
Swaps the two top-most stack items.

ROT_THREE
Lifts second and third stack item one position up, moves top down to position three.

ROT_FOUR
Lifts second, third and forth stack item one position up, moves top down to position four.

DUP_TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARY_POSITIVE
Implements TOS = +TOS.

UNARY_NEGATIVE
Implements TOS = -TOS.

UNARY_NOT
Implements TOS = not TOS.

UNARY_CONVERT
Implements TOS = ‘TOS‘.

UNARY_INVERT
Implements TOS = ~TOS.

GET_ITER
Implements TOS = iter(TOS).

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY_POWER
Implements TOS = TOS1 ** TOS.

BINARY_MULTIPLY
Implements TOS = TOS1 * TOS.

BINARY_DIVIDE
Implements TOS = TOS1 / TOS when from __future__ import division is not in effect.

BINARY_FLOOR_DIVIDE
Implements TOS = TOS1 // TOS.

BINARY_TRUE_DIVIDE
Implements TOS = TOS1 / TOS when from __future__ import division is in effect.

1102 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

BINARY_MODULO
Implements TOS = TOS1 % TOS.

BINARY_ADD
Implements TOS = TOS1 + TOS.

BINARY_SUBTRACT
Implements TOS = TOS1 - TOS.

BINARY_SUBSCR
Implements TOS = TOS1[TOS].

BINARY_LSHIFT
Implements TOS = TOS1 << TOS.

BINARY_RSHIFT
Implements TOS = TOS1 >> TOS.

BINARY_AND
Implements TOS = TOS1 & TOS.

BINARY_XOR
Implements TOS = TOS1 ^ TOS.

BINARY_OR
Implements TOS = TOS1 | TOS.

In-place operations are like binary operations, in that they remove TOS and TOS1, and push the result back on the
stack, but the operation is done in-place when TOS1 supports it, and the resulting TOS may be (but does not have to
be) the original TOS1.

INPLACE_POWER
Implements in-place TOS = TOS1 ** TOS.

INPLACE_MULTIPLY
Implements in-place TOS = TOS1 * TOS.

INPLACE_DIVIDE
Implements in-place TOS = TOS1 / TOS when from __future__ import division is not in ef-
fect.

INPLACE_FLOOR_DIVIDE
Implements in-place TOS = TOS1 // TOS.

INPLACE_TRUE_DIVIDE
Implements in-place TOS = TOS1 / TOS when from __future__ import division is in effect.

INPLACE_MODULO
Implements in-place TOS = TOS1 % TOS.

INPLACE_ADD
Implements in-place TOS = TOS1 + TOS.

INPLACE_SUBTRACT
Implements in-place TOS = TOS1 - TOS.

INPLACE_LSHIFT
Implements in-place TOS = TOS1 << TOS.

INPLACE_RSHIFT
Implements in-place TOS = TOS1 >> TOS.

INPLACE_AND
Implements in-place TOS = TOS1 & TOS.

31.12. dis — Disassembler for Python bytecode 1103

The Python Library Reference, Release 2.6.9

INPLACE_XOR
Implements in-place TOS = TOS1 ^ TOS.

INPLACE_OR
Implements in-place TOS = TOS1 | TOS.

The slice opcodes take up to three parameters.

SLICE+0
Implements TOS = TOS[:].

SLICE+1
Implements TOS = TOS1[TOS:].

SLICE+2
Implements TOS = TOS1[:TOS].

SLICE+3
Implements TOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORE_SLICE+0
Implements TOS[:] = TOS1.

STORE_SLICE+1
Implements TOS1[TOS:] = TOS2.

STORE_SLICE+2
Implements TOS1[:TOS] = TOS2.

STORE_SLICE+3
Implements TOS2[TOS1:TOS] = TOS3.

DELETE_SLICE+0
Implements del TOS[:].

DELETE_SLICE+1
Implements del TOS1[TOS:].

DELETE_SLICE+2
Implements del TOS1[:TOS].

DELETE_SLICE+3
Implements del TOS2[TOS1:TOS].

STORE_SUBSCR
Implements TOS1[TOS] = TOS2.

DELETE_SUBSCR
Implements del TOS1[TOS].

Miscellaneous opcodes.

PRINT_EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminated with POP_STACK.

PRINT_ITEM
Prints TOS to the file-like object bound to sys.stdout. There is one such instruction for each item in the
print statement.

1104 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

PRINT_ITEM_TO
Like PRINT_ITEM, but prints the item second from TOS to the file-like object at TOS. This is used by the
extended print statement.

PRINT_NEWLINE
Prints a new line on sys.stdout. This is generated as the last operation of a print statement, unless the
statement ends with a comma.

PRINT_NEWLINE_TO
Like PRINT_NEWLINE, but prints the new line on the file-like object on the TOS. This is used by the extended
print statement.

BREAK_LOOP
Terminates a loop due to a break statement.

CONTINUE_LOOP target
Continues a loop due to a continue statement. target is the address to jump to (which should be a FOR_ITER
instruction).

LIST_APPEND
Calls list.append(TOS1, TOS). Used to implement list comprehensions.

LOAD_LOCALS
Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURN_VALUE
Returns with TOS to the caller of the function.

YIELD_VALUE
Pops TOS and yields it from a generator.

IMPORT_STAR
Loads all symbols not starting with ’_’ directly from the module TOS to the local namespace. The module is
popped after loading all names. This opcode implements from module import *.

EXEC_STMT
Implements exec TOS2,TOS1,TOS. The compiler fills missing optional parameters with None.

POP_BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

END_FINALLY
Terminates a finally clause. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD_CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

WITH_CLEANUP
Cleans up the stack when a with statement block exits. On top of the stack are 1–3 values indicating how/why
the finally clause was entered:

•TOP = None

•(TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval

•TOP = WHY_*; no retval below it

•(TOP, SECOND, THIRD) = exc_info()

31.12. dis — Disassembler for Python bytecode 1105

The Python Library Reference, Release 2.6.9

Under them is EXIT, the context manager’s __exit__() bound method.

In the last case, EXIT(TOP, SECOND, THIRD) is called, otherwise EXIT(None, None, None).

EXIT is removed from the stack, leaving the values above it in the same order. In addition, if the stack rep-
resents an exception, and the function call returns a ‘true’ value, this information is “zapped”, to prevent
END_FINALLY from re-raising the exception. (But non-local gotos should still be resumed.)

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORE_NAME namei
Implements name = TOS. namei is the index of name in the attribute co_names of the code object. The
compiler tries to use STORE_FAST or STORE_GLOBAL if possible.

DELETE_NAME namei
Implements del name, where namei is the index into co_names attribute of the code object.

UNPACK_SEQUENCE count
Unpacks TOS into count individual values, which are put onto the stack right-to-left.

DUP_TOPX count
Duplicate count items, keeping them in the same order. Due to implementation limits, count should be between
1 and 5 inclusive.

STORE_ATTR namei
Implements TOS.name = TOS1, where namei is the index of name in co_names.

DELETE_ATTR namei
Implements del TOS.name, using namei as index into co_names.

STORE_GLOBAL namei
Works as STORE_NAME, but stores the name as a global.

DELETE_GLOBAL namei
Works as DELETE_NAME, but deletes a global name.

LOAD_CONST consti
Pushes co_consts[consti] onto the stack.

LOAD_NAME namei
Pushes the value associated with co_names[namei] onto the stack.

BUILD_TUPLE count
Creates a tuple consuming count items from the stack, and pushes the resulting tuple onto the stack.

BUILD_LIST count
Works as BUILD_TUPLE, but creates a list.

BUILD_MAP count
Pushes a new dictionary object onto the stack. The dictionary is pre-sized to hold count entries.

LOAD_ATTR namei
Replaces TOS with getattr(TOS, co_names[namei]).

COMPARE_OP opname
Performs a Boolean operation. The operation name can be found in cmp_op[opname].

IMPORT_NAME namei
Imports the module co_names[namei]. TOS and TOS1 are popped and provide the fromlist and level
arguments of __import__(). The module object is pushed onto the stack. The current namespace is not
affected: for a proper import statement, a subsequent STORE_FAST instruction modifies the namespace.

1106 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

IMPORT_FROM namei
Loads the attribute co_names[namei] from the module found in TOS. The resulting object is pushed onto
the stack, to be subsequently stored by a STORE_FAST instruction.

JUMP_FORWARD delta
Increments bytecode counter by delta.

JUMP_IF_TRUE delta
If TOS is true, increment the bytecode counter by delta. TOS is left on the stack.

JUMP_IF_FALSE delta
If TOS is false, increment the bytecode counter by delta. TOS is not changed.

JUMP_ABSOLUTE target
Set bytecode counter to target.

FOR_ITER delta
TOS is an iterator. Call its next() method. If this yields a new value, push it on the stack (leaving the iterator
below it). If the iterator indicates it is exhausted TOS is popped, and the bytecode counter is incremented by
delta.

LOAD_GLOBAL namei
Loads the global named co_names[namei] onto the stack.

SETUP_LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with a size of delta
bytes.

SETUP_EXCEPT delta
Pushes a try block from a try-except clause onto the block stack. delta points to the first except block.

SETUP_FINALLY delta
Pushes a try block from a try-except clause onto the block stack. delta points to the finally block.

STORE_MAP
Store a key and value pair in a dictionary. Pops the key and value while leaving the dictionary on the stack.

LOAD_FAST var_num
Pushes a reference to the local co_varnames[var_num] onto the stack.

STORE_FAST var_num
Stores TOS into the local co_varnames[var_num].

DELETE_FAST var_num
Deletes local co_varnames[var_num].

LOAD_CLOSURE i
Pushes a reference to the cell contained in slot i of the cell and free variable storage. The name of the vari-
able is co_cellvars[i] if i is less than the length of co_cellvars. Otherwise it is co_freevars[i -
len(co_cellvars)].

LOAD_DEREF i
Loads the cell contained in slot i of the cell and free variable storage. Pushes a reference to the object the cell
contains on the stack.

STORE_DEREF i
Stores TOS into the cell contained in slot i of the cell and free variable storage.

SET_LINENO lineno
This opcode is obsolete.

31.12. dis — Disassembler for Python bytecode 1107

The Python Library Reference, Release 2.6.9

RAISE_VARARGS argc
Raises an exception. argc indicates the number of parameters to the raise statement, ranging from 0 to 3. The
handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL_FUNCTION argc
Calls a function. The low byte of argc indicates the number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack. Pops all
function arguments, and the function itself off the stack, and pushes the return value.

MAKE_FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to have argc default parameters, which are found below TOS.

MAKE_CLOSURE argc
Creates a new function object, sets its func_closure slot, and pushes it on the stack. TOS is the code associated
with the function, TOS1 the tuple containing cells for the closure’s free variables. The function also has argc
default parameters, which are found below the cells.

BUILD_SLICE argc
Pushes a slice object on the stack. argc must be 2 or 3. If it is 2, slice(TOS1, TOS) is pushed; if it is 3,
slice(TOS2, TOS1, TOS) is pushed. See the slice() built-in function for more information.

EXTENDED_ARG ext
Prefixes any opcode which has an argument too big to fit into the default two bytes. ext holds two additional
bytes which, taken together with the subsequent opcode’s argument, comprise a four-byte argument, ext being
the two most-significant bytes.

CALL_FUNCTION_VAR argc
Calls a function. argc is interpreted as in CALL_FUNCTION. The top element on the stack contains the variable
argument list, followed by keyword and positional arguments.

CALL_FUNCTION_KW argc
Calls a function. argc is interpreted as in CALL_FUNCTION. The top element on the stack contains the keyword
arguments dictionary, followed by explicit keyword and positional arguments.

CALL_FUNCTION_VAR_KW argc
Calls a function. argc is interpreted as in CALL_FUNCTION. The top element on the stack contains the keyword
arguments dictionary, followed by the variable-arguments tuple, followed by explicit keyword and positional
arguments.

HAVE_ARGUMENT
This is not really an opcode. It identifies the dividing line between opcodes which don’t take arguments <
HAVE_ARGUMENT and those which do >= HAVE_ARGUMENT.

31.13 pickletools — Tools for pickle developers

New in version 2.3. This module contains various constants relating to the intimate details of the pickle module,
some lengthy comments about the implementation, and a few useful functions for analyzing pickled data. The contents
of this module are useful for Python core developers who are working on the pickle and cPickle implementations;
ordinary users of the pickle module probably won’t find the pickletools module relevant.

dis(pickle, [out=None, memo=None, indentlevel=4])
Outputs a symbolic disassembly of the pickle to the file-like object out, defaulting to sys.stdout. pickle
can be a string or a file-like object. memo can be a Python dictionary that will be used as the pickle’s memo;

1108 Chapter 31. Python Language Services

The Python Library Reference, Release 2.6.9

it can be used to perform disassemblies across multiple pickles created by the same pickler. Successive levels,
indicated by MARK opcodes in the stream, are indented by indentlevel spaces.

genops(pickle)
Provides an iterator over all of the opcodes in a pickle, returning a sequence of (opcode, arg, pos)
triples. opcode is an instance of an OpcodeInfo class; arg is the decoded value, as a Python object, of the
opcode’s argument; pos is the position at which this opcode is located. pickle can be a string or a file-like object.

optimize(picklestring)
Returns a new equivalent pickle string after eliminating unused PUT opcodes. The optimized pickle is shorter,
takes less transmission time, requires less storage space, and unpickles more efficiently. New in version 2.6.

31.13. pickletools — Tools for pickle developers 1109

The Python Library Reference, Release 2.6.9

1110 Chapter 31. Python Language Services

CHAPTER

THIRTYTWO

PYTHON COMPILER PACKAGE

Deprecated since version 2.6: The compiler package has been removed in Python 3.0. The Python compiler
package is a tool for analyzing Python source code and generating Python bytecode. The compiler contains libraries
to generate an abstract syntax tree from Python source code and to generate Python bytecode from the tree.

The compiler package is a Python source to bytecode translator written in Python. It uses the built-in parser and
standard parser module to generated a concrete syntax tree. This tree is used to generate an abstract syntax tree
(AST) and then Python bytecode.

The full functionality of the package duplicates the built-in compiler provided with the Python interpreter. It is intended
to match its behavior almost exactly. Why implement another compiler that does the same thing? The package is useful
for a variety of purposes. It can be modified more easily than the built-in compiler. The AST it generates is useful for
analyzing Python source code.

This chapter explains how the various components of the compiler package work. It blends reference material with
a tutorial.

32.1 The basic interface

The top-level of the package defines four functions. If you import compiler, you will get these functions and a
collection of modules contained in the package.

parse(buf)
Returns an abstract syntax tree for the Python source code in buf. The function raises SyntaxError if there
is an error in the source code. The return value is a compiler.ast.Module instance that contains the tree.

parseFile(path)
Return an abstract syntax tree for the Python source code in the file specified by path. It is equivalent to
parse(open(path).read()).

walk(ast, visitor, [verbose])
Do a pre-order walk over the abstract syntax tree ast. Call the appropriate method on the visitor instance for
each node encountered.

compile(source, filename, mode, flags=None, dont_inherit=None)
Compile the string source, a Python module, statement or expression, into a code object that can be executed by
the exec statement or eval(). This function is a replacement for the built-in compile() function.

The filename will be used for run-time error messages.

The mode must be ‘exec’ to compile a module, ‘single’ to compile a single (interactive) statement, or ‘eval’ to
compile an expression.

The flags and dont_inherit arguments affect future-related statements, but are not supported yet.

1111

The Python Library Reference, Release 2.6.9

compileFile(source)
Compiles the file source and generates a .pyc file.

The compiler package contains the following modules: ast, consts, future, misc, pyassem, pycodegen,
symbols, transformer, and visitor.

32.2 Limitations

There are some problems with the error checking of the compiler package. The interpreter detects syntax errors in two
distinct phases. One set of errors is detected by the interpreter’s parser, the other set by the compiler. The compiler
package relies on the interpreter’s parser, so it get the first phases of error checking for free. It implements the second
phase itself, and that implementation is incomplete. For example, the compiler package does not raise an error if a
name appears more than once in an argument list: def f(x, x): ...

A future version of the compiler should fix these problems.

32.3 Python Abstract Syntax

The compiler.ast module defines an abstract syntax for Python. In the abstract syntax tree, each node represents
a syntactic construct. The root of the tree is Module object.

The abstract syntax offers a higher level interface to parsed Python source code. The parsermodule and the compiler
written in C for the Python interpreter use a concrete syntax tree. The concrete syntax is tied closely to the grammar
description used for the Python parser. Instead of a single node for a construct, there are often several levels of nested
nodes that are introduced by Python’s precedence rules.

The abstract syntax tree is created by the compiler.transformer module. The transformer relies on the built-in
Python parser to generate a concrete syntax tree. It generates an abstract syntax tree from the concrete tree. The
transformer module was created by Greg Stein and Bill Tutt for an experimental Python-to-C compiler. The
current version contains a number of modifications and improvements, but the basic form of the abstract syntax and of
the transformer are due to Stein and Tutt.

32.3.1 AST Nodes

The compiler.ast module is generated from a text file that describes each node type and its elements. Each node
type is represented as a class that inherits from the abstract base class compiler.ast.Node and defines a set of
named attributes for child nodes.

class Node()
The Node instances are created automatically by the parser generator. The recommended interface for specific
Node instances is to use the public attributes to access child nodes. A public attribute may be bound to a single
node or to a sequence of nodes, depending on the Node type. For example, the bases attribute of the Class
node, is bound to a list of base class nodes, and the doc attribute is bound to a single node.

Each Node instance has a lineno attribute which may be None. XXX Not sure what the rules are for which
nodes will have a useful lineno.

All Node objects offer the following methods:

getChildren()
Returns a flattened list of the child nodes and objects in the order they occur. Specifically, the order of the
nodes is the order in which they appear in the Python grammar. Not all of the children are Node instances.
The names of functions and classes, for example, are plain strings.

1112 Chapter 32. Python compiler package

The Python Library Reference, Release 2.6.9

getChildNodes()
Returns a flattened list of the child nodes in the order they occur. This method is like getChildren(),
except that it only returns those children that are Node instances.

Two examples illustrate the general structure of Node classes. The while statement is defined by the following
grammar production:

while_stmt: "while" expression ":" suite
["else" ":" suite]

The While node has three attributes: test, body, and else_. (If the natural name for an attribute is also a Python
reserved word, it can’t be used as an attribute name. An underscore is appended to the word to make it a legal identifier,
hence else_ instead of else.)

The if statement is more complicated because it can include several tests.

if_stmt: ’if’ test ’:’ suite (’elif’ test ’:’ suite)* [’else’ ’:’ suite]

The If node only defines two attributes: tests and else_. The tests attribute is a sequence of test expression,
consequent body pairs. There is one pair for each if/elif clause. The first element of the pair is the test expression.
The second elements is a Stmt node that contains the code to execute if the test is true.

The getChildren() method of If returns a flat list of child nodes. If there are three if/elif clauses and no
else clause, then getChildren() will return a list of six elements: the first test expression, the first Stmt, the
second text expression, etc.

The following table lists each of the Node subclasses defined in compiler.ast and each of the public attributes
available on their instances. The values of most of the attributes are themselves Node instances or sequences of
instances. When the value is something other than an instance, the type is noted in the comment. The attributes are
listed in the order in which they are returned by getChildren() and getChildNodes().

Node type Attribute Value
Add left left operand

right right operand
And nodes list of operands
AssAttr attribute as target of assignment

expr expression on the left-hand side of the dot
attrname the attribute name, a string
flags XXX

AssList nodes list of list elements being assigned to
AssName name name being assigned to

flags XXX
AssTuple nodes list of tuple elements being assigned to
Assert test the expression to be tested

fail the value of the AssertionError
Assign nodes a list of assignment targets, one per equal sign

expr the value being assigned
AugAssign node

op
expr

Backquote expr
Bitand nodes
Bitor nodes
Bitxor nodes
Break
CallFunc node expression for the callee

args a list of arguments
Continued on next page

32.3. Python Abstract Syntax 1113

The Python Library Reference, Release 2.6.9

Table 32.1 – continued from previous page
star_args the extended *-arg value
dstar_args the extended **-arg value

Class name the name of the class, a string
bases a list of base classes
doc doc string, a string or None
code the body of the class statement

Compare expr
ops

Const value
Continue
Decorators nodes List of function decorator expressions
Dict items
Discard expr
Div left

right
Ellipsis
Expression node
Exec expr

locals
globals

FloorDiv left
right

For assign
list
body
else_

From modname
names

Function decorators Decorators or None
name name used in def, a string
argnames list of argument names, as strings
defaults list of default values
flags xxx
doc doc string, a string or None
code the body of the function

GenExpr code
GenExprFor assign

iter
ifs

GenExprIf test
GenExprInner expr

quals
Getattr expr

attrname
Global names
If tests

else_
Import names
Invert expr
Keyword name

expr
Lambda argnames

Continued on next page

1114 Chapter 32. Python compiler package

The Python Library Reference, Release 2.6.9

Table 32.1 – continued from previous page
defaults
flags
code

LeftShift left
right

List nodes
ListComp expr

quals
ListCompFor assign

list
ifs

ListCompIf test
Mod left

right
Module doc doc string, a string or None

node body of the module, a Stmt
Mul left

right
Name name
Not expr
Or nodes
Pass
Power left

right
Print nodes

dest
Printnl nodes

dest
Raise expr1

expr2
expr3

Return value
RightShift left

right
Slice expr

flags
lower
upper

Sliceobj nodes list of statements
Stmt nodes
Sub left

right
Subscript expr

flags
subs

TryExcept body
handlers
else_

TryFinally body
final

Tuple nodes
UnaryAdd expr

Continued on next page

32.3. Python Abstract Syntax 1115

The Python Library Reference, Release 2.6.9

Table 32.1 – continued from previous page
UnarySub expr
While test

body
else_

With expr
vars
body

Yield value

32.3.2 Assignment nodes

There is a collection of nodes used to represent assignments. Each assignment statement in the source code becomes a
single Assign node in the AST. The nodes attribute is a list that contains a node for each assignment target. This is
necessary because assignment can be chained, e.g. a = b = 2. Each Node in the list will be one of the following
classes: AssAttr, AssList, AssName, or AssTuple.

Each target assignment node will describe the kind of object being assigned to: AssName for a simple name, e.g. a
= 1. AssAttr for an attribute assigned, e.g. a.x = 1. AssList and AssTuple for list and tuple expansion
respectively, e.g. a, b, c = a_tuple.

The target assignment nodes also have a flags attribute that indicates whether the node is being used for assignment
or in a delete statement. The AssName is also used to represent a delete statement, e.g. del x.

When an expression contains several attribute references, an assignment or delete statement will contain only one
AssAttr node – for the final attribute reference. The other attribute references will be represented as Getattr
nodes in the expr attribute of the AssAttr instance.

32.3.3 Examples

This section shows several simple examples of ASTs for Python source code. The examples demonstrate how to use
the parse() function, what the repr of an AST looks like, and how to access attributes of an AST node.

The first module defines a single function. Assume it is stored in /tmp/doublelib.py.

"""This is an example module.

This is the docstring.
"""

def double(x):
"Return twice the argument"
return x * 2

In the interactive interpreter session below, I have reformatted the long AST reprs for readability. The AST reprs use
unqualified class names. If you want to create an instance from a repr, you must import the class names from the
compiler.ast module.

>>> import compiler
>>> mod = compiler.parseFile("/tmp/doublelib.py")
>>> mod
Module(’This is an example module.\n\nThis is the docstring.\n’,

Stmt([Function(None, ’double’, [’x’], [], 0,
’Return twice the argument’,
Stmt([Return(Mul((Name(’x’), Const(2))))]))]))

1116 Chapter 32. Python compiler package

The Python Library Reference, Release 2.6.9

>>> from compiler.ast import *
>>> Module(’This is an example module.\n\nThis is the docstring.\n’,
... Stmt([Function(None, ’double’, [’x’], [], 0,
... ’Return twice the argument’,
... Stmt([Return(Mul((Name(’x’), Const(2))))]))]))
Module(’This is an example module.\n\nThis is the docstring.\n’,

Stmt([Function(None, ’double’, [’x’], [], 0,
’Return twice the argument’,
Stmt([Return(Mul((Name(’x’), Const(2))))]))]))

>>> mod.doc
’This is an example module.\n\nThis is the docstring.\n’
>>> for node in mod.node.nodes:
... print node
...
Function(None, ’double’, [’x’], [], 0, ’Return twice the argument’,

Stmt([Return(Mul((Name(’x’), Const(2))))]))
>>> func = mod.node.nodes[0]
>>> func.code
Stmt([Return(Mul((Name(’x’), Const(2))))])

32.4 Using Visitors to Walk ASTs

The visitor pattern is ... The compiler package uses a variant on the visitor pattern that takes advantage of Python’s
introspection features to eliminate the need for much of the visitor’s infrastructure.

The classes being visited do not need to be programmed to accept visitors. The visitor need only define visit methods
for classes it is specifically interested in; a default visit method can handle the rest.

XXX The magic visit() method for visitors.

walk(tree, visitor, [verbose])

class ASTVisitor()
The ASTVisitor is responsible for walking over the tree in the correct order. A walk begins with a call to
preorder(). For each node, it checks the visitor argument to preorder() for a method named ‘visitN-
odeType,’ where NodeType is the name of the node’s class, e.g. for a While node a visitWhile() would
be called. If the method exists, it is called with the node as its first argument.

The visitor method for a particular node type can control how child nodes are visited during the walk. The
ASTVisitor modifies the visitor argument by adding a visit method to the visitor; this method can be used to
visit a particular child node. If no visitor is found for a particular node type, the default() method is called.

ASTVisitor objects have the following methods:

XXX describe extra arguments

default(node, [...])

dispatch(node, [...])

preorder(tree, visitor)

32.5 Bytecode Generation

The code generator is a visitor that emits bytecodes. Each visit method can call the emit() method to emit a new
bytecode. The basic code generator is specialized for modules, classes, and functions. An assembler converts that

32.4. Using Visitors to Walk ASTs 1117

The Python Library Reference, Release 2.6.9

emitted instructions to the low-level bytecode format. It handles things like generation of constant lists of code objects
and calculation of jump offsets.

1118 Chapter 32. Python compiler package

CHAPTER

THIRTYTHREE

MISCELLANEOUS SERVICES

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

33.1 formatter — Generic output formatting

This module supports two interface definitions, each with multiple implementations. The formatter interface is used
by the HTMLParser class of the htmllib module, and the writer interface is required by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer objects. Format-
ters manage several stack structures to allow various properties of a writer object to be changed and restored; writers
need not be able to handle relative changes nor any sort of “change back” operation. Specific writer properties which
may be controlled via formatter objects are horizontal alignment, font, and left margin indentations. A mechanism
is provided which supports providing arbitrary, non-exclusive style settings to a writer as well. Additional interfaces
facilitate formatting events which are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well as physical
devices. The provided implementations all work with abstract devices. The interface makes available mechanisms for
setting the properties which formatter objects manage and inserting data into the output.

33.1.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces described
below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS_IS
Value which can be used in the font specification passed to the push_font() method described below, or as
the new value to any other push_property() method. Pushing the AS_IS value allows the corresponding
pop_property() method to be called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end_paragraph(blanklines)
Close any open paragraphs and insert at least blanklines before the next paragraph.

add_line_break()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

1119

The Python Library Reference, Release 2.6.9

add_hor_rule(*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current paragraph, but the logi-
cal paragraph is not broken. The arguments and keywords are passed on to the writer’s send_line_break()
method.

add_flowing_data(data)
Provide data which should be formatted with collapsed whitespace. Whitespace from preceding and successive
calls to add_flowing_data() is considered as well when the whitespace collapse is performed. The data
which is passed to this method is expected to be word-wrapped by the output device. Note that any word-
wrapping still must be performed by the writer object due to the need to rely on device and font information.

add_literal_data(data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab characters,
are considered legal in the value of data.

add_label_data(format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used for constructing
bulleted or numbered lists. If the format value is a string, it is interpreted as a format specification for counter,
which should be an integer. The result of this formatting becomes the value of the label; if format is not a
string it is used as the label value directly. The label value is passed as the only argument to the writer’s
send_label_data()method. Interpretation of non-string label values is dependent on the associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute label values.
Each character in the format string is copied to the label value, with some characters recognized to indicate a
transform on the counter value. Specifically, the character ’1’ represents the counter value formatter as an
Arabic number, the characters ’A’ and ’a’ represent alphabetic representations of the counter value in upper
and lower case, respectively, and ’I’ and ’i’ represent the counter value in Roman numerals, in upper and
lower case. Note that the alphabetic and roman transforms require that the counter value be greater than zero.

flush_softspace()
Send any pending whitespace buffered from a previous call to add_flowing_data() to the associated writer
object. This should be called before any direct manipulation of the writer object.

push_alignment(align)
Push a new alignment setting onto the alignment stack. This may be AS_IS if no change is desired. If the
alignment value is changed from the previous setting, the writer’s new_alignment() method is called with
the align value.

pop_alignment()
Restore the previous alignment.

push_font((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set to AS_IS are set to the
values passed in while others are maintained at their current settings. The writer’s new_font() method is
called with the fully resolved font specification.

pop_font()
Restore the previous font.

push_margin(margin)
Increase the number of left margin indentations by one, associating the logical tag margin with the new indenta-
tion. The initial margin level is 0. Changed values of the logical tag must be true values; false values other than
AS_IS are not sufficient to change the margin.

pop_margin()
Restore the previous margin.

push_style(*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order. A tuple
representing the entire stack, including AS_IS values, is passed to the writer’s new_styles() method.

1120 Chapter 33. Miscellaneous Services

The Python Library Reference, Release 2.6.9

pop_style([n=1])
Pop the last n style specifications passed to push_style(). A tuple representing the revised stack, including
AS_IS values, is passed to the writer’s new_styles() method.

set_spacing(spacing)
Set the spacing style for the writer.

assert_line_data([flag=1])
Inform the formatter that data has been added to the current paragraph out-of-band. This should be used when the
writer has been manipulated directly. The optional flag argument can be set to false if the writer manipulations
produced a hard line break at the end of the output.

33.1.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of these classes
without modification or subclassing.

class NullFormatter([writer])
A formatter which does nothing. If writer is omitted, a NullWriter instance is created. No methods of the
writer are called by NullFormatter instances. Implementations should inherit from this class if implement-
ing a writer interface but don’t need to inherit any implementation.

class AbstractFormatter(writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers, and may be
used directly in most circumstances. It has been used to implement a full-featured World Wide Web browser.

33.1.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces described below
are the required interfaces which all writers must support once initialized. Note that while most applications can use
the AbstractFormatter class as a formatter, the writer must typically be provided by the application.

flush()
Flush any buffered output or device control events.

new_alignment(align)
Set the alignment style. The align value can be any object, but by convention is a string or None, where
None indicates that the writer’s “preferred” alignment should be used. Conventional align values are ’left’,
’center’, ’right’, and ’justify’.

new_font(font)
Set the font style. The value of font will be None, indicating that the device’s default font should be used, or a
tuple of the form (size, italic, bold, teletype). Size will be a string indicating the size of font
that should be used; specific strings and their interpretation must be defined by the application. The italic, bold,
and teletype values are Boolean values specifying which of those font attributes should be used.

new_margin(margin, level)
Set the margin level to the integer level and the logical tag to margin. Interpretation of the logical tag is at the
writer’s discretion; the only restriction on the value of the logical tag is that it not be a false value for non-zero
values of level.

new_spacing(spacing)
Set the spacing style to spacing.

new_styles(styles)
Set additional styles. The styles value is a tuple of arbitrary values; the value AS_IS should be ignored. The

33.1. formatter — Generic output formatting 1121

The Python Library Reference, Release 2.6.9

styles tuple may be interpreted either as a set or as a stack depending on the requirements of the application and
writer implementation.

send_line_break()
Break the current line.

send_paragraph(blankline)
Produce a paragraph separation of at least blankline blank lines, or the equivalent. The blankline value will be
an integer. Note that the implementation will receive a call to send_line_break() before this call if a line
break is needed; this method should not include ending the last line of the paragraph. It is only responsible for
vertical spacing between paragraphs.

send_hor_rule(*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely application- and
writer-specific, and should be interpreted with care. The method implementation may assume that a line break
has already been issued via send_line_break().

send_flowing_data(data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of calls to
this method, the writer may assume that spans of multiple whitespace characters have been collapsed to single
space characters.

send_literal_data(data)
Output character data which has already been formatted for display. Generally, this should be interpreted to
mean that line breaks indicated by newline characters should be preserved and no new line breaks should
be introduced. The data may contain embedded newline and tab characters, unlike data provided to the
send_formatted_data() interface.

send_label_data(data)
Set data to the left of the current left margin, if possible. The value of data is not restricted; treatment of non-
string values is entirely application- and writer-dependent. This method will only be called at the beginning of
a line.

33.1.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most applications will
need to derive new writer classes from the NullWriter class.

class NullWriter()
A writer which only provides the interface definition; no actions are taken on any methods. This should be the
base class for all writers which do not need to inherit any implementation methods.

class AbstractWriter()
A writer which can be used in debugging formatters, but not much else. Each method simply announces itself
by printing its name and arguments on standard output.

class DumbWriter([file, [maxcol=72]])
Simple writer class which writes output on the file object passed in as file or, if file is omitted, on standard output.
The output is simply word-wrapped to the number of columns specified by maxcol. This class is suitable for
reflowing a sequence of paragraphs.

1122 Chapter 33. Miscellaneous Services

CHAPTER

THIRTYFOUR

MS WINDOWS SPECIFIC SERVICES

This chapter describes modules that are only available on MS Windows platforms.

34.1 msilib — Read and write Microsoft Installer files

Platforms: Windows New in version 2.5. The msilib supports the creation of Microsoft Installer (.msi) files.
Because these files often contain an embedded “cabinet” file (.cab), it also exposes an API to create CAB files.
Support for reading .cab files is currently not implemented; read support for the .msi database is possible.

This package aims to provide complete access to all tables in an .msi file, therefore, it is a fairly low-level API. Two
primary applications of this package are the distutils command bdist_msi, and the creation of Python installer
package itself (although that currently uses a different version of msilib).

The package contents can be roughly split into four parts: low-level CAB routines, low-level MSI routines, higher-level
MSI routines, and standard table structures.

FCICreate(cabname, files)
Create a new CAB file named cabname. files must be a list of tuples, each containing the name of the file on
disk, and the name of the file inside the CAB file.

The files are added to the CAB file in the order they appear in the list. All files are added into a single CAB file,
using the MSZIP compression algorithm.

Callbacks to Python for the various steps of MSI creation are currently not exposed.

UuidCreate()
Return the string representation of a new unique identifier. This wraps the Windows API functions
UuidCreate() and UuidToString().

OpenDatabase(path, persist)
Return a new database object by calling MsiOpenDatabase. path is the file name of the MSI
file; persist can be one of the constants MSIDBOPEN_CREATEDIRECT, MSIDBOPEN_CREATE,
MSIDBOPEN_DIRECT, MSIDBOPEN_READONLY, or MSIDBOPEN_TRANSACT, and may include the flag
MSIDBOPEN_PATCHFILE. See the Microsoft documentation for the meaning of these flags; depending on the
flags, an existing database is opened, or a new one created.

CreateRecord(count)
Return a new record object by calling MSICreateRecord(). count is the number of fields of the record.

init_database(name, schema, ProductName, ProductCode, ProductVersion, Manufacturer)
Create and return a new database name, initialize it with schema, and set the properties ProductName, Product-
Code, ProductVersion, and Manufacturer.

1123

The Python Library Reference, Release 2.6.9

schema must be a module object containing tables and _Validation_records attributes; typically,
msilib.schema should be used.

The database will contain just the schema and the validation records when this function returns.

add_data(database, table, records)
Add all records to the table named table in database.

The table argument must be one of the predefined tables in the MSI schema, e.g. ’Feature’, ’File’,
’Component’, ’Dialog’, ’Control’, etc.

records should be a list of tuples, each one containing all fields of a record according to the schema of the table.
For optional fields, None can be passed.

Field values can be int or long numbers, strings, or instances of the Binary class.

class Binary(filename)
Represents entries in the Binary table; inserting such an object using add_data() reads the file named file-
name into the table.

add_tables(database, module)
Add all table content from module to database. module must contain an attribute tables listing all tables for
which content should be added, and one attribute per table that has the actual content.

This is typically used to install the sequence tables.

add_stream(database, name, path)
Add the file path into the _Stream table of database, with the stream name name.

gen_uuid()
Return a new UUID, in the format that MSI typically requires (i.e. in curly braces, and with all hexdigits in
upper-case).

See Also:

FCICreateFile UuidCreate UuidToString

34.1.1 Database Objects

OpenView(sql)
Return a view object, by calling MSIDatabaseOpenView(). sql is the SQL statement to execute.

Commit()
Commit the changes pending in the current transaction, by calling MSIDatabaseCommit().

GetSummaryInformation(count)
Return a new summary information object, by calling MsiGetSummaryInformation(). count is the max-
imum number of updated values.

See Also:

MSIDatabaseOpenView MSIDatabaseCommit MSIGetSummaryInformation

34.1.2 View Objects

Execute(params)
Execute the SQL query of the view, through MSIViewExecute(). If params is not None, it is a record
describing actual values of the parameter tokens in the query.

1124 Chapter 34. MS Windows Specific Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devnotes/winprog/fcicreate.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/uuidcreate.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/uuidtostring.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabaseopenview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabasecommit.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msigetsummaryinformation.asp

The Python Library Reference, Release 2.6.9

GetColumnInfo(kind)
Return a record describing the columns of the view, through calling MsiViewGetColumnInfo(). kind can
be either MSICOLINFO_NAMES or MSICOLINFO_TYPES.

Fetch()
Return a result record of the query, through calling MsiViewFetch().

Modify(kind, data)
Modify the view, by calling MsiViewModify(). kind can be one of
MSIMODIFY_SEEK, MSIMODIFY_REFRESH, MSIMODIFY_INSERT, MSIMODIFY_UPDATE,
MSIMODIFY_ASSIGN, MSIMODIFY_REPLACE, MSIMODIFY_MERGE, MSIMODIFY_DELETE,
MSIMODIFY_INSERT_TEMPORARY, MSIMODIFY_VALIDATE, MSIMODIFY_VALIDATE_NEW,
MSIMODIFY_VALIDATE_FIELD, or MSIMODIFY_VALIDATE_DELETE.

data must be a record describing the new data.

Close()
Close the view, through MsiViewClose().

See Also:

MsiViewExecute MSIViewGetColumnInfo MsiViewFetch MsiViewModify MsiViewClose

34.1.3 Summary Information Objects

GetProperty(field)
Return a property of the summary, through MsiSummaryInfoGetProperty(). field is the name of the
property, and can be one of the constants PID_CODEPAGE, PID_TITLE, PID_SUBJECT, PID_AUTHOR,
PID_KEYWORDS, PID_COMMENTS, PID_TEMPLATE, PID_LASTAUTHOR, PID_REVNUMBER,
PID_LASTPRINTED, PID_CREATE_DTM, PID_LASTSAVE_DTM, PID_PAGECOUNT,
PID_WORDCOUNT, PID_CHARCOUNT, PID_APPNAME, or PID_SECURITY.

GetPropertyCount()
Return the number of summary properties, through MsiSummaryInfoGetPropertyCount().

SetProperty(field, value)
Set a property through MsiSummaryInfoSetProperty(). field can have the same values as in
GetProperty(), value is the new value of the property. Possible value types are integer and string.

Persist()
Write the modified properties to the summary information stream, using MsiSummaryInfoPersist().

See Also:

MsiSummaryInfoGetProperty MsiSummaryInfoGetPropertyCount MsiSummaryInfoSetProperty MsiSummaryInfoP-
ersist

34.1.4 Record Objects

GetFieldCount()
Return the number of fields of the record, through MsiRecordGetFieldCount().

GetInteger(field)
Return the value of field as an integer where possible. field must be an integer.

GetString(field)
Return the value of field as a string where possible. field must be an integer.

34.1. msilib — Read and write Microsoft Installer files 1125

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewexecute.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewgetcolumninfo.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewfetch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewmodify.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewclose.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfogetproperty.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfogetpropertycount.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfosetproperty.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfopersist.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfopersist.asp

The Python Library Reference, Release 2.6.9

SetString(field, value)
Set field to value through MsiRecordSetString(). field must be an integer; value a string.

SetStream(field, value)
Set field to the contents of the file named value, through MsiRecordSetStream(). field must be an integer;
value a string.

SetInteger(field, value)
Set field to value through MsiRecordSetInteger(). Both field and value must be an integer.

ClearData()
Set all fields of the record to 0, through MsiRecordClearData().

See Also:

MsiRecordGetFieldCount MsiRecordSetString MsiRecordSetStream MsiRecordSetInteger MsiRecordClear

34.1.5 Errors

All wrappers around MSI functions raise MsiError; the string inside the exception will contain more detail.

34.1.6 CAB Objects

class CAB(name)
The class CAB represents a CAB file. During MSI construction, files will be added simultaneously to the Files
table, and to a CAB file. Then, when all files have been added, the CAB file can be written, then added to the
MSI file.

name is the name of the CAB file in the MSI file.

append(full, file, logical)
Add the file with the pathname full to the CAB file, under the name logical. If there is already a file named
logical, a new file name is created.

Return the index of the file in the CAB file, and the new name of the file inside the CAB file.

commit(database)
Generate a CAB file, add it as a stream to the MSI file, put it into the Media table, and remove the
generated file from the disk.

34.1.7 Directory Objects

class Directory(database, cab, basedir, physical, logical, default, component, [componentflags])
Create a new directory in the Directory table. There is a current component at each point in time for the
directory, which is either explicitly created through start_component(), or implicitly when files are added
for the first time. Files are added into the current component, and into the cab file. To create a directory, a base
directory object needs to be specified (can be None), the path to the physical directory, and a logical directory
name. default specifies the DefaultDir slot in the directory table. componentflags specifies the default flags that
new components get.

start_component([component, [feature, [flags, [keyfile, [uuid]]]]])
Add an entry to the Component table, and make this component the current component for this directory.
If no component name is given, the directory name is used. If no feature is given, the current feature is
used. If no flags are given, the directory’s default flags are used. If no keyfile is given, the KeyPath is left
null in the Component table.

1126 Chapter 34. MS Windows Specific Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordgetfieldcount.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetstring.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetstream.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetinteger.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordclear.asp

The Python Library Reference, Release 2.6.9

add_file(file, [src, [version, [language]]])
Add a file to the current component of the directory, starting a new one if there is no current component.
By default, the file name in the source and the file table will be identical. If the src file is specified, it is
interpreted relative to the current directory. Optionally, a version and a language can be specified for the
entry in the File table.

glob(pattern, [exclude])
Add a list of files to the current component as specified in the glob pattern. Individual files can be excluded
in the exclude list.

remove_pyc()
Remove .pyc/.pyo files on uninstall.

See Also:

Directory Table File Table Component Table FeatureComponents Table

34.1.8 Features

class Feature(database, id, title, desc, display, [level=1, [parent, [directory, [attributes=0]]]])
Add a new record to the Feature table, using the values id, parent.id, title, desc, display, level, directory, and
attributes. The resulting feature object can be passed to the start_component() method of Directory.

set_current()
Make this feature the current feature of msilib. New components are automatically added to the default
feature, unless a feature is explicitly specified.

See Also:

Feature Table

34.1.9 GUI classes

msilib provides several classes that wrap the GUI tables in an MSI database. However, no standard user interface is
provided; use bdist_msi to create MSI files with a user-interface for installing Python packages.

class Control(dlg, name)
Base class of the dialog controls. dlg is the dialog object the control belongs to, and name is the control’s name.

event(event, argument, [condition=1, [ordering]])
Make an entry into the ControlEvent table for this control.

mapping(event, attribute)
Make an entry into the EventMapping table for this control.

condition(action, condition)
Make an entry into the ControlCondition table for this control.

class RadioButtonGroup(dlg, name, property)
Create a radio button control named name. property is the installer property that gets set when a radio button is
selected.

add(name, x, y, width, height, text, [value])
Add a radio button named name to the group, at the coordinates x, y, width, height, and with the label text.
If value is omitted, it defaults to name.

34.1. msilib — Read and write Microsoft Installer files 1127

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/directory_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/file_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/component_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/featurecomponents_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/feature_table.asp

The Python Library Reference, Release 2.6.9

class Dialog(db, name, x, y, w, h, attr, title, first, default, cancel)
Return a new Dialog object. An entry in the Dialog table is made, with the specified coordinates, dialog
attributes, title, name of the first, default, and cancel controls.

control(name, type, x, y, width, height, attributes, property, text, control_next, help)
Return a new Control object. An entry in the Control table is made with the specified parameters.

This is a generic method; for specific types, specialized methods are provided.

text(name, x, y, width, height, attributes, text)
Add and return a Text control.

bitmap(name, x, y, width, height, text)
Add and return a Bitmap control.

line(name, x, y, width, height)
Add and return a Line control.

pushbutton(name, x, y, width, height, attributes, text, next_control)
Add and return a PushButton control.

radiogroup(name, x, y, width, height, attributes, property, text, next_control)
Add and return a RadioButtonGroup control.

checkbox(name, x, y, width, height, attributes, property, text, next_control)
Add and return a CheckBox control.

See Also:

Dialog Table Control Table Control Types ControlCondition Table ControlEvent Table EventMapping Table Ra-
dioButton Table

34.1.10 Precomputed tables

msilib provides a few subpackages that contain only schema and table definitions. Currently, these definitions are
based on MSI version 2.0.

schema
This is the standard MSI schema for MSI 2.0, with the tables variable providing a list of table definitions, and
_Validation_records providing the data for MSI validation.

sequence
This module contains table contents for the standard sequence tables: AdminExecuteSequence, AdminUISe-
quence, AdvtExecuteSequence, InstallExecuteSequence, and InstallUISequence.

text
This module contains definitions for the UIText and ActionText tables, for the standard installer actions.

34.2 msvcrt – Useful routines from the MS VC++ runtime

Platforms: Windows

These functions provide access to some useful capabilities on Windows platforms. Some higher-level modules use
these functions to build the Windows implementations of their services. For example, the getpass module uses this
in the implementation of the getpass() function.

Further documentation on these functions can be found in the Platform API documentation.

1128 Chapter 34. MS Windows Specific Services

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controls.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlcondition_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlevent_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/eventmapping_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp

The Python Library Reference, Release 2.6.9

The module implements both the normal and wide char variants of the console I/O api. The normal API deals only
with ASCII characters and is of limited use for internationalized applications. The wide char API should be used
where ever possible

34.2.1 File Operations

locking(fd, mode, nbytes)
Lock part of a file based on file descriptor fd from the C runtime. Raises IOError on failure. The locked
region of the file extends from the current file position for nbytes bytes, and may continue beyond the end of the
file. mode must be one of the LK_* constants listed below. Multiple regions in a file may be locked at the same
time, but may not overlap. Adjacent regions are not merged; they must be unlocked individually.

LK_LOCK
LK_RLCK

Locks the specified bytes. If the bytes cannot be locked, the program immediately tries again after 1 second. If,
after 10 attempts, the bytes cannot be locked, IOError is raised.

LK_NBLCK
LK_NBRLCK

Locks the specified bytes. If the bytes cannot be locked, IOError is raised.

LK_UNLCK
Unlocks the specified bytes, which must have been previously locked.

setmode(fd, flags)
Set the line-end translation mode for the file descriptor fd. To set it to text mode, flags should be os.O_TEXT;
for binary, it should be os.O_BINARY.

open_osfhandle(handle, flags)
Create a C runtime file descriptor from the file handle handle. The flags parameter should be a bitwise OR of
os.O_APPEND, os.O_RDONLY, and os.O_TEXT. The returned file descriptor may be used as a parameter
to os.fdopen() to create a file object.

get_osfhandle(fd)
Return the file handle for the file descriptor fd. Raises IOError if fd is not recognized.

34.2.2 Console I/O

kbhit()
Return true if a keypress is waiting to be read.

getch()
Read a keypress and return the resulting character. Nothing is echoed to the console. This call will block if a
keypress is not already available, but will not wait for Enter to be pressed. If the pressed key was a special
function key, this will return ’\000’ or ’\xe0’; the next call will return the keycode. The Control-C
keypress cannot be read with this function.

getwch()
Wide char variant of getch(), returning a Unicode value. New in version 2.6.

getche()
Similar to getch(), but the keypress will be echoed if it represents a printable character.

getwche()
Wide char variant of getche(), returning a Unicode value. New in version 2.6.

putch(char)
Print the character char to the console without buffering.

34.2. msvcrt – Useful routines from the MS VC++ runtime 1129

The Python Library Reference, Release 2.6.9

putwch(unicode_char)
Wide char variant of putch(), accepting a Unicode value. New in version 2.6.

ungetch(char)
Cause the character char to be “pushed back” into the console buffer; it will be the next character read by
getch() or getche().

ungetwch(unicode_char)
Wide char variant of ungetch(), accepting a Unicode value. New in version 2.6.

34.2.3 Other Functions

heapmin()
Force the malloc() heap to clean itself up and return unused blocks to the operating system. On failure, this
raises IOError.

34.3 _winreg – Windows registry access

Platforms: Windows

Note: The _winreg module has been renamed to winreg in Python 3.0. The 2to3 tool will automatically adapt
imports when converting your sources to 3.0. New in version 2.0. These functions expose the Windows registry API
to Python. Instead of using an integer as the registry handle, a handle object is used to ensure that the handles are
closed correctly, even if the programmer neglects to explicitly close them.

This module offers the following functions:

CloseKey(hkey)
Closes a previously opened registry key. The hkey argument specifies a previously opened key.

Note: If hkey is not closed using this method (or via hkey.Close()), it is closed when the hkey object is
destroyed by Python.

ConnectRegistry(computer_name, key)
Establishes a connection to a predefined registry handle on another computer, and returns a handle object.

computer_name is the name of the remote computer, of the form r"\\computername". If None, the local
computer is used.

key is the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, a WindowsError exception is raised.

CreateKey(key, sub_key)
Creates or opens the specified key, returning a handle object.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the key this method opens or creates.

If key is one of the predefined keys, sub_key may be None. In that case, the handle returned is the same key
handle passed in to the function.

If the key already exists, this function opens the existing key.

The return value is the handle of the opened key. If the function fails, a WindowsError exception is raised.

DeleteKey(key, sub_key)
Deletes the specified key.

1130 Chapter 34. MS Windows Specific Services

The Python Library Reference, Release 2.6.9

key is an already open key, or any one of the predefined HKEY_* constants.

sub_key is a string that must be a subkey of the key identified by the key parameter. This value must not be
None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, a
WindowsError exception is raised.

DeleteValue(key, value)
Removes a named value from a registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value is a string that identifies the value to remove.

EnumKey(key, index)
Enumerates subkeys of an open registry key, returning a string.

key is an already open key, or any one of the predefined HKEY_* constants.

index is an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly until a
WindowsError exception is raised, indicating, no more values are available.

EnumValue(key, index)
Enumerates values of an open registry key, returning a tuple.

key is an already open key, or any one of the predefined HKEY_* constants.

index is an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly, until a
WindowsError exception is raised, indicating no more values.

The result is a tuple of 3 items:

Index Meaning
0 A string that identifies the value name
1 An object that holds the value data, and whose type depends on the underlying registry type
2 An integer that identifies the type of the value data (see table in docs for SetValueEx())

ExpandEnvironmentStrings(unicode)
Expands environment variable placeholders %NAME% in unicode strings like REG_EXPAND_SZ:

>>> ExpandEnvironmentStrings(u"%windir%")
u"C:\\Windows"

New in version 2.6.

FlushKey(key)
Writes all the attributes of a key to the registry.

key is an already open key, or one of the predefined HKEY_* constants.

It is not necessary to call FlushKey() to change a key. Registry changes are flushed to disk by the registry
using its lazy flusher. Registry changes are also flushed to disk at system shutdown. Unlike CloseKey(), the
FlushKey() method returns only when all the data has been written to the registry. An application should
only call FlushKey() if it requires absolute certainty that registry changes are on disk.

Note: If you don’t know whether a FlushKey() call is required, it probably isn’t.

34.3. _winreg – Windows registry access 1131

The Python Library Reference, Release 2.6.9

LoadKey(key, sub_key, file_name)
Creates a subkey under the specified key and stores registration information from a specified file into that subkey.

key is a handle returned by ConnectRegistry() or one of the constants HKEY_USERS or
HKEY_LOCAL_MACHINE.

sub_key is a string that identifies the subkey to load.

file_name is the name of the file to load registry data from. This file must have been created with the
SaveKey() function. Under the file allocation table (FAT) file system, the filename may not have an ex-
tension.

A call to LoadKey() fails if the calling process does not have the SE_RESTORE_PRIVILEGE privilege.
Note that privileges are different from permissions – see the RegLoadKey documentation for more details.

If key is a handle returned by ConnectRegistry(), then the path specified in file_name is relative to the
remote computer.

OpenKey(key, sub_key, [res, [sam]])
Opens the specified key, returning a handle object.

key is an already open key, or any one of the predefined HKEY_* constants.

sub_key is a string that identifies the sub_key to open.

res is a reserved integer, and must be zero. The default is zero.

sam is an integer that specifies an access mask that describes the desired security access for the key. Default is
KEY_READ. See Access Rights for other allowed values.

The result is a new handle to the specified key.

If the function fails, WindowsError is raised.

OpenKeyEx()
The functionality of OpenKeyEx() is provided via OpenKey(), by the use of default arguments.

QueryInfoKey(key)
Returns information about a key, as a tuple.

key is an already open key, or one of the predefined HKEY_* constants.

The result is a tuple of 3 items:

Index Meaning
0 An integer giving the number of sub keys this key has.
1 An integer giving the number of values this key has.
2 A long integer giving when the key was last modified (if available) as 100’s of nanoseconds since Jan 1,

1600.

QueryValue(key, sub_key)
Retrieves the unnamed value for a key, as a string.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that holds the name of the subkey with which the value is associated. If this parameter is
None or empty, the function retrieves the value set by the SetValue() method for the key identified by key.

Values in the registry have name, type, and data components. This method retrieves the data for a key’s first value
that has a NULL name. But the underlying API call doesn’t return the type, so always use QueryValueEx()
if possible.

QueryValueEx(key, value_name)
Retrieves the type and data for a specified value name associated with an open registry key.

1132 Chapter 34. MS Windows Specific Services

http://msdn.microsoft.com/en-us/library/ms724889%28v=VS.85%29.aspx

The Python Library Reference, Release 2.6.9

key is an already open key, or one of the predefined HKEY_* constants.

value_name is a string indicating the value to query.

The result is a tuple of 2 items:

Index Meaning
0 The value of the registry item.
1 An integer giving the registry type for this value (see table in docs for SetValueEx())

SaveKey(key, file_name)
Saves the specified key, and all its subkeys to the specified file.

key is an already open key, or one of the predefined HKEY_* constants.

file_name is the name of the file to save registry data to. This file cannot already exist. If this filename includes
an extension, it cannot be used on file allocation table (FAT) file systems by the LoadKey() method.

If key represents a key on a remote computer, the path described by file_name is relative to the remote computer.
The caller of this method must possess the SeBackupPrivilege security privilege. Note that privileges are
different than permissions – see the Conflicts Between User Rights and Permissions documentation for more
details.

This function passes NULL for security_attributes to the API.

SetValue(key, sub_key, type, value)
Associates a value with a specified key.

key is an already open key, or one of the predefined HKEY_* constants.

sub_key is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. Currently this must be REG_SZ, meaning only strings are
supported. Use the SetValueEx() function for support for other data types.

value is a string that specifies the new value.

If the key specified by the sub_key parameter does not exist, the SetValue function creates it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files
with the filenames stored in the configuration registry. This helps the registry perform efficiently.

The key identified by the key parameter must have been opened with KEY_SET_VALUE access.

SetValueEx(key, value_name, reserved, type, value)
Stores data in the value field of an open registry key.

key is an already open key, or one of the predefined HKEY_* constants.

value_name is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. See Value Types for the available types.

reserved can be anything – zero is always passed to the API.

value is a string that specifies the new value.

This method can also set additional value and type information for the specified key. The key identified by the
key parameter must have been opened with KEY_SET_VALUE access.

To open the key, use the CreateKey() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files
with the filenames stored in the configuration registry. This helps the registry perform efficiently.

34.3. _winreg – Windows registry access 1133

http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx

The Python Library Reference, Release 2.6.9

DisableReflectionKey(key)
Disables registry reflection for 32-bit processes running on a 64-bit operating system.

key is an already open key, or one of the predefined HKEY_* constants.

Will generally raise NotImplemented if executed on a 32-bit operating system.

If the key is not on the reflection list, the function succeeds but has no effect. Disabling reflection for a key does
not affect reflection of any subkeys.

EnableReflectionKey(key)
Restores registry reflection for the specified disabled key.

key is an already open key, or one of the predefined HKEY_* constants.

Will generally raise NotImplemented if executed on a 32-bit operating system.

Restoring reflection for a key does not affect reflection of any subkeys.

QueryReflectionKey(key)
Determines the reflection state for the specified key.

key is an already open key, or one of the predefined HKEY_* constants.

Returns True if reflection is disabled.

Will generally raise NotImplemented if executed on a 32-bit operating system.

34.3.1 Constants

The following constants are defined for use in many _winreg functions.

HKEY_* Constants

HKEY_CLASSES_ROOT
Registry entries subordinate to this key define types (or classes) of documents and the properties associated with
those types. Shell and COM applications use the information stored under this key.

HKEY_CURRENT_USER
Registry entries subordinate to this key define the preferences of the current user. These preferences include
the settings of environment variables, data about program groups, colors, printers, network connections, and
application preferences.

HKEY_LOCAL_MACHINE
Registry entries subordinate to this key define the physical state of the computer, including data about the bus
type, system memory, and installed hardware and software.

HKEY_USERS
Registry entries subordinate to this key define the default user configuration for new users on the local computer
and the user configuration for the current user.

HKEY_PERFORMANCE_DATA
Registry entries subordinate to this key allow you to access performance data. The data is not actually stored in
the registry; the registry functions cause the system to collect the data from its source.

HKEY_CURRENT_CONFIG
Contains information about the current hardware profile of the local computer system.

HKEY_DYN_DATA
This key is not used in versions of Windows after 98.

1134 Chapter 34. MS Windows Specific Services

The Python Library Reference, Release 2.6.9

Access Rights

For more information, see Registry Key Security and Access.

KEY_ALL_ACCESS
Combines the STANDARD_RIGHTS_REQUIRED, KEY_QUERY_VALUE, KEY_SET_VALUE,
KEY_CREATE_SUB_KEY, KEY_ENUMERATE_SUB_KEYS, KEY_NOTIFY, and KEY_CREATE_LINK
access rights.

KEY_WRITE
Combines the STANDARD_RIGHTS_WRITE, KEY_SET_VALUE, and KEY_CREATE_SUB_KEY access
rights.

KEY_READ
Combines the STANDARD_RIGHTS_READ, KEY_QUERY_VALUE, KEY_ENUMERATE_SUB_KEYS, and
KEY_NOTIFY values.

KEY_EXECUTE
Equivalent to KEY_READ.

KEY_QUERY_VALUE
Required to query the values of a registry key.

KEY_SET_VALUE
Required to create, delete, or set a registry value.

KEY_CREATE_SUB_KEY
Required to create a subkey of a registry key.

KEY_ENUMERATE_SUB_KEYS
Required to enumerate the subkeys of a registry key.

KEY_NOTIFY
Required to request change notifications for a registry key or for subkeys of a registry key.

KEY_CREATE_LINK
Reserved for system use.

64-bit Specific

For more information, see Accesing an Alternate Registry View.

KEY_WOW64_64KEY
Indicates that an application on 64-bit Windows should operate on the 64-bit registry view.

KEY_WOW64_32KEY
Indicates that an application on 64-bit Windows should operate on the 32-bit registry view.

Value Types

For more information, see Registry Value Types.

REG_BINARY
Binary data in any form.

REG_DWORD
32-bit number.

REG_DWORD_LITTLE_ENDIAN
A 32-bit number in little-endian format.

34.3. _winreg – Windows registry access 1135

http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa384129(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724884%28v=VS.85%29.aspx

The Python Library Reference, Release 2.6.9

REG_DWORD_BIG_ENDIAN
A 32-bit number in big-endian format.

REG_EXPAND_SZ
Null-terminated string containing references to environment variables (%PATH%).

REG_LINK
A Unicode symbolic link.

REG_MULTI_SZ
A sequence of null-terminated strings, terminated by two null characters. (Python handles this termination
automatically.)

REG_NONE
No defined value type.

REG_RESOURCE_LIST
A device-driver resource list.

REG_FULL_RESOURCE_DESCRIPTOR
A hardware setting.

REG_RESOURCE_REQUIREMENTS_LIST
A hardware resource list.

REG_SZ
A null-terminated string.

34.3.2 Registry Handle Objects

This object wraps a Windows HKEY object, automatically closing it when the object is destroyed. To guarantee
cleanup, you can call either the Close() method on the object, or the CloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept an integer, however, use of the handle
object is encouraged.

Handle objects provide semantics for __nonzero__() – thus:

if handle:
print "Yes"

will print Yes if the handle is currently valid (has not been closed or detached).

The object also support comparison semantics, so handle objects will compare true if they both reference the same
underlying Windows handle value.

Handle objects can be converted to an integer (e.g., using the built-in int() function), in which case the underlying
Windows handle value is returned. You can also use the Detach() method to return the integer handle, and also
disconnect the Windows handle from the handle object.

Close()
Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

Detach()
Detaches the Windows handle from the handle object.

The result is an integer (or long on 64 bit Windows) that holds the value of the handle before it is detached. If
the handle is already detached or closed, this will return zero.

1136 Chapter 34. MS Windows Specific Services

The Python Library Reference, Release 2.6.9

After calling this function, the handle is effectively invalidated, but the handle is not closed. You would call this
function when you need the underlying Win32 handle to exist beyond the lifetime of the handle object.

__enter__()
__exit__(*exc_info)

The HKEY object implements __enter__() and __exit__() and thus supports the context protocol for
the with statement:

with OpenKey(HKEY_LOCAL_MACHINE, "foo") as key:
... # work with key

will automatically close key when control leaves the with block. New in version 2.6.

34.4 winsound — Sound-playing interface for Windows

Platforms: Windows New in version 1.5.2. The winsound module provides access to the basic sound-playing
machinery provided by Windows platforms. It includes functions and several constants.

Beep(frequency, duration)
Beep the PC’s speaker. The frequency parameter specifies frequency, in hertz, of the sound, and must be in the
range 37 through 32,767. The duration parameter specifies the number of milliseconds the sound should last. If
the system is not able to beep the speaker, RuntimeError is raised. New in version 1.6.

PlaySound(sound, flags)
Call the underlying PlaySound() function from the Platform API. The sound parameter may be a filename,
audio data as a string, or None. Its interpretation depends on the value of flags, which can be a bitwise ORed
combination of the constants described below. If the sound parameter is None, any currently playing waveform
sound is stopped. If the system indicates an error, RuntimeError is raised.

MessageBeep([type=MB_OK])
Call the underlying MessageBeep() function from the Platform API. This plays a sound as specified in the
registry. The type argument specifies which sound to play; possible values are -1, MB_ICONASTERISK,
MB_ICONEXCLAMATION, MB_ICONHAND, MB_ICONQUESTION, and MB_OK, all described below. The
value -1 produces a “simple beep”; this is the final fallback if a sound cannot be played otherwise. New in
version 2.3.

