POV-Ray Reference

POV-Team

for POV-Ray Version 3.6.1

Contents

1 Introduction 1
1.1 Notation and Basic ASSumptions 1
1.2 Command-line Options e 2
1.2.1 AnimationOptions L 3
1.2.2 General OutputOptions 6
1.2.3 Display Output Options 8
124 FileOutputOptions 11
1.25 SceneParsingOptions e 14
1.2.6 Shell-outto Operating System 16
1.27 TextOutput o e 20
1.2.8 Tracing Options o o e 23
2 Scene Description Language 29
2.1 Language BasiCs e e 29
2.1.1 Identifiersand Keywords 30
2.1.2 COMMENTS o e e e 34
2.1.3 FloatEXpressions e e e 35
2.1.4 VeCtorEXpressions i i i e e e 43
2.1.5 SpecifyingColors 48
2.1.6 User-Defined Functions e 53
217 SUINGS . . . e 58
2.1.8 Arrayldentifiers 60
2.1.9 Splineldentifiers 62
2.2 Language Directives 64
2.2.1 Include Files and the #include Directive 64
2.2.2 The #declare and #local Directives oL 65
2.23 Filel/ODirectives e 68
2.2.4 The#defaultDirective 70
2.25 The#versionDirective 71
2.2.6 Conditional Directives 72
2.2.7 UserMessageDirectives 75
2.2.8 UserDeflnedMacros i 76
3 Scene Settings 81
3.1 Camera e e e 81
3.1.1 PlacingtheCamera e 82
3.1.2 TypesofProjection 86
3.1.3 FocalBlur. e 88
3.1.4 CameraRay Perturbation 89
3.1.5 Cameraldentifiers 89
3.2 AtmosphericEffects 90

iv CONTENTS
3.21 AtmosphericMedia. 90
3.2.2 Background e 90
323 FOQ . . . 91
3.24 SkySphere 92
3.25 Rainbow 93

3.3 Global Settings 94
3.3.1 ADCBailout e 95
3.3.2 AmbientLight 95
3.3.3 Assumedsamma. e e 96
334 HEGrayl6. 98
3.3.5 IridWavelength 98
3.3.6 Charset e 99
3.3.7 MaxTracelevel e 99
3.3.8 MaxIntersections 100
3.3.9 NumberOf Waves e 100
3.3.10 Noisegenerator. 100
3.3.11 RadiosityBasiCs 100

3.4 Radiosity 101
3.4.1 HowRadiosity Works 101
3.4.2 Adjusting Radiosity 101
3.43 TipsonRadiosity 104

4 Objects 107

4.1 Finite Solid Primitives 108
4.1.1 Blob. . . . e e 108
412 BOX . o i e e 110
4.1.3 CONe . . . e 111
4.1.4 Cylinder 112
4.15 HeightField 112
41.6 JuliaFractal 115
4.1.7 Lathe e 117
4.1.8 Prism . ..o e 119
4.1.9 Sphere e 121
4.1.10 Sphere SWeep i 121
4.1.11 Superquadric Ellipsoid 122
4.1.12 Surface of Revolution L 123
4.1.13 Text e e e 125
4114 TOMUS . . o e e e e e e 126

4.2 Finite Patch Primitives e 126
421 BicubicPatch e 127
422 DISC . . v v o 128
423 Mesh 129
424 Mesh2. . . . e 130
425 Polygon e e 131
4.2.6 Triangle and Smooth Triangle 133

4.3 Infinite Solid Primitives 133
431 Plane 134
4.3.2 Poly,CubicandQuartic 134
4.3.3 Quadric 137

4.4 Isosurface Object e 137

45 ParametricObject L e 139

4.6 Constructive Solid Geometry 140

46.1 InsideandOutside e e 141

CONTENTS v

4.6.2 Union e e 141
4.6.3 Intersection 143
4.6.4 Difference 143
4.6.5 Merge 144
4.7 LightSources e 145
4.7.1 PointLights e 146
472 Spotlights 146
4.7.3 CylindricalLights e 149
4.7.4 ParallelLights 149
475 Arealights e 150
4.7.6 ShadowlessLights e 153
4.7.7 Lookslike 153
4.7.8 Projectedhrough 153
479 LightFading e 154
4.7.10 Atmospheric Media Interaction L oL 155
4.7.11 Atmospheric Attenuation 155
4.8 LightGroups i e e 155
4.9 ObjectModifiers e 156
49.1 ClippedBy 157
4.9.2 BoundedBy e 158
4.9.3 Material 159
4.9.4 INVEISE e e 159
495 Hollow 160
49.6 NaShadow e 160
4.9.7 Nalmage, NaReflection 160
4.9.8 Doublellluminate 161
4.9.9 SWUMo 161
5 Textures 163
5.1 Pigment o e 165
5.1.1 Solid Color Pigments 166
5.1.2 ColorListPigments 166
5.1.3 ColorMaps e 167
5.1.4 Pigment Maps and PigmentLists 168
515 ImageMaps. e e e e 169
5.1.6 QuickColor. e e 171
5.2 Normal e 172
5.21 SlopeMaps e e e 173
5.2.2 NormalMapsand NormalLists 176
523 BumpMaps e 177
5.2.4 Scalingnormals. 178
5.3 Finish 179
5.3.1 Ambient e 180
5.3.2 Diffuse Reflectionltems 180
5.3.3 Highlights. 181
5.3.4 SpecularReflection 183
5.3.5 Conserve Energy forReflection 184
5.3.6 Iridescence e 184
54 Halo e 185
5.5 Patterned Textures 185
551 Texture Maps 0 e e 186
552 Tiles. . . . 187

5,53 MaterialMaps e e 187

vi

CONTENTS

5.6 Layered TeXUrES o o i i e e 190
57 UVMappinNg o e e e e e e e 191
5.7.1 Supported Objects 191
5.7.2 UVVECIOIS e e e e e 192
5.8 Triangle Texture Interpolation 193
5.9 Interior TEXIUre o e e e e e 193
5.10 Cutaway TEXIUIES o e e e e e e e e e e 194
5.11 PAtterns e 194
5.11.1 Agate 195
511.2 AVErage e 195
5.11.3 Boxed e e 196
5114 BOZO o o e 196
5.11.5 Brick o e 197
5.11.6 BUMPS e 198
5.11.7 Cells e 198
5.11.8 Checker e 198
5.11.9 Crackle Patterns 199
5.11.10Cylindrical 201
5.11.11DensityFile 201
BALA2DENIS . . . o e e 202
BA1A3FACetS o e e 202
5.11. 14 Fractal Patterns 202
5.11.15Functionaspattern e 204
51116 FunctionImage e e 205
B.A1.A7Gradient. e e e 206
5.11.18Granite e 207
511.19HEXagon o o 207
5.11.20Image Pattern e e e 208
B.11.21Leopard e e 209
5.11.22Marble e 209
5.11.230bject Pattern. 209
5.11.240N0I0N e e e e 210
5.11.25PigmentPattern e e e 210
5.11.26Planar e 211
5.11.27Quilted e 211
5.11.28Radial e 213
B.11.29RIpples 213
5.11.30Slope 214
5.11.31Spherical e 215
5.11.32Spirall e 215
5.11.33Spiral2 e 216
5.11.34Spotted 216
5.11.35WaVES o 216
5.11.36Wo0d 217
5.11.37Wrinkles e 217
5.12 Pattern Modifiers 217
5.12.1 Transforming Patterns 219
5.12.2 FrequencyandPhase 219
5.12.3 Waveforms e 220
5.12.4 Noise Generators o i i e e e 221
5.12.5 Turbulence e 221
5.12.6 Warps 221

5.12.7 Bitmap Modifiers 229

CONTENTS vii

6

Interior & Media & Photons 233
6.1 Interior e 233
6.1.1 Why are Interior and Media Necessary? 234
6.1.2 Emptyand SolidObjects 234
6.1.3 Scaling objectswithaninterior. 235
6.1.4 Refraction. e 236
6.1.5 DISpersion 237
6.1.6 Attenuation 238
6.1.7 Simulated Caustics e 238
6.1.8 Object-Media 238
6.2 Media 239
6.2.1 MediaTypes o e 240
6.2.2 Sampling Parameters & Methods 243
6.2.3 Density e 244
6.3 Photons e 247
6.3.1 OVErVIEW e e e 247
6.3.2 Using Photon MappinginYourScene, 247
6.3.3 Photons FAQ 252
6.3.4 PhotonTips 254
6.3.5 Advanced Techniques 254
Include Files 257
7.1 arrayS.dnC e e e e 257
7.2 charsinC e 258
7.3 COIOrSNC e e e 259
7.3.1 Predefinedcolors 259
7.3.2 Colormacros e e 259
T4 CONSES.NC e e 260
7.4.1 VectorconstantS e 260
7.4.2 Maptypeconstants e 264
7.4.3 Interpolationtypeconstants 264
7.4.4 Fogtypeconstants e e e 264
7.4.5 Focalblurhexgridconstants 264
7.4.6 1ORS e e e 264
7.4.7 DispersionamountS e e e e e e e 265
7.4.8 Scattering mediatypeconstants L L oo 265
7.5 debug.inc ... 265
7.6 finishinc. 266
7.7 functions.inC. e 266
7.7.1 CommonParameters e e 267
7.7.2 Internal Functions 268
7.7.3 Predefinedfunctions 280
7.8 glass.nc,glassld.inc 281
7.8.1 Glasscolors (withtransparency) i i 282
7.8.2 Glass colors (without transparency, for faddéor) 282
7.8.3 Glassfinishes 282
7.84 Glassinteriors 282
7.8.5 Glassinterior macros e e 282
7.8.6 glasldinc 282
7.9 mathinc 284
7.9.1 Floatfunctionsand macros 284
7.9.2 \Vectorfunctionsandmacros 286

7.9.3 VectorAnalysis e e 288

viii CONTENTS
7.10 metals.inc, golds.inc e 290
7.10.1 metals.nC e e e e 290
7.10.2 golds.inc 291
7.11 rand.inC e e e e 291
7.11.1 FlatDistributions e 291
7.11.2 Other Distributions 292
7.12 shapes.inc, shapekl.inc, shapes2.inc, shapesqg.inc 295
7.12.1 sShapes.inC e e e e e 295
7.12.2 shapesld.inc 301
7.12.3 shapes2.nC 302
7.12.4 shapesq.nC e e e 302
7.13 skies.inc, stars.inC e e e e 304
7.13.1 SKIES.INC o e e 304
7.13.2 StarS.NC o e e e e 305
7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc L L. 305
7.14.1 stonesSlinC e e e 306
7.14.2 StONES2.NC o i e e e e 310
7.15 StAiNC.INC e e e e e 310
7.16 StringS.NC L 310
717 teXtUreS.nC e e e 311
TA7.1 SONES . . . o v o e e 311
T.17.2 SKIES . . . o o e e e 312
7.17.3 WOOAS o e e 312
TA7.4 GlasS o o e 313
7175 Metals. e 314
7.17.6 Specialtextures e 315
7.17.7 Texture and pattern macroS o v i i e e e e 315
7.18 transforms.ine e e e e e e e 316
7.19 woodmaps.inC, woodsS.iNC e e e e 318
7.19.1 woodmaps.inC e e e e 319
7.19.2 WOOdS.INC e e e e e 319
7.20 Otherfiles e 320
7.20.1 10g0.INC e e 320
7.20.2 raddefinc e 320
7.20.3 SCIEEN.NC o v e e e e e e e e e e 321
7.20.4 stdcam.inC e e e e 322
7.20.5 stageline e 322
7.20.6 SUNPOS.INC v ot e 322
7.20.7 fontfiles (*.tth) 323
7.20.8 colormapfiles(*map) 323
7.20.9 image files (*.png, *.pot, *df3) 324
8 Quick Reference 325
8.1 QuickReference Contents e 326
8.2 TheScCene e e e 326
8.3 Language BasiCs 327
8.3.1 Floats e 327
8.3.2 VECIOrS e e e 328
8.3.3 Colors. e 329
8.3.4 Userdefined Functions e 329
8.3.5 StiNgs e 331
8.3.6 AImmays e 331

8.3.7 Splines e e e 332

CONTENTS iX

8.4

8.5
8.6
8.7

8.8

8.9

8.10

8.11

8.12

8.13

Language Directives 332
8.4.1 FilelInclusion e 333
8.4.2 Identifier Declaration 333
8.4.3 Filelnput/Output 333
8.4.4 DefaultTexture e 334
8.45 \Versionldentfier e 334
8.4.6 Control Flow Directives e 334
8.47 Message Streams 335
8.4.8 MaCro e e e 335
8.4.9 EmbeddedDirectives e e 335
Transformations e e 336
Camera e e e e 336
Lights o 336
8.7.1 Lightgroup 337
Objects e 337
8.8.1 FiniteSolidObjects 338
8.8.2 Finite PatchObjects 340
8.8.3 Infinite Solid Objects 342
8.8.4 Isosurface e e 343
8.8.5 Parametric e e e 344
8.8.6 CSG e 344
Object Modifiers e 345
8.9.1 UVMappINg 345
8.9.2 Material e e 346
8.9.3 Interior e e e 346
8.9.4 Interior Texture e e e e 346
Texture e e e e e 346
8.10.1 PlainTexture e e e 346
8.10.2 Layered Texture i i i 347
8.10.3 Patterned Texture e e e e 347
8.10.4 Pigment e e e 348
8.10.5 Normal e e 349
8.10.6 Finish e 350
8.10.7 Pattern e e 350
8.10.8 Pattern Modifiers e 352
Media e e e 353
Atmospheric Effects 354
8.12.1 Background e e e 354
8.12.2 FOQ . . . o o e 354
8.12.3 Sky Sphere 355
8.12.4 Rainbow e e 355
Global Settings e 355
8.13.1 Radiosity e e 356

8.13.2 Photons e e 356

CONTENTS

Figures

11
1.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
54
5.5
5.6
5.7

6.1
6.2
6.3

Display gammatestimage. e e 9
Example of how the recursive super-samplingworks. 27
The perspective camera. 82
Thegeometryofabox. 111
The geometryofacone. e 111
The geometry ofacylinder. 112
The size and orientation of an un-scaled heightfield. 113
Relationship of pixels and triangles in a heightfield. 113
The geometry of asphere. 121
Points on a surface of revolution. 124
Major and minor radius of atorus. 126
Two overlapping objects. L 141
Theunionoftwoobjects. e 142
Theintersection of two objects. 143
The difference betweentwoobjects. 144
Merge removes innersurfaces. 144
The geometry of aspotlight. 147
Intensity multiplier curve with a fixed falloff angle of 45 degrees. 147
Intensity multiplier curve with a fixed radius angle of 45degrees. 148
Intensity multiplier curve with fixed angle and falloff angles of 30 and 60 degrees respec-
tively and different tightnessvalues. 148
Intensity multiplier curve with a negative radius angle and different tightness values. . . . 148
4x4 Area light, locationand vectors. 150
Arealight adaptive samples. e 151
Arealightfacingobject L 152
Arealight notfacingobject 152
Light fading functions for different fadingpowers. oL 154
An object clipped by anotherobject., 157
UV BOXMAaP o e e e 192
The hexagon pattern. e 207
Quilted pattern with c0O=0 and different valuesforcl. 212
Quilted pattern with c0=0.33 and different valuesforcl. 212
Quilted pattern with c0=0.67 and differentvaluesforcl. 212
Quilted pattern with cO=1 and different valuesforcl. 213
Turbulencerandomwalk. 227
The Mie haze scattering function 242
The Mie murky scattering function. Lo oL 242
The Rayleigh scattering function. 242

Xii FIGURES
6.4 The Henyey-Greenstein scattering function for different eccentricity values. 243
6.5 Reflectivecaustics. e 247
6.6 Photonsusedforlensesandcaustics 0. 248
6.7 Example of the photon autostopoption 254

Tables

2.1
2.2
2.3
2.4
2.5
2.6

4.1
4.2
4.3
4.4
4.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1

Arithmetic eXpressions 37
Relational expressions 38
Logical eXpressions 38
Conditional eXpressions e e e 38
Alllanguage directives e 64
All character escape SeqUENCES ittt e 76
Quaternion basis vector multiplicationrules, 116
Hypercomplex basis vector multiplicationrules 116
Function Keyword Maps 4-Dvalueofh 117
Cubic and quartic polynomialterms 136
Some quarticshapes 137
Primary colors e 259
Shades of gray...from 5% to 95%, in 5% increments L. 260
Misc. colors-plate 1 261
Misc. colors-plate 2 e 262
Misc. colors-plate 3 e 263
glass.inc glass colors with transparency oL 282
glass.inc glass colors without transparency forfeoler 283

Quick Reference Overview e 326

Xiv TABLES

Chapter 1

Introduction

This book provides a reference for the Persistence of Vision Ray-Tracer (POV-Ray). The documentation
applies to all platforms to which this version of POV-Ray is ported. The platform-specific documentation
is available for each platform separately.

This book is divided into these main parts:

1. This introduction together with a complete reference on “POV-Ray Options” which explains options
(set either by command line switches or by INI file keywords) that tell POV-Ray how to render the
scenes.

2. A complete reference on “Scene Description Language” in which you describe the scene.

3. A complete reference on the “Standard Include Files” that come with the POV-Ray package, to be
used in your scenes.

4. Finally, a consolidation of the POV-Ray Scene Description Language in the “Quick Reference”.

This book covers only the generic parts of the program which are common to each vE&sabrnversion
has platform-specific documentation not included here We recommend you finish reading the tuorial
book then read the platform-specific information before using this reference.

The platform-specific docs will show you how to render a sample scene and will give you detailed descrip-
tion of the platform-specific features.

The Windows version documentation is available on the POV-Ray program’s Help menu or by pressing the
F1 key while in the program.

The Mac platform documentation is available via the “Help” menu as well as for viewing using a regular
web browser. Details may be found in theo¥-ray Macos Read Me” Which contains information specific
to the Mac version of POV-Ray. It is best to read this document first.

The Unix / Linux version documentation can be found at the same place as the platform independent part.
Usually that is/usr/local/share/povray-3.?/html

1.1 Notation and Basic Assumptions

Throughout the tutorial and reference books, the consistent notation is used to mark keywords of the scene
description language, command line switches, INI file keywords and file names. All POV-Ray scene
descriptionlanguage keywords, punctuation and command-line switches are mono-spaced. For example
sphere, 4.0 * sin(45.0) OF +W640 +H480. Syntax descriptions are mono-spaced and all caps. For example

2 Introduction

required syntax items are written likenTax_1TEM, While optional syntax items are written in square braces

like [synTax_1TEM]. If ONe or more syntax items are required, the ellipsis will be appendediikex_-

ITEM.... In case zero or more syntax items are allowed, the syntax item will be written in square braces
with appended ellipsis likesyntax_1TEM. . .]. A float value or expression is written mixed case likeue -

1, while a vector value or expression is written in mixed case in angle bracesiikee_1>. Choices are
represented by a vertical bar between syntax items. For example a choice between three items would be
written astteM1 | ITEM2 | ITEM3. Further, a certain lists and arrays also require square braces as part of
the language rather than the language description. When square braces are required as part of the syntax,
they will be separated from the contained syntax item specification with a spacestlike 1.

Note: POV-Ray is a command-line program on Unix and other text-based operating systems and is menu-
driven on Windows and Macintosh platforms. Some of these operating systems use folders to store files
while others use directories. Some separate the folders and sub-folders with a slash charhat-6lash
charactery(), or others.

We have tried to make this documentation as generic as possible but sometimes we have to refer to folders,
files, options etc. and there is no way to escape it. Here are some assumptions we make...

1. Youinstalled POV-Ray in thect \povray36” directory. For MS-Dos this is probably true but for Unix
it might be “/usr/povray3”, or for Windows it might be ¢:\pProgram Files\POV-Ray for Windows
v3.6", for Mac it might be *MyHD:Apps:POV-Ray 36:”, Or you may have used some other drive or
directory. So if we tell you that “Include files are stored in thevray36\include directory,” we
assume you can translate that to something likevray36: INCLUDE” OF “C:\Program Files\POV-
Ray for Windows v3.6\include” Or whatever is appropriate for your platform, operating system and
installation.

2. POV-Ray uses INI files and/or command-line switches (if available) to choose options in all versions,
but Windows and Mac also use dialog boxes or menu choices to set options. We will describe options
assuming you are using switches or INI files when describing what the options do. We have taken
care to use the same terminology in designing menus and dialogs as we use in describing switches or
INI keywords. See your version-specific documentation on menu and dialogs.

3. Some of you are reading this using a help-reader, built-in help, web-browser, formatted printout, or
plain text file. We assume you know how to get around in which ever medium you are using. We
will say “See the chapter on "Setting POV-Ray Options* we assume you can click, scroll, browse,
flip pages or whatever to get there.

1.2 Command-line Options

The reference section describes all command line switches and INI file keywords that are used to set the
options of POV-Ray. It is supposed to be used as a reference for looking up things. It does not contain
detailed explanations on how scenes are written or how POV-Ray is used. It just explains all features, their
syntax, applications, limits, drawbacks, etc.

Options may be specified by switches or INI-style options. Almost all INI-style options have equivalent
+/ - switches and most switches have equivalent INI-style option. The following sections give a detailed
description of each POV-Ray option. It includes both the INI-style settings andtheswitches.

The notation and terminology used is described in the tables below.

Unless otherwise specifically noted, you may assume that either a plus or minus sign before a switch will
produce the same results.

1.2 Command-line Options 3

Keyword=bool Turnkeyword on if bool equals rue, yes, on or1 and Turn it off if it is
any other value.

Keyword=true Do this option iftrue, yes, on or 1 is specified.

Keyword=false Do this option iffalse, no, off or 0 is specified.

Keyword=filename Seteyword to filename where filename is any valid file name.

Note: some options prohibit the use of any of the abowvgie or false
values as a file name. They are noted in later sections.

n Any integer such as w320

n.n Any float such as inlock=3.45

0.n Any float< 1.0 even if it has no leading O

s Any string of text

Xory Any single character

path Any directory name, drive optional, no final path separat¢rdf "/,

depending on the operating system)

1.2.1 Animation Options

Internal animation loop, automatic output file name numbering and the ability to shell out to the operating
system to external utilities which can assemble individual frames into an animation, greatly improved the
animation capability. The internal animation loop is simple yet flexible. You may still use external programs
or batch files to create animations without the internal loop.

External Animation Loop

Clock=N.Nn Sets:lock float identifier to n.n
+KN.n Same aslock=n.n

Theclock=n.noption or the +xn.nswitch may be used to pass a single float value to the program for basic
animation. The value is stored in the float identifiesck. If an object had @otate <0, clock, 0> attached

then you could rotate the object by different amounts over different frames by setting 0,+k20.0... etc.

on successive renderings. It is up to the user to repeatedly invoke POV-Ray with a diffarent value

and a different output_File_Name for each frame.

Internal Animation Loop

Initial_Frame=n Sets initial frame number to n
Final Frame=Nn Sets final frame number to n
Initial_Clock=n.n Sets initial clock value to n.n
Final_Clock=N.n Sets final clock value to n.n
+KFIN Same asnitial Frame=n
+KFFN Same asinal_Frame=n

+KIN.n Same asnitial_Clock=Nn.n
+KFN.N Same asinal_Clock=N.n

The internal animation loop relieves the user of the task of generating complicated sets of batch files to
invoke POV-Ray multiple times with different settings. While the multitude of options may look intimidat-
ing, the clever set of default values means that you will probably only need to specifyntherrame=n or

the +xrrn option to specify the number of frames. All other values may remain at their defaults.

4 Introduction

Any Final Frame Setting other than -1 will trigger POV-Ray’s internal animation loop. For example
Final Frame=10 O +KFF10 causes POV-Ray to render your scene 10 times. If you specifiedt File -
Name=file.tga then each frame would be output@se01.tga, file02.tga, file03.tga etc. The number

of zero-padded digits in the file name depends upon the final frame number. For exampt® would
generatefile001.tga throughfile100.tga. The frame number may encroach upon the file name. On
MS-DOS with an eight character limityscene.pov would render tonysce001.tga throughmysce100.tga.

The defaulttnitial_Frame=1 Will probably never have to be changed. You would only change it if you were
assembling a long animation sequence in pieces. One scene might run from frame 1 to 50 and the next from
51t0 100. Thenitial Frame=nor +KrInoption is for this purpose.

Note: if you wish to render a subset of frames such as 30 through 40 out of a 1 to 100 animation, you
should not changenitial Frame Or Final Frame. INnstead you should use the subset commands described
in section "Subsets of Animation Frames".

Unlike some animation packages, the action in POV-Ray animated scenes does not depend upon the integer
frame numbers. Rather you should design your scenes based upon the float identifieBy default, the

clock value is 0.0 for the initial frame and 1.0 for the final frame. All other frames are interpolated between
these values. For example if your object is supposed to rotate one full turn over the course of the animation,
you could specifyrotate 360*clock*y. Then as clock runs from 0.0 to 1.0, the object rotates about the
y-axis from 0 to 360 degrees.

The major advantage of this system is that you can render a 10 frame animation or a 100 frame or 500 frame
or 329 frame animation yet you still get one full 360 degree rotation. Test renders of a few frames work
exactly like final renders of many frames.

In effect you define the motion over a continuous float valued parameter (the clock) and you take discrete
samples at some fixed intervals (the frames). If you take a movie or video tape of a real scene it works the
same way. An object’s actual motion depends only on time. It does not depend on the frame rate of your
camera.

Many users have already created scenes for POV-Ray 2 that expect clock values over a range other than
the default 0.0 to 1.0. For this reason we providetthi ial clock=n.nor +kIn.nandrinal Clock=n.nor
+KFn.noptions. For example to run the clock from 25.0 to 75.0 you would speeifyial_Clock=25.0 and
Final_Clock=75.0. Then the clock would be set to 25.0 for the initial frame and 75.0 for the final frame.
In-between frames would have clock values interpolated from 25.0 through 75.0 proportionally.

Users who are accustomed to using frame numbers rather than clock values could speeify1_-
Clock=1.0 andFinal Clock=10.0 andFrame Final=10 for a 10 frame animation.

For new scenes, we recommend you do not changeritieial clock Or Final Clock from their default
0.0 to 1.0 values. If you want the clock to vary over a different range than the default 0.0 to 1.0, we
recommend you handle this inside your scene file as follows...

#declare Start = 25.0;
#declare End = 75.0;
#declare My_Clock = Start+(End-Start)*clock;

Then usety_clock in the scene description. This keeps the critical values 25.0 and 75.0 in your .pov file.

Note: more details concerning the inner workings of the animation loop are in the section on shell-out
operating system commands in section “Shell-out to Operating System”.

Subsets of Animation Frames

When creating a long animation, it may be handy to render only a portion of the animation to see what it
looks like. Suppose you have 100 frames but only want to render frames 30 through 40. If yiout set -
Frame=30 andrinal_Frame=40 then the clock would vary from 0.0 to 1.0 from frames 30 through 40 rather

1.2 Command-line Options 5

Subset_Start_Frame=N Set subset starting frame to n
Subset_Start_Frame=0.n Set subset starting frame to n percent
Subset_End_Frame=N Set subset ending frame to n
Subset_End_Frame=0.n Set subset ending frame to n percent
+sr0.Nn Same aSubset Start_Frame

+EFO.N Same aSubset _End_Frame

than 0.30 through 0.40 as it should. Therefore you should leave ial Frame=1 andFinal Frame=100
and usesubset_Start Frame=30 andsubset _End_Frame=40 t0 selectively render part of the scene. POV-Ray
will then properly compute the clock values.

Usually you will specify the subset using the actual integer frame numbers however an alternate form of the
subset commands takes a float value in the rén@e:=n.nnn <=1.0 which is interpreted as a fraction of

the whole animation. For examplesubset _Start_Frame=0.333 andSubset _End_Frame=0.667 would render

the middle 1/3rd of a sequence regardless of the number of frames.

Cyclic Animation

Cyclic_Animation=bool Turn cyclic animation on/off
+KC Turn cyclic animation on
-KC Turn cyclic animation off

Many computer animation sequences are designed to be run in a continuous loop. Suppose you have an
object that rotates exactly 360 degrees over the course of your animation and youadid 360*clock*y

to do so. Both the first and last frames would be identical. Upon playback there would be a brief one frame
jerkiness. To eliminate this problem you need to adjust the clock so that the last frame does not match
the first. For example a ten frame cyclic animation should not use clock 0.0 to 1.0. It should run from
0.0to 0.9 in 0.1 increments. However if you change to 20 frames it should run from 0.0 to 0.95 in 0.05
increments. This complicates things because you would have to change the final clock value every time
you changedinal Frame. Settingcyclic_Animation=on Or using+kc will cause POV-Ray to automatically

adjust the final clock value for cyclic animation regardless of how many total frames. The default value for
this setting is off.