SND_FILENAME
The sound parameter is the name of a WAV file. Do not use with SND_ALIAS.

SND_ALIAS
The sound parameter is a sound association name from the registry. If the registry contains no such name, play
the system default sound unless SND_NODEFAULT is also specified. If no default sound is registered, raise
RuntimeError. Do not use with SND_FILENAME.

All Win32 systems support at least the following; most systems support many more:

PlaySound() name Corresponding Control Panel Sound name
’SystemAsterisk’ Asterisk
’SystemExclamation’ Exclamation
’SystemExit’ Exit Windows
’SystemHand’ Critical Stop
’SystemQuestion’ Question

For example:

import winsound
Play Windows exit sound.

34.4. winsound — Sound-playing interface for Windows 1137

The Python Library Reference, Release 2.6.9

winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

Probably play Windows default sound, if any is registered (because
"*" probably isn’t the registered name of any sound).
winsound.PlaySound("*", winsound.SND_ALIAS)

SND_LOOP
Play the sound repeatedly. The SND_ASYNC flag must also be used to avoid blocking. Cannot be used with
SND_MEMORY.

SND_MEMORY
The sound parameter to PlaySound() is a memory image of a WAV file, as a string.

Note: This module does not support playing from a memory image asynchronously, so a combination of this
flag and SND_ASYNC will raise RuntimeError.

SND_PURGE
Stop playing all instances of the specified sound.

Note: This flag is not supported on modern Windows platforms.

SND_ASYNC
Return immediately, allowing sounds to play asynchronously.

SND_NODEFAULT
If the specified sound cannot be found, do not play the system default sound.

SND_NOSTOP
Do not interrupt sounds currently playing.

SND_NOWAIT
Return immediately if the sound driver is busy.

MB_ICONASTERISK
Play the SystemDefault sound.

MB_ICONEXCLAMATION
Play the SystemExclamation sound.

MB_ICONHAND
Play the SystemHand sound.

MB_ICONQUESTION
Play the SystemQuestion sound.

MB_OK
Play the SystemDefault sound.

1138 Chapter 34. MS Windows Specific Services

CHAPTER

THIRTYFIVE

UNIX SPECIFIC SERVICES

The modules described in this chapter provide interfaces to features that are unique to the Unix operating system, or
in some cases to some or many variants of it. Here’s an overview:

35.1 posix — The most common POSIX system calls

Platforms: Unix

This module provides access to operating system functionality that is standardized by the C Standard and the POSIX
standard (a thinly disguised Unix interface). Do not import this module directly. Instead, import the module
os, which provides a portable version of this interface. On Unix, the os module provides a superset of the posix
interface. On non-Unix operating systems the posix module is not available, but a subset is always available through
the os interface. Once os is imported, there is no performance penalty in using it instead of posix. In addition, os
provides some additional functionality, such as automatically calling putenv() when an entry in os.environ is
changed.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calls raise OSError.

35.1.1 Large File Support

Several operating systems (including AIX, HP-UX, Irix and Solaris) provide support for files that are larger than 2 GB
from a C programming model where int and long are 32-bit values. This is typically accomplished by defining the
relevant size and offset types as 64-bit values. Such files are sometimes referred to as large files.

Large file support is enabled in Python when the size of an off_t is larger than a long and the long long type
is available and is at least as large as an off_t. Python longs are then used to represent file sizes, offsets and other
values that can exceed the range of a Python int. It may be necessary to configure and compile Python with certain
compiler flags to enable this mode. For example, it is enabled by default with recent versions of Irix, but with Solaris
2.6 and 2.7 you need to do something like:

CFLAGS="‘getconf LFS_CFLAGS‘" OPT="-g -O2 $CFLAGS" \
./configure

On large-file-capable Linux systems, this might work:

CFLAGS=’-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64’ OPT="-g -O2 $CFLAGS" \
./configure

1139

The Python Library Reference, Release 2.6.9

35.1.2 Notable Module Contents

In addition to many functions described in the os module documentation, posix defines the following data item:

environ
A dictionary representing the string environment at the time the interpreter was started. For example,
environ[’HOME’] is the pathname of your home directory, equivalent to getenv("HOME") in C.

Modifying this dictionary does not affect the string environment passed on by execv(), popen() or
system(); if you need to change the environment, pass environ to execve() or add variable assign-
ments and export statements to the command string for system() or popen().

Note: The os module provides an alternate implementation of environ which updates the environment on
modification. Note also that updating os.environ will render this dictionary obsolete. Use of the os module
version of this is recommended over direct access to the posix module.

35.2 pwd — The password database

Platforms: Unix

This module provides access to the Unix user account and password database. It is available on all Unix versions.

Password database entries are reported as a tuple-like object, whose attributes correspond to the members of the
passwd structure (Attribute field below, see <pwd.h>):

Index Attribute Meaning
0 pw_name Login name
1 pw_passwd Optional encrypted password
2 pw_uid Numerical user ID
3 pw_gid Numerical group ID
4 pw_gecos User name or comment field
5 pw_dir User home directory
6 pw_shell User command interpreter

The uid and gid items are integers, all others are strings. KeyError is raised if the entry asked for cannot be found.

Note: In traditional Unix the field pw_passwd usually contains a password encrypted with a DES derived algorithm
(see module crypt). However most modern unices use a so-called shadow password system. On those unices
the pw_passwd field only contains an asterisk (’*’) or the letter ’x’ where the encrypted password is stored in a
file /etc/shadow which is not world readable. Whether the pw_passwd field contains anything useful is system-
dependent. If available, the spwd module should be used where access to the encrypted password is required.

It defines the following items:

getpwuid(uid)
Return the password database entry for the given numeric user ID.

getpwnam(name)
Return the password database entry for the given user name.

getpwall()
Return a list of all available password database entries, in arbitrary order.

See Also:

Module grp An interface to the group database, similar to this.

Module spwd An interface to the shadow password database, similar to this.

1140 Chapter 35. Unix Specific Services

The Python Library Reference, Release 2.6.9

35.3 spwd — The shadow password database

Platforms: Unix New in version 2.5. This module provides access to the Unix shadow password database. It is
available on various Unix versions.

You must have enough privileges to access the shadow password database (this usually means you have to be root).

Shadow password database entries are reported as a tuple-like object, whose attributes correspond to the members of
the spwd structure (Attribute field below, see <shadow.h>):

Index Attribute Meaning
0 sp_nam Login name
1 sp_pwd Encrypted password
2 sp_lstchg Date of last change
3 sp_min Minimal number of days between changes
4 sp_max Maximum number of days between changes
5 sp_warn Number of days before password expires to warn user about it
6 sp_inact Number of days after password expires until account is blocked
7 sp_expire Number of days since 1970-01-01 until account is disabled
8 sp_flag Reserved

The sp_nam and sp_pwd items are strings, all others are integers. KeyError is raised if the entry asked for cannot
be found.

It defines the following items:

getspnam(name)
Return the shadow password database entry for the given user name.

getspall()
Return a list of all available shadow password database entries, in arbitrary order.

See Also:

Module grp An interface to the group database, similar to this.

Module pwd An interface to the normal password database, similar to this.

35.4 grp — The group database

Platforms: Unix

This module provides access to the Unix group database. It is available on all Unix versions.

Group database entries are reported as a tuple-like object, whose attributes correspond to the members of the group
structure (Attribute field below, see <pwd.h>):

Index Attribute Meaning
0 gr_name the name of the group
1 gr_passwd the (encrypted) group password; often empty
2 gr_gid the numerical group ID
3 gr_mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note that most users are
not explicitly listed as members of the group they are in according to the password database. Check both databases to
get complete membership information.)

It defines the following items:

35.3. spwd — The shadow password database 1141

The Python Library Reference, Release 2.6.9

getgrgid(gid)
Return the group database entry for the given numeric group ID. KeyError is raised if the entry asked for
cannot be found.

getgrnam(name)
Return the group database entry for the given group name. KeyError is raised if the entry asked for cannot be
found.

getgrall()
Return a list of all available group entries, in arbitrary order.

See Also:

Module pwd An interface to the user database, similar to this.

Module spwd An interface to the shadow password database, similar to this.

35.5 crypt — Function to check Unix passwords

Platforms: Unix This module implements an interface to the crypt(3) routine, which is a one-way hash function
based upon a modified DES algorithm; see the Unix man page for further details. Possible uses include allowing
Python scripts to accept typed passwords from the user, or attempting to crack Unix passwords with a dictionary.
Notice that the behavior of this module depends on the actual implementation of the crypt(3) routine in the running
system. Therefore, any extensions available on the current implementation will also be available on this module.

crypt(word, salt)
word will usually be a user’s password as typed at a prompt or in a graphical interface. salt is usually a random
two-character string which will be used to perturb the DES algorithm in one of 4096 ways. The characters in
salt must be in the set [./a-zA-Z0-9]. Returns the hashed password as a string, which will be composed
of characters from the same alphabet as the salt (the first two characters represent the salt itself). Since a few
crypt(3) extensions allow different values, with different sizes in the salt, it is recommended to use the full
crypted password as salt when checking for a password.

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():
username = raw_input(’Python login:’)
cryptedpasswd = pwd.getpwnam(username)[1]
if cryptedpasswd:

if cryptedpasswd == ’x’ or cryptedpasswd == ’*’:
raise NotImplementedError(

"Sorry, currently no support for shadow passwords")
cleartext = getpass.getpass()
return crypt.crypt(cleartext, cryptedpasswd) == cryptedpasswd

else:
return 1

35.6 dl — Call C functions in shared objects

Platforms: Unix Deprecated since version 2.6: The dl module has been removed in Python 3.0. Use the ctypes
module instead. The dl module defines an interface to the dlopen() function, which is the most common interface
on Unix platforms for handling dynamically linked libraries. It allows the program to call arbitrary functions in such
a library.

1142 Chapter 35. Unix Specific Services

The Python Library Reference, Release 2.6.9

Warning: The dl module bypasses the Python type system and error handling. If used incorrectly it may cause
segmentation faults, crashes or other incorrect behaviour.

Note: This module will not work unless sizeof(int) == sizeof(long) == sizeof(char *) If this is
not the case, SystemError will be raised on import.

The dl module defines the following function:

open(name, [mode=RTLD_LAZY])
Open a shared object file, and return a handle. Mode signifies late binding (RTLD_LAZY) or immediate binding
(RTLD_NOW). Default is RTLD_LAZY. Note that some systems do not support RTLD_NOW.

Return value is a dlobject.

The dl module defines the following constants:

RTLD_LAZY
Useful as an argument to open().

RTLD_NOW
Useful as an argument to open(). Note that on systems which do not support immediate binding, this constant
will not appear in the module. For maximum portability, use hasattr() to determine if the system supports
immediate binding.

The dl module defines the following exception:

exception error
Exception raised when an error has occurred inside the dynamic loading and linking routines.

Example:

>>> import dl, time
>>> a=dl.open(’/lib/libc.so.6’)
>>> a.call(’time’), time.time()
(929723914, 929723914.498)

This example was tried on a Debian GNU/Linux system, and is a good example of the fact that using this module is
usually a bad alternative.

35.6.1 Dl Objects

Dl objects, as returned by open() above, have the following methods:

close()
Free all resources, except the memory.

sym(name)
Return the pointer for the function named name, as a number, if it exists in the referenced shared object, other-
wise None. This is useful in code like:

>>> if a.sym(’time’):
... a.call(’time’)
... else:
... time.time()

(Note that this function will return a non-zero number, as zero is the NULL pointer)

35.6. dl — Call C functions in shared objects 1143

The Python Library Reference, Release 2.6.9

call(name, [arg1, [arg2...]])
Call the function named name in the referenced shared object. The arguments must be either Python integers,
which will be passed as is, Python strings, to which a pointer will be passed, or None, which will be passed as
NULL. Note that strings should only be passed to functions as const char*, as Python will not like its string
mutated.

There must be at most 10 arguments, and arguments not given will be treated as None. The function’s return
value must be a C long, which is a Python integer.

35.7 termios — POSIX style tty control

Platforms: Unix This module provides an interface to the POSIX calls for tty I/O control. For a complete description
of these calls, see the POSIX or Unix manual pages. It is only available for those Unix versions that support POSIX
termios style tty I/O control (and then only if configured at installation time).

All functions in this module take a file descriptor fd as their first argument. This can be an integer file descriptor, such
as returned by sys.stdin.fileno(), or a file object, such as sys.stdin itself.

This module also defines all the constants needed to work with the functions provided here; these have the same name
as their counterparts in C. Please refer to your system documentation for more information on using these terminal
control interfaces.

The module defines the following functions:

tcgetattr(fd)
Return a list containing the tty attributes for file descriptor fd, as follows: [iflag, oflag, cflag,
lflag, ispeed, ospeed, cc] where cc is a list of the tty special characters (each a string of length
1, except the items with indices VMIN and VTIME, which are integers when these fields are defined). The in-
terpretation of the flags and the speeds as well as the indexing in the cc array must be done using the symbolic
constants defined in the termios module.

tcsetattr(fd, when, attributes)
Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned by
tcgetattr(). The when argument determines when the attributes are changed: TCSANOW to change im-
mediately, TCSADRAIN to change after transmitting all queued output, or TCSAFLUSH to change after trans-
mitting all queued output and discarding all queued input.

tcsendbreak(fd, duration)
Send a break on file descriptor fd. A zero duration sends a break for 0.25 –0.5 seconds; a nonzero duration has
a system dependent meaning.

tcdrain(fd)
Wait until all output written to file descriptor fd has been transmitted.

tcflush(fd, queue)
Discard queued data on file descriptor fd. The queue selector specifies which queue: TCIFLUSH for the input
queue, TCOFLUSH for the output queue, or TCIOFLUSH for both queues.

tcflow(fd, action)
Suspend or resume input or output on file descriptor fd. The action argument can be TCOOFF to suspend output,
TCOON to restart output, TCIOFF to suspend input, or TCION to restart input.

See Also:

Module tty Convenience functions for common terminal control operations.

1144 Chapter 35. Unix Specific Services

The Python Library Reference, Release 2.6.9

35.7.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a separate
tcgetattr() call and a try ... finally statement to ensure that the old tty attributes are restored exactly
no matter what happens:

def getpass(prompt="Password: "):
import termios, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & ~termios.ECHO # lflags
try:

termios.tcsetattr(fd, termios.TCSADRAIN, new)
passwd = raw_input(prompt)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old)

return passwd

35.8 tty — Terminal control functions

Platforms: Unix

The tty module defines functions for putting the tty into cbreak and raw modes.

Because it requires the termios module, it will work only on Unix.

The tty module defines the following functions:

setraw(fd, [when])
Change the mode of the file descriptor fd to raw. If when is omitted, it defaults to termios.TCSAFLUSH, and
is passed to termios.tcsetattr().

setcbreak(fd, [when])
Change the mode of file descriptor fd to cbreak. If when is omitted, it defaults to termios.TCSAFLUSH, and
is passed to termios.tcsetattr().

See Also:

Module termios Low-level terminal control interface.

35.9 pty — Pseudo-terminal utilities

Platforms: Linux

The pty module defines operations for handling the pseudo-terminal concept: starting another process and being able
to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependent, there is code to do it only for Linux. (The Linux
code is supposed to work on other platforms, but hasn’t been tested yet.)

The pty module defines the following functions:

fork()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is (pid, fd). Note that the
child gets pid 0, and the fd is invalid. The parent’s return value is the pid of the child, and fd is a file descriptor
connected to the child’s controlling terminal (and also to the child’s standard input and output).

35.8. tty — Terminal control functions 1145

The Python Library Reference, Release 2.6.9

openpty()
Open a new pseudo-terminal pair, using os.openpty() if possible, or emulation code for generic Unix
systems. Return a pair of file descriptors (master, slave), for the master and the slave end, respectively.

spawn(argv, [master_read, [stdin_read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is often used
to baffle programs which insist on reading from the controlling terminal.

The functions master_read and stdin_read should be functions which read from a file descriptor. The defaults
try to read 1024 bytes each time they are called.

35.10 fcntl — The fcntl() and ioctl() system calls

Platforms: Unix This module performs file control and I/O control on file descriptors. It is an interface to the
fcntl() and ioctl() Unix routines.

All functions in this module take a file descriptor fd as their first argument. This can be an integer file descriptor, such
as returned by sys.stdin.fileno(), or a file object, such as sys.stdin itself, which provides a fileno()
which returns a genuine file descriptor.

The module defines the following functions:

fcntl(fd, op, [arg])
Perform the requested operation on file descriptor fd (file objects providing a fileno() method are accepted
as well). The operation is defined by op and is operating system dependent. These codes are also found in
the fcntl module. The argument arg is optional, and defaults to the integer value 0. When present, it can
either be an integer value, or a string. With the argument missing or an integer value, the return value of this
function is the integer return value of the C fcntl() call. When the argument is a string it represents a binary
structure, e.g. created by struct.pack(). The binary data is copied to a buffer whose address is passed to
the C fcntl() call. The return value after a successful call is the contents of the buffer, converted to a string
object. The length of the returned string will be the same as the length of the arg argument. This is limited to
1024 bytes. If the information returned in the buffer by the operating system is larger than 1024 bytes, this is
most likely to result in a segmentation violation or a more subtle data corruption.

If the fcntl() fails, an IOError is raised.

ioctl(fd, op, [arg, [mutate_flag]])
This function is identical to the fcntl() function, except that the operations are typically defined in the library
module termios and the argument handling is even more complicated.

The op parameter is limited to values that can fit in 32-bits.

The parameter arg can be one of an integer, absent (treated identically to the integer 0), an object supporting
the read-only buffer interface (most likely a plain Python string) or an object supporting the read-write buffer
interface.

In all but the last case, behaviour is as for the fcntl() function.

If a mutable buffer is passed, then the behaviour is determined by the value of the mutate_flag parameter.

If it is false, the buffer’s mutability is ignored and behaviour is as for a read-only buffer, except that the 1024
byte limit mentioned above is avoided – so long as the buffer you pass is as least as long as what the operating
system wants to put there, things should work.

If mutate_flag is true, then the buffer is (in effect) passed to the underlying ioctl() system call, the latter’s
return code is passed back to the calling Python, and the buffer’s new contents reflect the action of the ioctl().
This is a slight simplification, because if the supplied buffer is less than 1024 bytes long it is first copied into a
static buffer 1024 bytes long which is then passed to ioctl() and copied back into the supplied buffer.

1146 Chapter 35. Unix Specific Services

The Python Library Reference, Release 2.6.9

If mutate_flag is not supplied, then from Python 2.5 it defaults to true, which is a change from versions 2.3 and
2.4. Supply the argument explicitly if version portability is a priority.

An example:

>>> import array, fcntl, struct, termios, os
>>> os.getpgrp()
13341
>>> struct.unpack(’h’, fcntl.ioctl(0, termios.TIOCGPGRP, " "))[0]
13341
>>> buf = array.array(’h’, [0])
>>> fcntl.ioctl(0, termios.TIOCGPGRP, buf, 1)
0
>>> buf
array(’h’, [13341])

flock(fd, op)
Perform the lock operation op on file descriptor fd (file objects providing a fileno() method are accepted
as well). See the Unix manual flock(2) for details. (On some systems, this function is emulated using
fcntl().)

lockf(fd, operation, [length, [start, [whence]]])
This is essentially a wrapper around the fcntl() locking calls. fd is the file descriptor of the file to lock or
unlock, and operation is one of the following values:

•LOCK_UN – unlock

•LOCK_SH – acquire a shared lock

•LOCK_EX – acquire an exclusive lock

When operation is LOCK_SH or LOCK_EX, it can also be bitwise ORed with LOCK_NB to avoid blocking
on lock acquisition. If LOCK_NB is used and the lock cannot be acquired, an IOError will be raised and
the exception will have an errno attribute set to EACCES or EAGAIN (depending on the operating system; for
portability, check for both values). On at least some systems, LOCK_EX can only be used if the file descriptor
refers to a file opened for writing.

length is the number of bytes to lock, start is the byte offset at which the lock starts, relative to whence, and
whence is as with fileobj.seek(), specifically:

•0 – relative to the start of the file (SEEK_SET)

•1 – relative to the current buffer position (SEEK_CUR)

•2 – relative to the end of the file (SEEK_END)

The default for start is 0, which means to start at the beginning of the file. The default for length is 0 which
means to lock to the end of the file. The default for whence is also 0.

Examples (all on a SVR4 compliant system):

import struct, fcntl, os

f = open(...)
rv = fcntl.fcntl(f, fcntl.F_SETFL, os.O_NDELAY)

lockdata = struct.pack(’hhllhh’, fcntl.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl.fcntl(f, fcntl.F_SETLKW, lockdata)

35.10. fcntl — The fcntl() and ioctl() system calls 1147

The Python Library Reference, Release 2.6.9

Note that in the first example the return value variable rv will hold an integer value; in the second example it will hold
a string value. The structure lay-out for the lockdata variable is system dependent — therefore using the flock()
call may be better.

See Also:

Module os If the locking flags O_SHLOCK and O_EXLOCK are present in the os module (on BSD only), the
os.open() function provides an alternative to the lockf() and flock() functions.

35.11 pipes — Interface to shell pipelines

Platforms: Unix

The pipes module defines a class to abstract the concept of a pipeline — a sequence of converters from one file to
another.

Because the module uses /bin/sh command lines, a POSIX or compatible shell for os.system() and os.popen()
is required.

The pipes module defines the following class:

class Template()
An abstraction of a pipeline.

Example:

>>> import pipes
>>> t=pipes.Template()
>>> t.append(’tr a-z A-Z’, ’--’)
>>> f=t.open(’/tmp/1’, ’w’)
>>> f.write(’hello world’)
>>> f.close()
>>> open(’/tmp/1’).read()
’HELLO WORLD’

35.11.1 Template Objects

Template objects following methods:

reset()
Restore a pipeline template to its initial state.

clone()
Return a new, equivalent, pipeline template.

debug(flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands to be
executed are printed, and the shell is given set -x command to be more verbose.

append(cmd, kind)
Append a new action at the end. The cmd variable must be a valid bourne shell command. The kind variable
consists of two letters.

The first letter can be either of ’-’ (which means the command reads its standard input), ’f’ (which means
the commands reads a given file on the command line) or ’.’ (which means the commands reads no input, and
hence must be first.)

1148 Chapter 35. Unix Specific Services

The Python Library Reference, Release 2.6.9

Similarly, the second letter can be either of ’-’ (which means the command writes to standard output), ’f’
(which means the command writes a file on the command line) or ’.’ (which means the command does not
write anything, and hence must be last.)

prepend(cmd, kind)
Add a new action at the beginning. See append() for explanations of the arguments.

open(file, mode)
Return a file-like object, open to file, but read from or written to by the pipeline. Note that only one of ’r’,
’w’ may be given.

copy(infile, outfile)
Copy infile to outfile through the pipe.

35.12 posixfile — File-like objects with locking support

Platforms: Unix Deprecated since version 1.5: The locking operation that this module provides is done better and
more portably by the fcntl.lockf() call. This module implements some additional functionality over the built-in
file objects. In particular, it implements file locking, control over the file flags, and an easy interface to duplicate the file
object. The module defines a new file object, the posixfile object. It has all the standard file object methods and adds
the methods described below. This module only works for certain flavors of Unix, since it uses fcntl.fcntl() for
file locking.

To instantiate a posixfile object, use the posixfile.open() function. The resulting object looks and feels roughly
the same as a standard file object.

The posixfile module defines the following constants:

SEEK_SET
Offset is calculated from the start of the file.

SEEK_CUR
Offset is calculated from the current position in the file.

SEEK_END
Offset is calculated from the end of the file.

The posixfile module defines the following functions:

open(filename, [mode, [bufsize]])
Create a new posixfile object with the given filename and mode. The filename, mode and bufsize arguments are
interpreted the same way as by the built-in open() function.

fileopen(fileobject)
Create a new posixfile object with the given standard file object. The resulting object has the same filename and
mode as the original file object.

The posixfile object defines the following additional methods:

lock(fmt, [len, [start, [whence]]])
Lock the specified section of the file that the file object is referring to. The format is explained below in a table.
The len argument specifies the length of the section that should be locked. The default is 0. start specifies the
starting offset of the section, where the default is 0. The whence argument specifies where the offset is relative
to. It accepts one of the constants SEEK_SET, SEEK_CUR or SEEK_END. The default is SEEK_SET. For more
information about the arguments refer to the fcntl(2) manual page on your system.

flags([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in a table. Without the flags argument a string

35.12. posixfile — File-like objects with locking support 1149

The Python Library Reference, Release 2.6.9

indicating the current flags is returned (this is the same as the ? modifier). For more information about the flags
refer to the fcntl(2) manual page on your system.

dup()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as if it
were newly opened.

dup2(fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will have the given
file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file()
Return the standard file object that the posixfile object is based on. This is sometimes necessary for functions
that insist on a standard file object.

All methods raise IOError when the request fails.

Format characters for the lock() method have the following meaning:

Format Meaning
u unlock the specified region
r request a read lock for the specified section
w request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
| wait until the lock has been granted
? return the first lock conflicting with the requested lock, or None if there is no conflict. (1)

Note:

1. The lock returned is in the format (mode, len, start, whence, pid) where mode is a character
representing the type of lock (‘r’ or ‘w’). This modifier prevents a request from being granted; it is for query
purposes only.

Format characters for the flags() method have the following meanings:

Format Meaning
a append only flag
c close on exec flag
n no delay flag (also called non-blocking flag)
s synchronization flag

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
! turn the specified flags ‘off’, instead of the default ‘on’ (1)
= replace the flags, instead of the default ‘OR’ operation (1)
? return a string in which the characters represent the flags that are set. (2)

Notes:

1. The ! and = modifiers are mutually exclusive.

2. This string represents the flags after they may have been altered by the same call.

Examples:

import posixfile

file = posixfile.open(’/tmp/test’, ’w’)
file.lock(’w|’)

1150 Chapter 35. Unix Specific Services

The Python Library Reference, Release 2.6.9

...
file.lock(’u’)
file.close()

35.13 resource — Resource usage information

Platforms: Unix

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either the
current process or its children.

A single exception is defined for errors:

exception error
The functions described below may raise this error if the underlying system call failures unexpectedly.

35.13.1 Resource Limits

Resources usage can be limited using the setrlimit() function described below. Each resource is controlled by
a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value greater
than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are described in the getrlimit(2) man
page. The resources listed below are supported when the underlying operating system supports them; resources which
cannot be checked or controlled by the operating system are not defined in this module for those platforms.

getrlimit(resource)
Returns a tuple (soft, hard) with the current soft and hard limits of resource. Raises ValueError if an
invalid resource is specified, or error if the underlying system call fails unexpectedly.

setrlimit(resource, limits)
Sets new limits of consumption of resource. The limits argument must be a tuple (soft, hard) of two
integers describing the new limits. A value of -1 can be used to specify the maximum possible upper limit.

Raises ValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit (unless the process has an effective UID of super-user). Can also raise error
if the underlying system call fails.

These symbols define resources whose consumption can be controlled using the setrlimit() and getrlimit()
functions described below. The values of these symbols are exactly the constants used by C programs.

The Unix man page for getrlimit(2) lists the available resources. Note that not all systems use the same symbol
or same value to denote the same resource. This module does not attempt to mask platform differences — symbols
not defined for a platform will not be available from this module on that platform.

RLIMIT_CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation of
a partial core file if a larger core would be required to contain the entire process image.

RLIMIT_CPU
The maximum amount of processor time (in seconds) that a process can use. If this limit is exceeded, a
SIGXCPU signal is sent to the process. (See the signal module documentation for information about how to
catch this signal and do something useful, e.g. flush open files to disk.)

35.13. resource — Resource usage information 1151

The Python Library Reference, Release 2.6.9

RLIMIT_FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in a
multi-threaded process.

RLIMIT_DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT_STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT_RSS
The maximum resident set size that should be made available to the process.

RLIMIT_NPROC
The maximum number of processes the current process may create.

RLIMIT_NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT_OFILE
The BSD name for RLIMIT_NOFILE.

RLIMIT_MEMLOCK
The maximum address space which may be locked in memory.

RLIMIT_VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT_AS
The maximum area (in bytes) of address space which may be taken by the process.

35.13.2 Resource Usage

These functions are used to retrieve resource usage information:

getrusage(who)
This function returns an object that describes the resources consumed by either the current process or its children,
as specified by the who parameter. The who parameter should be specified using one of the RUSAGE_* constants
described below.

The fields of the return value each describe how a particular system resource has been used, e.g. amount of time
spent running is user mode or number of times the process was swapped out of main memory. Some values are
dependent on the clock tick internal, e.g. the amount of memory the process is using.

For backward compatibility, the return value is also accessible as a tuple of 16 elements.

The fields ru_utime and ru_stime of the return value are floating point values representing the amount of
time spent executing in user mode and the amount of time spent executing in system mode, respectively. The
remaining values are integers. Consult the getrusage(2) man page for detailed information about these
values. A brief summary is presented here:

1152 Chapter 35. Unix Specific Services

The Python Library Reference, Release 2.6.9

Index Field Resource
0 ru_utime time in user mode (float)
1 ru_stime time in system mode (float)
2 ru_maxrss maximum resident set size
3 ru_ixrss shared memory size
4 ru_idrss unshared memory size
5 ru_isrss unshared stack size
6 ru_minflt page faults not requiring I/O
7 ru_majflt page faults requiring I/O
8 ru_nswap number of swap outs
9 ru_inblock block input operations
10 ru_oublock block output operations
11 ru_msgsnd messages sent
12 ru_msgrcv messages received
13 ru_nsignals signals received
14 ru_nvcsw voluntary context switches
15 ru_nivcsw involuntary context switches

This function will raise a ValueError if an invalid who parameter is specified. It may also raise error
exception in unusual circumstances. Changed in version 2.3: Added access to values as attributes of the returned
object.

getpagesize()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a process is using. The third element of the
tuple returned by getrusage() describes memory usage in pages; multiplying by page size produces number
of bytes.

The following RUSAGE_* symbols are passed to the getrusage() function to specify which processes information
should be provided for.

RUSAGE_SELF
RUSAGE_SELF should be used to request information pertaining only to the process itself.

RUSAGE_CHILDREN
Pass to getrusage() to request resource information for child processes of the calling process.

RUSAGE_BOTH
Pass to getrusage() to request resources consumed by both the current process and child processes. May
not be available on all systems.

35.14 nis — Interface to Sun’s NIS (Yellow Pages)

Platforms: Unix

The nis module gives a thin wrapper around the NIS library, useful for central administration of several hosts.

Because NIS exists only on Unix systems, this module is only available for Unix.

The nis module defines the following functions:

match(key, mapname, [domain=default_domain])
Return the match for key in map mapname, or raise an error (nis.error) if there is none. Both should be
strings, key is 8-bit clean. Return value is an arbitrary array of bytes (may contain NULL and other joys).

Note that mapname is first checked if it is an alias to another name. Changed in version 2.5: The domain
argument allows to override the NIS domain used for the lookup. If unspecified, lookup is in the default NIS
domain.

35.14. nis — Interface to Sun’s NIS (Yellow Pages) 1153

The Python Library Reference, Release 2.6.9

cat(mapname, [domain=default_domain])
Return a dictionary mapping key to value such that match(key, mapname)==value. Note that both keys
and values of the dictionary are arbitrary arrays of bytes.

Note that mapname is first checked if it is an alias to another name. Changed in version 2.5: The domain
argument allows to override the NIS domain used for the lookup. If unspecified, lookup is in the default NIS
domain.

maps([domain=default_domain])
Return a list of all valid maps. Changed in version 2.5: The domain argument allows to override the NIS domain
used for the lookup. If unspecified, lookup is in the default NIS domain.

get_default_domain()
Return the system default NIS domain. New in version 2.5.

The nis module defines the following exception:

exception error
An error raised when a NIS function returns an error code.

35.15 syslog — Unix syslog library routines

Platforms: Unix

This module provides an interface to the Unix syslog library routines. Refer to the Unix manual pages for a detailed
description of the syslog facility.

The module defines the following functions:

syslog([priority], message)
Send the string message to the system logger. A trailing newline is added if necessary. Each message is tagged
with a priority composed of a facility and a level. The optional priority argument, which defaults to LOG_INFO,
determines the message priority. If the facility is not encoded in priority using logical-or (LOG_INFO |
LOG_USER), the value given in the openlog() call is used.

openlog(ident, [logopt, [facility]])
Logging options other than the defaults can be set by explicitly opening the log file with openlog() prior
to calling syslog(). The defaults are (usually) ident = ’syslog’, logopt = 0, facility = LOG_USER. The
ident argument is a string which is prepended to every message. The optional logopt argument is a bit field -
see below for possible values to combine. The optional facility argument sets the default facility for messages
which do not have a facility explicitly encoded.

closelog()
Close the log file.

setlogmask(maskpri)
Set the priority mask to maskpri and return the previous mask value. Calls to syslog() with a priority level
not set in maskpri are ignored. The default is to log all priorities. The function LOG_MASK(pri) calculates
the mask for the individual priority pri. The function LOG_UPTO(pri) calculates the mask for all priorities
up to and including pri.

The module defines the following constants:

Priority levels (high to low): LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING,
LOG_NOTICE, LOG_INFO, LOG_DEBUG.

Facilities: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR, LOG_NEWS, LOG_UUCP,
LOG_CRON and LOG_LOCAL0 to LOG_LOCAL7.

1154 Chapter 35. Unix Specific Services

The Python Library Reference, Release 2.6.9

Log options: LOG_PID, LOG_CONS, LOG_NDELAY, LOG_NOWAIT and LOG_PERROR if defined in
<syslog.h>.

35.16 commands — Utilities for running commands

Platforms: Unix

The commands module contains wrapper functions for os.popen() which take a system command as a string and
return any output generated by the command and, optionally, the exit status.

The subprocess module provides more powerful facilities for spawning new processes and retrieving their results.
Using the subprocess module is preferable to using the commands module.

Note: In Python 3.x, getstatus() and two undocumented functions (mk2arg() and mkarg()) have been
removed. Also, getstatusoutput() and getoutput() have been moved to the subprocess module.

The commands module defines the following functions:

getstatusoutput(cmd)
Execute the string cmd in a shell with os.popen() and return a 2-tuple (status, output). cmd is
actually run as { cmd ; } 2>&1, so that the returned output will contain output or error messages. A trailing
newline is stripped from the output. The exit status for the command can be interpreted according to the rules
for the C function wait().

getoutput(cmd)
Like getstatusoutput(), except the exit status is ignored and the return value is a string containing the
command’s output.

getstatus(file)
Return the output of ls -ld file as a string. This function uses the getoutput() function, and properly
escapes backslashes and dollar signs in the argument. Deprecated since version 2.6: This function is nonobvious
and useless. The name is also misleading in the presence of getstatusoutput().

Example:

>>> import commands
>>> commands.getstatusoutput(’ls /bin/ls’)
(0, ’/bin/ls’)
>>> commands.getstatusoutput(’cat /bin/junk’)
(256, ’cat: /bin/junk: No such file or directory’)
>>> commands.getstatusoutput(’/bin/junk’)
(256, ’sh: /bin/junk: not found’)
>>> commands.getoutput(’ls /bin/ls’)
’/bin/ls’
>>> commands.getstatus(’/bin/ls’)
’-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

See Also:

Module subprocess Module for spawning and managing subprocesses.

35.16. commands — Utilities for running commands 1155

The Python Library Reference, Release 2.6.9

1156 Chapter 35. Unix Specific Services

CHAPTER

THIRTYSIX

MAC OS X SPECIFIC SERVICES

This chapter describes modules that are only available on the Mac OS X platform.

See the chapters MacPython OSA Modules and Undocumented Mac OS modules for more modules, and the HOWTO
Using Python on a Macintosh (in Using Python) for a general introduction to Mac-specific Python programming.

Note: These modules are deprecated and have been removed in Python 3.x.

36.1 ic — Access to the Mac OS X Internet Config

Platforms: Mac

This module provides access to various internet-related preferences set through System Preferences or the Finder.

Note: This module has been removed in Python 3.x. There is a low-level companion module icglue which
provides the basic Internet Config access functionality. This low-level module is not documented, but the docstrings
of the routines document the parameters and the routine names are the same as for the Pascal or C API to Internet
Config, so the standard IC programmers’ documentation can be used if this module is needed.

The ic module defines the error exception and symbolic names for all error codes Internet Config can produce; see
the source for details.

exception error
Exception raised on errors in the ic module.

The ic module defines the following class and function:

class IC([signature, [ic]])
Create an Internet Config object. The signature is a 4-character creator code of the current application
(default ’Pyth’) which may influence some of ICs settings. The optional ic argument is a low-level
icglue.icinstance created beforehand, this may be useful if you want to get preferences from a different
config file, etc.

launchurl(url, [hint])
parseurl(data, [start, [end, [hint]]])
mapfile(file)
maptypecreator(type, creator, [filename])
settypecreator(file)

These functions are “shortcuts” to the methods of the same name, described below.

1157

The Python Library Reference, Release 2.6.9

36.1.1 IC Objects

IC objects have a mapping interface, hence to obtain the mail address you simply get ic[’MailAddress’].
Assignment also works, and changes the option in the configuration file.

The module knows about various datatypes, and converts the internal IC representation to a “logical” Python data
structure. Running the ic module standalone will run a test program that lists all keys and values in your IC database,
this will have to serve as documentation.

If the module does not know how to represent the data it returns an instance of the ICOpaqueData type, with the
raw data in its data attribute. Objects of this type are also acceptable values for assignment.

Besides the dictionary interface, IC objects have the following methods:

launchurl(url, [hint])
Parse the given URL, launch the correct application and pass it the URL. The optional hint can be a scheme
name such as ’mailto:’, in which case incomplete URLs are completed with this scheme. If hint is not
provided, incomplete URLs are invalid.

parseurl(data, [start, [end, [hint]]])
Find an URL somewhere in data and return start position, end position and the URL. The optional start and end
can be used to limit the search, so for instance if a user clicks in a long text field you can pass the whole text
field and the click-position in start and this routine will return the whole URL in which the user clicked. As
above, hint is an optional scheme used to complete incomplete URLs.

mapfile(file)
Return the mapping entry for the given file, which can be passed as either a filename or an FSSpec() result,
and which need not exist.

The mapping entry is returned as a tuple (version, type, creator, postcreator, flags,
extension, appname, postappname, mimetype, entryname), where version is the entry ver-
sion number, type is the 4-character filetype, creator is the 4-character creator type, postcreator is the 4-character
creator code of an optional application to post-process the file after downloading, flags are various bits specify-
ing whether to transfer in binary or ascii and such, extension is the filename extension for this file type, appname
is the printable name of the application to which this file belongs, postappname is the name of the postprocessing
application, mimetype is the MIME type of this file and entryname is the name of this entry.

maptypecreator(type, creator, [filename])
Return the mapping entry for files with given 4-character type and creator codes. The optional filename may be
specified to further help finding the correct entry (if the creator code is ’????’, for instance).

The mapping entry is returned in the same format as for mapfile.

settypecreator(file)
Given an existing file, specified either as a filename or as an FSSpec() result, set its creator and type correctly
based on its extension. The finder is told about the change, so the finder icon will be updated quickly.

36.2 MacOS — Access to Mac OS interpreter features

Platforms: Mac

This module provides access to MacOS specific functionality in the Python interpreter, such as how the interpreter
eventloop functions and the like. Use with care.

Note: This module has been removed in Python 3.x.

Note the capitalization of the module name; this is a historical artifact.

1158 Chapter 36. Mac OS X specific services

The Python Library Reference, Release 2.6.9

runtimemodel
Always ’macho’, from Python 2.4 on. In earlier versions of Python the value could also be ’ppc’ for the
classic Mac OS 8 runtime model or ’carbon’ for the Mac OS 9 runtime model.

linkmodel
The way the interpreter has been linked. As extension modules may be incompatible between linking models,
packages could use this information to give more decent error messages. The value is one of ’static’ for
a statically linked Python, ’framework’ for Python in a Mac OS X framework, ’shared’ for Python in a
standard Unix shared library. Older Pythons could also have the value ’cfm’ for Mac OS 9-compatible Python.

exception Error
This exception is raised on MacOS generated errors, either from functions in this module or from other mac-

specific modules like the toolbox interfaces. The arguments are the integer error code (the OSErr value) and
a textual description of the error code. Symbolic names for all known error codes are defined in the standard
module macerrors.

GetErrorString(errno)
Return the textual description of MacOS error code errno.

DebugStr(message, [object])
On Mac OS X the string is simply printed to stderr (on older Mac OS systems more elaborate functionality was
available), but it provides a convenient location to attach a breakpoint in a low-level debugger like gdb.

Note: Not available in 64-bit mode.

SysBeep()
Ring the bell.

Note: Not available in 64-bit mode.

GetTicks()
Get the number of clock ticks (1/60th of a second) since system boot.

GetCreatorAndType(file)
Return the file creator and file type as two four-character strings. The file parameter can be a pathname or an
FSSpec or FSRef object.

Note: It is not possible to use an FSSpec in 64-bit mode.

SetCreatorAndType(file, creator, type)
Set the file creator and file type. The file parameter can be a pathname or an FSSpec or FSRef object. creator
and type must be four character strings.

Note: It is not possible to use an FSSpec in 64-bit mode.

openrf(name, [mode])
Open the resource fork of a file. Arguments are the same as for the built-in function open(). The object
returned has file-like semantics, but it is not a Python file object, so there may be subtle differences.

WMAvailable()
Checks whether the current process has access to the window manager. The method will return False if
the window manager is not available, for instance when running on Mac OS X Server or when logged in via
ssh, or when the current interpreter is not running from a fullblown application bundle. A script runs from
an application bundle either when it has been started with pythonw instead of python or when running as an
applet.

splash([resourceid])
Opens a splash screen by resource id. Use resourceid 0 to close the splash screen.

Note: Not available in 64-bit mode.

36.2. MacOS — Access to Mac OS interpreter features 1159

The Python Library Reference, Release 2.6.9

36.3 macostools — Convenience routines for file manipulation

Platforms: Mac

This module contains some convenience routines for file-manipulation on the Macintosh. All file parameters can be
specified as pathnames, FSRef or FSSpec objects. This module expects a filesystem which supports forked files, so
it should not be used on UFS partitions.

Note: This module has been removed in Python 3.0.

The macostools module defines the following functions:

copy(src, dst, [createpath, [copytimes]])
Copy file src to dst. If createpath is non-zero the folders leading to dst are created if necessary. The method
copies data and resource fork and some finder information (creator, type, flags) and optionally the creation,
modification and backup times (default is to copy them). Custom icons, comments and icon position are not
copied.

Note: This function does not work in 64-bit code because it uses APIs that are not available in 64-bit mode.

copytree(src, dst)
Recursively copy a file tree from src to dst, creating folders as needed. src and dst should be specified as
pathnames.

Note: This function does not work in 64-bit code because it uses APIs that are not available in 64-bit mode.

mkalias(src, dst)
Create a finder alias dst pointing to src.

Note: This function does not work in 64-bit code because it uses APIs that are not available in 64-bit mode.

touched(dst)
Tell the finder that some bits of finder-information such as creator or type for file dst has changed. The file can
be specified by pathname or fsspec. This call should tell the finder to redraw the files icon. Deprecated since
version 2.6: The function is a no-op on OS X.

BUFSIZ
The buffer size for copy, default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation. Hence, aliases created
with mkalias() could conceivably have incompatible behaviour in some cases.

36.4 findertools — The finder‘s Apple Events interface

Platforms: Mac This module contains routines that give Python programs access to some functionality provided by
the finder. They are implemented as wrappers around the AppleEvent interface to the finder.

All file and folder parameters can be specified either as full pathnames, or as FSRef or FSSpec objects.

The findertools module defines the following functions:

launch(file)
Tell the finder to launch file. What launching means depends on the file: applications are started, folders are
opened and documents are opened in the correct application.

Print(file)
Tell the finder to print a file. The behaviour is identical to selecting the file and using the print command in the
finder’s file menu.

1160 Chapter 36. Mac OS X specific services

The Python Library Reference, Release 2.6.9

copy(file, destdir)
Tell the finder to copy a file or folder file to folder destdir. The function returns an Alias object pointing to the
new file.

move(file, destdir)
Tell the finder to move a file or folder file to folder destdir. The function returns an Alias object pointing to
the new file.

sleep()
Tell the finder to put the Macintosh to sleep, if your machine supports it.

restart()
Tell the finder to perform an orderly restart of the machine.

shutdown()
Tell the finder to perform an orderly shutdown of the machine.

36.5 EasyDialogs — Basic Macintosh dialogs

Platforms: Mac

The EasyDialogs module contains some simple dialogs for the Macintosh. The dialogs get launched in a separate
application which appears in the dock and must be clicked on for the dialogs be displayed. All routines take an optional
resource ID parameter id with which one can override the DLOG resource used for the dialog, provided that the dialog
items correspond (both type and item number) to those in the default DLOG resource. See source code for details.

Note: This module has been removed in Python 3.x.

The EasyDialogs module defines the following functions:

Message(str, [id, [ok]])
Displays a modal dialog with the message text str, which should be at most 255 characters long. The button text
defaults to “OK”, but is set to the string argument ok if the latter is supplied. Control is returned when the user
clicks the “OK” button.

AskString(prompt, [default, [id, [ok, [cancel]]]])
Asks the user to input a string value via a modal dialog. prompt is the prompt message, and the optional default
supplies the initial value for the string (otherwise "" is used). The text of the “OK” and “Cancel” buttons can be
changed with the ok and cancel arguments. All strings can be at most 255 bytes long. AskString() returns
the string entered or None in case the user cancelled.

AskPassword(prompt, [default, [id, [ok, [cancel]]]])
Asks the user to input a string value via a modal dialog. Like AskString(), but with the text shown as bullets.
The arguments have the same meaning as for AskString().

AskYesNoCancel(question, [default, [yes, [no, [cancel, [id]]]]])
Presents a dialog with prompt question and three buttons labelled “Yes”, “No”, and “Cancel”. Returns 1 for
“Yes”, 0 for “No” and -1 for “Cancel”. The value of default (or 0 if default is not supplied) is returned when
the RETURN key is pressed. The text of the buttons can be changed with the yes, no, and cancel arguments; to
prevent a button from appearing, supply "" for the corresponding argument.

ProgressBar([title, [maxval, [label, [id]]]])
Displays a modeless progress-bar dialog. This is the constructor for the ProgressBar class described below.
title is the text string displayed (default “Working...”), maxval is the value at which progress is complete (default
0, indicating that an indeterminate amount of work remains to be done), and label is the text that is displayed
above the progress bar itself.

GetArgv([optionlist, [commandlist, [addoldfile, [addnewfile, [addfolder, [id]]]]]])
Displays a dialog which aids the user in constructing a command-line argument list. Returns the list in

36.5. EasyDialogs — Basic Macintosh dialogs 1161

The Python Library Reference, Release 2.6.9

sys.argv format, suitable for passing as an argument to getopt.getopt(). addoldfile, addnewfile, and
addfolder are boolean arguments. When nonzero, they enable the user to insert into the command line paths to an
existing file, a (possibly) not-yet-existent file, and a folder, respectively. (Note: Option arguments must appear
in the command line before file and folder arguments in order to be recognized by getopt.getopt().) Ar-
guments containing spaces can be specified by enclosing them within single or double quotes. A SystemExit
exception is raised if the user presses the “Cancel” button.

optionlist is a list that determines a popup menu from which the allowed options are selected. Its items can
take one of two forms: optstr or (optstr, descr). When present, descr is a short descriptive string that
is displayed in the dialog while this option is selected in the popup menu. The correspondence between optstrs
and command-line arguments is:

optstr format Command-line format
x -x (short option)
x: or x= -x (short option with value)
xyz --xyz (long option)
xyz: or xyz= --xyz (long option with value)

commandlist is a list of items of the form cmdstr or (cmdstr, descr), where descr is as above. The
cmdstrs will appear in a popup menu. When chosen, the text of cmdstr will be appended to the command line
as is, except that a trailing ’:’ or ’=’ (if present) will be trimmed off. New in version 2.0.

AskFileForOpen([message], [typeList], [defaultLocation], [defaultOptionFlags], [location], [clientName],
[windowTitle], [actionButtonLabel], [cancelButtonLabel], [preferenceKey], [popupExtension],
[eventProc], [previewProc], [filterProc], [wanted])

Post a dialog asking the user for a file to open, and return the file selected or None if the user cancelled. message
is a text message to display, typeList is a list of 4-char filetypes allowable, defaultLocation is the pathname,
FSSpec or FSRef of the folder to show initially, location is the (x, y) position on the screen where the
dialog is shown, actionButtonLabel is a string to show instead of “Open” in the OK button, cancelButtonLabel
is a string to show instead of “Cancel” in the cancel button, wanted is the type of value wanted as a return: str,
unicode, FSSpec, FSRef and subtypes thereof are acceptable. For a description of the other arguments
please see the Apple Navigation Services documentation and the EasyDialogs source code.

AskFileForSave([message], [savedFileName], [defaultLocation], [defaultOptionFlags], [location], [client-
Name], [windowTitle], [actionButtonLabel], [cancelButtonLabel], [preferenceKey], [popupEx-
tension], [fileType], [fileCreator], [eventProc], [wanted])

Post a dialog asking the user for a file to save to, and return the file selected or None if the user cancelled.
savedFileName is the default for the file name to save to (the return value). See AskFileForOpen() for a
description of the other arguments.

AskFolder([message], [defaultLocation], [defaultOptionFlags], [location], [clientName], [windowTitle], [ac-
tionButtonLabel], [cancelButtonLabel], [preferenceKey], [popupExtension], [eventProc], [filterProc],
[wanted])

Post a dialog asking the user to select a folder, and return the folder selected or None if the user cancelled. See
AskFileForOpen() for a description of the arguments.

See Also:

Navigation Services Reference Programmer’s reference documentation for the Navigation Services, a part of the
Carbon framework.

36.5.1 ProgressBar Objects

ProgressBar objects provide support for modeless progress-bar dialogs. Both determinate (thermometer style) and
indeterminate (barber-pole style) progress bars are supported. The bar will be determinate if its maximum value is
greater than zero; otherwise it will be indeterminate. Changed in version 2.2: Support for indeterminate-style progress
bars was added. The dialog is displayed immediately after creation. If the dialog’s “Cancel” button is pressed, or
if Cmd-. or ESC is typed, the dialog window is hidden and KeyboardInterrupt is raised (but note that this

1162 Chapter 36. Mac OS X specific services

http://developer.apple.com/documentation/Carbon/Reference/Navigation_Services_Ref/

The Python Library Reference, Release 2.6.9

response does not occur until the progress bar is next updated, typically via a call to inc() or set()). Otherwise,
the bar remains visible until the ProgressBar object is discarded.

ProgressBar objects possess the following attributes and methods:

curval
The current value (of type integer or long integer) of the progress bar. The normal access methods coerce
curval between 0 and maxval. This attribute should not be altered directly.

maxval
The maximum value (of type integer or long integer) of the progress bar; the progress bar (thermometer style) is
full when curval equals maxval. If maxval is 0, the bar will be indeterminate (barber-pole). This attribute
should not be altered directly.

title([newstr])
Sets the text in the title bar of the progress dialog to newstr.

label([newstr])
Sets the text in the progress box of the progress dialog to newstr.

set(value, [max])
Sets the progress bar’s curval to value, and also maxval to max if the latter is provided. value is first
coerced between 0 and maxval. The thermometer bar is updated to reflect the changes, including a change
from indeterminate to determinate or vice versa.

inc([n])
Increments the progress bar’s curval by n, or by 1 if n is not provided. (Note that n may be negative, in which
case the effect is a decrement.) The progress bar is updated to reflect the change. If the bar is indeterminate, this
causes one “spin” of the barber pole. The resulting curval is coerced between 0 and maxval if incrementing
causes it to fall outside this range.

36.6 FrameWork — Interactive application framework

Platforms: Mac

The FrameWork module contains classes that together provide a framework for an interactive Macintosh application.
The programmer builds an application by creating subclasses that override various methods of the bases classes,
thereby implementing the functionality wanted. Overriding functionality can often be done on various different levels,
i.e. to handle clicks in a single dialog window in a non-standard way it is not necessary to override the complete event
handling.

Note: This module has been removed in Python 3.x.

Work on the FrameWork has pretty much stopped, now that PyObjC is available for full Cocoa access from Python,
and the documentation describes only the most important functionality, and not in the most logical manner at that.
Examine the source or the examples for more details. The following are some comments posted on the MacPython
newsgroup about the strengths and limitations of FrameWork:

The strong point of FrameWork is that it allows you to break into the control-flow at many different
places. W, for instance, uses a different way to enable/disable menus and that plugs right in leaving the rest
intact. The weak points of FrameWork are that it has no abstract command interface (but that shouldn’t
be difficult), that its dialog support is minimal and that its control/toolbar support is non-existent.

The FrameWork module defines the following functions:

Application()
An object representing the complete application. See below for a description of the methods. The default
__init__() routine creates an empty window dictionary and a menu bar with an apple menu.

36.6. FrameWork — Interactive application framework 1163

The Python Library Reference, Release 2.6.9

MenuBar()
An object representing the menubar. This object is usually not created by the user.

Menu(bar, title, [after])
An object representing a menu. Upon creation you pass the MenuBar the menu appears in, the title string and
a position (1-based) after where the menu should appear (default: at the end).

MenuItem(menu, title, [shortcut, callback])
Create a menu item object. The arguments are the menu to create, the item title string and optionally the
keyboard shortcut and a callback routine. The callback is called with the arguments menu-id, item number
within menu (1-based), current front window and the event record.

Instead of a callable object the callback can also be a string. In this case menu selection causes the lookup of a
method in the topmost window and the application. The method name is the callback string with ’domenu_’
prepended.

Calling the MenuBar fixmenudimstate() method sets the correct dimming for all menu items based on
the current front window.

Separator(menu)
Add a separator to the end of a menu.

SubMenu(menu, label)
Create a submenu named label under menu menu. The menu object is returned.

Window(parent)
Creates a (modeless) window. Parent is the application object to which the window belongs. The window is not
displayed until later.

DialogWindow(parent)
Creates a modeless dialog window.

windowbounds(width, height)
Return a (left, top, right, bottom) tuple suitable for creation of a window of given width and
height. The window will be staggered with respect to previous windows, and an attempt is made to keep the
whole window on-screen. However, the window will however always be the exact size given, so parts may be
offscreen.

setwatchcursor()
Set the mouse cursor to a watch.

setarrowcursor()
Set the mouse cursor to an arrow.

36.6.1 Application Objects

Application objects have the following methods, among others:

makeusermenus()
Override this method if you need menus in your application. Append the menus to the attribute menubar.

getabouttext()
Override this method to return a text string describing your application. Alternatively, override the
do_about() method for more elaborate “about” messages.

mainloop([mask, [wait]])
This routine is the main event loop, call it to set your application rolling. Mask is the mask of events you want
to handle, wait is the number of ticks you want to leave to other concurrent application (default 0, which is
probably not a good idea). While raising self to exit the mainloop is still supported it is not recommended: call
self._quit() instead.

1164 Chapter 36. Mac OS X specific services

The Python Library Reference, Release 2.6.9

The event loop is split into many small parts, each of which can be overridden. The default methods take
care of dispatching events to windows and dialogs, handling drags and resizes, Apple Events, events for non-
FrameWork windows, etc.

In general, all event handlers should return 1 if the event is fully handled and 0 otherwise (because the front
window was not a FrameWork window, for instance). This is needed so that update events and such can be
passed on to other windows like the Sioux console window. Calling MacOS.HandleEvent() is not allowed
within our_dispatch or its callees, since this may result in an infinite loop if the code is called through the Python
inner-loop event handler.

asyncevents(onoff)
Call this method with a nonzero parameter to enable asynchronous event handling. This will tell the inner
interpreter loop to call the application event handler async_dispatch whenever events are available. This will
cause FrameWork window updates and the user interface to remain working during long computations, but will
slow the interpreter down and may cause surprising results in non-reentrant code (such as FrameWork itself).
By default async_dispatch will immediately call our_dispatch but you may override this to handle only certain
events asynchronously. Events you do not handle will be passed to Sioux and such.

The old on/off value is returned.

_quit()
Terminate the running mainloop() call at the next convenient moment.

do_char(c, event)
The user typed character c. The complete details of the event can be found in the event structure. This method
can also be provided in a Window object, which overrides the application-wide handler if the window is front-
most.

do_dialogevent(event)
Called early in the event loop to handle modeless dialog events. The default method simply dispatches the event
to the relevant dialog (not through the DialogWindow object involved). Override if you need special handling
of dialog events (keyboard shortcuts, etc).

idle(event)
Called by the main event loop when no events are available. The null-event is passed (so you can look at mouse
position, etc).

36.6.2 Window Objects

Window objects have the following methods, among others:

open()
Override this method to open a window. Store the Mac OS window-id in self.wid and call the
do_postopen() method to register the window with the parent application.

close()
Override this method to do any special processing on window close. Call the do_postclose() method to
cleanup the parent state.

do_postresize(width, height, macoswindowid)
Called after the window is resized. Override if more needs to be done than calling InvalRect.

do_contentclick(local, modifiers, event)
The user clicked in the content part of a window. The arguments are the coordinates (window-relative), the key
modifiers and the raw event.

do_update(macoswindowid, event)
An update event for the window was received. Redraw the window.

36.6. FrameWork — Interactive application framework 1165

The Python Library Reference, Release 2.6.9

do_activate(activate, event)
The window was activated (activate == 1) or deactivated (activate == 0). Handle things like focus
highlighting, etc.

36.6.3 ControlsWindow Object

ControlsWindow objects have the following methods besides those of Window objects:

do_controlhit(window, control, pcode, event)
Part pcode of control control was hit by the user. Tracking and such has already been taken care of.

36.6.4 ScrolledWindow Object

ScrolledWindow objects are ControlsWindow objects with the following extra methods:

scrollbars([wantx, [wanty]])
Create (or destroy) horizontal and vertical scrollbars. The arguments specify which you want (default: both).
The scrollbars always have minimum 0 and maximum 32767.

getscrollbarvalues()
You must supply this method. It should return a tuple (x, y) giving the current position of the scrollbars
(between 0 and 32767). You can return None for either to indicate the whole document is visible in that
direction.

updatescrollbars()
Call this method when the document has changed. It will call getscrollbarvalues() and update the
scrollbars.

scrollbar_callback(which, what, value)
Supplied by you and called after user interaction. which will be ’x’ or ’y’, what will be ’-’, ’--’, ’set’,
’++’ or ’+’. For ’set’, value will contain the new scrollbar position.

scalebarvalues(absmin, absmax, curmin, curmax)
Auxiliary method to help you calculate values to return from getscrollbarvalues(). You pass document
minimum and maximum value and topmost (leftmost) and bottommost (rightmost) visible values and it returns
the correct number or None.

do_activate(onoff, event)
Takes care of dimming/highlighting scrollbars when a window becomes frontmost. If you override this method,
call this one at the end of your method.

do_postresize(width, height, window)
Moves scrollbars to the correct position. Call this method initially if you override it.

do_controlhit(window, control, pcode, event)
Handles scrollbar interaction. If you override it call this method first, a nonzero return value indicates the hit
was in the scrollbars and has been handled.

36.6.5 DialogWindow Objects

DialogWindow objects have the following methods besides those of Window objects:

open(resid)
Create the dialog window, from the DLOG resource with id resid. The dialog object is stored in self.wid.

do_itemhit(item, event)
Item number item was hit. You are responsible for redrawing toggle buttons, etc.

1166 Chapter 36. Mac OS X specific services

The Python Library Reference, Release 2.6.9

36.7 autoGIL — Global Interpreter Lock handling in event loops

Platforms: Mac

The autoGIL module provides a function installAutoGIL() that automatically locks and unlocks Python’s
Global Interpreter Lock when running an event loop.

Note: This module has been removed in Python 3.x.

exception AutoGILError
Raised if the observer callback cannot be installed, for example because the current thread does not have a run
loop.

installAutoGIL()
Install an observer callback in the event loop (CFRunLoop) for the current thread, that will lock and unlock the
Global Interpreter Lock (GIL) at appropriate times, allowing other Python threads to run while the event loop is
idle.

Availability: OSX 10.1 or later.

36.8 Mac OS Toolbox Modules

There are a set of modules that provide interfaces to various Mac OS toolboxes. If applicable the module will define
a number of Python objects for the various structures declared by the toolbox, and operations will be implemented as
methods of the object. Other operations will be implemented as functions in the module. Not all operations possible
in C will also be possible in Python (callbacks are often a problem), and parameters will occasionally be different
in Python (input and output buffers, especially). All methods and functions have a __doc__ string describing their
arguments and return values, and for additional description you are referred to Inside Macintosh or similar works.

These modules all live in a package called Carbon. Despite that name they are not all part of the Carbon framework:
CF is really in the CoreFoundation framework and Qt is in the QuickTime framework. The normal use pattern is

from Carbon import AE

Note: The Carbon modules have been removed in Python 3.0.

36.8.1 Carbon.AE — Apple Events

Platforms: Mac

36.8.2 Carbon.AH — Apple Help

Platforms: Mac

36.8.3 Carbon.App — Appearance Manager

Platforms: Mac

36.8.4 Carbon.Appearance — Appearance Manager constants

Platforms: Mac

36.7. autoGIL — Global Interpreter Lock handling in event loops 1167

http://developer.apple.com/documentation/macos8/mac8.html

The Python Library Reference, Release 2.6.9

36.8.5 Carbon.CF — Core Foundation

Platforms: Mac

The CFBase, CFArray, CFData, CFDictionary, CFString and CFURL objects are supported, some only
partially.