Field Rendering

Field_Render=bool Turn field rendering on/off
0dd_Field=bool Set odd field flag

+UF Turn field rendering on
-UF Turn field rendering off
+U0 Set odd field flag on

-U0 Set odd field flag off

Field rendering is sometimes used for animations when the animation is being output for television. TVs
only display alternate scan lines on each vertical refresh. When each frame is being displayed the fields are
interlaced to give the impression of a higher resolution image. The even scan lines make up the even field,
and are drawn first (i.e. scan lines 0, 2, 4, etc.), followed by the odd field, made up of the odd numbered
scan lines are drawn afterwards. If objects in an animation are moving quickly, their position can change
noticeably from one field to the next. As a result, it may be desirable in these cases to have POV-Ray render
alternate fields at the actual field rate (which is twice the frame rate), rather than rendering full frames at
the normal frame rate. This would save a great deal of time compared to rendering the entire animation at
twice the frame rate, and then only using half of each frame.

6 Introduction

By default, field rendering is not used. Settingeld_Render=on oOr using +ur will cause alternate frames

in an animation to be only the even or odd fields of an animation. By default, the first frame is the even field,
followed by the odd field. You can have POV-Ray render the odd field first by specifyingrield=on, or

by using the +uo switch.

1.2.2 General Output Options

Height and Width of Output

Height=n Sets screen height to n pixels
Width=n Sets screen width to n pixels
+HN Same afeight=n

+iN Same agidth=n

These switches set the height and width of the image in pixels. This specifies the image size for file output.
The preview display, if on, will generally attempt to pick a video mode to accommodate this size but the
display settings do not in any way affect the resulting file output.

Partial Output Options

Start_Column=n Set first column to n pixels
Start_Column=0.n Set first column to n percent of width
+5¢c0.n Same astart_Column

Start_Row=Nn Set first row to n pixels
Start_Row=0.n Set first row to n percent of height
+sn Same asStart_Row=Nn

+sr0.n or+s0.n Same astart_Row=0.n

End_Column=n Set last column to n pixels
End_Column=0.Nn Set last column to n percent of width
+£C0.n Same asnd_Column

End_Row=N Set last row to n pixels

End_Row=0.n Set last row to n percent of height
+EN Same asnd_Row=N

+£RO.n or+£0.n Same asnd_Row=0.n

When doing test rendering it is often convenient to define a small, rectangular sub-section of the whole
screen so you can quickly check out one area of the image.sild1€ Row, End_Row, Start_Column and
End_Column Options allow you to define the subset area to be rendered. The default values are the full size
of the image from (1,1) which is the upper left to (w,h) on the lower right where w and h are d¢hie-n

and Height=nvalues you have set.

Note: if the number specified is greater than 1 then it is interpreted as an absolute row or column number
in pixels. If it is a decimal value between 0.0 and 1.0 then it is interpreted as a percent of the total width or
height of the image.

For example: start Row=0.75 and Start_Column=0.75 starts on a row 75% down from the top at a
column 75% from the left. Thus it renders only the lower-right 25% of the image regardless of the specified
width and height.

The+sr, +ER, +SC and +Ec switches work in the same way as the corresponding INI-style settings for both
absolute settings or percentages. Early versions of POV-Ray allowed only start and end rows to be specified
with +snand +en so they are still supported in addition tesr and+Eer.

1.2 Command-line Options 7

When rendering a subset of *columns#¢/+ec) POV-Ray generates a full width image and fills the not
rendered columns with black pixels. This should not be a problem for any image reading program no matter
what file format is used.

when rendering a subset of *rows#sr/+er) POV-Ray writes the full height into the image file header
and only writed those lines into the image that are rendered. This can cause problems with image reading
programs that are not checking the file while reading and just read over the end.

if POV-Ray wrote the actual height of the partial image into the image header there would be no way to
continue the trace in a later run.

Interrupting Options

Test_Abort=bool Turn test for user abort on/off

+X Turn test abort on

-X Turn test abort off

Test_Abort_Count=n Set to test for abort every n pixels

+xN Set to test for abort every n pixels on

-xn Set to test for abort off (in future test every n pixels)

On some operating systems once you start a rendering you must let it finishesth&ort=on option or

+x switch causes POV-Ray to test the keyboard for keypress. If you have pressed a key, it will generate a
controlled user abort. Files will be flushed and closed but only data through the last full row of pixels is
saved. POV-Ray exits with an error code 2 (normally POV-Ray returns 0 for a successful run or 1 for a fatal
error).

When this option is on, the keyboard is polled on every line while parsing the scene file and on every pixel
while rendering. Because polling the keyboard can slow down a renderingietheabort _Count=n option
or +xn switch causes the test to be performed only evapixels rendered or scene lines parsed.

Resuming Options

Continue_Trace=bool Sets continued trace on/off

+C Sets continued trace on

-C Sets continued trace off

Create_Ini=file Generate an INI file to file

Create_Ini=true Generate file.ini where file is scene name.
Create_Ini=false Turn off generation of previously set file.ini
+c1file Same asreate_Ini=file

If you abort a render while it is in progress or if you usedthe row option to end the render prematurely,

yOu can use&ontinue_Trace=on OF +C option to continue the render later at the point where you left off.
This option reads in the previously generated output file, displays the partial image rendered so far, then
proceeds with the ray-tracing. This option cannot be used if file output is disableduatit to_file=off

or -F.

Thecontinue_Trace option may not work if thestart_rRow option has been set to anything but the top of the
file, depending on the output format being used. Also POV-Ray cannot continue the file once it has been
opened and saved again by any program

POV-Ray tries to figure out where to resume an interrupted trace by reading any previously generated data
in the specified output file. All file formats contain the image size, so this will override any image size
settings specified. Some file formats (namely TGA and PNG) also store information about where the file

8 Introduction

started (i. e. +scnand +srn options), alpha outputua, and bit-depthtrnn, which will override these
settings. It is up to the user to make sure that all other options are set the same as the original render.

Thecreate_Ini option or+G1 switch provides an easy way to create an INI file with all of the rendering
options, so you can re-run files with the same options, or ensure you have all the same options when
resuming. This option creates an INI file with every option set at the value used for that rendering. This
includes default values which you have not specified. For example if you run POV-Ray with...

POVRAY +Isimple.pov MYOPTS +GIrerun.ini MOREOPTS

POV-Ray will create a file callederun.ini with all of the options used to generate this scene. The file is
not written until all options have been processed. This means that in the above example, the file will include
options from bothnyopts.ini and moreopts.ini despite the fact that thest switch is specified between
them. You may now re-run the scene with...

POVRAY RERUN
or resume an interrupted trace with
POVRAY RERUN +C

If you add other switches with the:run. ini reference, they will be included in future re-runs because the
file is re-written every time you use it.

Thecreate_Tni option is also useful for documenting how a scene was rendered. If you rengetol .
pov With Create_Ini=on then it will create a filevaycool.ini that you could distribute along with your
scene file so other users can exactly re-create your image.

1.2.3 Display Output Options

Display Hardware Settings

Display=bool Turns graphic display on/off

+D Turns graphic display on

-D Turns graphic display off

Video_Mode=X Set video mode to x; does not affect on/off
+DX Set display on; Set mode to x

-DX Set display off; but for future use mode x
Palette=y Set display palette to y; does not affect on/off
+DXY Set display on; Set mode x; Set palette y
-DXY Set display off; use mode x, palette y in future
Display_Gamma=N.n Sets the display gamma to n.n

Thepisplay=on or +b switch will turn on the graphics display of the image while it is being rendered. Even
on some non-graphics systems, POV-Ray may display an 80 by 24 chatA&€tl-Art” version of your
image. Where available, the display may be full, 24-bit true color. Settiagiay=0ff or using the-p
switch will turn off the graphics display which is the default.

On the Windows platform, the defaultissplay=on. Turning display off does not, of course, turn off the
actual video display. Instead, POV-Ray will not open the output window that it normally shows a render in.

Thevideo Mode=x option sets the display mode or hardware type chosen whisra single digit or letter
that is machine dependent. Generallyeo Mode=0 means the default or an auto-detected setting should be
used. When using switches, this character immediately follows the switch. For example #ivatch will

turn on the graphics display in the default mode.

1.2 Command-line Options 9

The ralette=y option selects the palette to be used. Typically the single character pargnmetedigit

which selects one of several fixed palettes or a letter sdichgray scale, & for 15-bit or 16-bit high color

or 1 for 24-bit true color. When using switches, this character is the 2nd character after the switch. For
example thepot switch will turn on the graphics display in the default mode with a true color palette. The
Display_Gamma=N.Nnsetting is not available as a command-line switch.

The pisplay_Gamma Setting overcomes the problem of images (whether ray-traced or not) having different
brightness when being displayed on different monitors, different video cards, and under different operating
systems.

Note: thepisplay_Gamma iS @ setting based on your computer’s display hardware, and should be set correctly
once and not changed.

The pisplay_Gamma INI setting works in conjunction with the newsssumed_gamma global setting to ensure
that POV scenes and the images they create look the same on all systems. See section “&ssumad]
which describes theassumed_gamma global setting and describes gamma more thoroughly.

While the pisplay_Gamma can be different for each system, there are a few general rules that can be used for
setting pisplay_Gamma if you do not know it exactly. If thepisplay_Gamma keyword does not appear in the

INI file, POV-Ray assumes that the display gamma is 2.2. This is because most PC monitors have a gamma
value in the range 1.6 to 2.6 (newer models seem to have a lower gamma value). Mac has the ability to do
gamma correction inside the system software (based on a user setting in the gamma control panel). If the
gamma control panel is turned off, or is not available, the default Macintosh system gamma is 1.8. Many
newer PC graphics cards can do hardware gamma correction and should use the current@isptey

setting, usually 1.0.

Setting your Display Gamma

The following gamma test image can be used to help you setnyeuray_Gamma accurately.

Before viewing the gamma image darken the room and set the monitor brightness and contrast to maximum.
While viewing a black screen, lower the brightness gradually until the “background” is no longer noticeable
(ie when it just fades from view). This may be difficult on monitors that use overscanning, unless you change
the viewable area settings.

Figure 1.1: Display gamma test image.

Now, lower the contrast until the alternating white and black bars on the left edge of each column are equal
in width. This is trying to get a 50% gray by using half white and half black. If this is not possible, choose

a contrast setting which is about in the middle. While viewing the image from a distance, or with squinted
eyes, one of the numbered “swatches” will best match the gray value approximated by the white and black
bars. The number in this “swatch” is your display’s actual gamma value.

10 Introduction

Normal display gamma values are in the range 2.0 to 2.6. If your monitor is usually used in a dim envi-
ronment, we often use a gamma value that is 15% - 25% lower than the actual display gamma to give the
images more contrast. Some systems, such as Macs and SGls, already do gamma correction, so they may
have display gammas of 1.0 or 1.8.

For scene files that do not containaumed_gamma global setting the INI file optionisplay_Gamma will not

have any affect on the preview output of POV-Ray or for most output file formats. Howevet,sthiey_-

Gamma Value is used when creating PNG format output files, and also when rendering the POV-Ray example
files (because they have aBsumed_gamma), SO it should still be correctly set for your system to ensure
proper results.

Display Related Settings

Pause_When_Done=bool Sets pause when done on/off
+P Sets pause when done on

-P Sets pause when done off
verbose=bool Set verbose messages on/off
+V Set verbose messages on

-v Set verbose messages off
Draw_Vistas=bool Turn draw vistas on/off

+UD Turn draw vistas on

-UD Turn draw vistas off

On some systems, when the image is complete, the graphics display is cleared and POV-Ray switches back
into text mode to print the final statistics and to exit. Normally when the graphics display is on, you want

to look at the image awhile before continuing. Usig@se_ihen_Done=on Or +p causes POV-Ray to pause

in graphics mode until you press a key to continue. The default is not to payse (

When the graphics display is not used, it is often desirable to monitor progress of the rendering. Using
Verbose=on O +V turns on verbose reporting of your rendering progress. This reports the number of the line
currently being rendered, the elapsed time for the current frame and other information. On some systems,
this textual information can conflict with the graphics display. You may need to turn this off when the
display is on. The default setting is offy).

The optionpraw_vistas=on Or +UD Was originally a debugging help for POV-Ray'’s vista buffer feature but

it was such fun we decided to keep it. Vista buffering is a spatial sub-division method that projects the 2-D
extents of bounding boxes onto the viewing window. POV-Ray tests the 2-D x, y pixel location against these
rectangular areas to determine quickly which objects, if any, the viewing ray will hit. This option shows
you the 2-D rectangles used. The default setting is-aff)(because the drawing of the rectangles can take
considerable time on complex scenes and it serves no critical purpose. See section “Automatic Bounding
Control” for more details.

Mosaic Preview

Preview_Start_Size=N Set mosaic preview start size ton
+SPN Same as PrevieBtart Size=n
Preview End_Size=N Set mosaic preview end size to n
+EPN Same as Previelgnd Size=n

Typically, while you are developing a scene, you will do many low resolution test renders to see if objects
are placed properly. Often this low resolution version does not give you sufficient detail and you have to

1.2 Command-line Options 11

render the scene again at a higher resolution. A feature cdifemsaic preview” solves this problem by
automatically rendering your image in several passes.

The early passes paint a rough overview of the entire image using large blocks of pixels that look like
mosaic tiles. The image is then refined using higher resolutions on subsequent passes. This display method
very quickly displays the entire image at a low resolution, letting you look for any major problems with the
scene. As it refines the image, you can concentrate on more details, like shadows and textures. You do not
have to wait for a full resolution render to find problems, since you can interrupt the rendering early and fix
the scene, or if things look good, you can let it continue and render the scene at high quality and resolution.

To use this feature you should first selectiadth and Height value that is the highest resolution you will
need. Mosaic preview is enabled by specifying how big the mosaic blocks will be on the first pass using
Preview Start_Size=nor +spn. The value n should be a number greater than zero that is a power of two
(1, 2, 4, 8, 16, 32, etc.) Ifitis not a power of two, the nearest power of two less than n is substituted. This
sets the size of the squares, measured in pixels. A value of 16 will draw every 16th pixel as a 16*16 pixel
square on the first pass. Subsequent passes will use half the previous value (such as 8*8, 4*4 and so on.)

The process continues until it reaches 1*1 pixels or until it reaches the size you sebwithew £nd_-

Size=n or +Epn. Again the value n should be a number greater than zero that is a power of two and less
than or equal torreview Start_size. If it is not a power of two, the nearest power of two less than n is
substituted. The default ending value is 1. If yousetriew End_Size to a value greater than 1 the mosaic
passes will end before reaching 1*1, but POV-Ray will always finish with a 1*1. For example, if you want
a single 8*8 mosaic pass before rendering the final image psetiew start_Size=8 and Preview End_-

Size=8.

No file output is performed until the final 1*1 pass is reached. Although the preliminary passes render only
as many pixels as needed, the 1*1 pass re-renders every pixel so that anti-aliasing and file output streams
work properly. This makes the scene take up to 25% longer than the regular 1*1 pass to render, so it is
suggested that mosaic preview not be used for final rendering. Also, the lack of file output until the final
pass means that renderings which are interrupted before the 1*1 pass can not be resumed without starting
over from the beginning.

1.2.4 File Output Options

Output_to_File=bool Sets file output on/off
+F Sets file output on (use default type)
-F Sets file output off

By default, POV-Ray writes an image file to disk. When you are developing a scene and doing test renders,
the graphic preview may be sufficient. To save time and disk activity you may turn file output off with
Output_to_File=off Or -F.

Output File Type

Output_File_Type=X Sets file output format to x

+FXN Sets file output on; sets format x, depth n

-FXN Sets file output off; but in future use format x, depth n
Output_Alpha=bool Sets alpha output on/off

+UA Sets alpha output on

-UA Sets alpha output off

Bits_Per_Color=n Sets file output bits/color to n

12 Introduction

The default type of image file depends on which platform you are using. MS-DOS and most others default
to 24-bit uncompressed Targa. Windows defaults to 'sys’, which is 24-bit BMP. See your platform-specific
documentation to see what your default file type is. You may select one of several different file types using
Output _File_Type=X Or +FX Wherex is one of the following...

o Compressed Targa-24 format (RLE, run length encoded)
PNG (portable network graphics) format
P Unix PPM format

sSystem-specific such as Mac Pict or Windows BMP

T Uncompressed arga-24 format

Note: the obsoletero dump format andrr raw format have been dropped because they were rarely used

and no longer necessary. PPM, PNG, and system specific formats have been added. PPM format images are
uncompressed, and have a simple text header, which makes it a widely portable image format. PNG is an
image format designed not only to replace GIF, but to improve on its shortcomings. PNG offers the highest
compression available without loss for high quality applications, such as ray-tracing. The system specific
format depends on the platform used and is covered in the appropriate system specific documentation.

Most of these formats output 24 bits per pixel with 8 bits for each of red, green and blue data. PNG and PPM
allow you to optionally specify the output bit depth from 5 to 16 bits for each of the red, green, and blue
colors, giving from 15 to 48 bits of color information per pixel. The default output depth for all formats is

8 bits/color (16 million possible colors), but this may be changed for PNG and PPM format files by setting
Bits_Per_Color=n Or by specifying+rnn or +rpn, where n is the desired bit depth.

Specifying a smaller color depth like 5 bits/color (32768 colors) may be enough for people with 8- or 16-bit
(256 or 65536 color) displays, and will improve compression of the PNG file. Higher bit depths like 10 or
12 may be useful for video or publishing applications, and 16 bits/color is good for grayscale height field
output (See section “Height Field” for details on height fields).

Targa format also allows 8 bits of alpha transparency data to be output, while PNG format allows 5 to 16
bits of alpha transparency data, depending on the color bit depth as specified above. You may turn this
option on with output_Alpha=on Or +UA. The default is off or -ua.

The alpha channel stores a transparency value for each pixel, just like there is also stored a value for red
green and blue light for each pixel. In POV-Ray, when the alpha channel is turned on, all areas of the
image where the background is partly or fully visible will be partly or fully transparent. Refractions of the
background will also be transparent, but not reflections. Also anti-aliasing is taken into account

The philosophy of the alpha channel feature in POV-Ray is that the background color should not be present
in the color of the image when the alpha channel is used. Instead, the amount of visible background is kept
in the alpha and *only* in the alpha channel. That ensures that images look correct when viewed with the
alpha channel.

See section “Using the Alpha Channel” for further details on using transparency in imagemaps in your
scene.

In addition to support for variable bit-depths, alpha channel, and grayscale formats, PNG files also store
the Dpisplay_Gamma Value so the image displays properly on all systems (see section “Display Hardware
Settings”). Thenf_gray_16 global setting, as described in section “iHfay. 16" will also affect the type of

data written to the output file.

Output File Name

The default output filename is created from the scene name and need not be specified. The scene name is
the input name with all drive, path, and extension information stripped. For example if the input file name

1.2 Command-line Options 13

Output_File Name=file Sets output file to file
+ofile Same asutput_File_Name=file

is c:\povray3\mystuff\myfile.pov the scene name isiyfile. The proper extension is appended to the
scene name based on the file type. For examgele.tga O myfile.png might be used.

You may override the default output name usingtput rile Name=file or +ofile. For example:

Input_File_Name=myinput.pov
Output_File_Name=myoutput.tga

If an output file name of “-” is specified (a single minus sign), then the image will be written to standard
output, usually the screen. The output can then be piped into another program or to a GUI if desired.

If the file specified is actually a path or directory or folder name and not a file name, then the default output
name is used but it is written to the specified directory. For example:

Input_File_Name=myscene.pov
Output_File_Name=c:\povray3\myimages\

This will createc: \povray3\myimages\myscene.tga as the output file.

Output File Buffer

The output-file buffer optionsuffer_output andsuffer_size are removed per POV-Ray 3.6

Note: the options are still accepted, but ignored, in order to be backward compatible with old INI files.

CPU Utilization Histogram

The CPU utilization histogram is a way of finding out where POV-Ray is spending its rendering time, as
well as an interesting way of generating heightfields. The histogram splits up the screen into a rectangular
grid of blocks. As POV-Ray renders the image, it calculates the amount of time it spends rendering each
pixel and then adds this time to the total rendering time for each grid block. When the rendering is complete,
the histogram is a file which represents how much time was spent computing the pixels in each grid block.

Not all versions of POV-Ray allow the creation of histograms. The histogram output is dependent on the
file type and the system that POV-Ray is being run on.

File Type
Histogram_Type=Yy Set histogram type to y (Turn off if type ig’)
+HTY Same asistogram_Type=Yy

The histogram output file type is nearly the same as that used for the image output file types in “Output File
Type”. The available histogram file types are as follows.

+HTC Comma separated values (CSV) often used in spreadsheets
+HTN PNG (portable network graphics) format grayscale

+HTP Unix PPM format

+HTS System-specific such as Mac Pict or Windows BMP

+HTT Uncompressed Targa-24 format (TGA)

+HTX No histogram file output is generated

14 Introduction

Note: +uTC does not generate a compressed Targa-24 format output file but rather a text file with a comma-
separated list of the time spent in each grid block, in left-to-right and top-to bottom order. The units of time
output to the CSV file are system dependent. See the system specific documentation for further details on
the time units in CSV files.

The Targa and PPM format files are in the POV heightfield format (see “Height Field”), so the histogram

information is stored in both the red and green parts of the image, which makes it unsuitable for viewing.
When used as a height field, lower values indicate less time spent calculating the pixels in that block, while
higher indicate more time spent in that block.

PNG format images are stored as grayscale images and are useful for both viewing the histogram data as
well as for use as a heightfield. In PNG files, the darker (lower) areas indicate less time spent in that grid
block, while the brighter (higher) areas indicate more time spent in that grid block.

File Name
Histogram Name=file Set histogram name to file
+anfile Same asistogram Name=file

The histogram file name is the name of the file in which to write the histogram data. If the file name is not
specified it will default to histogram.ext, whereext is based on the file type specified previously.

Note: that if the histogram name is specified the file name extension should match the file type.

Grid Size

Histogram Grid_Size= nn.mm Set histogram grid to nn by mm
+HSNN.MMm Same asistogram_Grid_Size=nN.mm

The histogram grid size gives the number of times the image is split up in both the horizontal and vertical
directions. For example

povray tIsample +W640 +H480 +HTN +HS160.120 +HNhistogram.png

will split the image into 160*120 grid blocks, each of size 4*4 pixels, and output a PNG file, suitable for
viewing or for use as a heightfield. Smaller numbers for the grid size mean more pixels are put into the
same grid block. With CSV output, the number of values output is the same as the number of grid blocks
specified. For the other formats the image size is identical to the rendered image rather than the specified
grid size, to allow easy comparison between the histogram and the rendered image. If the histogram grid
size is not specified, it will default to the same size as the image, so there will be one grid block per pixel.

Note: on systems that do task-switching or multi-tasking the histogram may not exactly represent the
amount of time POV-Ray spent in a given grid block since the histogram is based on real time rather than
CPU time. As a result, time may be spent for operating system overhead or on other tasks running at the
same time. This will cause the histogram to have speckling, noise or large spikes. This can be reduced by
decreasing the grid size so that more pixels are averaged into a given grid block.

1.2.5 Scene Parsing Options

POV-Ray reads in your scene file and processes it to create an internal model of your scene. The process
is calledparsing. As your file is parsed other files may be read along the way. This section covers options
concerning what to parse, where to find it and what version specific assumptions it should make while
parsing it.

1.2 Command-line Options 15

Constant

Declare=IDENTIFIER=FLOAT Declares an identifier with a float value

You can now declare a constant in an INI file, and that constant will be available to the scene. Since INI file
statements may also be laced on the command-line, you can therefore also declare on the command-line
(though there is no switch for it).

Declare=MyValue=24

This would be the same astasclare Myvalue=24; in a scene file. The value on the right-hand side must
be a constant float value.

A possible use could be switching off radiosity or photons from commandline:
--in INI-file / on command-line
Declare=RAD=0
--in scenefile

global_settings {
#if (RAD)
radiosity {

}
#end

Input File Name

Input_File Name=file Sets input file name to file
+1file Same aSnput_File_Name=file

Note: there may be no space betwearandrile.

You will probably always set this option but if you do not the default input filenamejsct . pov. If you
do not have an extension thegov is assumed. On case-sensitive operating systems.pettand.pov are
tried. A full path specification may be used (on MS-DOS systefs: \povray3\mystuff\myfile.pov iS
allowed for example). In addition to specifying the input file name this also establishesghe name

The scene name is the input name with drive, path and extension stripped. In the above example the scene
name isuyfile. This name is used to create a default output file name and it is referenced other places.

Note: as per version 3.5 you can now specify a POV file on the command-line without the use of the +i
switch (i.e. it works the same way as specifying an INI file without a switch), the POV file then should be
the last on the commandline.

If you use "-" as the input file name the input will be read from standard input. Thus you can pipe a scene
created by a program to POV-Ray and render it without having a scene file.

Under MS-DOS you can try this feature by typing.

type ANYSCENE.POV | povray +I-

16 Introduction

Include_Header=file Sets primary include file name to file
+u1file Same asnclude_Header=file

Include File Name

This option allows you to include a file as the first include file of a scene file. You can for example use this
option to always include a specific set of default include files used by all your scenes.

Library Paths
Library Path=path Add path to list of library paths
+Lpath Same asibrary_Path=path

POV-Ray looks for files in the current directory. If it does not find a file it needs it looks in various other
library directories which you specify. POV-Ray does not search your operating system path. It only searches
the current directory and directories which you specify with this option. For example the standard include
files are usually kept in one special directory. You tell POV-Ray to look there with...

Library_Path=c:\povray3\include
You must not specify any final path separators’ @r /") at the end.

Multiple uses of this option switch do not override previous settings. Up to twenty unique paths may be
specified. If you specify the exact same path twice it is only counted once. The current directory will be
searched first followed by the indicated library directories in the order in which you specified them.

Language Version

Version=n.n Set initial language compatibility to version n.n
+MVN.N Same asersion=N.N

As POV-Ray has evolved from version 1.0 through to today we have made every effort to maintain some
amount of backwards compatibility with earlier versions. Some old or obsolete features can be handled
directly without any special consideration by the user. Some old or obsolete features can no longer be
handled at all. Howevesomeold features can still be used if you warn POV-Ray that this is an older
scene. In the POV-Ray scene language you can usgrt¢heion directive to switch version compatibility

to different settings. See section "The #version Directive” for more details about the language version
directive. Additionally you may use the:rsion=n.n option or the+mvn.n switch to establish thenitial

setting. For example one feature introduced in 2.0 that was incompatible with any 1.0 scene files is the
parsing of float expressions. Settingersion=1.0 or using+Mv1.0 turns off expression parsing as well as
many warning messages so that nearly all 1.0 files will still work. Naturally the default setting for this
option is the current version number.

Note: some obsolete or re-designed featuaes totally unavailable in the current version of POV-Ray
REGARDLES OF THE VERSION SETTINZ®tails on these features are noted throughout this documen-
tation.

1.2.6 Shell-out to Operating System

Note: no+ or - switches are available for these options. They cannot be used from the command line. They
may only be used from INI files.

1.2 Command-line Options 17

Pre_Scene_Command=S Set command before entire scene
Pre_Frame_Command=S Set command before each frame
Post_Scene_Command=S Set command after entire scene
Post_Frame_Command=S Set command after each frame
User_Abort_Command=S Set command when user aborts POV-Ray
Fatal_Error_Command=S Set command when POV-Ray has fatal error

POV-Ray offers you the opportunity to shell-out to the operating system at several key points to execute
another program or batch file. Usually this is used to manage files created by the internal animation loop
however the shell commands are available for any scene. The staiagsingle line of text which is passed

to the operating system to execute a program. For example

Post_Scene_Command=tga2gif -d -m myfile

would use the utilitytga2qgif with the-p and-u parameters to conveftfile.tgat0 myfile.gif after the
scene had finished rendering.

Note: individual platforms may provide means of preventing shell-outs from occurring. For example, the
Windows version provides a menu command to turn shell-outs off (which is the default setting for that
platform). The reason for this (along with file I/O restrictions) is to attempt to prevent untrusted INI files
from doing harm to your system.

String Substitution in Shell Commands
It could get cumbersome to change thet _scene_Command every time you changed scene names. POV-Ray
can substitute various values into a command string for you. For example:

Post_Scene_Command=tga2gif -d -m \%s

POV-Ray will substitute thes with the scene name in the command. Beene names theInput File -
Name OF +I setting with any drive, directory and extension removed. For example:

Input_File_Name=c:\povray3\scenes\waycool.pov
is stripped down to the scene nam&cool which results in...
Post_Scene_Command=tga2gif -d -m waycool

In an animation it may be necessary to have the exact output file name with the frame number included. The
string 3o will substitute the output file name. Suppose you want to save your output files in a zip archive
using the utility programkzip. You could do...