36.8.6 Carbon.CG — Core Graphics

Platforms: Mac

36.8.7 Carbon.CarbonEvt — Carbon Event Manager

Platforms: Mac

36.8.8 Carbon.CarbonEvents — Carbon Event Manager constants

Platforms: Mac

36.8.9 Carbon.Cm — Component Manager

Platforms: Mac

36.8.10 Carbon.Components — Component Manager constants

Platforms: Mac

36.8.11 Carbon.ControlAccessor — Control Manager accssors

Platforms: Mac

36.8.12 Carbon.Controls — Control Manager constants

Platforms: Mac

36.8.13 Carbon.CoreFounation — CoreFounation constants

Platforms: Mac

36.8.14 Carbon.CoreGraphics — CoreGraphics constants

Platforms: Mac

36.8.15 Carbon.Ctl — Control Manager

Platforms: Mac

1168 Chapter 36. Mac OS X specific services

The Python Library Reference, Release 2.6.9

36.8.16 Carbon.Dialogs — Dialog Manager constants

Platforms: Mac

36.8.17 Carbon.Dlg — Dialog Manager

Platforms: Mac

36.8.18 Carbon.Drag — Drag and Drop Manager

Platforms: Mac

36.8.19 Carbon.Dragconst — Drag and Drop Manager constants

Platforms: Mac

36.8.20 Carbon.Events — Event Manager constants

Platforms: Mac

36.8.21 Carbon.Evt — Event Manager

Platforms: Mac

36.8.22 Carbon.File — File Manager

Platforms: Mac

36.8.23 Carbon.Files — File Manager constants

Platforms: Mac

36.8.24 Carbon.Fm — Font Manager

Platforms: Mac

36.8.25 Carbon.Folder — Folder Manager

Platforms: Mac

36.8.26 Carbon.Folders — Folder Manager constants

Platforms: Mac

36.8. Mac OS Toolbox Modules 1169

The Python Library Reference, Release 2.6.9

36.8.27 Carbon.Fonts — Font Manager constants

Platforms: Mac

36.8.28 Carbon.Help — Help Manager

Platforms: Mac

36.8.29 Carbon.IBCarbon — Carbon InterfaceBuilder

Platforms: Mac

36.8.30 Carbon.IBCarbonRuntime — Carbon InterfaceBuilder constants

Platforms: Mac

36.8.31 Carbon.Icn — Carbon Icon Manager

Platforms: Mac

36.8.32 Carbon.Icons — Carbon Icon Manager constants

Platforms: Mac

36.8.33 Carbon.Launch — Carbon Launch Services

Platforms: Mac

36.8.34 Carbon.LaunchServices — Carbon Launch Services constants

Platforms: Mac

36.8.35 Carbon.List — List Manager

Platforms: Mac

36.8.36 Carbon.Lists — List Manager constants

Platforms: Mac

36.8.37 Carbon.MacHelp — Help Manager constants

Platforms: Mac

1170 Chapter 36. Mac OS X specific services

The Python Library Reference, Release 2.6.9

36.8.38 Carbon.MediaDescr — Parsers and generators for Quicktime Media de-
scriptors

Platforms: Mac

36.8.39 Carbon.Menu — Menu Manager

Platforms: Mac

36.8.40 Carbon.Menus — Menu Manager constants

Platforms: Mac

36.8.41 Carbon.Mlte — MultiLingual Text Editor

Platforms: Mac

36.8.42 Carbon.OSA — Carbon OSA Interface

Platforms: Mac

36.8.43 Carbon.OSAconst — Carbon OSA Interface constants

Platforms: Mac

36.8.44 Carbon.QDOffscreen — QuickDraw Offscreen constants

Platforms: Mac

36.8.45 Carbon.Qd — QuickDraw

Platforms: Mac

36.8.46 Carbon.Qdoffs — QuickDraw Offscreen

Platforms: Mac

36.8.47 Carbon.Qt — QuickTime

Platforms: Mac

36.8.48 Carbon.QuickDraw — QuickDraw constants

Platforms: Mac

36.8. Mac OS Toolbox Modules 1171

The Python Library Reference, Release 2.6.9

36.8.49 Carbon.QuickTime — QuickTime constants

Platforms: Mac

36.8.50 Carbon.Res — Resource Manager and Handles

Platforms: Mac

36.8.51 Carbon.Resources — Resource Manager and Handles constants

Platforms: Mac

36.8.52 Carbon.Scrap — Scrap Manager

Platforms: Mac

This module is only fully available on Mac OS 9 and earlier under classic PPC MacPython. Very limited functionality
is available under Carbon MacPython. The Scrap Manager supports the simplest form of cut & paste operations on
the Macintosh. It can be use for both inter- and intra-application clipboard operations.

The Scrap module provides low-level access to the functions of the Scrap Manager. It contains the following func-
tions:

InfoScrap()
Return current information about the scrap. The information is encoded as a tuple containing the fields (size,
handle, count, state, path).

Field Meaning
size Size of the scrap in bytes.
handle Resource object representing the scrap.
count Serial number of the scrap contents.
state Integer; positive if in memory, 0 if on disk, negative if uninitialized.
path Filename of the scrap when stored on disk.

See Also:

Scrap Manager Apple’s documentation for the Scrap Manager gives a lot of useful information about using the Scrap
Manager in applications.

36.8.53 Carbon.Snd — Sound Manager

Platforms: Mac

36.8.54 Carbon.Sound — Sound Manager constants

Platforms: Mac

36.8.55 Carbon.TE — TextEdit

Platforms: Mac

1172 Chapter 36. Mac OS X specific services

http://developer.apple.com/documentation/mac/MoreToolbox/MoreToolbox-109.html

The Python Library Reference, Release 2.6.9

36.8.56 Carbon.TextEdit — TextEdit constants

Platforms: Mac

36.8.57 Carbon.Win — Window Manager

Platforms: Mac

36.8.58 Carbon.Windows — Window Manager constants

Platforms: Mac

36.9 ColorPicker — Color selection dialog

Platforms: Mac

The ColorPicker module provides access to the standard color picker dialog.

Note: This module has been removed in Python 3.x.

GetColor(prompt, rgb)
Show a standard color selection dialog and allow the user to select a color. The user is given instruction by the
prompt string, and the default color is set to rgb. rgb must be a tuple giving the red, green, and blue components
of the color. GetColor() returns a tuple giving the user’s selected color and a flag indicating whether they
accepted the selection of cancelled.

36.9. ColorPicker — Color selection dialog 1173

The Python Library Reference, Release 2.6.9

1174 Chapter 36. Mac OS X specific services

CHAPTER

THIRTYSEVEN

MACPYTHON OSA MODULES

This chapter describes the current implementation of the Open Scripting Architecture (OSA, also commonly referred
to as AppleScript) for Python, allowing you to control scriptable applications from your Python program, and with a
fairly pythonic interface. Development on this set of modules has stopped, and a replacement is expected for Python
2.5.

For a description of the various components of AppleScript and OSA, and to get an understanding of the architecture
and terminology, you should read Apple’s documentation. The “Applescript Language Guide” explains the conceptual
model and the terminology, and documents the standard suite. The “Open Scripting Architecture” document explains
how to use OSA from an application programmers point of view. In the Apple Help Viewer these books are located in
the Developer Documentation, Core Technologies section.

As an example of scripting an application, the following piece of AppleScript will get the name of the frontmost
Finder window and print it:

tell application "Finder"
get name of window 1

end tell

In Python, the following code fragment will do the same:

import Finder

f = Finder.Finder()
print f.get(f.window(1).name)

As distributed the Python library includes packages that implement the standard suites, plus packages that interface to
a small number of common applications.

To send AppleEvents to an application you must first create the Python package interfacing to the terminology of the
application (what Script Editor calls the “Dictionary”). This can be done from within the PythonIDE or by running
the gensuitemodule.py module as a standalone program from the command line.

The generated output is a package with a number of modules, one for every suite used in the program plus an
__init__ module to glue it all together. The Python inheritance graph follows the AppleScript inheritance graph,
so if a program’s dictionary specifies that it includes support for the Standard Suite, but extends one or two verbs with
extra arguments then the output suite will contain a module Standard_Suite that imports and re-exports every-
thing from StdSuites.Standard_Suite but overrides the methods that have extra functionality. The output of
gensuitemodule is pretty readable, and contains the documentation that was in the original AppleScript dictionary
in Python docstrings, so reading it is a good source of documentation.

The output package implements a main class with the same name as the package which contains all the AppleScript
verbs as methods, with the direct object as the first argument and all optional parameters as keyword arguments.
AppleScript classes are also implemented as Python classes, as are comparisons and all the other thingies.

1175

The Python Library Reference, Release 2.6.9

The main Python class implementing the verbs also allows access to the properties and elements declared in the Ap-
pleScript class “application”. In the current release that is as far as the object orientation goes, so in the example above
we need to use f.get(f.window(1).name) instead of the more Pythonic f.window(1).name.get().

If an AppleScript identifier is not a Python identifier the name is mangled according to a small number of rules:

• spaces are replaced with underscores

• other non-alphanumeric characters are replaced with _xx_ where xx is the hexadecimal character value

• any Python reserved word gets an underscore appended

Python also has support for creating scriptable applications in Python, but The following modules are relevant to
MacPython AppleScript support:

37.1 gensuitemodule — Generate OSA stub packages

Platforms: Mac

The gensuitemodule module creates a Python package implementing stub code for the AppleScript suites that are
implemented by a specific application, according to its AppleScript dictionary.

It is usually invoked by the user through the PythonIDE, but it can also be run as a script from the command
line (pass --help for help on the options) or imported from Python code. For an example of its use see
Mac/scripts/genallsuites.py in a source distribution, which generates the stub packages that are included
in the standard library.

It defines the following public functions:

is_scriptable(application)
Returns true if application, which should be passed as a pathname, appears to be scriptable. Take the return
value with a grain of salt: Internet Explorer appears not to be scriptable but definitely is.

processfile(application, [output, basepkgname, edit_modnames, creatorsignature, dump, verbose])
Create a stub package for application, which should be passed as a full pathname. For a .app bundle this
is the pathname to the bundle, not to the executable inside the bundle; for an unbundled CFM application you
pass the filename of the application binary.

This function asks the application for its OSA terminology resources, decodes these resources and uses the
resultant data to create the Python code for the package implementing the client stubs.

output is the pathname where the resulting package is stored, if not specified a standard “save file as”
dialog is presented to the user. basepkgname is the base package on which this package will build,
and defaults to StdSuites. Only when generating StdSuites itself do you need to specify this.
edit_modnames is a dictionary that can be used to change modulenames that are too ugly after name man-
gling. creator_signature can be used to override the 4-char creator code, which is normally obtained
from the PkgInfo file in the package or from the CFM file creator signature. When dump is given it should
refer to a file object, and processfile will stop after decoding the resources and dump the Python repre-
sentation of the terminology resources to this file. verbose should also be a file object, and specifying it will
cause processfile to tell you what it is doing.

processfile_fromresource(application, [output, basepkgname, edit_modnames, creatorsignature, dump,
verbose])

This function does the same as processfile, except that it uses a different method to get the terminology
resources. It opens application as a resource file and reads all "aete" and "aeut" resources from this
file.

1176 Chapter 37. MacPython OSA Modules

The Python Library Reference, Release 2.6.9

37.2 aetools — OSA client support

Platforms: Mac

The aetools module contains the basic functionality on which Python AppleScript client support is built. It also
imports and re-exports the core functionality of the aetypes and aepack modules. The stub packages generated
by gensuitemodule import the relevant portions of aetools, so usually you do not need to import it yourself.
The exception to this is when you cannot use a generated suite package and need lower-level access to scripting.

The aetools module itself uses the AppleEvent support provided by the Carbon.AE module. This has one draw-
back: you need access to the window manager, see section Running scripts with a GUI (in Using Python) for details.
This restriction may be lifted in future releases.

Note: This module has been removed in Python 3.x.

The aetools module defines the following functions:

packevent(ae, parameters, attributes)
Stores parameters and attributes in a pre-created Carbon.AE.AEDesc object. parameters and
attributes are dictionaries mapping 4-character OSA parameter keys to Python objects. The objects are
packed using aepack.pack().

unpackevent(ae, [formodulename])
Recursively unpacks a Carbon.AE.AEDesc event to Python objects. The function returns the parameter
dictionary and the attribute dictionary. The formodulename argument is used by generated stub packages to
control where AppleScript classes are looked up.

keysubst(arguments, keydict)
Converts a Python keyword argument dictionary arguments to the format required by packevent by replac-
ing the keys, which are Python identifiers, by the four-character OSA keys according to the mapping specified
in keydict. Used by the generated suite packages.

enumsubst(arguments, key, edict)
If the arguments dictionary contains an entry for key convert the value for that entry according to dictionary
edict. This converts human-readable Python enumeration names to the OSA 4-character codes. Used by the
generated suite packages.

The aetools module defines the following class:

class TalkTo([signature=None, start=0, timeout=0])
Base class for the proxy used to talk to an application. signature overrides the class attribute _signature
(which is usually set by subclasses) and is the 4-char creator code defining the application to talk to. start
can be set to true to enable running the application on class instantiation. timeout can be specified to change
the default timeout used while waiting for an AppleEvent reply.

_start()
Test whether the application is running, and attempt to start it if not.

send(code, subcode, [parameters, attributes])
Create the AppleEvent Carbon.AE.AEDesc for the verb with the OSA designation code, subcode
(which are the usual 4-character strings), pack the parameters and attributes into it, send it to the
target application, wait for the reply, unpack the reply with unpackevent and return the reply appleevent, the
unpacked return values as a dictionary and the return attributes.

37.2. aetools — OSA client support 1177

The Python Library Reference, Release 2.6.9

37.3 aepack — Conversion between Python variables and Ap-
pleEvent data containers

Platforms: Mac

The aepack module defines functions for converting (packing) Python variables to AppleEvent descriptors and back
(unpacking). Within Python the AppleEvent descriptor is handled by Python objects of built-in type AEDesc, defined
in module Carbon.AE.

Note: This module has been removed in Python 3.x.

The aepack module defines the following functions:

pack(x, [forcetype])
Returns an AEDesc object containing a conversion of Python value x. If forcetype is provided it specifies the
descriptor type of the result. Otherwise, a default mapping of Python types to Apple Event descriptor types is
used, as follows:

Python type descriptor type
FSSpec typeFSS
FSRef typeFSRef
Alias typeAlias
integer typeLong (32 bit integer)
float typeFloat (64 bit floating point)
string typeText
unicode typeUnicodeText
list typeAEList
dictionary typeAERecord
instance see below

If x is a Python instance then this function attempts to call an __aepack__() method. This method should
return an AEDesc object.

If the conversion x is not defined above, this function returns the Python string representation of a value (the
repr() function) encoded as a text descriptor.

unpack(x, [formodulename])
x must be an object of type AEDesc. This function returns a Python object representation of the data in the Apple
Event descriptor x. Simple AppleEvent data types (integer, text, float) are returned as their obvious Python coun-
terparts. Apple Event lists are returned as Python lists, and the list elements are recursively unpacked. Object
references (ex. line 3 of document 1) are returned as instances of aetypes.ObjectSpecifier,
unless formodulename is specified. AppleEvent descriptors with descriptor type typeFSS are returned as
FSSpec objects. AppleEvent record descriptors are returned as Python dictionaries, with 4-character string
keys and elements recursively unpacked.

The optional formodulename argument is used by the stub packages generated by gensuitemodule, and
ensures that the OSA classes for object specifiers are looked up in the correct module. This ensures that if, say,
the Finder returns an object specifier for a window you get an instance of Finder.Window and not a generic
aetypes.Window. The former knows about all the properties and elements a window has in the Finder, while
the latter knows no such things.

See Also:

Module Carbon.AE Built-in access to Apple Event Manager routines.

Module aetypes Python definitions of codes for Apple Event descriptor types.

1178 Chapter 37. MacPython OSA Modules

The Python Library Reference, Release 2.6.9

37.4 aetypes — AppleEvent objects

Platforms: Mac

The aetypes defines classes used to represent Apple Event data descriptors and Apple Event object specifiers.

Apple Event data is contained in descriptors, and these descriptors are typed. For many descriptors the Python repre-
sentation is simply the corresponding Python type: typeText in OSA is a Python string, typeFloat is a float, etc.
For OSA types that have no direct Python counterpart this module declares classes. Packing and unpacking instances
of these classes is handled automatically by aepack.

An object specifier is essentially an address of an object implemented in a Apple Event server. An Apple Event spec-
ifier is used as the direct object for an Apple Event or as the argument of an optional parameter. The aetypes
module contains the base classes for OSA classes and properties, which are used by the packages generated by
gensuitemodule to populate the classes and properties in a given suite.

For reasons of backward compatibility, and for cases where you need to script an application for which you have not
generated the stub package this module also contains object specifiers for a number of common OSA classes such as
Document, Window, Character, etc.

Note: This module has been removed in Python 3.x.

The AEObjects module defines the following classes to represent Apple Event descriptor data:

class Unknown(type, data)
The representation of OSA descriptor data for which the aepack and aetypes modules have no support, i.e.
anything that is not represented by the other classes here and that is not equivalent to a simple Python value.

class Enum(enum)
An enumeration value with the given 4-character string value.

class InsertionLoc(of, pos)
Position pos in object of.

class Boolean(bool)
A boolean.

class StyledText(style, text)
Text with style information (font, face, etc) included.

class AEText(script, style, text)
Text with script system and style information included.

class IntlText(script, language, text)
Text with script system and language information included.

class IntlWritingCode(script, language)
Script system and language information.

class QDPoint(v, h)
A quickdraw point.

class QDRectangle(v0, h0, v1, h1)
A quickdraw rectangle.

class RGBColor(r, g, b)
A color.

class Type(type)
An OSA type value with the given 4-character name.

class Keyword(name)
An OSA keyword with the given 4-character name.

37.4. aetypes — AppleEvent objects 1179

The Python Library Reference, Release 2.6.9

class Range(start, stop)
A range.

class Ordinal(abso)
Non-numeric absolute positions, such as "firs", first, or "midd", middle.

class Logical(logc, term)
The logical expression of applying operator logc to term.

class Comparison(obj1, relo, obj2)
The comparison relo of obj1 to obj2.

The following classes are used as base classes by the generated stub packages to represent AppleScript classes and
properties in Python:

class ComponentItem(which, [fr])
Abstract baseclass for an OSA class. The subclass should set the class attribute want to the 4-character OSA
class code. Instances of subclasses of this class are equivalent to AppleScript Object Specifiers. Upon instanti-
ation you should pass a selector in which, and optionally a parent object in fr.

class NProperty(fr)
Abstract baseclass for an OSA property. The subclass should set the class attributes want and which to
designate which property we are talking about. Instances of subclasses of this class are Object Specifiers.

class ObjectSpecifier(want, form, seld, [fr])
Base class of ComponentItem and NProperty, a general OSA Object Specifier. See the Apple Open
Scripting Architecture documentation for the parameters. Note that this class is not abstract.

37.5 MiniAEFrame — Open Scripting Architecture server support

Platforms: Mac The module MiniAEFrame provides a framework for an application that can function as an Open
Scripting Architecture (OSA) server, i.e. receive and process AppleEvents. It can be used in conjunction with
FrameWork or standalone. As an example, it is used in PythonCGISlave.

The MiniAEFrame module defines the following classes:

class AEServer()
A class that handles AppleEvent dispatch. Your application should subclass this class together with ei-
ther MiniApplication or FrameWork.Application. Your __init__() method should call the
__init__() method for both classes.

class MiniApplication()
A class that is more or less compatible with FrameWork.Application but with less functionality. Its
event loop supports the apple menu, command-dot and AppleEvents; other events are passed on to the Python
interpreter and/or Sioux. Useful if your application wants to use AEServer but does not provide its own
windows, etc.

37.5.1 AEServer Objects

installaehandler(classe, type, callback)
Installs an AppleEvent handler. classe and type are the four-character OSA Class and Type designators, ’****’
wildcards are allowed. When a matching AppleEvent is received the parameters are decoded and your callback
is invoked.

callback(_object, **kwargs)
Your callback is called with the OSA Direct Object as first positional parameter. The other parameters are
passed as keyword arguments, with the 4-character designator as name. Three extra keyword parameters are

1180 Chapter 37. MacPython OSA Modules

The Python Library Reference, Release 2.6.9

passed: _class and _type are the Class and Type designators and _attributes is a dictionary with the
AppleEvent attributes.

The return value of your method is packed with aetools.packevent() and sent as reply.

Note that there are some serious problems with the current design. AppleEvents which have non-identifier 4-character
designators for arguments are not implementable, and it is not possible to return an error to the originator. This will
be addressed in a future release.

In addition, support modules have been pre-generated for Finder, Terminal, Explorer, Netscape,
CodeWarrior, SystemEvents and StdSuites.

37.5. MiniAEFrame — Open Scripting Architecture server support 1181

The Python Library Reference, Release 2.6.9

1182 Chapter 37. MacPython OSA Modules

CHAPTER

THIRTYEIGHT

SGI IRIX SPECIFIC SERVICES

The modules described in this chapter provide interfaces to features that are unique to SGI’s IRIX operating system
(versions 4 and 5).

38.1 al — Audio functions on the SGI

Platforms: IRIX Deprecated since version 2.6: The al module has been deprecated for removal in Python 3.0. This
module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section 3A of the IRIX
man pages for details. You’ll need to read those man pages to understand what these functions do! Some of the
functions are not available in IRIX releases before 4.0.5. Again, see the manual to check whether a specific function
is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with AL prefixed to their name.
Symbolic constants from the C header file <audio.h> are defined in the standard module AL, see below.

Warning: The current version of the audio library may dump core when bad argument values are passed rather
than returning an error status. Unfortunately, since the precise circumstances under which this may happen are
undocumented and hard to check, the Python interface can provide no protection against this kind of problems.
(One example is specifying an excessive queue size — there is no documented upper limit.)

The module defines the following functions:

openport(name, direction, [config])
The name and direction arguments are strings. The optional config argument is a configuration object as returned
by newconfig(). The return value is an audio port object; methods of audio port objects are described below.

newconfig()
The return value is a new audio configuration object; methods of audio configuration objects are described
below.

queryparams(device)
The device argument is an integer. The return value is a list of integers containing the data returned by
ALqueryparams().

getparams(device, list)
The device argument is an integer. The list argument is a list such as returned by queryparams(); it is
modified in place (!).

setparams(device, list)
The device argument is an integer. The list argument is a list such as returned by queryparams().

1183

The Python Library Reference, Release 2.6.9

38.1.1 Configuration Objects

Configuration objects returned by newconfig() have the following methods:

audio configuration.getqueuesize()()
Return the queue size.

audio configuration.setqueuesize(size)()
Set the queue size.

audio configuration.getwidth()()
Get the sample width.

audio configuration.setwidth(width)()
Set the sample width.

audio configuration.getchannels()()
Get the channel count.

audio configuration.setchannels(nchannels)()
Set the channel count.

audio configuration.getsampfmt()()
Get the sample format.

audio configuration.setsampfmt(sampfmt)()
Set the sample format.

audio configuration.getfloatmax()()
Get the maximum value for floating sample formats.

audio configuration.setfloatmax(floatmax)()
Set the maximum value for floating sample formats.

38.1.2 Port Objects

Port objects, as returned by openport(), have the following methods:

audio port.closeport()()
Close the port.

audio port.getfd()()
Return the file descriptor as an int.

audio port.getfilled()()
Return the number of filled samples.

audio port.getfillable()()
Return the number of fillable samples.

audio port.readsamps(nsamples)()
Read a number of samples from the queue, blocking if necessary. Return the data as a string containing the raw
data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if you have set the sample width to
2 bytes).

audio port.writesamps(samples)()
Write samples into the queue, blocking if necessary. The samples are encoded as described for the
readsamps() return value.

audio port.getfillpoint()()
Return the ‘fill point’.

1184 Chapter 38. SGI IRIX Specific Services

The Python Library Reference, Release 2.6.9

audio port.setfillpoint(fillpoint)()
Set the ‘fill point’.

audio port.getconfig()()
Return a configuration object containing the current configuration of the port.

audio port.setconfig(config)()
Set the configuration from the argument, a configuration object.

audio port.getstatus(list)()
Get status information on last error.

38.2 AL — Constants used with the al module

Platforms: IRIX Deprecated since version 2.6: The AL module has been deprecated for removal in Python 3.0. This
module defines symbolic constants needed to use the built-in module al (see above); they are equivalent to those
defined in the C header file <audio.h> except that the name prefix AL_ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

import al
from AL import *

38.3 cd — CD-ROM access on SGI systems

Platforms: IRIX Deprecated since version 2.6: The cd module has been deprecated for removal in Python 3.0. This
module provides an interface to the Silicon Graphics CD library. It is available only on Silicon Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device with open() and creates a parser to
parse the data from the CD with createparser(). The object returned by open() can be used to read data from
the CD, but also to get status information for the CD-ROM device, and to get information about the CD, such as the
table of contents. Data from the CD is passed to the parser, which parses the frames, and calls any callback functions
that have previously been added.

An audio CD is divided into tracks or programs (the terms are used interchangeably). Tracks can be subdivided into
indices. An audio CD contains a table of contents which gives the starts of the tracks on the CD. Index 0 is usually the
pause before the start of a track. The start of the track as given by the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values, minutes, seconds
and frames. Most functions use the latter representation. Positions can be both relative to the beginning of the CD,
and to the beginning of the track.

Module cd defines the following functions and constants:

createparser()
Create and return an opaque parser object. The methods of the parser object are described below.

msftoframe(minutes, seconds, frames)
Converts a (minutes, seconds, frames) triple representing time in absolute time code into the corre-
sponding CD frame number.

open([device, [mode]])
Open the CD-ROM device. The return value is an opaque player object; methods of the player object are
described below. The device is the name of the SCSI device file, e.g. ’/dev/scsi/sc0d4l0’, or None.
If omitted or None, the hardware inventory is consulted to locate a CD-ROM drive. The mode, if not omitted,
should be the string ’r’.

The module defines the following variables:

38.2. AL — Constants used with the al module 1185

The Python Library Reference, Release 2.6.9

exception error
Exception raised on various errors.

DATASIZE
The size of one frame’s worth of audio data. This is the size of the audio data as passed to the callback of type
audio.

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned by getstatus():

READY
The drive is ready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM
The drive is loaded with a CD-ROM. Subsequent play or read operations will return I/O errors.

ERROR
An error occurred while trying to read the disc or its table of contents.

PLAYING
The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED
The drive is in CD layer mode with play paused.

STILL
The equivalent of PAUSED on older (non 3301) model Toshiba CD-ROM drives. Such drives have never been
shipped by SGI.

audio
pnum
index
ptime
atime
catalog
ident
control

Integer constants describing the various types of parser callbacks that can be set by the addcallback()
method of CD parser objects (see below).

38.3.1 Player Objects

Player objects (returned by open()) have the following methods:

CD player.allowremoval()()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

CD player.bestreadsize()()
Returns the best value to use for the num_frames parameter of the readda() method. Best is defined as the
value that permits a continuous flow of data from the CD-ROM drive.

CD player.close()()
Frees the resources associated with the player object. After calling close(), the methods of the object should
no longer be used.

1186 Chapter 38. SGI IRIX Specific Services

The Python Library Reference, Release 2.6.9

CD player.eject()()
Ejects the caddy from the CD-ROM drive.

CD player.getstatus()()
Returns information pertaining to the current state of the CD-ROM drive. The returned information is a tuple
with the following values: state, track, rtime, atime, ttime, first, last, scsi_audio, cur_block. rtime is the time
relative to the start of the current track; atime is the time relative to the beginning of the disc; ttime is the total
time on the disc. For more information on the meaning of the values, see the man page CDgetstatus(3dm).
The value of state is one of the following: ERROR, NODISC, READY, PLAYING, PAUSED, STILL, or CDROM.

CD player.gettrackinfo(track)()
Returns information about the specified track. The returned information is a tuple consisting of two elements,
the start time of the track and the duration of the track.

CD player.msftoblock(min, sec, frame)()
Converts a minutes, seconds, frames triple representing a time in absolute time code into the corresponding logi-
cal block number for the given CD-ROM drive. You should use msftoframe() rather than msftoblock()
for comparing times. The logical block number differs from the frame number by an offset required by certain
CD-ROM drives.

CD player.play(start, play)()
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output appears on the
CD-ROM drive’s headphone and audio jacks (if fitted). Play stops at the end of the disc. start is the number of
the track at which to start playing the CD; if play is 0, the CD will be set to an initial paused state. The method
togglepause() can then be used to commence play.

CD player.playabs(minutes, seconds, frames, play)()
Like play(), except that the start is given in minutes, seconds, and frames instead of a track number.

CD player.playtrack(start, play)()
Like play(), except that playing stops at the end of the track.

CD player.playtrackabs(track, minutes, seconds, frames, play)()
Like play(), except that playing begins at the specified absolute time and ends at the end of the specified
track.

CD player.preventremoval()()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting the caddy.

CD player.readda(num_frames)()
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The return value is a
string representing the audio frames. This string can be passed unaltered to the parseframe() method of the
parser object.

CD player.seek(minutes, seconds, frames)()
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to an absolute time code location specified in minutes, seconds, and frames. The return value is the
logical block number to which the pointer has been set.

CD player.seekblock(block)()
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified logical block number. The return value is the logical block number to which the
pointer has been set.

CD player.seektrack(track)()
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified track. The return value is the logical block number to which the pointer has been
set.

38.3. cd — CD-ROM access on SGI systems 1187

The Python Library Reference, Release 2.6.9

CD player.stop()()
Stops the current playing operation.

CD player.togglepause()()
Pauses the CD if it is playing, and makes it play if it is paused.

38.3.2 Parser Objects

Parser objects (returned by createparser()) have the following methods:

CD parser.addcallback(type, func, arg)()
Adds a callback for the parser. The parser has callbacks for eight different types of data in the digital audio
data stream. Constants for these types are defined at the cd module level (see above). The callback is called
as follows: func(arg, type, data), where arg is the user supplied argument, type is the particular type
of callback, and data is the data returned for this type of callback. The type of the data depends on the type of
callback as follows:

Type Value
audio String which can be passed unmodified to al.writesamps().
pnum Integer giving the program (track) number.
index Integer giving the index number.
ptime Tuple consisting of the program time in minutes, seconds, and frames.
atime Tuple consisting of the absolute time in minutes, seconds, and frames.
catalogString of 13 characters, giving the catalog number of the CD.
ident String of 12 characters, giving the ISRC identification number of the recording. The string consists of

two characters country code, three characters owner code, two characters giving the year, and five
characters giving a serial number.

controlInteger giving the control bits from the CD subcode data

CD parser.deleteparser()()
Deletes the parser and frees the memory it was using. The object should not be used after this call. This call is
done automatically when the last reference to the object is removed.

CD parser.parseframe(frame)()
Parses one or more frames of digital audio data from a CD such as returned by readda(). It determines which
subcodes are present in the data. If these subcodes have changed since the last frame, then parseframe()
executes a callback of the appropriate type passing to it the subcode data found in the frame. Unlike the C
function, more than one frame of digital audio data can be passed to this method.

CD parser.removecallback(type)()
Removes the callback for the given type.

CD parser.resetparser()()
Resets the fields of the parser used for tracking subcodes to an initial state. resetparser() should be called
after the disc has been changed.

38.4 fl — FORMS library for graphical user interfaces

Platforms: IRIX Deprecated since version 2.6: The fl module has been deprecated for removal in Python 3.0. This
module provides an interface to the FORMS Library by Mark Overmars. The source for the library can be retrieved
by anonymous ftp from host ftp.cs.ruu.nl, directory SGI/FORMS. It was last tested with version 2.0b.

Most functions are literal translations of their C equivalents, dropping the initial fl_ from their name. Constants used
by the library are defined in module FL described below.

1188 Chapter 38. SGI IRIX Specific Services

The Python Library Reference, Release 2.6.9

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained by the library
to which new FORMS objects are added, all functions that add a FORMS object to a form are methods of the Python
object representing the form. Consequently, there are no Python equivalents for the C functions fl_addto_form()
and fl_end_form(), and the equivalent of fl_bgn_form() is called fl.make_form().

Watch out for the somewhat confusing terminology: FORMS uses the word object for the buttons, sliders etc. that
you can place in a form. In Python, ‘object’ means any value. The Python interface to FORMS introduces two new
Python object types: form objects (representing an entire form) and FORMS objects (representing one button, slider
etc.). Hopefully this isn’t too confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an easy way to add object classes written
in Python. The FORMS interface to GL event handling is available, though, so you can mix FORMS with pure GL
windows.

Please note: importing fl implies a call to the GL function foreground() and to the FORMS routine
fl_init().

38.4.1 Functions Defined in Module fl

Module fl defines the following functions. For more information about what they do, see the description of the
equivalent C function in the FORMS documentation:

make_form(type, width, height)
Create a form with given type, width and height. This returns a form object, whose methods are described below.

do_forms()
The standard FORMS main loop. Returns a Python object representing the FORMS object needing interaction,
or the special value FL.EVENT.

check_forms()
Check for FORMS events. Returns what do_forms() above returns, or None if there is no event that imme-
diately needs interaction.

set_event_call_back(function)
Set the event callback function.

set_graphics_mode(rgbmode, doublebuffering)
Set the graphics modes.

get_rgbmode()
Return the current rgb mode. This is the value of the C global variable fl_rgbmode.

show_message(str1, str2, str3)
Show a dialog box with a three-line message and an OK button.

show_question(str1, str2, str3)
Show a dialog box with a three-line message and YES and NO buttons. It returns 1 if the user pressed YES, 0
if NO.

show_choice(str1, str2, str3, but1, [but2, [but3]])
Show a dialog box with a three-line message and up to three buttons. It returns the number of the button clicked
by the user (1, 2 or 3).

show_input(prompt, default)
Show a dialog box with a one-line prompt message and text field in which the user can enter a string. The second
argument is the default input string. It returns the string value as edited by the user.

show_file_selector(message, directory, pattern, default)
Show a dialog box in which the user can select a file. It returns the absolute filename selected by the user, or
None if the user presses Cancel.

38.4. fl — FORMS library for graphical user interfaces 1189

The Python Library Reference, Release 2.6.9

get_directory()
get_pattern()
get_filename()

These functions return the directory, pattern and filename (the tail part only) selected by the user in the last
show_file_selector() call.

qdevice(dev)
unqdevice(dev)
isqueued(dev)
qtest()
qread()
qreset()
qenter(dev, val)
get_mouse()
tie(button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use these if you want to handle
some GL events yourself when using fl.do_events(). When a GL event is detected that FORMS cannot
handle, fl.do_forms() returns the special value FL.EVENT and you should call fl.qread() to read the
event from the queue. Don’t use the equivalent GL functions!

color()
mapcolor()
getmcolor()

See the description in the FORMS documentation of fl_color(), fl_mapcolor() and
fl_getmcolor().

38.4.2 Form Objects

Form objects (returned by make_form() above) have the following methods. Each method corresponds to a C
function whose name is prefixed with fl_; and whose first argument is a form pointer; please refer to the official
FORMS documentation for descriptions.

All the add_*() methods return a Python object representing the FORMS object. Methods of FORMS objects are
described below. Most kinds of FORMS object also have some methods specific to that kind; these methods are listed
here.

show_form(placement, bordertype, name)
Show the form.

hide_form()
Hide the form.

redraw_form()
Redraw the form.

set_form_position(x, y)
Set the form’s position.

freeze_form()
Freeze the form.

unfreeze_form()
Unfreeze the form.

activate_form()
Activate the form.

deactivate_form()
Deactivate the form.

1190 Chapter 38. SGI IRIX Specific Services

The Python Library Reference, Release 2.6.9

bgn_group()
Begin a new group of objects; return a group object.

end_group()
End the current group of objects.

find_first()
Find the first object in the form.

find_last()
Find the last object in the form.

add_box(type, x, y, w, h, name)
Add a box object to the form. No extra methods.

add_text(type, x, y, w, h, name)
Add a text object to the form. No extra methods.

add_clock(type, x, y, w, h, name)
Add a clock object to the form. — Method: get_clock().

add_button(type, x, y, w, h, name)
Add a button object to the form. — Methods: get_button(), set_button().

add_lightbutton(type, x, y, w, h, name)
Add a lightbutton object to the form. — Methods: get_button(), set_button().

add_roundbutton(type, x, y, w, h, name)
Add a roundbutton object to the form. — Methods: get_button(), set_button().

add_slider(type, x, y, w, h, name)
Add a slider object to the form. — Methods: set_slider_value(), get_slider_value(),
set_slider_bounds(), get_slider_bounds(), set_slider_return(),
set_slider_size(), set_slider_precision(), set_slider_step().

add_valslider(type, x, y, w, h, name)
Add a valslider object to the form. — Methods: set_slider_value(), get_slider_value(),
set_slider_bounds(), get_slider_bounds(), set_slider_return(),
set_slider_size(), set_slider_precision(), set_slider_step().

add_dial(type, x, y, w, h, name)
Add a dial object to the form. — Methods: set_dial_value(), get_dial_value(),
set_dial_bounds(), get_dial_bounds().

add_positioner(type, x, y, w, h, name)
Add a positioner object to the form. — Methods: set_positioner_xvalue(),
set_positioner_yvalue(), set_positioner_xbounds(), set_positioner_ybounds(),
get_positioner_xvalue(), get_positioner_yvalue(), get_positioner_xbounds(),
get_positioner_ybounds().

add_counter(type, x, y, w, h, name)
Add a counter object to the form. — Methods: set_counter_value(), get_counter_value(),
set_counter_bounds(), set_counter_step(), set_counter_precision(),
set_counter_return().

add_input(type, x, y, w, h, name)
Add a input object to the form. — Methods: set_input(), get_input(), set_input_color(),
set_input_return().

add_menu(type, x, y, w, h, name)
Add a menu object to the form. — Methods: set_menu(), get_menu(), addto_menu().

38.4. fl — FORMS library for graphical user interfaces 1191

The Python Library Reference, Release 2.6.9

add_choice(type, x, y, w, h, name)
Add a choice object to the form. — Methods: set_choice(), get_choice(), clear_choice(),
addto_choice(), replace_choice(), delete_choice(), get_choice_text(),
set_choice_fontsize(), set_choice_fontstyle().

add_browser(type, x, y, w, h, name)
Add a browser object to the form. — Methods: set_browser_topline(),
clear_browser(), add_browser_line(), addto_browser(), insert_browser_line(),
delete_browser_line(), replace_browser_line(), get_browser_line(),
load_browser(), get_browser_maxline(), select_browser_line(),
deselect_browser_line(), deselect_browser(), isselected_browser_line(),
get_browser(), set_browser_fontsize(), set_browser_fontstyle(),
set_browser_specialkey().

add_timer(type, x, y, w, h, name)
Add a timer object to the form. — Methods: set_timer(), get_timer().

Form objects have the following data attributes; see the FORMS documentation:

Name C Type Meaning
window int (read-only) GL window id
w float form width
h float form height
x float form x origin
y float form y origin
deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

38.4.3 FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the following methods:

FORMS object.set_call_back(function, argument)()
Set the object’s callback function and argument. When the object needs interaction, the callback function will be
called with two arguments: the object, and the callback argument. (FORMS objects without a callback function
are returned by fl.do_forms() or fl.check_forms() when they need interaction.) Call this method
without arguments to remove the callback function.

FORMS object.delete_object()()
Delete the object.

FORMS object.show_object()()
Show the object.

FORMS object.hide_object()()
Hide the object.

FORMS object.redraw_object()()
Redraw the object.

FORMS object.freeze_object()()
Freeze the object.

FORMS object.unfreeze_object()()
Unfreeze the object.

1192 Chapter 38. SGI IRIX Specific Services

The Python Library Reference, Release 2.6.9

FORMS objects have these data attributes; see the FORMS documentation:

Name C Type Meaning
objclass int (read-only) object class
type int (read-only) object type
boxtype int box type
x float x origin
y float y origin
w float width
h float height
col1 int primary color
col2 int secondary color
align int alignment
lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) (see FORMS docs)
focus int (read-only) (see FORMS docs)
belowmouse int (read-only) (see FORMS docs)
frozen int (read-only) (see FORMS docs)
active int (read-only) (see FORMS docs)
input int (read-only) (see FORMS docs)
visible int (read-only) (see FORMS docs)
radio int (read-only) (see FORMS docs)
automatic int (read-only) (see FORMS docs)

38.5 FL — Constants used with the fl module

Platforms: IRIX Deprecated since version 2.6: The FL module has been deprecated for removal in Python 3.0. This
module defines symbolic constants needed to use the built-in module fl (see above); they are equivalent to those
defined in the C header file <forms.h> except that the name prefix FL_ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

import fl
from FL import *

38.6 flp — Functions for loading stored FORMS designs

Platforms: IRIX Deprecated since version 2.6: The flp module has been deprecated for removal in Python 3.0. This
module defines functions that can read form definitions created by the ‘form designer’ (fdesign) program that comes
with the FORMS library (see module fl above).

For now, see the file flp.doc in the Python library source directory for a description.

XXX A complete description should be inserted here!

38.7 fm — Font Manager interface

Platforms: IRIX Deprecated since version 2.6: The fm module has been deprecated for removal in Python 3.0. This
module provides access to the IRIS Font Manager library. It is available only on Silicon Graphics machines. See also:

38.5. FL — Constants used with the fl module 1193

The Python Library Reference, Release 2.6.9

4Sight User’s Guide, section 1, chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix operations; cache
operations; character operations (use string operations instead); some details of font info; individual glyph metrics;
and printer matching.

It supports the following operations:

init()
Initialization function. Calls fminit(). It is normally not necessary to call this function, since it is called
automatically the first time the fm module is imported.

findfont(fontname)
Return a font handle object. Calls fmfindfont(fontname).

enumerate()
Returns a list of available font names. This is an interface to fmenumerate().

prstr(string)
Render a string using the current font (see the setfont() font handle method below). Calls
fmprstr(string).

setpath(string)
Sets the font search path. Calls fmsetpath(string). (XXX Does not work!?!)

fontpath()
Returns the current font search path.

Font handle objects support the following operations:

font handle.scalefont(factor)()
Returns a handle for a scaled version of this font. Calls fmscalefont(fh, factor).

font handle.setfont()()
Makes this font the current font. Note: the effect is undone silently when the font handle object is deleted. Calls
fmsetfont(fh).

font handle.getfontname()()
Returns this font’s name. Calls fmgetfontname(fh).

font handle.getcomment()()
Returns the comment string associated with this font. Raises an exception if there is none. Calls
fmgetcomment(fh).

font handle.getfontinfo()()
Returns a tuple giving some pertinent data about this font. This is an interface to fmgetfontinfo(). The re-
turned tuple contains the following numbers: (printermatched, fixed_width, xorig, yorig,
xsize, ysize, height, nglyphs).

font handle.getstrwidth(string)()
Returns the width, in pixels, of string when drawn in this font. Calls fmgetstrwidth(fh, string).

38.8 gl — Graphics Library interface

Platforms: IRIX Deprecated since version 2.6: The gl module has been deprecated for removal in Python 3.0. This
module provides access to the Silicon Graphics Graphics Library. It is available only on Silicon Graphics machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular, the use of
most GL calls is unsafe before the first window is opened.

1194 Chapter 38. SGI IRIX Specific Services

The Python Library Reference, Release 2.6.9

The module is too large to document here in its entirety, but the following should help you to get started. The parameter
conventions for the C functions are translated to Python as follows:

• All (short, long, unsigned) int values are represented by Python integers.

• All float and double values are represented by Python floating point numbers. In most cases, Python integers
are also allowed.

• All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

• All string and character arguments are represented by Python strings, for instance, winopen(’Hi There!’)
and rotate(900, ’z’).

• All (short, long, unsigned) integer arguments or return values that are only used to specify the length of an array
argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

• Output arguments are omitted from the argument list; they are transmitted as function return values instead. If
more than one value must be returned, the return value is a tuple. If the C function has both a regular return
value (that is not omitted because of the previous rule) and an output argument, the return value comes first in
the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

varray(argument)
Equivalent to but faster than a number of v3d() calls. The argument is a list (or tuple) of points. Each point
must be a tuple of coordinates (x, y, z) or (x, y). The points may be 2- or 3-dimensional but must all
have the same dimension. Float and int values may be mixed however. The points are always converted to 3D
double precision points by assuming z = 0.0 if necessary (as indicated in the man page), and for each point
v3d() is called.

nvarray()
Equivalent to but faster than a number of n3f and v3f calls. The argument is an array (list or tuple) of pairs
of normals and points. Each pair is a tuple of a point and a normal for that point. Each point or normal must be
a tuple of coordinates (x, y, z). Three coordinates must be given. Float and int values may be mixed. For
each pair, n3f() is called for the normal, and then v3f() is called for the point.

vnarray()
Similar to nvarray() but the pairs have the point first and the normal second.

nurbssurface(s_k, t_k, ctl, s_ord, t_ord, type)
Defines a nurbs surface. The dimensions of ctl[][] are computed as follows: [len(s_k) - s_ord],
[len(t_k) - t_ord].

nurbscurve(knots, ctlpoints, order, type)
Defines a nurbs curve. The length of ctlpoints is len(knots) - order.

pwlcurve(points, type)
Defines a piecewise-linear curve. points is a list of points. type must be N_ST.

pick(n)
select(n)

The only argument to these functions specifies the desired size of the pick or select buffer.

38.8. gl — Graphics Library interface 1195

The Python Library Reference, Release 2.6.9

endpick()
endselect()

These functions have no arguments. They return a list of integers representing the used part of the pick/select
buffer. No method is provided to detect buffer overrun.

Here is a tiny but complete example GL program in Python:

import gl, GL, time

def main():
gl.foreground()
gl.prefposition(500, 900, 500, 900)
w = gl.winopen(’CrissCross’)
gl.ortho2(0.0, 400.0, 0.0, 400.0)
gl.color(GL.WHITE)
gl.clear()
gl.color(GL.RED)
gl.bgnline()
gl.v2f(0.0, 0.0)
gl.v2f(400.0, 400.0)
gl.endline()
gl.bgnline()
gl.v2f(400.0, 0.0)
gl.v2f(0.0, 400.0)
gl.endline()
time.sleep(5)

main()

See Also:

PyOpenGL: The Python OpenGL Binding An interface to OpenGL is also available; see information about the
PyOpenGL project online at http://pyopengl.sourceforge.net/. This may be a better option if support for SGI
hardware from before about 1996 is not required.

38.9 DEVICE — Constants used with the gl module

Platforms: IRIX Deprecated since version 2.6: The DEVICE module has been deprecated for removal in Python 3.0.
This modules defines the constants used by the Silicon Graphics Graphics Library that C programmers find in the
header file <gl/device.h>. Read the module source file for details.

38.10 GL — Constants used with the gl module

Platforms: IRIX Deprecated since version 2.6: The GL module has been deprecated for removal in Python 3.0. This
module contains constants used by the Silicon Graphics Graphics Library from the C header file <gl/gl.h>. Read
the module source file for details.

38.11 imgfile — Support for SGI imglib files

Platforms: IRIX Deprecated since version 2.6: The imgfile module has been deprecated for removal in Python
3.0. The imgfile module allows Python programs to access SGI imglib image files (also known as .rgb files).

1196 Chapter 38. SGI IRIX Specific Services

http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/

The Python Library Reference, Release 2.6.9

The module is far from complete, but is provided anyway since the functionality that there is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

exception error
This exception is raised on all errors, such as unsupported file type, etc.

getsizes(file)
This function returns a tuple (x, y, z) where x and y are the size of the image in pixels and z is the number
of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently supported.

read(file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string has
either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format
is suitable to pass to gl.lrectwrite(), for instance.

readscaled(file, x, y, filter, [blur])
This function is identical to read but it returns an image that is scaled to the given x and y sizes. If the filter and
blur parameters are omitted scaling is done by simply dropping or duplicating pixels, so the result will be less
than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smooth the image after scaling. The filter forms supported are
’impulse’, ’box’, ’triangle’, ’quadratic’ and ’gaussian’. If a filter is specified blur is an
optional parameter specifying the blurriness of the filter. It defaults to 1.0.

readscaled() makes no attempt to keep the aspect ratio correct, so that is the users’ responsibility.

ttob(flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

write(file, data, x, y, z)
This function writes the RGB or greyscale data in data to image file file. x and y give the size of the image, z is
1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values of which only the lower
three bytes are used). These are the formats returned by gl.lrectread().

38.12 jpeg — Read and write JPEG files

Platforms: IRIX Deprecated since version 2.6: The jpeg module has been deprecated for removal in Python 3.0.
The module jpeg provides access to the jpeg compressor and decompressor written by the Independent JPEG Group
(IJG). JPEG is a standard for compressing pictures; it is defined in ISO 10918. For details on JPEG or the Independent
JPEG Group software refer to the JPEG standard or the documentation provided with the software. A portable
interface to JPEG image files is available with the Python Imaging Library (PIL) by Fredrik Lundh. Information on
PIL is available at http://www.pythonware.com/products/pil/.

The jpeg module defines an exception and some functions.

exception error
Exception raised by compress() and decompress() in case of errors.

compress(data, w, h, b)
Treat data as a pixmap of width w and height h, with b bytes per pixel. The data is in SGI GL order, so the first
pixel is in the lower-left corner. This means that gl.lrectread() return data can immediately be passed to
compress(). Currently only 1 byte and 4 byte pixels are allowed, the former being treated as greyscale and
the latter as RGB color. compress() returns a string that contains the compressed picture, in JFIF format.

38.12. jpeg — Read and write JPEG files 1197

http://www.pythonware.com/products/pil/

The Python Library Reference, Release 2.6.9

decompress(data)
Data is a string containing a picture in JFIF format. It returns a tuple (data, width, height,
bytesperpixel). Again, the data is suitable to pass to gl.lrectwrite().

setoption(name, value)
Set various options. Subsequent compress() and decompress() calls will use these options. The follow-
ing options are available:

Option Effect
’forcegray’Force output to be grayscale, even if input is RGB.
’quality’ Set the quality of the compressed image to a value between 0 and 100 (default is 75). This only

affects compression.
’optimize’ Perform Huffman table optimization. Takes longer, but results in smaller compressed image. This

only affects compression.
’smooth’ Perform inter-block smoothing on uncompressed image. Only useful for low- quality images.

This only affects decompression.

See Also:

JPEG Still Image Data Compression Standard The canonical reference for the JPEG image format, by Pennebaker
and Mitchell.

Information Technology - Digital Compression and Coding of Continuous-tone Still Images - Requirements and Guidelines
The ISO standard for JPEG is also published as ITU T.81. This is available online in PDF form.

1198 Chapter 38. SGI IRIX Specific Services

http://www.w3.org/Graphics/JPEG/itu-t81.pdf

CHAPTER

THIRTYNINE

SUNOS SPECIFIC SERVICES

The modules described in this chapter provide interfaces to features that are unique to SunOS 5 (also known as Solaris
version 2).

39.1 sunaudiodev — Access to Sun audio hardware

Platforms: SunOS Deprecated since version 2.6: The sunaudiodev module has been deprecated for removal in
Python 3.0. This module allows you to access the Sun audio interface. The Sun audio hardware is capable of recording
and playing back audio data in u-LAW format with a sample rate of 8K per second. A full description can be found in
the audio(7I) manual page. The module SUNAUDIODEV defines constants which may be used with this module.

This module defines the following variables and functions:

exception error
This exception is raised on all errors. The argument is a string describing what went wrong.

open(mode)
This function opens the audio device and returns a Sun audio device object. This object can then be used to do
I/O on. The mode parameter is one of ’r’ for record-only access, ’w’ for play-only access, ’rw’ for both and
’control’ for access to the control device. Since only one process is allowed to have the recorder or player
open at the same time it is a good idea to open the device only for the activity needed. See audio(7I) for
details.

As per the manpage, this module first looks in the environment variable AUDIODEV for the base audio device
filename. If not found, it falls back to /dev/audio. The control device is calculated by appending “ctl” to the
base audio device.

39.1.1 Audio Device Objects

The audio device objects are returned by open() define the following methods (except control objects which only
provide getinfo(), setinfo(), fileno(), and drain()):

audio device.close()()
This method explicitly closes the device. It is useful in situations where deleting the object does not immediately
close it since there are other references to it. A closed device should not be used again.

audio device.fileno()()
Returns the file descriptor associated with the device. This can be used to set up SIGPOLL notification, as
described below.

1199

The Python Library Reference, Release 2.6.9

audio device.drain()()
This method waits until all pending output is processed and then returns. Calling this method is often not
necessary: destroying the object will automatically close the audio device and this will do an implicit drain.

audio device.flush()()
This method discards all pending output. It can be used avoid the slow response to a user’s stop request (due to
buffering of up to one second of sound).

audio device.getinfo()()
This method retrieves status information like input and output volume, etc. and returns it in the form of an
audio status object. This object has no methods but it contains a number of attributes describing the current
device status. The names and meanings of the attributes are described in <sun/audioio.h> and in the
audio(7I) manual page. Member names are slightly different from their C counterparts: a status object is
only a single structure. Members of the play substructure have o_ prepended to their name and members of
the record structure have i_. So, the C member play.sample_rate is accessed as o_sample_rate,
record.gain as i_gain and monitor_gain plainly as monitor_gain.

audio device.ibufcount()()
This method returns the number of samples that are buffered on the recording side, i.e. the program will not
block on a read() call of so many samples.

audio device.obufcount()()
This method returns the number of samples buffered on the playback side. Unfortunately, this number cannot
be used to determine a number of samples that can be written without blocking since the kernel output queue
length seems to be variable.

audio device.read(size)()
This method reads size samples from the audio input and returns them as a Python string. The function blocks
until enough data is available.

audio device.setinfo(status)()
This method sets the audio device status parameters. The status parameter is an device status object as returned
by getinfo() and possibly modified by the program.

audio device.write(samples)()
Write is passed a Python string containing audio samples to be played. If there is enough buffer space free it
will immediately return, otherwise it will block.

The audio device supports asynchronous notification of various events, through the SIGPOLL signal. Here’s an exam-
ple of how you might enable this in Python:

def handle_sigpoll(signum, frame):
print ’I got a SIGPOLL update’

import fcntl, signal, STROPTS

signal.signal(signal.SIGPOLL, handle_sigpoll)
fcntl.ioctl(audio_obj.fileno(), STROPTS.I_SETSIG, STROPTS.S_MSG)

39.2 SUNAUDIODEV — Constants used with sunaudiodev

Platforms: SunOS Deprecated since version 2.6: The SUNAUDIODEV module has been deprecated for removal
in Python 3.0. This is a companion module to sunaudiodev which defines useful symbolic constants like
MIN_GAIN, MAX_GAIN, SPEAKER, etc. The names of the constants are the same names as used in the C include file
<sun/audioio.h>, with the leading string AUDIO_ stripped.

1200 Chapter 39. SunOS Specific Services

CHAPTER

FORTY

UNDOCUMENTED MODULES

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel free to
contribute documentation for them! (Send via email to docs@python.org.)

The idea and original contents for this chapter were taken from a posting by Fredrik Lundh; the specific contents of
this chapter have been substantially revised.

40.1 Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm.”

ihooks — Import hook support (for rexec; may become obsolete). Removed in Python 3.x.

40.2 Platform specific modules

These modules are used to implement the os.path module, and are not documented beyond this mention. There’s
little need to document these.

ntpath — Implementation of os.path on Win32, Win64, WinCE, and OS/2 platforms.

posixpath — Implementation of os.path on POSIX.

bsddb185 — Backwards compatibility module for systems which still use the Berkeley DB 1.85 module. It is
normally only available on certain BSD Unix-based systems. It should never be used directly.

40.3 Multimedia

audiodev — Platform-independent API for playing audio data. Removed in Python 3.x.

linuxaudiodev — Play audio data on the Linux audio device. Replaced in Python 2.3 by the ossaudiodev
module. Removed in Python 3.x.

sunaudio — Interpret Sun audio headers (may become obsolete or a tool/demo). Removed in Python 3.x.

toaiff — Convert “arbitrary” sound files to AIFF files; should probably become a tool or demo. Requires the
external program sox. Removed in Python 3.x.

1201

mailto:docs@python.org

The Python Library Reference, Release 2.6.9

40.4 Undocumented Mac OS modules

40.4.1 applesingle — AppleSingle decoder

Platforms: Mac Deprecated since version 2.6.

40.4.2 buildtools — Helper module for BuildApplet and Friends

Platforms: Mac Deprecated since version 2.4.

40.4.3 cfmfile — Code Fragment Resource module

Platforms: Mac

cfmfile is a module that understands Code Fragments and the accompanying “cfrg” resources. It can parse them
and merge them, and is used by BuildApplication to combine all plugin modules to a single executable. Deprecated
since version 2.4.

40.4.4 icopen — Internet Config replacement for open()

Platforms: Mac

Importing icopenwill replace the built-in open()with a version that uses Internet Config to set file type and creator
for new files. Deprecated since version 2.6.

40.4.5 macerrors — Mac OS Errors

Platforms: Mac

macerrors contains constant definitions for many Mac OS error codes. Deprecated since version 2.6.

40.4.6 macresource — Locate script resources

Platforms: Mac

macresource helps scripts finding their resources, such as dialogs and menus, without requiring special case code
for when the script is run under MacPython, as a MacPython applet or under OSX Python. Deprecated since version
2.6.

40.4.7 Nav — NavServices calls

Platforms: Mac

A low-level interface to Navigation Services. Deprecated since version 2.6.

1202 Chapter 40. Undocumented Modules

The Python Library Reference, Release 2.6.9

40.4.8 PixMapWrapper — Wrapper for PixMap objects

Platforms: Mac

PixMapWrapper wraps a PixMap object with a Python object that allows access to the fields by name. It also has
methods to convert to and from PIL images. Deprecated since version 2.6.

40.4.9 videoreader — Read QuickTime movies

Platforms: Mac

videoreader reads and decodes QuickTime movies and passes a stream of images to your program. It also provides
some support for audio tracks. Deprecated since version 2.6.

40.4.10 W — Widgets built on FrameWork

Platforms: Mac

The W widgets are used extensively in the IDE. Deprecated since version 2.6.

40.5 Obsolete

These modules are not normally available for import; additional work must be done to make them available.

These extension modules written in C are not built by default. Under Unix, these must be enabled by uncommenting
the appropriate lines in Modules/Setup in the build tree and either rebuilding Python if the modules are statically
linked, or building and installing the shared object if using dynamically-loaded extensions.

timing — Measure time intervals to high resolution (use time.clock() instead). Removed in Python 3.x.

40.6 SGI-specific Extension modules

The following are SGI specific, and may be out of touch with the current version of reality.

cl — Interface to the SGI compression library.

sv — Interface to the “simple video” board on SGI Indigo (obsolete hardware). Removed in Python 3.x.

40.5. Obsolete 1203

The Python Library Reference, Release 2.6.9

1204 Chapter 40. Undocumented Modules

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation.

abstract base class Abstract Base Classes (abbreviated ABCs) complement duck-typing by providing a way to define
interfaces when other techniques like hasattr() would be clumsy. Python comes with many built-in ABCs
for data structures (in the collections module), numbers (in the numbers module), and streams (in the io
module). You can create your own ABC with the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A function
or method may have both positional arguments and keyword arguments in its definition. Positional and keyword
arguments may be variable-length: * accepts or passes (if in the function definition or call) several positional
arguments in a list, while ** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to
run on a virtual machine that executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic class Any class which does not inherit from object. See new-style class. Classic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3,
4.5)) and results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible

1205

http://www.python.org/~guido/

The Python Library Reference, Release 2.6.9

types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just
3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

See the documentation for function definition (in The Python Language Reference) for more about decorators.

descriptor Any new-style object which defines the methods __get__(), __set__(), or __delete__().
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features including functions, methods, properties,
class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors (in The Python Language
Reference).

dictionary An associative array, where arbitrary keys are mapped to values. The use of dict closely resembles that
for list, but the keys can be any object with a __hash__() function, not just integers. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object (“If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance().
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is

1206 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python Library Reference, Release 2.6.9

characterized by the presence of many try and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as print or if. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

finder An object that tries to find the loader for a module. It must implement a method named find_module().
See PEP 302 for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which
it is executed had enabled true division by executing:

from __future__ import division

the expression 11/4 would evaluate to 2.75. By importing the __future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using a yield statement instead of a return statement. Generator functions often contain one or
more for or while loops which yield elements back to the caller. The function execution is stopped at the
yield keyword (returning the result) and is resumed there when the next element is requested by calling the
next() method of the returned iterator.

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional if expression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread executes in the CPython
virtual machine at a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

1207

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently eval-
uates to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two
integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such as a float), the result will be coerced (see coercion) to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using the // operator instead of the / operator. See also __future__.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop
and in many other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed
as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s next() method return successive
items in the stream. When no more data are available a StopIteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls to its next() method just raise StopIteration
again. Iterators are required to have an __iter__() method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (such as a list) produces a fresh new
iterator each time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found in Iterator Types.

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name
designates the local name in the function to which the value is assigned. ** is used to accept or pass a dictionary
of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

1208 Appendix A. Glossary

The Python Library Reference, Release 2.6.9

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all
elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details.

mapping A container object (such as dict) which supports arbitrary key lookups using the special method
__getitem__().

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in Customizing class creation (in The Python Language Reference).

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where the year is accessible either with an index such as
t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a self-
documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, and
__getattribute__().

More information can be found in New-style and classic classes (in The Python Language Reference).

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

1209

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.9

positional argument The arguments assigned to local names inside a function or method, determined by the order
in which they were given in the call. * is used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation,
[] with colons between numbers when several are given, such as in variable_name[1:3:5]. The
bracket (subscript) notation uses slice objects internally (or in older versions, __getslice__() and
__setslice__()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
Special method names (in The Python Language Reference).

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of several
constructs with a keyword, such as if, while or print.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

1210 Appendix A. Glossary

BIBLIOGRAPHY

[C99] ISO/IEC 9899:1999. “Programming languages – C.” A public draft of this standard is available at
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf .

1211

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

The Python Library Reference, Release 2.6.9

1212 Bibliography

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See Reporting Bugs for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably not complete
– if you feel that you or anyone else should be on this list, please let us know (send email to docs@python.org), and
we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesús Cea Avión, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander Be-
lopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl, Keith
Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario, Mike Clark-
son, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter Deutsch, Robert
Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson, Carey Evans, Martijn
Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Stefan Franke, Jim Fulton, Peter Funk, Lele Gaifax,
Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Shelley Gooch, Nathaniel
Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Harald Hanche-Olsen, Manus Hand,
Gerhard Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas Heller, Bernhard Herzog, Magnus L. Hetland,
Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl,
Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen,
Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan
Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno
Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André Lemburg,
Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh, Jeff MacDonald, John
Machin, Andrew MacIntyre, Vladimir Marangozov, Vincent Marchetti, Laura Matson, Daniel May, Rebecca Mc-
Creary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata,
Ng Pheng Siong, Koray Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani Palakodety,
William Park, Joonas Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin

1213

http://docutils.sf.net/rst.html
http://sphinx.pocoo.org/
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python Library Reference, Release 2.6.9

D. Pettit, Chris Phoenix, François Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider,
Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse
II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Scheme-
nauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Michael Simcich, Ionel Simionescu, Michael
Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks,
Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio,
Martijn Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy
Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

1214 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was formed,
a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes

Continued on next page

1215

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python Library Reference, Release 2.6.9

Table C.1 – continued from previous page
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.5.2 2.5.1 2008 PSF yes
2.5.3 2.5.2 2008 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
2.6.2 2.6.1 2009 PSF yes
2.6.3 2.6.2 2009 PSF yes
2.6.4 2.6.3 2009 PSF yes
2.6.5 2.6.4 2010 PSF yes
2.6.6 2.6.5 2010 PSF yes
2.6.7 2.6.6 2011 PSF yes
2.6.8 2.6.7 2012 PSF yes
2.6.9 2.6.8 2013 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.9

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.6.9 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.9 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2010 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.9 alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.9 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.6.9.