Post_Frame_Command=pkzip -m \%s \%o
After rendering frame 12 ofyscene.pov POV-Ray would shell to the operating system with
pkzip -m myscene mysce0l2.tga

The -M switch inpkzip mMoves mysce012.tga tOmyscene.zip and removes it from the directory. Note that
%0 includes frame numbers only when in an animation loop. Duringethescene Command and post_-
Scene_Command there is no frame number so the original, unnumberegut File Name iS used. Any
User_Abort_Command Of Fatal Error_Command NOt inside the loop will similarly give an unnumberedsub-
stitution.

Here is the complete list of substitutions available for a command string.

18 Introduction

(]

Output file name with extension and embedded frame number if any
Scene name derived by stripping path and ext from input name
Frame number of this frame

Clock value of this frame

Height of image in pixels

Width of image in pixels

A single % sign.

=]

= o

0 o e o oe o oe
~

o\

Shell Command Sequencing
Here is the sequence of events in an animation loop. Non-animated scenes work the exact same way except
there is no loop.

1. Process all INI file keywords and command line switches just once.

2. Open any text output streams and do Crekliaf any.

3. Execute Pré&SceneCommand if any.

4. Loop through frames (or just do once on non-animation).

(a) Execute PrésrameCommand if any.

(b) Parse entire scene file, open output file and read settings, turn on display, render the frame,
destroy all objects, textures etc., close output file, close display.

(c) Execute PosFrameCommand if any.

(d) Repeat above steps until all frames are done.
5. Execute PosBceneCommand if any.
6. Finish

If the user interrupts processing the=r_abort_command, if any, is executed. User aborts can only occur
during the parsing and rendering parts of step (4b) above. If a fatal error occurs that POV-Ray notices the
Fatal _Error_Command, if any, is executed. Sometimes an unforeseen bug or memory error could cause a
total crash of the program in which case there is no chance to shell out. Fatal errors can occur just about
anywhere including during the processing of switches or INI files. If a fatal error occurs before POV-Ray
has read theratal Error_Command String then obviously no shell can occur.

Note: the entire scene is re-parsed for every frame. Future versions of POV-Ray may allow you to hold
over parts of a scene from one frame to the next but for now it starts from scratch every time.

Note: that thepre_Frame_Command 0ccurs before the scene is parsed. You might use this to call some custom
scene generation utility before each frame. This utility could rewrite yopsv or . inc files if needed.
Perhaps you will want to generate newi f or .tga files for image maps or height fields on each frame.

Shell Command Return Actions

Pre_Scene_Return=S Set pre scene return actions
Pre_Frame_Return=$ Set pre frame return actions
Post_Scene Return=S Set post scene return actions
Post_Frame Return=S Set post frame return actions
User_Abort_Return=S Set user abort return actions

Fatal_Error_Return=S Set fatal return actions

1.2 Command-line Options 19

Note: that no+ or - switches are available for these options. They cannot be used from the command line.
They may only be used from INI files.

Most operating systems allow application programs to return an error code if something goes wrong. When
POV-Ray executes a shell command it can make use of this error code returned from the shell process and
take some appropriate action if the code is zero or non-zero. POV-Ray itself returns such codes. It returns
0 for success, 1 for fatal error and 2 for user abort.

The actions are designated by a single letter in the differentreturn=s options. The possible actions
are:

ignore the code

skip one step

all steps skipped

quit POV-Ray immediately
generate a user abort in POV-Ray
generate a fatal error in POV-Ray

oo O P n H

For example if yourre Frame Command calls a program which generates your height field data and that
utility fails then it will return a non-zero code. We would probably want POV-Ray to abort as well. The
optionpre_Frame Return=F Will cause POV-Ray to do a fatal abort if thée_Frame_Command returns a non-
zero code.

Sometimes a non-zero code from the external process is a good thing. Suppose you want to test if a frame
has already been rendered. You could usesthetion to skip this frame if the file is already rendered. Most
utilities report an error if the file is not found. For example the command...

pkzip -V myscene mysce0l2.tga

tells pkzip you want to view the catalog @ofscene.zip for the filemysce012.tga. If the file is not in the
archivepkzip returns a non-zero code.

However we want to skip if the file is found. Therefore we need to reverse the action so it skips on zero and
does not skip on non-zero. To reverse the zero vs. non-zero triggering of an action precede it-¥vith a ”
sign (note a " will also work since it is used in many programming languages as a negate operator).

Pre_Frame Return=S Will skip if the code shows error (non-zero) and will proceed normally on no error
(zero). pre_rrame Return=-s Will skip if there is no error (zero) and will proceed normally if there is an
error (non-zero).

The default for all shells is which means that the return action is ignored no matter what. POV-Ray simply
proceeds with whatever it was doing before the shell command. The other actions depend upon the context.
You may want to refer back to the animation loop sequence chart in the previous section "Shell Command
Sequencing”. The action for each shell is as follows.

On return from any UseAbort. Command if there is an action triggered...

...and you have specified... ...then POV-Ray will..

F Then turn this user abort into a fatal error. Do tletal _Error_Command,
if any. Exit POV-Ray with error code 1.

S,A,Q,0r U Then proceed with the user abort. Exit POV-Ray with error code 2.

On return from anyatal Error_Command then POV-Ray will proceed with the fatal error no matter what. It
will exit POV-Ray with error code 1.

On return from anyre_Scene_Command, Pre_Frame_Command, Post_Frame_Command OI Post_Scene_Commands
if there is an action triggered...

On return from @re_scene_Command if there is an action triggered...

20 Introduction

...and you have specified... ...then POV-Ray will...

F ...turn this user abort into a fatal error. Do thetal _Error_Command, if
any. Exit POV-Ray with error code 1.

U ...generate a user abort. Do ther_aAbort_Command, if any. Exit POV-
Ray with an error code 2.

Q ..quit POV-Ray immediately. Acts as though POV-Ray never really ran.

Do no further shells, (not everpast_scene_Command) and exit POV-Ray
with an error code 0.

...and you have specified... ...then POV-Ray will...

S ...skip rendering all frames. Acts as though the scene completed all
frames normally. Do not do argre Frame Command Of Post_Frame -
Commands. DO the Post_Scene_Command, if any. Exit POV-Ray with error
code 0. On the earlier chart this means skip step #4.

A ...skip all scene activity. Works exactly likequit. On the earlier chart
this means skip to step #6. Acts as though POV-Ray never really ran.
Do no further shells, (not even @&ost_Scene_Command) and exit POV-
Ray with an error code 0.

On return from @re_Frame_Command if there is an action triggered...

...and you have specified... ...then POV-Ray will...

S ...skip only this frame. Acts as though this frame never existed. Do not
do thepost _Frame_Command. Proceed with the next frame. On the earlier
chart this means skip steps (4b) and (4c) but loop back as needed in (4d).

A ...skip rendering this frame and all remaining frames. Acts as though
the scene completed all frames normally. Do not do any further: -
Frame_Commands. DO thepost_Scene_Command, if any. Exit POV-Ray with
error code 0. On the earlier chart this means skip the rest of step (4) and
proceed at step (5).

On return from @ost _Frame_Command if there is an action triggered...

On return from anyost _Scene_Command if there is an action triggered and you have specifieda then no
special action occurs. This is the same &ar this shell command.

1.2.7 Text Output

Text output is an important way that POV-Ray keeps you informed about what it is going to do, what it

is doing and what it did. The program splits its text messages into 7 separate streams. Some versions of
POV-Ray color-codes the various types of text. Some versions allow you to scroll back several pages of
messages. All versions allow you to turn some of these text streams off/on or to direct a copy of the text
output to one or several files. This section details the options which give you control over text output.

Text Streams

There are seven distinct text streams that POV-Ray uses for output. On some versions each stream is
designated by a particular color. Text from these streams are displayed whenever it is appropriate so there is
often an intermixing of the text. The distinction is only important if you choose to turn some of the streams

1.2 Command-line Options 21

...and you have specified... ...then POV-Ray will...

SOra ...skip all remaining frames. Acts as though the scene completed all
frames normally. Do not do any furthepost _Frame_Commands. Do the
Post_Scene_Command, if any. Exit POV-Ray with error code 0. On the
earlier chart this means skip the rest of step (4) and proceed at step (5).

off or to direct some of the streams to text files. On some systems you may be able to review the streams
separately in their own scroll-back buffer.

Here is a description of each stream.

Banner: This stream displays the program’s sign-on banner, copyright, contributor’s list, and some help
screens. It cannot be turned off or directed to a file because most of this text is displayed before any options
or switches are read. Therefore you cannot use an option or switch to control it. There are switches which
display the help screens. They are covered in section "Help Screen Switches”.

Debug: This stream displays debugging messages. It was primarily designed for developers but this and
other streams may also be used by the user to display messages from within their scene files. See section
"Text Message Streams” for details on this feature. This stream may be turned off and/or directed to a text
file.

Fatal: This stream displays fatal error messages. After displaying this text, POV-Ray will terminate. When
the error is a scene parsing error, you may be shown several lines of scene text that leads up to the error.
This stream may be turned off and/or directed to a text file.

Render: This stream displays information about what options you have specified to render the scene. It
includes feedback on all of the major options such as scene name, resolution, animation settings, anti-
aliasing and others. This stream may be turned off and/or directed to a text file.

Statistics: This stream displays statistics after a frame is rendered. It includes information about the
number of rays traced, the length of time of the processing and other information. This stream may be
turned off and/or directed to a text file.

Status: This stream displays one-line status messages that explain what POV-Ray is doing at the moment.
On some systems this stream is displayed on a status line at the bottom of the screen. This stream cannot
be directed to a file because there is generally no need to. The text displayed bythee option or+v

switch is output to this stream so that part of the status stream may be turned off.

Warning: This stream displays warning messages during the parsing of scene files and other warnings.
Despite the warning, POV-Ray can continue to render the scene. You will be informed if POV-Ray has
made any assumptions about your scene so that it can proceed. In general any time you see a warning,
you should also assume that this means that future versions of POV-Ray will not allow the warned action.
Therefore you should attempt to eliminate warning messages so your scene will be able to run in future
versions of POV-Ray. This stream may be turned off and/or directed to a text file.

Console Text Output

You may suppress the output to the console of the debug, fatal, render, statistic or warning text streams.
For example thestatistic_Console=off option or the-Gs switch can turn off the statistic stream. Using

on OF +GS YOU may turn it on again. You may also turn all five of these streams on or off at once using the
All_Console option or+ca switch.

Note: that these options take effect immediately when specified. Obviously any error or warning messages
that might occur before the option is read are not be affected.

22

Introduction

Debug_Console=bool
+GD

-GD
Fatal_Console=bool
+GF

-GF
Render_Console=bool
+GR

-GR
Statistic_Console=bool
+GS

-GS
Warning_Console=bool
+GW

Turn console display of debug info text on/off
Same asebug_Console=0n

Same asebug_Console=0ff

Turn console display of fatal error text on/off
Same agatal_Console=0On

Same asatal _Console=0ff

Turn console display of render info text on/off
Same agender_Console=0n

Same agender_Console=0ff

Turn console display of statistic text on/off
Same aStatistic_Console=0n

Same aStatistic_Console=0ff

Turn console display of warning text on/off
Same agiarning_Console=0n

-GW Same agarning_Console=0ff
All_Console=bool Turn on/off all debug, fatal, render, statistic and warning text to console.

+GA Same asll_Console=0n
-GA Same asll_Console=0ff

Directing Text Streams to Files

You may direct a copy of the text streams to a text file for the debug, fatal, render, statistic, or warning text
streams. For example thetatistic_File=soption or thetcss switch. If the stringsis true or any of the

other validt rue strings then that stream is redirected to a file with a default name. Malidvalues are

true, yes, on Or 1. If the value is false the direction to a text file is turned off. Valictalse values are
false,no, off oro0. Any other string specified turns on file output and the string is interpreted as the output
file name.

Similarly you may specify such a true, false or file name string after a switch suctegfde. You may

also direct all five streams to the same file usingathieriie option or +ca switch. You may not specify

the same file for two or more streams because POV-Ray will fail when it tries to open or close the same file
twice.

Note: that these options take effect immediately when specified. Obviously any error or warning messages
that might occur before the option is read will not be affected.

Warning Level

Level O turns off all warnings. Level 5 turns off all language version related warnings. The default is level
10 and it enables all warnings. All other levels are reserved and should not be specified.

Help Screen Switches

Note: there are no INI style equivalents to these options.

After displaying the help screens, POV-Ray terminates. Because some operating systems do not permit a
question mark as a command line switch you may also usesitheitch.

Note: this switch is also used to specify the height of the image in pixels. Thereforettssvitch is only
interpreted as a help switch if it is the only switch on the command line.

Graphical interface versions of POV-Ray such as Mac or Windows have extensive online help.

1.2 Command-line Options

23

Debug_File=true
Debug_File=false
Debug_File=file
+GDfile

-GDfile

Fatal File=true
Fatal File=false
Fatal File=file
tGFfile

-GFfile

Render File=true
Render_File=false
Render_File=file
+Grfile

-GRfile
Statistic_File=true
StatisticFile=false
StatisticFile=file
+csfile

-gsfile
Warning_File=true
Warning File=false
Warning File=file
tGWfile

-GWfile
All_File=true

All File=false
All File=file
+GAfile

-GAfile

Warning_Level=n
+WLn

Echo debug info text to DEBUG.OUT

Turn off file output of debug info

Echo debug info text to file

Both pebug_Console=0On, Debug_File=file
BOthDebug,Console=Off, Debug_File=file

Echo fatal text to FATAL.OUT

Turn off file output of fatal

Echo fatal info text to file

BothFatal_Console=On, Fatal File=file
BothFratal_Console=0ff, Fatal File=file

Echo render info text to RENDER.OUT

Turn off file output of render info

Echo render info text to file
BothRrender_Console=0On, Render_File=file
BothRrender_Console=0ff, Render_File=file

Echo statistic text to STATS.OUT

Turn off file output of statistics

Echo statistic text to file

Both statistic_Console=0On, Statistic._File=file
Both statistic_Console=0ff, Statistic._File=file
Echo warning info text to WARNING.OUT

Turn off file output of warning info

Echo warning info text to file
BothwWarning_Console=0n, Warning_File=file
BOthWarning,Console:Off, Warning File=file
Echo all debug, fatal, render, statistic, and warning text to ALLTEXT.
ouT

Turn off file output of all debug, fatal, render, statistic, and warning text.

Echo all debug, fatal, render, statistic, and warning text to file
Botha1ll_console=0On, All File=file
Bothall Console=0ff, All File=file

Allows you to turn off classes of warnings.
Same agarning_Level=n

1.2.8 Tracing Options

There is more than one way to trace a ray. Sometimes there is a trade-off between quality and speed.
Sometimes options designed to make tracing faster can slow things down. This section covers options that
tell POV-Ray how to trace rays with the appropriate speed and quality settings.

Quality Settings

The quality=n option or+gn switch allows you to specify the image rendering quality. You may choose

to lower the quality for test rendering and raise it for final renders. The quality adjustments are made by
eliminating some of the calculations that are normally performed. For example settings below 4 do not
render shadows. Settings below 8 do not use reflection or refraction. The duplicate values allow for future
expansion. The values correspond to the following quality levels:

-2 Show help screen 0 if this is the only switch

24 Introduction

Quality=n Set quality value to n (&= n<=11)

+on Same aguality=n

0, 1 Just show quick colors. Use full ambient lighting only. Quick colors are
used only at 5 or below.

2, 3 Show specified diffuse and ambient light.

4 Render shadows, but no extended lights.

5 Render shadows, including extended lights.

6, 7 Compute texture patterns, compute photons

8 Compute reflected, refracted, and transmitted rays.

9, 10, 11 Compute media and radiosity

The default is 9 if not specified.

Automatic Bounding Control

Bounding=bool Turn bounding on/off

+MB Turn bounding on; Set threshold to 25 or previous amount
-MB Turn bounding off

Bounding_Threshold=n Set bound threshold to n

+MBN Turn bounding on; bound threshold to n
-MBN Turn bounding off; set future threshold to n
Light Buffer=bool Turn light buffer on/off

+UL Turn light buffer on

-UL Turn light buffer off

Vista_Buffer=bool Turn vista buffer on/off

+UV Turn vista buffer on

-uv Turn vista buffer off

POV-Ray uses a variety of spatial sub-division systems to speed up ray-object intersection tests. The
primary system uses a hierarchy of nested bounding boxes. This system compartmentalizes all finite objects
in a scene into invisible rectangular boxes that are arranged in a tree-like hierarchy. Before testing the
objects within the bounding boxes the tree is descended and only those objects are tested whose bounds
are hit by a ray. This can greatly improve rendering speed. However for scenes with only a few objects
the overhead of using a bounding system is not worth the effort. Bheding=0ff option or-ms switch

allows you to force bounding off. The default value is on.

The Bounding_Threshold=n or +mBh switch allows you to set the minimum number of objects necessary
before bounding is used. The defaultti®25 which means that if your scene has fewer than 25 objects
POV-Ray will automatically turn bounding off because the overhead is not worth it. Generally it is a good
idea to use a much lower threshold likess.

Additionally POV-Ray uses systems known\asta buffersand light buffersto further speed things up.

These systems only work when bounding is on and when there are a sufficient number of objects to meet
the bounding threshold. The vista buffer is created by projecting the bounding box hierarchy onto the screen
and determining the rectangular areas that are covered by each of the elements in the hierarchy. Only those
objects whose rectangles enclose a given pixel are tested by the primary viewing ray. The vista buffer
can only be used with perspective and orthographic cameras because they rely on a fixed viewpoint and a
reasonable projection (i. e. straight lines have to stay straight lines after the projection).

The light buffer is created by enclosing each light source in an imaginary box and projecting the bounding
box hierarchy onto each of its six sides. Since this relies on a fixed light source, light buffers will not be
used for area lights.

1.2 Command-line Options 25

Reflected and transmitted rays do not take advantage of the light and vista buffer.

The default settings arevista Buffer=on Or +uv and Light Buffer=on O +UL. The option to turn these
features off is available to demonstrate their usefulness and as protection against unforeseen bugs which
might exist in any of these bounding systems.

In general, any finite object and many types of CSG of finite objects will properly respond to this bounding
system. In addition blobs and meshes use an additional internal bounding system. These systems are not
affected by the above switch. They can be switched off using the appropriate syntax in the scene file (see
"Blob” and "Mesh” for details).

Text objects are split into individual letters that are bounded using the bounding box hierarchy. Some CSG
combinations of finite and infinite objects are also automatically bound. The end result is that you will
rarely need to add manual bounding objects as was necessary in earlier versions of POV-Ray unless you use
many infinite objects.

Removing User Bounding

Remove_Bounds=bool Turn unnecessary bounds removal on/off
+UR Turn unnecessary bounds removal on
-UR Turn unnecessary bounds removal off
Split_Unions=bool Turn split bounded unions on/off

+SU Turn split bounded unions on

-SU Turn split bounded unions off

Early versions of POV-Ray had no system of automatic bounding or spatial sub-division to speed up ray-
object intersection tests. Users had to manually create bounding boxes to speed up the rendering. Since
version 3.0, POV-Ray has had more sophisticated automatic bounding than any previous version. In many
cases the manual bounding on older scenes is slower than the new automatic systems. Therefore POV-Ray
removes manual bounding when it knows it will help. In rare instances you may want to keep manual
bounding. Some older scenes incorrectly used bounding when they should have used clipping. If POV-Ray
removes the bounds in these scenes the image will not look right. To turn off the automatic removal of
manual bounds you should specifyemove_Bounds=off Or use -ur. The default is Remove Bounds=on.

One area where the jury is still out is the splitting of manually bounded unions. Unbounded unions are
always split into their component parts so that automatic bounding works better. Most users do not bound
unions because they know that doing so is usually slower. If you do manually bound a union we presume
you really want it bound. For safety sake we do not presume to remove such bounds. If you want to
remove manual bounds from unions you should spegifyt_unions=on or use +su. The default isplit_-
Unions=off.

Anti-Aliasing Options

The ray-tracing process is in effect a discrete, digital sampling of the image with typically one sample per
pixel. Such sampling can introduce a variety of errors. This includes a jagged, stair-step appearance in
sloping or curved lines, a broken look for thin lines, négiatterns of interference and lost detail or missing
objects, which are so small they reside between adjacent pixels. The effect that is responsible for those
errors is callediliasing

Anti-aliasing is any technique used to help eliminate such errors or to reduce the negative impact they have
on the image. In general, anti-aliasing makes the ray-traced image domother The antialias=on
option or+a switch turns on POV-Ray'’s anti-aliasing system.

26

Introduction

Antialias=bool

Turns anti-aliasing on/off

+A Turns aa on with threshold 0.3 or previous amount

-A Turns anti-aliasing off

Sampling_Method=n Sets aa-sampling method (onlypr 2 are valid)

+AMN Same asampling_Method=N

Antialias_Threshold=N.n Sets anti-aliasing threshold

+AN.N Sets aa on with aa-threshold at n.n

-an.n Sets aa off (aa-threshold n.n in future)

Jitter=bool Sets aa-jitter on/off

+J Sets aa-jitter on with 1.0 or previous amount

-J Sets aa-jitter off

Jitter_Amount=N.N Sets aa-jitter amount to n.n. If k= 0 aa-jitter is set off
+Jn.n Sets aa-jitter on; jitter amount to n.n. If ra¥ 0 aa-jitter is set off
-Jn.n Sets aa-jitter off (jitter amount n.n in future)
Antialias_Depth=n Sets aa-depth (&=n<=9)

+RN Same agntialias_Depth=N

When anti-aliasing is turned on, POV-Ray attempts to reduce the errors by shooting more than one viewing
ray into each pixel and averaging the results to determine the pixel’s apparent color. This technique is

called super-sampling and can improve the appearance of the final image but it drastically increases the
time required to render a scene since many more calculations have to be done.

POV-Ray gives you the option to use one of two alternate super-sampling methods.sahbeing -
Method=n option or +amn switch selects either type or type 2. Selecting one of those methods does
not turn anti-aliasing on. This has to be done by using+#heommand line switch orantialias=on
option.

Type 1 is an adaptive, non-recursive, super-sampling method. didieptivebecause not every pixel is
super-sampled. Type 2 is an adaptive and recursive super-sampling methodeclirisvebecause the
pixel is sub-divided and sub-sub-divided recursively. BHaptivenature of type 2 is the variable depth of
recursion.

In the default, non-recursive methoeui1), POV-Ray initially traces one ray per pixel. If the color of a
pixel differs from its neighbors (to the left or above) by at least the set threshold value then the pixel is
super-sampled by shooting a given, fixed number of additional rays. The default threshold is 0.3 but it may
be changed using theintialias_Threshold=n.n option. When the switches are used, the threshold may
optionally follow the+a. For example +20.1 turns anti-aliasing on and sets the threshold to 0.1.

The threshold comparison is computed as follows. If r1, g1, bl and r2, g2, b2 are the rgb components of
two pixels then the difference between pixels is computed by

diff = abs(rl-r2) + abs(gl-g2) + abs(bl-b2)

If this difference is greater than the threshold then both pixels are super-sampled. The rgb values are in the
range from 0.0 to 1.0 thus the most two pixels can differ is 3.0. If the anti-aliasing threshold is 0.0 then
every pixel is super-sampled. If the threshold is 3.0 then no anti-aliasing is done. Lower threshold means
more anti-aliasing and less speed. Use anti-aliasing for your final version of a picture, not the rough draft.
The lower the contrast, the lower the threshold should be. Higher contrast pictures can get away with higher
tolerance values. Good values seem to be around 0.2 to 0.4.

When using the non-recursive method, the default number of super-samples is nine per pixel, located on
a 3*3 grid. The antialias_Depth=n option or +rRn switch controls the number of rows and columns of
samples taken for a super-sampled pixel. For examplevould give 4*4=16 samples per pixel.

The second, adaptive, recursive super-sampling method starts by tracing four rays at the corners of each
pixel. If the resulting colors differ more than the threshold amount additional samples will be taken. This is

1.2 Command-line Options 27

done recursively, i.e. the pixel is divided into four sub-pixels that are separately traced and tested for further
subdivision. The advantage of this method is the reduced number of rays that have to be traced. Samples
that are common among adjacent pixels and sub-pixels are stored and reused to avoid re-tracing of rays.
The recursive character of this method makes the super-sampling concentrate on those parts of the pixel
that are more likely to need super-sampling (see figure below).

< 4 & . 4 @ newsamples
o reused samples
. ° e . 40M€ pixel
pixel corners
+ + v e &
initial samples level 1
o e 0®0
+ * ooo:%
LI 0®80e0
[}
O e O ® 0O O 08080 O
eo000
o o0 0 0 o gogoo o
4 ® O &4 & 080 O 4
level 2 level 3

Figure 1.2: Example of how the recursive super-sampling works.

The maximum number of subdivisions is specified by theialias_Depth=n option or+rn switch. This

is different from the adaptive, non-recursive method where the total number of super-samples is specified.
A maximum number ofi subdivisions results in a maximum number of samples per pixel that is given by
the following table.

+RN Number of additional samples per supdaximum number of samples per super-
sampled pixel for the non-recurss@mpled pixel for the recursive method
method+am1 +AM2

1 1 9

2 4 25

3 9 81

4 16 289

5 25 1089

6 36 4225

7 49 16641

8 64 66049

9 81 263169

Note: the maximum number of samples in the recursive case is hardly ever reached for a given pixel. If the
recursive method is used with no anti-aliasing each pixel will be the average of the rays traced at its corners.
In most cases a recursion level of three is sufficient.

Another way to reduce aliasing artefacts is to introduce noise into the sampling process. This is called
jittering and works because the human visual system is much more forgiving to noise than it is to regular
patterns. The location of the super-samples is jittered or wiggled a tiny amount when anti-aliasing is used.
Jittering is used by default but it may be turned off with theter=off option or-J switch. The amount

of jittering can be set with thesitter_amount=n.n option. When using switches the jitter scale may be
specified after thesn.nswitch. For exampleJo.s uses half the normal jitter. The default amount of 1.0 is

the maximum jitter which will insure that all super-samples remain inside the original pixel.

Note: the jittering noise is random and non-repeatable so you should avoid using jitter in animation se-
guences as the anti-aliased pixels will vary and flicker annoyingly from frame to frame.

If anti-aliasing is not used one sample per pixel is taken regardless of the super-sampling method specified.

28

Introduction

Chapter 2

Scene Description Language

The reference section describes the POV-Begne description languagét is supposed to be used as a
reference for looking up things. It does not contain detailed explanations on how scenes are written or how
POV-Ray is used. It just explains all features, their syntax, applications, limits, drawbacks, etc.

The scene description language allows you to describe the world in a readable and convenient way. Files
are created in plain ASCII text using an editor of your choice. The input file name is specified using the
Input_File Name=file option or+zfile switch. By default the files have the extensignrv. POV-Ray reads

the file, processes it by creating an internal model of the scene and then renders the scene.

The overall syntax of a scene is shown below. See "Notation and Basic Assumptions” for more information
on syntax notation.

SCENE:
SCENE_ITEM...

SCENE_ITEM:
LANGUAGE_DIRECTIVES |
camera { CAMERA_ITEMS... } |
OBJECTS |
ATMOSPHERIC_EFFECTS |
global_settings { GLOBAL_ITEMS }

In plain English, this means that a scene contains one or more scene items and that a scene item may be any
of the five items listed below it. The items may appear in any order. None is a required item. In addition

to the syntax depicted above lANGUAGEDIRECTIVEmay also appear anywhere embedded in other
statements between any two tokens. There are some restrictions on nesting directives also.

For details on those five items see section "Language Directives”, section "Objects”, section "Camera”,
section "Atmospheric Effects” and section "Global Settings” for details.

2.1 Language Basics

The POV-Ray language consists of identifiers, reserved keywords, floating point expressions, strings, spe-
cial symbols and comments. The text of a POV-Ray scene file is free format. You may put statements on
separate lines or on the same line as you desire. You may add blank lines, spaces or indentations as long as
you do not split any keywords or identifiers.

30 Scene Description Language

2.1.1 Identifiers and Keywords

POV-Ray allows you to define identifiers for later use in the scene file. An identifier may be 1 to 40
characters long. It may consist of upper and lower case letters, the digits O through 9 or an underscore
character (™). the first character must be an alphabetic character. The declaration of identifiers is covered

later.

POV-Ray has a number of reserved keywords which are listed below.

a

aa_level all_intersections asc
aa_threshold alpha ascii

abs altitude asin
absorption always_sample asinh
accuracy ambient assumed_gamma
acos ambient_light atan

acosh angle atan2
adaptive aperture atanh
adc_bailout append autostop
agate arc.angle average
agate_turb area_light

all array

b

b_spline blur_samples brick_size
background bounded_by brightness
bezier_spline box brilliance
bicubic_patch boxed bump_map
black_hole bozo bump_size
blob break bumps

blue brick

c

camera color coords

case color_map cos
caustics colour cosh

ceil colour_map count

cells component crackle
charset composite crand
checker concat cube

chr cone cubic
circular confidence cubic_spline
clipped.by conic_sweep cubic_wave
clock conserve_energy cutaway-textures
clock_delta contained-by cylinder
clock_on control0 cylindrical
collect controll

2.1 Language Basics

31

debug
declare
default
defined
degrees
density
density_file
density_map

e

eccentricity
else
emission

end

error

face_indices
facets
fade_color
fade_colour
fade_distance
fade_power
falloff
falloff_angle
false

fclose
file_exists

g

gather

gif
global_lights
global_settings

h

height_field
hexagon
hf_gray-16

if

ifdef

iff

ifndef
image_height
image_map

dents

df3
difference
diffuse

dimension_size

dimensions
direction
disc

error_bound
evaluate
exp

expand_thresholds

exponent

filter
final_clock
final_frame
finish
fisheye
flatness
flip

floor
focal_point
fog

fog_alt

gradient
granite
gray

gray-threshold

hierarchy
hypercomplex
hollow

image_pattern
image_width
include
initial_clock
initial_frame
inside

dispersion
dispersion_samples
dist_exp

distance

div
double_illuminate

exterior
extinction

fog_offset
fog_type
fopen

form
frame_number
frequency
fresnel
function

green

inside_vector
int

interior
interior_texture
internal
interpolate

m

macro
magnet
major_radius
mandel
map-type
marble
material
material_map
matrix

max
max_extent

n

natural_spline
nearest_count
no
no_bump_scale
no_image

(0]

object
octaves
off
offset
omega

p

panoramic
parallel
parametric
pass_through

max_gradient
max_intersections
max_iteration
max_sample
max_trace
max_trace_level
media
media_attenuation
media_interaction
merge

mesh

no_reflection
no_shadow
noise_generator
normal
normal_indices

omnimax
on

once
onion
open

pattern
perspective

pgm
phase

32 Scene Description Language
intersection ior isosurface
intervals irid

inverse irid_wavelength

i

jitter julia

jpeg julia_fractal

I

lambda linear_sweep look_at

lathe In looks_like
leopard load_file low_error_factor
light_group local

light_source location

linear_spline log

mesh2
metallic
method
metric

min
min_extent
minimum_reuse
mod

mortar

normal_map
normal_vectors
number_of_waves

orient
orientation
orthographic

phong
phong_size
photons
pi

2.1 Language Basics

33

pigment
pigment_map
pigment_pattern
planar

plane

png

point_at

poly

q

quadratic_spline
quadric
quartic

radial
radians
radiosity
radius
rainbow
ramp_wave
rand
range
ratio

samples
save_file
scale
scallop_wave
scattering
seed
select
shadowless
sin
sine_wave
sinh

size

sky
sky_sphere
slice
slope

tan
tanh
target
text

poly_wave
polygon

pot

pow

ppm
precision
precompute
pretrace_end

quaternion
quick_color
quick_colour

read

reciprocal
recursion_limit

red

reflection
reflection_exponent
refraction

render

repeat

slope_map
smooth
smooth_triangle
solid

sor

spacing
specular
sphere
sphere_sweep
spherical
spirall
spiral?2
spline
split_union
spotlight
spotted

texture
texture_list
texture_map
tga
thickness

pretrace_start
prism

prod
projected_-through
pwr

quilted

rgb

rgbf
rgbft
rgbt
right
ripples
rotate
roughness

sqr
sqrt
statistics

str

strcmp
strength
strlen

strlwr

strupr

sturm

substr

sum
superellipsoid
switch

sys

threshold
tiff
tightness
tile2
tiles

34 Scene Description Language
tolerance translate ttf

toroidal transmit turb_depth

torus triangle turbulence

trace triangle_wave type

transform true

u

u up utfs8

u_steps use_alpha uv_indices

ultra_wide_angle use_color uv_mapping

undef use_colour uv_vectors
union use_index

\

v VCross vnormalize
v_steps vdot vrotate
val version vstr
variance vertex_vectors vturbulence
vaxis_rotate vlength

W

warning while write

warp width

water_level wood

waves wrinkles

X

X

y yes

z

All reserved words are fully lower case. Therefore it is recommended that your identifiers contain at least
one upper case character so it is sure to avoid conflict with reserved words.

2.1.2 Comments
Comments are text in the scene file included to make the scene file easier to read or understand. They are
ignored by the ray-tracer and are there for your information. There are two types of comments in POV-Ray.

Two slashes are used for single line comments. Anything on a line after a double/slashignored by
the ray-tracer. For example:

// This line is ignored

2.1 Language Basics 35

You can have scene file information on the line in front of the comment as in:
object { FooBar } // this is an object

The other type of comment is used for multiple lines. It starts withi ‘and ends with */”. Everything
in-between is ignored. For example:

/* These lines
are ignored
by the
ray-tracer */

This can be useful if you want to temporarily remove elements from a scene/file. */ comments
cancomment oulines containing other/ comments and thus can be used to temporarily or permanently
comment out parts of a scene./* ... */ comments can be nested, the following is legal:

/* This is a comment
// This too

/* This also */

*/

Use comments liberally and generously. Well used, they really improve the readability of scene files.

2.1.3 Float Expressions

Many parts of the POV-Ray language require you to specify one or more floating point numbers. A floating
point number is a number with a decimal point. Floats may be specified using literals, identifiers or functions
which return float values. You may also create very complex float expressions from combinations of any of
these using various familiar operators.

Where POV-Ray needs an integer value it allows you to specify a float value and it truncates it to an integer.
When POV-Ray needs a logical or boolean value it interprets any non-zero float as true and zero as false.
Because float comparisons are subject to rounding errors POV-Ray accepts values extremely close to zero
as being false when doing boolean functions. Typically values whose absolute values are less than a preset
value epsilonare considered false for logical expressions. The valuepsilonis system dependent but is
generally about 1.0e-10. Two floasndb are considered to be equakibs(a-b)< epsilon.

The full syntax for float expressions is given below. Detailed explanations are given in the following sub-
sections.

FLOAT:
NUMERIC_TERM [SIGN NUMERIC_TERM]...
SIGN:
+] -
NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]...
MULT:
|/
NUMERIC_FACTOR:
FLOAT_LITERAL
FLOAT_IDENTIFIER
SIGN NUMERIC_FACTOR
FLOAT_FUNCTION
FLOAT_BUILT-IN_IDENT
(FULL_EXPRESSION)
! NUMERIC_FACTOR
VECTOR DECIMAL_POINT DOT_ITEM FLOAT_LITERAL:
[DIGIT...] [DECIMAL_POINT] DIGIT... [EXP [SIGN] DIGIT...]
DIGIT:

36 Scene Description Language

o111 21314151611 7181F9
DECIMAL_POINT:

EXP:
e | E

DOT_ITEM:
x|y lz]lt]lulv]| red| blue | green | filter |
transmit | gray

FLOAT_FUNCTION:

abs(FLOAT) | acos(FLOAT) | acosh(FLOAT) | asc(STRING)
asin(FLOAT) | asinh(FLOAT) | atan(FLOAT) | atanh(FLOAT)
atan2(FLOAT , FLOAT) | ceil(FLOAT) | cos(FLOAT)

cosh(FLOAT) | defined(IDENTIFIER) | degrees(FLOAT) |

dimensions (ARRAY_IDENTIFIER) |
dimension_size(ARRAY_IDENTIFIER , FLOAT) |

div(FLOAT , FLOAT) | exp(FLOAT) | file_exists(STRING)
floor(FLOAT) | int(FLOAT) | In(Float | log(FLOAT) |
max (FLOAT , FLOAT, ...) | min(FLOAT , FLOAT, ...) |

mod (FLOAT , FLOAT) | pow(FLOAT , FLOAT) |

radians(FLOAT) | rand(FLOAT) | seed(FLOAT)

select (FLOAT, FLOAT, FLOAT [,FLOAT]) | sin(FLOAT)

sinh(FLOAT) | sqrt(FLOAT) | strcmp(STRING , STRING)
strlen(STRING) | tan(FLOAT) | tanh(FLOAT) |

val (STRING) | vdot(VECTOR , VECTOR) | vlength(VECTIOR) |

FLOAT_BUILT-IN_IDENT:
clock | clock_delta | clock_on | false | final_clock |
final_frame | frame_number | initial_clock | initial_ frame |
image_width | image_height | no | off | on | pi | true |
version | yes |
FULL_EXPRESSION:
LOGICAL_EXPRESSION [? FULL_EXPRESSION : FULL_EXPRESSION]
LOGICAL_EXPRESSION:
REL_TERM [LOGICAL_OPERATOR REL_TERM]...
LOGICAL_OPERATOR:
\& | | (note: this means an ampersand or a
vertical bar is a logical operator)
REL_TERM:
FLOAT [REL_OPERATOR FLOAT]...
REL_OPERATOR:
< <=l =1>1>1!=
INT:
FLOAT (note: any syntax which requires a
integer INT will accept a FLOAT
and it will be truncated to an
integer internally by POV-Ray) .

Note: FLOATIDENTIFIERSare identifiers previously declared to have float values. DRE_ITEM
syntax is actually a vector or color operator but it returns a float value. See "Vector Operators” or "Color
Operators” for details. APARRAYIDENTIFIER s just the identifier name of a previously declared array,

it does not include the] braces nor the index. The syntax 8FRINGis in the section "Strings”.

Literals

Float literals are represented by an optional sign ("+” or "-") digits, an optional decimal point and more
digits. If the number is an integer you may omit the decimal point and trailing zero. If it is all fractional
you may omit the leading zero. POV-Ray supports scientific notation for very large or very small numbers.

2.1 Language Basics 37

The following are all valid float literals:

-2.0 -4 34 3.4e6 2e-5 .3 0.6

Identifiers

Float identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

FLOAT_DECLARATION:
#declare IDENTIFIER = EXPRESSION;
#local IDENTIFIER = EXPRESSION;

WherelDENTIFIER s the nhame of the identifier up to 40 characters long BKEERESSIONs any valid
expression which evaluates to a float value.

Note: there should be a semi-colon after the expression in a float declaration. If omitted, it generates a
warning and some macros may not work properly. See ” #declare vs. #local” for information on identifier
scope.

Here are some examples.

#declare Count = 0

#declare Rows = 5.3;
#declare Cols = 6.15;
#declare Number = Rows*Cols;

#declare Count = Count+l;

As the last example shows, you can re-declare a float identifier and may use previously declared values
in that re-declaration. There are several built-in identifiers which POV-Ray declares for you. See "Float
Expressions: Built-in Variables” for details.

Operators

Arithmetic expressions: Basic math expressions can be created from float literals, identifiers or functions
using the following operators in this order of precedence...

() expressions in parentheses first

+A -A A unary minus, unary plus and logical "not”
A*B A/B multiplication and division
A+B A-B addition and subtraction

Table 2.1: Arithmetic expressions

Relational, logical and conditional expressions may also be created. However there is a restriction that

these types of expressions must be enclosed in parentheses first. This restriction, which is not imposed by
most computer languages, is necessary because POV-Ray allows mixing of float and vector expressions.
Without the parentheses there is an ambiguity problem. Parentheses are not required for the unary logical
not operator "!” as shown above. The operators and their precedence are shown here.

Relational expressions:The operands are arithmetic expressions and the result is always boolean with 1
for true and O for false. All relational operators have the same precedence.

Logical expressions:The operands are converted to boolean values of O for false and 1 for true. The result
is always boolean. All logical operators have the same precedence.

Note: these are not bit-wise operations, they are logical.

38 Scene Description Language

(A < B) Ais less than B
(A <= B) A'is less than or equal to B
(A = B) A is equal to B (actually abs(A-B)EPSILON)
(A !'=B) A is not equal to B (actually abs(A-B=EPSILON)
(A >= B) A'is greater than or equal to B
(A > B) A is greater than B
Table 2.2: Relational expressions
(A & B) true only if both A and B are true, false otherwise
(A | B) true if either A or B or both are true

Table 2.3: Logical expressions

Conditional expressions: The operand C is boolean while operands A and B are any expressions. The
result is of the same type as A and B.

(C? A : B) if Cthen Aelse B

Table 2.4: Conditional expressions

Assuming the various identifiers have been declared, the following are examples of valid expressions...

1+2+3 2*%5 1/3 Row*3 Col*5
(Offset-5)/2 This/That+Other*Thing
((This<That) \& (Other>=Thing)?Foo:Bar)

Expressions are evaluated left to right with innermost parentheses evaluated first, then unary +, - or !, then
multiply or divide, then add or subtract, then relational, then logical, then conditional.

Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls
consist of a keyword which specifies the name of the function followed by a parameter list enclosed in
parentheses. Parameters are separated by commas. For example:

keyword (paraml, param2)

The following are the functions which return float values. They take one or more float, integer, vector, or
string parameters. Assume thatands are any valid expression that evaluates to a floa;a float which

is truncated to integer internally, s1, s2 etc. are strings, ands, vi, v2 etc. are any vector expressions

an object identifier to a pre-declared object.

abs (2) Absolute value of.. If A is negative, returnsa otherwise returns.
acos (A) Arc-cosine ofa. Returns the angle, measured in radians, whose cosine is
acosh (A) inverse hyperbolic cosine af

asc(S) Returns an integer value in the range 0 to 255 that is the ASCII value of the first character of the
strings. For example asc ("aBc") is 65 because that is the value of the character "A”.

asin(a) Arc-sine of a. Returns the angle, measured in radians, whose sing is
asinh (&) invers hyperbolic sine aof

atan2 (&, B) Arc-tangent of(a/B) . Returns the angle, measured in radians, whose tangentis . Returns
appropriate value evenifis zero. Useitan2 (3, 1) to compute usual atan(A) function.

2.1 Language Basics 39

atanh (3) invers hyperbolic tangent af

ceil(n) Ceiling of a. Returns the smallest integer greater thaRounds up to the next higher integer.
cos (2) Cosine ofa. Returns the cosine of the anglewherer is measured in radians.
cosh (a) The hyperbolic cosine af.

defined (IDENTIFIER) Returns true if the identifier is currently defined,false otherwise. This is
especially useful for detecting end-of-file aftersaead directive because the file identifier is automatically
undefined when end-of-file is reached. See "The #read Directive” for details.

degrees (A) Convert radians to degrees. Returns the angle measured in degrees whose value in radians is
Formula is degrees=A/pi*180.0

dimensions (ARRAYIDENTIFIER) Returns the number of dimensions of a previously declared array
identifier. For example if you d@declare MyArray=array[6][10] then dimensions (MyArray) returns the
value2.

dimension_size (ARRAYIDENTIFIER, FLOAT) Returns the size of a given dimension of a previously
declared array identifier. Dimensions are numbered left-to-right starting with 1. For example if you do
#declare MyArray=array[6][10] then dimension_size (MyArray,2) returns the valueo.

div (a,B) Integer division. The integer part ofa/g).

exp (A) Exponential ofa. Returns the value ok raised to the powera wheree is the base of the natural
logarithm, i.e. the non-repeating value approximately equal to 2.71828182846.

file_exists(s) Attempts to open the file specified by the stringThe current directory and all library
directories specified by thebrary_Path Or +1 options are also searched. See "Library Paths” for detalils.
Returns 1 if successful and if unsuccessful.

floor (&) Floor of a. Returns the largest integer less thaRounds down to the next lower integer.

inside (0,V) It returns either 0.0, when the vectors outside the object, specified by the object-identifier
0, or 1.0 if it is inside.

Note: inside does not accept object-identifiers to non-solid objects.

int (A) Integer part ok. Returns the truncated integer partoRounds towards zero.

log(a) Logarithm ofa. Returns the logarithm bad® of the valuen.

1n(2) Natural logarithm ok. Returns the natural logarithm basef the valuen.

max (3, B, ...) Maximum of two or more float values. Return# a larger thare. Otherwise returns.
min(a,3B,...) Minimum of two or more float values. Returasf a smaller than s. Otherwise returns.

mod (&,B) Value of 2 modulo B. Returns the remainder after the integer division ofs. Formula is
mod=((A/B)-int(A/B))*B

pow (&, B) Exponentiation. Returns the valuemfaised to the power.

Note:For a negative A and a non-integer B the function has no defined return value. The result then may
depend on the platform POV-Ray is compiled on.

radians (2) Convert degrees to radians. Returns the angle measured in radians whose value in degrees is
A. Formula isradians=A*pi/180.0

rand(I) Returns the next pseudo-random number from the stream specified by the positive int¥mer
must call seed() to initialize a random stream before callingand (). The numbers are uniformly dis-
tributed, and have values between andi.0, inclusively. The numbers generated by separate streams are
independent random variables.

40 Scene Description Language

seed (1) Initializes a new pseudo-random stream with the initial seed valii@e number corresponding
to this random stream is returned. Any number of pseudo-random streams may be used as shown in the
example below:

#declare R1 = seed(0);
#declare R2 = seed(12345);
sphere { <rand(Rl), rand(Rl), rand(Rl)>, rand(R2) }

Multiple random generators are very useful in situations where youise) to place a group of objects,
and then decide to usend () in another location earlier in the file to set some colors or place another group
of objects. Without separateand () streams, all of your objects would move when you added more calls
to rand (). This is very annoying.

select (A, B, C [,D]). It can be used with three or four parametersiect compares the first argument
with zero, depending on the outcome it will returt orp. 2,8, ¢, b can be floats or funtions.

When used with three parametersy ik o it will return B, elsec (a >= 0).

When used with four parameters aif< o it will return B. If 2 = o it will return c. Else it will returnp (a

> 0).

Example:
If 2 has the consecutive values -2, -1, 0, 1, and 2 :
// A= -2-1012
select (A, -1, 0, 1) //returns -1 -1 01 1
select (A, -1, 1) //returns -1 -1111

sin(a) Sine ofa. Returns the sine of the anglewhere 2 is measured in radians.
sinh (a) The hyperbolic sine of.

stremp (S1,52) Compare string1 to s2. Returns a float value zero if the strings are equal, a positive
number ifs1 comes aftes2 in the ASCII collating sequence, else a negative number.

strlen(s) Length ofs. Returns an integer value that is the number of characters in the string
sqrt (A) Square root of.. Returns the value whose squareas

tan(a) Tangent of. Returns the tangent of the anglewvherer is measured in radians.

tanh (2) The hyperbolic tangent of

val(s) Convert strings to float. Returns a float value that is represented by the text in strifigr example
val("123.45") is 123.45 as a float.

vdot (v1,v2) Dot product ofv1 andv2. Returns a float value that is the dot product (sometimes called scalar
product) ofvi with v2. It is directly proportional to the length of the two vectors and the cosine of the
angle between them. Formulavdot=V1.x*V2.x + V1.y*V2.y + V1.z2*V2.5ee the animated demo scene
veCcT2.Pov for an illustration.

vlength (V) Length ofv. Returns afloat value that is the length of vectarFormula isvliength=sqrt(vdot(A,
A)). Can be used to compute the distance between two poimtsst=viength (v2-v1).

See section "Vector Functions” and section "String Functions” for other functions which are somewhat
float-related but which return vectors and strings. In addition to the above built-in functions, you may also
define your own functions using theacro directive. See the section "User Defined Macros” for more
details.

Built-in Constants

Constants are:

2.1 Language Basics 41

FLOAT_BUILT-IN_IDENT:
false | no | off | on | pi | true | yes

The built-in constants never change value. They are defined as though the following lines were at the start
of every scene.

#declare pi = 3.1415926535897932384626;
#declare true = 1;

#declare yes = 1;

#declare on = 1
#declare false
#declare no = 0;
#declare off = 0;

0;

The built-in float identifierpi is obviously useful in math expressions involving circles. The built-in float
identifiers on, off, yes, no, true, andfalse are designed for use as boolean constants.

The built-in float constatsn, off, yes, no, true, andfalse are most often used as boolean values with
object modifiers or parameters suchsasrm, hollow, hierarchy, smooth, media_attenuation, andmedia_-
interaction. Whenever you see syntax of the forayword [Bool] , if you simply specify the keyword
without the optional boolean then it assumesgword on. You need not use the boolean but for readability

it is a good idea. You must use one of the false booleans or an expression which evaluates to zero to turn it
off.

Note: some of these keywords ase by default, if no keyword is specified.

For example:
object { MyBlob } // sturm defaults off, but
// hierarchy defaults on
object { MyBlob sturm } // turn sturm on
object { MyBlob sturm on } // turn sturm on
object { MyBlob sturm off } // turn sturm off
object { MyBlob hierarchy } // does nothing, hierarchy was

// already on
object { MyBlob hierarchy off } // turn hierarchy off

Built-in Variables

There are several built-in float variables. You can use them to specify values or to create expressions but
you cannot re-declare them to change their values.

Clock-related are:

FLOAT_BUILT-IN_IDENT:
clock | clock_delta | clock_on | final_clock | final_frame
frame_number | initial_clock | initial frame

These keywords allow to use the values of the clock which have been set in the command line switch options
(or INI-file). They represent float or integer values, read from the animation options. You cannot re-declare
these identifiers.

clock

The built-in float identifierz1ock is used to control animations in POV-Ray. Unlike some animation pack-
ages, the action in POV-Ray animated scenes does not depend upon the integer frame numbers. Rather you
should design your scenes based upon the float identifieek. For non-animated scenes its default value

is 0 but you can set it to any float value using the INI file optianck=n.n or the command-line switch

+kn.nto pass a single float value your scene file.

42 Scene Description Language

Other INI options and switches may be used to animate scenes by automatically looping through the ren-
dering of frames using various values fafiock. By default, the clock value is O for the initial frame and 1

for the final frame. All other frames are interpolated between these values.

For example if your object is supposed to rotate one full turn over the course of the animation you could
specifyrotate 360*clock*y. Then as clock runs from 0 to 1, the object rotates about the y-axis from 0 to
360 degrees.

Although the value of c1ock will change from frame-to-frame, it will never change throughout the parsing
of a scene.

clock _delta

The built-in float identifierc1ock_delta returns the amount of time between clock values in animations in
POV-Ray. While most animations only need the clock value itself, some animation calculations are easier if
you know how long since the last frame. Caution must be used when designing such scenes. If you render a
scene with too few frames, the results may be different than if you render with more frames in a given time
period. On non-animated scenesyck_delta defaults to 1.0. See section "Animation Options” for more
details.

clock _on
With this identifier the status of the clock can be checked: 1 is on, 0 is off.

#if (clock_on=0)

//stuff for still image
telse

//some animation
#end

frame _number

If you rather want to define the action in POV-Ray animated scenes depending upon the integer frame
numbers, this identifier can be used.

It reads the number of the frame currently being rendered.

#if (frame_number=1)

//stuff for first image or frame
#end
#if (frame_number=2)

//stuff for second image or frame
#end
#if (frame_number=n)

//stuff for n th image or frame
#end

initial _clock
This identifier reads the value set through the INI file optieftial_clock=n.nor the command-line switch
+KIN.N

final _clock
This identifier reads the value set through the INI file optiofa1_clock=n.nor the command-line switch
+KFN.N.

initial _frame
This identifier reads the value set through the INI file optiential rFrame=n or the command-line switch
+KFIN.

final _frame
This identifier reads the value set through the INI file opti@Ral_rrame=n or the command-line switch
+KFFN.

Note: that these values are the ones actually used. When the option 'cyclic animation’ is set, they could be
different from the ones originally set in the options.

2.1 Language Basics 43

Image-size are:

FLOAT_BUILT-IN_IDENT:
image_width | image_height

image _width
This identifier reads the value set through the INI file optief:h=n or the command-line switckin.

image _height
This identifier reads the value set through the INI file optieryht=n or the command-line switckun.

You could use these keywords to set the camera ratio (up and right vectors) correctly. The viewing angle of
the camera covers the full width of the rendered image. The camera ratio will always follow the ratio of the
image width to height, regardless of the set image size. Use it like this:

up y*image_height
right x*image_width

You could also make some items of the scene dependent on the image size:

#1f (image_width < 300) crand 0.1 #else crand 0.5 #end
or:

image_map {

pattern image_width, image_width { //make pattern resolution
gradient x //dependent of render width
colormap { [0.0 ...] [1.0 ...]}
}
}
Version is:

FLOAT_BUILT-IN_IDENT:
version

The built-in float variable version contains the current setting of the version compatibility option. Al-
though this value defaults to the current POV-Ray version number, the initial value:efion may be set
by the INI file option version=n.nor by the +vvn.ncommand-line switch. This tells POV-Ray to parse
the scene file using syntax from an earlier version of POV-Ray.

The INI option or switch only affects the initial setting. Unlike other built-in identifiers, you may change
the value ofversion throughout a scene file. You do not useclare to change it though. Thetversion
language directive is used to change modes. Such changes may occur several times within scene files.

Together with the built-in version identifier the #version directive allows you to save and restore the
previous values of this compatibility setting. The newcal identifier option is especially useful here. For
example suppose/stuff.inc is in version 1 format. At the top of the file you could put:

#local Temp_Vers = version; // Save previous value

#version 1.0; // Change to 1.0 mode
. // Version 1.0 stuff goes here...
#version Temp_Vers; // Restore previous version

Note: there should be a semi-colon after the float expressior¥aaion directive. If omitted, it generates
a warning and some macros may not work properly.

2.1.4 Vector Expressions

POV-Ray often requires you to specifyvactor A vector is a set of related float values. Vectors may
be specified using literals, identifiers or functions which return vector values. You may also create very

44 Scene Description Language

complex vector expressions from combinations of any of these using various familiar operators.

POV-Ray vectors may have from two to five components but the vast majority of vectors have three com-
ponents. Unless specified otherwise, you should assume that the word "vector” means a three component
vector. POV-Ray operates in a 3D X, Y, z coordinate system and you will use three component vectors to
specify x, y and z values. In some places POV-Ray needs only two coordinates. These are often specified
by a 2D vector called arJV vector Fractal objects use 4D vectors. Color expressions use 5D vectors but
allow you to specify 3, 4 or 5 components and use default values for the unspecified components. Unless
otherwise noted, all 2, 4 or 5 component vectors work just like 3D vectors but they have a different number
of components.

The syntax for combining vector literals into vector expressions is almost identical to the rules for float
expressions. In the syntax for vector expressions below, some of the syntax items are defined in the section
for float expressions. See "Float Expressions” for those definitions. Detailed explanations of vector-specific
issues are given in the following sub-sections.

VECTOR:
NUMERIC_TERM [SIGN NUMERIC_TERM]
NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]
NUMERIC_FACTOR:
VECTOR_LITERAL
VECTOR_IDENTIFIER |
SIGN NUMERIC_FACTOR |
VECTOR_FUNCTION
VECTOR_BUILT-IN_IDENT |
(FULL_EXPRESSION) |
! NUMERIC_FACTOR |
FLOAT
VECTOR_LITERAL:
< FLOAT , FLOAT , FLOAT >
VECTOR_FUNCTION:
min_extent (OBJECT_IDENTIFIER) |
max_extent (OBJECT_IDENTIFIER)
trace (OBJECT_IDENTIFIER, VECTOR, VECTOR, [VECTOR_IDENTIFIER]) |
vaxis_rotate(VECTOR , VECTOR , FLOAT) |
vcross (VECTOR , VECTOR) |
vrotate(VECTOR , VECTOR) |
vnormalize (VECTOR) |
vturbulence (FLOAT, FLOAT, FLOAT, VECTOR)
VECTOR_BUILT-IN_IDENT:
x|lylzl]lt]lulvw

Note: VECTORIDENTIFIERSare identifiers previously declared to have vector values.

Literals

Vector literals consist of two to five float expressions that are bracketed by angle brackets-. The
terms are separated by commas. For example here is a typical three component vector:

< 1.0, 3.2, -5.4578 >

The commas between components are necessary to keep the program from thinking that the 2nd term is the
single float expressiors.2-5.4578 and that there is no 3rd term. If you see an error message such as "Float
expected but*’ found instead” then you probably have missed a comma.

Sometimes POV-Ray requires you to specify floats and vectors side-by-side. The rules for vector expres-
sions allow for mixing of vectors with vectors or vectors with floats so commas are required separators

2.1 Language Basics 45

whenever an ambiguity might arise. For example, 2, 3>-4 evaluates as a mixed float and vector ex-
pression where 4 is subtracted from each component resulting-in, -2, -1>. However the comma in
<1,2,3>,-4 means this is a vector followed by a float.

Each component may be a full float expression. For example
<This+3, That/3, 5*0Other_Thing>

is a valid vector.

Identifiers

Vector identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

VECTOR_DECLARATION:
#declare IDENTIFIER = EXPRESSION; |
#local IDENTIFIER = EXPRESSION;

WherelDENTIFIER s the name of the identifier up to 40 characters long BKEERESSIONs any valid
expression which evaluates to a vector value.