4. PSF is making Python 2.6.9 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.6.9 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.9 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.9, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

1216 Appendix C. History and License

The Python Library Reference, Release 2.6.9

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.6.9, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using

C.2. Terms and conditions for accessing or otherwise using Python 1217

http://www.pythonlabs.com/logos.html

The Python Library Reference, Release 2.6.9

the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

1218 Appendix C. History and License

http://hdl.handle.net/1895.22/1013

The Python Library Reference, Release 2.6.9

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

C.3. Licenses and Acknowledgements for Incorporated Software 1219

http://www.math.keio.ac.jp/
http://www.wide.ad.jp/

The Python Library Reference, Release 2.6.9

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |

1220 Appendix C. History and License

The Python Library Reference, Release 2.6.9

| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided ’as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

C.3. Licenses and Acknowledgements for Incorporated Software 1221

The Python Library Reference, Release 2.6.9

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

1222 Appendix C. History and License

The Python Library Reference, Release 2.6.9

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN

C.3. Licenses and Acknowledgements for Incorporated Software 1223

The Python Library Reference, Release 2.6.9

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

1224 Appendix C. History and License

The Python Library Reference, Release 2.6.9

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 1225

The Python Library Reference, Release 2.6.9

1226 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2013 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

1227

The Python Library Reference, Release 2.6.9

1228 Appendix D. Copyright

MODULE INDEX

Symbols
__builtin__, 1027
__future__, 1041
__main__, 1028
_winreg (Windows), 1130

A
abc, 1034
aepack (Mac), 1178
aetools (Mac), 1177
aetypes (Mac), 1179
aifc, 859
AL (IRIX), 1185
al (IRIX), 1183
anydbm, 285
applesingle (Mac), 1202
array, 164
ast, 1088
asynchat, 624
asyncore, 621
atexit, 1036
audioop, 855
autoGIL (Mac), 1167

B
base64, 696
BaseHTTPServer, 826
Bastion, 1062
bdb, 993
binascii, 699
binhex, 698
bisect, 163
bsddb, 290
buildtools (Mac), 1202
bz2, 315

C
calendar, 148
Carbon.AE (Mac), 1167
Carbon.AH (Mac), 1167
Carbon.App (Mac), 1167

Carbon.Appearance (Mac), 1167
Carbon.CarbonEvents (Mac), 1168
Carbon.CarbonEvt (Mac), 1168
Carbon.CF (Mac), 1168
Carbon.CG (Mac), 1168
Carbon.Cm (Mac), 1168
Carbon.Components (Mac), 1168
Carbon.ControlAccessor (Mac), 1168
Carbon.Controls (Mac), 1168
Carbon.CoreFounation (Mac), 1168
Carbon.CoreGraphics (Mac), 1168
Carbon.Ctl (Mac), 1168
Carbon.Dialogs (Mac), 1169
Carbon.Dlg (Mac), 1169
Carbon.Drag (Mac), 1169
Carbon.Dragconst (Mac), 1169
Carbon.Events (Mac), 1169
Carbon.Evt (Mac), 1169
Carbon.File (Mac), 1169
Carbon.Files (Mac), 1169
Carbon.Fm (Mac), 1169
Carbon.Folder (Mac), 1169
Carbon.Folders (Mac), 1169
Carbon.Fonts (Mac), 1170
Carbon.Help (Mac), 1170
Carbon.IBCarbon (Mac), 1170
Carbon.IBCarbonRuntime (Mac), 1170
Carbon.Icns (Mac), 1170
Carbon.Icons (Mac), 1170
Carbon.Launch (Mac), 1170
Carbon.LaunchServices (Mac), 1170
Carbon.List (Mac), 1170
Carbon.Lists (Mac), 1170
Carbon.MacHelp (Mac), 1170
Carbon.MediaDescr (Mac), 1171
Carbon.Menu (Mac), 1171
Carbon.Menus (Mac), 1171
Carbon.Mlte (Mac), 1171
Carbon.OSA (Mac), 1171
Carbon.OSAconst (Mac), 1171
Carbon.Qd (Mac), 1171

1229

The Python Library Reference, Release 2.6.9

Carbon.Qdoffs (Mac), 1171
Carbon.QDOffscreen (Mac), 1171
Carbon.Qt (Mac), 1171
Carbon.QuickDraw (Mac), 1171
Carbon.QuickTime (Mac), 1172
Carbon.Res (Mac), 1172
Carbon.Resources (Mac), 1172
Carbon.Scrap (Mac), 1172
Carbon.Snd (Mac), 1172
Carbon.Sound (Mac), 1172
Carbon.TE (Mac), 1172
cd (IRIX), 1185
cfmfile (Mac), 1202
cgi, 753
CGIHTTPServer, 830
cgitb, 759
chunk, 866
cmath, 197
cmd, 891
code, 1055
codecs, 106
codeop, 1057
collections, 151
colorsys, 867
compileall, 1099
compiler, 1111
compiler.ast, 1112
compiler.visitor, 1117
ConfigParser, 336
contextlib, 1032
Cookie, 839
cookielib, 831
copy, 184
copy_reg, 281
cPickle, 281
cProfile, 1003
crypt (Unix), 1142
cStringIO, 103
csv, 329
ctypes, 485
curses (Unix), 456
curses.ascii, 473
curses.panel, 475
curses.textpad, 471
curses.wrapper, 473

D
datetime, 125
dbhash, 289
dbm (Unix), 287
decimal, 200
DEVICE (IRIX), 1196
difflib, 92
dircache, 269

dis, 1100
distutils, 1053
dl (Unix), 1142
doctest, 948
DocXMLRPCServer, 853
dumbdbm, 292
dummy_thread, 534
dummy_threading, 534

E
EasyDialogs (Mac), 1161
email, 629
email.charset, 643
email.encoders, 646
email.errors, 646
email.generator, 638
email.header, 641
email.iterators, 649
email.message, 629
email.mime, 639
email.parser, 635
email.utils, 647
encodings.idna, 118
encodings.utf_8_sig, 119
errno, 479
exceptions, 55

F
fcntl (Unix), 1146
filecmp, 260
fileinput, 254
findertools (Mac), 1160
FL (IRIX), 1193
fl (IRIX), 1188
flp (IRIX), 1193
fm (IRIX), 1193
fnmatch, 265
formatter, 1119
fpectl (Unix), 1052
fpformat, 122
fractions, 224
FrameWork (Mac), 1163
ftplib, 790
functools, 241
future_builtins, 1027

G
gc, 1042
gdbm (Unix), 288
gensuitemodule (Mac), 1176
getopt, 417
getpass, 456
gettext, 875
GL (IRIX), 1196

1230 Module Index

The Python Library Reference, Release 2.6.9

gl (IRIX), 1194
glob, 264
grp (Unix), 1141
gzip, 313

H
hashlib, 349
heapq, 160
hmac, 350
hotshot, 1008
hotshot.stats, 1009
htmlentitydefs, 709
htmllib, 708
HTMLParser, 703
httplib, 785

I
ic (Mac), 1157
icopen (Mac), 1202
imageop, 858
imaplib, 795
imgfile (IRIX), 1196
imghdr, 867
imp, 1065
imputil, 1068
inspect, 1045
io, 379
itertools, 228

J
jpeg (IRIX), 1197
json, 659

K
keyword, 1096

L
lib2to3, 986
linecache, 266
locale, 884
logging, 419

M
macerrors (Mac), 1202
MacOS (Mac), 1158
macostools (Mac), 1160
macpath, 270
macresource (Mac), 1202
mailbox, 665
mailcap, 664
marshal, 284
math, 194
md5, 351
mhlib, 683

mimetools, 685
mimetypes, 686
MimeWriter, 688
mimify, 689
MiniAEFrame (Mac), 1180
mmap, 583
modulefinder, 1074
msilib (Windows), 1123
msvcrt (Windows), 1128
multifile, 690
multiprocessing, 535
multiprocessing.connection, 556
multiprocessing.dummy, 560
multiprocessing.managers, 549
multiprocessing.pool, 554
multiprocessing.sharedctypes, 547
mutex, 172

N
Nav (Mac), 1202
netrc, 342
new, 183
nis (Unix), 1153
nntplib, 800
numbers, 191

O
operator, 243
optparse, 392
os, 355
os.path, 251
ossaudiodev (Linux, FreeBSD), 869

P
parser, 1079
pdb, 997
pickle, 271
pickletools, 1108
pipes (Unix), 1148
PixMapWrapper (Mac), 1203
pkgutil, 1074
platform, 476
plistlib, 346
popen2, 619
poplib, 793
posix (Unix), 1139
posixfile (Unix), 1149
pprint, 185
profile, 1001
pstats, 1004
pty (Linux), 1145
pwd (Unix), 1140
py_compile, 1099
pyclbr, 1098

Module Index 1231

The Python Library Reference, Release 2.6.9

pydoc, 947

Q
Queue, 173
quopri, 700

R
random, 225
re, 72
readline (Unix), 586
repr, 187
resource (Unix), 1151
rexec, 1059
rfc822, 692
rlcompleter, 589
robotparser, 341
runpy, 1076

S
sched, 170
select, 519
sets, 167
sgmllib, 705
sha, 352
shelve, 282
shlex, 893
shutil, 266
signal, 616
SimpleHTTPServer, 829
SimpleXMLRPCServer, 850
site, 1050
smtpd, 808
smtplib, 804
sndhdr, 868
socket, 598
SocketServer, 818
spwd (Unix), 1141
sqlite3, 293
ssl, 609
stat, 256
statvfs, 259
string, 61
StringIO, 102
stringprep, 121
struct, 88
subprocess, 591
sunau, 861
sunaudiodev (SunOS), 1199
symbol, 1095
symtable, 1093
sys, 1017
syslog (Unix), 1154

T
tabnanny, 1097
tarfile, 321
telnetlib, 809
tempfile, 262
termios (Unix), 1144
test, 986
test.test_support, 988
textwrap, 103
thread, 532
threading, 523
time, 387
timeit, 1009
Tix, 907
Tkinter, 897
token, 1095
tokenize, 1096
trace, 1012
traceback, 1038
tty (Linux), 1145
turtle, 912
types, 181

U
unicodedata, 119
unittest, 970
urllib, 769
urllib2, 774
urlparse, 815
user, 1051
UserDict, 178
UserList, 179
UserString, 180
uu, 701
uuid, 812

V
videoreader (Mac), 1203

W
W (Mac), 1203
warnings, 1028
wave, 864
weakref, 175
webbrowser, 751
whichdb, 286
winsound (Windows), 1137
wsgiref, 760
wsgiref.handlers, 765
wsgiref.headers, 762
wsgiref.simple_server, 763
wsgiref.util, 760
wsgiref.validate, 764

1232 Module Index

The Python Library Reference, Release 2.6.9

X
xdrlib, 343
xml.dom, 718
xml.dom.minidom, 728
xml.dom.pulldom, 732
xml.etree.ElementTree, 743
xml.parsers.expat, 710
xml.sax, 733
xml.sax.handler, 734
xml.sax.saxutils, 739
xml.sax.xmlreader, 739
xmlrpclib, 843

Z
zipfile, 317
zipimport, 1072
zlib, 311

Module Index 1233

The Python Library Reference, Release 2.6.9

1234 Module Index

INDEX

Symbols
*

operator, 29
**

operator, 29
+

operator, 29
-

operator, 29
..., 1205
.ini

file, 336
.pdbrc

file, 999
.pythonrc.py

file, 1051
/

operator, 29
//

operator, 29
==

operator, 28
%

operator, 29
% formatting, 38
% interpolation, 38
&

operator, 30
_CData (class in ctypes), 512
_FuncPtr (class in ctypes), 506
_SimpleCData (class in ctypes), 513
__abs__() (in module operator), 244
__add__() (in module operator), 244
__add__() (rfc822.AddressList method), 695
__and__() (in module operator), 244
__bases__ (class attribute), 53
__builtin__ (module), 1027
__class__ (instance attribute), 53
__cmp__() (instance method), 28
__concat__() (in module operator), 245
__contains__() (email.message.Message method), 631

__contains__() (in module operator), 245
__contains__() (mailbox.Mailbox method), 667
__copy__() (copy protocol), 184
__debug__ (built-in variable), 25
__deepcopy__() (copy protocol), 184
__delitem__() (email.message.Message method), 632
__delitem__() (in module operator), 245
__delitem__() (mailbox.MH method), 670
__delitem__() (mailbox.Mailbox method), 666
__delslice__() (in module operator), 245
__dict__ (object attribute), 53
__displayhook__ (in module sys), 1018
__div__() (in module operator), 244
__enter__() (_winreg.PyHKEY method), 1137
__enter__() (contextmanager method), 50
__eq__() (email.charset.Charset method), 645
__eq__() (email.header.Header method), 642
__eq__() (in module operator), 243
__excepthook__ (in module sys), 1018
__exit__() (_winreg.PyHKEY method), 1137
__exit__() (contextmanager method), 50
__floordiv__() (in module operator), 244
__format__, 9
__future__, 1207
__future__ (module), 1041
__ge__() (in module operator), 243
__getinitargs__() (object method), 275
__getitem__() (email.message.Message method), 631
__getitem__() (in module operator), 245
__getitem__() (mailbox.Mailbox method), 666
__getnewargs__() (object method), 276
__getslice__() (in module operator), 246
__getstate__() (object method), 276
__gt__() (in module operator), 243
__iadd__() (in module operator), 246
__iadd__() (rfc822.AddressList method), 696
__iand__() (in module operator), 246
__iconcat__() (in module operator), 246
__idiv__() (in module operator), 246
__ifloordiv__() (in module operator), 246
__ilshift__() (in module operator), 247
__imod__() (in module operator), 247

1235

The Python Library Reference, Release 2.6.9

__import__() (built-in function), 21
__imul__() (in module operator), 247
__index__() (in module operator), 244
__init__() (logging.Handler method), 440
__inv__() (in module operator), 244
__invert__() (in module operator), 244
__ior__() (in module operator), 247
__ipow__() (in module operator), 247
__irepeat__() (in module operator), 247
__irshift__() (in module operator), 247
__isub__() (in module operator), 247
__isub__() (rfc822.AddressList method), 696
__iter__() (container method), 31
__iter__() (iterator method), 31
__iter__() (mailbox.Mailbox method), 666
__itruediv__() (in module operator), 247
__ixor__() (in module operator), 247
__le__() (in module operator), 243
__len__() (email.message.Message method), 631
__len__() (mailbox.Mailbox method), 667
__len__() (rfc822.AddressList method), 695
__lshift__() (in module operator), 244
__lt__() (in module operator), 243
__main__ (module), 1028
__members__ (object attribute), 53
__methods__ (object attribute), 53
__missing__() (collections.defaultdict method), 156
__mod__() (in module operator), 244
__mro__ (class attribute), 53
__mul__() (in module operator), 244
__name__ (class attribute), 53
__ne__() (email.charset.Charset method), 645
__ne__() (email.header.Header method), 642
__ne__() (in module operator), 243
__neg__() (in module operator), 245
__not__() (in module operator), 244
__or__() (in module operator), 245
__pos__() (in module operator), 245
__pow__() (in module operator), 245
__reduce__() (object method), 276
__reduce_ex__() (object method), 277
__repeat__() (in module operator), 246
__repr__() (multiprocessing.managers.BaseProxy

method), 554
__repr__() (netrc.netrc method), 342
__rshift__() (in module operator), 245
__setitem__() (email.message.Message method), 632
__setitem__() (in module operator), 246
__setitem__() (mailbox.Mailbox method), 666
__setitem__() (mailbox.Maildir method), 668
__setslice__() (in module operator), 246
__setstate__() (object method), 276
__slots__, 1210
__stderr__ (in module sys), 1026

__stdin__ (in module sys), 1026
__stdout__ (in module sys), 1026
__str__() (datetime.date method), 130
__str__() (datetime.datetime method), 136
__str__() (datetime.time method), 139
__str__() (email.charset.Charset method), 645
__str__() (email.header.Header method), 642
__str__() (email.message.Message method), 630
__str__() (multiprocessing.managers.BaseProxy

method), 554
__str__() (rfc822.AddressList method), 695
__sub__() (in module operator), 245
__sub__() (rfc822.AddressList method), 696
__subclasses__() (class method), 53
__subclasshook__() (abc.ABCMeta method), 1034
__truediv__() (in module operator), 245
__unicode__() (email.header.Header method), 642
__xor__() (in module operator), 245
anonymous (ctypes.Structure attribute), 516
_asdict() (collections.somenamedtuple method), 159
_b_base_ (ctypes._CData attribute), 513
_b_needsfree_ (ctypes._CData attribute), 513
_callmethod() (multiprocessing.managers.BaseProxy

method), 553
_clear_type_cache() (in module sys), 1017
_current_frames() (in module sys), 1017
_exit() (in module os), 372
_fields (ast.AST attribute), 1088
_fields (collections.somenamedtuple attribute), 159
fields (ctypes.Structure attribute), 515
_flush() (wsgiref.handlers.BaseHandler method), 766
_getframe() (in module sys), 1021
_getvalue() (multiprocessing.managers.BaseProxy

method), 554
_handle (ctypes.PyDLL attribute), 506
_locale

module, 884
_make() (collections.somenamedtuple class method), 159
_name (ctypes.PyDLL attribute), 506
_objects (ctypes._CData attribute), 513
pack (ctypes.Structure attribute), 516
_parse() (gettext.NullTranslations method), 877
_quit() (FrameWork.Application method), 1165
_replace() (collections.somenamedtuple method), 159
_setroot() (xml.etree.ElementTree.ElementTree method),

747
_start() (aetools.TalkTo method), 1177
_structure() (in module email.iterators), 649
_urlopener (in module urllib), 771
_winreg (module), 1130
_write() (wsgiref.handlers.BaseHandler method), 766
^

operator, 30
>

1236 Index

The Python Library Reference, Release 2.6.9

operator, 28
>=

operator, 28
>>

operator, 30
>>>, 1205
<

operator, 28
<=

operator, 28
<<

operator, 30
<protocol>_proxy, 776
2to3, 1205

A
A-LAW, 861, 868
a-LAW, 855
a2b_base64() (in module binascii), 699
a2b_hex() (in module binascii), 700
a2b_hqx() (in module binascii), 699
a2b_qp() (in module binascii), 699
a2b_uu() (in module binascii), 699
abc (module), 1034
ABCMeta (class in abc), 1034
abort() (ftplib.FTP method), 791
abort() (in module os), 371
above() (curses.panel.Panel method), 476
abs() (built-in function), 5
abs() (decimal.Context method), 212
abs() (in module operator), 244
abspath() (in module os.path), 251
abstract base class, 1205
AbstractBasicAuthHandler (class in urllib2), 777
AbstractDigestAuthHandler (class in urllib2), 777
AbstractFormatter (class in formatter), 1121
abstractmethod() (in module abc), 1035
abstractproperty() (in module abc), 1036
AbstractWriter (class in formatter), 1122
accept() (asyncore.dispatcher method), 623
accept() (multiprocessing.connection.Listener method),

557
accept() (socket.socket method), 603
accept2dyear (in module time), 388
access() (in module os), 363
acos() (in module cmath), 199
acos() (in module math), 196
acosh() (in module cmath), 199
acosh() (in module math), 197
acquire() (logging.Handler method), 440
acquire() (thread.lock method), 533
acquire() (threading.Condition method), 529
acquire() (threading.Lock method), 527
acquire() (threading.RLock method), 528

acquire() (threading.Semaphore method), 530
acquire_lock() (in module imp), 1066
action (optparse.Option attribute), 404
ACTIONS (optparse.Option attribute), 416
activate_form() (fl.form method), 1190
active_children() (in module multiprocessing), 543
active_count() (in module threading), 523
activeCount() (in module threading), 523
add() (decimal.Context method), 212
add() (in module audioop), 855
add() (in module operator), 244
add() (mailbox.Mailbox method), 665
add() (mailbox.Maildir method), 668
add() (msilib.RadioButtonGroup method), 1127
add() (pstats.Stats method), 1005
add() (set method), 44
add() (tarfile.TarFile method), 325
add_alias() (in module email.charset), 645
add_box() (fl.form method), 1191
add_browser() (fl.form method), 1192
add_button() (fl.form method), 1191
add_cgi_vars() (wsgiref.handlers.BaseHandler method),

766
add_charset() (in module email.charset), 645
add_choice() (fl.form method), 1191
add_clock() (fl.form method), 1191
add_codec() (in module email.charset), 645
add_cookie_header() (cookielib.CookieJar method), 832
add_counter() (fl.form method), 1191
add_data() (in module msilib), 1124
add_data() (urllib2.Request method), 778
add_dial() (fl.form method), 1191
add_fallback() (gettext.NullTranslations method), 878
add_file() (msilib.Directory method), 1126
add_flag() (mailbox.MaildirMessage method), 673
add_flag() (mailbox.mboxMessage method), 675
add_flag() (mailbox.MMDFMessage method), 679
add_flowing_data() (formatter.formatter method), 1120
add_folder() (mailbox.Maildir method), 668
add_folder() (mailbox.MH method), 670
add_handler() (urllib2.OpenerDirector method), 778
add_header() (email.message.Message method), 632
add_header() (urllib2.Request method), 778
add_header() (wsgiref.headers.Headers method), 763
add_history() (in module readline), 588
add_hor_rule() (formatter.formatter method), 1119
add_input() (fl.form method), 1191
add_label() (mailbox.BabylMessage method), 677
add_label_data() (formatter.formatter method), 1120
add_lightbutton() (fl.form method), 1191
add_line_break() (formatter.formatter method), 1119
add_literal_data() (formatter.formatter method), 1120
add_menu() (fl.form method), 1191
add_option() (optparse.OptionParser method), 403

Index 1237

The Python Library Reference, Release 2.6.9

add_parent() (urllib2.BaseHandler method), 779
add_password() (urllib2.HTTPPasswordMgr method),

782
add_positioner() (fl.form method), 1191
add_roundbutton() (fl.form method), 1191
add_section() (ConfigParser.RawConfigParser method),

338
add_sequence() (mailbox.MHMessage method), 676
add_slider() (fl.form method), 1191
add_stream() (in module msilib), 1124
add_suffix() (imputil.ImportManager method), 1069
add_tables() (in module msilib), 1124
add_text() (fl.form method), 1191
add_timer() (fl.form method), 1192
add_type() (in module mimetypes), 687
add_unredirected_header() (urllib2.Request method), 778
add_valslider() (fl.form method), 1191
addch() (curses.window method), 462
addcomponent() (turtle.Shape method), 938
addError() (unittest.TestResult method), 980
addFailure() (unittest.TestResult method), 980
addfile() (tarfile.TarFile method), 325
addFilter() (logging.Handler method), 440
addFilter() (logging.Logger method), 431
addHandler() (logging.Logger method), 431
addheader() (MimeWriter.MimeWriter method), 689
addinfo() (hotshot.Profile method), 1008
addLevelName() (in module logging), 428
addnstr() (curses.window method), 462
AddPackagePath() (in module modulefinder), 1074
address (multiprocessing.connection.Listener attribute),

557
address (multiprocessing.managers.BaseManager at-

tribute), 550
address_family (SocketServer.BaseServer attribute), 820
address_string() (Base-

HTTPServer.BaseHTTPRequestHandler
method), 828

AddressList (class in rfc822), 693
addresslist (rfc822.AddressList attribute), 696
addressof() (in module ctypes), 510
addshape() (in module turtle), 936
addsitedir() (in module site), 1051
addstr() (curses.window method), 462
addSuccess() (unittest.TestResult method), 980
addTest() (unittest.TestSuite method), 979
addTests() (unittest.TestSuite method), 979
adjusted() (decimal.Decimal method), 205
adler32() (in module zlib), 311
ADPCM, Intel/DVI, 855
adpcm2lin() (in module audioop), 855
aepack (module), 1178
AES

algorithm, 353

AEServer (class in MiniAEFrame), 1180
AEText (class in aetypes), 1179
aetools (module), 1177
aetypes (module), 1179
AF_INET (in module socket), 599
AF_INET6 (in module socket), 599
AF_UNIX (in module socket), 599
aifc (module), 859
aifc() (aifc.aifc method), 860
AIFF, 859, 866
aiff() (aifc.aifc method), 860
AIFF-C, 859, 866
AL

module, 1183
AL (module), 1185
al (module), 1183
alarm() (in module signal), 618
alaw2lin() (in module audioop), 855
algorithm

AES, 353
alignment() (in module ctypes), 510
all() (built-in function), 5
all_errors (in module ftplib), 790
all_features (in module xml.sax.handler), 735
all_properties (in module xml.sax.handler), 736
allocate_lock() (in module thread), 533
allow_reuse_address (SocketServer.BaseServer attribute),

820
allowed_domains() (cookielib.DefaultCookiePolicy

method), 836
alt() (in module curses.ascii), 475
ALT_DIGITS (in module locale), 886
altsep (in module os), 379
altzone (in module time), 388
ALWAYS_TYPED_ACTIONS (optparse.Option at-

tribute), 416
anchor_bgn() (htmllib.HTMLParser method), 709
anchor_end() (htmllib.HTMLParser method), 709
and

operator, 27, 28
and_() (in module operator), 244
annotate() (in module dircache), 269
answerChallenge() (in module multiprocess-

ing.connection), 556
any() (built-in function), 5
anydbm (module), 285
api_version (in module sys), 1026
apop() (poplib.POP3 method), 794
append() (array.array method), 165
append() (collections.deque method), 153
append() (email.header.Header method), 642
append() (imaplib.IMAP4 method), 796
append() (list method), 41
append() (msilib.CAB method), 1126

1238 Index

The Python Library Reference, Release 2.6.9

append() (pipes.Template method), 1148
append() (xml.etree.ElementTree.Element method), 746
appendChild() (xml.dom.Node method), 721
appendleft() (collections.deque method), 153
AppleEvents, 1160, 1180
applesingle (module), 1202
Application() (in module FrameWork), 1163
application_uri() (in module wsgiref.util), 761
apply (2to3 fixer), 983
apply() (built-in function), 23
apply() (multiprocessing.pool.multiprocessing.Pool

method), 554
apply_async() (multiprocess-

ing.pool.multiprocessing.Pool method),
554

architecture() (in module platform), 477
archive (zipimport.zipimporter attribute), 1073
aRepr (in module repr), 188
args (functools.partial attribute), 243
argtypes (ctypes._FuncPtr attribute), 507
argument, 1205
ArgumentError, 507
argv (in module sys), 1017
arithmetic, 29
ArithmeticError, 55
array (class in array), 165
array (module), 164
Array() (in module multiprocessing), 546
Array() (in module multiprocessing.sharedctypes), 547
Array() (multiprocessing.managers.SyncManager

method), 550
arrays, 164
ArrayType (in module array), 165
article() (nntplib.NNTP method), 803
as_integer_ratio() (float method), 30
AS_IS (in module formatter), 1119
as_string() (email.message.Message method), 630
as_tuple() (decimal.Decimal method), 205
ascii() (in module curses.ascii), 475
ascii() (in module future_builtins), 1027
ascii_letters (in module string), 61
ascii_lowercase (in module string), 61
ascii_uppercase (in module string), 61
asctime() (in module time), 388
asin() (in module cmath), 199
asin() (in module math), 196
asinh() (in module cmath), 199
asinh() (in module math), 197
AskFileForOpen() (in module EasyDialogs), 1162
AskFileForSave() (in module EasyDialogs), 1162
AskFolder() (in module EasyDialogs), 1162
AskPassword() (in module EasyDialogs), 1161
AskString() (in module EasyDialogs), 1161
AskYesNoCancel() (in module EasyDialogs), 1161

assert
statement, 56

assert_() (unittest.TestCase method), 978
assert_line_data() (formatter.formatter method), 1121
assertAlmostEqual() (unittest.TestCase method), 978
assertEqual() (unittest.TestCase method), 978
assertFalse() (unittest.TestCase method), 978
AssertionError, 56
assertNotAlmostEqual() (unittest.TestCase method), 978
assertNotEqual() (unittest.TestCase method), 978
assertRaises() (unittest.TestCase method), 978
assertTrue() (unittest.TestCase method), 978
assignment

extended slice, 41
slice, 41
subscript, 41

AST (class in ast), 1088
ast (module), 1088
astimezone() (datetime.datetime method), 135
ASTVisitor (class in compiler.visitor), 1117
async_chat (class in asynchat), 624
async_chat.ac_in_buffer_size (in module asynchat), 625
async_chat.ac_out_buffer_size (in module asynchat), 625
asyncevents() (FrameWork.Application method), 1165
asynchat (module), 624
asyncore (module), 621
AsyncResult (class in multiprocessing.pool), 555
atan() (in module cmath), 199
atan() (in module math), 196
atan2() (in module math), 196
atanh() (in module cmath), 199
atanh() (in module math), 197
atexit (module), 1036
atime (in module cd), 1186
atof() (in module locale), 888
atof() (in module string), 70
atoi() (in module locale), 888
atoi() (in module string), 70
atol() (in module string), 70
attach() (email.message.Message method), 630
AttlistDeclHandler() (xml.parsers.expat.xmlparser

method), 713
attrgetter() (in module operator), 248
attrib (xml.etree.ElementTree.Element attribute), 745
attribute, 1205
AttributeError, 56
attributes (xml.dom.Node attribute), 721
AttributesImpl (class in xml.sax.xmlreader), 740
AttributesNSImpl (class in xml.sax.xmlreader), 740
attroff() (curses.window method), 463
attron() (curses.window method), 463
attrset() (curses.window method), 463
audio (in module cd), 1186
Audio Interchange File Format, 859, 866

Index 1239

The Python Library Reference, Release 2.6.9

AUDIO_FILE_ENCODING_ADPCM_G721 (in module
sunau), 862

AUDIO_FILE_ENCODING_ADPCM_G722 (in module
sunau), 862

AUDIO_FILE_ENCODING_ADPCM_G723_3 (in mod-
ule sunau), 862

AUDIO_FILE_ENCODING_ADPCM_G723_5 (in mod-
ule sunau), 862

AUDIO_FILE_ENCODING_ALAW_8 (in module
sunau), 862

AUDIO_FILE_ENCODING_DOUBLE (in module
sunau), 862

AUDIO_FILE_ENCODING_FLOAT (in module sunau),
862

AUDIO_FILE_ENCODING_LINEAR_16 (in module
sunau), 862

AUDIO_FILE_ENCODING_LINEAR_24 (in module
sunau), 862

AUDIO_FILE_ENCODING_LINEAR_32 (in module
sunau), 862

AUDIO_FILE_ENCODING_LINEAR_8 (in module
sunau), 862

AUDIO_FILE_ENCODING_MULAW_8 (in module
sunau), 862

AUDIO_FILE_MAGIC (in module sunau), 862
AUDIODEV, 869
audioop (module), 855
authenticate() (imaplib.IMAP4 method), 797
AuthenticationError, 557
authenticators() (netrc.netrc method), 342
authkey (multiprocessing.Process attribute), 540
autoGIL (module), 1167
AutoGILError, 1167
avg() (in module audioop), 855
avgpp() (in module audioop), 855

B
b16decode() (in module base64), 697
b16encode() (in module base64), 697
b2a_base64() (in module binascii), 699
b2a_hex() (in module binascii), 700
b2a_hqx() (in module binascii), 699
b2a_qp() (in module binascii), 699
b2a_uu() (in module binascii), 699
b32decode() (in module base64), 697
b32encode() (in module base64), 697
b64decode() (in module base64), 696
b64encode() (in module base64), 696
Babyl (class in mailbox), 671
BabylMailbox (class in mailbox), 681
BabylMessage (class in mailbox), 677
back() (in module turtle), 915
backslashreplace_errors() (in module codecs), 108
backward() (in module turtle), 915

backward_compatible (in module imageop), 859
BadStatusLine, 786
BadZipfile, 317
Balloon (class in Tix), 908
base64

encoding, 696
module, 699

base64 (module), 696
BaseCGIHandler (class in wsgiref.handlers), 766
BaseCookie (class in Cookie), 839
BaseException, 55
BaseHandler (class in urllib2), 776
BaseHandler (class in wsgiref.handlers), 766
BaseHTTPRequestHandler (class in BaseHTTPServer),

826
BaseHTTPServer (module), 826
BaseManager (class in multiprocessing.managers), 549
basename() (in module os.path), 251
BaseProxy (class in multiprocessing.managers), 553
BaseResult (class in urlparse), 818
BaseServer (class in SocketServer), 820
basestring (2to3 fixer), 983
basestring() (built-in function), 5
basicConfig() (in module logging), 429
BasicContext (class in decimal), 210
Bastion (module), 1062
Bastion() (in module Bastion), 1063
BastionClass (class in Bastion), 1063
baudrate() (in module curses), 457
bdb

module, 997
Bdb (class in bdb), 994
bdb (module), 993
BdbQuit, 993
BDFL, 1205
beep() (in module curses), 457
Beep() (in module winsound), 1137
begin_fill() (in module turtle), 925
begin_poly() (in module turtle), 930
below() (curses.panel.Panel method), 476
Benchmarking, 1009
benchmarking, 388
betavariate() (in module random), 227
bgcolor() (in module turtle), 931
bgn_group() (fl.form method), 1190
bgpic() (in module turtle), 932
bias() (in module audioop), 855
bidirectional() (in module unicodedata), 120
BigEndianStructure (class in ctypes), 515
bin() (built-in function), 5
binary

data, packing, 88
Binary (class in msilib), 1124
binary semaphores, 532

1240 Index

The Python Library Reference, Release 2.6.9

BINARY_ADD (opcode), 1103
BINARY_AND (opcode), 1103
BINARY_DIVIDE (opcode), 1102
BINARY_FLOOR_DIVIDE (opcode), 1102
BINARY_LSHIFT (opcode), 1103
BINARY_MODULO (opcode), 1102
BINARY_MULTIPLY (opcode), 1102
BINARY_OR (opcode), 1103
BINARY_POWER (opcode), 1102
BINARY_RSHIFT (opcode), 1103
BINARY_SUBSCR (opcode), 1103
BINARY_SUBTRACT (opcode), 1103
BINARY_TRUE_DIVIDE (opcode), 1102
BINARY_XOR (opcode), 1103
binascii (module), 699
bind (widgets), 905
bind() (asyncore.dispatcher method), 623
bind() (socket.socket method), 603
bind_textdomain_codeset() (in module gettext), 875
bindtextdomain() (in module gettext), 875
binhex

module, 699
binhex (module), 698
binhex() (in module binhex), 698
bisect (module), 163
bisect() (in module bisect), 163
bisect_left() (in module bisect), 163
bisect_right() (in module bisect), 163
bit-string

operations, 30
bitmap() (msilib.Dialog method), 1128
bk() (in module turtle), 915
bkgd() (curses.window method), 463
bkgdset() (curses.window method), 463
blocked_domains() (cookielib.DefaultCookiePolicy

method), 836
BlockingIOError, 381
BLOCKSIZE (in module cd), 1186
blocksize (in module sha), 352
body() (nntplib.NNTP method), 803
body_encode() (email.charset.Charset method), 645
body_encoding (email.charset.Charset attribute), 644
body_line_iterator() (in module email.iterators), 649
BOM (in module codecs), 109
BOM_BE (in module codecs), 109
BOM_LE (in module codecs), 109
BOM_UTF16 (in module codecs), 109
BOM_UTF16_BE (in module codecs), 109
BOM_UTF16_LE (in module codecs), 109
BOM_UTF32 (in module codecs), 109
BOM_UTF32_BE (in module codecs), 109
BOM_UTF32_LE (in module codecs), 109
BOM_UTF8 (in module codecs), 109
bool() (built-in function), 5

Boolean
object, 28
operations, 27
type, 5
values, 52

Boolean (class in aetypes), 1179
boolean() (in module xmlrpclib), 849
BooleanType (in module types), 181
border() (curses.window method), 463
bottom() (curses.panel.Panel method), 476
bottom_panel() (in module curses.panel), 475
BoundaryError, 646
BoundedSemaphore (class in multiprocessing), 545
BoundedSemaphore() (in module threading), 524
BoundedSemaphore() (multiprocess-

ing.managers.SyncManager method), 550
box() (curses.window method), 463
break_anywhere() (bdb.Bdb method), 995
break_here() (bdb.Bdb method), 995
break_long_words (textwrap.TextWrapper attribute), 105
BREAK_LOOP (opcode), 1105
break_on_hyphens (textwrap.TextWrapper attribute), 106
Breakpoint (class in bdb), 993
BROWSER, 751, 752
bsddb

module, 283, 285, 289
bsddb (module), 290
BsdDbShelf (class in shelve), 283
btopen() (in module bsddb), 290
buffer

built-in function, 182
object, 32

buffer (2to3 fixer), 983
buffer size, I/O, 13
buffer() (built-in function), 23
buffer_info() (array.array method), 165
buffer_size (xml.parsers.expat.xmlparser attribute), 711
buffer_text (xml.parsers.expat.xmlparser attribute), 712
buffer_used (xml.parsers.expat.xmlparser attribute), 712
BufferedIOBase (class in io), 383
BufferedRandom (class in io), 385
BufferedReader (class in io), 385
BufferedRWPair (class in io), 385
BufferedWriter (class in io), 385
BufferingHandler (class in logging), 446
BufferTooShort, 541
BufferType (in module types), 182
BUFSIZ (in module macostools), 1160
bufsize() (ossaudiodev.oss_audio_device method), 871
BUILD_CLASS (opcode), 1105
BUILD_LIST (opcode), 1106
BUILD_MAP (opcode), 1106
build_opener() (in module urllib2), 775
BUILD_SLICE (opcode), 1108

Index 1241

The Python Library Reference, Release 2.6.9

BUILD_TUPLE (opcode), 1106
buildtools (module), 1202
built-in

types, 27
built-in function

buffer, 182
cmp, 887
compile, 52, 182, 1081, 1082
complex, 29
eval, 52, 70, 186, 1081
execfile, 1051
file, 47
float, 29, 70
input, 1026
int, 29
len, 33, 44
long, 29, 70
max, 33
min, 33
raw_input, 1026
reload, 1023, 1066, 1068
slice, 182, 1108
type, 52, 181
xrange, 182

builtin_module_names (in module sys), 1017
BuiltinFunctionType (in module types), 182
BuiltinImporter (class in imputil), 1069
BuiltinMethodType (in module types), 182
ButtonBox (class in Tix), 908
bye() (in module turtle), 936
byref() (in module ctypes), 510
byte-code

file, 1065, 1067, 1099
bytecode, 1205
byteorder (in module sys), 1017
bytes (uuid.UUID attribute), 812
bytes_le (uuid.UUID attribute), 812
BytesIO (class in io), 384
byteswap() (array.array method), 166
bz2 (module), 315
BZ2Compressor (class in bz2), 316
BZ2Decompressor (class in bz2), 316
BZ2File (class in bz2), 315

C
C

language, 28
structures, 88

c_bool (class in ctypes), 515
C_BUILTIN (in module imp), 1066
c_byte (class in ctypes), 513
c_char (class in ctypes), 513
c_char_p (class in ctypes), 513
c_double (class in ctypes), 513

C_EXTENSION (in module imp), 1066
c_float (class in ctypes), 514
c_int (class in ctypes), 514
c_int16 (class in ctypes), 514
c_int32 (class in ctypes), 514
c_int64 (class in ctypes), 514
c_int8 (class in ctypes), 514
c_long (class in ctypes), 514
c_longdouble (class in ctypes), 514
c_longlong (class in ctypes), 514
c_short (class in ctypes), 514
c_size_t (class in ctypes), 514
c_ubyte (class in ctypes), 514
c_uint (class in ctypes), 514
c_uint16 (class in ctypes), 514
c_uint32 (class in ctypes), 514
c_uint64 (class in ctypes), 514
c_uint8 (class in ctypes), 514
c_ulong (class in ctypes), 514
c_ulonglong (class in ctypes), 515
c_ushort (class in ctypes), 515
c_void_p (class in ctypes), 515
c_wchar (class in ctypes), 515
c_wchar_p (class in ctypes), 515
CAB (class in msilib), 1126
CacheFTPHandler (class in urllib2), 777
calcsize() (in module struct), 88
Calendar (class in calendar), 148
calendar (module), 148
calendar() (in module calendar), 150
call() (dl.dl method), 1143
call() (in module subprocess), 593
CALL_FUNCTION (opcode), 1108
CALL_FUNCTION_KW (opcode), 1108
CALL_FUNCTION_VAR (opcode), 1108
CALL_FUNCTION_VAR_KW (opcode), 1108
callable (2to3 fixer), 983
callable() (built-in function), 5
CallableProxyType (in module weakref), 177
callback (optparse.Option attribute), 404
callback() (MiniAEFrame.AEServer method), 1180
callback_args (optparse.Option attribute), 404
callback_kwargs (optparse.Option attribute), 404
can_change_color() (in module curses), 457
can_fetch() (robotparser.RobotFileParser method), 342
cancel() (sched.scheduler method), 171
cancel() (threading.Timer method), 531
cancel_join_thread() (multiprocessing.Queue method),

543
CannotSendHeader, 786
CannotSendRequest, 786
canonic() (bdb.Bdb method), 994
canonical() (decimal.Context method), 212
canonical() (decimal.Decimal method), 205

1242 Index

The Python Library Reference, Release 2.6.9

capitalize() (in module string), 70
capitalize() (str method), 33
captured_stdout() (in module test.test_support), 990
capwords() (in module string), 70
Carbon.AE (module), 1167
Carbon.AH (module), 1167
Carbon.App (module), 1167
Carbon.Appearance (module), 1167
Carbon.CarbonEvents (module), 1168
Carbon.CarbonEvt (module), 1168
Carbon.CF (module), 1168
Carbon.CG (module), 1168
Carbon.Cm (module), 1168
Carbon.Components (module), 1168
Carbon.ControlAccessor (module), 1168
Carbon.Controls (module), 1168
Carbon.CoreFounation (module), 1168
Carbon.CoreGraphics (module), 1168
Carbon.Ctl (module), 1168
Carbon.Dialogs (module), 1169
Carbon.Dlg (module), 1169
Carbon.Drag (module), 1169
Carbon.Dragconst (module), 1169
Carbon.Events (module), 1169
Carbon.Evt (module), 1169
Carbon.File (module), 1169
Carbon.Files (module), 1169
Carbon.Fm (module), 1169
Carbon.Folder (module), 1169
Carbon.Folders (module), 1169
Carbon.Fonts (module), 1170
Carbon.Help (module), 1170
Carbon.IBCarbon (module), 1170
Carbon.IBCarbonRuntime (module), 1170
Carbon.Icns (module), 1170
Carbon.Icons (module), 1170
Carbon.Launch (module), 1170
Carbon.LaunchServices (module), 1170
Carbon.List (module), 1170
Carbon.Lists (module), 1170
Carbon.MacHelp (module), 1170
Carbon.MediaDescr (module), 1171
Carbon.Menu (module), 1171
Carbon.Menus (module), 1171
Carbon.Mlte (module), 1171
Carbon.OSA (module), 1171
Carbon.OSAconst (module), 1171
Carbon.Qd (module), 1171
Carbon.Qdoffs (module), 1171
Carbon.QDOffscreen (module), 1171
Carbon.Qt (module), 1171
Carbon.QuickDraw (module), 1171
Carbon.QuickTime (module), 1172
Carbon.Res (module), 1172

Carbon.Resources (module), 1172
Carbon.Scrap (module), 1172
Carbon.Snd (module), 1172
Carbon.Sound (module), 1172
Carbon.TE (module), 1172
Carbon.TextEdit (module), 1173
Carbon.Win (module), 1173
Carbon.Windows (module), 1173
cast() (in module ctypes), 510
cat() (in module nis), 1153
catalog (in module cd), 1186
catch_warnings (class in warnings), 1032
category() (in module unicodedata), 120
cbreak() (in module curses), 457
cd (module), 1185
CDLL (class in ctypes), 504
CDROM (in module cd), 1186
ceil() (in module math), 29, 194
center() (in module string), 72
center() (str method), 34
CERT_NONE (in module ssl), 611
CERT_OPTIONAL (in module ssl), 611
CERT_REQUIRED (in module ssl), 611
cert_time_to_seconds() (in module ssl), 610
certificates, 613
cfmfile (module), 1202
CFUNCTYPE() (in module ctypes), 507
CGI

debugging, 758
exceptions, 759
protocol, 753
security, 757
tracebacks, 759

cgi (module), 753
cgi_directories (CGIHTTPServer.CGIHTTPRequestHandler

attribute), 830
CGIHandler (class in wsgiref.handlers), 765
CGIHTTPRequestHandler (class in CGIHTTPServer),

830
CGIHTTPServer

module, 826
CGIHTTPServer (module), 830
cgitb (module), 759
CGIXMLRPCRequestHandler (class in SimpleXMLR-

PCServer), 850
chain() (in module itertools), 230
chaining

comparisons, 28
channels() (ossaudiodev.oss_audio_device method), 870
CHAR_MAX (in module locale), 888
character, 119
CharacterDataHandler() (xml.parsers.expat.xmlparser

method), 713

Index 1243

The Python Library Reference, Release 2.6.9

characters() (xml.sax.handler.ContentHandler method),
737

characters_written (io.BlockingIOError attribute), 381
Charset (class in email.charset), 643
CHARSET (in module mimify), 690
charset() (gettext.NullTranslations method), 878
chdir() (in module os), 364
check() (imaplib.IMAP4 method), 797
check() (in module tabnanny), 1097
check_call() (in module subprocess), 593
check_forms() (in module fl), 1189
check_output() (doctest.OutputChecker method), 966
check_unused_args() (string.Formatter method), 63
check_warnings() (in module test.test_support), 989
checkbox() (msilib.Dialog method), 1128
checkcache() (in module linecache), 266
checkfuncname() (in module bdb), 997
CheckList (class in Tix), 909
checksum

Cyclic Redundancy Check, 312
MD5, 351
SHA, 352

chflags() (in module os), 364
chgat() (curses.window method), 463
childerr (popen2.Popen3 attribute), 620
childNodes (xml.dom.Node attribute), 721
chmod() (in module os), 365
choice() (in module random), 226
choices (optparse.Option attribute), 404
choose_boundary() (in module mimetools), 685
chown() (in module os), 365
chr() (built-in function), 6
chroot() (in module os), 364
Chunk (class in chunk), 866
chunk (module), 866
cipher

DES, 1142
cipher() (ssl.SSLSocket method), 612
circle() (in module turtle), 917
Clamped (class in decimal), 215
class, 1205
Class (class in symtable), 1094
Class browser, 942
classic class, 1205
classmethod() (built-in function), 6
classobj() (in module new), 183
ClassType (in module types), 182
clean() (mailbox.Maildir method), 668
cleandoc() (in module inspect), 1048
clear() (collections.deque method), 153
clear() (cookielib.CookieJar method), 833
clear() (curses.window method), 463
clear() (dict method), 45
clear() (in module turtle), 926, 932

clear() (mailbox.Mailbox method), 667
clear() (set method), 44
clear() (threading.Event method), 531
clear() (xml.etree.ElementTree.Element method), 745
clear_all_breaks() (bdb.Bdb method), 996
clear_all_file_breaks() (bdb.Bdb method), 996
clear_bpbynumber() (bdb.Bdb method), 996
clear_break() (bdb.Bdb method), 996
clear_flags() (decimal.Context method), 211
clear_history() (in module readline), 587
clear_memo() (pickle.Pickler method), 274
clear_session_cookies() (cookielib.CookieJar method),

833
clearcache() (in module linecache), 266
ClearData() (msilib.Record method), 1126
clearok() (curses.window method), 463
clearscreen() (in module turtle), 932
clearstamp() (in module turtle), 918
clearstamps() (in module turtle), 919
Client() (in module multiprocessing.connection), 556
client_address (BaseHTTPServer.BaseHTTPRequestHandler

attribute), 826
clock() (in module time), 388
clone() (email.generator.Generator method), 638
clone() (in module turtle), 930
clone() (pipes.Template method), 1148
cloneNode() (xml.dom.minidom.Node method), 730
cloneNode() (xml.dom.Node method), 722
Close() (_winreg.PyHKEY method), 1136
close() (aifc.aifc method), 860, 861
close() (asyncore.dispatcher method), 623
close() (bsddb.bsddbobject method), 291
close() (bz2.BZ2File method), 315
close() (chunk.Chunk method), 866
close() (dl.dl method), 1143
close() (email.parser.FeedParser method), 636
close() (file method), 47
close() (FrameWork.Window method), 1165
close() (ftplib.FTP method), 793
close() (hotshot.Profile method), 1008
close() (HTMLParser.HTMLParser method), 704
close() (httplib.HTTPConnection method), 788
close() (imaplib.IMAP4 method), 797
close() (in module fileinput), 255
close() (in module mmap), 585
close() (in module os), 360
close() (io.IOBase method), 382
close() (logging.FileHandler method), 441
close() (logging.Handler method), 440
close() (logging.MemoryHandler method), 447
close() (logging.NTEventLogHandler method), 445
close() (logging.SocketHandler method), 443
close() (logging.SysLogHandler method), 444
close() (mailbox.Mailbox method), 667

1244 Index

The Python Library Reference, Release 2.6.9

close() (mailbox.Maildir method), 669
close() (mailbox.MH method), 671
Close() (msilib.View method), 1125
close() (multiprocessing.Connection method), 544
close() (multiprocessing.connection.Listener method),

557
close() (multiprocessing.pool.multiprocessing.Pool

method), 555
close() (multiprocessing.Queue method), 542
close() (ossaudiodev.oss_audio_device method), 869
close() (ossaudiodev.oss_mixer_device method), 872
close() (select.epoll method), 520
close() (select.kqueue method), 522
close() (sgmllib.SGMLParser method), 706
close() (shelve.Shelf method), 282
close() (socket.socket method), 603
close() (sqlite3.Connection method), 297
close() (StringIO.StringIO method), 102
close() (sunau.AU_read method), 862
close() (sunau.AU_write method), 863
close() (tarfile.TarFile method), 325
close() (telnetlib.Telnet method), 811
close() (urllib2.BaseHandler method), 779
close() (wave.Wave_read method), 864
close() (wave.Wave_write method), 865
close() (xml.etree.ElementTree.TreeBuilder method), 748
close() (xml.etree.ElementTree.XMLTreeBuilder

method), 748
close() (xml.sax.xmlreader.IncrementalParser method),

741
close() (zipfile.ZipFile method), 318
close_when_done() (asynchat.async_chat method), 625
closed (file attribute), 49
closed (io.IOBase attribute), 382
closed (ossaudiodev.oss_audio_device attribute), 871
CloseKey() (in module _winreg), 1130
closelog() (in module syslog), 1154
closerange() (in module os), 360
closing() (in module contextlib), 1033
clrtobot() (curses.window method), 463
clrtoeol() (curses.window method), 464
cmath (module), 197
cmd

module, 997
Cmd (class in cmd), 891
cmd (module), 891
cmdloop() (cmd.Cmd method), 891
cmp

built-in function, 887
cmp() (built-in function), 6
cmp() (in module filecmp), 260
cmp_op (in module dis), 1101
cmpfiles() (in module filecmp), 260
code

object, 52, 284
code (module), 1055
code (urllib2.HTTPError attribute), 776
code (xml.parsers.expat.ExpatError attribute), 714
code() (in module new), 183
Codecs, 106

decode, 106
encode, 106

codecs (module), 106
coded_value (Cookie.Morsel attribute), 841
codeop (module), 1057
codepoint2name (in module htmlentitydefs), 710
CODESET (in module locale), 885
CodeType (in module types), 182
coerce() (built-in function), 23
coercion, 1205
col_offset (ast.AST attribute), 1088
collapse_rfc2231_value() (in module email.utils), 649
collect() (in module gc), 1043
collect_incoming_data() (asynchat.async_chat method),

625
collections (module), 151
color() (in module fl), 1190
color() (in module turtle), 924
color_content() (in module curses), 457
color_pair() (in module curses), 457
colormode() (in module turtle), 935
ColorPicker (module), 1173
colorsys (module), 867
COLUMNS, 462
combinations() (in module itertools), 230
combine() (datetime.datetime class method), 133
combining() (in module unicodedata), 120
ComboBox (class in Tix), 908
command (BaseHTTPServer.BaseHTTPRequestHandler

attribute), 826
CommandCompiler (class in codeop), 1057
commands (module), 1155
comment (cookielib.Cookie attribute), 838
COMMENT (in module tokenize), 1096
comment (zipfile.ZipFile attribute), 320
comment (zipfile.ZipInfo attribute), 320
Comment() (in module xml.etree.ElementTree), 744
comment_url (cookielib.Cookie attribute), 838
commenters (shlex.shlex attribute), 895
CommentHandler() (xml.parsers.expat.xmlparser

method), 714
commit() (msilib.CAB method), 1126
Commit() (msilib.Database method), 1124
commit() (sqlite3.Connection method), 297
common (filecmp.dircmp attribute), 261
Common Gateway Interface, 753
common_dirs (filecmp.dircmp attribute), 261
common_files (filecmp.dircmp attribute), 261

Index 1245

The Python Library Reference, Release 2.6.9

common_funny (filecmp.dircmp attribute), 261
common_types (in module mimetypes), 687
common_types (mimetypes.MimeTypes attribute), 688
commonprefix() (in module os.path), 251
communicate() (subprocess.Popen method), 594
compare() (decimal.Context method), 212
compare() (decimal.Decimal method), 205
compare() (difflib.Differ method), 99
COMPARE_OP (opcode), 1106
compare_signal() (decimal.Context method), 212
compare_signal() (decimal.Decimal method), 205
compare_total() (decimal.Context method), 212
compare_total() (decimal.Decimal method), 205
compare_total_mag() (decimal.Context method), 212
compare_total_mag() (decimal.Decimal method), 205
comparing

objects, 28
comparison

operator, 28
Comparison (class in aetypes), 1180
COMPARISON_FLAGS (in module doctest), 956
comparisons

chaining, 28
compile

built-in function, 52, 182, 1081, 1082
Compile (class in codeop), 1057
compile() (built-in function), 6
compile() (in module compiler), 1111
compile() (in module py_compile), 1099
compile() (in module re), 77
compile() (parser.ST method), 1082
compile_command() (in module code), 1055
compile_command() (in module codeop), 1057
compile_dir() (in module compileall), 1100
compile_path() (in module compileall), 1100
compileall (module), 1099
compileFile() (in module compiler), 1111
compiler (module), 1111
compiler.ast (module), 1112
compiler.visitor (module), 1117
compilest() (in module parser), 1081
complete() (rlcompleter.Completer method), 589
complete_statement() (in module sqlite3), 296
completedefault() (cmd.Cmd method), 892
complex

built-in function, 29
Complex (class in numbers), 191
complex number, 1206

literals, 29
object, 28

complex() (built-in function), 7
ComplexType (in module types), 181
ComponentItem (class in aetypes), 1180
compress() (bz2.BZ2Compressor method), 316

compress() (in module bz2), 316
compress() (in module jpeg), 1197
compress() (in module zlib), 311
compress() (zlib.Compress method), 312
compress_size (zipfile.ZipInfo attribute), 321
compress_type (zipfile.ZipInfo attribute), 320
CompressionError, 323
compressobj() (in module zlib), 311
COMSPEC, 376, 592
concat() (in module operator), 245
concatenation

operation, 33
Condition (class in multiprocessing), 545
Condition (class in threading), 529
condition() (msilib.Control method), 1127
Condition() (multiprocessing.managers.SyncManager

method), 550
ConfigParser (class in ConfigParser), 337
ConfigParser (module), 336
configuration

file, 336
file, debugger, 999
file, path, 1050
file, user, 1051

confstr() (in module os), 378
confstr_names (in module os), 378
conjugate() (complex number method), 29
conjugate() (decimal.Decimal method), 205
conjugate() (numbers.Complex method), 191
connect() (asyncore.dispatcher method), 623
connect() (ftplib.FTP method), 791
connect() (httplib.HTTPConnection method), 788
connect() (in module sqlite3), 295
connect() (multiprocessing.managers.BaseManager

method), 549
connect() (smtplib.SMTP method), 806
connect() (socket.socket method), 604
connect_ex() (socket.socket method), 604
Connection (class in multiprocessing), 544
Connection (class in sqlite3), 296
ConnectRegistry() (in module _winreg), 1130
const (optparse.Option attribute), 404
constructor() (in module copy_reg), 281
container

iteration over, 31
contains() (in module operator), 245
content type

MIME, 686
ContentHandler (class in xml.sax.handler), 734
ContentTooShortError, 773
Context (class in decimal), 211
context management protocol, 50
context manager, 50, 1206
context_diff() (in module difflib), 93

1246 Index

The Python Library Reference, Release 2.6.9

contextlib (module), 1032
contextmanager() (in module contextlib), 1032
CONTINUE_LOOP (opcode), 1105
Control (class in msilib), 1127
Control (class in Tix), 908
control (in module cd), 1186
control() (msilib.Dialog method), 1128
control() (select.kqueue method), 522
controlnames (in module curses.ascii), 475
controls() (ossaudiodev.oss_mixer_device method), 872
ConversionError, 345
conversions

numeric, 29
convert() (email.charset.Charset method), 644
convert_charref() (sgmllib.SGMLParser method), 706
convert_codepoint() (sgmllib.SGMLParser method), 707
convert_entityref() (sgmllib.SGMLParser method), 707
convert_field() (string.Formatter method), 63
Cookie (class in cookielib), 832
Cookie (module), 839
CookieError, 839
CookieJar (class in cookielib), 831
cookiejar (urllib2.HTTPCookieProcessor attribute), 781
cookielib (module), 831
CookiePolicy (class in cookielib), 831
Coordinated Universal Time, 387
copy

module, 281
copy (module), 184
copy() (decimal.Context method), 211
copy() (dict method), 45
copy() (hashlib.hash method), 350
copy() (hmac.hmac method), 351
copy() (imaplib.IMAP4 method), 797
copy() (in module copy), 184
copy() (in module findertools), 1160
copy() (in module macostools), 1160
copy() (in module multiprocessing.sharedctypes), 547
copy() (in module shutil), 267
copy() (md5.md5 method), 352
copy() (pipes.Template method), 1149
copy() (set method), 43
copy() (sha.sha method), 352
copy() (zlib.Compress method), 312
copy() (zlib.Decompress method), 313
copy2() (in module shutil), 267
copy_abs() (decimal.Context method), 212
copy_abs() (decimal.Decimal method), 205
copy_decimal() (decimal.Context method), 211
copy_location() (in module ast), 1091
copy_negate() (decimal.Context method), 212
copy_negate() (decimal.Decimal method), 206
copy_reg (module), 281
copy_sign() (decimal.Context method), 212

copy_sign() (decimal.Decimal method), 206
copybinary() (in module mimetools), 685
copyfile() (in module shutil), 267
copyfileobj() (in module shutil), 266
copying files, 266
copyliteral() (in module mimetools), 685
copymessage() (mhlib.Folder method), 684
copymode() (in module shutil), 267
copyright (built-in variable), 25
copyright (in module sys), 1017
copysign() (in module math), 194
copystat() (in module shutil), 267
copytree() (in module macostools), 1160
copytree() (in module shutil), 267
cos() (in module cmath), 199
cos() (in module math), 196
cosh() (in module cmath), 199
cosh() (in module math), 197
count() (array.array method), 166
count() (in module itertools), 231
count() (in module string), 71
count() (list method), 41
count() (str method), 34
countOf() (in module operator), 245
countTestCases() (unittest.TestCase method), 979
countTestCases() (unittest.TestSuite method), 979
CoverageResults (class in trace), 1014
cPickle

module, 281
cPickle (module), 281
cProfile (module), 1003
CPU time, 388
cpu_count() (in module multiprocessing), 543
CPython, 1206
CRC (zipfile.ZipInfo attribute), 321
crc32() (in module binascii), 699
crc32() (in module zlib), 312
crc_hqx() (in module binascii), 699
create() (imaplib.IMAP4 method), 797
create_aggregate() (sqlite3.Connection method), 297
create_collation() (sqlite3.Connection method), 298
create_connection() (in module socket), 600
create_decimal() (decimal.Context method), 211
create_function() (sqlite3.Connection method), 297
create_socket() (asyncore.dispatcher method), 623
create_string_buffer() (in module ctypes), 510
create_system (zipfile.ZipInfo attribute), 321
create_unicode_buffer() (in module ctypes), 510
create_version (zipfile.ZipInfo attribute), 321
createAttribute() (xml.dom.Document method), 723
createAttributeNS() (xml.dom.Document method), 723
createComment() (xml.dom.Document method), 723
createDocument() (xml.dom.DOMImplementation

method), 720

Index 1247

The Python Library Reference, Release 2.6.9

createDocumentType() (xml.dom.DOMImplementation
method), 720

createElement() (xml.dom.Document method), 723
createElementNS() (xml.dom.Document method), 723
CreateKey() (in module _winreg), 1130
createLock() (logging.Handler method), 440
createparser() (in module cd), 1185
createProcessingInstruction() (xml.dom.Document

method), 723
CreateRecord() (in module msilib), 1123
createTextNode() (xml.dom.Document method), 723
credits (built-in variable), 25
critical() (in module logging), 428
critical() (logging.Logger method), 431
CRNCYSTR (in module locale), 886
crop() (in module imageop), 858
cross() (in module audioop), 855
crypt

module, 1140
crypt (module), 1142
crypt() (in module crypt), 1142
crypt(3), 1142
cryptography, 349, 353
cStringIO (module), 103
csv, 329
csv (module), 329
ctermid() (in module os), 356
ctime() (datetime.date method), 130
ctime() (datetime.datetime method), 136
ctime() (in module time), 389
ctrl() (in module curses.ascii), 475
ctypes (module), 485
curdir (in module os), 378
currency() (in module locale), 888
current_process() (in module multiprocessing), 543
current_thread() (in module threading), 524
CurrentByteIndex (xml.parsers.expat.xmlparser at-

tribute), 712
CurrentColumnNumber (xml.parsers.expat.xmlparser at-

tribute), 712
currentframe() (in module inspect), 1049
CurrentLineNumber (xml.parsers.expat.xmlparser at-

tribute), 712
currentThread() (in module threading), 524
curs_set() (in module curses), 457
curses (module), 456
curses.ascii (module), 473
curses.panel (module), 475
curses.textpad (module), 471
curses.wrapper (module), 473
Cursor (class in sqlite3), 301
cursor() (sqlite3.Connection method), 297
cursyncup() (curses.window method), 464
curval (EasyDialogs.ProgressBar attribute), 1163

cwd() (ftplib.FTP method), 792
cycle() (in module itertools), 231
Cyclic Redundancy Check, 312

D
D_FMT (in module locale), 885
D_T_FMT (in module locale), 885
daemon (multiprocessing.Process attribute), 540
daemon (threading.Thread attribute), 527
data

packing binary, 88
tabular, 329

Data (class in plistlib), 346
data (select.kevent attribute), 523
data (UserDict.IterableUserDict attribute), 179
data (UserList.UserList attribute), 180
data (UserString.MutableString attribute), 180
data (xml.dom.Comment attribute), 725
data (xml.dom.ProcessingInstruction attribute), 726
data (xml.dom.Text attribute), 725
data (xmlrpclib.Binary attribute), 846
data() (xml.etree.ElementTree.TreeBuilder method), 748
database

Unicode, 119
databases, 292
DatagramHandler (class in logging), 444
DATASIZE (in module cd), 1186
date (class in datetime), 128
date() (datetime.datetime method), 134
date() (nntplib.NNTP method), 804
date_time (zipfile.ZipInfo attribute), 320
date_time_string() (Base-

HTTPServer.BaseHTTPRequestHandler
method), 828

datetime (class in datetime), 132
datetime (module), 125
day (datetime.date attribute), 129
day (datetime.datetime attribute), 133
day_abbr (in module calendar), 151
day_name (in module calendar), 151
daylight (in module time), 389
Daylight Saving Time, 387
DbfilenameShelf (class in shelve), 283
dbhash

module, 285
dbhash (module), 289
dbm

module, 283, 285, 288
dbm (module), 287
deactivate_form() (fl.form method), 1190
debug (imaplib.IMAP4 attribute), 800
debug (shlex.shlex attribute), 895
debug (zipfile.ZipFile attribute), 319
debug() (in module doctest), 968