Note: there should be a semi-colon after the expression in a vector declaration. If omitted, it generates a
warning and some macros may not work properly. See ” #declare vs. #local” for information on identifier
scope.

Here are some examples....

#declare Here = <1,2,3>;

#declare There = <3,4,5>;

#declare Jump = <Foo*2,Bar-1,Bob/3>;
#declare Route = There-Here;
#declare Jump = Jump+<1,2,3>;

Note: you invoke a vector identifier by using its name without any angle brackets. As the last example
shows, you can re-declare a vector identifier and may use previously declared values in that re-declaration.
There are several built-in identifiers which POV-Ray declares for you. See section "Built-in Vector Identi-
fiers” for details.

Operators

Vector literals, identifiers and functions may also be combined in expressions the same as float values. Op-
erations are performed on a component-by-component basis. For example> + <4, 5, 6> evaluates

the same as1+4,2+5, 3+6> 0Or <5, 7, 9>. Other operations are done on a similar component-by-component
basis. For example<1,2,3> = <3,2,1>) evaluates te:0, 1, 0> because the middle components are equal

but the others are not. Admittedly this is not very useful but it is consistent with other vector operations.

Conditional expressions such as 2 2 : B) require that c is a float expression batands may be vector
expressions. The result is that the entire conditional evaluates as a valid vector. For examm@ad Bar
are floats thenroo < Bar ? <1,2,3> : <5,6,7>) evaluates as the vectern, 2, 3> if Foo is less than
Bar and evaluates as<s, 6, 7> otherwise.

You may use the dot operator to extract a single float component from a vector. Suppose the identifier

was previously defined as a vector. Thent.x is a float value that is the first component of this x, vy, z
vector. Similarlyspot .y andspot .z reference the 2nd and 3rd componentspht was a two component

UV vector you could usepot .u andspot . v to extract the first and second component. For a 4D vector use
.x, .y, .z, and.t to extract each float component. The dot operator is also used in color expressions which
are covered later.

46 Scene Description Language

Operator Promotion

You may use a lone float expression to define a vector whose components are all the same. POV-Ray knows
when it needs a vector of a particular type and will promote a float into a vector if need be. For example
the POV-Rayscale statement requires a three component vector. If you speeifye 5 then POV-Ray
interprets this ascale <5,5,5> which means you want to scale by 5 in every direction.

Versions of POV-Ray prior to 3.0 only allowed such use of a float as a vector in various limited places such
asscale and turbulence. However you may now use this trick anywhere. For example...

box{0,1} // Same as box{<0,0,0>,<1,1,1>}
sphere{0,1} // Same as sphere{<0,0,0>,1}

When promoting a float into a vector of 2, 3, 4 or 5 components, all components are set to the float value,
however when promoting a vector of a lower number of components into a higher order vector, all remaining
components are set to zero. For example if POV-Ray expects a 4D vector and you spkeifgsult is
<9,9,9,9> but if you specify<7, 6> the result is <7, 6,0, 0>.

Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls
consist of a keyword which specifies the name of the function followed by a parameter list enclosed in
parentheses. Parameters are separated by commas. For example:

keyword (paraml, param?)

The following are the functions which return vector values. They take one or more float, integer, vector, or
string parameters. Assume thatandg are any valid expression that evaluates to a vector;rascany
float expression.

min_extent (OBJECT_IDENTIFIER), max,extent(OBJECT,IDENTIFIER).-rhemin,extent andmax_extent return
the minimum and maximum coordinates of a #declared object’s bounding box (Cornerl and Corner2), in
effect allowing you to find the dimensions and location of the object.

Note: this is not perfect, in some cases (such as CSG intersections and differences or isosurfaces) the
bounding box does not represent the actual dimensions of the object.

Example:
#declare Sphere =
sphere {

<0,0,0>, 1

pigment { rgb <1,0,0> }
}
#declare Min = min_extent (Sphere)
#declare Max = max_extent (Sphere)
object { Sphere }
box {
Min, Max
pigment { rgbf <1,1,1,0.5> }

’
’

}

trace (OBJECT_IDENTIFIER, A, B, [VECTOR_IDENTIFIER]). trace helps you finding the exact location of a

ray intersecting with an object’s surface. It traces a ray beginning at thezpioithe direction specified by

the vectom. If the ray hits the specified object, this function returns the coordinate where the ray intersected
the object. If not, it returnsco, 0, 0>. If a fourth parameter in the form of a vector identifier is provided,

the normal of the object at the intersection point (not including any normal perturbations due to textures) is
stored into that vector. If no intersection was found, the normal vector is reset tQ0>.

2.1 Language Basics 47

Note: Checking the normal vector feto, 0, 0> is the only reliable way to determine whether an intersection
has actually occurred, intersections can and do occur anywhere, includingoab >.

Example:

#declare MySphere = sphere { <0, 0, 0>, 1 }
#declare Norm = <0, 0, 0>;
#declare Start = <1, 1, 1>;
#declare Inter=
trace (MySphere, Start, <0, 0, 0>-Start, Norm);
object {
MySphere
texture {
pigment { rgb 1}
}
}
#if (vlength (Norm) !=0)
cylinder {
Inter, Inter+Norm, .1
texture {
pigment {color red 1}
}
}
#end

vaxis_rotate (A,B,F) Rotatea about B by r. Given the x,y,z coordinates of a point in space designated
by the vectomr, rotate that point about an arbitrary axis defined by the vectBiotate it through an angle
specified in degrees by the float valtieThe result is a vector containing the new Xx,y,z coordinates of the
point.

vcross (&,B) Cross product of ands. Returns a vector that is the vector cross product of the two vectors.
The resulting vector is perpendicular to the two original vectors and its length is equal to the area of the
parallelogram defined by them. Or to put in an other way, the cross product can also be formulated as:
AxB = |A| * |B| * sin(angle(A,B)) * perpendicular _unit _vector(A,B) So the length of

the resulting vector is proportional to the sine of the angle betwesrds. See the animated demo scene
vecT2.pov for an illustration.

vnormalize (2) Normalize vector a. Returns a unit length vector that is the same directiorraBormula
is vnormalize(A)=Al/vlength(A)

Note:vnormalize (<0,0,0>) will result in an error.

vrotate (3,B) Rotate a about origin by B. Given the x,y,z coordinates of a point in space designated by
the vector, rotate that point about the origin by an amount specified by the vec®otate it about the

x-axis by an angle specified in degrees by the float vatue. Similarly B.y ands.z specify the amount

to rotate in degrees about the y-axis and z-axis. The result is a vector containing the new Xx,y,z coordinates
of the point.

vturbulence (Lambda, Omega, Octaves, A) Turbulence vector at A. Given the x,y,z coordinates of a point

in space designated by the vector A, return the turbulence vector for that point based on the numbers given
for Lambda, Omega and Octaves. For the meaning of the parameters, check out the Lambda, Omega and
Octaves sections.

The amount of turbulence can be controlled by multiplying the turbulence vector by a multiple. The
frequency at which the turbulence vector changes can be controlled by multiplying A with a multiple.
The turbulence vector returned by the function can be added to the original point A to obtain a turbulated
version of the point A. Example :

#declare MyVector = MyVector + Amount * vturbulence(2, 0.5, 6, MyVector * Frequency);

See section "Float Functions” for other functions which are somewhat vector-related but which return

48 Scene Description Language

floats. In addition to the above built-in functions, you may also define your own functions using:the
directive. See the section "User Defined Macros” for more details.

Built-in Constants

There are several built-in vector identifiers. You can use them to specify values or to create expressions but
you cannot re-declare them to change their values. They are:

VECTOR_BUILT-IN_IDENT:
xlylzltlulyv

All built-in vector identifiers never change value. They are defined as though the following lines were at
the start of every scene.

#declare x = <1, 0, 0>;
#declare y = <0, 1, 0>;
#declare z = <0, 0, 1>;
#declare t = <0, 0, 0, 1>;
#declare u = <1, 0>;
#declare v = <0, 1>;

The built-in vector identifiers, y, and z provide much greater readability for your scene files when used
in vector expressions. For example....

plane { y, 1} // The normal vector is obviously "y".
plane { <0,1,0>, 1} // This is harder to read.
translate 5*x // Move 5 units in the "x" direction.

translate <5,0,0> // This is less obvious.
An expression like*x evaluates to5*<1,0, 0> 0Or <5,0, 0>.

Similarly uandv may be used in 2D vectors. When using 4D vectors you should,ysez, and t and
POV-Ray will promote:, vy, and z to 4D when used where 4D is required.

2.1.5 Specifying Colors

COLOR:
COLOR_BODY |
color COLOR_BODY | (this means the keyword color or
colour COLOR_BODY colour may optionally precede
any color specification)
COLOR_BODY:

COLOR_VECTOR |

COLOR_KEYWORD_GROUP |

COLOR_IDENTIFIER
COLOR_VECTOR:

rgb <3_Term_Vector> |

rgbf <4_Term_Vector> |

rgbt <4_Term_Vector> |

[rgbft] <5_Term Vector>
COLOR_KEYWORD_GROUP :

[COLOR_KEYWORD_ITEM]...
COLOR_KEYWORD_ITEM:

COLOR_IDENTIFIER |

red Red_Amount

blue Blue_Amount

green Green_Amount

filter Filter_ Amount |

2.1 Language Basics 49

transmit Transmit_Amount

Note: COLORIDENTIFIERSare identifiers previously declared to have color values. The 3, 4, and 5
term vectors are usually vector literals but may be vector expressions or floats promoted to vectors. See
"Operator Promotion” and the sections below.

POV-Ray often requires you to specify a color. Colors consist of five values or color components. The
first three are calleded, green, andblue. They specify the intensity of the primary colors red, green and
blue using an additive color system like the one used by the red, green and blue color phosphors on a color
monitor.

The 4th component, called 1ter, specifies the amount of filtered transparency of a substance. Some real-
world examples of filtered transparency are stained glass windows or tinted cellophane. The light passing
through such objects is tinted by the appropriate color as the material selectively absorbs some frequencies
of light while allowing others to pass through. The color of the object is subtracted from the light passing
through so this is called subtractive transparency.

The 5th component, called-ansnit, specifies the amount of non-filtered light that is transmitted through

a surface. Some real-world examples of non-filtered transparency are thin see-through cloth, fine mesh
netting and dust on a surface. In these examples, all frequencies of light are allowed to pass through tiny
holes in the surface. Although the amount of light passing through is diminished, the color of the light
passing through is unchanged.

The color of the object and the color transmitted through the object together contribute 100% of the final
color. So iftransmit is set to 0.9, the transmitted color contributes 90% and the color of the object
contributes only 10%. This is also true outside of the 0-1 range, so for exampfenifnit is set to

1.7, the transmitted color contributes with 170% and the color of the object contributes with minus 70%.
Using transmit values outside of the 0-1 range can be used to create interesting special effects, but does
not correspond to any phenomena seen in the real world. An example:

#version 3.5;
global_settings {assumed_gamma 1.0}
camera {location -2.5*z look_at 0 orthographic}
box {
0,1
texture {
pigment {
gradient y
colour_map {
[0, red 1]
[1, blue 1]
}
}
finish{ambient 1}
}
texture {
pigment {
gradient x
colour_map {
[0, rgb 0.5 transmit -3]
[1, rgb 0.5 transmit 3]
}
}
finish{ambient 1}
}
translate <-0.5,-0.5,0>
scale <3,2,1>

50 Scene Description Language

When using the ransnit value for special effects, you can visualize it this way: Thesmit value means
"contrast”. 1.0 is no change in contrast, 0.5 is half contrast, 2.0 is double contrast and so on. You could say
thattransmit "scales” the colors. The color of the object is the "center value”. All colors will get closer to
the "center value” it ransmit is between 0 and 1, and all colors will spread away from the "center value”

if transmit is greater than 1. Hransmit is negative the colors will be inverted around the "center value”.
Rgb 0.5 is common to use as "center value”, but other values can be used for other effects. The "center
value” really is a color, and non-gray colors can be used for interesting effects. The red, green and blue
components are handled separately.

Note: early versions of POV-Ray used the keywangha to specify filtered transparency. However that
word is often used to describe non-filtered transparency. For this reasenis no longer used.

Each of the five components of a color are float values which are normally in the range between 0.0 and
1.0. However any values, even negatives may be used.

Under most circumstances the keywardor is optional and may be omitted. We also support the British

or Canadian spellingcolour. Colors may be specified using vectors, keywords with floats or identifiers.
You may also create very complex color expressions from combinations of any of these using various
familiar operators. The syntax for specifying a color has evolved since POV-Ray was first released. We
have maintained the original keyword-based syntax and added a short-cut vector notation. Either the old or
new syntax is acceptable however the vector syntax is easier to use when creating color expressions.

The syntax for combining color literals into color expressions is almost identical to the rules for vector and
float expressions. In the syntax for vector expressions, some of the syntax items are defined in the section
for float expressions. See "Float Expressions” for those definitions. Detailed explanations of color-specific
issues are given in the following sub-sections.

Color Vectors

The syntax for a color vector is...

COLOR_VECTOR:
rgb <3_Term_Vector> |
rgbf <4_Term Vector> |
rgbt <4_Term_Vector> |
[rgbft] <5_Term Vector>

...where the vectors are any valid vector expressions of 3, 4 or 5 components. For example
color rgb <1.0, 0.5, 0.2>

This specifies a color whose red component is 1.0 or 100% of full intensity. The green componentis 0.5 or
50% of full intensity and the blue component is 0.2 or 20% of full intensity. Although the filter and transmit
components are not explicitly specified, they exist and are set to their default values of O or no transparency.

The rgbf keyword requires a four component vector. The 4th component is the filter component and the
transmit component defaults to zero. Similarly thebt keyword requires four components where the 4th
value is moved to the 5th component which is transmit and then the filter component is set to zero.

The rgbft keyword allows you to specify all five components. Internally in expressions all five are always
used.

Under some circumstances, if the vector expression is a 5 component expression or there is a color identifier
in the expression then thegbt £ keyword is optional.

2.1 Language Basics 51

Color Keywords

The older keyword method of specifying a color is still useful and many users prefer it.

COLOR_KEYWORD_GROUP:
[COLOR_KEYWORD_ITEM ...
COLOR_KEYWORD_ITEM:
COLOR_IDENTIFIER |
red Red_Amount | blue Blue_Amount | green Green_Amount |
filter Filter_Amount | transmit Transmit_Amount

Although thecolor keyword at the beginning is optional, it is more common to see it in this usage. This
is followed by any of five additional keywords:d, green, blue, filter, OF transmit. Each of these
component keywords is followed by a float expression. For example

color red 1.0 green 0.5

This specifies a color whose red component is 1.0 or 100% of full intensity and the green component is 0.5
or 50% of full intensity. Although the blue, filter and transmit components are not explicitly specified, they
exist and are set to their default values of 0. The component keywords may be given in any order and if
any component is unspecified its value defaults to zer@OLORIDENTIFIER can also be specified but

it should always be first in the group. See "Common Color Pitfalls” for details.

Color ldentifiers

Color identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

COLOR_DECLARATION:
#declare IDENTIFIER = COLOR; |
#local IDENTIFIER = COLOR;

WherelDENTIFIERIs the name of the identifier up to 40 characters long@@d.ORis any valid specifi-
cation.

Note: there should be a semi-colon at the end of the declaration. If omitted, it generates a warning and
some macros may not work properly. See ” #declare vs. #local” for information on identifier scope.

Here are some examples....

#declare White = rgb <1,1,1>;

#declare Cyan = color blue 1.0 green 1.0;
#declare Weird = rgb <Foo*2,Bar-1,Bob/3>;
#declare LightGray = White*0.8;

#declare LightCyan = Cyan red 0.6;

As theLightGray example shows you do not need any color keywords when creating color expressions
based on previously declared colors. The last example shows you may use a color identifier with the
keyword style syntax. Make sure that the identifier comes first before any other component keywords.

Like floats and vectors, you may re-define colors throughout a scene but the need to do so is rare.

Color Operators

Color vectors may be combined in expressions the same as float or vector values. Operations are per-
formed on a component by component basis. For example<1.0,0.5,0.2>%0.9 evaluates the same

as rgb<1.0,0.5,0.2>%<0.9,0.9,0.9> 0Or rgb<0.9,0.45,0.18>. Other operations are done on a similar
component by component basis.

52 Scene Description Language

You may use the dot operator to extract a single component from a color. Suppose the identifier
was previously defined as a color. Thetede.red is the float value of the red component cfhade.
Similarly shade.green, Shade.blue, Shade.filter andshade.transmit extract the float value of the other
color componentsshade. gray returns the gray value of the color vector.

Common Color Pitfalls

The variety and complexity of color specification methods can lead to some common mistakes. Here are
some things to consider when specifying a color.

When using filter transparency, the colors which come through are multiplied by the primary color compo-
nents. For example if gray light such asb<0.9,0.9,0.9> passes through a filter such agbr<1.0,
0.5,0.0,1.0> the result is rgb<0.9,0.45,0.0> with the red let through 100%, the green cut in half from
0.9 to 0.45 and the blue totally blocked. Often users mistakenly specify a clear object by

color filter 1.0

but this has implied red, green and blue values of zero. You have just specified a totally black filter so no
light passes through. The correct way is either

color red 1.0 green 1.0 blue 1.0 filter 1.0
or
color transmit 1.0

In the 2nd example it does not matter what the rgb values are. All of the light passes through untouched.
Another pitfall is the use of color identifiers and expressions with color keywords. For example...

color My_Color red 0.5

this substitutes whatever was the red componen{ ablor with a red component of 0.5 however...
color My_Color + red 0.5

adds 0.5 to the red componentfcolor and even less obvious...
color My_Color * red 0.5

that cuts the red component in half as you would expect but it also multiplies the green, blue, filter and trans-
mit components by zero! The part of the expression after the multiply operator evaluatesfo<o.5,
0,0,0,0> as a full 5 component color.

The following example results in no changetocolor.
color red 0.5 My_Color

This is because the identifier fully overwrites the previous value. When using identifiers with color key-
words, the identifier should be first. Another issue to consider: some POV-Ray syntax allows full color
specifications but only uses the rgb part. In these cases it is legal to use a float where a color is needed. For
example:

finish { ambient 1 }

The ambient keyword expects a color so the valug promoted to<1,1,1,1,1> which is no problem.
However

pigment { color 0.4 }

is legal but it may or may not be what you intended. The: is promoted t6<0.4,0.4,0.4,0.4,0.4> with
the filter and transmit set to 0.4 as well. It is more likely you wanted...

pigment { color rgb 0.4 }

2.1 Language Basics 53

in which case a 3 component vector is expected. Thereforeotheis promoted to<0.4,0.4,0.4,0.0,
0.0> with default zero for filter and transmit. Finally there is another problem which arises when using
color dot operators ifideclare Or #local directives. Consider the directive:

#declare MyColor = rgb <0.75, 0.5, 0.75>;
#declare RedAmt = MyColor.red;

Now redamt should be a float but unfortunately it is a color. POV-Ray looks at the first keyword after the
equals to try to guess what type of identifier you want. It sees the color identifies1or and assumes
you want to declare a color. It then computes the float value as 0.75 then promotes thaginteco. 75,
0.75,0.75,0.75,0.75>. It would take a major rewrite to fix this problem so we are just warning you about
it. Any of the following work-arounds will work properly.

#declare RedAmt = 0.0+MyColor.red;
#declare RedAmt 1.0*MyColor.red;
#declare RedAmt = (MyColor.red);

2.1.6 User-Defined Functions

Some objects allow you to specify functions that will be evaluated while rendering to determine the surface
of these objects. In this respect functions are quite different to macros, which are evaluated at parse time
but do not otherwise affect rendering. Additionally you may call these functions anywhere a Float Function
is allowed, even during parsing. The syntax is identical to Float Expressions, however, only float functions
that apply to float values may be used. Excluded are for exagplen or viength. You find a full list of
supported float functions in the syntax definition below.

FLOAT:

LOGIC_AND [OR LOGIC_AND]
OR:

\
LOGIC_AND:

REL_TERM [AND REL_TERM]
AND:

\&
REL_TERM:

TERM [REL_OPERATOR TERM]
REL_OPERATOR:

< | <= >=1] > =11!=
TERM:
FACTOR [SIGN FACTOR]
SIGN:
+] -
FACTOR:
MOD_EXPRESSION [MULT MOD_EXPRESSION]
MULT:
|/
EXPRESSION:

FLOAT_LITERAL |
FLOAT_IDENTIFIER |
FLOAT_FUNCTION
FLOAT_BUILT-IN_IDENT |
FUNCTION_IDENTIFIER |
(FLOAT) [
IDENTIFIER |
SIGN EXPRESSION
FLOAT_FUNCTION:
abs(FLOAT) | acos(FLOAT) | acosh(FLOAT) | asin(FLOAT)

54 Scene Description Language

asinh(FLOAT) | atan(FLOAT) | atanh(FLOAT) |

atan2 (FLOAT , FLOAT) | ceil(FLOAT) | cos(FLOAT)

cosh(FLOAT) | degrees(FLOAT) | exp(FLOAT) |

floor(FLOAT) | int(FLOAT) | In (Float) | log(FLOAT) |
max (FLOAT , FLOAT, ...) | min(FLOAT , FLOAT, ...) |
mod(FLOAT , FLOAT) | pow(FLOAT , FLOAT) |

radians(FLOAT) | sin(FLOAT) | sinh(FLOAT)

sqgrt (FLOAT) | tan(FLOAT) | tanh(FLOAT) |

select (FLOAT , FLOAT , FLOAT [, FLOAT])
FUNCTION_IDENTIFIER:
#local FUNCTION_IDENTIFIER = function { FLOAT }
#declare FUNCTION_IDENTIFIER = function { FLOAT }
#local FUNCTION_IDENTIFIER = function(IDENT_LIST) { FLOAT } |
#declare FUNCTION_IDENTIFIER = function(IDENT_LIST) { FLOAT } |
#local FUNCTION_IDENTIFIER = function{SPECIAL_FLOAT_FUNCTION} |
#local VECTOR_IDENTIFIER = function{SPECIAL_VECTOR_FUNCTION} |
#local COLOR_IDENTIFIER = function { SPECIAL_COLOR_FUNCTION } |
IDENT_LIST:
IDENT_ITEM [, IDENT_LIST]
IDENT_ITEM:
x|y |l z | ul v | IDENTIFIER
(Note: x = u and y = v)
SPECIAL_FLOAT_FUNCTION:
pattern { PATTERN_BLOCK }
SPECIAL_VECTOR_FUNCTION:
TRANSFORMATION_BLOCK | SPLINE
SPECIAL_COLOR_FUNCTION:
PIGMENT
PATTERN_BLOCK:
PATTERN

Note: Only the above mentioned items can be used in user-defined functions. For example the rand()
function is not available.

All of the above mentioned float functions are described in the section Float Functions.

Sum and Product functions

prod(i, b, n, a) The product function.

itla

Equation 2.1: product function

sum (i, b, n, a) The sum function.

5"

Equation 2.2: sum function

For bothprod andsum: i is any variable name andis any expression, usually dependingiom andn are

2.1 Language Basics 55

also any expression.
Example:

#declare factorial = function(C) { prod(i, 1, C, i) }
#declare A = factorial(5);

The first parameter is the name of the iteration variable. The second is the initial value expression and the
third is the final value expression. Those may not depend on the iteration variable but the iteration variable
may still be used inside those two expressions (because it happens to already have been defined) but its
value is undefined. The last expression is the actual expression which will be iterated through. It may use
any variable in scope.

The scope of an iteration variable is the sequence operation function. That is, a iteration variable is only
defined when used inside then/prod function. Of coursesum/prod functions may be nested. However,
there is one limit of a maximum of 56 local variable defined simultaneously, which essentially means that
in any combinatiorsum/prod functions cannot be nested deeper than 56 levels.

The iteration variable is incremented by one for each step, but its initial and final value may be any value.
The iteration will be continued as long as the iteration value is less or equal to the final value.

Note: because the iteration value is a floating-point variable, adding one will add a certain bias in a long
iterations and thus the floating-point precision will be an issue in such a case and needs to be considered by
allowing a reasonable error for the final value!

If the expression to be added has a negative sign it will of course in effect be substracted. Thus changing
the sign will allow to generate negative values in the sum function. Equally multiplying &pression
effectively creates a division when used in the prod function.

Obviously to work in the first place the initial value of the result is the neutral element of the operation.
That is, a sum calculation starts withtand a product calculation starts withust like it is assumed in the
sum and product functions in regular’ math.

It should be noted that mathematically either sum or product are redundant because:
loglO(prod(i, b, n, a)) = sum(i, b, n, loglO(a))

which implies a sum can be represented as a product and vice versa, observing the usual mathematical
constraints of logarithms, of course. However, as logarithms and their inverse (powers) are slow to compute
both are provided...

Functions and Macros

You can use macros in functions, but the macros will be called only once when the function is defined, not
every time the function is called. You cannot pass function variables to the macros.

You can pass functions to macros, how to do this is best explained by an example:

#macro Foo(Bar, X)
#declare Y = Bar(X);
#declare 7 = Bar(Y);

#end

#declare FUNC=function (n) {n+2}
Foo (FUNC, 1)

#debug str(Y,5,5)

#debug "n"

#debug str(z,5,5)
#debug "n"

56 Scene Description Language

Declaring User-Defined Float Functions

You declare a user defined function using #heclare or #1ocal directives. By default a function takes
three parameters and you do not have to explicitly specify the parameter names. The default three parame-
ters arex, y andz. For example:

#declare foo = function { x +y * z }
If you need fewer or more parameters you have to explicitly specify the parameter list.

Note: x andu as well asy andv are equivalent so you may not specify both parameter names. You may
not specify two or more parameters with the same name either. Doing so may result in a parse error or
undefined function results.

The following are valid functions with parameters:

#declare foo2 = function(x, y, z) { x +y * z }

#declare foo3 = function(kl, k2, z, y) { x + v * z + k1l * y + k2 }
#declare foo4 = function(h) { h * h + h }

#declare foo4 = function(u, v) { x +y * v } //=u + v*v

#declare food4 = function(x, v, z) {u+y *v+ 2z} //=x+vrv + z

Limits:
* The minimum number of parameters per function is 1.
» The maximum number of allowed parameters per function is 56.
» The maximum number afunct ion blocks per scene is 1048575.

» The maximum number of operators per function is about 200000. Individual limits will be different
depending on the types of operators used in the function.

* The maximum depth for nesting functions is 1024.

* The maximum number of constants in all functions 1048575.
Note: Redeclaring functions, directly, is not allowed. The way to do this isitef it first.
There is one special float function type. You may declasecaern function.

Note: the syntax is identical to that of patterns, however, you may not specify colors. Its result is always a
float and not a color vector, as returned by a function containing a pigment.

#declare foo = function {
pattern {
checker
}
}

Note: the number of parameters of special function types is determined automatically, so you do not need
to specify parameter names.

Declaring User-Defined Vector Functions

Right now you may only declare vector functions using one of the special function types. Supported types
aretransform andspline functions. For example:

#declare foo = function {
transform {
rotate <90, 0, 0>
scale 4

2.1 Language Basics 57

#declare myvector = foo(4, 3, 7);

#declare foo2 = function {
spline {
linear_spline
0.0, <0,0,0>
0.5, <1,0,0>
1.0, <0,0,0>

#declare myvector2 = f002(0.7);

Function splines take the vector size into account. That is, a function containing a spline with five com-
ponents will also return a five component vector (aka a color), a function containing a spline with two
components will only return a two component vector and so on.

Note: the number of parameters of special function types is determined automatically, so you do not need
to specify parameter names.

Declaring User-Defined Color Functions

Right now you may only declare color functions using one of the special function types. The only supported
type is thepigment function. You may use every valigi gment. This is a very simple example:

#declare foo = function {
pigment {
color red 1

#declare Vec = foo(l,2,3)
An example using a pattern:

#declare foo = function ({
pigment {
crackle
color_map {
[0.3, color Red]
[1.0, color Blue]

#declare Val = foo(2,3,4) .gray

Note: the number of parameters of special function types is determined automatically, so you do not need
to specify parameter names.

Internal Pre-Defined Functions

Several functions are pre-defined. These internal functions can be accessed through the "functions.inc”, so
it should be included in your scene.

58 Scene Description Language

The number of required parameters and what they control are also given in the include file, but the
"functions.inc” chapter in the "Standard Include File” section gives more information.

2.1.7 Strings

The POV-Ray language requires you to specify a string of characters to be used as a file name, text for
messages or text for a text object. Strings may be specified using literals, identifiers or functions which
return string values. See "String Functions” for details on string functions. Although you cannot build
string expressions from symbolic operators such as are used with floats, vectors or colors, you may perform
various string operations using string functions. Some applications of strings in POV-Ray allow for non-
printing formatting characters such as newline or form-feed.

STRING:
STRING_FUNCTION |
STRING_IDENTIFIER |
STRING_LITERAL STRING_LITERAL:
"up to 256 ASCII characters"
STRING_FUNCTION:
str(FLOAT , INT , INT) |

concat (STRING , STRING , [STRING ,...]) | chr(INT) |
substr(STRING , INT , INT) | strupr(STRING) |
strlwr(STRING) | vstr(INT, VECTOR, STRING, INT, INT)

String Literals

String literals begin with a double quote mark ™ which is followed by up to 256 characters and are
terminated by another double quote mark. You can change the character set of strings usiagathe
settings charset option. The following are all valid string literals:

"Here” "There” "myfile.gif” "textures.inc”

Note: if you need to specify a quote mark in a string literal you must precede it with a backslash.
Example

"Joe said \"Hello\" as he walked in."
is converted to

Joe said "Hello" as he walked in.
If you need to specify a backslash, you will have to specify two. For example:

"This is a backslash \\ and this is two \\\\"
Is converted to:
This is a backslash \ and this is two \\

Windows users need to be especially wary about this as the backslash is also the windows path separator.
For example, the following code does not produce the intended result:

#declare DisplayFont = "c:\windows\fonts\lucon.ttf"
text { ttf DisplayFont "Hello", 2,0 translate y*1.50 }

New users might expect this to create a text object using the fonwiiedows\fonts\lucon.ttf". Instead, it
will give an error message saying that it cannot find the font file "c:windowsontslucon.ttf”.

The correct form of the above code is as follows:

2.1 Language Basics 59

#declare DisplayFont = "c:\\windows\\fonts\\lucon.ttf"
text { ttf DisplayFont "Hello", 2,0 translate y*1.50 }

The escaping of backslashes occurs in all POV-Ray string literals. There are also other formatting codes
such asn for new line. See "Text Formatting” for details.

String Identifiers

String identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

STRING_DECLARATION:
#declare IDENTIFIER = STRING |
#local IDENTIFIER = STRING

WherelDENTIFIERIs the name of the identifier up to 40 characters long 8MRINGis any valid string
specification.

Note: unlike floats, vectors, or colors, there need not be a semi-colon at the end of the declaration. See
"#declare vs. #local” for information on identifier scope.

Here are some examples...

#declare Font_Name = "ariel.ttf"
#declare Inc_File = "myfile.inc"
#declare Name = "John"

#declare Name = concat (Name," Doe")

As the last example shows, you can re-declare a string identifier and may use previously declared values in
that re-declaration.

String Functions

POV-Ray defines a variety of built-in functions for manipulating floats, vectors and strings. Function calls
consist of a keyword which specifies the name of the function followed by a parameter list enclosed in
parentheses. Parameters are separated by commas. For example:

keyword (paraml, param2)

The following are the functions which return string values. They take one or more float, integer, vector, or
string parameters. Assume thatis any valid expression that evaluates to a float;r, andr are floats
which are truncated to integers internallysi, s2 etc are strings.

chr (B) Character whose character valuesisReturns a single character string. The character value of
the character is specified by an integawhich must be in the range 0 to 65535 if you specifierset

ut£8 in theglobal settings and 0 to 127 if you specifiecharset ascii. Refer to your platform specific
documentation if you specifiecharset sys. For exampleshr (70) is the string "F”. When rendering text
objects you should be aware that the characters rendered are dependent on the (TTF) font being used.

concat (81,82,...) Concatenate stringsi and s2. Returns a string that is the concatenation of all
parameter strings. Must have at least 2 parameters but may have more. For example:

concat ("Value is ", str(A,3,1), " inches")
If the float valuea was12.34321 the resultis'value is 12.3 inches" which is a string.

str(a,L,P): Convert float A to a formatted string. Returns a formatted string representation of float value
A. The integer parameterspecifies the minimum length of the string and the type of left padding used if
the string’s representation is shorter than the minimum.isfpositive then the padding is with blanks LIf

60 Scene Description Language

is negative then the padding is with zeros. The overall minimum length of the formatted staiog(i3 If
the string needs to be longer, it will be made as long as necessary to represent the value.

The integer parameter specifies the number of digits after the decimal point.p i§ negative then a
compiler-specific default precision is use. Here are some examples:

str(123.456, 0, 3) "123.456"
str(123.456, 4, 3) "123.456"
str(123.456, 9, 3) " 123.456"
str(123.456,-9, 3) "00123.456"
str(123.456, 0, 2) "123.46"
str(123.456, 0, 0) "123"
str(123.456, 5, 0) " 123"
str(123.000, 7, 2) " 123.00"

str(123.456, 0,-1) "123.456000" (platform specific)

striwr (S) Lower case of. Returns a new string in which all upper case letters in the string S1 are converted
to lower case. The original string is not affected. For examptelwr ("Hello There!") results in "hello
there!”.

substr (S, P, L) Sub-string fronms. Returns a string that is a subset of the characters in parametirting
at the position specified by the integer valuefor a length specified by the integer valueFor example
substr ("ABCDEFGHI", 4,2) evaluates to the string "DE”. P+L-1>strlen(S)an error occurs.

strupr (S) Upper case of. Returns a new string in which all lower case letters in the striage converted
to upper case. The original string is not affected. For exampleipr ("Hello There!") resultsin "HELLO
THERE!".

vstr(N,A,S,L,P) Convert vector A to a formatted string. Returns a formatted string representation of vector
a where the elements of the vector are separated by the string paramiéterinteger parameterspecifies

the amount of dimensions in vectar is autoclipped to the range of 2 to 5, without warning. Specifying a
vectora with more dimensions than given laywill result in an error.

The integer parameterspecifies the minimum length of the string and the type of left padding used if the
string’s representation is shorter than the minimum. The integer pararmsgtecifies the number of digits
after the decimal point. If is negative then a compiler-specific default precision is use. The function of
andp is the same as is:r. Here are some examples:

vstr(2, <1,2>, ", ", 0,1) "1.0, 2.0"

vstr(5, <1,2,3,4,5>, ", ", 0,1) "1.0, 2.0, 3.0, 4.0, 5.0"
vstr(l, 1, ", ", 0,1) "1.0, 1.0"

vstr(2, 1, ", ", 0,1) "1.0, 1.0"

vstr(5, 1, ", ", 0,1) "1.0, 1.0, 1.0, 1.0, 1.0"
vstr(7, 1, ", ", 0,1) "1.0, 1.0, 1.0, 1.0, 1.0"
vstr (3, <1,2>, ", ", 0,1) "1.0, 2.0, 0.0"

vstr(5, <1,2,3>, ", ", 0,1) "1.0, 2.0, 3.0, 0.0, 0.0"
vstr(3, <1,2,3,4>, ", ", 0,1) error

See section "Float Functions” for other functions which are somewhat string-related but which return floats.
In addition to the above built-in functions, you may also define your own functions usingdbe direc-
tive. See the section "User Defined Macros” for more details.

2.1.8 Array Identifiers

You may declare arrays of identifiers of up to five dimensions. Any item that can be declared as an identifier
can be declared in an array.

2.1 Language Basics 61

Declaring Arrays

The syntax for declaring an array is as follows:

ARRAY_DECLARATION:
#declare IDENTIFIER = array[INT][[INT]]..[ARRAY_INITIALIZER] |
#local IDENTIFIER = array[INT]J[[INT]]..[ARRAY_INITIALIZER]
ARRAY_INITIALIZER:
{ARRAY_ITEM, [ARRAY_ITEM,]... }
ARRAY_ITEM:
RVALUE | ARRAY_INITIALIZER

Where IDENTIFIER is the name of the identifier up to 40 characters long and INT is a valid float expression
which is internally truncated to an integer which specifies the size of the array. The op#drRAY-
INITIALIZERIis discussed in the next section "Array Initializers”. Here is an example of a one-dimensional,
uninitialized array.

#declare MyArray = array[10]

This declares an uninitialized array of ten elements. The elements are referengedragio] through
MyArray[9]. As yet, the type of the elements are undetermined. Once you have initialized any element
of the array, all other elements can only be defined as that type. An attempt to reference an uninitialized
element results in an error. For example:

#declare MyArray = array[10]

#declare MyArray[5] = pigment{White} //all other elements must
//be pigments too.

#declare MyArray[2] = normal{bumps 0.2} //generates an error

#declare Thing = MyArray[4] //error: uninitialized array element

Multi-dimensional arrays up to five dimensions may be declared. For example:
#declare MyGrid = array[4][5]

declares a 20 element array of 4 rows and 5 columns. Elements are referenceddraaio] (0] to
MyGrid[3] [4]. Although it is permissible to reference an entire array as a whole, you may not reference just
one dimension of a multi-dimensional array. For example:

#declare MyArray = array[10]

#declare MyGrid = array[4][5]

#declare YourArray = MyArray //this is ok
#declare YourGrid = MyGrid //so is this
#declare OneRow = MyGrid[2] //this is illegal

The #ifdef and#ifndef directives can be used to check whether a specific element of an array has been
declared. For methods to determine the size of an array look in the float sectiatmfagions and
dimension_size

Large uninitialized arrays do not take much memory. Internally they are arrays of pointers so they probably
use just 4 bytes per element. Once initialized with values, they consume memory depending on what you
put in them.

The rules for local vs. global arrays are the same as any other identifier.

Note: this applies to the entire array. You cannot mix local and global elements in the same array. See
"#declare vs. #local” for information on identifier scope.

62 Scene Description Language

Array Initializers

Because it is cumbersome to individually initialize the elements of an array, you may initialize it as it is
created using array initializer syntax. For example:

#include "colors.inc"
#declare FlagColors = array([3] {Red,White,Blue}

Multi-dimensional arrays may also be initialized this way. For example:

#declare Digits =
array[4][10]

{
{7,6
{1,2,
{0,9
{1,1

}

The commas are required between elements and between dimensions as shown in the example.

2.1.9 Spline Identifiers

Splines give you a way to define 'pathways’ through your scenes. You specify a series of points, and POV-
Ray interpolates to make a curve connecting them. Every point along the spline has a numerical value. A
good example of a spline is the path of a moving object: the spline itself would be the path traced out by

the object and the 'parameter’ would be time; as time changes the object’s position moves along the spline.
Therefore, given a time reference you could use this spline to find the position of the object. In fact, splines

are very well suited to animation.

The syntax is:

SPLINE_DECLARATION:
#declare IDENTIFIER =
spline {
[SPLINE_IDENTIFIER] |
[SPLINE_TYPE] |
[Val_1, <Point_1>[,]
Val_2, <Point_2>[,]

Val_n, <Point_n>]

SPLINE_TYPE:
linear_spline | quadratic_spline | cubic_spline | natural_spline

SPLINE_USAGE:
MySpline (Val) | MySpline(Val, SPLINE_TYPE)

The first item gives the type of interpolation.

In alinear_spline, straight lines connect each point.

In aquadratic_spline, @ smooth curve defined by a second-order polynomial connects each point.

IN cubic_spline andnatural_spline, @ sSmooth curve defined by a third-order polynomial connects each
point.

The default islinear_spline.

Following this are a number of float values each followed by a position vector, all separated by commas.
val_1, val_2, etc, are the value of the spline parameter at each specific point. The points need not be in

2.1 Language Basics 63

order of their parameter values. If two points have the same parameter value, the second point will replace
the first. Beyond the range of the lowest and highest parameter values, the spline position is fixed at the
endpoints.

Note: Because of the way cubi&gplines are defined: the first and last points are tangents rather than points
on the spline, cubispline interpolation is only valid between the second and next-to-last points. For all
other spline types, interpolation is valid from the first point to the last point. For t-values outside the valid
range, POV-Ray returns the value of the nearest valid point.

To use a spline, you place the spline identifier followed by the parameter (in parentheses) wherever you
would normally put a vector, similar to a macro. Splines behave mostly like three-dimensional vectors.
Here is an example:

camera { location <0,2,-2> look_at 0 }
light_source { <-5,30,-10> 1 }
#declare MySpline =
spline {

cubic_spline
.25, <0,0,-1>
.00, <1,0,0>
.25, <0,0,1>
.50, <-1,0,0>
.15, <0,0,-1>
.00, <1,0,0>
.25, <0,0,1>

R P O O o O |

}

#declare ctr = 0;
#while (ctr < 1)
sphere {
MySpline(ctr), .25
pigment { rgb <l-ctr,ctr,0> }
}
#declare ctr = ctr + 0.01;
#end

You can also have POV-Ray evaluate a spline as if it were a different type of spline by specifying the type
of spline after the value to interpolate at, for example:

sphere{ <2,0,2>, .25 pigment{rgb MySpline(clock, linear_spline)}}

Splines are 'intelligent’ when it comes to returning vectors. The vector with the most components in the
spline determines the size of the returned vector. This allows vectors from two to five components to be
returned by splines.

Also, function splines take the vector size into account. That is, a function containing a spline with five
components will also return a five component vector (aka a color), a function containing a spline with two
components will only return a two component vector and so on.

Splines and Macros

You can pass functions to macros, how to do this is best explained by an example

#macro Foo(Bar, Val)
#declare Y = Bar(Val).y;
#end

64 Scene Description Language

#declare myspline = spline {
1, <4,5>
3, <5,5>
5, <6,5>

}

Foo (myspline, 2)

#debug str(Y,5,5)
#debug "\n"

2.2 Language Directives

The POV Scene Language contains several statements tzaliguhge directivesvhich tell the file parser

how to do its job. These directives can appear in almost any place in the scene file - even in the middle
of some other statements. They are used to include other text files in the stream of commands, to declare
identifiers, to define macros, conditional, or looped parsing and to control other important aspects of scene
file processing.

Each directive begins with the hash charaetéoften called a number sign or pound sign). It is followed
by a keyword and optionally other parameters.

In versions of POV-Ray prior to 3.0, the use of thisharacter was optional. Language directives could only

be used between objects, camera or lightirce statements and could not appear within those statements.
The exception was thetinclude which could appear anywhere. Now that all language directives can be
used almost anywhere, theharacter is mandatory. The following keywords introduce language directives.

#break #fopen #render
#case #if #statistics
#debug #ifdef #switch
#declare #ifndef #undef
#default #include #version
#else #local #warning
#end #macro #while
#error #range #write
#fclose #read

Table 2.5: All language directives

Earlier versions of POV-Ray considered the keywerax_intersections and the keywordimax _trace -

level to be language directives but they have been moved tgithel _settings statement and should be
placed there without the sign. Their use as a directive still works but it generates a warning and may be
discontinued in the future.

2.2.1 Include Files and the #include Directive

The language allows include files to be specified by placing the line
#include "filename.inc"

at any point in the input file. The filename may be specified by any valid string expression but it usually
is a literal string enclosed in double quotes. It may be up to 40 characters long (or your computer’s limit),
including the two double-quote characters.

2.2 Language Directives 65

The include file is read in as if it were inserted at that point in the file. Using include is almost the same as
cutting and pasting the entire contents of this file into your scene.

Include files may be nested. You may have at most 10 nested include files. There is no limit on un-nested
include files.

Generally, include files have data for scenes but are not scenes in themselves. By convention scene files end
in .pov and include files end withinc.

It is legal to specify drive and directory information in the file specification however it is discouraged
because it makes scene files less portable between various platforms. Use of full lower case is also recom-
mended but not required.

Note: if you ever intend to distribute any source files you make for POV-Ray, remember that some operating
systems have case-sensitive file names).

It is typical to put standard include files in a special sub-directory. POV-Ray can only read files in the
current directory or one referenced by therary_path option or+L switch. See section "Library Paths”.

You may use thelocal directive to declare identifiers which are temporary in duration and local to the
include file in scope. For details see "#declare vs. #local".

2.2.2 The #declare and #local Directives

Identifiers may be declared and later referenced to make scene files more readable and to parameterize
scenes so that changing a single declaration changes many values. There are several built-in identifiers
which POV-Ray declares for you. See section "Float Expressions: Built-in Variables” and "Built-in Vector
Identifiers” for details.

Declaring identifiers

An identifier is declared as follows.

DECLARATION:
#declare IDENTIFIER = RVALUE |
#local IDENTIFIER = RVALUE

RVALUE:
FLOAT; | VECTOR; | COLOR; | STRING | OBJECT | TEXTURE |
PIGMENT | NORMAL | FINISH | INTERIOR | MEDIA | DENSITY |
COLOR_MAP | PIGMENT MAP | SLOPE_MAP | NORMAL_MAP |
DENSITY MAP | CAMERA | LIGHT_SOURCE | FOG | RAINBOW |
SKY_SPHERE | TRANSFORM

WherelDENTIFIERIs the name of the identifier up to 40 characters longRWALUEIs any of the listed
items. They are called that because they are values that can appearighthe the equals sign. The
syntax for each is in the corresponding section of this language reference. Here are some examples.

#declare Rows = 5;

#declare Count = Count+l;

#local Here = <1,2,3>;

#declare White = rgb <1,1,1>;

#declare Cyan = color blue 1.0 green 1.0;

#declare Font_Name = "ariel.ttf"

#declare Rod = cylinder {-5*x,5%x,1}

#declare Ring = torus {5,1}

#local Checks = pigment { checker White, Cyan }
object{ Rod scale y*5 } // not "cylinder { Rod }"

66 Scene Description Language

object {

Ring

pigment { Checks scale 0.5 }
transform Skew

}

Note: that there should be a semi-colon after the expression in all float, vector and color identifier declara-
tions. This semi-colon is introduced in POV-Ray version 3.1. If omitted, it generates a warning and some
macros may not work properly. Semicolons after other declarations are optional.

Declarations, like most language directives, can appear almost anywhere in the file - even within other
statements. For example:

#declare Here=<1,2,3>;

#declare Count=0; // initialize Count
union {
object { Rod translate Here*Count }
#declare Count=Count+1; // re-declare inside union
object { Rod translate Here*Count }
#declare Count=Count+1; // re-declare inside union

object { Rod translate Here*Count }

}

As this example shows, you can re-declare an identifier and may use previously declared values in that
re-declaration.

Note: object identifiers use the generic wrapper statemetifect{ ... }. You do not need to know what
kind of object it is.

Declarations may be nested inside each other within limits. In the example in the previous section you
could declare the entire union as a object. However for technical reasons there are instances where you may
not use any language directive inside the declaration of floats, vectors or color expressions. Although these
limits have been loosened somewhat since POV-Ray 3.1, they still exist.

Identifiers declared withifinacro ... #end blocks are not created at the time the macro is defined. They are
only created at the time the macro is actually invoked. Like all other items inside such a #macro definition,
they are ignored when the macro is defined.

#declare vs. #local

Identifiers may be declared either global usiagclare or local using thetlocal directive.

Those created by thieiec1are directive are permanent in duration and global in scope. Once created, they
are available throughout the scene and they are not released until all parsing is complete or until they are
specifically released usingindef. See "Destroying Identifiers”.

Those created by thelocal directive are temporary in duration and local in scope. They temporarily
override any identifiers with the same name. See "Identifier Name Collisions”.

If #10cal is used inside a#macro then the identifier is local to that macro. When the macro is invoked
and thet1ocal directive is parsed, the identifier is created. It persists untikéhe directive of the macro

is reached. At theend directive, the identifier is destroyed. Subsequent invocations of the macro create
totally new identifiers.

Use of #1ocal within an include file but not in a macro, also creates a temporary identifier that is local
to that include file. When the include file is included and ¢hecal directive is parsed, the identifier is
created. It persists until the end of the include file is reached. At the end of file the identifier is destroyed.
Subsequent inclusions of the file create totally new identifiers.

2.2 Language Directives 67

Use of#local in the main scene file (not in an include file and not in a macro) is identigakt are. For
clarity sake you should not ugeocal in a main file except in a macro.

There is currently no way to create permanent, yet local identifiers in POV-Ray.

Local identifiers may be specifically released early usingiet but in general there is no need to do so.
See "Destroying Identifiers”.

Identifier Name Collisions

Local identifiers may have the same names as previously declared identifiers. In this instance, the most
recent, most local identifier takes precedence. Upon entering an include file or invoking a macro, a new
symbol table is created. When referencing identifiers, the most recently created symbol table is searched
first, then the next most recent and so on back to the global table of the main scene file. As each macro or
include file is exited, its table and identifiers are destroyed. Parameters passed by value reside in the same
symbol table as the one used for identifiers local to the macro.

The rules for duplicate identifiers may seem complicated when multiple-nested includes and macros are
involved, but in actual practice the results are generally what you intended.

Consider this example: You have a main scene file caljedene.pov and it contains

#declare A = 123;
#declare B = rgb<l,2,3>;
#declare C = 0;

#include "myinc.inc"

Inside the include file you invoke a macro caltegiacro (J,K,). It is not important wheremyMacro is
defined as long as it is defined before it is invoked. In this example, it is important that the macro is invoked
from within myinc.inc.

The identifiers, B, and c are generally available at all levels. If eithefyinc.inc Or MyMacro contain a
line such as #declare c=c+1; then the value is changed everywhere as you might expect.

Now suppose insideyinc. inc you do...
#local A = 546;

The main version of is hidden and a newis created. This newis also available insidaiyMacro because
MyMacro iS nested insidemyinc.inc. Once you exityinc. inc, the local a is destroyed and the original
a with its value of123 is now in effect. Once you have created the localnsidenyinc.inc, there is no
way to reference the original globalunless youtundef 2 or exit the include file. Usingundef always
undefines the most local version of an identifier.

Similarly if MyMacro contained...
#local B = box{0,1}

then a new identifier is created local to the macro only. The original valueegEmains hidden but is
restored when the macro is finished. The lacaked not have the same type as the original.

The complication comes when trying to assign a new value to an identifier at one level that was declared
local at an earlier level. Suppose insidginc.inc you do...

#local D = 789;
If you are insidenyinc. inc and you want to increment by one, you might try to do...

#local D =D + 1;

68 Scene Description Language

but if you try to do that insideiyMacro you will create a new which is local tomyvacro and not the o
which is external toryMacro but local to myinc.inc. Therefore you've said "create @yMacro b from the
value ofmyinc.inc’s D plus one”. That's probably not what you wanted. Instead you should do...

#declare D = D + 1;

You might think this creates a newthat is global but it actually increments the myinc.inc versiom.of
Confusing isn'tit? Here are the rules:

1. When referencing an identifier, you always get the most recent, most local version. By "referencing”
we mean using the value of the identifier in a POV-Ray statement or using it on the right of an equals
sign in either atdeclare OF #local.

2. When declaring an identifier using theocal keyword, the identifier which is created or has a new
value assigned, is ALWAYS created at the current nesting level of macros or include files.

3. When declaring a NEW, NON-EXISTANT identifier usingeclare, it is created as fully global. It
is put in the symbol table of the main scene file.

4. When ASSIGNING A VALUE TO AN EXISTING identifier usingdeclare, it assigns it to the most
recent, most local version at the time.

In summary#local always means "the current level”, angkclare means "global” for new identifiers and
"most recent” for existing identifiers.

Destroying Identifiers with #undef

Identifiers created withidec1are will generally persist until parsing is complete. Identifiers created with
#1local Will persist until the end of the macro or include file in which they were created. You may however
un-define an identifier using theundet directive. For example:

#undef MyValue

If multiple local nested versions of the identifier exist, the most local most recent version is deleted and any
identically named identifiers which were created at higher levels will still exist.

See also "The #ifdef and #ifndef Directives”.

2.2.3 File I/O Directives

You may open, read, write, append, and close plain ASCII text files while parsing POV-Ray scenes. This
feature is primarily intended to help pass information between frames of an animation. Values such as an
object’s position can be written while parsing the current frame and read back during the next frame. Clever
use of this feature could allow a POV-Ray scene to generate its own include files or write self-modifying
scripts. We trust that users will come up with other interesting uses for this feature.

Note: some platform versions of POV-Ray (e.g. Windows) provide means to restrict the ability of scene
files to read & write files.

The #fopen Directive

Users may open a text file using thepen directive. The syntax is as follows:

FOPEN_DIRECTIVE:

#fopen IDENTIFIER "filename" OPEN_TYPE
OPEN_TYPE:

read | write | append

2.2 Language Directives 69

WherelDENTIFIERIs an undefined identifier used to reference this file as a file haifiibmame” is any
string literal or string expression which specifies the file name. Files opened witkathare open for read
only. Those opened withirite create a new file with the specified name and it overwrites any existing file
with that name. Those opened withoend opens a file for writing but appends the text to the end of any
existing file.

The file handle identifier created byopen is always global and remains in effect (and the file remains open)
until the scene parsing is complete or until yt1ose the file. You may use#ifdef FILE_ HANDLE -
IDENTIFIERTto see if a file is open.

The #fclose Directive

Files opened with thefopen directive are automatically closed when scene parsing completes however you
may close a file using thefc1ose directive. The syntax is as follows:

FCLOSE_DIRECTIVE:
#fclose FILE_HANDLE_IDENTIFIER

WhereFILE_HANDLE IDENTIFIERIs previously opened file opened with thepen directive. See "The
#fopen Directive”.

The #read Directive

You may read string, float or vector values from a plain ASCII text file directly into POV-Ray variables
using the #read directive. The file must first be opened in "read” mode using the #fopen directive. The
syntax for #read is as follows:

READ DIRECTIVE:
4read (FILE_HANDLE_IDENTIFIER, DATA_IDENTIFIER[,DATA IDENTIFIER]..)
DATA_IDENTIFIER:
UNDECLARED_ IDENTIFIER | FLOAT IDENTIFIER | VECTOR_IDENTIFIER |
STRING_IDENTIFIER

WhereFILE_HANDLE IDENTIFIER s the previously opened file. It is followed by one or m&XATA -
IDENTIFIERs separated by commas. The parentheses around the identifier list are requiiaTAM
IDENTIFIER is any undeclared identifier or any previously declared string identifier, float identifier, or
vector identifier. Undefined identifiers will be turned into global identifiers of the type determined by the
data which is read. Previously defined identifiers remain at whatever global/local status they had when orig-
inally created. Type checking is performed to insure that the proper type data is read into these identifiers.

The format of the data to be read must be a series of valid string literals, float literals, or vector literals
separated by commas. Expressions or identifiers are not permitted in the data file however unary minus
signs and exponential notation are permitted on float values.

If you attempt to read past end-of-file, the file is automatically closed an&lihe_ HANDLE IDENTIFIER
is deleted from the symbol table. This means that the boolean funetiénned (IDENTIFIER) can be used
to detect end-of-file. For example:

#fopen MyFile "mydata.txt" read

#while (defined(MyFile))
#read (MyFile,Varl,Var2,Var3)

#end

70 Scene Description Language

The #write Directive

You may write string, float or vector values to a plain ASCII text file from POV-Ray variables using the
#write directive. The file must first be opened in eithette or append mode using the fopen directive.
The syntax for #write is as follows:

WRITE_DIRECTIVE:

#write (FILE_HANDLE_IDENTIFIER, DATA_ITEM[,DATA_ITEM]...)
DATA_ITEM:

FLOAT | VECTOR | STRING

WhereFILE_HANDLE IDENTIFIER s the previously opened file. It is followed by one or m@ATA -

ITEMs separated by commas. The parentheses around the identifier list are requIBETAATEM is

any valid string expression, float expression, or vector expression. Float expressions are evaluated and
written as signed float literals. If you require format control, you should usecthearug, 1, p) function to

convert it to a formatted string. See "String Functions” for details orsthdunction. Vector expressions

are evaluated into three signed float constants and are written with angle brackets and commas in standard
POV-Ray vector notation. String expressions are evaluated and written as specified.

Note: data read by theread directive must have comma delimiters between values and quotes around
string data but the#write directive does not automatically output commas or quotes.

For example the following#read directive reads a string, float and vector.
#read (MyFile,MyString,MyFloat,MyVect)

It expects to read something like:
"A quote delimited string", -123.45, <1,2,-3>

The POV-Ray code to write this might be:

#declare Vall = -123.45;
#declare Vectl = <1,2,-3>;
#write (MyFile, "\"A quote delimited string\",",vall,",",Vectl,"\n")

See "String Literals” and "Text Formatting” for details on writing special characters such as quotes, newline,
etc.

2.2.4 The #default Directive

POV-Ray creates a default texture when it begins processing. You may change those defaults as described
below. Every time you specify eexture statement, POV-Ray creates a copy of the default texture. Any-
thing you put in the texture statement overrides the default settings. If you attacheat, normal, or

finish to an object without any texture statement then POV-Ray checks to see if a texture has already been
attached. If it has a texture then the pigment, normal or finish will modify the existing texture. If no texture
has yet been attached to the object then the default texture is copied and the pigment, normal or finish will
modify that texture.