1248 Index

The Python Library Reference, Release 2.6.9

debug() (in module logging), 427
debug() (logging.Logger method), 430
debug() (pipes.Template method), 1148
debug() (unittest.TestCase method), 977
debug() (unittest.TestSuite method), 979
DEBUG_COLLECTABLE (in module gc), 1044
DEBUG_INSTANCES (in module gc), 1044
DEBUG_LEAK (in module gc), 1044
DEBUG_OBJECTS (in module gc), 1044
DEBUG_SAVEALL (in module gc), 1044
debug_src() (in module doctest), 969
DEBUG_STATS (in module gc), 1044
DEBUG_UNCOLLECTABLE (in module gc), 1044
debugger, 944, 1022, 1025

configuration file, 999
debugging, 997

CGI, 758
DebuggingServer (class in smtpd), 809
DebugRunner (class in doctest), 969
DebugStr() (in module MacOS), 1159
Decimal (class in decimal), 204
decimal (module), 200
decimal() (in module unicodedata), 120
DecimalException (class in decimal), 215
decode

Codecs, 106
decode() (codecs.Codec method), 110
decode() (codecs.IncrementalDecoder method), 111
decode() (in module base64), 697
decode() (in module mimetools), 685
decode() (in module quopri), 700
decode() (in module uu), 701
decode() (json.JSONDecoder method), 662
decode() (str method), 34
decode() (xmlrpclib.Binary method), 846
decode() (xmlrpclib.DateTime method), 845
decode_header() (in module email.header), 643
decode_params() (in module email.utils), 649
decode_rfc2231() (in module email.utils), 648
DecodedGenerator (class in email.generator), 639
decodestring() (in module base64), 697
decodestring() (in module quopri), 701
decomposition() (in module unicodedata), 120
decompress() (bz2.BZ2Decompressor method), 316
decompress() (in module bz2), 317
decompress() (in module jpeg), 1197
decompress() (in module zlib), 312
decompress() (zlib.Decompress method), 313
decompressobj() (in module zlib), 312
decorator, 1206
dedent() (in module textwrap), 104
deepcopy() (in module copy), 184
def_prog_mode() (in module curses), 457
def_shell_mode() (in module curses), 458

default (optparse.Option attribute), 404
default() (cmd.Cmd method), 892
default() (compiler.visitor.ASTVisitor method), 1117
default() (json.JSONEncoder method), 663
DEFAULT_BUFFER_SIZE (in module io), 380
default_bufsize (in module xml.dom.pulldom), 732
default_factory (collections.defaultdict attribute), 156
DEFAULT_FORMAT (in module tarfile), 323
default_open() (urllib2.BaseHandler method), 780
DefaultContext (class in decimal), 210
DefaultCookiePolicy (class in cookielib), 831
defaultdict (class in collections), 156
DefaultHandler() (xml.parsers.expat.xmlparser method),

714
DefaultHandlerExpand() (xml.parsers.expat.xmlparser

method), 714
defaults() (ConfigParser.RawConfigParser method), 338
defaultTestLoader (in module unittest), 977
defaultTestResult() (unittest.TestCase method), 979
defects (email.message.Message attribute), 635
defpath (in module os), 379
degrees() (in module math), 196
degrees() (in module turtle), 921
del

statement, 41, 44
del_param() (email.message.Message method), 634
delattr() (built-in function), 7
delay() (in module turtle), 933
delay_output() (in module curses), 458
delayload (cookielib.FileCookieJar attribute), 834
delch() (curses.window method), 464
dele() (poplib.POP3 method), 794
delete() (ftplib.FTP method), 792
delete() (imaplib.IMAP4 method), 797
DELETE_ATTR (opcode), 1106
DELETE_FAST (opcode), 1107
DELETE_GLOBAL (opcode), 1106
DELETE_NAME (opcode), 1106
DELETE_SLICE+0 (opcode), 1104
DELETE_SLICE+1 (opcode), 1104
DELETE_SLICE+2 (opcode), 1104
DELETE_SLICE+3 (opcode), 1104
DELETE_SUBSCR (opcode), 1104
deleteacl() (imaplib.IMAP4 method), 797
deletefolder() (mhlib.MH method), 684
DeleteKey() (in module _winreg), 1130
deleteln() (curses.window method), 464
deleteMe() (bdb.Breakpoint method), 993
DeleteValue() (in module _winreg), 1131
delimiter (csv.Dialect attribute), 332
delitem() (in module operator), 245
deliver_challenge() (in module multiprocess-

ing.connection), 556
delslice() (in module operator), 245

Index 1249

The Python Library Reference, Release 2.6.9

demo_app() (in module wsgiref.simple_server), 764
denominator (numbers.Rational attribute), 192
DeprecationWarning, 59
deque (class in collections), 153
DER_cert_to_PEM_cert() (in module ssl), 611
derwin() (curses.window method), 464
DES

cipher, 1142
description (sqlite3.Cursor attribute), 304
description() (nntplib.NNTP method), 802
descriptions() (nntplib.NNTP method), 802
descriptor, 1206

file, 47
dest (optparse.Option attribute), 404
Detach() (_winreg.PyHKEY method), 1136
deterministic profiling, 1001
DEVICE (module), 1196
devnull (in module os), 379
dgettext() (in module gettext), 876
Dialect (class in csv), 331
dialect (csv.csvreader attribute), 333
dialect (csv.csvwriter attribute), 333
Dialog (class in msilib), 1127
DialogWindow() (in module FrameWork), 1164
dict (2to3 fixer), 983
dict (built-in class), 44
dict() (multiprocessing.managers.SyncManager method),

550
dictionary, 1206

object, 44
type, operations on, 44

DictionaryType (in module types), 182
DictMixin (class in UserDict), 179
DictProxyType (in module types), 182
DictReader (class in csv), 331
DictType (in module types), 182
DictWriter (class in csv), 331
diff_files (filecmp.dircmp attribute), 261
Differ (class in difflib), 92, 99
difference() (set method), 43
difference_update() (set method), 43
difflib (module), 92
digest() (hashlib.hash method), 350
digest() (hmac.hmac method), 351
digest() (md5.md5 method), 352
digest() (sha.sha method), 352
digest_size (in module md5), 351
digest_size (in module sha), 352
digit() (in module unicodedata), 120
digits (in module string), 61
dir() (built-in function), 7
dir() (ftplib.FTP method), 792
dircache (module), 269
dircmp (class in filecmp), 261

directory
changing, 364
creating, 366
deleting, 267, 367
site-packages, 1050
site-python, 1050
traversal, 370
walking, 370

Directory (class in msilib), 1126
DirList (class in Tix), 909
dirname() (in module os.path), 251
DirSelectBox (class in Tix), 909
DirSelectDialog (class in Tix), 909
DirTree (class in Tix), 909
dis (module), 1100
dis() (in module dis), 1100
dis() (in module pickletools), 1108
disable() (bdb.Breakpoint method), 993
disable() (in module gc), 1043
disable() (in module logging), 428
disable_interspersed_args() (optparse.OptionParser

method), 408
DisableReflectionKey() (in module _winreg), 1133
disassemble() (in module dis), 1101
discard (cookielib.Cookie attribute), 838
discard() (mailbox.Mailbox method), 666
discard() (mailbox.MH method), 670
discard() (set method), 44
discard_buffers() (asynchat.async_chat method), 625
disco() (in module dis), 1101
dispatch() (compiler.visitor.ASTVisitor method), 1117
dispatch_call() (bdb.Bdb method), 994
dispatch_exception() (bdb.Bdb method), 995
dispatch_line() (bdb.Bdb method), 994
dispatch_return() (bdb.Bdb method), 995
dispatcher (class in asyncore), 622
displayhook() (in module sys), 1018
dist() (in module platform), 479
distance() (in module turtle), 921
distb() (in module dis), 1101
distutils (module), 1053
dither2grey2() (in module imageop), 858
dither2mono() (in module imageop), 858
div() (in module operator), 244
divide() (decimal.Context method), 212
divide_int() (decimal.Context method), 212
division

integer, 29
long integer, 29

DivisionByZero (class in decimal), 215
divmod() (built-in function), 8
divmod() (decimal.Context method), 212
dl (module), 1142
DllCanUnloadNow() (in module ctypes), 510

1250 Index

The Python Library Reference, Release 2.6.9

DllGetClassObject() (in module ctypes), 510
dllhandle (in module sys), 1018
dngettext() (in module gettext), 876
do_activate() (FrameWork.ScrolledWindow method),

1166
do_activate() (FrameWork.Window method), 1165
do_char() (FrameWork.Application method), 1165
do_clear() (bdb.Bdb method), 995
do_command() (curses.textpad.Textbox method), 472
do_contentclick() (FrameWork.Window method), 1165
do_controlhit() (FrameWork.ControlsWindow method),

1166
do_controlhit() (FrameWork.ScrolledWindow method),

1166
do_dialogevent() (FrameWork.Application method),

1165
do_forms() (in module fl), 1189
do_GET() (SimpleHTTPServer.SimpleHTTPRequestHandler

method), 829
do_handshake() (ssl.SSLSocket method), 612
do_HEAD() (SimpleHTTPServer.SimpleHTTPRequestHandler

method), 829
do_itemhit() (FrameWork.DialogWindow method), 1166
do_POST() (CGIHTTPServer.CGIHTTPRequestHandler

method), 830
do_postresize() (FrameWork.ScrolledWindow method),

1166
do_postresize() (FrameWork.Window method), 1165
do_update() (FrameWork.Window method), 1165
doc_header (cmd.Cmd attribute), 893
DocCGIXMLRPCRequestHandler (class in DocXMLR-

PCServer), 853
DocFileSuite() (in module doctest), 960
docmd() (smtplib.SMTP method), 806
docstring, 1206
docstring (doctest.DocTest attribute), 963
docstrings, 1083
DocTest (class in doctest), 963
doctest (module), 948
DocTestFailure, 969
DocTestFinder (class in doctest), 964
DocTestParser (class in doctest), 965
DocTestRunner (class in doctest), 965
DocTestSuite() (in module doctest), 961
doctype() (xml.etree.ElementTree.XMLTreeBuilder

method), 748
documentation

generation, 947
online, 947

documentElement (xml.dom.Document attribute), 723
DocXMLRPCRequestHandler (class in DocXMLRPC-

Server), 853
DocXMLRPCServer (class in DocXMLRPCServer), 853
DocXMLRPCServer (module), 853

domain_initial_dot (cookielib.Cookie attribute), 838
domain_return_ok() (cookielib.CookiePolicy method),

835
domain_specified (cookielib.Cookie attribute), 838
DomainLiberal (cookielib.DefaultCookiePolicy at-

tribute), 837
DomainRFC2965Match (cookielib.DefaultCookiePolicy

attribute), 837
DomainStrict (cookielib.DefaultCookiePolicy attribute),

837
DomainStrictNoDots (cookielib.DefaultCookiePolicy at-

tribute), 837
DomainStrictNonDomain (cook-

ielib.DefaultCookiePolicy attribute), 837
DOMEventStream (class in xml.dom.pulldom), 732
DOMException, 726
DomstringSizeErr, 726
done() (xdrlib.Unpacker method), 345
DONT_ACCEPT_BLANKLINE (in module doctest),

955
DONT_ACCEPT_TRUE_FOR_1 (in module doctest),

955
dont_write_bytecode (in module sys), 1024
doRollover() (logging.RotatingFileHandler method), 442
doRollover() (logging.TimedRotatingFileHandler

method), 443
dot() (in module turtle), 918
DOTALL (in module re), 78
doublequote (csv.Dialect attribute), 332
doupdate() (in module curses), 458
down() (in module turtle), 922
drop_whitespace (textwrap.TextWrapper attribute), 105
dropwhile() (in module itertools), 232
dst() (datetime.datetime method), 135
dst() (datetime.time method), 140
dst() (datetime.tzinfo method), 141
DTDHandler (class in xml.sax.handler), 734
duck-typing, 1206
dumbdbm

module, 285
dumbdbm (module), 292
DumbWriter (class in formatter), 1122
dummy_thread (module), 534
dummy_threading (module), 534
dump() (in module ast), 1092
dump() (in module json), 660
dump() (in module marshal), 285
dump() (in module pickle), 273
dump() (in module xml.etree.ElementTree), 744
dump() (pickle.Pickler method), 274
dump_address_pair() (in module rfc822), 693
dump_stats() (pstats.Stats method), 1005
dumps() (in module json), 661
dumps() (in module marshal), 285

Index 1251

The Python Library Reference, Release 2.6.9

dumps() (in module pickle), 273
dumps() (in module xmlrpclib), 849
dup() (in module os), 360
dup() (posixfile.posixfile method), 1150
dup2() (in module os), 360
dup2() (posixfile.posixfile method), 1150
DUP_TOP (opcode), 1102
DUP_TOPX (opcode), 1106
DuplicateSectionError, 337
DynLoadSuffixImporter (class in imputil), 1069

E
e (in module cmath), 200
e (in module math), 197
E2BIG (in module errno), 480
EACCES (in module errno), 480
EADDRINUSE (in module errno), 484
EADDRNOTAVAIL (in module errno), 484
EADV (in module errno), 483
EAFNOSUPPORT (in module errno), 484
EAFP, 1206
EAGAIN (in module errno), 480
EALREADY (in module errno), 485
east_asian_width() (in module unicodedata), 120
EasyDialogs (module), 1161
EBADE (in module errno), 482
EBADF (in module errno), 480
EBADFD (in module errno), 483
EBADMSG (in module errno), 483
EBADR (in module errno), 482
EBADRQC (in module errno), 482
EBADSLT (in module errno), 482
EBFONT (in module errno), 482
EBUSY (in module errno), 480
ECHILD (in module errno), 480
echo() (in module curses), 458
echochar() (curses.window method), 464
ECHRNG (in module errno), 482
ECOMM (in module errno), 483
ECONNABORTED (in module errno), 484
ECONNREFUSED (in module errno), 485
ECONNRESET (in module errno), 484
EDEADLK (in module errno), 481
EDEADLOCK (in module errno), 482
EDESTADDRREQ (in module errno), 484
edit() (curses.textpad.Textbox method), 472
EDOM (in module errno), 481
EDOTDOT (in module errno), 483
EDQUOT (in module errno), 485
EEXIST (in module errno), 480
EFAULT (in module errno), 480
EFBIG (in module errno), 481
effective() (in module bdb), 997
ehlo() (smtplib.SMTP method), 806

ehlo_or_helo_if_needed() (smtplib.SMTP method), 806
EHOSTDOWN (in module errno), 485
EHOSTUNREACH (in module errno), 485
EIDRM (in module errno), 482
EILSEQ (in module errno), 483
EINPROGRESS (in module errno), 485
EINTR (in module errno), 480
EINVAL (in module errno), 481
EIO (in module errno), 480
EISCONN (in module errno), 485
EISDIR (in module errno), 480
EISNAM (in module errno), 485
EL2HLT (in module errno), 482
EL2NSYNC (in module errno), 482
EL3HLT (in module errno), 482
EL3RST (in module errno), 482
Element() (in module xml.etree.ElementTree), 744
ElementDeclHandler() (xml.parsers.expat.xmlparser

method), 713
ElementTree (class in xml.etree.ElementTree), 747
ELIBACC (in module errno), 483
ELIBBAD (in module errno), 483
ELIBEXEC (in module errno), 483
ELIBMAX (in module errno), 483
ELIBSCN (in module errno), 483
Ellinghouse, Lance, 701
Ellipsis (built-in variable), 25
ELLIPSIS (in module doctest), 955
EllipsisType (in module types), 182
ELNRNG (in module errno), 482
ELOOP (in module errno), 481
email (module), 629
email.charset (module), 643
email.encoders (module), 646
email.errors (module), 646
email.generator (module), 638
email.header (module), 641
email.iterators (module), 649
email.message (module), 629
email.mime (module), 639
email.parser (module), 635
email.utils (module), 647
EMFILE (in module errno), 481
emit() (logging.BufferingHandler method), 446
emit() (logging.DatagramHandler method), 444
emit() (logging.FileHandler method), 441
emit() (logging.Handler method), 440
emit() (logging.HTTPHandler method), 447
emit() (logging.NTEventLogHandler method), 445
emit() (logging.RotatingFileHandler method), 442
emit() (logging.SMTPHandler method), 446
emit() (logging.SocketHandler method), 443
emit() (logging.StreamHandler method), 441
emit() (logging.SysLogHandler method), 444

1252 Index

The Python Library Reference, Release 2.6.9

emit() (logging.TimedRotatingFileHandler method), 443
emit() (logging.WatchedFileHandler method), 442
EMLINK (in module errno), 481
Empty, 173
empty() (multiprocessing.Queue method), 542
empty() (Queue.Queue method), 173
empty() (sched.scheduler method), 171
EMPTY_NAMESPACE (in module xml.dom), 719
emptyline() (cmd.Cmd method), 892
EMSGSIZE (in module errno), 484
EMULTIHOP (in module errno), 483
enable() (bdb.Breakpoint method), 993
enable() (in module cgitb), 760
enable() (in module gc), 1043
enable_callback_tracebacks() (in module sqlite3), 296
enable_interspersed_args() (optparse.OptionParser

method), 408
ENABLE_USER_SITE (in module site), 1051
EnableReflectionKey() (in module _winreg), 1134
ENAMETOOLONG (in module errno), 481
ENAVAIL (in module errno), 485
enclose() (curses.window method), 464
encode

Codecs, 106
encode() (codecs.Codec method), 110
encode() (codecs.IncrementalEncoder method), 111
encode() (email.header.Header method), 642
encode() (in module base64), 697
encode() (in module mimetools), 685
encode() (in module quopri), 701
encode() (in module uu), 701
encode() (json.JSONEncoder method), 663
encode() (str method), 34
encode() (xmlrpclib.Binary method), 846
encode() (xmlrpclib.Boolean method), 845
encode() (xmlrpclib.DateTime method), 845
encode_7or8bit() (in module email.encoders), 646
encode_base64() (in module email.encoders), 646
encode_noop() (in module email.encoders), 646
encode_quopri() (in module email.encoders), 646
encode_rfc2231() (in module email.utils), 648
encoded_header_len() (email.charset.Charset method),

644
EncodedFile() (in module codecs), 108
encodePriority() (logging.SysLogHandler method), 444
encodestring() (in module base64), 697
encodestring() (in module quopri), 701
encoding

base64, 696
quoted-printable, 700

encoding (file attribute), 49
ENCODING (in module tarfile), 323
encoding (io.TextIOBase attribute), 386
encodings.idna (module), 118

encodings.utf_8_sig (module), 119
encodings_map (in module mimetypes), 687
encodings_map (mimetypes.MimeTypes attribute), 688
end() (re.MatchObject method), 83
end() (xml.etree.ElementTree.TreeBuilder method), 748
end_fill() (in module turtle), 925
END_FINALLY (opcode), 1105
end_group() (fl.form method), 1191
end_headers() (BaseHTTPServer.BaseHTTPRequestHandler

method), 828
end_marker() (multifile.MultiFile method), 691
end_paragraph() (formatter.formatter method), 1119
end_poly() (in module turtle), 930
EndCdataSectionHandler() (xml.parsers.expat.xmlparser

method), 714
EndDoctypeDeclHandler() (xml.parsers.expat.xmlparser

method), 713
endDocument() (xml.sax.handler.ContentHandler

method), 736
endElement() (xml.sax.handler.ContentHandler method),

737
EndElementHandler() (xml.parsers.expat.xmlparser

method), 713
endElementNS() (xml.sax.handler.ContentHandler

method), 737
endheaders() (httplib.HTTPConnection method), 788
EndNamespaceDeclHandler()

(xml.parsers.expat.xmlparser method), 714
endpick() (in module gl), 1195
endpos (re.MatchObject attribute), 83
endPrefixMapping() (xml.sax.handler.ContentHandler

method), 736
endselect() (in module gl), 1195
endswith() (str method), 34
endwin() (in module curses), 458
ENETDOWN (in module errno), 484
ENETRESET (in module errno), 484
ENETUNREACH (in module errno), 484
ENFILE (in module errno), 481
ENOANO (in module errno), 482
ENOBUFS (in module errno), 484
ENOCSI (in module errno), 482
ENODATA (in module errno), 482
ENODEV (in module errno), 480
ENOENT (in module errno), 480
ENOEXEC (in module errno), 480
ENOLCK (in module errno), 481
ENOLINK (in module errno), 483
ENOMEM (in module errno), 480
ENOMSG (in module errno), 481
ENONET (in module errno), 483
ENOPKG (in module errno), 483
ENOPROTOOPT (in module errno), 484
ENOSPC (in module errno), 481

Index 1253

The Python Library Reference, Release 2.6.9

ENOSR (in module errno), 482
ENOSTR (in module errno), 482
ENOSYS (in module errno), 481
ENOTBLK (in module errno), 480
ENOTCONN (in module errno), 485
ENOTDIR (in module errno), 480
ENOTEMPTY (in module errno), 481
ENOTNAM (in module errno), 485
ENOTSOCK (in module errno), 484
ENOTTY (in module errno), 481
ENOTUNIQ (in module errno), 483
enter() (sched.scheduler method), 171
enterabs() (sched.scheduler method), 171
entities (xml.dom.DocumentType attribute), 723
EntityDeclHandler() (xml.parsers.expat.xmlparser

method), 713
entitydefs (in module htmlentitydefs), 709
EntityResolver (class in xml.sax.handler), 734
Enum (class in aetypes), 1179
enumerate() (built-in function), 8
enumerate() (in module fm), 1194
enumerate() (in module threading), 524
EnumKey() (in module _winreg), 1131
enumsubst() (in module aetools), 1177
EnumValue() (in module _winreg), 1131
environ (in module os), 355
environ (in module posix), 1140
environment variable

<protocol>_proxy, 776
AUDIODEV, 869
BROWSER, 751, 752
COLUMNS, 462
COMSPEC, 376, 592
ftp_proxy, 769
HOME, 252, 1051
HOMEDRIVE, 252
HOMEPATH, 252
http_proxy, 769, 784
IDLESTARTUP, 945
KDEDIR, 752
LANG, 875, 877, 884, 887
LANGUAGE, 875, 877
LC_ALL, 875, 877
LC_MESSAGES, 875, 877
LINES, 462
LNAME, 456
LOGNAME, 356, 456
MIXERDEV, 869
no_proxy, 770
PAGER, 999
PATH, 372, 374, 375, 379, 751, 758, 759
POSIXLY_CORRECT, 418
PYTHON_DOM, 719
PYTHONDOCS, 948

PYTHONNOUSERSITE, 1051
PYTHONPATH, 758, 1023
PYTHONSTARTUP, 588, 589, 945, 1051
PYTHONUSERBASE, 1051
PYTHONY2K, 387, 388
SystemRoot, 593
TEMP, 264
TIX_LIBRARY, 908
TMP, 264, 369
TMPDIR, 264, 369
TZ, 391, 392
USER, 456
USERNAME, 456
USERPROFILE, 252
Wimp$ScrapDir, 264

environment variables
deleting, 358
setting, 357

EnvironmentError, 55
EnvironmentVarGuard (class in test.test_support), 990
ENXIO (in module errno), 480
eof (shlex.shlex attribute), 895
EOFError, 56
EOPNOTSUPP (in module errno), 484
EOVERFLOW (in module errno), 483
EPERM (in module errno), 480
EPFNOSUPPORT (in module errno), 484
epilogue (email.message.Message attribute), 635
EPIPE (in module errno), 481
epoch, 387
epoll() (in module select), 519
EPROTO (in module errno), 483
EPROTONOSUPPORT (in module errno), 484
EPROTOTYPE (in module errno), 484
eq() (in module operator), 243
ERA (in module locale), 886
ERA_D_FMT (in module locale), 886
ERA_D_T_FMT (in module locale), 886
ERANGE (in module errno), 481
erase() (curses.window method), 464
erasechar() (in module curses), 458
EREMCHG (in module errno), 483
EREMOTE (in module errno), 483
EREMOTEIO (in module errno), 485
ERESTART (in module errno), 484
EROFS (in module errno), 481
ERR (in module curses), 468
errcheck (ctypes._FuncPtr attribute), 507
errcode (xmlrpclib.ProtocolError attribute), 847
errmsg (xmlrpclib.ProtocolError attribute), 847
errno

module, 57, 599
errno (module), 479

1254 Index

The Python Library Reference, Release 2.6.9

Error, 268, 332, 337, 345, 680, 698, 700, 701, 751, 862,
864, 884, 1159

error, 80, 88, 184, 286–289, 292, 311, 355, 418, 457,
519, 532, 599, 710, 855, 858, 1143, 1151, 1154,
1157, 1185, 1197, 1199

ERROR (in module cd), 1186
error() (in module logging), 428
error() (logging.Logger method), 431
error() (mhlib.Folder method), 684
error() (mhlib.MH method), 683
error() (urllib2.OpenerDirector method), 779
error() (xml.sax.handler.ErrorHandler method), 738
error_body (wsgiref.handlers.BaseHandler attribute), 768
error_content_type (Base-

HTTPServer.BaseHTTPRequestHandler
attribute), 827

error_headers (wsgiref.handlers.BaseHandler attribute),
768

error_leader() (shlex.shlex method), 894
error_message_format (Base-

HTTPServer.BaseHTTPRequestHandler
attribute), 827

error_output() (wsgiref.handlers.BaseHandler method),
767

error_perm, 790
error_proto, 790, 793
error_reply, 790
error_status (wsgiref.handlers.BaseHandler attribute),

768
error_temp, 790
ErrorByteIndex (xml.parsers.expat.xmlparser attribute),

712
errorcode (in module errno), 479
ErrorCode (xml.parsers.expat.xmlparser attribute), 712
ErrorColumnNumber (xml.parsers.expat.xmlparser at-

tribute), 712
ErrorHandler (class in xml.sax.handler), 735
ErrorLineNumber (xml.parsers.expat.xmlparser at-

tribute), 712
Errors

logging, 419
errors (file attribute), 49
errors (io.TextIOWrapper attribute), 386
errors (unittest.TestResult attribute), 980
ErrorString() (in module xml.parsers.expat), 710
escape (shlex.shlex attribute), 895
escape() (in module cgi), 757
escape() (in module re), 80
escape() (in module xml.sax.saxutils), 739
escapechar (csv.Dialect attribute), 332
escapedquotes (shlex.shlex attribute), 895
ESHUTDOWN (in module errno), 485
ESOCKTNOSUPPORT (in module errno), 484
ESPIPE (in module errno), 481

ESRCH (in module errno), 480
ESRMNT (in module errno), 483
ESTALE (in module errno), 485
ESTRPIPE (in module errno), 484
ETIME (in module errno), 482
ETIMEDOUT (in module errno), 485
Etiny() (decimal.Context method), 212
ETOOMANYREFS (in module errno), 485
Etop() (decimal.Context method), 212
ETXTBSY (in module errno), 481
EUCLEAN (in module errno), 485
EUNATCH (in module errno), 482
EUSERS (in module errno), 484
eval

built-in function, 52, 70, 186, 1081
eval() (built-in function), 8
Event (class in multiprocessing), 545
Event (class in threading), 531
event scheduling, 170
event() (msilib.Control method), 1127
Event() (multiprocessing.managers.SyncManager

method), 550
events (widgets), 905
EWOULDBLOCK (in module errno), 481
EX_CANTCREAT (in module os), 373
EX_CONFIG (in module os), 373
EX_DATAERR (in module os), 372
EX_IOERR (in module os), 373
EX_NOHOST (in module os), 372
EX_NOINPUT (in module os), 372
EX_NOPERM (in module os), 373
EX_NOTFOUND (in module os), 373
EX_NOUSER (in module os), 372
EX_OK (in module os), 372
EX_OSERR (in module os), 373
EX_OSFILE (in module os), 373
EX_PROTOCOL (in module os), 373
EX_SOFTWARE (in module os), 372
EX_TEMPFAIL (in module os), 373
EX_UNAVAILABLE (in module os), 372
EX_USAGE (in module os), 372
Example (class in doctest), 963
example (doctest.DocTestFailure attribute), 969
example (doctest.UnexpectedException attribute), 970
examples (doctest.DocTest attribute), 963
exc_clear() (in module sys), 1019
exc_info (doctest.UnexpectedException attribute), 970
exc_info() (in module sys), 1018
exc_msg (doctest.Example attribute), 963
exc_traceback (in module sys), 1019
exc_type (in module sys), 1019
exc_value (in module sys), 1019
excel (class in csv), 331
excel_tab (class in csv), 331

Index 1255

The Python Library Reference, Release 2.6.9

except
statement, 55

except (2to3 fixer), 983
excepthook() (in module sys), 760, 1018
Exception, 55
exception() (in module logging), 428
exception() (logging.Logger method), 431
exceptions

in CGI scripts, 759
exceptions (module), 55
EXDEV (in module errno), 480
exec

statement, 52
exec (2to3 fixer), 983
exec_prefix (in module sys), 1019
EXEC_STMT (opcode), 1105
execfile

built-in function, 1051
execfile (2to3 fixer), 983
execfile() (built-in function), 9
execl() (in module os), 371
execle() (in module os), 371
execlp() (in module os), 371
execlpe() (in module os), 371
executable (in module sys), 1019
Execute() (msilib.View method), 1124
execute() (sqlite3.Connection method), 297
execute() (sqlite3.Cursor method), 301
executemany() (sqlite3.Connection method), 297
executemany() (sqlite3.Cursor method), 301
executescript() (sqlite3.Connection method), 297
executescript() (sqlite3.Cursor method), 302
execv() (in module os), 371
execve() (in module os), 371
execvp() (in module os), 371
execvpe() (in module os), 371
ExFileSelectBox (class in Tix), 909
EXFULL (in module errno), 482
exists() (in module os.path), 251
exit (built-in variable), 25
exit() (in module sys), 1019
exit() (in module thread), 533
exitcode (multiprocessing.Process attribute), 540
exitfunc (2to3 fixer), 983
exitfunc (in module sys), 1019
exitfunc (in sys), 1036
exitonclick() (in module turtle), 936
exp() (decimal.Context method), 212
exp() (decimal.Decimal method), 206
exp() (in module cmath), 198
exp() (in module math), 195
expand() (re.MatchObject method), 81
expand_tabs (textwrap.TextWrapper attribute), 105
ExpandEnvironmentStrings() (in module _winreg), 1131

expandNode() (xml.dom.pulldom.DOMEventStream
method), 733

expandtabs() (in module string), 70
expandtabs() (str method), 34
expanduser() (in module os.path), 252
expandvars() (in module os.path), 252
Expat, 710
ExpatError, 710
expect() (telnetlib.Telnet method), 811
expires (cookielib.Cookie attribute), 838
expovariate() (in module random), 227
expr() (in module parser), 1080
expression, 1207
expunge() (imaplib.IMAP4 method), 797
extend() (array.array method), 166
extend() (collections.deque method), 153
extend() (list method), 41
extend_path() (in module pkgutil), 1074
extended slice

assignment, 41
operation, 33

EXTENDED_ARG (opcode), 1108
ExtendedContext (class in decimal), 210
extendleft() (collections.deque method), 153
extension module, 1207
extensions_map (Simple-

HTTPServer.SimpleHTTPRequestHandler
attribute), 829

External Data Representation, 272, 343
external_attr (zipfile.ZipInfo attribute), 321
ExternalClashError, 680
ExternalEntityParserCreate()

(xml.parsers.expat.xmlparser method), 711
ExternalEntityRefHandler() (xml.parsers.expat.xmlparser

method), 714
extra (zipfile.ZipInfo attribute), 320
extract() (tarfile.TarFile method), 324
extract() (zipfile.ZipFile method), 318
extract_cookies() (cookielib.CookieJar method), 832
extract_stack() (in module traceback), 1038
extract_tb() (in module traceback), 1038
extract_version (zipfile.ZipInfo attribute), 321
extractall() (tarfile.TarFile method), 324
extractall() (zipfile.ZipFile method), 319
ExtractError, 323
extractfile() (tarfile.TarFile method), 325
extsep (in module os), 379

F
F_BAVAIL (in module statvfs), 260
F_BFREE (in module statvfs), 260
F_BLOCKS (in module statvfs), 260
F_BSIZE (in module statvfs), 259
F_FAVAIL (in module statvfs), 260

1256 Index

The Python Library Reference, Release 2.6.9

F_FFREE (in module statvfs), 260
F_FILES (in module statvfs), 260
F_FLAG (in module statvfs), 260
F_FRSIZE (in module statvfs), 259
F_NAMEMAX (in module statvfs), 260
F_OK (in module os), 364
fabs() (in module math), 194
factorial() (in module math), 194
fail() (unittest.TestCase method), 978
failIf() (unittest.TestCase method), 978
failIfAlmostEqual() (unittest.TestCase method), 978
failIfEqual() (unittest.TestCase method), 978
failUnless() (unittest.TestCase method), 978
failUnlessAlmostEqual() (unittest.TestCase method), 978
failUnlessEqual() (unittest.TestCase method), 978
failUnlessRaises() (unittest.TestCase method), 978
failureException (unittest.TestCase attribute), 978
failures (unittest.TestResult attribute), 980
False, 27, 52
false, 27
False (Built-in object), 27
False (built-in variable), 25
family (socket.socket attribute), 606
FancyURLopener (class in urllib), 773
fatalError() (xml.sax.handler.ErrorHandler method), 738
faultCode (xmlrpclib.Fault attribute), 846
faultString (xmlrpclib.Fault attribute), 847
fchdir() (in module os), 364
fchmod() (in module os), 360
fchown() (in module os), 360
FCICreate() (in module msilib), 1123
fcntl

module, 47
fcntl (module), 1146
fcntl() (in module fcntl), 1146, 1149
fd() (in module turtle), 915
fdatasync() (in module os), 361
fdopen() (in module os), 359
Feature (class in msilib), 1127
feature_external_ges (in module xml.sax.handler), 735
feature_external_pes (in module xml.sax.handler), 735
feature_namespace_prefixes (in module xml.sax.handler),

735
feature_namespaces (in module xml.sax.handler), 735
feature_string_interning (in module xml.sax.handler),

735
feature_validation (in module xml.sax.handler), 735
feed() (email.parser.FeedParser method), 636
feed() (HTMLParser.HTMLParser method), 703
feed() (sgmllib.SGMLParser method), 706
feed() (xml.etree.ElementTree.XMLTreeBuilder

method), 749
feed() (xml.sax.xmlreader.IncrementalParser method),

741

FeedParser (class in email.parser), 636
fetch() (imaplib.IMAP4 method), 797
Fetch() (msilib.View method), 1125
fetchall() (sqlite3.Cursor method), 303
fetchmany() (sqlite3.Cursor method), 303
fetchone() (sqlite3.Cursor method), 303
fflags (select.kevent attribute), 522
field_size_limit() (in module csv), 331
fieldnames (csv.csvreader attribute), 333
fields (uuid.UUID attribute), 812
fifo (class in asynchat), 626
file

.ini, 336

.pdbrc, 999

.pythonrc.py, 1051
built-in function, 47
byte-code, 1065, 1067, 1099
configuration, 336
copying, 266
debugger configuration, 999
descriptor, 47
large files, 1139
mime.types, 687
object, 47
path configuration, 1050
plist, 346
temporary, 262
user configuration, 1051

file (pyclbr.Class attribute), 1098
file (pyclbr.Function attribute), 1099
file control

UNIX, 1146
file name

temporary, 262
file object

POSIX, 1149
file() (built-in function), 9
file() (posixfile.posixfile method), 1150
file_dispatcher (class in asyncore), 623
file_open() (urllib2.FileHandler method), 783
file_size (zipfile.ZipInfo attribute), 321
file_wrapper (class in asyncore), 624
filecmp (module), 260
fileConfig() (in module logging), 450
FileCookieJar (class in cookielib), 831
FileEntry (class in Tix), 909
FileHandler (class in logging), 441
FileHandler (class in urllib2), 777
FileInput (class in fileinput), 255
fileinput (module), 254
FileIO (class in io), 384
filelineno() (in module fileinput), 255
filename (cookielib.FileCookieJar attribute), 834
filename (doctest.DocTest attribute), 963

Index 1257

The Python Library Reference, Release 2.6.9

filename (zipfile.ZipInfo attribute), 320
filename() (in module fileinput), 255
filename_only (in module tabnanny), 1097
filenames

pathname expansion, 264
wildcard expansion, 265

fileno() (file method), 47
fileno() (hotshot.Profile method), 1008
fileno() (in module fileinput), 255
fileno() (io.IOBase method), 382
fileno() (multiprocessing.Connection method), 544
fileno() (ossaudiodev.oss_audio_device method), 870
fileno() (ossaudiodev.oss_mixer_device method), 872
fileno() (select.epoll method), 520
fileno() (select.kqueue method), 522
fileno() (socket.socket method), 604
fileno() (SocketServer.BaseServer method), 820
fileno() (telnetlib.Telnet method), 811
fileopen() (in module posixfile), 1149
FileSelectBox (class in Tix), 909
FileType (in module types), 182
FileWrapper (class in wsgiref.util), 762
fill() (in module textwrap), 104
fill() (in module turtle), 925
fill() (textwrap.TextWrapper method), 106
fillcolor() (in module turtle), 924
filter (2to3 fixer), 983
Filter (class in logging), 449
filter (select.kevent attribute), 522
filter() (built-in function), 9
filter() (in module curses), 458
filter() (in module fnmatch), 265
filter() (in module future_builtins), 1028
filter() (logging.Filter method), 449
filter() (logging.Handler method), 440
filter() (logging.Logger method), 431
filterwarnings() (in module warnings), 1031
find() (doctest.DocTestFinder method), 964
find() (in module gettext), 876
find() (in module mmap), 585
find() (in module string), 71
find() (str method), 34
find() (xml.etree.ElementTree.Element method), 746
find() (xml.etree.ElementTree.ElementTree method), 747
find_first() (fl.form method), 1191
find_global() (pickle protocol), 279
find_last() (fl.form method), 1191
find_library() (in module ctypes.util), 510
find_longest_match() (difflib.SequenceMatcher method),

97
find_module() (imp.NullImporter method), 1068
find_module() (in module imp), 1065
find_module() (zipimport.zipimporter method), 1073
find_msvcrt() (in module ctypes.util), 511

find_user_password() (urllib2.HTTPPasswordMgr
method), 782

findall() (in module re), 79
findall() (re.RegexObject method), 81
findall() (xml.etree.ElementTree.Element method), 746
findall() (xml.etree.ElementTree.ElementTree method),

747
findCaller() (logging.Logger method), 431
finder, 1207
findertools (module), 1160
findfactor() (in module audioop), 855
findfile() (in module test.test_support), 989
findfit() (in module audioop), 856
findfont() (in module fm), 1194
finditer() (in module re), 79
finditer() (re.RegexObject method), 81
findmatch() (in module mailcap), 664
findmax() (in module audioop), 856
findtext() (xml.etree.ElementTree.Element method), 746
findtext() (xml.etree.ElementTree.ElementTree method),

747
finish() (SocketServer.RequestHandler method), 821
finish_request() (SocketServer.BaseServer method), 821
first() (asynchat.fifo method), 626
first() (bsddb.bsddbobject method), 291
first() (dbhash.dbhash method), 289
firstChild (xml.dom.Node attribute), 721
firstkey() (in module gdbm), 288
firstweekday() (in module calendar), 150
fix() (in module fpformat), 123
fix_missing_locations() (in module ast), 1091
fix_sentence_endings (textwrap.TextWrapper attribute),

105
FL (module), 1193
fl (module), 1188
flag_bits (zipfile.ZipInfo attribute), 321
flags (in module sys), 1019
flags (re.RegexObject attribute), 81
flags (select.kevent attribute), 522
flags() (posixfile.posixfile method), 1149
flash() (in module curses), 458
flatten() (email.generator.Generator method), 638
flattening

objects, 271
float

built-in function, 29, 70
float() (built-in function), 9
float_info (in module sys), 1020
floating point

literals, 29
object, 28

FloatingPointError, 56, 1052
FloatType (in module types), 181
flock() (in module fcntl), 1147

1258 Index

The Python Library Reference, Release 2.6.9

floor() (in module math), 29, 194
floordiv() (in module operator), 244
flp (module), 1193
flush() (bz2.BZ2Compressor method), 316
flush() (file method), 47
flush() (formatter.writer method), 1121
flush() (in module mmap), 585
flush() (io.BufferedWriter method), 385
flush() (io.IOBase method), 382
flush() (logging.BufferingHandler method), 446
flush() (logging.Handler method), 440
flush() (logging.MemoryHandler method), 447
flush() (logging.StreamHandler method), 441
flush() (mailbox.Mailbox method), 667
flush() (mailbox.Maildir method), 669
flush() (mailbox.MH method), 671
flush() (zlib.Compress method), 312
flush() (zlib.Decompress method), 313
flush_softspace() (formatter.formatter method), 1120
flushheaders() (MimeWriter.MimeWriter method), 689
flushinp() (in module curses), 458
FlushKey() (in module _winreg), 1131
fm (module), 1193
fma() (decimal.Context method), 213
fma() (decimal.Decimal method), 206
fmod() (in module math), 194
fnmatch (module), 265
fnmatch() (in module fnmatch), 265
fnmatchcase() (in module fnmatch), 265
Folder (class in mhlib), 683
Font Manager, IRIS, 1193
fontpath() (in module fm), 1194
FOR_ITER (opcode), 1107
forget() (in module test.test_support), 989
fork() (in module os), 373
fork() (in module pty), 1145
forkpty() (in module os), 373
Form (class in Tix), 910
format

str, 9
format (struct.Struct attribute), 92
format() (built-in function), 9
format() (in module locale), 887
format() (logging.Formatter method), 448
format() (logging.Handler method), 440
format() (pprint.PrettyPrinter method), 186
format() (str method), 34
format() (string.Formatter method), 62
format_exc() (in module traceback), 1038
format_exception() (in module traceback), 1039
format_exception_only() (in module traceback), 1039
format_field() (string.Formatter method), 63
format_list() (in module traceback), 1038
format_stack() (in module traceback), 1039

format_stack_entry() (bdb.Bdb method), 996
format_string() (in module locale), 887
format_tb() (in module traceback), 1039
formataddr() (in module email.utils), 647
formatargspec() (in module inspect), 1049
formatargvalues() (in module inspect), 1049
formatdate() (in module email.utils), 648
FormatError, 680
FormatError() (in module ctypes), 511
formatException() (logging.Formatter method), 448
formatmonth() (calendar.HTMLCalendar method), 149
formatmonth() (calendar.TextCalendar method), 149
formatter

module, 708
Formatter (class in logging), 448
Formatter (class in string), 62
formatter (htmllib.HTMLParser attribute), 709
formatter (module), 1119
formatTime() (logging.Formatter method), 448
formatting, string (%), 38
formatwarning() (in module warnings), 1031
formatyear() (calendar.HTMLCalendar method), 149
formatyear() (calendar.TextCalendar method), 149
formatyearpage() (calendar.HTMLCalendar method), 149
FORMS Library, 1188
forward() (in module turtle), 915
found_terminator() (asynchat.async_chat method), 625
fp (rfc822.Message attribute), 695
fpathconf() (in module os), 361
fpectl (module), 1052
fpformat (module), 122
Fraction (class in fractions), 224
fractions (module), 224
frame (ScrolledText.ScrolledText attribute), 912
FrameType (in module types), 182
FrameWork

module, 1180
FrameWork (module), 1163
freeze_form() (fl.form method), 1190
freeze_support() (in module multiprocessing), 543
frexp() (in module math), 195
from_address() (ctypes._CData method), 512
from_buffer() (ctypes._CData method), 512
from_buffer_copy() (ctypes._CData method), 512
from_decimal() (fractions.Fraction method), 224
from_float() (fractions.Fraction method), 224
from_iterable() (itertools.chain class method), 230
from_param() (ctypes._CData method), 512
from_splittable() (email.charset.Charset method), 644
frombuf() (tarfile.TarInfo method), 325
fromchild (popen2.Popen3 attribute), 620
fromfd() (in module socket), 602
fromfd() (select.epoll method), 520
fromfd() (select.kqueue method), 522

Index 1259

The Python Library Reference, Release 2.6.9

fromfile() (array.array method), 166
fromhex() (float method), 30
fromkeys() (dict method), 45
fromlist() (array.array method), 166
fromordinal() (datetime.date class method), 129
fromordinal() (datetime.datetime class method), 133
fromstring() (array.array method), 166
fromstring() (in module xml.etree.ElementTree), 744
fromtarfile() (tarfile.TarInfo method), 326
fromtimestamp() (datetime.date class method), 129
fromtimestamp() (datetime.datetime class method), 132
fromunicode() (array.array method), 166
fromutc() (datetime.tzinfo method), 142
frozenset (built-in class), 42
fstat() (in module os), 361
fstatvfs() (in module os), 361
fsum() (in module math), 195
fsync() (in module os), 361
FTP, 774

ftplib (standard module), 790
protocol, 773, 790

FTP (class in ftplib), 790
ftp_open() (urllib2.FTPHandler method), 783
ftp_proxy, 769
FTPHandler (class in urllib2), 777
ftplib (module), 790
ftpmirror.py, 791
ftruncate() (in module os), 361
Full, 173
full() (multiprocessing.Queue method), 542
full() (Queue.Queue method), 173
func (functools.partial attribute), 243
func_code (function object attribute), 52
funcattrs (2to3 fixer), 983
function, 1207
Function (class in symtable), 1094
function() (in module new), 183
FunctionTestCase (class in unittest), 976
FunctionType (in module types), 182
functools (module), 241
funny_files (filecmp.dircmp attribute), 261
future (2to3 fixer), 984
future_builtins (module), 1027
FutureWarning, 59

G
G.722, 861
gaierror, 599
gammavariate() (in module random), 227
garbage (in module gc), 1044
garbage collection, 1207
gather() (curses.textpad.Textbox method), 472
gauss() (in module random), 227
gc (module), 1042

gcd() (in module fractions), 225
gdbm

module, 283, 285
gdbm (module), 288
ge() (in module operator), 243
gen_uuid() (in module msilib), 1124
generate_tokens() (in module tokenize), 1096
generator, 1207
Generator (class in email.generator), 638
generator expression, 1207
GeneratorExit, 56
GeneratorType (in module types), 182
generic_visit() (ast.NodeVisitor method), 1092
genops() (in module pickletools), 1109
gensuitemodule (module), 1176
get() (ConfigParser.ConfigParser method), 339
get() (ConfigParser.RawConfigParser method), 338
get() (dict method), 45
get() (email.message.Message method), 632
get() (in module webbrowser), 752
get() (mailbox.Mailbox method), 666
get() (multiprocessing.pool.AsyncResult method), 555
get() (multiprocessing.Queue method), 542
get() (ossaudiodev.oss_mixer_device method), 872
get() (Queue.Queue method), 174
get() (rfc822.Message method), 694
get() (xml.etree.ElementTree.Element method), 745
get_all() (email.message.Message method), 632
get_all() (wsgiref.headers.Headers method), 763
get_all_breaks() (bdb.Bdb method), 996
get_app() (wsgiref.simple_server.WSGIServer method),

764
get_begidx() (in module readline), 588
get_body_encoding() (email.charset.Charset method),

644
get_boundary() (email.message.Message method), 634
get_break() (bdb.Bdb method), 996
get_breaks() (bdb.Bdb method), 996
get_buffer() (xdrlib.Packer method), 343
get_buffer() (xdrlib.Unpacker method), 344
get_charset() (email.message.Message method), 631
get_charsets() (email.message.Message method), 634
get_children() (symtable.SymbolTable method), 1094
get_close_matches() (in module difflib), 94
get_code() (imputil.BuiltinImporter method), 1069
get_code() (imputil.Importer method), 1069
get_code() (zipimport.zipimporter method), 1073
get_completer() (in module readline), 587
get_completer_delims() (in module readline), 588
get_completion_type() (in module readline), 588
get_content_charset() (email.message.Message method),

634
get_content_maintype() (email.message.Message

method), 633

1260 Index

The Python Library Reference, Release 2.6.9

get_content_subtype() (email.message.Message method),
633

get_content_type() (email.message.Message method),
632

get_count() (in module gc), 1043
get_current_history_length() (in module readline), 587
get_data() (in module pkgutil), 1074
get_data() (urllib2.Request method), 778
get_data() (zipimport.zipimporter method), 1073
get_date() (mailbox.MaildirMessage method), 674
get_debug() (in module gc), 1043
get_default_domain() (in module nis), 1154
get_default_type() (email.message.Message method), 633
get_dialect() (in module csv), 330
get_directory() (in module fl), 1189
get_docstring() (in module ast), 1091
get_doctest() (doctest.DocTestParser method), 965
get_endidx() (in module readline), 588
get_environ() (wsgiref.simple_server.WSGIRequestHandler

method), 764
get_errno() (in module ctypes), 511
get_examples() (doctest.DocTestParser method), 965
get_field() (string.Formatter method), 62
get_file() (mailbox.Babyl method), 671
get_file() (mailbox.Mailbox method), 667
get_file() (mailbox.Maildir method), 669
get_file() (mailbox.mbox method), 669
get_file() (mailbox.MH method), 671
get_file() (mailbox.MMDF method), 672
get_file_breaks() (bdb.Bdb method), 996
get_filename() (email.message.Message method), 634
get_filename() (in module fl), 1189
get_flags() (mailbox.MaildirMessage method), 673
get_flags() (mailbox.mboxMessage method), 675
get_flags() (mailbox.MMDFMessage method), 679
get_folder() (mailbox.Maildir method), 668
get_folder() (mailbox.MH method), 670
get_frees() (symtable.Function method), 1094
get_from() (mailbox.mboxMessage method), 675
get_from() (mailbox.MMDFMessage method), 678
get_full_url() (urllib2.Request method), 778
get_globals() (symtable.Function method), 1094
get_grouped_opcodes() (difflib.SequenceMatcher

method), 98
get_history_item() (in module readline), 587
get_history_length() (in module readline), 587
get_host() (urllib2.Request method), 778
get_id() (symtable.SymbolTable method), 1093
get_ident() (in module thread), 533
get_identifiers() (symtable.SymbolTable method), 1093
get_info() (mailbox.MaildirMessage method), 674
GET_ITER (opcode), 1102
get_labels() (mailbox.Babyl method), 671
get_labels() (mailbox.BabylMessage method), 677

get_last_error() (in module ctypes), 511
get_line_buffer() (in module readline), 587
get_lineno() (symtable.SymbolTable method), 1093
get_locals() (symtable.Function method), 1094
get_logger() (in module multiprocessing), 559
get_magic() (in module imp), 1065
get_matching_blocks() (difflib.SequenceMatcher

method), 97
get_message() (mailbox.Mailbox method), 666
get_method() (urllib2.Request method), 778
get_methods() (symtable.Class method), 1094
get_mouse() (in module fl), 1190
get_name() (symtable.Symbol method), 1094
get_name() (symtable.SymbolTable method), 1093
get_namespace() (symtable.Symbol method), 1095
get_namespaces() (symtable.Symbol method), 1095
get_no_wait() (multiprocessing.Queue method), 542
get_nonstandard_attr() (cookielib.Cookie method), 838
get_nowait() (multiprocessing.Queue method), 542
get_nowait() (Queue.Queue method), 174
get_objects() (in module gc), 1043
get_opcodes() (difflib.SequenceMatcher method), 97
get_option() (optparse.OptionParser method), 409
get_origin_req_host() (urllib2.Request method), 778
get_osfhandle() (in module msvcrt), 1129
get_output_charset() (email.charset.Charset method), 644
get_param() (email.message.Message method), 633
get_parameters() (symtable.Function method), 1094
get_params() (email.message.Message method), 633
get_pattern() (in module fl), 1189
get_payload() (email.message.Message method), 630
get_poly() (in module turtle), 930
get_position() (xdrlib.Unpacker method), 344
get_recsrc() (ossaudiodev.oss_mixer_device method),

872
get_referents() (in module gc), 1044
get_referrers() (in module gc), 1043
get_request() (SocketServer.BaseServer method), 821
get_rgbmode() (in module fl), 1189
get_scheme() (wsgiref.handlers.BaseHandler method),

767
get_selector() (urllib2.Request method), 778
get_sequences() (mailbox.MH method), 670
get_sequences() (mailbox.MHMessage method), 676
get_server() (multiprocessing.managers.BaseManager

method), 549
get_server_certificate() (in module ssl), 611
get_socket() (telnetlib.Telnet method), 811
get_source() (zipimport.zipimporter method), 1073
get_stack() (bdb.Bdb method), 996
get_starttag_text() (HTMLParser.HTMLParser method),

704
get_starttag_text() (sgmllib.SGMLParser method), 706
get_stderr() (wsgiref.handlers.BaseHandler method), 766

Index 1261

The Python Library Reference, Release 2.6.9

get_stderr() (wsgiref.simple_server.WSGIRequestHandler
method), 764

get_stdin() (wsgiref.handlers.BaseHandler method), 766
get_string() (mailbox.Mailbox method), 666
get_subdir() (mailbox.MaildirMessage method), 673
get_suffixes() (in module imp), 1065
get_symbols() (symtable.SymbolTable method), 1093
get_terminator() (asynchat.async_chat method), 625
get_threshold() (in module gc), 1043
get_token() (shlex.shlex method), 894
get_type() (symtable.SymbolTable method), 1093
get_type() (urllib2.Request method), 778
get_unixfrom() (email.message.Message method), 630
get_usage() (optparse.OptionParser method), 410
get_value() (string.Formatter method), 63
get_version() (optparse.OptionParser method), 400
get_visible() (mailbox.BabylMessage method), 677
getabouttext() (FrameWork.Application method), 1164
getacl() (imaplib.IMAP4 method), 797
getaddr() (rfc822.Message method), 694
getaddresses() (in module email.utils), 647
getaddrinfo() (in module socket), 600
getaddrlist() (rfc822.Message method), 695
getallmatchingheaders() (rfc822.Message method), 694
getannotation() (imaplib.IMAP4 method), 797
getargspec() (in module inspect), 1048
GetArgv() (in module EasyDialogs), 1161
getargvalues() (in module inspect), 1048
getatime() (in module os.path), 252
getattr() (built-in function), 10
getAttribute() (xml.dom.Element method), 724
getAttributeNode() (xml.dom.Element method), 724
getAttributeNodeNS() (xml.dom.Element method), 724
getAttributeNS() (xml.dom.Element method), 724
GetBase() (xml.parsers.expat.xmlparser method), 711
getbegyx() (curses.window method), 464
getboolean() (ConfigParser.RawConfigParser method),

338
getByteStream() (xml.sax.xmlreader.InputSource

method), 742
getcanvas() (in module turtle), 935
getcaps() (in module mailcap), 664
getch() (curses.window method), 464
getch() (in module msvcrt), 1129
getCharacterStream() (xml.sax.xmlreader.InputSource

method), 743
getche() (in module msvcrt), 1129
getcheckinterval() (in module sys), 1021
getChildNodes() (compiler.ast.Node method), 1112
getChildren() (compiler.ast.Node method), 1112
getchildren() (xml.etree.ElementTree.Element method),

746
getclasstree() (in module inspect), 1048
GetColor() (in module ColorPicker), 1173

GetColumnInfo() (msilib.View method), 1124
getColumnNumber() (xml.sax.xmlreader.Locator

method), 742
getcomments() (in module inspect), 1048
getcompname() (aifc.aifc method), 860
getcompname() (sunau.AU_read method), 862
getcompname() (wave.Wave_read method), 864
getcomptype() (aifc.aifc method), 859
getcomptype() (sunau.AU_read method), 862
getcomptype() (wave.Wave_read method), 864
getContentHandler() (xml.sax.xmlreader.XMLReader

method), 740
getcontext() (in module decimal), 210
getcontext() (mhlib.MH method), 683
GetCreatorAndType() (in module MacOS), 1159
getctime() (in module os.path), 252
getcurrent() (mhlib.Folder method), 684
getcwd() (in module os), 364
getcwdu (2to3 fixer), 984
getcwdu() (in module os), 364
getdate() (rfc822.Message method), 695
getdate_tz() (rfc822.Message method), 695
getdecoder() (in module codecs), 107
getdefaultencoding() (in module sys), 1021
getdefaultlocale() (in module locale), 886
getdefaulttimeout() (in module socket), 603
getdlopenflags() (in module sys), 1021
getdoc() (in module inspect), 1048
getDOMImplementation() (in module xml.dom), 719
getDTDHandler() (xml.sax.xmlreader.XMLReader

method), 741
getEffectiveLevel() (logging.Logger method), 430
getegid() (in module os), 356
getElementsByTagName() (xml.dom.Document method),

723
getElementsByTagName() (xml.dom.Element method),

724
getElementsByTagNameNS() (xml.dom.Document

method), 724
getElementsByTagNameNS() (xml.dom.Element

method), 724
getencoder() (in module codecs), 107
getencoding() (mimetools.Message method), 686
getEncoding() (xml.sax.xmlreader.InputSource method),

742
getEntityResolver() (xml.sax.xmlreader.XMLReader

method), 741
getenv() (in module os), 357
getErrorHandler() (xml.sax.xmlreader.XMLReader

method), 741
GetErrorString() (in module MacOS), 1159
geteuid() (in module os), 356
getEvent() (xml.dom.pulldom.DOMEventStream

method), 733

1262 Index

The Python Library Reference, Release 2.6.9

getEventCategory() (logging.NTEventLogHandler
method), 445

getEventType() (logging.NTEventLogHandler method),
446

getException() (xml.sax.SAXException method), 734
getFeature() (xml.sax.xmlreader.XMLReader method),

741
GetFieldCount() (msilib.Record method), 1125
getfile() (in module inspect), 1048
getfilesystemencoding() (in module sys), 1021
getfirst() (cgi.FieldStorage method), 756
getfirstmatchingheader() (rfc822.Message method), 694
getfloat() (ConfigParser.RawConfigParser method), 338
getfmts() (ossaudiodev.oss_audio_device method), 870
getfqdn() (in module socket), 601
getframeinfo() (in module inspect), 1049
getframerate() (aifc.aifc method), 859
getframerate() (sunau.AU_read method), 862
getframerate() (wave.Wave_read method), 864
getfullname() (mhlib.Folder method), 684
getgid() (in module os), 356
getgrall() (in module grp), 1142
getgrgid() (in module grp), 1141
getgrnam() (in module grp), 1142
getgroups() (in module os), 356
getheader() (httplib.HTTPResponse method), 789
getheader() (rfc822.Message method), 694
getheaders() (httplib.HTTPResponse method), 789
gethostbyaddr() (in module socket), 358, 601
gethostbyname() (in module socket), 601
gethostbyname_ex() (in module socket), 601
gethostname() (in module socket), 358, 601
getincrementaldecoder() (in module codecs), 107
getincrementalencoder() (in module codecs), 107
getinfo() (zipfile.ZipFile method), 318
getinnerframes() (in module inspect), 1049
GetInputContext() (xml.parsers.expat.xmlparser method),

711
getint() (ConfigParser.RawConfigParser method), 338
GetInteger() (msilib.Record method), 1125
getitem() (in module operator), 245
getiterator() (xml.etree.ElementTree.Element method),

746
getiterator() (xml.etree.ElementTree.ElementTree

method), 747
getitimer() (in module signal), 618
getkey() (curses.window method), 464
getlast() (mhlib.Folder method), 684
GetLastError() (in module ctypes), 511
getLength() (xml.sax.xmlreader.Attributes method), 743
getLevelName() (in module logging), 428
getline() (in module linecache), 266
getLineNumber() (xml.sax.xmlreader.Locator method),

742

getlist() (cgi.FieldStorage method), 756
getloadavg() (in module os), 378
getlocale() (in module locale), 887
getLogger() (in module logging), 427
getLoggerClass() (in module logging), 427
getlogin() (in module os), 356
getmaintype() (mimetools.Message method), 686
getmark() (aifc.aifc method), 860
getmark() (sunau.AU_read method), 863
getmark() (wave.Wave_read method), 865
getmarkers() (aifc.aifc method), 860
getmarkers() (sunau.AU_read method), 863
getmarkers() (wave.Wave_read method), 865
getmaxyx() (curses.window method), 464
getmcolor() (in module fl), 1190
getmember() (tarfile.TarFile method), 324
getmembers() (in module inspect), 1046
getmembers() (tarfile.TarFile method), 324
getMessage() (logging.LogRecord method), 449
getMessage() (xml.sax.SAXException method), 734
getmessagefilename() (mhlib.Folder method), 684
getMessageID() (logging.NTEventLogHandler method),

446
getmodule() (in module inspect), 1048
getmoduleinfo() (in module inspect), 1046
getmodulename() (in module inspect), 1046
getmouse() (in module curses), 458
getmro() (in module inspect), 1049
getmtime() (in module os.path), 252
getname() (chunk.Chunk method), 866
getName() (threading.Thread method), 526
getNameByQName() (xml.sax.xmlreader.AttributesNS

method), 743
getnameinfo() (in module socket), 601
getnames() (tarfile.TarFile method), 324
getNames() (xml.sax.xmlreader.Attributes method), 743
getnchannels() (aifc.aifc method), 859
getnchannels() (sunau.AU_read method), 862
getnchannels() (wave.Wave_read method), 864
getnframes() (aifc.aifc method), 859
getnframes() (sunau.AU_read method), 862
getnframes() (wave.Wave_read method), 864
getnode, 813
getnode() (in module uuid), 813
getopt (module), 417
getopt() (in module getopt), 417
GetoptError, 418
getouterframes() (in module inspect), 1049
getoutput() (in module commands), 1155
getpagesize() (in module resource), 1153
getparam() (mimetools.Message method), 686
getparams() (aifc.aifc method), 860
getparams() (in module al), 1183
getparams() (sunau.AU_read method), 862

Index 1263

The Python Library Reference, Release 2.6.9

getparams() (wave.Wave_read method), 864
getparyx() (curses.window method), 464
getpass (module), 456
getpass() (in module getpass), 456
GetPassWarning, 456
getpath() (mhlib.MH method), 683
getpeercert() (ssl.SSLSocket method), 612
getpeername() (socket.socket method), 604
getpen() (in module turtle), 930
getpgid() (in module os), 356
getpgrp() (in module os), 357
getpid() (in module os), 357
getplist() (mimetools.Message method), 685
getpos() (HTMLParser.HTMLParser method), 704
getppid() (in module os), 357
getpreferredencoding() (in module locale), 887
getprofile() (in module sys), 1021
getprofile() (mhlib.MH method), 683
GetProperty() (msilib.SummaryInformation method),

1125
getProperty() (xml.sax.xmlreader.XMLReader method),

741
GetPropertyCount() (msilib.SummaryInformation

method), 1125
getprotobyname() (in module socket), 601
getproxies() (in module urllib), 772
getPublicId() (xml.sax.xmlreader.InputSource method),

742
getPublicId() (xml.sax.xmlreader.Locator method), 742
getpwall() (in module pwd), 1140
getpwnam() (in module pwd), 1140
getpwuid() (in module pwd), 1140
getQNameByName() (xml.sax.xmlreader.AttributesNS

method), 743
getQNames() (xml.sax.xmlreader.AttributesNS method),

743
getquota() (imaplib.IMAP4 method), 797
getquotaroot() (imaplib.IMAP4 method), 797
getrandbits() (in module random), 226
getrawheader() (rfc822.Message method), 694
getreader() (in module codecs), 107
getrecursionlimit() (in module sys), 1021
getrefcount() (in module sys), 1021
getresponse() (httplib.HTTPConnection method), 788
getrlimit() (in module resource), 1151
getroot() (xml.etree.ElementTree.ElementTree method),