You may change the default texture, pigment, normal or finish using the language dikgetivelt as
follows:

DEFAULT_DIRECTIVE:

#default {DEFAULT_ITEM }
DEFAULT_ITEM:

TEXTURE | PIGMENT | NORMAL | FINISH

For example:

2.2 Language Directives 71

#default {
texture {
pigment { rgb <1,0,0> }
normal { bumps 0.3 }
finish { ambient 0.4 }
}
}

This means objects will default to red bumps and slightly high ambient finish. Also you may change just
part of it like this:

#default {
pigment {rgb <1,0,0>}
}

This still changes the pigment of the default texture. At any time there is only one default texture made from
the default pigment, normal and finish. The example above does not make a separate default for pigments
alone.

Note: the special texturesiles and material map Or a texture with aexture map may not be used as
defaults.

You may change the defaults several times throughout a scene as you wish. Subsequent statements
begin with the defaults that were in effect at the time. If you wish to reset to the original POV-Ray defaults
then you should first save them as follows:

//At top of file
#declare Original_Default = texture {}

later after changing defaults you may restore it with...
#default {texture {Original_ Default}}

If you do not specify a texture for an object then the default texture is attached when the object appears in
the scene. It is not attached when an object is declared. For example:

#declare My _Object =
sphere{ <0,0,0>, 1 } // Default texture not applied
object{ My_Object } // Default texture added here

You may force a default texture to be added by using an empty texture statement as follows:

#declare My_Thing =
sphere { <0,0,0>, 1 texture {} } // Default texture applied

The original POV-Ray defaults for all items are given throughout the documentation under each appropriate
section.

2.2.5 The #version Directive

As POV-Ray has evolved from version 1.0 through 3.6 we have made every effort to maintain some amount
of backwards compatibility with earlier versions. Some old or obsolete features can be handled directly
without any special consideration by the user. Some old or obsolete features can no longer be handled at
all. Howeversomeold features can still be used if you warn POV-Ray that this is an older scene. The
#version directive can be used to switch version compatibility to different setting several times throughout

a scene file. The syntax is:

VERSION_DIRECTIVE:
#version FLOAT;

72 Scene Description Language

Note: there should be a semi-colon after the float expressiongire&sion directive. This semi-colon is
introduced in POV-Ray version 3.1. If omitted, it generates a warning and some macros may not work

properly.

Additionally you may use theversion=n.noption or thermvn.n switch to establish thmitial setting. See
"Language Version” for details. For example one feature introduced in 2.0 that was incompatible with any
1.0 scene files is the parsing of float expressions. Ustagsion 1.0 turns off expression parsing as well

as many warning messages so that nearly all 1.0 files will still work. Naturally the default setting for this
option is#version 3.5.

Note: Some obsolete or re-designed featuses totally unavailable in the current version of POV-Ray
REGARDLES OF THE VERSION SETTIND®tails on these features are noted throughout this documen-
tation.

The built-in float identifierversion contains the current setting of the version compatibility option. See
"Float Expressions: Built-in Variables”. Together with the builtsiirsion identifier thetversion directive
allows you to save and restore the previous values of this compatibility setting. The:new! identifier
option is especially useful here. For example suppesetuff.inc is in version 1 format. At the top of
the file you could put:

#local Temp_Vers = version; // Save previous value
#version 1.0; // Change to 1.0 mode

. // Version 1.0 stuff goes here...
#version Temp_Vers; // Restore previous version

Future versions of POV-Ray may not continue to maintain full backward compatibility even with the
#version directive. We strongly encourage you to phase in current version syntax as much as possible.

2.2.6 Conditional Directives

POV-Ray allows a variety of language directives to implement conditional parsing of various sections of
your scene file. This is especially useful in describing the motion for animations but it has other uses as
well. Also available is &while loop directive. You may nest conditional directives 200 levels deep.

The #if.. #else...#end Directives

The simplest conditional directive is a traditionak directive. It is of the form...

IF_DIRECTIVE:
#if (Cond) TOKENS... [#else TOKENS...] #end

The TOKENSare any number of POV-Ray keyword, identifiers, or punctuation @@and) is a float
expression that is interpreted as a boolean value. The parentheses are requiredndTdigective is
required. A value of 0.0 is false and any non-zero value is true.

Note: extremely small values of about 1e-10 are considered zero in case of round off errors.

If Condis true, the first group of tokens is parsed normally and the second set is skipped. If false, the first
set is skipped and the second set is parsed. For example:

#declare Which=1;

#1if (Which)
box { 0, 1}
#else

sphere { 0, 1 }
#end

2.2 Language Directives 73

The box is parsed and the sphere is skipped. Changing the valueiaf. to 0 means the box is skipped
and the sphere is used. The se directive and second token group is optional. For example:

#declare Which=1;

#1if (Which)
box { 0, 1}
#end

Changing the value afhich to 0 means the box is removed.

At the beginning of the chapter "Language Directives” it was stated that "These directives can appear in
almost any place in the scene file....". The following is an example where it will not work, it will confuse
the parser:

#if(#if(yes) yes #end) #end

The #ifdef and #ifndef Directives

The #ifdef and#ifndef directive are similar to their directive however they are used to determine if an
identifier has been previously declared.

IFDEF_DIRECTIVE:

#ifdef (IDENTIFIER) TOKENS... [#else TOKENS...] #end
IFNDEF_DIRECTIVE:
#ifndef (IDENTIFIER) TOKENS... [#else TOKENS...] #end

If the IDENTIFIER exists then the first group of tokens is parsed normally and the second set is skipped. If
false, the first set is skipped and the second set is parsed. This is especially useful for replacing an undefined
item with a default. For example:

#ifdef (User_Thing)

// This section is parsed if the

// identifier "User_Thing" was

// previously declared
object{User_Thing} // invoke identifier
felse

// This section is parsed if the

// identifier "User_Thing" was not

// previously declared
box{<0,0,0>,<1,1,1>} // use a default
#end

// End of conditional part

The #ifndef directive works the opposite. The first group is parsed if the identifieoislefined. As with
the #if directive, thetelse clause is optional and thend directive is required.

Thetifdef and#ifndef directives can be used to determine whether a specific element of an array has been
assigned.

#declare MyArray=array[10]
//#declare MyArray[0]=7;
#ifdef (MyArray[0]

#debug "first element is assigned\n"
telse

#debug "first element is not assigned\n"
#end

74 Scene Description Language

The #switch, #case, #range and #break Directives

A more powerful conditional is theswitch directive. The syntax is as follows...

SWITCH_DIRECTIVE:

#switch (Switch_Value) SWITCH_CLAUSE... [#else TOKENS...] #end
SWITCH_CLAUSE:

#case(Case_Value) TOKENS... [#break] |

#range (Low_Value , High_Value) TOKENS... [#break]

The TOKENSare any number of POV-Ray keyword, identifiers, or punctuation @BgvitchValue) is
a float expression. The parentheses are required.#dihedirective is required. ThEWITCHCLAUSE
comes in two varieties. In thease variety, the floaSwitch Valueis compared to the floataseValue If
they are equal, the condition is true.

Note: that values whose difference is less than 1e-10 are considered equal in case of round off errors.

In the #range variety, Low_ValueandHigh_Valueare floats separated by a comma and enclosed in paren-
theses. IlLow_Value <= Switch Valueand SwitchValue<=High_Valuethen the condition is true.

In either variety, if the clause’s condition is true, that clause’s tokens are parsed normally and parsing
continues until &break, #else Of #end directive is reached. If the condition is false, POV-Ray skips until
anothertcase Or #range is found.

There may be any number efase or #range clauses in any order you want. If a clause evaluates true

but no #break is specified, the parsing will fall through to the nextcase or #range and that clause
conditional is evaluated. Hittingbreak while parsing a successful section causes an immediate jump to the
#end without processing subsequent sections, even if a subsequent condition would also have been satisfied.

An optional#else clause may be the last clause. It is only executed if the clause before it was a false clause.
Here is an example:

#switch (VALUE)
#case (TEST_1)
// This section is parsed if VALUE=TEST_1
#break //First case ends
#case (TEST_2)
// This section is parsed if VALUE=TEST_2
#break //Second case ends
#range (LOW_1,HIGH_1)
// This section is parsed if (VALUE>=LOW_1)\& (VALUE<=HIGH_1)
#break //Third case ends
#range (LOW_2,HIGH_2)
// This section is parsed if (VALUE>=LOW_2)\& (VALUE<=HIGH_2)
#break //Fourth case ends
telse
// This section is parsed if no other case or
// range is true.
#end // End of conditional part

The #while...#end Directive
The #while directive is a looping feature that makes it easy to place multiple objects in a pattern or other
uses.

WHILE_DIRECTIVE:
#while (Cond) TOKENS... #end

2.2 Language Directives 75

The TOKENSare any number of POV-Ray keyword, identifiers, or punctuation marks which atmtlye
of the loop. The #while directive is followed by a float expression that evaluates to a boolean value. A
value of 0.0 is false and any non-zero value is true.

Note: extremely small values of about 1e-10 are considered zero in case of round off errors.

The parentheses around the expression are required. If the condition is true parsing continues normally until
an #end directive is reached. At the end, POV-Ray loops back to thei1e directive and the condition is
re-evaluated. Looping continues until the condition fails. When it fails, parsing continues afteethe
directive.

Note: it is possible for the condition to fail the first time and the loop is totally skipped. It is up to the user
to insure that something inside the loop changes so that it eventually terminates.

Here is a properly constructed loop example:

#declare Count=0;
#while (Count < 5)
object { MyObject translate x*3*Count }
#declare Count=Count+1;
#end

This example places five copiesigiobiect in a row spaced three units apart in the x-direction.

2.2.7 User Message Directives

With the addition of conditional and loop directives, the POV-Ray language has the potential to be more
like an actual programming language. This means that it will be necessary to have some way to see what
is going on when trying to debug loops and conditionals. To fulfill this need we have added the ability to
print text messages to the screen. You have a choice of five different text streams to use including the ability
to generate a fatal error if you find it necessary. Limited formatting is available for strings output by this
method.

Text Message Streams

The syntax for a text message is any of the following:

TEXT_STREAM_DIRECTIVE:
#debug STRING | #error STRING | #warning STRING

WhereSTRINGIs any valid string of text including string identifiers or functions which return strings. For
example:

#switch (clock*360)
#range (0,180)
#debug "Clock in 0 to 180 range\n"
#break
#range (180,360)
#debug "Clock in 180 to 360 range\n"
fbreak
felse
#warning "Clock outside expected range\n"
#warning concat ("Value is:",str(clock*360,5,0),"\n")
#end

There are seven distinct text streams that POV-Ray uses for output. You may output only to three of them.
On some versions of POV-Ray, each stream is designated by a particular color. Text from these streams
are displayed whenever it is appropriate so there is often an intermixing of the text. The distinction is

76 Scene Description Language

only important if you choose to turn some of the streams off or to direct some of the streams to text files.
On some systems you may be able to review the streams separately in their own scroll-back buffer. See
"Directing Text Streams to Files” for details on re-directing the streams to a text file.

Here is a description of how POV-Ray uses each stream. You may use them for whatever purpose you want
except note that use of therror stream causes a fatal error after the text is displayed.

Debug: This stream displays debugging messages. It was primarily designed for developers but this and
other streams may also be used by the user to display messages from within their scene files.

Error: This stream displays fatal error messages. After displaying this text, POV-Ray will terminate. When
the error is a scene parsing error, you may be shown several lines of scene text that leads up to the error.

Warning: This stream displays warning messages during the parsing of scene files and other warnings.
Despite the warning, POV-Ray can continue to render the scene.

The #render and#statistsics could be accessed in previous versions. Their output is now redirected to
the #debug stream. Thebanner and#status Streams can not be accessed by the user.

Text Formatting

Some escape sequences are available to include non-printing control characters in your text. These se-
guences are similar to those used in string literals in the C programming language. The sequences are:

"\a" Bell or alarm, 0x07
"\b" Backspace, 0x08
"\f" Form feed, 0x0C
"\n" New line (line feed) O0x0A
"\r" Carriage return 0x0D
"\t" Horizontal tab 0x09
"\ UNNNN" Unicode character code NNNN OXNNNN
"\v" Vertical tab 0x0B
"\o" Null 0x00
"\ " Backslash 0x5C
A Single quote 0x27
e Double quote 0x22

Table 2.6: All character escape sequences

For example:
#debug "This is one line.\nBut this is another"\n

Depending on what platform you are using, they may not be fully supported for console output. However
they will appear in any text file if you re-direct a stream to a file.

2.2.8 User Defined Macros

POV-Ray 3.1 introduced user defined macros with parameters. This feature, along with the ability to
declare#1ocal variables, turned the POV-Ray Language into a fully functional programming language.
Consequently, it is now possible to write scene generation tools in POV-Ray’s own language that previously
required external utilities.

2.2 Language Directives 77

The #macro Directive

The syntax for declaring a macro is:

MACRO_DEFINITION:
#macro IDENTIFIER ([PARAM IDENT] [, PARAM_IDENT]...) TOKENS... #end

Where IDENTIFIER is the name of the macro anARAMIDENTS are a list of zero or more formal
parameter identifiers separated by commas and enclosed by parentheses. The parentheses are required even
if no parameters are specified.

The TOKENSare any number of POV-Ray keyword, identifiers, or punctuation marks which aredthe
of the macro. The body of the macro may contain almost any POV-Ray syntax items you desire. It is
terminated by theend directive.

Note: any conditional directives such asit..#end, #while...#end, etc. must be fully nested inside or
outside the macro so that the correspondiagi directives pair-up properly.

A macro must be declared before it is invoked. All macro names are global in scope and permanent in
duration. You may redefine a macro by anothefacro directive with the same name. The previous
definition is lost. Macro names respond td fdef, #ifndef, and#undef directives. See "The #ifdef and
#ifndef Directives” and "Destroying Identifiers with #undef”.

Invoking Macros

You invoke the macro by specifying the macro name followed by a list of zero or more actual parameters
enclosed in parentheses and separated by commas. The number of actual parameters must match the number
of formal parameters in the definition. The parentheses are required even if no parameters are specified.
The syntax is:

MACRO_INVOCATION:

MACRO_IDENTIFIER ([ACTUAL_PARAM] [, ACTUAL_PARAM]...)
ACTUAL_PARAM:

IDENTIFIER | RVALUE

An RVALUEIs any value that can legally appear to the right of an equals signtie@are Or #local
declaration. See "Declaring identifiers” for information ®&VALUEs. When the macro is invoked, a new

local symbol table is created. The actual parameters are assigned to formal parameter identifiers as local,
temporary variables. POV-Ray jumps to the body of the macro and continues parsing until the matching
#end directive is reached. There, the local variables created by the parameters are destroyed as well as any
local identifiers expressly created in the body of the macro. It then resumes parsing at the point where the
macro was invoked. It is as though the body of the macro was cut and pasted into the scene at the point
where the macro was invoked.

Note: it is possible to invoke a macro that was declared in another file. This is quite normal and in fact is
how many "plug-ins” work (such as the popular Lens Flare macro). However, be aware that calling a macro
that was declared in a file different from the one that it is being called from involves more overhead than
calling one in the same file.

This is because POV-Ray does not tokenize and store its language. Calling a macro in another file therefore
requires that the other file be opened and closed for each call. Normally, this overhead is inconsequential;
however, if you are calling the macro many thousands of times, it can cause significant delays. A future
version of the POV-Ray language will remove this problem.

Here is a simple macro that creates a window frame object when you specify the inner and outer dimensions.

#macro Make_Frame (OuterWidth,OuterHeight, InnerWidth,
InnerHeight, Depth)

78 Scene Description Language

#local Horz = (OuterHeight-InnerHeight)/2;
#local Vert = (OuterWidth-InnerWidth)/2;
difference {

box{
<0,0,0>,<OuterWidth,OuterHeight,Depth>

box{
<Vert,Horz,-0.1>,
<OuterWidth-Vert, OuterHeight-Horz,Depth+0.1>
}
}
#end
Make_Frame (8,10,7,9,1) //invoke the macro

In this example, the macro has five float parameters. The actual parameters (the values 8, 10, 7, 9, and
1) are assigned to the five identifiers in thecro formal parameter list. It is as though you had used the
following five lines of code.

#local OuterWidth = 8;
#local OuterHeight = 10;
#local InnerWidth, 7;
#local InnerHeight = 9;
#local Depth = 1;

These five identifiers are stored in the same symbol table as any other local identifier sueh@srert

in this example. The parameters and local variables are all destroyed whenthastatement is reached.

See "Identifier Name Collisions” for a detailed discussion of how local identifiers, parameters, and global
identifiers work when a local identifier has the same name as a previously declared identifier.

Are POV-Ray Macros a Function or a Macro?

POV-Ray macros are a strange mix of macros and functions. In traditional computer programming lan-
guages, a macro works entirely by token substitution. The body of the routine is inserted into the invocation
point by simply copying the tokens and parsing them as if they had been cut and pasted in place. Such
cut-and-paste substitution is often calledcro substitutiofbecause it is what macros are all about. In this
respect, POV-Ray macros are exactly like traditional macros in that they use macro substitution for the body
of the macro. However traditional macros also use this cut-and-paste substitution strategy for parameters
but POV-Ray does not.

Suppose you have a macro in the C programming language cal Cmac (Param) and you invoke it as
Typical Cmac (else A=B). Anywhere thabaram appears in the macro body, the four tokens, 2, =, and

B are substituted into the program code using a cut-and-paste operation. No type checking is performed
because anything is legal. The ability to pass an arbitrary group of tokens via a macro parameter is a
powerful (and sadly often abused) feature of traditional macros.

After careful deliberation, we have decided against this type of parameters for our macros. The reason is
that POV-Ray uses commas more frequently in its syntax than do most programming languages. Suppose
you create a macro that is designed to operate on one vector and two floats. It might be definedv,

F1,F2). If you allow arbitrary strings of tokens and invoke a macro suchuasac (<1,2,3>,4,5) then

it is impossible to tell if this is a vector and two floats or if its 5 parameters with the two tokearsd 1

as the first parameter. If we design the macro to accept 5 parameters then we cannot invoke it like this...
OurMac (MyVector, 4,5).

Function parameters in traditional programming languages do not use token substitution to pass values.
They create temporary, local variables to store parameters that are either constant values or identifier refer-
ences which are in effect a pointer to a variable. POV-Ray macros use this function-like system for passing
parameters to its macros. In our examplervac (<1,2,3>,4,5), POV-Ray sees the and knows it must

2.2 Language Directives 79

be the start of a vector. It parses the whole vector expression and assigns it to the first parameter exactly as
though you had used the statementcal v=<1,2,3>;.

Although we say that POV-Ray parameters are more like traditional function parameters than macro pa-
rameters, there still is one difference. Most languages require you to declare the type of each parameter in
the definition before you use it but POV-Ray does not. This should be no surprise because most languages
require you to declare the type of any identifier before you use it but POV-Ray does not. This means that
if you pass the wrong type value in a POV-Ray macro parameter, it may not generate an error until you
reference the identifier in the macro body. No type checking is performed as the parameter is passed. So in
this very limited respect, POV-Ray parameters are somewhat macro-like but are mostly function-like.

Returning a Value Like a Function

POV-Ray macros have a variety of uses. Like most macros, they provide a parameterized way to insert
arbitrary code into a scene file. However most POV-Ray macros will be used like functions or procedures
in a traditional programming language. Macros are designed to fill all of these roles.

When the body of a macro consists of statements that create an entire item such as an object, texture, etc.
then the macro acts like a function which returns a single value. viherrame macro example in the

section "Invoking Macros” above is such a macro which returns a value that is an object. Here are some
examples of how you might invoke it.

union { //make a union of two objects
object{ Make_Frame(8,10,7,9,1) translate 20*x}
object{ Make_Frame(8,10,7,9,1) translate -20*x}
}
#declare BigFrame = object{ Make_Frame(8,10,7,9,1)}
#declare SmallFrame = object{ Make_Frame(5,4,4,3,0.5)}

Because no type checking is performed on parameters and because the expression syntax for floats, vectors,
and colors is identical, you can create clever macros which work on all three. See the samplescene
pov which includes this macro to interpolate values.

// Define the macro. Parameters are:
// T: Middle value of time
// Tl: Initial time
// T2: Final time
// Pl: Initial position (may be float, vector or color)
// P2: Final position (may be float, vector or color)
// Result is a value between Pl and P2 in the same proportion
// as T is between Tl and T2.
#macro Interpolate(T,T1,T2,P1,P2)
(P14 (T1+4T/(T2-T1))* (P2-P1))
#end

You might invoke it withp1 andp2 as floats, vectors, or colors as follows.

sphere({
Interpolate(I,0,15,<2,3,4>,<9,8,7>), //center location is vector
Interpolate(I,0,15,3.0,5.5) //radius is float
pigment {

color Interpolate(I,0,15,rgb<l,1,0>,rgb<0,1,1>)
}
}

As the float value varies from 0 to 15, the location, radius, and color of the sphere vary accordingly.

There is a danger in using macros as functions. In a traditional programming language function, the result
to be returned is actually assigned to a temporary variable and the invoking code treats it as a variable of

80 Scene Description Language

a given type. However macro substitution may result in invalid or undesired syntax. The definition of the
macrointerpolate above has an outermost set of parentheses. If those parentheses are omitted, it will not
matter in the examples above, but what if you do this...

#declare Value = Interpolate(I,0,15,3.0,5.5)*15;
The end result is as if you had done...
#declare Value = P1+(T1+4T/(T2-T1))* (P2-P1) * 15;

which is syntactically legal but not mathematically correct becausethterm is not multiplied. The
parentheses in the original example solves this problem. The end result is as if you had done...

#declare Value = (P1+(T1+T/(T2-T1))*(P2-P1)) * 15;

which is correct.

Returning Values Via Parameters

Sometimes it is necessary to have a macro return more than one value or you may simply prefer to return
a value via a parameter as is typical in traditional programming language procedures. POV-Ray macros
are capable of returning values this way. The syntax for POV-Ray macro parameters says that the actual
parameter may be aDENTIFIER or an RVALUE Values may only be returned via a parameter if the
parameter is arlDENTIFIER Parameters that aRVALUESare constant values that cannot return infor-
mation. AnRVALUEis anything that legally may appear to the right of an equals sign kieclare or

#local directive. For example consider the following trivial macro which rotates an object about the x-axis.

#macro Turn_Me (Stuff,Degrees)
#declare Stuff = object{Stuff rotate x*Degrees}
#end

This attempts to re-declare the identifiefutf as the rotated version of the object. However the macro
might be invoked with Turn_Me (box{0,1},30) which uses a box object as aRVALUEparameter. This
will not work because the box is not an identifier. You can however do this

#declare MyObject=box{0,1}
Turn_Me (MyObiject, 30)

The identifienyobject now contains the rotated box.

See "Identifier Name Collisions” for a detailed discussion of how local identifiers, parameters, and global
identifiers work when a local identifier has the same name as a previously declared identifier.

While it is obvious thatiyobject is an identifier and box{0,1} is not, it should be noted thatrurn_-

Me (object {MyObiject}, 30) will not work becauseobject {MyObject} iS considered an object statement and

is not a pureidentifier. This mistake is more likely to be made with float identifiers versus float expressions.
Consider these examples.

#declare Value=5.0;

MyMacro (Value) //MyMacro can change the value of Value but...
MyMacro (+Value) //This version and the rest are not lone
MyMacro (Value+0.0) // identifiers. They are float expressions
MyMacro (Value*1.0) // which cannot be changed.

Although all four invocations ofiyMacro are passed the value 5.0, only the first may modify the value of
the identifier.

Chapter 3

Scene Settings

3.1 Camera

The camera definition describes the position, projection type and properties of the camera viewing the
scene. Its syntax is:

CAMERA:
camera{ [CAMERA_ITEMS...] }

CAMERA_ITEM:
CAMERA_TYPE | CAMERA_VECTOR | CAMERA_MODIFIER |
CAMERA_IDENTIFIER

CAMERA_TYPE:
perspective | orthographic | fisheye | ultra_wide_angle |
omnimax | panoramic | cylinder CylinderType | spherical

CAMERA_VECTOR:
location <Location> | right <Right> | up <Up> |
direction <Direction> | sky <Sky>

CAMERA_MODIFIER:
angle HORIZONTAL [VERTICAL] | look_at <Look_At> |
blur_samples Num_of_Samples | aperture Size |
focal_point <Point> | confidence Blur_Confidence |
variance Blur_Variance | NORMAL | TRANSFORMATION

Camera default values:

DEFAULT CAMERA:
camera {

perspective
location <0,0,0>
direction <0,0,1>
right 1.33*x

up y

sky <0,1,0>

CAMERA TYPE: perspective

angle : \"{}67.380 (direction_length=0.5*
right_length/tan (angle/2))

confidence : 0.9 (90\%)

direction : <0,0,1>

focal_point: <0,0,0>

82 Scene Settings

location : <0,0,0>
look_at oz

right ¢ 1.33*%x
sky : <0,1,0>
up Y
variance : 1/128

Depending on the projection type zero or more of the parameters are required:
* If no camera is specified the default camera is used.
* If no projection type is given the perspective camera will be used (pinhole camera).
» The CAMERATYPEhas to be the first item in the camera statement.
» OtherCAMERAITEMsmay legally appear in any order.

 For other than the perspective camera, the minimum that has to be specified is the CAMEEA
the cylindrical camera also requires BAMERATYPEto be followed by a float.

The Orthographic camera has two 'modes’. For the pure orthographic projection up or right have to
be specified. For an orthographic camera, with the same area of view as a perspective camera at the
plane which goes through the logit point, the angle keyword has to be use. A value for the angle is
optional.

All other CAMERAITEMs are taken from the default camera, unless they are specified differently.

3.1.1 Placing the Camera

The POV-Ray camera has ten different models, each of which uses a different projection method to project
the scene onto your screen. Regardless of the projection type all cameras usexthen, right, up,
direction, and keywords to determine the location and orientation of the camera. The type keywords and
these four vectors fully define the camera. All other camera modifiers adjust how the camera does its job.
The meaning of these vectors and other modifiers differ with the projection type used. A more detailed
explanation of the camera types follows later. In the sub-sections which follows, we explain how to place
and orient the camera by the use of these four vectors angkthend 1o0o0k_at modifiers. You may wish

to refer to the illustration of the perspective camera below as you read about these vectors.

image plane look_at

location

Figure 3.1: The perspective camera.

3.1 Camera 83

Location and Look_At

Under many circumstances just two vectors in the camera statement are all you need to position the camera:
location andlook_at vectors. For example:

camera {

location <3,5,-10>
look_at <0,2,1>

}

The location is simply the x, y, z coordinates of the camera. The camera can be located anywhere in the
ray-tracing universe. The default locationds, 0, 0>. Thelook_at vector tells POV-Ray to pan and tilt the
camera until it is looking at the specified X, y, z coordinates. By default the camera looks at a point one unit
in the z-direction from the location.

The1look_at modifier should almost always be the last item in the camera statement. If other camera items
are placed after thelook_at vector then the camera may not continue to look at the specified point.

The Sky Vector

Normally POV-Ray pans left or right by rotating about the y-axis until it lines up withithe_at point

and then tilts straight up or down until the point is met exactly. However you may want to slant the camera
sideways like an airplane making a banked turn. You may change the tilt of the camera usingvbetor.

For example:

camera {

location <3,5,-10>
sky <1,1,0>
look_at <0,2,1>

}

This tells POV-Ray to roll the camera until the top of the camera is in line with the sky vector. Imagine that
the sky vector is an antenna pointing out of the top of the camera. Then it uses trextor as the axis of
rotation left or right and then to tilt up or down in line with they until pointing at thelook_at point. In

effect you are telling POV-Ray to assume that the sky isn’t straight up.

The sky vector does nothing on its own. It only modifies the way thex_at vector turns the camera. The
default value is sky<0,1, 0>.

Angles

Theangle keyword followed by a float expression specifies the (horizontal) viewing angle in degrees of the
camera used. Even though it is possible to useithection vector to determine the viewing angle for the
perspective camera it is much easier to use #agle keyword.

When you specify thengle, POV-Ray adjusts the length of therection vector accordingly. The formula
used isdirectionlength = 0.5 * rightlength / tan(angle / 2jvhere right_lengthis the length of theight
vector. You should therefore specify theéirection and right vectors before theangle keyword. The
right vector is explained in the next section.

There is no limitation to the viewing angle except for the perspective projection. If you choose viewing
angles larger than 360 degrees you will see repeated images of the scene (the way the repetition takes place
depends on the camera). This might be useful for special effects.

The spherical camera has the option to also specify a vertical angle. If not specified it defaults to the
horizontal angle/2

84 Scene Settings

For example if you render an image with a 2:1 aspect ratio and map it to a sphere using spherical mapping,
it will recreate the scene. Another use is to map it onto an object and if you specify transformations for the
object before the texture, say in an animation, it will look like reflections of the environment (sometimes
called environment mapping).