747
getrusage() (in module resource), 1152
getsample() (in module audioop), 856
getsampwidth() (aifc.aifc method), 859
getsampwidth() (sunau.AU_read method), 862
getsampwidth() (wave.Wave_read method), 864
getscreen() (in module turtle), 930

getscrollbarvalues() (FrameWork.ScrolledWindow
method), 1166

getsequences() (mhlib.Folder method), 684
getsequencesfilename() (mhlib.Folder method), 684
getservbyname() (in module socket), 601
getservbyport() (in module socket), 601
GetSetDescriptorType (in module types), 183
getshapes() (in module turtle), 935
getsid() (in module os), 358
getsignal() (in module signal), 618
getsize() (chunk.Chunk method), 866
getsize() (in module os.path), 252
getsizeof() (in module sys), 1021
getsizes() (in module imgfile), 1197
getslice() (in module operator), 246
getsockname() (socket.socket method), 604
getsockopt() (socket.socket method), 604
getsource() (in module inspect), 1048
getsourcefile() (in module inspect), 1048
getsourcelines() (in module inspect), 1048
getspall() (in module spwd), 1141
getspnam() (in module spwd), 1141
getstate() (in module random), 226
getstatus() (in module commands), 1155
getstatusoutput() (in module commands), 1155
getstr() (curses.window method), 464
GetString() (msilib.Record method), 1125
getSubject() (logging.SMTPHandler method), 446
getsubtype() (mimetools.Message method), 686
GetSummaryInformation() (msilib.Database method),

1124
getSystemId() (xml.sax.xmlreader.InputSource method),

742
getSystemId() (xml.sax.xmlreader.Locator method), 742
getsyx() (in module curses), 458
gettarinfo() (tarfile.TarFile method), 325
gettempdir() (in module tempfile), 264
gettempprefix() (in module tempfile), 264
getTestCaseNames() (unittest.TestLoader method), 981
gettext (module), 875
gettext() (gettext.GNUTranslations method), 879
gettext() (gettext.NullTranslations method), 878
gettext() (in module gettext), 876
GetTicks() (in module MacOS), 1159
gettimeout() (socket.socket method), 605
gettrace() (in module sys), 1022
getturtle() (in module turtle), 930
gettype() (mimetools.Message method), 686
getType() (xml.sax.xmlreader.Attributes method), 743
getuid() (in module os), 357
geturl() (urlparse.ParseResult method), 818
getuser() (in module getpass), 456
getvalue() (io.BytesIO method), 385
getvalue() (io.StringIO method), 387

1264 Index

The Python Library Reference, Release 2.6.9

getvalue() (StringIO.StringIO method), 102
getValue() (xml.sax.xmlreader.Attributes method), 743
getValueByQName() (xml.sax.xmlreader.AttributesNS

method), 743
getwch() (in module msvcrt), 1129
getwche() (in module msvcrt), 1129
getweakrefcount() (in module weakref), 176
getweakrefs() (in module weakref), 176
getwelcome() (ftplib.FTP method), 791
getwelcome() (nntplib.NNTP method), 802
getwelcome() (poplib.POP3 method), 794
getwin() (in module curses), 458
getwindowsversion() (in module sys), 1022
getwriter() (in module codecs), 107
getyx() (curses.window method), 464
gid (tarfile.TarInfo attribute), 326
GIL, 1207
GL (module), 1196
gl (module), 1194
glob

module, 265
glob (module), 264
glob() (in module glob), 264
glob() (msilib.Directory method), 1127
global interpreter lock, 1207
globals() (built-in function), 10
globs (doctest.DocTest attribute), 963
gmtime() (in module time), 389
gname (tarfile.TarInfo attribute), 326
GNOME, 880
GNU_FORMAT (in module tarfile), 323
gnu_getopt() (in module getopt), 417
got (doctest.DocTestFailure attribute), 969
goto() (in module turtle), 916
Graphical User Interface, 897
Greenwich Mean Time, 387
grey22grey() (in module imageop), 859
grey2grey2() (in module imageop), 858
grey2grey4() (in module imageop), 858
grey2mono() (in module imageop), 858
grey42grey() (in module imageop), 859
group() (nntplib.NNTP method), 803
group() (re.MatchObject method), 81
groupby() (in module itertools), 232
groupdict() (re.MatchObject method), 82
groupindex (re.RegexObject attribute), 81
groups (re.RegexObject attribute), 81
groups() (re.MatchObject method), 82
grp (module), 1141
gt() (in module operator), 243
guess_all_extensions() (in module mimetypes), 686
guess_extension() (in module mimetypes), 686
guess_extension() (mimetypes.MimeTypes method), 688
guess_scheme() (in module wsgiref.util), 760

guess_type() (in module mimetypes), 686
guess_type() (mimetypes.MimeTypes method), 688
GUI, 897
gzip (module), 313
GzipFile (class in gzip), 314

H
halfdelay() (in module curses), 459
handle() (BaseHTTPServer.BaseHTTPRequestHandler

method), 827
handle() (logging.Handler method), 440
handle() (logging.Logger method), 431
handle() (SocketServer.RequestHandler method), 822
handle() (wsgiref.simple_server.WSGIRequestHandler

method), 764
handle_accept() (asyncore.dispatcher method), 623
handle_charref() (HTMLParser.HTMLParser method),

704
handle_charref() (sgmllib.SGMLParser method), 706
handle_close() (asyncore.dispatcher method), 622
handle_comment() (HTMLParser.HTMLParser method),

704
handle_comment() (sgmllib.SGMLParser method), 707
handle_connect() (asyncore.dispatcher method), 622
handle_data() (HTMLParser.HTMLParser method), 704
handle_data() (sgmllib.SGMLParser method), 706
handle_decl() (HTMLParser.HTMLParser method), 704
handle_decl() (sgmllib.SGMLParser method), 707
handle_endtag() (HTMLParser.HTMLParser method),

704
handle_endtag() (sgmllib.SGMLParser method), 706
handle_entityref() (HTMLParser.HTMLParser method),

704
handle_entityref() (sgmllib.SGMLParser method), 707
handle_error() (asyncore.dispatcher method), 623
handle_error() (SocketServer.BaseServer method), 821
handle_expt() (asyncore.dispatcher method), 622
handle_image() (htmllib.HTMLParser method), 709
handle_one_request() (Base-

HTTPServer.BaseHTTPRequestHandler
method), 827

handle_pi() (HTMLParser.HTMLParser method), 705
handle_read() (asyncore.dispatcher method), 622
handle_request() (SimpleXMLRPC-

Server.CGIXMLRPCRequestHandler method),
852

handle_request() (SocketServer.BaseServer method), 820
handle_startendtag() (HTMLParser.HTMLParser

method), 704
handle_starttag() (HTMLParser.HTMLParser method),

704
handle_starttag() (sgmllib.SGMLParser method), 706
handle_timeout() (SocketServer.BaseServer method), 821
handle_write() (asyncore.dispatcher method), 622

Index 1265

The Python Library Reference, Release 2.6.9

handleError() (logging.Handler method), 440
handleError() (logging.SocketHandler method), 443
handler() (in module cgitb), 760
has_children() (symtable.SymbolTable method), 1093
has_colors() (in module curses), 459
has_data() (urllib2.Request method), 778
has_exec() (symtable.SymbolTable method), 1093
has_extn() (smtplib.SMTP method), 806
has_header() (csv.Sniffer method), 331
has_header() (urllib2.Request method), 778
has_ic() (in module curses), 459
has_il() (in module curses), 459
has_import_star() (symtable.SymbolTable method), 1093
has_ipv6 (in module socket), 600
has_key (2to3 fixer), 984
has_key() (bsddb.bsddbobject method), 291
has_key() (dict method), 45
has_key() (email.message.Message method), 632
has_key() (in module curses), 459
has_key() (mailbox.Mailbox method), 667
has_nonstandard_attr() (cookielib.Cookie method), 838
has_option() (ConfigParser.RawConfigParser method),

338
has_option() (optparse.OptionParser method), 409
has_section() (ConfigParser.RawConfigParser method),

338
hasattr() (built-in function), 10
hasAttribute() (xml.dom.Element method), 724
hasAttributeNS() (xml.dom.Element method), 724
hasAttributes() (xml.dom.Node method), 721
hasChildNodes() (xml.dom.Node method), 721
hascompare (in module dis), 1101
hasconst (in module dis), 1101
hasFeature() (xml.dom.DOMImplementation method),

720
hasfree (in module dis), 1101
hash() (built-in function), 10
hash.block_size (in module hashlib), 350
hash.digest_size (in module hashlib), 350
hashable, 1207
hashlib (module), 349
hashopen() (in module bsddb), 290
hasjabs (in module dis), 1101
hasjrel (in module dis), 1101
haslocal (in module dis), 1101
hasname (in module dis), 1101
HAVE_ARGUMENT (opcode), 1108
have_unicode (in module test.test_support), 989
head() (nntplib.NNTP method), 803
Header (class in email.header), 642
header_encode() (email.charset.Charset method), 645
header_encoding (email.charset.Charset attribute), 643
header_offset (zipfile.ZipInfo attribute), 321
HeaderError, 323

HeaderParseError, 646
headers

MIME, 686, 753
headers (BaseHTTPServer.BaseHTTPRequestHandler at-

tribute), 826
Headers (class in wsgiref.headers), 762
headers (rfc822.Message attribute), 695
headers (xmlrpclib.ProtocolError attribute), 847
heading() (in module turtle), 921
heapify() (in module heapq), 161
heapmin() (in module msvcrt), 1130
heappop() (in module heapq), 161
heappush() (in module heapq), 161
heappushpop() (in module heapq), 161
heapq (module), 160
heapreplace() (in module heapq), 161
helo() (smtplib.SMTP method), 806
help

online, 947
help (optparse.Option attribute), 404
help() (built-in function), 10
help() (nntplib.NNTP method), 803
herror, 599
hex (uuid.UUID attribute), 813
hex() (built-in function), 10
hex() (float method), 30
hex() (in module future_builtins), 1028
hexadecimal

literals, 29
hexbin() (in module binhex), 698
hexdigest() (hashlib.hash method), 350
hexdigest() (hmac.hmac method), 351
hexdigest() (md5.md5 method), 352
hexdigest() (sha.sha method), 352
hexdigits (in module string), 61
hexlify() (in module binascii), 700
hexversion (in module sys), 1022
hidden() (curses.panel.Panel method), 476
hide() (curses.panel.Panel method), 476
hide_cookie2 (cookielib.CookiePolicy attribute), 835
hide_form() (fl.form method), 1190
hideturtle() (in module turtle), 926
HierarchyRequestErr, 726
HIGHEST_PROTOCOL (in module pickle), 272
HKEY_CLASSES_ROOT (in module _winreg), 1134
HKEY_CURRENT_CONFIG (in module _winreg), 1134
HKEY_CURRENT_USER (in module _winreg), 1134
HKEY_DYN_DATA (in module _winreg), 1134
HKEY_LOCAL_MACHINE (in module _winreg), 1134
HKEY_PERFORMANCE_DATA (in module _winreg),

1134
HKEY_USERS (in module _winreg), 1134
hline() (curses.window method), 464
HList (class in Tix), 909

1266 Index

The Python Library Reference, Release 2.6.9

hls_to_rgb() (in module colorsys), 867
hmac (module), 350
HOME, 252, 1051
home() (in module turtle), 917
HOMEDRIVE, 252
HOMEPATH, 252
hook_compressed() (in module fileinput), 256
hook_encoded() (in module fileinput), 256
hosts (netrc.netrc attribute), 343
hotshot (module), 1008
hotshot.stats (module), 1009
hour (datetime.datetime attribute), 133
hour (datetime.time attribute), 139
HRESULT (class in ctypes), 515
hsv_to_rgb() (in module colorsys), 867
ht() (in module turtle), 926
HTML, 703, 708, 773
HTMLCalendar (class in calendar), 149
HtmlDiff (class in difflib), 93
HtmlDiff.__init__() (in module difflib), 93
HtmlDiff.make_file() (in module difflib), 93
HtmlDiff.make_table() (in module difflib), 93
htmlentitydefs (module), 709
htmllib

module, 773
htmllib (module), 708
HTMLParseError, 703, 708
HTMLParser (class in htmllib), 708, 1119
HTMLParser (class in HTMLParser), 703
HTMLParser (module), 703
htonl() (in module socket), 602
htons() (in module socket), 602
HTTP

httplib (standard module), 785
protocol, 753, 773, 785, 826

http_error_301() (urllib2.HTTPRedirectHandler method),
781

http_error_302() (urllib2.HTTPRedirectHandler method),
781

http_error_303() (urllib2.HTTPRedirectHandler method),
781

http_error_307() (urllib2.HTTPRedirectHandler method),
781

http_error_401() (urllib2.HTTPBasicAuthHandler
method), 782

http_error_401() (urllib2.HTTPDigestAuthHandler
method), 782

http_error_407() (urllib2.ProxyBasicAuthHandler
method), 782

http_error_407() (urllib2.ProxyDigestAuthHandler
method), 783

http_error_auth_reqed() (url-
lib2.AbstractBasicAuthHandler method),
782

http_error_auth_reqed() (url-
lib2.AbstractDigestAuthHandler method),
782

http_error_default() (urllib2.BaseHandler method), 780
http_error_nnn() (urllib2.BaseHandler method), 780
http_open() (urllib2.HTTPHandler method), 783
HTTP_PORT (in module httplib), 786
http_proxy, 769, 784
http_version (wsgiref.handlers.BaseHandler attribute),

768
HTTPBasicAuthHandler (class in urllib2), 777
HTTPConnection (class in httplib), 785
HTTPCookieProcessor (class in urllib2), 776
httpd, 826
HTTPDefaultErrorHandler (class in urllib2), 776
HTTPDigestAuthHandler (class in urllib2), 777
HTTPError, 775
HTTPException, 786
HTTPHandler (class in logging), 447
HTTPHandler (class in urllib2), 777
httplib (module), 785
HTTPMessage (class in httplib), 786
HTTPPasswordMgr (class in urllib2), 777
HTTPPasswordMgrWithDefaultRealm (class in urllib2),

777
HTTPRedirectHandler (class in urllib2), 776
HTTPResponse (class in httplib), 786
https_open() (urllib2.HTTPSHandler method), 783
HTTPS_PORT (in module httplib), 786
HTTPSConnection (class in httplib), 785
HTTPServer (class in BaseHTTPServer), 826
HTTPSHandler (class in urllib2), 777
hypertext, 708
hypot() (in module math), 196

I
I (in module re), 77
I/O control

buffering, 13, 359, 604
POSIX, 1144
tty, 1144
UNIX, 1146

iadd() (in module operator), 246
iand() (in module operator), 246
IC (class in ic), 1157
ic (module), 1157
icglue

module, 1157
iconcat() (in module operator), 246
icopen (module), 1202
id() (built-in function), 10
id() (unittest.TestCase method), 979
idcok() (curses.window method), 464
ident (in module cd), 1186

Index 1267

The Python Library Reference, Release 2.6.9

ident (select.kevent attribute), 522
ident (threading.Thread attribute), 526
identchars (cmd.Cmd attribute), 893
idioms (2to3 fixer), 984
idiv() (in module operator), 246
IDLE, 942, 1208
idle() (FrameWork.Application method), 1165
IDLESTARTUP, 945
idlok() (curses.window method), 465
IEEE-754, 1052
if

statement, 27
ifilter() (in module itertools), 233
ifilterfalse() (in module itertools), 233
ifloordiv() (in module operator), 246
iglob() (in module glob), 264
ignorableWhitespace() (xml.sax.handler.ContentHandler

method), 737
ignore_errors() (in module codecs), 108
IGNORE_EXCEPTION_DETAIL (in module doctest),

955
ignore_patterns() (in module shutil), 267
IGNORECASE (in module re), 77
ihave() (nntplib.NNTP method), 804
ilshift() (in module operator), 247
imag (numbers.Complex attribute), 191
imageop (module), 858
imap() (in module itertools), 233
imap() (multiprocessing.pool.multiprocessing.Pool

method), 555
IMAP4

protocol, 795
IMAP4 (class in imaplib), 795
IMAP4.abort, 795
IMAP4.error, 795
IMAP4.readonly, 795
IMAP4_SSL

protocol, 795
IMAP4_SSL (class in imaplib), 796
IMAP4_stream

protocol, 795
IMAP4_stream (class in imaplib), 796
imap_unordered() (multiprocess-

ing.pool.multiprocessing.Pool method),
555

imaplib (module), 795
imgfile (module), 1196
imghdr (module), 867
immedok() (curses.window method), 465
immutable, 1208
ImmutableSet (class in sets), 168
imod() (in module operator), 247
imp

module, 21

imp (module), 1065
import

statement, 21, 1065, 1068
import (2to3 fixer), 984
Import module, 943
import_file() (imputil.DynLoadSuffixImporter method),

1069
IMPORT_FROM (opcode), 1106
IMPORT_NAME (opcode), 1106
IMPORT_STAR (opcode), 1105
import_top() (imputil.Importer method), 1069
importer, 1208
Importer (class in imputil), 1069
ImportError, 56
ImportManager (class in imputil), 1068
imports (2to3 fixer), 984
imports2 (2to3 fixer), 984
ImportWarning, 59
ImproperConnectionState, 786
imputil (module), 1068
imul() (in module operator), 247
in

operator, 28, 33
in_dll() (ctypes._CData method), 512
in_table_a1() (in module stringprep), 121
in_table_b1() (in module stringprep), 121
in_table_c11() (in module stringprep), 122
in_table_c11_c12() (in module stringprep), 122
in_table_c12() (in module stringprep), 122
in_table_c21() (in module stringprep), 122
in_table_c21_c22() (in module stringprep), 122
in_table_c22() (in module stringprep), 122
in_table_c3() (in module stringprep), 122
in_table_c4() (in module stringprep), 122
in_table_c5() (in module stringprep), 122
in_table_c6() (in module stringprep), 122
in_table_c7() (in module stringprep), 122
in_table_c8() (in module stringprep), 122
in_table_c9() (in module stringprep), 122
in_table_d1() (in module stringprep), 122
in_table_d2() (in module stringprep), 122
inc() (EasyDialogs.ProgressBar method), 1163
inch() (curses.window method), 465
Incomplete, 700
IncompleteRead, 786
increment_lineno() (in module ast), 1091
IncrementalDecoder (class in codecs), 111
IncrementalEncoder (class in codecs), 110
IncrementalNewlineDecoder (class in io), 387
IncrementalParser (class in xml.sax.xmlreader), 739
indent (doctest.Example attribute), 964
indentation, 944
Independent JPEG Group, 1197
index (in module cd), 1186

1268 Index

The Python Library Reference, Release 2.6.9

index() (array.array method), 166
index() (in module operator), 244
index() (in module string), 71
index() (list method), 41
index() (str method), 34
IndexError, 56
indexOf() (in module operator), 246
IndexSizeErr, 726
inet_aton() (in module socket), 602
inet_ntoa() (in module socket), 602
inet_ntop() (in module socket), 603
inet_pton() (in module socket), 603
Inexact (class in decimal), 215
infile (shlex.shlex attribute), 895
Infinity, 9, 70
info() (gettext.NullTranslations method), 878
info() (in module logging), 428
info() (logging.Logger method), 431
infolist() (zipfile.ZipFile method), 318
InfoScrap() (in module Carbon.Scrap), 1172
ini file, 336
init() (in module fm), 1194
init() (in module mimetypes), 687
init_builtin() (in module imp), 1067
init_color() (in module curses), 459
init_database() (in module msilib), 1123
init_frozen() (in module imp), 1067
init_pair() (in module curses), 459
inited (in module mimetypes), 687
initial_indent (textwrap.TextWrapper attribute), 105
initscr() (in module curses), 459
INPLACE_ADD (opcode), 1103
INPLACE_AND (opcode), 1103
INPLACE_DIVIDE (opcode), 1103
INPLACE_FLOOR_DIVIDE (opcode), 1103
INPLACE_LSHIFT (opcode), 1103
INPLACE_MODULO (opcode), 1103
INPLACE_MULTIPLY (opcode), 1103
INPLACE_OR (opcode), 1104
INPLACE_POWER (opcode), 1103
INPLACE_RSHIFT (opcode), 1103
INPLACE_SUBTRACT (opcode), 1103
INPLACE_TRUE_DIVIDE (opcode), 1103
INPLACE_XOR (opcode), 1103
input

built-in function, 1026
input (2to3 fixer), 984
input() (built-in function), 10
input() (in module fileinput), 255
input_charset (email.charset.Charset attribute), 643
input_codec (email.charset.Charset attribute), 644
InputOnly (class in Tix), 910
InputSource (class in xml.sax.xmlreader), 740
InputType (in module cStringIO), 103

insch() (curses.window method), 465
insdelln() (curses.window method), 465
insert() (array.array method), 166
insert() (list method), 41
insert() (xml.etree.ElementTree.Element method), 746
insert_text() (in module readline), 587
insertBefore() (xml.dom.Node method), 722
InsertionLoc (class in aetypes), 1179
insertln() (curses.window method), 465
insnstr() (curses.window method), 465
insort() (in module bisect), 164
insort_left() (in module bisect), 164
insort_right() (in module bisect), 164
inspect (module), 1045
insstr() (curses.window method), 465
install() (gettext.NullTranslations method), 878
install() (imputil.ImportManager method), 1068
install() (in module gettext), 877
install_opener() (in module urllib2), 775
installaehandler() (MiniAEFrame.AEServer method),

1180
installAutoGIL() (in module autoGIL), 1167
instance() (in module new), 183
instancemethod() (in module new), 183
InstanceType (in module types), 182
instr() (curses.window method), 465
instream (shlex.shlex attribute), 895
int

built-in function, 29
int (uuid.UUID attribute), 813
int() (built-in function), 11
Int2AP() (in module imaplib), 796
integer

division, 29
division, long, 29
literals, 29
literals, long, 29
object, 28
types, operations on, 30

integer division, 1208
Integral (class in numbers), 192
Integrated Development Environment, 942
Intel/DVI ADPCM, 855
interact() (code.InteractiveConsole method), 1056
interact() (in module code), 1055
interact() (telnetlib.Telnet method), 811
interactive, 1208
InteractiveConsole (class in code), 1055
InteractiveInterpreter (class in code), 1055
intern (2to3 fixer), 984
intern() (built-in function), 23
internal_attr (zipfile.ZipInfo attribute), 321
Internaldate2tuple() (in module imaplib), 796
internalSubset (xml.dom.DocumentType attribute), 723

Index 1269

The Python Library Reference, Release 2.6.9

Internet, 751
Internet Config, 770
interpolation, string (%), 38
InterpolationDepthError, 337
InterpolationError, 337
InterpolationMissingOptionError, 337
InterpolationSyntaxError, 337
interpreted, 1208
interpreter prompts, 1024
interrupt() (sqlite3.Connection method), 298
interrupt_main() (in module thread), 533
intersection() (set method), 43
intersection_update() (set method), 43
IntlText (class in aetypes), 1179
IntlWritingCode (class in aetypes), 1179
intro (cmd.Cmd attribute), 893
IntType (in module types), 181
InuseAttributeErr, 726
inv() (in module operator), 244
InvalidAccessErr, 726
InvalidCharacterErr, 726
InvalidModificationErr, 726
InvalidOperation (class in decimal), 216
InvalidStateErr, 726
InvalidURL, 786
invert() (in module operator), 244
io (module), 379
IOBase (class in io), 381
ioctl() (in module fcntl), 1146
ioctl() (socket.socket method), 604
IOError, 56
ior() (in module operator), 247
ipow() (in module operator), 247
irepeat() (in module operator), 247
IRIS Font Manager, 1193
IRIX

threads, 534
irshift() (in module operator), 247
is

operator, 28
is not

operator, 28
is_() (in module operator), 244
is_alive() (multiprocessing.Process method), 540
is_alive() (threading.Thread method), 527
is_assigned() (symtable.Symbol method), 1094
is_blocked() (cookielib.DefaultCookiePolicy method),

836
is_builtin() (in module imp), 1067
is_canonical() (decimal.Context method), 213
is_canonical() (decimal.Decimal method), 206
IS_CHARACTER_JUNK() (in module difflib), 96
is_data() (multifile.MultiFile method), 691
is_declared_global() (symtable.Symbol method), 1094

is_empty() (asynchat.fifo method), 626
is_expired() (cookielib.Cookie method), 838
is_finite() (decimal.Context method), 213
is_finite() (decimal.Decimal method), 206
is_free() (symtable.Symbol method), 1094
is_frozen() (in module imp), 1067
is_global() (symtable.Symbol method), 1094
is_hop_by_hop() (in module wsgiref.util), 762
is_imported() (symtable.Symbol method), 1094
is_infinite() (decimal.Context method), 213
is_infinite() (decimal.Decimal method), 206
is_jython (in module test.test_support), 989
IS_LINE_JUNK() (in module difflib), 96
is_linetouched() (curses.window method), 465
is_local() (symtable.Symbol method), 1094
is_multipart() (email.message.Message method), 630
is_namespace() (symtable.Symbol method), 1094
is_nan() (decimal.Context method), 213
is_nan() (decimal.Decimal method), 206
is_nested() (symtable.SymbolTable method), 1093
is_normal() (decimal.Context method), 213
is_normal() (decimal.Decimal method), 206
is_not() (in module operator), 244
is_not_allowed() (cookielib.DefaultCookiePolicy

method), 836
is_optimized() (symtable.SymbolTable method), 1093
is_package() (zipimport.zipimporter method), 1073
is_parameter() (symtable.Symbol method), 1094
is_qnan() (decimal.Context method), 213
is_qnan() (decimal.Decimal method), 206
is_referenced() (symtable.Symbol method), 1094
is_resource_enabled() (in module test.test_support), 989
is_scriptable() (in module gensuitemodule), 1176
is_set() (threading.Event method), 531
is_signed() (decimal.Context method), 213
is_signed() (decimal.Decimal method), 207
is_snan() (decimal.Context method), 213
is_snan() (decimal.Decimal method), 207
is_subnormal() (decimal.Context method), 213
is_subnormal() (decimal.Decimal method), 207
is_tarfile() (in module tarfile), 322
is_unverifiable() (urllib2.Request method), 778
is_wintouched() (curses.window method), 465
is_zero() (decimal.Context method), 213
is_zero() (decimal.Decimal method), 207
is_zipfile() (in module zipfile), 317
isabs() (in module os.path), 252
isabstract() (in module inspect), 1047
isAlive() (threading.Thread method), 527
isalnum() (in module curses.ascii), 474
isalnum() (str method), 35
isalpha() (in module curses.ascii), 474
isalpha() (str method), 35
isascii() (in module curses.ascii), 474

1270 Index

The Python Library Reference, Release 2.6.9

isatty() (chunk.Chunk method), 866
isatty() (file method), 47
isatty() (in module os), 361
isatty() (io.IOBase method), 382
isblank() (in module curses.ascii), 474
isblk() (tarfile.TarInfo method), 327
isbuiltin() (in module inspect), 1047
isCallable() (in module operator), 247
ischr() (tarfile.TarInfo method), 326
isclass() (in module inspect), 1046
iscntrl() (in module curses.ascii), 474
iscode() (in module inspect), 1047
iscomment() (rfc822.Message method), 694
isctrl() (in module curses.ascii), 474
isDaemon() (threading.Thread method), 527
isdatadescriptor() (in module inspect), 1047
isdecimal() (unicode method), 38
isdev() (tarfile.TarInfo method), 327
isdigit() (in module curses.ascii), 474
isdigit() (str method), 35
isdir() (in module os.path), 252
isdir() (tarfile.TarInfo method), 326
isdisjoint() (set method), 42
isdown() (in module turtle), 923
iselement() (in module xml.etree.ElementTree), 744
isenabled() (in module gc), 1043
isEnabledFor() (logging.Logger method), 430
isendwin() (in module curses), 459
ISEOF() (in module token), 1095
isexpr() (in module parser), 1081
isexpr() (parser.ST method), 1082
isfifo() (tarfile.TarInfo method), 327
isfile() (in module os.path), 252
isfile() (tarfile.TarInfo method), 326
isfirstline() (in module fileinput), 255
isframe() (in module inspect), 1047
isfunction() (in module inspect), 1046
isgenerator() (in module inspect), 1047
isgeneratorfunction() (in module inspect), 1047
isgetsetdescriptor() (in module inspect), 1047
isgraph() (in module curses.ascii), 474
isheader() (rfc822.Message method), 694
isinf() (in module cmath), 199
isinf() (in module math), 195
isinstance (2to3 fixer), 984
isinstance() (built-in function), 11
iskeyword() (in module keyword), 1096
islast() (rfc822.Message method), 694
isleap() (in module calendar), 150
islice() (in module itertools), 233
islink() (in module os.path), 252
islnk() (tarfile.TarInfo method), 326
islower() (in module curses.ascii), 474
islower() (str method), 35

isMappingType() (in module operator), 247
ismemberdescriptor() (in module inspect), 1047
ismeta() (in module curses.ascii), 474
ismethod() (in module inspect), 1046
ismethoddescriptor() (in module inspect), 1047
ismodule() (in module inspect), 1046
ismount() (in module os.path), 253
isnan() (in module cmath), 199
isnan() (in module math), 195
ISNONTERMINAL() (in module token), 1095
isNumberType() (in module operator), 247
isnumeric() (unicode method), 38
isocalendar() (datetime.date method), 130
isocalendar() (datetime.datetime method), 136
isoformat() (datetime.date method), 130
isoformat() (datetime.datetime method), 136
isoformat() (datetime.time method), 139
isolation_level (sqlite3.Connection attribute), 296
isoweekday() (datetime.date method), 130
isoweekday() (datetime.datetime method), 136
isprint() (in module curses.ascii), 474
ispunct() (in module curses.ascii), 474
isqueued() (in module fl), 1190
isreadable() (in module pprint), 186
isreadable() (pprint.PrettyPrinter method), 186
isrecursive() (in module pprint), 186
isrecursive() (pprint.PrettyPrinter method), 186
isreg() (tarfile.TarInfo method), 326
isReservedKey() (Cookie.Morsel method), 841
isroutine() (in module inspect), 1047
isSameNode() (xml.dom.Node method), 721
isSequenceType() (in module operator), 248
isSet() (threading.Event method), 531
isspace() (in module curses.ascii), 474
isspace() (str method), 35
isstdin() (in module fileinput), 255
issubclass() (built-in function), 11
issubset() (set method), 42
issuite() (in module parser), 1081
issuite() (parser.ST method), 1082
issuperset() (set method), 42
issym() (tarfile.TarInfo method), 326
ISTERMINAL() (in module token), 1095
istitle() (str method), 35
istraceback() (in module inspect), 1047
isub() (in module operator), 247
isupper() (in module curses.ascii), 474
isupper() (str method), 35
isvisible() (in module turtle), 927
isxdigit() (in module curses.ascii), 474
item() (xml.dom.NamedNodeMap method), 725
item() (xml.dom.NodeList method), 722
itemgetter() (in module operator), 248
items() (ConfigParser.ConfigParser method), 339

Index 1271

The Python Library Reference, Release 2.6.9

items() (ConfigParser.RawConfigParser method), 339
items() (dict method), 46
items() (email.message.Message method), 632
items() (mailbox.Mailbox method), 666
items() (xml.etree.ElementTree.Element method), 745
itemsize (array.array attribute), 165
iter() (built-in function), 11
iter_child_nodes() (in module ast), 1092
iter_fields() (in module ast), 1091
iterable, 1208
IterableUserDict (class in UserDict), 179
iterator, 1208
iterator protocol, 31
iterdecode() (in module codecs), 109
iterdump (sqlite3.Connection attribute), 300
iterencode() (in module codecs), 109
iterencode() (json.JSONEncoder method), 664
iteritems() (dict method), 46
iteritems() (mailbox.Mailbox method), 666
iterkeyrefs() (weakref.WeakKeyDictionary method), 176
iterkeys() (dict method), 46
iterkeys() (mailbox.Mailbox method), 666
itermonthdates() (calendar.Calendar method), 148
itermonthdays() (calendar.Calendar method), 148
itermonthdays2() (calendar.Calendar method), 148
iterparse() (in module xml.etree.ElementTree), 744
itertools (2to3 fixer), 984
itertools (module), 228
itertools_imports (2to3 fixer), 984
itervaluerefs() (weakref.WeakValueDictionary method),

176
itervalues() (dict method), 46
itervalues() (mailbox.Mailbox method), 666
iterweekdays() (calendar.Calendar method), 148
ITIMER_PROF (in module signal), 617
ITIMER_REAL (in module signal), 617
ITIMER_VIRTUAL (in module signal), 617
ItimerError, 617
itruediv() (in module operator), 247
ixor() (in module operator), 247
izip() (in module itertools), 234
izip_longest() (in module itertools), 234

J
Jansen, Jack, 701
java_ver() (in module platform), 478
JFIF, 1197, 1198
join() (in module os.path), 253
join() (in module string), 71
join() (multiprocessing.JoinableQueue method), 543
join() (multiprocessing.pool.multiprocessing.Pool

method), 555
join() (multiprocessing.Process method), 539
join() (Queue.Queue method), 174

join() (str method), 35
join() (threading.Thread method), 526
join_thread() (multiprocessing.Queue method), 542
JoinableQueue (class in multiprocessing), 543
joinfields() (in module string), 71
jpeg (module), 1197
js_output() (Cookie.BaseCookie method), 840
js_output() (Cookie.Morsel method), 841
json (module), 659
JSONDecoder (class in json), 662
JSONEncoder (class in json), 662
JUMP_ABSOLUTE (opcode), 1107
JUMP_FORWARD (opcode), 1107
JUMP_IF_FALSE (opcode), 1107
JUMP_IF_TRUE (opcode), 1107
jumpahead() (in module random), 226

K
kbhit() (in module msvcrt), 1129
KDEDIR, 752
kevent() (in module select), 519
key (Cookie.Morsel attribute), 841
KEY_ALL_ACCESS (in module _winreg), 1135
KEY_CREATE_LINK (in module _winreg), 1135
KEY_CREATE_SUB_KEY (in module _winreg), 1135
KEY_ENUMERATE_SUB_KEYS (in module _winreg),

1135
KEY_EXECUTE (in module _winreg), 1135
KEY_NOTIFY (in module _winreg), 1135
KEY_QUERY_VALUE (in module _winreg), 1135
KEY_READ (in module _winreg), 1135
KEY_SET_VALUE (in module _winreg), 1135
KEY_WOW64_32KEY (in module _winreg), 1135
KEY_WOW64_64KEY (in module _winreg), 1135
KEY_WRITE (in module _winreg), 1135
KeyboardInterrupt, 56
KeyError, 56
keyname() (in module curses), 459
keypad() (curses.window method), 465
keyrefs() (weakref.WeakKeyDictionary method), 176
keys() (bsddb.bsddbobject method), 291
keys() (dict method), 46
keys() (email.message.Message method), 632
keys() (mailbox.Mailbox method), 666
keys() (sqlite3.Row method), 304
keys() (xml.etree.ElementTree.Element method), 746
keysubst() (in module aetools), 1177
Keyword (class in aetypes), 1179
keyword (module), 1096
keyword argument, 1208
keywords (functools.partial attribute), 243
kill() (in module os), 374
kill() (subprocess.Popen method), 594
killchar() (in module curses), 459

1272 Index

The Python Library Reference, Release 2.6.9

killpg() (in module os), 374
knee

module, 1068, 1072
knownfiles (in module mimetypes), 687
kqueue() (in module select), 519
Kuchling, Andrew, 353
kwlist (in module keyword), 1096

L
L (in module re), 77
label() (EasyDialogs.ProgressBar method), 1163
LabelEntry (class in Tix), 908
LabelFrame (class in Tix), 908
lambda, 1208
LambdaType (in module types), 182
LANG, 875, 877, 884, 887
LANGUAGE, 875, 877
language

C, 28
large files, 1139
LargeZipFile, 317
last (multifile.MultiFile attribute), 692
last() (bsddb.bsddbobject method), 291
last() (dbhash.dbhash method), 289
last() (nntplib.NNTP method), 803
last_accepted (multiprocessing.connection.Listener at-

tribute), 557
last_traceback (in module sys), 1022
last_type (in module sys), 1022
last_value (in module sys), 1022
lastChild (xml.dom.Node attribute), 721
lastcmd (cmd.Cmd attribute), 893
lastgroup (re.MatchObject attribute), 83
lastindex (re.MatchObject attribute), 83
lastpart() (MimeWriter.MimeWriter method), 689
lastrowid (sqlite3.Cursor attribute), 303
launch() (in module findertools), 1160
launchurl() (ic.IC method), 1158
launchurl() (in module ic), 1157
LBYL, 1208
LC_ALL, 875, 877
LC_ALL (in module locale), 888
LC_COLLATE (in module locale), 888
LC_CTYPE (in module locale), 888
LC_MESSAGES, 875, 877
LC_MESSAGES (in module locale), 888
LC_MONETARY (in module locale), 888
LC_NUMERIC (in module locale), 888
LC_TIME (in module locale), 888
lchflags() (in module os), 365
lchmod() (in module os), 365
lchown() (in module os), 365
ldexp() (in module math), 195
ldgettext() (in module gettext), 876

ldngettext() (in module gettext), 876
le() (in module operator), 243
leapdays() (in module calendar), 150
leaveok() (curses.window method), 465
left() (in module turtle), 916
left_list (filecmp.dircmp attribute), 261
left_only (filecmp.dircmp attribute), 261
len

built-in function, 33, 44
len() (built-in function), 11
length (xml.dom.NamedNodeMap attribute), 725
length (xml.dom.NodeList attribute), 722
letters (in module string), 61
level (multifile.MultiFile attribute), 692
lexists() (in module os.path), 252
lgettext() (gettext.GNUTranslations method), 879
lgettext() (gettext.NullTranslations method), 878
lgettext() (in module gettext), 876
lib2to3 (module), 986
libc_ver() (in module platform), 479
library (in module dbm), 287
LibraryLoader (class in ctypes), 506
license (built-in variable), 25
LifoQueue (class in Queue), 173
light-weight processes, 532
limit_denominator() (fractions.Fraction method), 224
lin2adpcm() (in module audioop), 856
lin2alaw() (in module audioop), 856
lin2lin() (in module audioop), 856
lin2ulaw() (in module audioop), 856
line() (msilib.Dialog method), 1128
line-buffered I/O, 13
line_buffering (io.TextIOWrapper attribute), 386
line_num (csv.csvreader attribute), 333
linecache (module), 266
lineno (ast.AST attribute), 1088
lineno (doctest.DocTest attribute), 963
lineno (doctest.Example attribute), 964
lineno (pyclbr.Class attribute), 1098
lineno (pyclbr.Function attribute), 1099
lineno (shlex.shlex attribute), 895
lineno (xml.parsers.expat.ExpatError attribute), 715
lineno() (in module fileinput), 255
LINES, 462
linesep (in module os), 379
lineterminator (csv.Dialect attribute), 332
link() (in module os), 366
linkmodel (in module MacOS), 1159
linkname (tarfile.TarInfo attribute), 326
linux_distribution() (in module platform), 479
list, 1209

object, 32, 40
type, operations on, 41

list comprehension, 1209

Index 1273

The Python Library Reference, Release 2.6.9

list() (built-in function), 12
list() (imaplib.IMAP4 method), 797
list() (multiprocessing.managers.SyncManager method),

551
list() (nntplib.NNTP method), 802
list() (poplib.POP3 method), 794
list() (tarfile.TarFile method), 324
LIST_APPEND (opcode), 1105
list_dialects() (in module csv), 330
list_folders() (mailbox.Maildir method), 668
list_folders() (mailbox.MH method), 670
listallfolders() (mhlib.MH method), 683
listallsubfolders() (mhlib.MH method), 683
listdir() (in module dircache), 269
listdir() (in module os), 366
listen() (asyncore.dispatcher method), 623
listen() (in module logging), 450
listen() (in module turtle), 934
listen() (socket.socket method), 604
Listener (class in multiprocessing.connection), 556
listfolders() (mhlib.MH method), 683
listmessages() (mhlib.Folder method), 684
listMethods() (xmlrpclib.ServerProxy.system method),

844
ListNoteBook (class in Tix), 910
listsubfolders() (mhlib.MH method), 683
ListType (in module types), 181
literal_eval() (in module ast), 1091
literals

complex number, 29
floating point, 29
hexadecimal, 29
integer, 29
long integer, 29
numeric, 29
octal, 29

LittleEndianStructure (class in ctypes), 515
ljust() (in module string), 72
ljust() (str method), 35
LK_LOCK (in module msvcrt), 1129
LK_NBLCK (in module msvcrt), 1129
LK_NBRLCK (in module msvcrt), 1129
LK_RLCK (in module msvcrt), 1129
LK_UNLCK (in module msvcrt), 1129
LMTP (class in smtplib), 805
ln() (decimal.Context method), 213
ln() (decimal.Decimal method), 207
LNAME, 456
lngettext() (gettext.GNUTranslations method), 879
lngettext() (gettext.NullTranslations method), 878
lngettext() (in module gettext), 876
load() (Cookie.BaseCookie method), 840
load() (cookielib.FileCookieJar method), 833
load() (in module hotshot.stats), 1009

load() (in module json), 661
load() (in module marshal), 285
load() (in module pickle), 273
load() (pickle.Unpickler method), 274
LOAD_ATTR (opcode), 1106
LOAD_CLOSURE (opcode), 1107
load_compiled() (in module imp), 1067
LOAD_CONST (opcode), 1106
LOAD_DEREF (opcode), 1107
load_dynamic() (in module imp), 1067
LOAD_FAST (opcode), 1107
LOAD_GLOBAL (opcode), 1107
load_global() (pickle protocol), 279
LOAD_LOCALS (opcode), 1105
load_module() (in module imp), 1066
load_module() (zipimport.zipimporter method), 1073
LOAD_NAME (opcode), 1106
load_source() (in module imp), 1067
loader, 1209
LoadError, 831
LoadKey() (in module _winreg), 1131
LoadLibrary() (ctypes.LibraryLoader method), 506
loads() (in module json), 661
loads() (in module marshal), 285
loads() (in module pickle), 273
loads() (in module xmlrpclib), 849
loadTestsFromModule() (unittest.TestLoader method),

981
loadTestsFromName() (unittest.TestLoader method), 981
loadTestsFromNames() (unittest.TestLoader method),

981
loadTestsFromTestCase() (unittest.TestLoader method),

981
local (class in threading), 524
localcontext() (in module decimal), 210
LOCALE (in module re), 77
locale (module), 884
localeconv() (in module locale), 884
LocaleHTMLCalendar (class in calendar), 150
LocaleTextCalendar (class in calendar), 149
localName (xml.dom.Attr attribute), 725
localName (xml.dom.Node attribute), 721
locals() (built-in function), 12
localtime() (in module time), 389
Locator (class in xml.sax.xmlreader), 740
Lock (class in multiprocessing), 546
Lock() (in module threading), 524
lock() (mailbox.Babyl method), 672
lock() (mailbox.Mailbox method), 667
lock() (mailbox.Maildir method), 669
lock() (mailbox.mbox method), 669
lock() (mailbox.MH method), 671
lock() (mailbox.MMDF method), 672

1274 Index

The Python Library Reference, Release 2.6.9

Lock() (multiprocessing.managers.SyncManager
method), 550

lock() (mutex.mutex method), 172
lock() (posixfile.posixfile method), 1149
lock_held() (in module imp), 1066
locked() (thread.lock method), 533
lockf() (in module fcntl), 1147
locking() (in module msvcrt), 1129
LockType (in module thread), 532
log() (in module cmath), 198
log() (in module logging), 428
log() (in module math), 195
log() (logging.Logger method), 431
log10() (decimal.Context method), 213
log10() (decimal.Decimal method), 207
log10() (in module cmath), 198
log10() (in module math), 196
log1p() (in module math), 196
log_date_time_string() (Base-

HTTPServer.BaseHTTPRequestHandler
method), 828

log_error() (BaseHTTPServer.BaseHTTPRequestHandler
method), 828

log_exception() (wsgiref.handlers.BaseHandler method),
767

log_message() (BaseHTTPServer.BaseHTTPRequestHandler
method), 828

log_request() (BaseHTTPServer.BaseHTTPRequestHandler
method), 828

log_to_stderr() (in module multiprocessing), 559
logb() (decimal.Context method), 213
logb() (decimal.Decimal method), 207
LoggerAdapter (class in logging), 449
logging

Errors, 419
logging (module), 419
Logical (class in aetypes), 1180
logical_and() (decimal.Context method), 213
logical_and() (decimal.Decimal method), 207
logical_invert() (decimal.Context method), 213
logical_invert() (decimal.Decimal method), 207
logical_or() (decimal.Context method), 213
logical_or() (decimal.Decimal method), 207
logical_xor() (decimal.Context method), 213
logical_xor() (decimal.Decimal method), 207
login() (ftplib.FTP method), 791
login() (imaplib.IMAP4 method), 797
login() (smtplib.SMTP method), 806
login_cram_md5() (imaplib.IMAP4 method), 797
LOGNAME, 356, 456
lognormvariate() (in module random), 227
logout() (imaplib.IMAP4 method), 798
LogRecord (class in logging), 449
long

built-in function, 29, 70
integer division, 29
integer literals, 29

long (2to3 fixer), 984
long integer

object, 28
long() (built-in function), 12
longname() (in module curses), 459
LongType (in module types), 181
lookup() (in module codecs), 107
lookup() (in module unicodedata), 119
lookup() (symtable.SymbolTable method), 1093
lookup_error() (in module codecs), 108
LookupError, 55
loop() (in module asyncore), 622
lower() (in module string), 71
lower() (str method), 35
lowercase (in module string), 61
lseek() (in module os), 361
lshift() (in module operator), 244
lstat() (in module os), 366
lstrip() (in module string), 71
lstrip() (str method), 35
lsub() (imaplib.IMAP4 method), 798
lt() (in module operator), 243
lt() (in module turtle), 916
Lundh, Fredrik, 1197
LWPCookieJar (class in cookielib), 834

M
M (in module re), 77
mac_ver() (in module platform), 479
macerrors

module, 1159
macerrors (module), 1202
machine() (in module platform), 477
MacOS (module), 1158
macostools (module), 1160
macpath (module), 270
macresource (module), 1202
macros (netrc.netrc attribute), 343
mailbox

module, 692
Mailbox (class in mailbox), 665
mailbox (module), 665
mailcap (module), 664
Maildir (class in mailbox), 668
MaildirMessage (class in mailbox), 673
MailmanProxy (class in smtpd), 809
main() (in module py_compile), 1099
main() (in module unittest), 977
mainloop() (FrameWork.Application method), 1164
major() (in module os), 366
MAKE_CLOSURE (opcode), 1108

Index 1275

The Python Library Reference, Release 2.6.9

make_cookies() (cookielib.CookieJar method), 833
make_form() (in module fl), 1189
MAKE_FUNCTION (opcode), 1108
make_header() (in module email.header), 643
make_msgid() (in module email.utils), 648
make_parser() (in module xml.sax), 733
make_server() (in module wsgiref.simple_server), 763
makedev() (in module os), 366
makedirs() (in module os), 366
makeelement() (xml.etree.ElementTree.Element

method), 746
makefile() (socket.socket method), 604
makefolder() (mhlib.MH method), 683
makeLogRecord() (in module logging), 429
makePickle() (logging.SocketHandler method), 443
makeRecord() (logging.Logger method), 431
makeSocket() (logging.DatagramHandler method), 444
makeSocket() (logging.SocketHandler method), 443
maketrans() (in module string), 70
makeusermenus() (FrameWork.Application method),

1164
map (2to3 fixer), 984
map() (built-in function), 12
map() (in module future_builtins), 1028
map() (multiprocessing.pool.multiprocessing.Pool

method), 555
map_async() (multiprocessing.pool.multiprocessing.Pool

method), 555
map_table_b2() (in module stringprep), 122
map_table_b3() (in module stringprep), 122
mapcolor() (in module fl), 1190
mapfile() (ic.IC method), 1158
mapfile() (in module ic), 1157
mapping, 1209

object, 44
types, operations on, 44

mapping() (msilib.Control method), 1127
mapPriority() (logging.SysLogHandler method), 445
maps() (in module nis), 1154
maptypecreator() (ic.IC method), 1158
maptypecreator() (in module ic), 1157
marshal (module), 284
marshalling

objects, 271
masking

operations, 30
match() (in module nis), 1153
match() (in module re), 78
match() (re.RegexObject method), 80
MatchObject (class in re), 81
math

module, 29, 200
math (module), 194
max

built-in function, 33
max (datetime.date attribute), 129
max (datetime.datetime attribute), 133
max (datetime.time attribute), 139
max (datetime.timedelta attribute), 127
max() (built-in function), 12
max() (decimal.Context method), 213
max() (decimal.Decimal method), 207
max() (in module audioop), 856
MAX_INTERPOLATION_DEPTH (in module Config-

Parser), 337
max_mag() (decimal.Context method), 213
max_mag() (decimal.Decimal method), 207
maxarray (repr.Repr attribute), 188
maxdeque (repr.Repr attribute), 188
maxdict (repr.Repr attribute), 188
maxfrozenset (repr.Repr attribute), 188
maxint (in module sys), 1022
MAXLEN (in module mimify), 690
maxlevel (repr.Repr attribute), 188
maxlist (repr.Repr attribute), 188
maxlong (repr.Repr attribute), 188
maxother (repr.Repr attribute), 188
maxpp() (in module audioop), 856
maxset (repr.Repr attribute), 188
maxsize (in module sys), 1022
maxstring (repr.Repr attribute), 188
maxtuple (repr.Repr attribute), 188
maxunicode (in module sys), 1023
maxval (EasyDialogs.ProgressBar attribute), 1163
MAXYEAR (in module datetime), 125
MB_ICONASTERISK (in module winsound), 1138
MB_ICONEXCLAMATION (in module winsound),

1138
MB_ICONHAND (in module winsound), 1138
MB_ICONQUESTION (in module winsound), 1138
MB_OK (in module winsound), 1138
mbox (class in mailbox), 669
mboxMessage (class in mailbox), 674
md5 (module), 351
md5() (in module md5), 351
MemberDescriptorType (in module types), 183
memmove() (in module ctypes), 511
MemoryError, 57
MemoryHandler (class in logging), 446
memset() (in module ctypes), 511
Menu() (in module FrameWork), 1164
MenuBar() (in module FrameWork), 1163
MenuItem() (in module FrameWork), 1164
merge() (in module heapq), 162
Message (class in email.message), 630
Message (class in mailbox), 672
Message (class in mhlib), 683
Message (class in mimetools), 685

1276 Index

The Python Library Reference, Release 2.6.9

Message (class in rfc822), 692
Message (in module mimetools), 827
message digest, MD5, 349, 351
Message() (in module EasyDialogs), 1161
message_from_file() (in module email), 637
message_from_string() (in module email), 637
MessageBeep() (in module winsound), 1137
MessageClass (BaseHTTPServer.BaseHTTPRequestHandler

attribute), 827
MessageError, 646
MessageParseError, 646
meta() (in module curses), 459
meta_path (in module sys), 1023
metaclass, 1209
metaclass (2to3 fixer), 984
metavar (optparse.Option attribute), 405
Meter (class in Tix), 908
method, 1209

object, 51
methodattrs (2to3 fixer), 985
methodcaller() (in module operator), 248
methodHelp() (xmlrpclib.ServerProxy.system method),

844
methods

string, 33
methods (pyclbr.Class attribute), 1098
methodSignature() (xmlrpclib.ServerProxy.system

method), 844
MethodType (in module types), 182
MH (class in mailbox), 670
MH (class in mhlib), 683
mhlib (module), 683
MHMailbox (class in mailbox), 681
MHMessage (class in mailbox), 676
microsecond (datetime.datetime attribute), 133
microsecond (datetime.time attribute), 139
MIME

base64 encoding, 696
content type, 686
headers, 686, 753
quoted-printable encoding, 700

mime_decode_header() (in module mimify), 690
mime_encode_header() (in module mimify), 690
MIMEApplication (class in email.mime.application), 640
MIMEAudio (class in email.mime.audio), 640
MIMEBase (class in email.mime.base), 639
MIMEImage (class in email.mime.image), 640
MIMEMessage (class in email.mime.message), 641
MIMEMultipart (class in email.mime.multipart), 640
MIMENonMultipart (class in email.mime.nonmultipart),

640
MIMEText (class in email.mime.text), 641
mimetools

module, 769

mimetools (module), 685
MimeTypes (class in mimetypes), 687
mimetypes (module), 686
MimeWriter (class in MimeWriter), 688
MimeWriter (module), 688
mimify (module), 689
mimify() (in module mimify), 689
min

built-in function, 33
min (datetime.date attribute), 129
min (datetime.datetime attribute), 133
min (datetime.time attribute), 139
min (datetime.timedelta attribute), 127
min() (built-in function), 12
min() (decimal.Context method), 213
min() (decimal.Decimal method), 207
min_mag() (decimal.Context method), 214
min_mag() (decimal.Decimal method), 207
MiniAEFrame (module), 1180
MiniApplication (class in MiniAEFrame), 1180
minmax() (in module audioop), 856
minor() (in module os), 366
minus() (decimal.Context method), 214
minute (datetime.datetime attribute), 133
minute (datetime.time attribute), 139
MINYEAR (in module datetime), 125
mirrored() (in module unicodedata), 120
misc_header (cmd.Cmd attribute), 893
MissingSectionHeaderError, 337
MIXERDEV, 869
mkalias() (in module macostools), 1160
mkd() (ftplib.FTP method), 793
mkdir() (in module os), 366
mkdtemp() (in module tempfile), 263
mkfifo() (in module os), 366
mknod() (in module os), 366
mkstemp() (in module tempfile), 262
mktemp() (in module tempfile), 263
mktime() (in module time), 389
mktime_tz() (in module email.utils), 648
mktime_tz() (in module rfc822), 693
mmap (class in mmap), 584
mmap (module), 583
MMDF (class in mailbox), 672
MmdfMailbox (class in mailbox), 681
MMDFMessage (class in mailbox), 678
mod() (in module operator), 244
mode (file attribute), 49
mode (io.FileIO attribute), 384
mode (ossaudiodev.oss_audio_device attribute), 871
mode (tarfile.TarInfo attribute), 326
mode() (in module turtle), 935
modf() (in module math), 195
modified() (robotparser.RobotFileParser method), 342

Index 1277

The Python Library Reference, Release 2.6.9

Modify() (msilib.View method), 1125
modify() (select.epoll method), 520
modify() (select.poll method), 521
module

_locale, 884
AL, 1183
base64, 699
bdb, 997
binhex, 699
bsddb, 283, 285, 289
CGIHTTPServer, 826
cmd, 997
copy, 281
cPickle, 281
crypt, 1140
dbhash, 285
dbm, 283, 285, 288
dumbdbm, 285
errno, 57, 599
fcntl, 47
formatter, 708
FrameWork, 1180
gdbm, 283, 285
glob, 265
htmllib, 773
icglue, 1157
imp, 21
knee, 1068, 1072
macerrors, 1159
mailbox, 692
math, 29, 200
mimetools, 769
os, 47, 1139
pickle, 184, 281, 282, 284
pty, 362
pwd, 252
pyexpat, 710
re, 40, 61, 265
rfc822, 685
search path, 266, 1023, 1050
sgmllib, 708
shelve, 284
signal, 534
SimpleHTTPServer, 826
sitecustomize, 1050
socket, 47, 751
stat, 368
statvfs, 369
string, 40, 888, 889
struct, 606
SUNAUDIODEV, 1199
sunaudiodev, 1200
types, 52
urllib, 785

urlparse, 774
uu, 699

module (pyclbr.Class attribute), 1098
module (pyclbr.Function attribute), 1099
module() (in module new), 183
ModuleFinder (class in modulefinder), 1074
modulefinder (module), 1074
modules (in module sys), 1023
modules (modulefinder.ModuleFinder attribute), 1075
ModuleType (in module types), 182
mono2grey() (in module imageop), 858
month (datetime.date attribute), 129
month (datetime.datetime attribute), 133
month() (in module calendar), 150
month_abbr (in module calendar), 151
month_name (in module calendar), 151
monthcalendar() (in module calendar), 150
monthdatescalendar() (calendar.Calendar method), 148
monthdays2calendar() (calendar.Calendar method), 148
monthdayscalendar() (calendar.Calendar method), 149
monthrange() (in module calendar), 150
Morsel (class in Cookie), 840
mouseinterval() (in module curses), 460
mousemask() (in module curses), 460
move() (curses.panel.Panel method), 476
move() (curses.window method), 465
move() (in module findertools), 1161
move() (in module mmap), 585
move() (in module shutil), 268
movemessage() (mhlib.Folder method), 684
MozillaCookieJar (class in cookielib), 834
mro() (class method), 53
msftoframe() (in module cd), 1185
msg (httplib.HTTPResponse attribute), 789
msg() (telnetlib.Telnet method), 810
msi, 1123
msilib (module), 1123
msvcrt (module), 1128
mt_interact() (telnetlib.Telnet method), 811
mtime (tarfile.TarInfo attribute), 326
mtime() (robotparser.RobotFileParser method), 342
mul() (in module audioop), 856
mul() (in module operator), 244
MultiCall (class in xmlrpclib), 848
MultiFile (class in multifile), 690
multifile (module), 690
MULTILINE (in module re), 77
MultipartConversionError, 647
multiply() (decimal.Context method), 214
multiprocessing (module), 535
multiprocessing.connection (module), 556
multiprocessing.dummy (module), 560
multiprocessing.Manager() (in module multiprocess-

ing.sharedctypes), 549

1278 Index

The Python Library Reference, Release 2.6.9

multiprocessing.managers (module), 549
multiprocessing.Pool (class in multiprocessing.pool), 554
multiprocessing.pool (module), 554
multiprocessing.sharedctypes (module), 547
mutable, 1209

sequence types, 40
MutableString (class in UserString), 180
mutex (class in mutex), 172
mutex (module), 172
mvderwin() (curses.window method), 466
mvwin() (curses.window method), 466
myrights() (imaplib.IMAP4 method), 798

N
name (cookielib.Cookie attribute), 837
name (doctest.DocTest attribute), 963
name (file attribute), 49
name (in module os), 355
name (io.FileIO attribute), 384
name (multiprocessing.Process attribute), 539
name (ossaudiodev.oss_audio_device attribute), 871
name (pyclbr.Class attribute), 1098
name (pyclbr.Function attribute), 1099
name (tarfile.TarInfo attribute), 326
name (threading.Thread attribute), 526
name (xml.dom.Attr attribute), 725
name (xml.dom.DocumentType attribute), 723
name() (in module unicodedata), 119
name2codepoint (in module htmlentitydefs), 709
named tuple, 1209
NamedTemporaryFile() (in module tempfile), 262
namedtuple() (in module collections), 157
NameError, 57
namelist() (zipfile.ZipFile method), 318
nameprep() (in module encodings.idna), 119
namespace, 1209
namespace() (imaplib.IMAP4 method), 798
Namespace() (multiprocessing.managers.SyncManager

method), 550
NAMESPACE_DNS (in module uuid), 813
NAMESPACE_OID (in module uuid), 813
NAMESPACE_URL (in module uuid), 813
NAMESPACE_X500 (in module uuid), 813
NamespaceErr, 726
namespaceURI (xml.dom.Node attribute), 721
NaN, 9, 70
NannyNag, 1098
napms() (in module curses), 460
nargs (optparse.Option attribute), 404
Nav (module), 1202
Navigation Services, 1162
ndiff() (in module difflib), 94
ne (2to3 fixer), 985
ne() (in module operator), 243

neg() (in module operator), 245
nested scope, 1209
nested() (in module contextlib), 1033
netrc (class in netrc), 342
netrc (module), 342
NetrcParseError, 342
netscape (cookielib.CookiePolicy attribute), 835
Network News Transfer Protocol, 800
new (module), 183
new() (in module hmac), 350
new() (in module md5), 351
new() (in module sha), 352
new-style class, 1209
new_alignment() (formatter.writer method), 1121
new_font() (formatter.writer method), 1121
new_margin() (formatter.writer method), 1121
new_module() (in module imp), 1066
new_panel() (in module curses.panel), 475
new_spacing() (formatter.writer method), 1121
new_styles() (formatter.writer method), 1121
newconfig() (in module al), 1183
newgroups() (nntplib.NNTP method), 802
newlines (file attribute), 49
newlines (io.TextIOBase attribute), 386
newnews() (nntplib.NNTP method), 802
newpad() (in module curses), 460
newwin() (in module curses), 460
next (2to3 fixer), 985
next() (bsddb.bsddbobject method), 291
next() (built-in function), 12
next() (csv.csvreader method), 333
next() (dbhash.dbhash method), 290
next() (file method), 47
next() (iterator method), 31
next() (mailbox.oldmailbox method), 680
next() (multifile.MultiFile method), 691
next() (nntplib.NNTP method), 803
next() (tarfile.TarFile method), 324
next_minus() (decimal.Context method), 214
next_minus() (decimal.Decimal method), 207
next_plus() (decimal.Context method), 214
next_plus() (decimal.Decimal method), 208
next_toward() (decimal.Context method), 214
next_toward() (decimal.Decimal method), 208
nextfile() (in module fileinput), 255
nextkey() (in module gdbm), 288
nextpart() (MimeWriter.MimeWriter method), 689
nextSibling (xml.dom.Node attribute), 721
ngettext() (gettext.GNUTranslations method), 879
ngettext() (gettext.NullTranslations method), 878
ngettext() (in module gettext), 876
nice() (in module os), 374
nis (module), 1153
NIST, 352

Index 1279

The Python Library Reference, Release 2.6.9

NL (in module tokenize), 1096
nl() (in module curses), 460
nl_langinfo() (in module locale), 885
nlargest() (in module heapq), 162
nlst() (ftplib.FTP method), 792
NNTP

protocol, 800
NNTP (class in nntplib), 801
NNTPDataError, 802
NNTPError, 801
nntplib (module), 800
NNTPPermanentError, 801
NNTPProtocolError, 802
NNTPReplyError, 801
NNTPTemporaryError, 801
no_proxy, 770
nocbreak() (in module curses), 460
NoDataAllowedErr, 727
Node (class in compiler.ast), 1112
node() (in module platform), 477
nodelay() (curses.window method), 466
nodeName (xml.dom.Node attribute), 721
NodeTransformer (class in ast), 1092
nodeType (xml.dom.Node attribute), 720
nodeValue (xml.dom.Node attribute), 721
NodeVisitor (class in ast), 1092
NODISC (in module cd), 1186
noecho() (in module curses), 460
NOEXPR (in module locale), 886
nofill (htmllib.HTMLParser attribute), 709
nok_builtin_names (rexec.RExec attribute), 1061
noload() (pickle.Unpickler method), 274
NoModificationAllowedErr, 727
nonblock() (ossaudiodev.oss_audio_device method), 870
None (Built-in object), 27
None (built-in variable), 25
NoneType (in module types), 181
nonl() (in module curses), 460
nonzero (2to3 fixer), 985
noop() (imaplib.IMAP4 method), 798
noop() (poplib.POP3 method), 794
NoOptionError, 337
NOP (opcode), 1102
noqiflush() (in module curses), 460
noraw() (in module curses), 460
normalize() (decimal.Context method), 214
normalize() (decimal.Decimal method), 208
normalize() (in module locale), 887
normalize() (in module unicodedata), 120
normalize() (xml.dom.Node method), 722
NORMALIZE_WHITESPACE (in module doctest), 955
normalvariate() (in module random), 227
normcase() (in module os.path), 253
normpath() (in module os.path), 253

NoSectionError, 337
NoSuchMailboxError, 680
not

operator, 28
not in

operator, 28, 33
not_() (in module operator), 244
NotANumber, 123
notationDecl() (xml.sax.handler.DTDHandler method),

738
NotationDeclHandler() (xml.parsers.expat.xmlparser

method), 714
notations (xml.dom.DocumentType attribute), 723
NotConnected, 786
NoteBook (class in Tix), 910
NotEmptyError, 680
NotFoundErr, 726
notify() (threading.Condition method), 529
notify_all() (threading.Condition method), 530
notifyAll() (threading.Condition method), 530
notimeout() (curses.window method), 466
NotImplemented (built-in variable), 25
NotImplementedError, 57
NotImplementedType (in module types), 182
NotStandaloneHandler() (xml.parsers.expat.xmlparser

method), 714
NotSupportedErr, 726
noutrefresh() (curses.window method), 466
now() (datetime.datetime class method), 132
NProperty (class in aetypes), 1180
NSIG (in module signal), 617
nsmallest() (in module heapq), 162
NTEventLogHandler (class in logging), 445
ntohl() (in module socket), 602
ntohs() (in module socket), 602
ntransfercmd() (ftplib.FTP method), 792
NullFormatter (class in formatter), 1121
NullImporter (class in imp), 1067
NullTranslations (class in gettext), 877
NullWriter (class in formatter), 1122
Number (class in numbers), 191
number_class() (decimal.Context method), 214
number_class() (decimal.Decimal method), 208
numbers (module), 191
numerator (numbers.Rational attribute), 192
numeric

conversions, 29
literals, 29
object, 28
types, operations on, 29

numeric() (in module unicodedata), 120
Numerical Python, 17
numliterals (2to3 fixer), 985
nurbscurve() (in module gl), 1195

1280 Index

The Python Library Reference, Release 2.6.9

nurbssurface() (in module gl), 1195
nvarray() (in module gl), 1195

O
O_APPEND (in module os), 363
O_ASYNC (in module os), 363
O_BINARY (in module os), 363
O_CREAT (in module os), 363
O_DIRECT (in module os), 363
O_DIRECTORY (in module os), 363
O_DSYNC (in module os), 363
O_EXCL (in module os), 363
O_EXLOCK (in module os), 363
O_NDELAY (in module os), 363
O_NOATIME (in module os), 363
O_NOCTTY (in module os), 363
O_NOFOLLOW (in module os), 363
O_NOINHERIT (in module os), 363
O_NONBLOCK (in module os), 363
O_RANDOM (in module os), 363
O_RDONLY (in module os), 363
O_RDWR (in module os), 363
O_RSYNC (in module os), 363
O_SEQUENTIAL (in module os), 363
O_SHLOCK (in module os), 363
O_SHORT_LIVED (in module os), 363
O_SYNC (in module os), 363
O_TEMPORARY (in module os), 363
O_TEXT (in module os), 363
O_TRUNC (in module os), 363
O_WRONLY (in module os), 363
object, 1209

Boolean, 28
buffer, 32
code, 52, 284
complex number, 28
dictionary, 44
file, 47
floating point, 28
integer, 28
list, 32, 40
long integer, 28
mapping, 44
method, 51
numeric, 28
sequence, 32
set, 42
socket, 598
string, 32
traceback, 1018, 1038
tuple, 32
type, 19
Unicode, 32
xrange, 32, 40

object() (built-in function), 12
objects

comparing, 28
flattening, 271
marshalling, 271
persistent, 271
pickling, 271
serializing, 271

ObjectSpecifier (class in aetypes), 1180
obufcount() (ossaudiodev.oss_audio_device method), 871
obuffree() (ossaudiodev.oss_audio_device method), 871
oct() (built-in function), 12
oct() (in module future_builtins), 1028
octal

literals, 29
octdigits (in module string), 62
offset (xml.parsers.expat.ExpatError attribute), 715
OK (in module curses), 468
ok_builtin_modules (rexec.RExec attribute), 1061
ok_file_types (rexec.RExec attribute), 1062
ok_path (rexec.RExec attribute), 1062
ok_posix_names (rexec.RExec attribute), 1062
ok_sys_names (rexec.RExec attribute), 1062
OleDLL (class in ctypes), 505
onclick() (in module turtle), 929, 934
ondrag() (in module turtle), 929
onecmd() (cmd.Cmd method), 892
onkey() (in module turtle), 934
onrelease() (in module turtle), 929
onscreenclick() (in module turtle), 934
ontimer() (in module turtle), 934
Open Scripting Architecture, 1180
open() (built-in function), 13
open() (FrameWork.DialogWindow method), 1166
open() (FrameWork.Window method), 1165
open() (imaplib.IMAP4 method), 798
open() (in module aifc), 859
open() (in module anydbm), 285
open() (in module cd), 1185
open() (in module codecs), 108
open() (in module dbhash), 289
open() (in module dbm), 287
open() (in module dl), 1143
open() (in module dumbdbm), 293
open() (in module gdbm), 288
open() (in module gzip), 314
open() (in module io), 380
open() (in module os), 362
open() (in module ossaudiodev), 869
open() (in module posixfile), 1149
open() (in module shelve), 282
open() (in module sunau), 861
open() (in module sunaudiodev), 1199
open() (in module tarfile), 321

Index 1281

The Python Library Reference, Release 2.6.9

open() (in module wave), 864
open() (in module webbrowser), 751
open() (pipes.Template method), 1149
open() (tarfile.TarFile method), 324
open() (telnetlib.Telnet method), 810
open() (urllib.URLopener method), 772
open() (urllib2.OpenerDirector method), 779
open() (webbrowser.controller method), 753
open() (zipfile.ZipFile method), 318
open_new() (in module webbrowser), 752
open_new() (webbrowser.controller method), 753
open_new_tab() (in module webbrowser), 752
open_new_tab() (webbrowser.controller method), 753
open_osfhandle() (in module msvcrt), 1129
open_unknown() (urllib.URLopener method), 772
OpenDatabase() (in module msilib), 1123
opendir() (in module dircache), 269
OpenerDirector (class in urllib2), 776
openfolder() (mhlib.MH method), 684
openfp() (in module sunau), 861
openfp() (in module wave), 864
OpenGL, 1196
OpenKey() (in module _winreg), 1132
OpenKeyEx() (in module _winreg), 1132
openlog() (in module syslog), 1154
openmessage() (mhlib.Message method), 685
openmixer() (in module ossaudiodev), 869
openport() (in module al), 1183
openpty() (in module os), 362
openpty() (in module pty), 1146
openrf() (in module MacOS), 1159
OpenSSL

(use in module hashlib), 349
(use in module ssl), 609

OpenView() (msilib.Database method), 1124
operation

concatenation, 33
extended slice, 33
repetition, 33
slice, 33
subscript, 33

operations
bit-string, 30
Boolean, 27
masking, 30
shifting, 30

operations on
dictionary type, 44
integer types, 30
list type, 41
mapping types, 44
numeric types, 29
sequence types, 33, 41

operator

*, 29
**, 29
+, 29
-, 29
/, 29
//, 29
==, 28
%, 29
&, 30
^, 30
>, 28
>=, 28
>>, 30
<, 28
<=, 28
<<, 30
and, 27, 28
comparison, 28
in, 28, 33
is, 28
is not, 28
not, 28
not in, 28, 33
or, 27, 28

operator (module), 243
opmap (in module dis), 1101
opname (in module dis), 1101
optimize() (in module pickletools), 1109
OptionMenu (class in Tix), 908
OptionParser (class in optparse), 401
options (doctest.Example attribute), 964
options() (ConfigParser.RawConfigParser method), 338
optionxform() (ConfigParser.RawConfigParser method),

339
optparse (module), 392
or

operator, 27, 28
or_() (in module operator), 245
ord() (built-in function), 13
ordered_attributes (xml.parsers.expat.xmlparser at-

tribute), 712
Ordinal (class in aetypes), 1180
origin_server (wsgiref.handlers.BaseHandler attribute),

768
os

module, 47, 1139
os (module), 355
os.path (module), 251
os_environ (wsgiref.handlers.BaseHandler attribute), 767
OSError, 57
ossaudiodev (module), 869
OSSAudioError, 869
output() (Cookie.BaseCookie method), 840
output() (Cookie.Morsel method), 841

1282 Index

The Python Library Reference, Release 2.6.9

output_charset (email.charset.Charset attribute), 644
output_charset() (gettext.NullTranslations method), 878
output_codec (email.charset.Charset attribute), 644
output_difference() (doctest.OutputChecker method), 967
OutputChecker (class in doctest), 966
OutputString() (Cookie.Morsel method), 841
OutputType (in module cStringIO), 103
Overflow (class in decimal), 216
OverflowError, 57
overlay() (curses.window method), 466
Overmars, Mark, 1188
overwrite() (curses.window method), 466

P
P_DETACH (in module os), 375
P_NOWAIT (in module os), 375
P_NOWAITO (in module os), 375
P_OVERLAY (in module os), 375
P_WAIT (in module os), 375
pack() (in module aepack), 1178
pack() (in module struct), 88
pack() (mailbox.MH method), 670
pack() (struct.Struct method), 92
pack_array() (xdrlib.Packer method), 344
pack_bytes() (xdrlib.Packer method), 344
pack_double() (xdrlib.Packer method), 343
pack_farray() (xdrlib.Packer method), 344
pack_float() (xdrlib.Packer method), 343
pack_fopaque() (xdrlib.Packer method), 344
pack_fstring() (xdrlib.Packer method), 344
pack_into() (in module struct), 88
pack_into() (struct.Struct method), 92
pack_list() (xdrlib.Packer method), 344
pack_opaque() (xdrlib.Packer method), 344
pack_string() (xdrlib.Packer method), 344
package, 1050
Packer (class in xdrlib), 343
packevent() (in module aetools), 1177
packing

binary data, 88
packing (widgets), 902
PAGER, 999
pair_content() (in module curses), 460
pair_number() (in module curses), 461
PanedWindow (class in Tix), 910
pardir (in module os), 378
paren (2to3 fixer), 985
parent (urllib2.BaseHandler attribute), 780
parentNode (xml.dom.Node attribute), 720
paretovariate() (in module random), 227
parse() (doctest.DocTestParser method), 965
parse() (email.parser.Parser method), 637
parse() (in module ast), 1091
parse() (in module cgi), 756

parse() (in module compiler), 1111
parse() (in module xml.dom.minidom), 728
parse() (in module xml.dom.pulldom), 732
parse() (in module xml.etree.ElementTree), 744
parse() (in module xml.sax), 733
parse() (robotparser.RobotFileParser method), 342
parse() (string.Formatter method), 62
parse() (xml.etree.ElementTree.ElementTree method),

747
Parse() (xml.parsers.expat.xmlparser method), 711
parse() (xml.sax.xmlreader.XMLReader method), 740
parse_and_bind() (in module readline), 586
PARSE_COLNAMES (in module sqlite3), 295
PARSE_DECLTYPES (in module sqlite3), 295
parse_header() (in module cgi), 757
parse_multipart() (in module cgi), 757
parse_qs() (in module cgi), 756
parse_qs() (in module urlparse), 816
parse_qsl() (in module cgi), 756
parse_qsl() (in module urlparse), 816
parseaddr() (in module email.utils), 647
parseaddr() (in module rfc822), 693
parsedate() (in module email.utils), 648
parsedate() (in module rfc822), 693
parsedate_tz() (in module email.utils), 648
parsedate_tz() (in module rfc822), 693
parseFile() (in module compiler), 1111
ParseFile() (xml.parsers.expat.xmlparser method), 711
ParseFlags() (in module imaplib), 796
Parser (class in email.parser), 636
parser (module), 1079
ParserCreate() (in module xml.parsers.expat), 710
ParserError, 1082
ParseResult (class in urlparse), 818
parsesequence() (mhlib.Folder method), 684
parsestr() (email.parser.Parser method), 637
parseString() (in module xml.dom.minidom), 728
parseString() (in module xml.dom.pulldom), 732
parseString() (in module xml.sax), 733
parseurl() (ic.IC method), 1158
parseurl() (in module ic), 1157
parsing

Python source code, 1079
URL, 815

ParsingError, 337
partial() (imaplib.IMAP4 method), 798
partial() (in module functools), 241
partition() (str method), 36
pass_() (poplib.POP3 method), 794
PATH, 372, 374, 375, 379, 751, 758, 759
path

configuration file, 1050
module search, 266, 1023, 1050
operations, 251

Index 1283

The Python Library Reference, Release 2.6.9

path (BaseHTTPServer.BaseHTTPRequestHandler at-
tribute), 826

path (cookielib.Cookie attribute), 837
path (in module sys), 1023
Path browser, 942
path_hooks (in module sys), 1023
path_importer_cache (in module sys), 1023
path_return_ok() (cookielib.CookiePolicy method), 835
pathconf() (in module os), 367
pathconf_names (in module os), 367
pathname2url() (in module urllib), 771
pathsep (in module os), 379
pattern (re.RegexObject attribute), 81
pause() (in module signal), 618
PAUSED (in module cd), 1186
PAX_FORMAT (in module tarfile), 323
pax_headers (tarfile.TarFile attribute), 325
pax_headers (tarfile.TarInfo attribute), 326
pd() (in module turtle), 922
Pdb (class in pdb), 997
pdb (module), 997
peek() (io.BufferedReader method), 385
PEM_cert_to_DER_cert() (in module ssl), 611
pen() (in module turtle), 922
pencolor() (in module turtle), 923
PendingDeprecationWarning, 59
pendown() (in module turtle), 922
pensize() (in module turtle), 922
penup() (in module turtle), 922
Performance, 1009
permutations() (in module itertools), 235
Persist() (msilib.SummaryInformation method), 1125
persistence, 271
persistent

objects, 271
persistent_id (pickle protocol), 277
persistent_load (pickle protocol), 277
pformat() (in module pprint), 185
pformat() (pprint.PrettyPrinter method), 186
phase() (in module cmath), 198
pi (in module cmath), 200
pi (in module math), 197
pick() (in module gl), 1195
pickle

module, 184, 281, 282, 284
pickle (module), 271
pickle() (in module copy_reg), 282
PickleError, 273
Pickler (class in pickle), 273
pickletools (module), 1108
pickling

objects, 271
PicklingError, 273
pid (multiprocessing.Process attribute), 540

pid (popen2.Popen3 attribute), 620
pid (subprocess.Popen attribute), 595
PIL (the Python Imaging Library), 1197
PIPE (in module subprocess), 593
Pipe() (in module multiprocessing), 541
pipe() (in module os), 362
pipes (module), 1148
PixMapWrapper (module), 1203
PKG_DIRECTORY (in module imp), 1066
pkgutil (module), 1074
platform (in module sys), 1023
platform (module), 476
platform() (in module platform), 477
PLAYING (in module cd), 1186
PlaySound() (in module winsound), 1137
plist

file, 346
plistlib (module), 346
plock() (in module os), 374
plus() (decimal.Context method), 214
pm() (in module pdb), 998
pnum (in module cd), 1186
POINTER() (in module ctypes), 511
pointer() (in module ctypes), 511
polar() (in module cmath), 198
poll() (in module select), 519
poll() (multiprocessing.Connection method), 544
poll() (popen2.Popen3 method), 620
poll() (select.epoll method), 521
poll() (select.poll method), 521
poll() (subprocess.Popen method), 594
pop() (array.array method), 166
pop() (asynchat.fifo method), 626
pop() (collections.deque method), 153
pop() (dict method), 46
pop() (list method), 41
pop() (mailbox.Mailbox method), 667
pop() (multifile.MultiFile method), 691
pop() (set method), 44
POP3

protocol, 793
POP3 (class in poplib), 793
POP3_SSL (class in poplib), 793
pop_alignment() (formatter.formatter method), 1120
POP_BLOCK (opcode), 1105
pop_font() (formatter.formatter method), 1120
pop_margin() (formatter.formatter method), 1120
pop_source() (shlex.shlex method), 894
pop_style() (formatter.formatter method), 1120
POP_TOP (opcode), 1102
Popen (class in subprocess), 591
popen() (in module os), 359, 520
popen() (in module platform), 479
popen2 (module), 619

1284 Index

The Python Library Reference, Release 2.6.9

popen2() (in module os), 359
popen2() (in module popen2), 619
Popen3 (class in popen2), 620
popen3() (in module os), 359
popen3() (in module popen2), 619
Popen4 (class in popen2), 620
popen4() (in module os), 359
popen4() (in module popen2), 620
popitem() (dict method), 46
popitem() (mailbox.Mailbox method), 667
popleft() (collections.deque method), 154
poplib (module), 793
PopupMenu (class in Tix), 908
port (cookielib.Cookie attribute), 837
port_specified (cookielib.Cookie attribute), 838
PortableUnixMailbox (class in mailbox), 681
pos (re.MatchObject attribute), 83
pos() (in module operator), 245
pos() (in module turtle), 920
position() (in module turtle), 920
positional argument, 1209
POSIX

file object, 1149
I/O control, 1144
threads, 532

posix (module), 1139
posix (tarfile.TarFile attribute), 325
posixfile (module), 1149
POSIXLY_CORRECT, 418
post() (nntplib.NNTP method), 803
post() (ossaudiodev.oss_audio_device method), 871
post_mortem() (in module pdb), 998
postcmd() (cmd.Cmd method), 892
postloop() (cmd.Cmd method), 892
pow() (built-in function), 13
pow() (in module math), 196
pow() (in module operator), 245
power() (decimal.Context method), 214
pprint (module), 185
pprint() (bdb.Breakpoint method), 993
pprint() (in module pprint), 185
pprint() (pprint.PrettyPrinter method), 186
prcal() (in module calendar), 150
preamble (email.message.Message attribute), 635
precmd() (cmd.Cmd method), 892
prefix (in module sys), 1024
prefix (xml.dom.Attr attribute), 725
prefix (xml.dom.Node attribute), 721
prefix (zipimport.zipimporter attribute), 1073
PREFIXES (in module site), 1050
preloop() (cmd.Cmd method), 892
preorder() (compiler.visitor.ASTVisitor method), 1117
prepare_input_source() (in module xml.sax.saxutils), 739
prepend() (pipes.Template method), 1149

PrettyPrinter (class in pprint), 185
previous() (bsddb.bsddbobject method), 291
previous() (dbhash.dbhash method), 290
previousSibling (xml.dom.Node attribute), 721
print

statement, 27
print (2to3 fixer), 985
print() (built-in function), 14
Print() (in module findertools), 1160
print_callees() (pstats.Stats method), 1006
print_callers() (pstats.Stats method), 1006
print_directory() (in module cgi), 757
print_environ() (in module cgi), 757
print_environ_usage() (in module cgi), 757
print_exc() (in module traceback), 1038
print_exc() (timeit.Timer method), 1010
print_exception() (in module traceback), 1038
PRINT_EXPR (opcode), 1104
print_form() (in module cgi), 757
PRINT_ITEM (opcode), 1104
PRINT_ITEM_TO (opcode), 1104
print_last() (in module traceback), 1038
PRINT_NEWLINE (opcode), 1105
PRINT_NEWLINE_TO (opcode), 1105
print_stack() (in module traceback), 1038
print_stats() (pstats.Stats method), 1005
print_tb() (in module traceback), 1038
print_usage() (optparse.OptionParser method), 410
print_version() (optparse.OptionParser method), 400
printable (in module string), 62
printdir() (zipfile.ZipFile method), 319
printf-style formatting, 38
PriorityQueue (class in Queue), 173
prmonth() (calendar.TextCalendar method), 149
prmonth() (in module calendar), 150
process

group, 356, 357
id, 357
id of parent, 357
killing, 374
signalling, 374

Process (class in multiprocessing), 539
process() (logging.LoggerAdapter method), 449
process_message() (smtpd.SMTPServer method), 809
process_request() (SocketServer.BaseServer method),

821
processes, light-weight, 532
processfile() (in module gensuitemodule), 1176
processfile_fromresource() (in module gensuitemodule),

1176
ProcessingInstruction() (in module

xml.etree.ElementTree), 744
processingInstruction() (xml.sax.handler.ContentHandler

method), 737

Index 1285

The Python Library Reference, Release 2.6.9

ProcessingInstructionHandler()
(xml.parsers.expat.xmlparser method), 713

processor time, 388
processor() (in module platform), 477
product() (in module itertools), 236
Profile (class in hotshot), 1008
profile (module), 1001
profile function, 525, 1022, 1024
profiler, 1022, 1024
profiling, deterministic, 1001
ProgressBar() (in module EasyDialogs), 1161
prompt (cmd.Cmd attribute), 892
prompt_user_passwd() (urllib.FancyURLopener method),

773
prompts, interpreter, 1024
propagate (logging.Logger attribute), 429
property list, 346
property() (built-in function), 14
property_declaration_handler (in module

xml.sax.handler), 735
property_dom_node (in module xml.sax.handler), 735
property_lexical_handler (in module xml.sax.handler),

735
property_xml_string (in module xml.sax.handler), 735
proto (socket.socket attribute), 606
protocol

CGI, 753
context management, 50
FTP, 773, 790
HTTP, 753, 773, 785, 826
IMAP4, 795
IMAP4_SSL, 795
IMAP4_stream, 795
iterator, 31
NNTP, 800
POP3, 793
SMTP, 804
Telnet, 809

PROTOCOL_SSLv2 (in module ssl), 611
PROTOCOL_SSLv23 (in module ssl), 611
PROTOCOL_SSLv3 (in module ssl), 611
PROTOCOL_TLSv1 (in module ssl), 611
protocol_version (Base-

HTTPServer.BaseHTTPRequestHandler
attribute), 827

PROTOCOL_VERSION (imaplib.IMAP4 attribute), 800
proxy() (in module weakref), 176
proxyauth() (imaplib.IMAP4 method), 798
ProxyBasicAuthHandler (class in urllib2), 777
ProxyDigestAuthHandler (class in urllib2), 777
ProxyHandler (class in urllib2), 776
ProxyType (in module weakref), 177
ProxyTypes (in module weakref), 177
prstr() (in module fm), 1194

pryear() (calendar.TextCalendar method), 149
ps1 (in module sys), 1024
ps2 (in module sys), 1024
pstats (module), 1004
pthreads, 532
ptime (in module cd), 1186
pty

module, 362
pty (module), 1145
pu() (in module turtle), 922
publicId (xml.dom.DocumentType attribute), 722
PullDOM (class in xml.dom.pulldom), 732
punctuation (in module string), 62
PureProxy (class in smtpd), 809
purge() (in module re), 80
push() (asynchat.async_chat method), 625
push() (asynchat.fifo method), 626
push() (code.InteractiveConsole method), 1056
push() (multifile.MultiFile method), 691
push_alignment() (formatter.formatter method), 1120
push_font() (formatter.formatter method), 1120
push_margin() (formatter.formatter method), 1120
push_source() (shlex.shlex method), 894
push_style() (formatter.formatter method), 1120
push_token() (shlex.shlex method), 894
push_with_producer() (asynchat.async_chat method),

625
pushbutton() (msilib.Dialog method), 1128
put() (multiprocessing.Queue method), 542
put() (Queue.Queue method), 174
put_nowait() (multiprocessing.Queue method), 542
put_nowait() (Queue.Queue method), 174
putch() (in module msvcrt), 1129
putenv() (in module os), 357
putheader() (httplib.HTTPConnection method), 788
putp() (in module curses), 461
putrequest() (httplib.HTTPConnection method), 788
putsequences() (mhlib.Folder method), 684
putwch() (in module msvcrt), 1130
putwin() (curses.window method), 466
pwd

module, 252
pwd (module), 1140
pwd() (ftplib.FTP method), 793
pwlcurve() (in module gl), 1195
py3kwarning (in module sys), 1024
py_compile (module), 1099
PY_COMPILED (in module imp), 1066
PY_FROZEN (in module imp), 1067
py_object (class in ctypes), 515
PY_SOURCE (in module imp), 1066
py_suffix_importer() (in module imputil), 1069
pyclbr (module), 1098
PyCompileError, 1099

1286 Index

The Python Library Reference, Release 2.6.9

PyDLL (class in ctypes), 505
pydoc (module), 947
pyexpat

module, 710
PYFUNCTYPE() (in module ctypes), 507
PyOpenGL, 1196
Python 3000, 1210
Python Editor, 942
Python Enhancement Proposals

PEP 0205, 177
PEP 0343, 1034
PEP 227, 1042
PEP 236, 6
PEP 237, 40
PEP 238, 1042
PEP 246, 305
PEP 249, 293, 295
PEP 255, 1042
PEP 273, 1072
PEP 282, 429
PEP 292, 68
PEP 302, 21, 266, 1023, 1067, 1072, 1074, 1076,

1207, 1209
PEP 305, 329
PEP 307, 272
PEP 3101, 62
PEP 3105, 1042
PEP 3112, 1042
PEP 3119, 153, 1034
PEP 3141, 191, 1034
PEP 324, 591
PEP 328, 1042
PEP 333, 760–765, 767, 768
PEP 338, 1077
PEP 343, 1042, 1206
PEP 8, 523, 656

Python Imaging Library, 1197
python_branch() (in module platform), 477
python_build() (in module platform), 477
python_compiler() (in module platform), 477
PYTHON_DOM, 719
python_implementation() (in module platform), 477
python_revision() (in module platform), 477
python_version() (in module platform), 477
python_version_tuple() (in module platform), 477
PYTHONDOCS, 948
Pythonic, 1210
PYTHONPATH, 758, 1023
PYTHONSTARTUP, 588, 589, 945, 1051
PYTHONY2K, 387, 388
PyZipFile (class in zipfile), 317

Q
qdevice() (in module fl), 1190

QDPoint (class in aetypes), 1179
QDRectangle (class in aetypes), 1179
qenter() (in module fl), 1190
qiflush() (in module curses), 461
QName (class in xml.etree.ElementTree), 748
qread() (in module fl), 1190
qreset() (in module fl), 1190
qsize() (multiprocessing.Queue method), 542
qsize() (Queue.Queue method), 173
qtest() (in module fl), 1190
quantize() (decimal.Context method), 214
quantize() (decimal.Decimal method), 208
QueryInfoKey() (in module _winreg), 1132
queryparams() (in module al), 1183
QueryReflectionKey() (in module _winreg), 1134
QueryValue() (in module _winreg), 1132
QueryValueEx() (in module _winreg), 1132
Queue (class in multiprocessing), 542
Queue (class in Queue), 173
Queue (module), 173
queue (sched.scheduler attribute), 172
Queue() (multiprocessing.managers.SyncManager

method), 550
quick_ratio() (difflib.SequenceMatcher method), 98
quit (built-in variable), 25
quit() (ftplib.FTP method), 793
quit() (nntplib.NNTP method), 804
quit() (poplib.POP3 method), 794
quit() (smtplib.SMTP method), 807
quopri (module), 700
quote() (in module email.utils), 647
quote() (in module rfc822), 693
quote() (in module urllib), 771
QUOTE_ALL (in module csv), 332
QUOTE_MINIMAL (in module csv), 332
QUOTE_NONE (in module csv), 332
QUOTE_NONNUMERIC (in module csv), 332
quote_plus() (in module urllib), 771
quoteattr() (in module xml.sax.saxutils), 739
quotechar (csv.Dialect attribute), 332
quoted-printable

encoding, 700
quotes (shlex.shlex attribute), 895
quoting (csv.Dialect attribute), 333

R
r_eval() (rexec.RExec method), 1060
r_exec() (rexec.RExec method), 1060
r_execfile() (rexec.RExec method), 1060
r_import() (rexec.RExec method), 1061
R_OK (in module os), 364
r_open() (rexec.RExec method), 1061
r_reload() (rexec.RExec method), 1061
r_unload() (rexec.RExec method), 1061

Index 1287

The Python Library Reference, Release 2.6.9

radians() (in module math), 196
radians() (in module turtle), 921
RadioButtonGroup (class in msilib), 1127
radiogroup() (msilib.Dialog method), 1128
radix() (decimal.Context method), 214
radix() (decimal.Decimal method), 208
RADIXCHAR (in module locale), 886
raise

statement, 55
raise (2to3 fixer), 985
RAISE_VARARGS (opcode), 1107
RAND_add() (in module ssl), 610
RAND_egd() (in module ssl), 610
RAND_status() (in module ssl), 610
randint() (in module random), 226
random (module), 225
random() (in module random), 227
randrange() (in module random), 226
Range (class in aetypes), 1179
range() (built-in function), 15
ratecv() (in module audioop), 857
ratio() (difflib.SequenceMatcher method), 98
Rational (class in numbers), 191
raw() (in module curses), 461
raw_decode() (json.JSONDecoder method), 662
raw_input

built-in function, 1026
raw_input (2to3 fixer), 985
raw_input() (built-in function), 15
raw_input() (code.InteractiveConsole method), 1057
RawArray() (in module multiprocessing.sharedctypes),

547
RawConfigParser (class in ConfigParser), 337
RawIOBase (class in io), 383
RawPen (class in turtle), 937
RawTurtle (class in turtle), 937
RawValue() (in module multiprocessing.sharedctypes),

547
re

module, 40, 61, 265
re (module), 72
re (re.MatchObject attribute), 83
read() (array.array method), 166
read() (bz2.BZ2File method), 315
read() (chunk.Chunk method), 866
read() (codecs.StreamReader method), 113
read() (ConfigParser.RawConfigParser method), 338
read() (file method), 48
read() (httplib.HTTPResponse method), 788
read() (imaplib.IMAP4 method), 798
read() (in module imgfile), 1197
read() (in module mmap), 585
read() (in module os), 362
read() (io.BufferedIOBase method), 383

read() (io.BufferedReader method), 385
read() (io.FileIO method), 384
read() (io.RawIOBase method), 383
read() (io.TextIOBase method), 386
read() (mimetypes.MimeTypes method), 688
read() (multifile.MultiFile method), 691
read() (ossaudiodev.oss_audio_device method), 870
read() (robotparser.RobotFileParser method), 341
read() (ssl.SSLSocket method), 612
read() (zipfile.ZipFile method), 319
read1() (io.BufferedReader method), 385
read1() (io.BytesIO method), 385
read_all() (telnetlib.Telnet method), 810
read_byte() (in module mmap), 586
read_eager() (telnetlib.Telnet method), 810
read_history_file() (in module readline), 587
read_init_file() (in module readline), 587
read_lazy() (telnetlib.Telnet method), 810
read_mime_types() (in module mimetypes), 687
read_sb_data() (telnetlib.Telnet method), 810
read_some() (telnetlib.Telnet method), 810
read_token() (shlex.shlex method), 894
read_until() (telnetlib.Telnet method), 810
read_very_eager() (telnetlib.Telnet method), 810
read_very_lazy() (telnetlib.Telnet method), 810
readable() (asyncore.dispatcher method), 623
readable() (io.IOBase method), 382
readall() (io.FileIO method), 384
readall() (io.RawIOBase method), 383
reader() (in module csv), 329
ReadError, 322
readfp() (ConfigParser.RawConfigParser method), 338
readfp() (mimetypes.MimeTypes method), 688
readframes() (aifc.aifc method), 860
readframes() (sunau.AU_read method), 862
readframes() (wave.Wave_read method), 864
readinto() (io.BufferedIOBase method), 384
readinto() (io.RawIOBase method), 383
readline (module), 586
readline() (bz2.BZ2File method), 315
readline() (codecs.StreamReader method), 113
readline() (file method), 48
readline() (imaplib.IMAP4 method), 798
readline() (in module mmap), 586
readline() (io.IOBase method), 382
readline() (io.TextIOBase method), 386
readline() (multifile.MultiFile method), 691
readlines() (bz2.BZ2File method), 315
readlines() (codecs.StreamReader method), 113
readlines() (file method), 48
readlines() (io.IOBase method), 382
readlines() (multifile.MultiFile method), 691
readlink() (in module os), 367
readmodule() (in module pyclbr), 1098

1288 Index

The Python Library Reference, Release 2.6.9

readmodule_ex() (in module pyclbr), 1098
readPlist() (in module plistlib), 346
readPlistFromResource() (in module plistlib), 346
readPlistFromString() (in module plistlib), 346
readscaled() (in module imgfile), 1197
READY (in module cd), 1186
ready() (multiprocessing.pool.AsyncResult method), 555
Real (class in numbers), 191
real (numbers.Complex attribute), 191
Real Media File Format, 866
real_quick_ratio() (difflib.SequenceMatcher method), 98
realpath() (in module os.path), 253
reason (httplib.HTTPResponse attribute), 789
reason (urllib2.URLError attribute), 775
reccontrols() (ossaudiodev.oss_mixer_device method),

872
recent() (imaplib.IMAP4 method), 798
rect() (in module cmath), 198
rectangle() (in module curses.textpad), 471
recv() (asyncore.dispatcher method), 623
recv() (multiprocessing.Connection method), 544
recv() (socket.socket method), 604
recv_bytes() (multiprocessing.Connection method), 544
recv_bytes_into() (multiprocessing.Connection method),

545
recv_into() (socket.socket method), 605
recvfrom() (socket.socket method), 605
recvfrom_into() (socket.socket method), 605
redirect_request() (urllib2.HTTPRedirectHandler

method), 781
redisplay() (in module readline), 587
redraw_form() (fl.form method), 1190
redrawln() (curses.window method), 466
redrawwin() (curses.window method), 466
reduce (2to3 fixer), 985
reduce() (built-in function), 16
reduce() (in module functools), 241
ref (class in weakref), 175
reference count, 1210
ReferenceError, 57, 177
ReferenceType (in module weakref), 177
refilemessages() (mhlib.Folder method), 684
refresh() (curses.window method), 466
REG_BINARY (in module _winreg), 1135
REG_DWORD (in module _winreg), 1135
REG_DWORD_BIG_ENDIAN (in module _winreg),

1136
REG_DWORD_LITTLE_ENDIAN (in module _winreg),

1135
REG_EXPAND_SZ (in module _winreg), 1136
REG_FULL_RESOURCE_DESCRIPTOR (in module

_winreg), 1136
REG_LINK (in module _winreg), 1136
REG_MULTI_SZ (in module _winreg), 1136

REG_NONE (in module _winreg), 1136
REG_RESOURCE_LIST (in module _winreg), 1136
REG_RESOURCE_REQUIREMENTS_LIST (in mod-

ule _winreg), 1136
REG_SZ (in module _winreg), 1136
RegexObject (class in re), 80
register() (abc.ABCMeta method), 1034
register() (in module atexit), 1037
register() (in module codecs), 106
register() (in module webbrowser), 752
register() (multiprocessing.managers.BaseManager

method), 549
register() (select.epoll method), 520
register() (select.poll method), 521
register_adapter() (in module sqlite3), 295
register_converter() (in module sqlite3), 295
register_dialect() (in module csv), 330
register_error() (in module codecs), 107
register_function() (SimpleXMLRPC-

Server.CGIXMLRPCRequestHandler method),
852

register_function() (SimpleXMLRPC-
Server.SimpleXMLRPCServer method),
850

register_instance() (SimpleXMLRPC-
Server.CGIXMLRPCRequestHandler method),
852

register_instance() (SimpleXMLRPC-
Server.SimpleXMLRPCServer method),
850

register_introspection_functions() (SimpleXMLRPC-
Server.CGIXMLRPCRequestHandler method),
852

register_introspection_functions() (SimpleXMLRPC-
Server.SimpleXMLRPCServer method), 851

register_multicall_functions() (SimpleXMLRPC-
Server.CGIXMLRPCRequestHandler method),
852

register_multicall_functions() (SimpleXMLRPC-
Server.SimpleXMLRPCServer method),
851

register_optionflag() (in module doctest), 957
register_shape() (in module turtle), 936
registerDOMImplementation() (in module xml.dom), 719
relative

URL, 815
release() (in module platform), 478
release() (logging.Handler method), 440
release() (thread.lock method), 533
release() (threading.Condition method), 529
release() (threading.Lock method), 527
release() (threading.RLock method), 528
release() (threading.Semaphore method), 530
release_lock() (in module imp), 1066

Index 1289

The Python Library Reference, Release 2.6.9

reload
built-in function, 1023, 1066, 1068

reload() (built-in function), 16
relpath() (in module os.path), 253
remainder() (decimal.Context method), 214
remainder_near() (decimal.Context method), 215
remainder_near() (decimal.Decimal method), 209
remove() (array.array method), 166
remove() (collections.deque method), 154
remove() (in module os), 367
remove() (list method), 41
remove() (mailbox.Mailbox method), 666
remove() (mailbox.MH method), 670
remove() (set method), 44
remove() (xml.etree.ElementTree.Element method), 746
remove_flag() (mailbox.MaildirMessage method), 674
remove_flag() (mailbox.mboxMessage method), 675
remove_flag() (mailbox.MMDFMessage method), 679
remove_folder() (mailbox.Maildir method), 668
remove_folder() (mailbox.MH method), 670
remove_history_item() (in module readline), 587
remove_label() (mailbox.BabylMessage method), 677
remove_option() (ConfigParser.RawConfigParser

method), 339
remove_option() (optparse.OptionParser method), 409
remove_pyc() (msilib.Directory method), 1127
remove_section() (ConfigParser.RawConfigParser

method), 339
remove_sequence() (mailbox.MHMessage method), 676
removeAttribute() (xml.dom.Element method), 724
removeAttributeNode() (xml.dom.Element method), 724
removeAttributeNS() (xml.dom.Element method), 724
removeChild() (xml.dom.Node method), 722
removedirs() (in module os), 367
removeFilter() (logging.Handler method), 440
removeFilter() (logging.Logger method), 431
removeHandler() (logging.Logger method), 431
removemessages() (mhlib.Folder method), 684
rename() (ftplib.FTP method), 792
rename() (imaplib.IMAP4 method), 798
rename() (in module os), 367
renames (2to3 fixer), 985
renames() (in module os), 367
reorganize() (in module gdbm), 288
repeat() (in module itertools), 236
repeat() (in module operator), 246
repeat() (in module timeit), 1010
repeat() (timeit.Timer method), 1010
repetition

operation, 33
replace() (curses.panel.Panel method), 476
replace() (datetime.date method), 130
replace() (datetime.datetime method), 134
replace() (datetime.time method), 139

replace() (in module string), 72
replace() (str method), 36
replace_errors() (in module codecs), 108
replace_header() (email.message.Message method), 632
replace_history_item() (in module readline), 587
replace_whitespace (textwrap.TextWrapper attribute),

105
replaceChild() (xml.dom.Node method), 722
ReplacePackage() (in module modulefinder), 1074
report() (filecmp.dircmp method), 261
report() (modulefinder.ModuleFinder method), 1075
REPORT_CDIFF (in module doctest), 956
report_failure() (doctest.DocTestRunner method), 966
report_full_closure() (filecmp.dircmp method), 261
REPORT_NDIFF (in module doctest), 956
REPORT_ONLY_FIRST_FAILURE (in module doctest),

956
report_partial_closure() (filecmp.dircmp method), 261
report_start() (doctest.DocTestRunner method), 965
report_success() (doctest.DocTestRunner method), 966
REPORT_UDIFF (in module doctest), 956
report_unbalanced() (sgmllib.SGMLParser method), 707
report_unexpected_exception() (doctest.DocTestRunner

method), 966
REPORTING_FLAGS (in module doctest), 956
repr (2to3 fixer), 985
Repr (class in repr), 187
repr (module), 187
repr() (built-in function), 17
repr() (in module repr), 188
repr() (repr.Repr method), 188
repr1() (repr.Repr method), 188
Request (class in urllib2), 776
request() (httplib.HTTPConnection method), 788
request_queue_size (SocketServer.BaseServer attribute),

821
request_uri() (in module wsgiref.util), 761
request_version (BaseHTTPServer.BaseHTTPRequestHandler

attribute), 826
RequestHandlerClass (SocketServer.BaseServer at-

tribute), 820
requires() (in module test.test_support), 989
reserved (zipfile.ZipInfo attribute), 321
RESERVED_FUTURE (in module uuid), 814
RESERVED_MICROSOFT (in module uuid), 814
RESERVED_NCS (in module uuid), 814
reset() (bdb.Bdb method), 994
reset() (codecs.IncrementalDecoder method), 111
reset() (codecs.IncrementalEncoder method), 111
reset() (codecs.StreamReader method), 113
reset() (codecs.StreamWriter method), 112
reset() (HTMLParser.HTMLParser method), 703
reset() (in module dircache), 269
reset() (in module turtle), 926, 932

1290 Index

The Python Library Reference, Release 2.6.9

reset() (ossaudiodev.oss_audio_device method), 871
reset() (pipes.Template method), 1148
reset() (sgmllib.SGMLParser method), 705
reset() (xdrlib.Packer method), 343
reset() (xdrlib.Unpacker method), 344
reset() (xml.dom.pulldom.DOMEventStream method),

733
reset() (xml.sax.xmlreader.IncrementalParser method),

741
reset_prog_mode() (in module curses), 461
reset_shell_mode() (in module curses), 461
resetbuffer() (code.InteractiveConsole method), 1057
resetlocale() (in module locale), 887
resetscreen() (in module turtle), 932
resetwarnings() (in module warnings), 1032
resize() (in module ctypes), 511
resize() (in module mmap), 586
resizemode() (in module turtle), 927
resolution (datetime.date attribute), 129
resolution (datetime.datetime attribute), 133
resolution (datetime.time attribute), 139
resolution (datetime.timedelta attribute), 127
resolveEntity() (xml.sax.handler.EntityResolver method),

738
resource (module), 1151
ResourceDenied, 989
response() (imaplib.IMAP4 method), 798
ResponseNotReady, 786
responses (BaseHTTPServer.BaseHTTPRequestHandler

attribute), 827
responses (in module httplib), 787
restart() (in module findertools), 1161
restore() (in module difflib), 95
restype (ctypes._FuncPtr attribute), 506
results() (trace.Trace method), 1014
retr() (poplib.POP3 method), 794
retrbinary() (ftplib.FTP method), 791
retrieve() (urllib.URLopener method), 772
retrlines() (ftplib.FTP method), 791
return_ok() (cookielib.CookiePolicy method), 834
RETURN_VALUE (opcode), 1105
returncode (subprocess.Popen attribute), 595
returns_unicode (xml.parsers.expat.xmlparser attribute),

712
reverse() (array.array method), 166
reverse() (in module audioop), 857
reverse() (list method), 41
reverse_order() (pstats.Stats method), 1005
reversed() (built-in function), 17
revert() (cookielib.FileCookieJar method), 834
rewind() (aifc.aifc method), 860
rewind() (sunau.AU_read method), 863
rewind() (wave.Wave_read method), 864
rewindbody() (rfc822.Message method), 694

RExec (class in rexec), 1060
rexec (module), 1059
RFC

RFC 1014, 343
RFC 1321, 349, 351
RFC 1422, 613
RFC 1521, 698, 700, 701
RFC 1522, 701
RFC 1524, 664
RFC 1725, 793
RFC 1730, 795
RFC 1738, 818
RFC 1750, 610
RFC 1766, 887
RFC 1808, 818
RFC 1832, 343
RFC 1866, 708
RFC 1869, 804, 805
RFC 1894, 658
RFC 2045, 629, 633, 634, 641, 691
RFC 2046, 629, 641
RFC 2047, 629, 641, 642
RFC 2060, 795, 799
RFC 2068, 839
RFC 2104, 350
RFC 2109, 831, 832, 839, 840
RFC 2231, 629, 633, 634, 641, 648, 649, 656
RFC 2368, 817
RFC 2396, 816, 817
RFC 2616, 762, 773, 781
RFC 2774, 787
RFC 2817, 787
RFC 2821, 629
RFC 2822, 390, 629–631, 637, 638, 641, 642, 646,

648, 672, 692–694, 809
RFC 2964, 832
RFC 2965, 776, 778, 831, 832
RFC 3229, 787
RFC 3280, 612
RFC 3454, 121
RFC 3490, 118, 119
RFC 3492, 118, 119
RFC 3493, 598
RFC 3548, 696, 697
RFC 3986, 817
RFC 4122, 812, 814
RFC 4158, 614
RFC 821, 804, 805
RFC 822, 336, 390, 641, 692, 788, 806–808, 879
RFC 854, 809, 810
RFC 959, 790
RFC 977, 800

rfc2109 (cookielib.Cookie attribute), 838

Index 1291

The Python Library Reference, Release 2.6.9

rfc2109_as_netscape (cookielib.DefaultCookiePolicy at-
tribute), 836

rfc2965 (cookielib.CookiePolicy attribute), 835
rfc822

module, 685
rfc822 (module), 692
RFC_4122 (in module uuid), 814
rfile (BaseHTTPServer.BaseHTTPRequestHandler

attribute), 826
rfind() (in module mmap), 586
rfind() (in module string), 71
rfind() (str method), 36
rgb_to_hls() (in module colorsys), 867
rgb_to_hsv() (in module colorsys), 867
rgb_to_yiq() (in module colorsys), 867
RGBColor (class in aetypes), 1179
right() (in module turtle), 915
right_list (filecmp.dircmp attribute), 261
right_only (filecmp.dircmp attribute), 261
rindex() (in module string), 71
rindex() (str method), 36
rjust() (in module string), 72
rjust() (str method), 36
rlcompleter (module), 589
rlecode_hqx() (in module binascii), 699
rledecode_hqx() (in module binascii), 699
RLIMIT_AS (in module resource), 1152
RLIMIT_CORE (in module resource), 1151
RLIMIT_CPU (in module resource), 1151
RLIMIT_DATA (in module resource), 1152
RLIMIT_FSIZE (in module resource), 1151
RLIMIT_MEMLOCK (in module resource), 1152
RLIMIT_NOFILE (in module resource), 1152
RLIMIT_NPROC (in module resource), 1152
RLIMIT_OFILE (in module resource), 1152
RLIMIT_RSS (in module resource), 1152
RLIMIT_STACK (in module resource), 1152
RLIMIT_VMEM (in module resource), 1152
RLock (class in multiprocessing), 546
RLock() (in module threading), 524
RLock() (multiprocessing.managers.SyncManager

method), 550
rmd() (ftplib.FTP method), 793
rmdir() (in module os), 368
RMFF, 866
rms() (in module audioop), 857
rmtree() (in module shutil), 267
rnopen() (in module bsddb), 291
RobotFileParser (class in robotparser), 341
robotparser (module), 341
robots.txt, 341
rollback() (sqlite3.Connection method), 297
ROT_FOUR (opcode), 1102
ROT_THREE (opcode), 1102

ROT_TWO (opcode), 1102
rotate() (collections.deque method), 154
rotate() (decimal.Context method), 215
rotate() (decimal.Decimal method), 209
RotatingFileHandler (class in logging), 442
round() (built-in function), 17
Rounded (class in decimal), 216
Row (class in sqlite3), 304
row_factory (sqlite3.Connection attribute), 299
rowcount (sqlite3.Cursor attribute), 303
rpartition() (str method), 36
rpc_paths (SimpleXMLRPC-

Server.SimpleXMLRPCRequestHandler
attribute), 851

rpop() (poplib.POP3 method), 794
rset() (poplib.POP3 method), 794
rshift() (in module operator), 245
rsplit() (in module string), 71
rsplit() (str method), 36
rstrip() (in module string), 72
rstrip() (str method), 36
rt() (in module turtle), 915
RTLD_LAZY (in module dl), 1143
RTLD_NOW (in module dl), 1143
ruler (cmd.Cmd attribute), 893
Run script, 943
run() (bdb.Bdb method), 997
run() (doctest.DocTestRunner method), 966
run() (hotshot.Profile method), 1008
run() (in module cProfile), 1003
run() (in module pdb), 998
run() (multiprocessing.Process method), 539
run() (sched.scheduler method), 172
run() (threading.Thread method), 526
run() (trace.Trace method), 1014
run() (unittest.TestCase method), 977
run() (unittest.TestSuite method), 979
run() (wsgiref.handlers.BaseHandler method), 766
run_docstring_examples() (in module doctest), 960
run_module() (in module runpy), 1076
run_script() (modulefinder.ModuleFinder method), 1075
run_unittest() (in module test.test_support), 989
runcall() (bdb.Bdb method), 997
runcall() (hotshot.Profile method), 1008
runcall() (in module pdb), 998
runcode() (code.InteractiveInterpreter method), 1056
runctx() (bdb.Bdb method), 997
runctx() (hotshot.Profile method), 1008
runctx() (in module cProfile), 1004
runctx() (trace.Trace method), 1014
runeval() (bdb.Bdb method), 997
runeval() (in module pdb), 998
runfunc() (trace.Trace method), 1014
runpy (module), 1076

1292 Index

The Python Library Reference, Release 2.6.9

runsource() (code.InteractiveInterpreter method), 1056
RuntimeError, 57
runtimemodel (in module MacOS), 1158
RuntimeWarning, 59
RUSAGE_BOTH (in module resource), 1153
RUSAGE_CHILDREN (in module resource), 1153
RUSAGE_SELF (in module resource), 1153

S
S (in module re), 78
S_ENFMT (in module stat), 259
s_eval() (rexec.RExec method), 1061
s_exec() (rexec.RExec method), 1061
s_execfile() (rexec.RExec method), 1061
S_IEXEC (in module stat), 259
S_IFBLK (in module stat), 258
S_IFCHR (in module stat), 258
S_IFDIR (in module stat), 258
S_IFIFO (in module stat), 258
S_IFLNK (in module stat), 257
S_IFMT (in module stat), 257
S_IFMT() (in module stat), 257
S_IFREG (in module stat), 258
S_IFSOCK (in module stat), 257
S_IMODE() (in module stat), 256
s_import() (rexec.RExec method), 1061
S_IREAD (in module stat), 259
S_IRGRP (in module stat), 258
S_IROTH (in module stat), 258
S_IRUSR (in module stat), 258
S_IRWXG (in module stat), 258
S_IRWXO (in module stat), 258
S_IRWXU (in module stat), 258
S_ISBLK() (in module stat), 256
S_ISCHR() (in module stat), 256
S_ISDIR() (in module stat), 256
S_ISFIFO() (in module stat), 256
S_ISGID (in module stat), 258
S_ISLNK() (in module stat), 256
S_ISREG() (in module stat), 256
S_ISSOCK() (in module stat), 256
S_ISUID (in module stat), 258
S_ISVTX (in module stat), 258
S_IWGRP (in module stat), 258
S_IWOTH (in module stat), 258
S_IWRITE (in module stat), 259
S_IWUSR (in module stat), 258
S_IXGRP (in module stat), 258
S_IXOTH (in module stat), 259
S_IXUSR (in module stat), 258
s_reload() (rexec.RExec method), 1061
s_unload() (rexec.RExec method), 1061
safe_substitute() (string.Template method), 69
SafeConfigParser (class in ConfigParser), 337

saferepr() (in module pprint), 186
same_files (filecmp.dircmp attribute), 261
same_quantum() (decimal.Context method), 215
same_quantum() (decimal.Decimal method), 209
samefile() (in module os.path), 253
sameopenfile() (in module os.path), 253
samestat() (in module os.path), 253
sample() (in module random), 226
save() (cookielib.FileCookieJar method), 833
save_bgn() (htmllib.HTMLParser method), 709
save_end() (htmllib.HTMLParser method), 709
SaveKey() (in module _winreg), 1133
SAX2DOM (class in xml.dom.pulldom), 732
SAXException, 733
SAXNotRecognizedException, 734
SAXNotSupportedException, 734
SAXParseException, 734
scale() (in module imageop), 858
scaleb() (decimal.Context method), 215
scaleb() (decimal.Decimal method), 209
scalebarvalues() (FrameWork.ScrolledWindow method),

1166
scanf(), 84
sched (module), 170
scheduler (class in sched), 170
schema (in module msilib), 1128
sci() (in module fpformat), 123
Scrap Manager, 1172
Screen (class in turtle), 937
screensize() (in module turtle), 932
script_from_examples() (in module doctest), 968
scroll() (curses.window method), 467
scrollbar_callback() (FrameWork.ScrolledWindow

method), 1166
scrollbars() (FrameWork.ScrolledWindow method), 1166
ScrolledCanvas (class in turtle), 937
ScrolledText (module), 912
scrollok() (curses.window method), 467
search

path, module, 266, 1023, 1050
search() (imaplib.IMAP4 method), 798
search() (in module re), 78
search() (re.RegexObject method), 80
SEARCH_ERROR (in module imp), 1067
second (datetime.datetime attribute), 133
second (datetime.time attribute), 139
section_divider() (multifile.MultiFile method), 691
sections() (ConfigParser.RawConfigParser method), 338
secure (cookielib.Cookie attribute), 838
Secure Hash Algorithm, 352
secure hash algorithm, SHA1, SHA224, SHA256,

SHA384, SHA512, 349
Secure Sockets Layer, 609
security

Index 1293

The Python Library Reference, Release 2.6.9

CGI, 757
seed() (in module random), 226
seek() (bz2.BZ2File method), 316
seek() (chunk.Chunk method), 866
seek() (file method), 48
seek() (in module mmap), 586
seek() (io.IOBase method), 382
seek() (multifile.MultiFile method), 691
SEEK_CUR (in module os), 361
SEEK_CUR (in module posixfile), 1149
SEEK_END (in module os), 361
SEEK_END (in module posixfile), 1149
SEEK_SET (in module os), 361
SEEK_SET (in module posixfile), 1149
seekable() (io.IOBase method), 383
Select (class in Tix), 908
select (module), 519
select() (imaplib.IMAP4 method), 798
select() (in module gl), 1195
select() (in module select), 519
Semaphore (class in multiprocessing), 546
Semaphore (class in threading), 530
Semaphore() (multiprocessing.managers.SyncManager

method), 550
semaphores, binary, 532
send() (aetools.TalkTo method), 1177
send() (asyncore.dispatcher method), 623
send() (httplib.HTTPConnection method), 788
send() (imaplib.IMAP4 method), 799
send() (logging.DatagramHandler method), 444
send() (logging.SocketHandler method), 443
send() (multiprocessing.Connection method), 544
send() (socket.socket method), 605
send_bytes() (multiprocessing.Connection method), 544
send_error() (BaseHTTPServer.BaseHTTPRequestHandler

method), 827
send_flowing_data() (formatter.writer method), 1122
send_header() (BaseHTTPServer.BaseHTTPRequestHandler

method), 827
send_hor_rule() (formatter.writer method), 1122
send_label_data() (formatter.writer method), 1122
send_line_break() (formatter.writer method), 1122
send_literal_data() (formatter.writer method), 1122
send_paragraph() (formatter.writer method), 1122
send_response() (Base-

HTTPServer.BaseHTTPRequestHandler
method), 827

send_signal() (subprocess.Popen method), 594
sendall() (socket.socket method), 605
sendcmd() (ftplib.FTP method), 791
sendfile() (wsgiref.handlers.BaseHandler method), 768
sendmail() (smtplib.SMTP method), 807
sendto() (socket.socket method), 605
sep (in module os), 379

Separator() (in module FrameWork), 1164
sequence, 1210

iteration, 31
object, 32
types, mutable, 40
types, operations on, 33, 41

sequence (in module msilib), 1128
sequence2st() (in module parser), 1080
sequenceIncludes() (in module operator), 246
SequenceMatcher (class in difflib), 92, 96
SerialCookie (class in Cookie), 839
serializing

objects, 271
serve_forever() (SocketServer.BaseServer method), 820
server

WWW, 753, 826
server (BaseHTTPServer.BaseHTTPRequestHandler at-

tribute), 826
server_activate() (SocketServer.BaseServer method), 821
server_address (SocketServer.BaseServer attribute), 820
server_bind() (SocketServer.BaseServer method), 821
server_software (wsgiref.handlers.BaseHandler at-

tribute), 767
server_version (BaseHTTPServer.BaseHTTPRequestHandler

attribute), 827
server_version (Simple-

HTTPServer.SimpleHTTPRequestHandler
attribute), 829

ServerProxy (class in xmlrpclib), 843
set

object, 42
set (built-in class), 42
Set (class in sets), 168
set() (ConfigParser.RawConfigParser method), 339
set() (ConfigParser.SafeConfigParser method), 340
set() (Cookie.Morsel method), 841
set() (EasyDialogs.ProgressBar method), 1163
set() (ossaudiodev.oss_mixer_device method), 872
set() (test.test_support.EnvironmentVarGuard method),

990
set() (threading.Event method), 531
set() (xml.etree.ElementTree.Element method), 746
set_allowed_domains() (cookielib.DefaultCookiePolicy

method), 836
set_app() (wsgiref.simple_server.WSGIServer method),

764
set_authorizer() (sqlite3.Connection method), 299
set_blocked_domains() (cookielib.DefaultCookiePolicy

method), 836
set_boundary() (email.message.Message method), 634
set_break() (bdb.Bdb method), 996
set_charset() (email.message.Message method), 631
set_completer() (in module readline), 587
set_completer_delims() (in module readline), 588

1294 Index

The Python Library Reference, Release 2.6.9

set_completion_display_matches_hook() (in module
readline), 588

set_continue() (bdb.Bdb method), 996
set_conversion_mode() (in module ctypes), 511
set_cookie() (cookielib.CookieJar method), 833
set_cookie_if_ok() (cookielib.CookieJar method), 833
set_current() (msilib.Feature method), 1127
set_date() (mailbox.MaildirMessage method), 674
set_debug() (in module gc), 1043
set_debuglevel() (ftplib.FTP method), 791
set_debuglevel() (httplib.HTTPConnection method), 788
set_debuglevel() (nntplib.NNTP method), 802
set_debuglevel() (poplib.POP3 method), 794
set_debuglevel() (smtplib.SMTP method), 806
set_debuglevel() (telnetlib.Telnet method), 811
set_default_type() (email.message.Message method), 633
set_defaults() (optparse.OptionParser method), 410
set_errno() (in module ctypes), 511
set_event_call_back() (in module fl), 1189
set_executable() (in module multiprocessing), 544
set_flags() (mailbox.MaildirMessage method), 673
set_flags() (mailbox.mboxMessage method), 675
set_flags() (mailbox.MMDFMessage method), 679
set_form_position() (fl.form method), 1190
set_from() (mailbox.mboxMessage method), 675
set_from() (mailbox.MMDFMessage method), 679
set_graphics_mode() (in module fl), 1189
set_history_length() (in module readline), 587
set_info() (mailbox.MaildirMessage method), 674
set_labels() (mailbox.BabylMessage method), 677
set_last_error() (in module ctypes), 512
SET_LINENO (opcode), 1107
set_literal (2to3 fixer), 985
set_location() (bsddb.bsddbobject method), 291
set_next() (bdb.Bdb method), 995
set_nonstandard_attr() (cookielib.Cookie method), 838
set_ok() (cookielib.CookiePolicy method), 834
set_option_negotiation_callback() (telnetlib.Telnet

method), 811
set_output_charset() (gettext.NullTranslations method),

878
set_param() (email.message.Message method), 634
set_pasv() (ftplib.FTP method), 792
set_payload() (email.message.Message method), 631
set_policy() (cookielib.CookieJar method), 833
set_position() (xdrlib.Unpacker method), 344
set_pre_input_hook() (in module readline), 587
set_progress_handler() (sqlite3.Connection method), 299
set_proxy() (urllib2.Request method), 778
set_quit() (bdb.Bdb method), 996
set_recsrc() (ossaudiodev.oss_mixer_device method), 873
set_return() (bdb.Bdb method), 995
set_seq1() (difflib.SequenceMatcher method), 96
set_seq2() (difflib.SequenceMatcher method), 97

set_seqs() (difflib.SequenceMatcher method), 96
set_sequences() (mailbox.MH method), 670
set_sequences() (mailbox.MHMessage method), 676
set_server_documentation() (DocXMLRPC-

Server.DocCGIXMLRPCRequestHandler
method), 854

set_server_documentation() (DocXMLRPC-
Server.DocXMLRPCServer method), 853

set_server_name() (DocXMLRPC-
Server.DocCGIXMLRPCRequestHandler
method), 854

set_server_name() (DocXMLRPC-
Server.DocXMLRPCServer method), 853

set_server_title() (DocXMLRPC-
Server.DocCGIXMLRPCRequestHandler
method), 853

set_server_title() (DocXMLRPC-
Server.DocXMLRPCServer method), 853

set_spacing() (formatter.formatter method), 1121
set_startup_hook() (in module readline), 587
set_step() (bdb.Bdb method), 995
set_subdir() (mailbox.MaildirMessage method), 673
set_terminator() (asynchat.async_chat method), 625
set_threshold() (in module gc), 1043
set_trace() (bdb.Bdb method), 996
set_trace() (in module bdb), 997
set_trace() (in module pdb), 998
set_type() (email.message.Message method), 634
set_unittest_reportflags() (in module doctest), 962
set_unixfrom() (email.message.Message method), 630
set_until() (bdb.Bdb method), 995
set_url() (robotparser.RobotFileParser method), 341
set_usage() (optparse.OptionParser method), 410
set_userptr() (curses.panel.Panel method), 476
set_visible() (mailbox.BabylMessage method), 677
set_wakeup_fd() (in module signal), 618
setacl() (imaplib.IMAP4 method), 799
setannotation() (imaplib.IMAP4 method), 799
setarrowcursor() (in module FrameWork), 1164
setattr() (built-in function), 17
setAttribute() (xml.dom.Element method), 724
setAttributeNode() (xml.dom.Element method), 724
setAttributeNodeNS() (xml.dom.Element method), 724
setAttributeNS() (xml.dom.Element method), 725
SetBase() (xml.parsers.expat.xmlparser method), 711
setblocking() (socket.socket method), 605
setByteStream() (xml.sax.xmlreader.InputSource

method), 742
setcbreak() (in module tty), 1145
setCharacterStream() (xml.sax.xmlreader.InputSource

method), 742
setcheckinterval() (in module sys), 1024
setcomptype() (aifc.aifc method), 860
setcomptype() (sunau.AU_write method), 863

Index 1295

The Python Library Reference, Release 2.6.9

setcomptype() (wave.Wave_write method), 865
setContentHandler() (xml.sax.xmlreader.XMLReader

method), 740
setcontext() (in module decimal), 210
setcontext() (mhlib.MH method), 683
SetCreatorAndType() (in module MacOS), 1159
setcurrent() (mhlib.Folder method), 684
setDaemon() (threading.Thread method), 527
setdefault() (dict method), 46
setdefaultencoding() (in module sys), 1024
setdefaulttimeout() (in module socket), 603
setdlopenflags() (in module sys), 1024
setDocumentLocator() (xml.sax.handler.ContentHandler

method), 736
setDTDHandler() (xml.sax.xmlreader.XMLReader

method), 741
setegid() (in module os), 357
setEncoding() (xml.sax.xmlreader.InputSource method),

742
setEntityResolver() (xml.sax.xmlreader.XMLReader

method), 741
setErrorHandler() (xml.sax.xmlreader.XMLReader

method), 741
seteuid() (in module os), 357
setFeature() (xml.sax.xmlreader.XMLReader method),

741
setfirstweekday() (in module calendar), 150
setfmt() (ossaudiodev.oss_audio_device method), 870
setFormatter() (logging.Handler method), 440
setframerate() (aifc.aifc method), 860
setframerate() (sunau.AU_write method), 863
setframerate() (wave.Wave_write method), 865
setgid() (in module os), 357
setgroups() (in module os), 357
seth() (in module turtle), 917
setheading() (in module turtle), 917
SetInteger() (msilib.Record method), 1126
setitem() (in module operator), 246
setitimer() (in module signal), 618
setlast() (mhlib.Folder method), 684
setLevel() (logging.Handler method), 440
setLevel() (logging.Logger method), 429
setliteral() (sgmllib.SGMLParser method), 706
setlocale() (in module locale), 884
setLocale() (xml.sax.xmlreader.XMLReader method),

741
setLoggerClass() (in module logging), 429
setlogmask() (in module syslog), 1154
setmark() (aifc.aifc method), 861
setMaxConns() (urllib2.CacheFTPHandler method), 783
setmode() (in module msvcrt), 1129
setName() (threading.Thread method), 526
setnchannels() (aifc.aifc method), 860
setnchannels() (sunau.AU_write method), 863

setnchannels() (wave.Wave_write method), 865
setnframes() (aifc.aifc method), 860
setnframes() (sunau.AU_write method), 863
setnframes() (wave.Wave_write method), 865
setnomoretags() (sgmllib.SGMLParser method), 706
setoption() (in module jpeg), 1198
setparameters() (ossaudiodev.oss_audio_device method),

871
setparams() (aifc.aifc method), 861
setparams() (in module al), 1183
setparams() (sunau.AU_write method), 863
setparams() (wave.Wave_write method), 865
setpassword() (zipfile.ZipFile method), 319
setpath() (in module fm), 1194
setpgid() (in module os), 358
setpgrp() (in module os), 357
setpos() (aifc.aifc method), 860
setpos() (in module turtle), 916
setpos() (sunau.AU_read method), 863
setpos() (wave.Wave_read method), 865
setposition() (in module turtle), 916
setprofile() (in module sys), 1024
setprofile() (in module threading), 525
SetProperty() (msilib.SummaryInformation method),

1125
setProperty() (xml.sax.xmlreader.XMLReader method),

741
setPublicId() (xml.sax.xmlreader.InputSource method),

742
setquota() (imaplib.IMAP4 method), 799
setraw() (in module tty), 1145
setrecursionlimit() (in module sys), 1025
setregid() (in module os), 358
setreuid() (in module os), 358
setrlimit() (in module resource), 1151
sets (module), 167
setsampwidth() (aifc.aifc method), 860
setsampwidth() (sunau.AU_write method), 863
setsampwidth() (wave.Wave_write method), 865
setscrreg() (curses.window method), 467
setsid() (in module os), 358
setslice() (in module operator), 246
setsockopt() (socket.socket method), 606
setstate() (in module random), 226
SetStream() (msilib.Record method), 1126
SetString() (msilib.Record method), 1125
setSystemId() (xml.sax.xmlreader.InputSource method),

742
setsyx() (in module curses), 461
setTarget() (logging.MemoryHandler method), 447
settiltangle() (in module turtle), 928
settimeout() (socket.socket method), 605
setTimeout() (urllib2.CacheFTPHandler method), 783
settrace() (in module sys), 1025

1296 Index

The Python Library Reference, Release 2.6.9

settrace() (in module threading), 525
settscdump() (in module sys), 1025
settypecreator() (ic.IC method), 1158
settypecreator() (in module ic), 1157
setuid() (in module os), 358
setundobuffer() (in module turtle), 930
setup() (in module turtle), 936
setup() (SocketServer.RequestHandler method), 822
setUp() (unittest.TestCase method), 977
setup_environ() (wsgiref.handlers.BaseHandler method),

767
SETUP_EXCEPT (opcode), 1107
SETUP_FINALLY (opcode), 1107
SETUP_LOOP (opcode), 1107
setup_testing_defaults() (in module wsgiref.util), 761
setupterm() (in module curses), 461
SetValue() (in module _winreg), 1133
SetValueEx() (in module _winreg), 1133
setwatchcursor() (in module FrameWork), 1164
setworldcoordinates() (in module turtle), 932
setx() (in module turtle), 916
sety() (in module turtle), 917
SGML, 705
sgmllib

module, 708
sgmllib (module), 705
SGMLParseError, 705
SGMLParser (class in sgmllib), 705
SGMLParser (in module sgmllib), 708
sha (module), 352
Shape (class in turtle), 937
shape() (in module turtle), 927
shapesize() (in module turtle), 927
Shelf (class in shelve), 283
shelve

module, 284
shelve (module), 282
shift() (decimal.Context method), 215
shift() (decimal.Decimal method), 209
shift_path_info() (in module wsgiref.util), 761
shifting

operations, 30
shlex (class in shlex), 893
shlex (module), 893
shortDescription() (unittest.TestCase method), 979
shouldFlush() (logging.BufferingHandler method), 446
shouldFlush() (logging.MemoryHandler method), 447
show() (curses.panel.Panel method), 476
show_choice() (in module fl), 1189
show_file_selector() (in module fl), 1189
show_form() (fl.form method), 1190
show_input() (in module fl), 1189
show_message() (in module fl), 1189
show_question() (in module fl), 1189

showsyntaxerror() (code.InteractiveInterpreter method),
1056

showtraceback() (code.InteractiveInterpreter method),
1056

showturtle() (in module turtle), 926
showwarning() (in module warnings), 1031
shuffle() (in module random), 226
shutdown() (imaplib.IMAP4 method), 799
shutdown() (in module findertools), 1161
shutdown() (in module logging), 429
shutdown() (multiprocessing.managers.BaseManager

method), 549
shutdown() (socket.socket method), 606
shutdown() (SocketServer.BaseServer method), 820
shutil (module), 266
SIG_DFL (in module signal), 617
SIG_IGN (in module signal), 617
siginterrupt() (in module signal), 618
signal

module, 534
signal (module), 616
signal() (in module signal), 618
Simple Mail Transfer Protocol, 804
SimpleCookie (class in Cookie), 839
simplefilter() (in module warnings), 1032
SimpleHandler (class in wsgiref.handlers), 766
SimpleHTTPRequestHandler (class in Simple-

HTTPServer), 829
SimpleHTTPServer

module, 826
SimpleHTTPServer (module), 829
SimpleXMLRPCRequestHandler (class in SimpleXML-

RPCServer), 850
SimpleXMLRPCServer (module), 850
sin() (in module cmath), 199
sin() (in module math), 196
sinh() (in module cmath), 199
sinh() (in module math), 197
site (module), 1050
site-packages

directory, 1050
site-python

directory, 1050
sitecustomize

module, 1050
size (struct.Struct attribute), 92
size (tarfile.TarInfo attribute), 326
size() (ftplib.FTP method), 793
size() (in module mmap), 586
sizeof() (in module ctypes), 512
SKIP (in module doctest), 956
skip() (chunk.Chunk method), 867
skipinitialspace (csv.Dialect attribute), 333

Index 1297

The Python Library Reference, Release 2.6.9

skippedEntity() (xml.sax.handler.ContentHandler
method), 738

slave() (nntplib.NNTP method), 803
sleep() (in module findertools), 1161
sleep() (in module time), 389
slice, 1210

assignment, 41
built-in function, 182, 1108
operation, 33

slice() (built-in function), 17
SLICE+0 (opcode), 1104
SLICE+1 (opcode), 1104
SLICE+2 (opcode), 1104
SLICE+3 (opcode), 1104
SliceType (in module types), 182
SmartCookie (class in Cookie), 839
SMTP

protocol, 804
SMTP (class in smtplib), 804
SMTP_SSL (class in smtplib), 804
SMTPAuthenticationError, 805
SMTPConnectError, 805
smtpd (module), 808
SMTPDataError, 805
SMTPException, 805
SMTPHandler (class in logging), 446
SMTPHeloError, 805
smtplib (module), 804
SMTPRecipientsRefused, 805
SMTPResponseException, 805
SMTPSenderRefused, 805
SMTPServer (class in smtpd), 809
SMTPServerDisconnected, 805
SND_ALIAS (in module winsound), 1137
SND_ASYNC (in module winsound), 1138
SND_FILENAME (in module winsound), 1137
SND_LOOP (in module winsound), 1138
SND_MEMORY (in module winsound), 1138
SND_NODEFAULT (in module winsound), 1138
SND_NOSTOP (in module winsound), 1138
SND_NOWAIT (in module winsound), 1138
SND_PURGE (in module winsound), 1138
sndhdr (module), 868
sniff() (csv.Sniffer method), 331
Sniffer (class in csv), 331
SOCK_DGRAM (in module socket), 599
SOCK_RAW (in module socket), 599
SOCK_RDM (in module socket), 599
SOCK_SEQPACKET (in module socket), 599
SOCK_STREAM (in module socket), 599
socket

module, 47, 751
object, 598

socket (module), 598

socket (SocketServer.BaseServer attribute), 820
socket() (imaplib.IMAP4 method), 799
socket() (in module socket), 520, 602
socket_type (SocketServer.BaseServer attribute), 821
SocketHandler (class in logging), 443
socketpair() (in module socket), 602
SocketServer (module), 818
SocketType (in module socket), 603
softspace (file attribute), 49
SOMAXCONN (in module socket), 599
sort() (imaplib.IMAP4 method), 799
sort() (list method), 41
sort_stats() (pstats.Stats method), 1005
sorted() (built-in function), 17
sortTestMethodsUsing (unittest.TestLoader attribute),

981
source (doctest.Example attribute), 963
source (shlex.shlex attribute), 895
sourcehook() (shlex.shlex method), 894
span() (re.MatchObject method), 83
spawn() (in module pty), 1146
spawnl() (in module os), 374
spawnle() (in module os), 374
spawnlp() (in module os), 374
spawnlpe() (in module os), 374
spawnv() (in module os), 374
spawnve() (in module os), 374
spawnvp() (in module os), 374
spawnvpe() (in module os), 374
special method, 1210
specified_attributes (xml.parsers.expat.xmlparser at-

tribute), 712
speed() (in module turtle), 919
speed() (ossaudiodev.oss_audio_device method), 870
splash() (in module MacOS), 1159
split() (in module os.path), 253
split() (in module re), 78
split() (in module shlex), 893
split() (in module string), 71
split() (re.RegexObject method), 81
split() (str method), 36
splitdrive() (in module os.path), 254
splitext() (in module os.path), 254
splitfields() (in module string), 71
splitlines() (str method), 37
SplitResult (class in urlparse), 818
splitunc() (in module os.path), 254
SpooledTemporaryFile() (in module tempfile), 262
sprintf-style formatting, 38
spwd (module), 1141
sqlite3 (module), 293
sqrt() (decimal.Context method), 215
sqrt() (decimal.Decimal method), 209
sqrt() (in module cmath), 198

1298 Index

The Python Library Reference, Release 2.6.9

sqrt() (in module math), 196
SSL, 609
ssl (module), 609
ssl() (imaplib.IMAP4_SSL method), 800
SSLError, 609
st() (in module turtle), 926
st2list() (in module parser), 1081
st2tuple() (in module parser), 1081
ST_ATIME (in module stat), 257
ST_CTIME (in module stat), 257
ST_DEV (in module stat), 257
ST_GID (in module stat), 257
ST_INO (in module stat), 257
ST_MODE (in module stat), 257
ST_MTIME (in module stat), 257
ST_NLINK (in module stat), 257
ST_SIZE (in module stat), 257
ST_UID (in module stat), 257
stack viewer, 944
stack() (in module inspect), 1050
stack_size() (in module thread), 533
stack_size() (in module threading), 525
stackable

streams, 106
stamp() (in module turtle), 918
standard_b64decode() (in module base64), 696
standard_b64encode() (in module base64), 696
standard_error (2to3 fixer), 985
StandardError, 55
standend() (curses.window method), 467
standout() (curses.window method), 467
starmap() (in module itertools), 236
start() (hotshot.Profile method), 1009
start() (multiprocessing.managers.BaseManager method),

549
start() (multiprocessing.Process method), 539
start() (re.MatchObject method), 83
start() (threading.Thread method), 526
start() (xml.etree.ElementTree.TreeBuilder method), 748
start_color() (in module curses), 461
start_component() (msilib.Directory method), 1126
start_new_thread() (in module thread), 533
startbody() (MimeWriter.MimeWriter method), 689
StartCdataSectionHandler() (xml.parsers.expat.xmlparser

method), 714
StartDoctypeDeclHandler() (xml.parsers.expat.xmlparser

method), 713
startDocument() (xml.sax.handler.ContentHandler

method), 736
startElement() (xml.sax.handler.ContentHandler method),

737
StartElementHandler() (xml.parsers.expat.xmlparser

method), 713

startElementNS() (xml.sax.handler.ContentHandler
method), 737

startfile() (in module os), 375
startmultipartbody() (MimeWriter.MimeWriter method),

689
StartNamespaceDeclHandler()

(xml.parsers.expat.xmlparser method), 714
startPrefixMapping() (xml.sax.handler.ContentHandler

method), 736
startswith() (str method), 37
startTest() (unittest.TestResult method), 980
starttls() (smtplib.SMTP method), 807
stat

module, 368
stat (module), 256
stat() (in module os), 368
stat() (nntplib.NNTP method), 803
stat() (poplib.POP3 method), 794
stat_float_times() (in module os), 368
statement, 1210

assert, 56
del, 41, 44
except, 55
exec, 52
if, 27
import, 21, 1065, 1068
print, 27
raise, 55
try, 55
while, 27

staticmethod() (built-in function), 18
Stats (class in pstats), 1004
status (httplib.HTTPResponse attribute), 789
status() (imaplib.IMAP4 method), 799
statvfs

module, 369
statvfs (module), 259
statvfs() (in module os), 369
StdButtonBox (class in Tix), 908
stderr (in module sys), 1026
stderr (subprocess.Popen attribute), 595
stdin (in module sys), 1026
stdin (subprocess.Popen attribute), 595
STDOUT (in module subprocess), 593
stdout (in module sys), 1026
stdout (subprocess.Popen attribute), 595
Stein, Greg, 1112
stereocontrols() (ossaudiodev.oss_mixer_device method),

872
STILL (in module cd), 1186
stop() (hotshot.Profile method), 1009
stop() (unittest.TestResult method), 980
STOP_CODE (opcode), 1102
stop_here() (bdb.Bdb method), 995

Index 1299

The Python Library Reference, Release 2.6.9

StopIteration, 57
stopListening() (in module logging), 450
stopTest() (unittest.TestResult method), 980
storbinary() (ftplib.FTP method), 792
store() (imaplib.IMAP4 method), 799
STORE_ACTIONS (optparse.Option attribute), 416
STORE_ATTR (opcode), 1106
STORE_DEREF (opcode), 1107
STORE_FAST (opcode), 1107
STORE_GLOBAL (opcode), 1106
STORE_MAP (opcode), 1107
STORE_NAME (opcode), 1106
STORE_SLICE+0 (opcode), 1104
STORE_SLICE+1 (opcode), 1104
STORE_SLICE+2 (opcode), 1104
STORE_SLICE+3 (opcode), 1104
STORE_SUBSCR (opcode), 1104
storlines() (ftplib.FTP method), 792
str

format, 9
str() (built-in function), 18
str() (in module locale), 888
strcoll() (in module locale), 887
StreamError, 323
StreamHandler (class in logging), 441
StreamReader (class in codecs), 112
StreamReaderWriter (class in codecs), 113
StreamRecoder (class in codecs), 114
streams, 106

stackable, 106
StreamWriter (class in codecs), 111
strerror() (in module os), 358
strftime() (datetime.date method), 131
strftime() (datetime.datetime method), 136
strftime() (datetime.time method), 139
strftime() (in module time), 389
strict_domain (cookielib.DefaultCookiePolicy attribute),

836
strict_errors() (in module codecs), 108
strict_ns_domain (cookielib.DefaultCookiePolicy at-

tribute), 837
strict_ns_set_initial_dollar (cook-

ielib.DefaultCookiePolicy attribute), 837
strict_ns_set_path (cookielib.DefaultCookiePolicy

attribute), 837
strict_ns_unverifiable (cookielib.DefaultCookiePolicy at-

tribute), 837
strict_rfc2965_unverifiable (cook-

ielib.DefaultCookiePolicy attribute), 836
string

documentation, 1083
formatting, 38
interpolation, 38
methods, 33

module, 40, 888, 889
object, 32

string (module), 61
string (re.MatchObject attribute), 83
string_at() (in module ctypes), 512
StringIO (class in io), 387
StringIO (class in StringIO), 102
StringIO (module), 102
StringIO() (in module cStringIO), 103
stringprep (module), 121
StringType (in module types), 181
StringTypes (in module types), 183
strip() (in module string), 72
strip() (str method), 37
strip_dirs() (pstats.Stats method), 1004
stripspaces (curses.textpad.Textbox attribute), 472
strptime() (datetime.datetime class method), 133
strptime() (in module time), 390
struct

module, 606
Struct (class in struct), 91
struct (module), 88
struct_time (in module time), 391
Structure (class in ctypes), 515
structures

C, 88
strxfrm() (in module locale), 887
STType (in module parser), 1082
StyledText (class in aetypes), 1179
sub() (in module operator), 245
sub() (in module re), 79
sub() (re.RegexObject method), 81
subdirs (filecmp.dircmp attribute), 261
SubElement() (in module xml.etree.ElementTree), 745
SubMenu() (in module FrameWork), 1164
subn() (in module re), 80
subn() (re.RegexObject method), 81
Subnormal (class in decimal), 216
subpad() (curses.window method), 467
subprocess (module), 591
subscribe() (imaplib.IMAP4 method), 799
subscript

assignment, 41
operation, 33

subsequent_indent (textwrap.TextWrapper attribute), 105
substitute() (string.Template method), 68
subtract() (decimal.Context method), 215
subversion (in module sys), 1017
subwin() (curses.window method), 467
successful() (multiprocessing.pool.AsyncResult method),

555
suffix_map (in module mimetypes), 687
suffix_map (mimetypes.MimeTypes attribute), 688
suite() (in module parser), 1080

1300 Index

The Python Library Reference, Release 2.6.9

suiteClass (unittest.TestLoader attribute), 981
sum() (built-in function), 18
summarize() (doctest.DocTestRunner method), 966
sunau (module), 861
SUNAUDIODEV

module, 1199
sunaudiodev

module, 1200
SUNAUDIODEV (module), 1200
sunaudiodev (module), 1199
super (pyclbr.Class attribute), 1098
super() (built-in function), 18
supports_unicode_filenames (in module os.path), 254
swapcase() (in module string), 72
swapcase() (str method), 37
sym() (dl.dl method), 1143
sym_name (in module symbol), 1095
Symbol (class in symtable), 1094
symbol (module), 1095
SymbolTable (class in symtable), 1093
symlink() (in module os), 369
symmetric_difference() (set method), 43
symmetric_difference_update() (set method), 44
symtable (module), 1093
symtable() (in module symtable), 1093
sync() (bsddb.bsddbobject method), 291
sync() (dbhash.dbhash method), 290
sync() (dumbdbm.dumbdbm method), 293
sync() (in module gdbm), 289
sync() (ossaudiodev.oss_audio_device method), 871
sync() (shelve.Shelf method), 282
syncdown() (curses.window method), 467
synchronized() (in module multiprocess-

ing.sharedctypes), 547
SyncManager (class in multiprocessing.managers), 550
syncok() (curses.window method), 467
syncup() (curses.window method), 467
SyntaxErr, 727
SyntaxError, 57
SyntaxWarning, 59
sys (module), 1017
sys_exc (2to3 fixer), 985
sys_version (BaseHTTPServer.BaseHTTPRequestHandler

attribute), 827
SysBeep() (in module MacOS), 1159
sysconf() (in module os), 378
sysconf_names (in module os), 378
syslog (module), 1154
syslog() (in module syslog), 1154
SysLogHandler (class in logging), 444
system() (in module os), 376
system() (in module platform), 478
system_alias() (in module platform), 478
SystemError, 57

SystemExit, 58
systemId (xml.dom.DocumentType attribute), 722
SystemRandom (class in random), 228
SystemRoot, 593

T
T_FMT (in module locale), 885
T_FMT_AMPM (in module locale), 885
tabnanny (module), 1097
tabular

data, 329
tag (xml.etree.ElementTree.Element attribute), 745
tagName (xml.dom.Element attribute), 724
tail (xml.etree.ElementTree.Element attribute), 745
takewhile() (in module itertools), 237
TalkTo (class in aetools), 1177
tan() (in module cmath), 199
tan() (in module math), 196
tanh() (in module cmath), 199
tanh() (in module math), 197
TarError, 322
TarFile (class in tarfile), 322, 323
tarfile (module), 321
TarFileCompat (class in tarfile), 322
TarFileCompat.TAR_GZIPPED (in module tarfile), 322
TarFileCompat.TAR_PLAIN (in module tarfile), 322
target (xml.dom.ProcessingInstruction attribute), 726
TarInfo (class in tarfile), 325
task_done() (multiprocessing.JoinableQueue method),

543
task_done() (Queue.Queue method), 174
tb_lineno() (in module traceback), 1039
tcdrain() (in module termios), 1144
tcflow() (in module termios), 1144
tcflush() (in module termios), 1144
tcgetattr() (in module termios), 1144
tcgetpgrp() (in module os), 362
Tcl() (in module Tkinter), 898
tcsendbreak() (in module termios), 1144
tcsetattr() (in module termios), 1144
tcsetpgrp() (in module os), 362
tearDown() (unittest.TestCase method), 977
tee() (in module itertools), 237
tell() (aifc.aifc method), 860, 861
tell() (bz2.BZ2File method), 316
tell() (chunk.Chunk method), 866
tell() (file method), 48
tell() (in module mmap), 586
tell() (io.IOBase method), 383
tell() (multifile.MultiFile method), 691
tell() (sunau.AU_read method), 863
tell() (sunau.AU_write method), 863
tell() (wave.Wave_read method), 865
tell() (wave.Wave_write method), 865

Index 1301

The Python Library Reference, Release 2.6.9

Telnet (class in telnetlib), 809
telnetlib (module), 809
TEMP, 264
tempdir (in module tempfile), 263
tempfile (module), 262
Template (class in pipes), 1148
Template (class in string), 68
template (in module tempfile), 264
template (string.Template attribute), 69
tempnam() (in module os), 369
temporary

file, 262
file name, 262

TemporaryFile() (in module tempfile), 262
termattrs() (in module curses), 461
terminate() (multiprocessing.pool.multiprocessing.Pool

method), 555
terminate() (multiprocessing.Process method), 540
terminate() (subprocess.Popen method), 594
termios (module), 1144
termname() (in module curses), 461
test (doctest.DocTestFailure attribute), 969
test (doctest.UnexpectedException attribute), 969
test (module), 986
test() (in module cgi), 757
test() (mutex.mutex method), 172
test.test_support (module), 988
testandset() (mutex.mutex method), 172
TestCase (class in unittest), 976
TestFailed, 988
testfile() (in module doctest), 958
TESTFN (in module test.test_support), 989
TestLoader (class in unittest), 976
testMethodPrefix (unittest.TestLoader attribute), 981
testmod() (in module doctest), 959
TestResult (class in unittest), 977
tests (in module imghdr), 868
TestSkipped, 989
testsource() (in module doctest), 968
testsRun (unittest.TestResult attribute), 980
TestSuite (class in unittest), 976
testzip() (zipfile.ZipFile method), 319
text (in module msilib), 1128
text (xml.etree.ElementTree.Element attribute), 745
text() (msilib.Dialog method), 1128
text_factory (sqlite3.Connection attribute), 299
Textbox (class in curses.textpad), 472
TextCalendar (class in calendar), 149
textdomain() (in module gettext), 875
TextIOBase (class in io), 386
TextIOWrapper (class in io), 386
TextTestRunner (class in unittest), 977
textwrap (module), 103
TextWrapper (class in textwrap), 104

THOUSEP (in module locale), 886
Thread (class in threading), 524, 526
thread (module), 532
thread() (imaplib.IMAP4 method), 799
threading (module), 523
threads

IRIX, 534
POSIX, 532

throw (2to3 fixer), 985
tie() (in module fl), 1190
tigetflag() (in module curses), 461
tigetnum() (in module curses), 461
tigetstr() (in module curses), 461
tilt() (in module turtle), 928
tiltangle() (in module turtle), 928
time (class in datetime), 138
time (module), 387
time() (datetime.datetime method), 134
time() (in module time), 391
Time2Internaldate() (in module imaplib), 796
timedelta (class in datetime), 126
TimedRotatingFileHandler (class in logging), 442
timegm() (in module calendar), 150
timeit (module), 1009
timeit() (in module timeit), 1011
timeit() (timeit.Timer method), 1010
timeout, 599
timeout (SocketServer.BaseServer attribute), 821
timeout() (curses.window method), 467
Timer (class in threading), 524, 531
Timer (class in timeit), 1009
times() (in module os), 376
timetuple() (datetime.date method), 130
timetuple() (datetime.datetime method), 135
timetz() (datetime.datetime method), 134
timezone (in module time), 391
title() (EasyDialogs.ProgressBar method), 1163
title() (in module turtle), 937
title() (str method), 37
Tix, 907
Tix (class in Tix), 907
Tix (module), 907
tix_addbitmapdir() (Tix.tixCommand method), 911
tix_cget() (Tix.tixCommand method), 911
tix_configure() (Tix.tixCommand method), 911
tix_filedialog() (Tix.tixCommand method), 911
tix_getbitmap() (Tix.tixCommand method), 911
tix_getimage() (Tix.tixCommand method), 911
TIX_LIBRARY, 908
tix_option_get() (Tix.tixCommand method), 911
tix_resetoptions() (Tix.tixCommand method), 911
tixCommand (class in Tix), 910
Tk, 897
Tk (class in Tkinter), 898

1302 Index

The Python Library Reference, Release 2.6.9

Tk Option Data Types, 904
Tkinter, 897
Tkinter (module), 897
TList (class in Tix), 909
TLS, 609
TMP, 264, 369
TMP_MAX (in module os), 369
TMPDIR, 264, 369
tmpfile() (in module os), 359
tmpnam() (in module os), 369
to_eng_string() (decimal.Context method), 215
to_eng_string() (decimal.Decimal method), 209
to_integral() (decimal.Decimal method), 209
to_integral_exact() (decimal.Context method), 215
to_integral_exact() (decimal.Decimal method), 209
to_integral_value() (decimal.Decimal method), 209
to_sci_string() (decimal.Context method), 215
to_splittable() (email.charset.Charset method), 644
ToASCII() (in module encodings.idna), 119
tobuf() (tarfile.TarInfo method), 326
tochild (popen2.Popen3 attribute), 620
today() (datetime.date class method), 129
today() (datetime.datetime class method), 132
tofile() (array.array method), 166
tok_name (in module token), 1095
token (module), 1095
token (shlex.shlex attribute), 895
tokeneater() (in module tabnanny), 1098
tokenize (module), 1096
tokenize() (in module tokenize), 1096
tolist() (array.array method), 166
tolist() (parser.ST method), 1082
tomono() (in module audioop), 857
toordinal() (datetime.date method), 130
toordinal() (datetime.datetime method), 136
top() (curses.panel.Panel method), 476
top() (poplib.POP3 method), 794
top_panel() (in module curses.panel), 475
toprettyxml() (xml.dom.minidom.Node method), 730
tostereo() (in module audioop), 857
tostring() (array.array method), 167
tostring() (in module xml.etree.ElementTree), 745
total_changes (sqlite3.Connection attribute), 300
totuple() (parser.ST method), 1082
touched() (in module macostools), 1160
touchline() (curses.window method), 467
touchwin() (curses.window method), 467
tounicode() (array.array method), 167
ToUnicode() (in module encodings.idna), 119
tovideo() (in module imageop), 858
towards() (in module turtle), 920
toxml() (xml.dom.minidom.Node method), 730
tparm() (in module curses), 462
Trace (class in trace), 1014

trace (module), 1012
trace function, 525, 1022, 1025
trace() (in module inspect), 1050
trace_dispatch() (bdb.Bdb method), 994
traceback

object, 1018, 1038
traceback (module), 1038
traceback_limit (wsgiref.handlers.BaseHandler attribute),

767
tracebacklimit (in module sys), 1026
tracebacks

in CGI scripts, 759
TracebackType (in module types), 182
tracer() (in module turtle), 931, 933
transfercmd() (ftplib.FTP method), 792
TransientResource (class in test.test_support), 990
translate() (in module fnmatch), 265
translate() (in module string), 72
translate() (str method), 37
translation() (in module gettext), 877
Transport Layer Security, 609
Tree (class in Tix), 909
TreeBuilder (class in xml.etree.ElementTree), 748
triangular() (in module random), 227
triple-quoted string, 1210
True, 27, 52
true, 27
True (built-in variable), 25
truediv() (in module operator), 245
trunc() (in module math), 29, 195
truncate() (file method), 49
truncate() (io.IOBase method), 383
truth

value, 27
truth() (in module operator), 244
try

statement, 55
ttob() (in module imgfile), 1197
tty

I/O control, 1144
tty (module), 1145
ttyname() (in module os), 362
tuple

object, 32
tuple() (built-in function), 19
tuple2st() (in module parser), 1080
tuple_params (2to3 fixer), 985
TupleType (in module types), 181
turnoff_sigfpe() (in module fpectl), 1052
turnon_sigfpe() (in module fpectl), 1052
Turtle (class in turtle), 937
turtle (module), 912
turtles() (in module turtle), 936
TurtleScreen (class in turtle), 937

Index 1303

The Python Library Reference, Release 2.6.9

turtlesize() (in module turtle), 927
Tutt, Bill, 1112
type, 1210

Boolean, 5
built-in function, 52, 181
object, 19
operations on dictionary, 44
operations on list, 41

Type (class in aetypes), 1179
type (optparse.Option attribute), 404
type (socket.socket attribute), 606
type (tarfile.TarInfo attribute), 326
type() (built-in function), 19
TYPE_CHECKER (optparse.Option attribute), 414
typeahead() (in module curses), 462
typecode (array.array attribute), 165
TYPED_ACTIONS (optparse.Option attribute), 416
typed_subpart_iterator() (in module email.iterators), 649
TypeError, 58
types

built-in, 27
module, 52
mutable sequence, 40
operations on integer, 30
operations on mapping, 44
operations on numeric, 29
operations on sequence, 33, 41

types (2to3 fixer), 985
types (module), 181
TYPES (optparse.Option attribute), 414
types_map (in module mimetypes), 687
types_map (mimetypes.MimeTypes attribute), 688
TypeType (in module types), 181
TZ, 391, 392
tzinfo (class in datetime), 126
tzinfo (datetime.datetime attribute), 133
tzinfo (datetime.time attribute), 139
tzname (in module time), 391
tzname() (datetime.datetime method), 135
tzname() (datetime.time method), 140
tzname() (datetime.tzinfo method), 142
tzset() (in module time), 391

U
U (in module re), 78
u-LAW, 855, 861, 868, 1199
ucd_3_2_0 (in module unicodedata), 121
udata (select.kevent attribute), 523
ugettext() (gettext.GNUTranslations method), 879
ugettext() (gettext.NullTranslations method), 878
uid (tarfile.TarInfo attribute), 326
uid() (imaplib.IMAP4 method), 800
uidl() (poplib.POP3 method), 795
ulaw2lin() (in module audioop), 857

umask() (in module os), 358
uname (tarfile.TarInfo attribute), 326
uname() (in module os), 358
uname() (in module platform), 478
UNARY_CONVERT (opcode), 1102
UNARY_INVERT (opcode), 1102
UNARY_NEGATIVE (opcode), 1102
UNARY_NOT (opcode), 1102
UNARY_POSITIVE (opcode), 1102
UnboundLocalError, 58
UnboundMethodType (in module types), 182
unbuffered I/O, 13
UNC paths

and os.makedirs(), 366
unconsumed_tail (zlib.Decompress attribute), 313
unctrl() (in module curses), 462
unctrl() (in module curses.ascii), 475
Underflow (class in decimal), 216
undo() (in module turtle), 919
undobufferentries() (in module turtle), 931
undoc_header (cmd.Cmd attribute), 893
unescape() (in module xml.sax.saxutils), 739
UnexpectedException, 969
unfreeze_form() (fl.form method), 1190
ungetch() (in module curses), 462
ungetch() (in module msvcrt), 1130
ungetmouse() (in module curses), 462
ungettext() (gettext.GNUTranslations method), 879
ungettext() (gettext.NullTranslations method), 878
ungetwch() (in module msvcrt), 1130
unhexlify() (in module binascii), 700
unichr() (built-in function), 19
Unicode, 106, 119

database, 119
object, 32

unicode (2to3 fixer), 985
UNICODE (in module re), 78
unicode() (built-in function), 20
unicodedata (module), 119
UnicodeDecodeError, 58
UnicodeEncodeError, 58
UnicodeError, 58
UnicodeTranslateError, 58
UnicodeType (in module types), 181
UnicodeWarning, 59
unidata_version (in module unicodedata), 121
unified_diff() (in module difflib), 95
uniform() (in module random), 227
UnimplementedFileMode, 786
uninstall() (imputil.ImportManager method), 1068
Union (class in ctypes), 515
union() (set method), 42
unittest (module), 970
UNIX

1304 Index

The Python Library Reference, Release 2.6.9

file control, 1146
I/O control, 1146

unixfrom (rfc822.Message attribute), 695
UnixMailbox (class in mailbox), 680
Unknown (class in aetypes), 1179
unknown_charref() (sgmllib.SGMLParser method), 707
unknown_decl() (HTMLParser.HTMLParser method),

704
unknown_endtag() (sgmllib.SGMLParser method), 707
unknown_entityref() (sgmllib.SGMLParser method), 707
unknown_open() (urllib2.BaseHandler method), 780
unknown_open() (urllib2.HTTPErrorProcessor method),

783
unknown_open() (urllib2.UnknownHandler method), 783
unknown_starttag() (sgmllib.SGMLParser method), 707
UnknownHandler (class in urllib2), 777
UnknownProtocol, 786
UnknownTransferEncoding, 786
unlink() (in module os), 369
unlink() (xml.dom.minidom.Node method), 729
unlock() (mailbox.Babyl method), 672
unlock() (mailbox.Mailbox method), 667
unlock() (mailbox.Maildir method), 669
unlock() (mailbox.mbox method), 669
unlock() (mailbox.MH method), 671
unlock() (mailbox.MMDF method), 672
unlock() (mutex.mutex method), 172
unmimify() (in module mimify), 689
unpack() (in module aepack), 1178
unpack() (in module struct), 88
unpack() (struct.Struct method), 92
unpack_array() (xdrlib.Unpacker method), 345
unpack_bytes() (xdrlib.Unpacker method), 345
unpack_double() (xdrlib.Unpacker method), 345
unpack_farray() (xdrlib.Unpacker method), 345
unpack_float() (xdrlib.Unpacker method), 345
unpack_fopaque() (xdrlib.Unpacker method), 345
unpack_from() (in module struct), 88
unpack_from() (struct.Struct method), 92
unpack_fstring() (xdrlib.Unpacker method), 345
unpack_list() (xdrlib.Unpacker method), 345
unpack_opaque() (xdrlib.Unpacker method), 345
UNPACK_SEQUENCE (opcode), 1106
unpack_string() (xdrlib.Unpacker method), 345
Unpacker (class in xdrlib), 343
unpackevent() (in module aetools), 1177
unparsedEntityDecl() (xml.sax.handler.DTDHandler

method), 738
UnparsedEntityDeclHandler()

(xml.parsers.expat.xmlparser method), 713
Unpickler (class in pickle), 274
UnpicklingError, 273
unqdevice() (in module fl), 1190
unquote() (in module email.utils), 647

unquote() (in module rfc822), 693
unquote() (in module urllib), 771
unquote_plus() (in module urllib), 771
unregister() (select.epoll method), 520
unregister() (select.poll method), 521
unregister_dialect() (in module csv), 330
unset() (test.test_support.EnvironmentVarGuard method),

990
unsetenv() (in module os), 358
unsubscribe() (imaplib.IMAP4 method), 800
UnsupportedOperation, 381
untokenize() (in module tokenize), 1096
untouchwin() (curses.window method), 467
unused_data (zlib.Decompress attribute), 312
unwrap() (ssl.SSLSocket method), 612
up() (in module turtle), 922
update() (dict method), 46
update() (hashlib.hash method), 350
update() (hmac.hmac method), 350
update() (in module turtle), 933
update() (mailbox.Mailbox method), 667
update() (mailbox.Maildir method), 668
update() (md5.md5 method), 351
update() (set method), 43
update() (sha.sha method), 352
update() (trace.CoverageResults method), 1014
update_panels() (in module curses.panel), 475
update_visible() (mailbox.BabylMessage method), 678
update_wrapper() (in module functools), 242
updatescrollbars() (FrameWork.ScrolledWindow

method), 1166
upper() (in module string), 72
upper() (str method), 38
uppercase (in module string), 62
urandom() (in module os), 379
URL, 341, 753, 769, 815, 826

parsing, 815
relative, 815

url (xmlrpclib.ProtocolError attribute), 847
url2pathname() (in module urllib), 771
urlcleanup() (in module urllib), 771
urldefrag() (in module urlparse), 817
urlencode() (in module urllib), 771
URLError, 775
urljoin() (in module urlparse), 817
urllib

module, 785
urllib (2to3 fixer), 986
urllib (module), 769
urllib2 (module), 774
urlopen() (in module urllib), 769
urlopen() (in module urllib2), 775
URLopener (class in urllib), 772
urlparse

Index 1305

The Python Library Reference, Release 2.6.9

module, 774
urlparse (module), 815
urlparse() (in module urlparse), 815
urlretrieve() (in module urllib), 770
urlsafe_b64decode() (in module base64), 697
urlsafe_b64encode() (in module base64), 696
urlsplit() (in module urlparse), 816
urlunparse() (in module urlparse), 816
urlunsplit() (in module urlparse), 817
urn (uuid.UUID attribute), 813
use_default_colors() (in module curses), 462
use_env() (in module curses), 462
use_rawinput (cmd.Cmd attribute), 893
UseForeignDTD() (xml.parsers.expat.xmlparser method),

711
USER, 456
user

configuration file, 1051
effective id, 356
id, 357
id, setting, 358

user (module), 1051
user() (poplib.POP3 method), 794
USER_BASE (in module site), 1051
user_call() (bdb.Bdb method), 995
user_exception() (bdb.Bdb method), 995
user_line() (bdb.Bdb method), 995
user_return() (bdb.Bdb method), 995
USER_SITE (in module site), 1051
UserDict (class in UserDict), 179
UserDict (module), 178
UserList (class in UserList), 179
UserList (module), 179
USERNAME, 456
USERPROFILE, 252
userptr() (curses.panel.Panel method), 476
UserString (class in UserString), 180
UserString (module), 180
UserWarning, 59
USTAR_FORMAT (in module tarfile), 323
UTC, 387
utcfromtimestamp() (datetime.datetime class method),

132
utcnow() (datetime.datetime class method), 132
utcoffset() (datetime.datetime method), 135
utcoffset() (datetime.time method), 140
utcoffset() (datetime.tzinfo method), 141
utctimetuple() (datetime.datetime method), 135
utime() (in module os), 370
uu

module, 699
uu (module), 701
UUID (class in uuid), 812
uuid (module), 812

uuid1, 813
uuid1() (in module uuid), 813
uuid3, 813
uuid3() (in module uuid), 813
uuid4, 813
uuid4() (in module uuid), 813
uuid5, 813
uuid5() (in module uuid), 813
UuidCreate() (in module msilib), 1123

V
validator() (in module wsgiref.validate), 765
value

truth, 27
value (Cookie.Morsel attribute), 841
value (cookielib.Cookie attribute), 837
value (ctypes._SimpleCData attribute), 513
Value() (in module multiprocessing), 546
Value() (in module multiprocessing.sharedctypes), 547
Value() (multiprocessing.managers.SyncManager

method), 550
value_decode() (Cookie.BaseCookie method), 840
value_encode() (Cookie.BaseCookie method), 840
ValueError, 58
valuerefs() (weakref.WeakValueDictionary method), 176
values

Boolean, 52
values() (dict method), 46
values() (email.message.Message method), 632
values() (mailbox.Mailbox method), 666
variant (uuid.UUID attribute), 813
varray() (in module gl), 1195
vars() (built-in function), 20
vbar (ScrolledText.ScrolledText attribute), 912
Vec2D (class in turtle), 938
VERBOSE (in module re), 78
verbose (in module tabnanny), 1097
verbose (in module test.test_support), 989
verify() (smtplib.SMTP method), 806
verify_request() (SocketServer.BaseServer method), 821
version (cookielib.Cookie attribute), 837
version (httplib.HTTPResponse attribute), 789
version (in module curses), 468
version (in module marshal), 285
version (in module sys), 1026
version (urllib.URLopener attribute), 772
version (uuid.UUID attribute), 813
version() (in module platform), 478
version_info (in module sys), 1026
version_string() (BaseHTTPServer.BaseHTTPRequestHandler

method), 828
vformat() (string.Formatter method), 62
videoreader (module), 1203
virtual machine, 1210

1306 Index

The Python Library Reference, Release 2.6.9

visit() (ast.NodeVisitor method), 1092
vline() (curses.window method), 467
VMSError, 58
vnarray() (in module gl), 1195
voidcmd() (ftplib.FTP method), 791
volume (zipfile.ZipInfo attribute), 321
vonmisesvariate() (in module random), 227

W
W (module), 1203
W_OK (in module os), 364
wait() (in module os), 376
wait() (multiprocessing.pool.AsyncResult method), 555
wait() (popen2.Popen3 method), 620
wait() (subprocess.Popen method), 594
wait() (threading.Condition method), 529
wait() (threading.Event method), 531
wait3() (in module os), 376
wait4() (in module os), 377
waitpid() (in module os), 376
walk() (email.message.Message method), 635
walk() (in module ast), 1092
walk() (in module compiler), 1111
walk() (in module compiler.visitor), 1117
walk() (in module os), 370
walk() (in module os.path), 254
want (doctest.Example attribute), 963
warn() (in module warnings), 1031
warn_explicit() (in module warnings), 1031
Warning, 59
warning() (in module logging), 428
warning() (logging.Logger method), 431
warning() (xml.sax.handler.ErrorHandler method), 738
warnings, 1028
warnings (module), 1028
WarningsRecorder (class in test.test_support), 990
warnoptions (in module sys), 1026
warnpy3k() (in module warnings), 1031
wasSuccessful() (unittest.TestResult method), 980
WatchedFileHandler (class in logging), 441
wave (module), 864
WCONTINUED (in module os), 377
WCOREDUMP() (in module os), 377
WeakKeyDictionary (class in weakref), 176
weakref (module), 175
WeakValueDictionary (class in weakref), 176
webbrowser (module), 751
weekday() (datetime.date method), 130
weekday() (datetime.datetime method), 136
weekday() (in module calendar), 150
weekheader() (in module calendar), 150
weibullvariate() (in module random), 227
WEXITSTATUS() (in module os), 377

wfile (BaseHTTPServer.BaseHTTPRequestHandler at-
tribute), 826

what() (in module imghdr), 867
what() (in module sndhdr), 868
whathdr() (in module sndhdr), 868
whichdb (module), 286
whichdb() (in module whichdb), 287
while

statement, 27
whitespace (in module string), 62
whitespace (shlex.shlex attribute), 895
whitespace_split (shlex.shlex attribute), 895
whseed() (in module random), 228
WichmannHill (class in random), 228
width (textwrap.TextWrapper attribute), 105
width() (in module turtle), 922
WIFCONTINUED() (in module os), 377
WIFEXITED() (in module os), 377
WIFSIGNALED() (in module os), 377
WIFSTOPPED() (in module os), 377
Wimp$ScrapDir, 264
win32_ver() (in module platform), 478
WinDLL (class in ctypes), 505
window manager (widgets), 904
window() (curses.panel.Panel method), 476
Window() (in module FrameWork), 1164
window_height() (in module turtle), 931, 936
window_width() (in module turtle), 931, 936
windowbounds() (in module FrameWork), 1164
Windows ini file, 336
WindowsError, 58
WinError() (in module ctypes), 512
WINFUNCTYPE() (in module ctypes), 507
WinSock, 520
winsound (module), 1137
winver (in module sys), 1026
WITH_CLEANUP (opcode), 1105
WMAvailable() (in module MacOS), 1159
WNOHANG (in module os), 377
wordchars (shlex.shlex attribute), 895
World Wide Web, 341, 751, 769, 815
wrap() (in module textwrap), 104
wrap() (textwrap.TextWrapper method), 106
wrap_socket() (in module ssl), 609
wrapper() (in module curses.wrapper), 473
wraps() (in module functools), 242
writable() (asyncore.dispatcher method), 623
writable() (io.IOBase method), 383
write() (array.array method), 167
write() (bz2.BZ2File method), 316
write() (code.InteractiveInterpreter method), 1056
write() (codecs.StreamWriter method), 112
write() (ConfigParser.RawConfigParser method), 339
write() (email.generator.Generator method), 638

Index 1307

The Python Library Reference, Release 2.6.9

write() (file method), 49
write() (in module imgfile), 1197
write() (in module mmap), 586
write() (in module os), 362
write() (in module turtle), 926
write() (io.BufferedIOBase method), 384
write() (io.BufferedWriter method), 385
write() (io.FileIO method), 384
write() (io.RawIOBase method), 383
write() (io.TextIOBase method), 386
write() (ossaudiodev.oss_audio_device method), 870
write() (ssl.SSLSocket method), 612
write() (telnetlib.Telnet method), 811
write() (xml.etree.ElementTree.ElementTree method),

747
write() (zipfile.ZipFile method), 319
write_byte() (in module mmap), 586
write_docstringdict() (in module turtle), 940
write_history_file() (in module readline), 587
write_results() (trace.CoverageResults method), 1015
writeall() (ossaudiodev.oss_audio_device method), 870
writeframes() (aifc.aifc method), 861
writeframes() (sunau.AU_write method), 863
writeframes() (wave.Wave_write method), 865
writeframesraw() (aifc.aifc method), 861
writeframesraw() (sunau.AU_write method), 863
writeframesraw() (wave.Wave_write method), 865
writelines() (bz2.BZ2File method), 316
writelines() (codecs.StreamWriter method), 112
writelines() (file method), 49
writelines() (io.IOBase method), 383
writePlist() (in module plistlib), 346
writePlistToResource() (in module plistlib), 346
writePlistToString() (in module plistlib), 346
writepy() (zipfile.PyZipFile method), 320
writer (formatter.formatter attribute), 1119
writer() (in module csv), 330
writerow() (csv.csvwriter method), 333
writerows() (csv.csvwriter method), 333
writestr() (zipfile.ZipFile method), 319
writexml() (xml.dom.minidom.Node method), 729
WrongDocumentErr, 727
ws_comma (2to3 fixer), 986
wsgi_file_wrapper (wsgiref.handlers.BaseHandler

attribute), 768
wsgi_multiprocess (wsgiref.handlers.BaseHandler

attribute), 767
wsgi_multithread (wsgiref.handlers.BaseHandler at-

tribute), 766
wsgi_run_once (wsgiref.handlers.BaseHandler attribute),

767
wsgiref (module), 760
wsgiref.handlers (module), 765
wsgiref.headers (module), 762

wsgiref.simple_server (module), 763
wsgiref.util (module), 760
wsgiref.validate (module), 764
WSGIRequestHandler (class in wsgiref.simple_server),

764
WSGIServer (class in wsgiref.simple_server), 764
WSTOPSIG() (in module os), 378
wstring_at() (in module ctypes), 512
WTERMSIG() (in module os), 378
WUNTRACED (in module os), 377
WWW, 341, 751, 769, 815

server, 753, 826

X
X (in module re), 78
X509 certificate, 613
X_OK (in module os), 364
xatom() (imaplib.IMAP4 method), 800
xcor() (in module turtle), 920
XDR, 272, 343
xdrlib (module), 343
xgtitle() (nntplib.NNTP method), 804
xhdr() (nntplib.NNTP method), 803
XHTML, 703
XHTML_NAMESPACE (in module xml.dom), 719
XML() (in module xml.etree.ElementTree), 745
xml.dom (module), 718
xml.dom.minidom (module), 728
xml.dom.pulldom (module), 732
xml.etree.ElementTree (module), 743
xml.parsers.expat (module), 710
xml.sax (module), 733
xml.sax.handler (module), 734
xml.sax.saxutils (module), 739
xml.sax.xmlreader (module), 739
XML_NAMESPACE (in module xml.dom), 719
xmlcharrefreplace_errors() (in module codecs), 108
XmlDeclHandler() (xml.parsers.expat.xmlparser

method), 713
XMLFilterBase (class in xml.sax.saxutils), 739
XMLGenerator (class in xml.sax.saxutils), 739
XMLID() (in module xml.etree.ElementTree), 745
XMLNS_NAMESPACE (in module xml.dom), 719
XMLParserType (in module xml.parsers.expat), 710
XMLReader (class in xml.sax.xmlreader), 739
xmlrpclib (module), 843
XMLTreeBuilder (class in xml.etree.ElementTree), 748
xor() (in module operator), 245
xover() (nntplib.NNTP method), 804
xpath() (nntplib.NNTP method), 804
xrange

built-in function, 182
object, 32, 40

xrange (2to3 fixer), 986

1308 Index

The Python Library Reference, Release 2.6.9

xrange() (built-in function), 20
XRangeType (in module types), 182
xreadlines (2to3 fixer), 986
xreadlines() (bz2.BZ2File method), 315
xreadlines() (file method), 48

Y
Y2K, 387
ycor() (in module turtle), 920
year (datetime.date attribute), 129
year (datetime.datetime attribute), 133
Year 2000, 387
Year 2038, 387
yeardatescalendar() (calendar.Calendar method), 149
yeardays2calendar() (calendar.Calendar method), 149
yeardayscalendar() (calendar.Calendar method), 149
YESEXPR (in module locale), 886
YIELD_VALUE (opcode), 1105
yiq_to_rgb() (in module colorsys), 867

Z
Zen of Python, 1210
ZeroDivisionError, 59
zfill() (in module string), 72
zfill() (str method), 38
zip (2to3 fixer), 986
zip() (built-in function), 20
zip() (in module future_builtins), 1028
ZIP_DEFLATED (in module zipfile), 317
ZIP_STORED (in module zipfile), 317
ZipFile (class in zipfile), 317, 318
zipfile (module), 317
zipimport (module), 1072
zipimporter (class in zipimport), 1072
ZipImportError, 1072
ZipInfo (class in zipfile), 317
zlib (module), 311

Index 1309

	Introduction
	Built-in Functions
	Non-essential Built-in Functions
	Built-in Constants
	Constants added by the site module

	Built-in Types
	Truth Value Testing
	Boolean Operations — and, or, not
	Comparisons
	Numeric Types — int, float, long, complex
	Iterator Types
	Sequence Types — str, unicode, list, tuple, buffer, xrange
	Set Types — set, frozenset
	Mapping Types — dict
	File Objects
	Context Manager Types
	Other Built-in Types
	Special Attributes

	Built-in Exceptions
	Exception hierarchy

	String Services
	string — Common string operations
	re — Regular expression operations
	struct — Interpret strings as packed binary data
	difflib — Helpers for computing deltas
	StringIO — Read and write strings as files
	cStringIO — Faster version of StringIO
	textwrap — Text wrapping and filling
	codecs — Codec registry and base classes
	unicodedata — Unicode Database
	stringprep — Internet String Preparation
	fpformat — Floating point conversions

	Data Types
	datetime — Basic date and time types
	calendar — General calendar-related functions
	collections — High-performance container datatypes
	heapq — Heap queue algorithm
	bisect — Array bisection algorithm
	array — Efficient arrays of numeric values
	sets — Unordered collections of unique elements
	sched — Event scheduler
	mutex — Mutual exclusion support
	queue — A synchronized queue class
	weakref — Weak references
	UserDict — Class wrapper for dictionary objects
	UserList — Class wrapper for list objects
	UserString — Class wrapper for string objects
	types — Names for built-in types
	new — Creation of runtime internal objects
	copy — Shallow and deep copy operations
	pprint — Data pretty printer
	repr — Alternate repr() implementation

	Numeric and Mathematical Modules
	numbers — Numeric abstract base classes
	math — Mathematical functions
	cmath — Mathematical functions for complex numbers
	decimal — Decimal fixed point and floating point arithmetic
	fractions — Rational numbers
	random — Generate pseudo-random numbers
	itertools — Functions creating iterators for efficient looping
	functools — Higher order functions and operations on callable objects
	operator — Standard operators as functions

	File and Directory Access
	os.path — Common pathname manipulations
	fileinput — Iterate over lines from multiple input streams
	stat — Interpreting stat() results
	statvfs — Constants used with os.statvfs()
	filecmp — File and Directory Comparisons
	tempfile — Generate temporary files and directories
	glob — Unix style pathname pattern expansion
	fnmatch — Unix filename pattern matching
	linecache — Random access to text lines
	shutil — High-level file operations
	dircache — Cached directory listings
	macpath — Mac OS 9 path manipulation functions

	Data Persistence
	pickle — Python object serialization
	cPickle — A faster pickle
	copy_reg — Register pickle support functions
	shelve — Python object persistence
	marshal — Internal Python object serialization
	anydbm — Generic access to DBM-style databases
	whichdb — Guess which DBM module created a database
	dbm — Simple ``database'' interface
	gdbm — GNU's reinterpretation of dbm
	dbhash — DBM-style interface to the BSD database library
	bsddb — Interface to Berkeley DB library
	dumbdbm — Portable DBM implementation
	sqlite3 — DB-API 2.0 interface for SQLite databases

	Data Compression and Archiving
	zlib — Compression compatible with gzip
	gzip — Support for gzip files
	bz2 — Compression compatible with bzip2
	zipfile — Work with ZIP archives
	tarfile — Read and write tar archive files

	File Formats
	csv — CSV File Reading and Writing
	ConfigParser — Configuration file parser
	robotparser — Parser for robots.txt
	netrc — netrc file processing
	xdrlib — Encode and decode XDR data
	plistlib — Generate and parse Mac OS X .plist files

	Cryptographic Services
	hashlib — Secure hashes and message digests
	hmac — Keyed-Hashing for Message Authentication
	md5 — MD5 message digest algorithm
	sha — SHA-1 message digest algorithm

	Generic Operating System Services
	os — Miscellaneous operating system interfaces
	io — Core tools for working with streams
	time — Time access and conversions
	optparse — More powerful command line option parser
	getopt — Parser for command line options
	logging — Logging facility for Python
	getpass — Portable password input
	curses — Terminal handling for character-cell displays
	curses.textpad — Text input widget for curses programs
	curses.wrapper — Terminal handler for curses programs
	curses.ascii — Utilities for ASCII characters
	curses.panel — A panel stack extension for curses
	platform — Access to underlying platform's identifying data
	errno — Standard errno system symbols
	ctypes — A foreign function library for Python

	Optional Operating System Services
	select — Waiting for I/O completion
	threading — Higher-level threading interface
	thread — Multiple threads of control
	dummy_threading — Drop-in replacement for the threading module
	dummy_thread — Drop-in replacement for the thread module
	multiprocessing — Process-based ``threading'' interface
	mmap — Memory-mapped file support
	readline — GNU readline interface
	rlcompleter — Completion function for GNU readline

	Interprocess Communication and Networking
	subprocess — Subprocess management
	socket — Low-level networking interface
	ssl — SSL wrapper for socket objects
	signal — Set handlers for asynchronous events
	popen2 — Subprocesses with accessible I/O streams
	asyncore — Asynchronous socket handler
	asynchat — Asynchronous socket command/response handler

	Internet Data Handling
	email — An email and MIME handling package
	json — JSON encoder and decoder
	mailcap — Mailcap file handling
	mailbox — Manipulate mailboxes in various formats
	mhlib — Access to MH mailboxes
	mimetools — Tools for parsing MIME messages
	mimetypes — Map filenames to MIME types
	MimeWriter — Generic MIME file writer
	mimify — MIME processing of mail messages
	multifile — Support for files containing distinct parts
	rfc822 — Parse RFC 2822 mail headers
	base64 — RFC 3548: Base16, Base32, Base64 Data Encodings
	binhex — Encode and decode binhex4 files
	binascii — Convert between binary and ASCII
	quopri — Encode and decode MIME quoted-printable data
	uu — Encode and decode uuencode files

	Structured Markup Processing Tools
	HTMLParser — Simple HTML and XHTML parser
	sgmllib — Simple SGML parser
	htmllib — A parser for HTML documents
	htmlentitydefs — Definitions of HTML general entities
	xml.parsers.expat — Fast XML parsing using Expat
	xml.dom — The Document Object Model API
	xml.dom.minidom — Lightweight DOM implementation
	xml.dom.pulldom — Support for building partial DOM trees
	xml.sax — Support for SAX2 parsers
	xml.sax.handler — Base classes for SAX handlers
	xml.sax.saxutils — SAX Utilities
	xml.sax.xmlreader — Interface for XML parsers
	xml.etree.ElementTree — The ElementTree XML API

	Internet Protocols and Support
	webbrowser — Convenient Web-browser controller
	cgi — Common Gateway Interface support
	cgitb — Traceback manager for CGI scripts
	wsgiref — WSGI Utilities and Reference Implementation
	urllib — Open arbitrary resources by URL
	urllib2 — extensible library for opening URLs
	httplib — HTTP protocol client
	ftplib — FTP protocol client
	poplib — POP3 protocol client
	imaplib — IMAP4 protocol client
	nntplib — NNTP protocol client
	smtplib — SMTP protocol client
	smtpd — SMTP Server
	telnetlib — Telnet client
	uuid — UUID objects according to RFC 4122
	urlparse — Parse URLs into components
	SocketServer — A framework for network servers
	BaseHTTPServer — Basic HTTP server
	SimpleHTTPServer — Simple HTTP request handler
	CGIHTTPServer — CGI-capable HTTP request handler
	cookielib — Cookie handling for HTTP clients
	Cookie — HTTP state management
	xmlrpclib — XML-RPC client access
	SimpleXMLRPCServer — Basic XML-RPC server
	DocXMLRPCServer — Self-documenting XML-RPC server

	Multimedia Services
	audioop — Manipulate raw audio data
	imageop — Manipulate raw image data
	aifc — Read and write AIFF and AIFC files
	sunau — Read and write Sun AU files
	wave — Read and write WAV files
	chunk — Read IFF chunked data
	colorsys — Conversions between color systems
	imghdr — Determine the type of an image
	sndhdr — Determine type of sound file
	ossaudiodev — Access to OSS-compatible audio devices

	Internationalization
	gettext — Multilingual internationalization services
	locale — Internationalization services

	Program Frameworks
	cmd — Support for line-oriented command interpreters
	shlex — Simple lexical analysis

	Graphical User Interfaces with Tk
	Tkinter — Python interface to Tcl/Tk
	Tix — Extension widgets for Tk
	ScrolledText — Scrolled Text Widget
	turtle — Turtle graphics for Tk
	IDLE
	Other Graphical User Interface Packages

	Development Tools
	pydoc — Documentation generator and online help system
	doctest — Test interactive Python examples
	unittest — Unit testing framework
	2to3 - Automated Python 2 to 3 code translation
	test — Regression tests package for Python
	test.test_support — Utility functions for tests

	Debugging and Profiling
	bdb — Debugger framework
	pdb — The Python Debugger
	Debugger Commands
	The Python Profilers
	hotshot — High performance logging profiler
	timeit — Measure execution time of small code snippets
	trace — Trace or track Python statement execution

	Python Runtime Services
	sys — System-specific parameters and functions
	__builtin__ — Built-in objects
	future_builtins — Python 3 builtins
	__main__ — Top-level script environment
	warnings — Warning control
	contextlib — Utilities for with-statement contexts
	abc — Abstract Base Classes
	atexit — Exit handlers
	traceback — Print or retrieve a stack traceback
	__future__ — Future statement definitions
	gc — Garbage Collector interface
	inspect — Inspect live objects
	site — Site-specific configuration hook
	user — User-specific configuration hook
	fpectl — Floating point exception control
	distutils — Building and installing Python modules

	Custom Python Interpreters
	code — Interpreter base classes
	codeop — Compile Python code

	Restricted Execution
	rexec — Restricted execution framework
	Bastion — Restricting access to objects

	Importing Modules
	imp — Access the import internals
	imputil — Import utilities
	zipimport — Import modules from Zip archives
	pkgutil — Package extension utility
	modulefinder — Find modules used by a script
	runpy — Locating and executing Python modules

	Python Language Services
	parser — Access Python parse trees
	Abstract Syntax Trees
	symtable — Access to the compiler's symbol tables
	symbol — Constants used with Python parse trees
	token — Constants used with Python parse trees
	keyword — Testing for Python keywords
	tokenize — Tokenizer for Python source
	tabnanny — Detection of ambiguous indentation
	pyclbr — Python class browser support
	py_compile — Compile Python source files
	compileall — Byte-compile Python libraries
	dis — Disassembler for Python bytecode
	pickletools — Tools for pickle developers

	Python compiler package
	The basic interface
	Limitations
	Python Abstract Syntax
	Using Visitors to Walk ASTs
	Bytecode Generation

	Miscellaneous Services
	formatter — Generic output formatting

	MS Windows Specific Services
	msilib — Read and write Microsoft Installer files
	msvcrt – Useful routines from the MS VC++ runtime
	_winreg – Windows registry access
	winsound — Sound-playing interface for Windows

	Unix Specific Services
	posix — The most common POSIX system calls
	pwd — The password database
	spwd — The shadow password database
	grp — The group database
	crypt — Function to check Unix passwords
	dl — Call C functions in shared objects
	termios — POSIX style tty control
	tty — Terminal control functions
	pty — Pseudo-terminal utilities
	fcntl — The fcntl() and ioctl() system calls
	pipes — Interface to shell pipelines
	posixfile — File-like objects with locking support
	resource — Resource usage information
	nis — Interface to Sun's NIS (Yellow Pages)
	syslog — Unix syslog library routines
	commands — Utilities for running commands

	Mac OS X specific services
	ic — Access to the Mac OS X Internet Config
	MacOS — Access to Mac OS interpreter features
	macostools — Convenience routines for file manipulation
	findertools — The finder`s Apple Events interface
	EasyDialogs — Basic Macintosh dialogs
	FrameWork — Interactive application framework
	autoGIL — Global Interpreter Lock handling in event loops
	Mac OS Toolbox Modules
	ColorPicker — Color selection dialog

	MacPython OSA Modules
	gensuitemodule — Generate OSA stub packages
	aetools — OSA client support
	aepack — Conversion between Python variables and AppleEvent data containers
	aetypes — AppleEvent objects
	MiniAEFrame — Open Scripting Architecture server support

	SGI IRIX Specific Services
	al — Audio functions on the SGI
	AL — Constants used with the al module
	cd — CD-ROM access on SGI systems
	fl — FORMS library for graphical user interfaces
	FL — Constants used with the fl module
	flp — Functions for loading stored FORMS designs
	fm — Font Manager interface
	gl — Graphics Library interface
	DEVICE — Constants used with the gl module
	GL — Constants used with the gl module
	imgfile — Support for SGI imglib files
	jpeg — Read and write JPEG files

	SunOS Specific Services
	sunaudiodev — Access to Sun audio hardware
	SUNAUDIODEV — Constants used with sunaudiodev

	Undocumented Modules
	Miscellaneous useful utilities
	Platform specific modules
	Multimedia
	Undocumented Mac OS modules
	Obsolete
	SGI-specific Extension modules

	Glossary
	Bibliography
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Module Index
	Index