The Direction Vector

You will probably not need to explicitly specify or change the cametaction vector but it is described

here in case you do. It tells POV-Ray the initial direction to point the camera before moving it with the
look_at OfF rotate vectors (the default value isirection<0,0,1>). It may also be used to control the
(horizontal) field of view with some types of projection. The length of the vector determines the distance
of the viewing plane from the camera’s location. A shotterection vector gives a wider view while a
longer vector zooms in for close-ups. In early versions of POV-Ray, this was the only way to adjust field of
view. However zooming should now be done using the easier tangse keyword.

If you are using the@ltra wide_angle, panoramic, OF cylindrical projection you should use a unit length
direction vector to avoid strange results. The length of therection vector does not matter when using
the orthographic, fisheye, Or omnimax projection types.

Up and Right Vectors

The primary purpose of theo andright vectors is to tell POV-Ray the relative height and width of the
view screen. The default values are:

right 4/3*x
up y

In the defaultberspective camera, these two vectors also define the initial plane of the view screen before
moving it with the look_at Or rotate vectors. The length of theright vector (together with theirection
vector) may also be used to control the (horizontal) field of view with some types of projectiomodkhe:
modifier changes both the andright vectors. Thangle calculation depends on theight vector.

Most camera types treat theand right vectors the same as therspective type. However several make
special use of them. In thethographic projection: The lengths of theip andright vectors set the size
of the viewing window regardless of theirection vector length, which is not used by the orthographic
camera.

When usingcylindrical projection: types 1 and 3, the axis of the cylinder lies along:theector and the
width is determined by the length efght vector or it may be overridden with thegie vector. In type 3

the up vector determines how many units high the image is. For example if youdgavey on a camera

at the origin. Only points from y=2 to y=-2 are visible. All viewing rays are perpendicular to the y-axis.
For type 2 and 4, the cylinder lies along thiesht vector. Viewing rays for type 4 are perpendicular to the
right vector.

Note: that theup, right, and direction vectors should always remain perpendicular to each other or the
image will be distorted. If this is not the case a warning message will be printed. The vista buffer will not
work for non-perpendicular camera vectors.

Aspect Ratio

Together thep andright vectors define thaspect ratio(height to width ratio) of the resulting image. The
default valuesip<o0,1,0> and right<1.33,0,0> resultin an aspect ratio of 4 to 3. This is the aspect ratio
of a typical computer monitor. If you wanted a tall skinny image or a short wide panoramic image or a
perfectly square image you should adjustth@ndright vectors to the appropriate proportions.

3.1 Camera 85

Most computer video modes and graphics printers use perfectly square pixels. For example Macintosh dis-
plays and IBM SVGA modes 640x480, 800x600 and 1024x768 all use square pixels. When your intended
viewing method uses square pixels then the width and height you set withithie. andseight options or

+1 or +1 switches should also have the same ratio asghendright vectors.

Note: 640/480 = 4/3 so the ratio is proper for this square pixel mode.

Not all display modes use square pixels however. For example IBM VGA mode 320x200 and Amiga
320x400 modes do not use square pixels. These two modes still produce a 4/3 aspect ratio image. Therefore
images intended to be viewed on such hardware should still use 4/3 ratio oactheidright vectors but

the pixel settings will not be 4/3.

For example:

camera {
location <3,5,-10>
up <0,1,0>
right <1,0,0>
look_at <0,2,1>
}

This specifies a perfectly square image. On a square pixel display like SVGA you would use pixel settings
such asw480 +H480 Or +W600 +H600. However on the non-square pixel Amiga 320x400 mode you would
want to use values afi240 +1400 to render a square image.

The bottom line issue is this: the and right vectors should specify the artist’s intended aspect ratio for

the image and the pixel settings should be adjusted to that same ratio for square pixels and to an adjusted
pixel resolution for non-square pixels. Thep andright vectors shouldnot be adjusted based on non-
square pixels.

Handedness

Theright vector also describes the direction to the right of the camera. It tells POV-Ray where the right side
of your screen is. The sign of theght vector can be used to determine the handedness of the coordinate
system in use. The default value isiright<1.33,0,0>. This means that the +x-direction is to the right.

Itis called aleft-handedsystem because you can use your left hand to keep track of the axes. Hold out your
left hand with your palm facing to your right. Stick your thumb up. Point straight ahead with your index
finger. Point your other fingers to the right. Your bent fingers are pointing to the +x-direction. Your thumb
now points into +y-direction. Your index finger points into the +z-direction.

To use a right-handed coordinate system, as is popular in some CAD programs and other ray-tracers, make
the same shape using your right hand. Your thumb still points up in the +y-direction and your index finger
still points forward in the +z-direction but your other fingers now say the +x-direction is to the left. That
means that the right side of your screen is now in the -x-direction. To tell POV-Ray to act like this you can
use a negative x value in theight vector such as: right<-1.33,0,0>. Since having x values increasing

to the left does not make much sense on a 2D screen you now rotate the whole thing 180 degrees around by
using a positive z value in your camera’s location. You end up with something like this.

camera {
location <0,0,10>
up <0,1,0>
right <-1.33,0,0>
look_at <0,0,0>
}

Now when you do your ray-tracer’s aerobics, as explained in the section "Understanding POV-Ray’s Coor-
dinate System”, you use your right hand to determine the direction of rotations.

86 Scene Settings

In a two dimensional grid, x is always to the right and y is up. The two versions of handedness arise from
the question of whether z points into the screen or out of it and which axis in your computer model relates
to up in the real world.

Architectural CAD systems, like AutoCAD, tend to use tl@&od’s Eyeorientation that the z-axis is the
elevation and is the model’s up direction. This approach makes sense if you are an architect looking at a
building blueprint on a computer screen. z means up, and it increases towards you, with x and y still across
and up the screen. This is the basic right handed system.

Stand alone rendering systems, like POV-Ray, tend to consider you as a participant. You are looking at the
screen as if you were a photographer standing in the scene. The up direction in the model is now vy, the
same as up in the real world and x is still to the right, so z must be depth, which increases away from you
into the screen. This is the basic left handed system.

Transforming the Camera

The various transformations suchw@snslate and rotate modifiers can re-position the camera once you
have defined it. For example:

camera {

location < 0, 0, 0>
direction < 0, 0, 1>
up <0, 1, 0>
right <1, 0, 0>
rotate <30, 60, 30>
translate < 5, 3, 4>

}

In this example, the camera is created, then rotated by 30 degrees about the x-axis, 60 degrees about the
y-axis and 30 degrees about the z-axis, then translated to another point in space.

3.1.2 Types of Projection

The following list explains the different projection types that can be used with the camera. The most
common types are the perspective and orthographic projectionsCAMERATYPEshould be thdirst
item in acamera Statement. If none is specified, therspect ive camera is the default.

You should note that the vista buffer can only be used with the perspective and orthographic camera.

Perspective projection

The perspective keyword specifies the default perspective camera which simulates the classic pinhole
camera. The (horizontal) viewing angle is either determined by the ratio between the lengthiof theon

vector and the length of theright vector or by the optional keyworghgle, which is the preferred way.

The viewing angle has to be larger than 0 degrees and smaller than 180 degrees. See the figure in "Placing
the Camera” for the geometry of the perspective camera.

Orthographic projection

The orthographic camera offers two modes of operation:

The pureorthographic projection. This projection uses parallel camera rays to create an image of the scene.
The area of view is determined by the lengths of thent andup vectors. One of these has to be specified,
they are not taken from the default camera. If omitted the second method of the camera is used.

3.1 Camera 87

If, in a perspective camera, you replace thespective keyword byorthographic and leave all other
parameters the same, you will get an orthographic view with the same image area, i.e. the size of the image
is the same. The same can be achieved by addingnthe keyword to an orthographic camera. A value

for the angle is optional. So this second mode is active if no up and right are within the camera statement,
or when the angle keyword is within the camera statement.

You should be aware though that the visible parts of the scene change when switching from perspective to
orthographic view. As long as all objects of interest are near the &qioint they will be still visible if

the orthographic camera is used. Objects farther away may get out of view while nearer objects will stay in
view.

If objects are too close to the camera location they may disappear. Too close here means, behind the
orthographic camera projection plane (the plane that goes throughdhet point).

Fisheye projection

This is a spherical projection. The viewing angle is specified byithe: keyword. An angle of 180 degrees
creates the "standard” fisheye while an angle of 360 degrees creates a super-fisheye ("lI-see-everything-
view"). If you use this projection you should get a circular image. If this is not the case, i.e. you get an
elliptical image, you should read "Aspect Ratio”.

Ultra wide angle projection

This projection is somewhat similar to the fisheye but it projects the image onto a rectangle instead of a
circle. The viewing angle can be specified usingdhg e keyword.

Omnimax projection

The omnimax projection is a 180 degrees fisheye that has a reduced viewing angle in the vertical direction.
In reality this projection is used to make movies that can be viewed in the dome-like Omnimax theaters.
The image will look somewhat elliptical. Thegle keyword is not used with this projection.

Panoramic projection

This projection is called "cylindrical equirectangular projection”. It overcomes the degeneration problem
of the perspective projection if the viewing angle approaches 180 degrees. It uses a type of cylindrical pro-
jection to be able to use viewing angles larger than 180 degrees with a tolerable lateral-stretching distortion.
Theangle keyword is used to determine the viewing angle.

Cylindrical projection

Using this projection the scene is projected onto a cylinder. There are four different types of cylindrical
projections depending on the orientation of the cylinder and the position of the viewpoint. A float value in
the range 1 to 4 must follow the:y1linder keyword. The viewing angle and the length of the or right

vector determine the dimensions of the camera and the visible image. The camera to use is specified by a
number. The types are:

1. vertical cylinder, fixed viewpoint
2. horizontal cylinder, fixed viewpoint

3. vertical cylinder, viewpoint moves along the cylinder’s axis

88 Scene Settings

4. horizontal cylinder, viewpoint moves along the cylinder’s axis

Spherical projection

Using this projection the scene is projected onto a sphere.
Syntax:

camera {
spherical
[angle HORIZONTAL [VERTICAL]]
[CAMERA_ITEMS...]

}

The first value aftetngle sets the horizontal viewing angle of the camera. With the optional second value,
the vertical viewing angle is set: both in degrees. If the vertical angle is not specified, it defaults to half the
horizontal angle.

The spherical projection is similar to the fisheye projection, in that the scene is projected on a sphere. But
unlike the fisheye camera, it uses rectangular coordinates instead of polar coordinates; in this it works the
same way as spherical mapping (ntgpe 1).

This has a number of uses. Firstly, it allows an image rendered with the spherical camera to be mapped
on a sphere without distortion (with the fisheye camera, you first have to convert the image from polar to
rectangular coordinates in some image editor). Also, it allows effects such as "environment mapping”, often
used for simulating reflections in scanline renderers.

3.1.3 Focal Blur

POV-Ray can simulate focal depth-of-field by shooting a number of sample rays from jittered points within
each pixel and averaging the results.

To turn on focal blur, you must specify theerture keyword followed by a float value which determines
the depth of the sharpness zone. Large apertures give a lot of blurring, while narrow apertures will give a
wide zone of sharpness.

Note: while this behaves as a real camera does, the values for aperture are purely arbitrary and are not
related tof -stops.

You must also specify thelur_samples keyword followed by an integer value specifying the maximum
number of rays to use for each pixel. More rays give a smoother appearance but is slower. By default no
focal blur is used, i. e. the default aperture is 0 and the default number of samples is 0.

The center of theone of sharpness specified by the focal point vector. Thezone of sharpness a
plane through theocal point and is parallel to the camera. Objects close to this plane of focus are in focus
and those farther from that plane are more blurred. The default valdeds! point<0, 0, 0>.

Although b1lur_samples specifies the maximum number of samples, there is an adaptive mechanism that
stops shooting rays when a certain degree of confidence has been reached. At that point, shooting more
rays would not result in a significant change.

Theconfidence and variance keywords are followed by float values to control the adaptive function. The
confidence value is used to determine when the samples seem tdose enougho the correct color.

The variance value specifies an acceptable tolerance on the variance of the samples taken so far. In other
words, the process of shooting sample rays is terminated when the estimated color value is very likely (as
controlled by the confidence probability) near the real color value.

3.1 Camera 89

Since thezonfidence is a probability its values can range from 04d (the default is 0.9, i. e. 90%). The
value for the variance should be in the range of the smallest displayable color difference (the default is
1/128). If 1 is used POV-Ray will issue a warning and then use the default instead.

Rendering with the default settings can result in quite grainy images. This can be improved by using a lower
variance. A value of 1/10000 gives a fairly good result (with default confidence anddamples set to
something like 100) without being unacceptably slow.

Largerconfidence values will lead to more samples, slower traces and better images. The same holds for
smallervariance thresholds.

3.1.4 Camera Ray Perturbation

The optionahormal may be used to assign a normal pattern to the camera. For example:

camera {
location Here
look_at There
normal { bumps 0.5 }

}

All camera rays will be perturbed using this pattern. The image will be distorted as though you were looking
through bumpy glass or seeing a reflection off of a bumpy surface. This lets you create special effects. See
the animated scenamera2.pov for an example. See "Normal” for information on normal patterns.

3.1.5 Camera Identifiers

Camera identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. You may declare several camera identifiers if you wish.
This makes it easy to quickly change cameras. An identifier is declared as follows.

CAMERA_DECLARATION:
#declare IDENTIFIER = CAMERA |
#local IDENTIFIER = CAMERA

WherelDENTIFIERIs the name of the identifier up to 40 characters long@AMERAis any valid camera
statement. See "#declare vs. #local” for information on identifier scope. Here is an example...

#declare Long_Lens = camera {
location -z*100
look_at <0,0,0>
angle 3

}

#declare Short_Lens = camera {
location -z*50
look_at <0,0,0>
angle 15

}

camera {
Long_Lens // edit this line to change lenses
translate <33,2,0>

90 Scene Settings

Note: only camera transformations can be added to an already declared camera. Camera behaviour chang-
ing keywords are not allowed, as they are needed in an earlier stage for resolving the keyword order depen-
dencies.

3.2 Atmospheric Effects

Atmospheric effects are a loosely-knit group of features that affect the background and/or the atmosphere
enclosing the scene. POV-Ray includes the ability to render a number of atmospheric effects, such as fog,
haze, mist, rainbows and skies.

3.2.1 Atmospheric Media

Atmospheric effects such as fog, dust, haze, or visible gas may be simulateddiy atatement specified

in the scene but not attached to any object. All areas not inside a non-hollow object in the entire scene. A
very simple approach to add fog to a scene is explained in section "Fog” however this kind of fog does not
interact with any light sources like:dia does. It will not show light beams or other effects and is therefore
not very realistic.

The atmosphere media effect overcomes some of the fog’s limitations by calculating the interaction between
light and the particles in the atmosphere using volume sampling. Thus shafts of light beams will become
visible and objects will cast shadows onto smoke or fog.

Note: POV-Ray cannot sample media along an infinitely long ray. The ray must be finite in order to be
possible to sample. This means that sampling media is only possible for rays that hit an object. So no
atmospheric media will show up agaimatkground Of sky_sphere.

Another way of being able to sample media is using spotlights because also in this case the ray is not infinite
(it is sampled only inside the spotlight cone).

With spotlights you will be able to create the best results because their cone of light will become visible.
Pointlights can be used to create effects like street lights in fog. Lights can be made to not interact with the
atmosphere by adding:dia_interaction off to the light source. They can be used to increase the overall
light level of the scene to make it look more realistic.

Complete details omedia are given in the section "Media”. Earlier versions of POV-Ray used an
atmosphere Statement for atmospheric effects but that system was incompatible with the old iehject
system. Soatmosphere has been eliminated and replaced with a simpler and more powerful media feature.
The user now only has to learn one:dia system for either atmospheric or object use.

If you only want media effects in a particular area, you should use object media rather than only relying
upon the media pattern. In general it will be faster and more accurate because it only calculates inside the
constraining object.

Note: the atmosphere feature will not work if the camera is inside a non-hollow object (see section "Empty
and Solid Objects” for a detailed explanation).

3.2.2 Background

A background color can be specified if desired. Any ray that does not hit an object will be colored with this
color. The default background is black. The syntaxdatkground is:

BACKGROUND:
background {COLOR}

3.2 Atmospheric Effects 91

3.2.3 Fog

If it is not necessary for light beams to interact with atmospheric media, themay be a faster way to
simulate haze or fog. This feature artificially adds color to every pixel based on the distance the ray has
traveled. The syntax for fog is:

FOG:
fog { [FOG_IDENTIFIER] [FOG_ITEMS...] }
FOG_ITEMS:
fog_type Fog_Type | distance Distance | COLOR |
turbulence <Turbulence> | turb_depth Turb_Depth |
omega Omega | lambda Lambda | octaves Octaves |
fog_offset Fog_Offset | fog_alt Fog_Alt |
up <Fog_Up> | TRANSFORMATION

Fog default values:

lambda 2.0
fog_type 1
fog_offset : 0.0
fog_alt : 0.0
octaves 6

omega 0.5
turbulence : <0,0,0>
turb_depth : 0.5

up . <0,1,0>

Currently there are two fog types, the defatdt_type 1 is a constant fog anébg_type 2 is ground fog.
The constant fog has a constant density everywhere while the ground fog has a constant density for all
heights below a given point on the up axis and thins out along this axis.

The color of a pixel with an intersection depths calculated by
PIXEL.COLOR = exp(-d/D) * OBJECTCOLOR + (1-exp(-d/D)) * FOGCOLOR

whereD is the specified value of the required fagstance keyword. At depth O the final color is the
object’s color. If the intersection depth equals the fog distance the final color consists of 64% of the object’s
color and 36% of the fog's color.

Note: for this equation, a distance of zero is undefined. In practice, povray will treat this value as "fog is
off”. To use an extremely thick fog, use a small nonzero number such as 1e-6 or 1e-10.

For ground fog, the height below which the fog has constant density is specified tytherset keyword.

The fog_alt keyword is used to specify the rate by which the fog fades away. The default values for both
are 0.0 so be sure to specify them if ground fog is used. At an altitudeaaf Offset+Fog _Alt the fog

has a density of 25%. The density of the fog at height less than or eqbadjiOffsetis 1.0 and for height
larger than tharog_Offsetis calculated by:

1/(1 + (y - Fog _Offset) / Fog _Alt) "2

The total density along a ray is calculated by integrating from the height of the starting point to the height
of the end point.

The optionalp vector specifies a direction pointing up, generally the same as the camera’s up vector. All
calculations done during the ground fog evaluation are done relative to this up vector, i. e. the actual heights
are calculated along this vector. The up vector can also be modified using any of the known transformations
described in "Transformations”. Though it may not be a good idea to scale the up vector - the results are
hardly predictable - it is quite useful to be able to rotate it. You should also note that translations do not
affect the up direction (and thus do not affect the fog).

92 Scene Settings

The required fog color has three purposes. First it defines the color to be used in blending the fog and the
background. Second it is used to specify a translucency threshold. By using a transmittance larger than zero
one can make sure that at least that amount of light will be seen through the fog. With a transmittance of
0.3 you will see at least 30% of the background. Third it can be used to make a filtering fog. With a filter
value larger than zero the amount of background light given by the filter value will be multiplied with the
fog color. A filter value of 0.7 will lead to a fog that filters 70% of the background light and leaves 30%
unfiltered.

Fogs may be layered. That is, you can apply as many layers of fog as you like. Generally this is most
effective if each layer is a ground fog of different color, altitude and with different turbulence values. To
use multiple layers of fogs, just add all of them to the scene.

You may optionally stir up the fog by adding turbulence. Ttheoulence keyword may be followed by a

float or vector to specify an amount of turbulence to be used.offg, 1ambda and octaves turbulence
parameters may also be specified. See section "Pattern Modifiers” for details on all of these turbulence
parameters.

Additionally the fog turbulence may be scaled along the direction of the viewing ray using:théepth
amount. Typical values are from 0.0 to 1.0 or more. The default value is 0.5 but any float value may be
used.

Note: the fog feature will not work if the camera is inside a non-hollow object (see section "Empty and
Solid Objects” for a detailed explanation).

3.2.4 Sky Sphere

The sky sphere is used create a realistic sky background without the need of an additional sphere to simulate
the sky. Its syntax is:

SKY_SPHERE:

sky_sphere { [SKY_SPHERE_IDENTIFIER] [SKY_SPHERE_ITEMS...] }
SKY_SPHERE_ITEM:

PIGMENT | TRANSFORMATION

The sky sphere can contain several pigment layers with the last pigment being at the top, i. e. it is evaluated
last, and the first pigment being at the bottom, i. e. it is evaluated first. If the upper layers contain filtering
and/or transmitting components lower layers will shine through. If not lower layers will be invisible.

The sky sphere is calculated by using the direction vector as the parameter for evaluating the pigment
patterns. This leads to results independent from the view point which pretty good models a real sky where
the distance to the sky is much larger than the distances between visible objects.

If you want to add a nice color blend to your background you can easily do this by using the following
example.

sky_sphere {
pigment {
gradient y
color_map {
[0.5 color CornflowerBlue]
[1.0 color MidnightBlue]
}
scale 2
translate -1

3.2 Atmospheric Effects 93

This gives a soft blend fromornflowerBlue at the horizon taridnightBlue at the zenith. The scale and
translate operations are used to map the direction vector values, which lie in the range- froth, -1> to
<1, 1, 1>, onto the range from:0, 0, 0> to <1, 1, I>. Thus a repetition of the color blend is avoided for
parts of the sky below the horizon.

In order to easily animate a sky sphere you can transform it using the usual transformations described in
"Transformations”. Though it may not be a good idea to translate or scale a sky sphere - the results are
hardly predictable - it is quite useful to be able to rotate it. In an animation the color blendings of the sky
can be made to follow the rising sun for example.

Note: only one sky sphere can be used in any scene. It also will not work as you might expect if you
use camera types like the orthographic or cylindrical camera. The orthographic camera uses parallel rays
and thus you will only see a very small part of the sky sphere (you will get one color skies in most cases).
Reflections in curved surface will work though, e. g. you will clearly see the sky in a mirrored ball.

3.2.5 Rainbow

Rainbows are implemented using fog-like, circular arcs. Their syntax is:

RAINBOW:
rainbow { [RAINBOW_IDENTIFIER] [RAINBOW_ITEMS...] }
RAINBOW_ITEM:
direction <Dir> | angle Angle | width Width |
distance Distance | COLOR_MAP | jitter Jitter | up <Up> |
arc_angle Arc_Angle | falloff_angle Falloff_Angle

Rainbow default values:

arc_angle : 180.0
falloff_angle : 180.0
jitter : 0.0
up Ly

The requireddirection vector determines the direction of the (virtual) light that is responsible for the
rainbow. Ideally this is an infinitely far away light source like the sun that emits parallel light rays. The
position and size of the rainbow are specified by the requirete andwidth keywords. To understand
how they work you should first know how the rainbow is calculated.

For each ray the angle between the rainbow’s direction vector and the ray’s direction vector is calculated.
If this angle lies in the interval fromAngle-Width/2 ~ to Angle+Width/2 the rainbow is hit by the ray.

The color is then determined by using the angle as an index into the rainbow’sneafor After the color

has been determined it will be mixed with the background color in the same way like it is done for fogs.

Thus the angle and width parameters determine the angles under which the rainbow will be seen. The
optional jitter keyword can be used to add random noise to the index. This adds some irregularity to the
rainbow that makes it look more realistic.

The requirediistance keyword is the same like the one used with fogs. Since the rainbow is a fog-like
effect it is possible that the rainbow is noticeable on objects. If this effect is not wanted it can be avoided by
using a large distance value. By default a sufficiently large value is used to make sure that this effect does
not occur.

Thecolor map Statement is used to assign a color map that will be mapped onto the rainbow. To be able to
create realistic rainbows it is important to know that the index into the color map increases with the angle
between the ray’s and rainbow’s direction vector. The index is zero at the innermost ring and one at the
outermost ring. The filter and transmittance values of the colors in the color map have the same meaning as
the ones used with fogs (see section "Fog”).

94 Scene Settings

The default rainbow is a 360 degree arc that looks like a circle. This is no problem as long as you have
a ground plane that hides the lower, non-visible part of the rainbow. If this is not the case or if you do
not want the full arc to be visible you can use the optional keywapgSarc_angle andfalloff_angle to

specify a smaller arc.

Thearc_angle keyword determines the size of the arc in degrees (from 0 to 360 degrees). A value smaller
than 360 degrees results in an arc that abruptly vanishes. Since this does not look nice you can use the
falloff_angle keyword to specify a region in which the rainbow will smoothly blend into the background
making it vanish softly. The falloff angle has to be smaller or equal to the arc angle.

The up keyword determines were the zero angle position is. By changing this vector you can rotate the
rainbow about its direction. You should note that the arc goes fiwm Angle/2to +Arc_Angle/2 The
soft regions go fromArc_Angle/2to -Falloff_Angle/2and from+Falloff _Angle/2to +Arc_Angle/2

The following example generates a 120 degrees rainbow arc that has a falloff region of 30 degrees at both
ends:

rainbow {
direction <0, 0, 1>
angle 42.5
width 5
distance 1000
jitter 0.01
color_map { Rainbow_Color_Map }
up <0, 1, 0>
arc_angle 120
falloff_angle 30

}

It is possible to use any number of rainbows and to combine them with other atmospheric effects.

3.3 Global Settings

Theglobal_settings Statementis a catch-all statement that gathers together a number of global parameters.
The statement may appear anywhere in a scene as long as it is not inside any other statement. You may have
multiple global_settings Statements in a scene. Whatever values were specified in thedast_settings

statement override any previous settings.

Note: some items which were language directives in earlier versions of POV-Ray have been moved inside
the global_settings statement so that it is more obvious to the user that their effect is global. The old
syntax is permitted but generates a warning.

The new syntax is:

GLOBAL_SETTINGS:
global_settings { [GLOBAL_SETTINGS_ITEMS...] }
GLOBAL_SETTINGS_ITEM:
adc_bailout Value | ambient_light COLOR | assumed_gamma Value |
hf_gray_16 [Bool] | irid_wavelength COLCR |
charset GLOBAL_CHARSET | max_intersections Number |
max_trace_level Number | number_of_waves Number |
noise_generator Number | radiosity { RADIOSITY_ITEMS... } |
photon { PHOTON_ITEMS... }
GLOBAL_CHARSET:
ascii | utf8 | sys

Global setting default values:

3.3 Global Settings

95

charset : ascii
adc_bailout : 1/255
ambient_light : <1,1,1>
assumed_gamma : No gamma correction
hf_gray_16 : off
irid_wavelength : <0.25,0.18,0.14>
max_trace_level 5
max_intersections : 64
number_of waves . 10
noise_generator 2
Radiosity:
adc_bailout : 0.01
always_sample : on
brightness : 1.0
count : 35 (max = 1600)
error_bound : 1.8
gray_threshold : 0.0
low_error_factor : 0.5
max_sample : non-positive value
minimum_reuse : 0.015
nearest_count 5 (max = 20)
normal . off
pretrace_start : 0.08
pretrace_end . 0.04
recursion_limit : 3

Each item is optional and may appear in any order. If an item is specified more than once, the last setting
overrides previous values. Details on each item are given in the following sections.

3.3.1 ADCBailout

In scenes with many reflective and transparent surfaces, POV-Ray can get bogged down tracing multiple
reflections and refractions that contribute very little to the color of a particular pixel. The program uses a
system called\daptive Depth ContrqlADC) to stop computing additional reflected or refracted rays when
their contribution is insignificant.

You may use the global settingic bailout keyword followed by float value to specify the point at which
a ray'’s contribution is considered insignificant. For example:

global_settings { adc_bailout 0.01 }

The default value is 1/255, or approximately 0.0039, since a change smaller than that could not be visible
in a 24 bitimage. Generally this setting is perfectly adequate and should be left alone. Settiagiout

to O will disable ADC, relying completely ofax_trace_level to set an upper limit on the number of rays
spawned.

See section "MaxiraceLevel” for details on how ADC anéax_trace_level interact.

3.3.2 AmbientLight

Ambient light is used to simulate the effect of inter-diffuse reflection that is responsible for lighting areas
that partially or completely lie in shadow. POV-Ray providesdfigient _1ight keyword to let you easily
change the brightness of the ambient lighting without changing every ambient value in all finish statements.
It also lets you create interesting effects by changing the color of the ambient light source. The syntax is:

96 Scene Settings

global_settings { ambient_light COLOR }

The default is a white ambient light source set@t <1,1,1>. Only the rgb components are used. The
actual ambient used igsmbient = FinishAmbient * GlobalAmbient

See section "Ambient” for more information.

3.3.3 AssumedGamma

Many people may have noticed at one time or another that some images are too bright or dim when displayed
on their system. As a rule, Macintosh users find that images created on a PC are too bright, while PC users
find that images created on a Macintosh are too dim.

The assumed_gamma global setting works in conjunction with thE splay_Gamma INI setting (see section
"Display Hardware Settings”) to ensure that scene files render the same way across the wide variety of
hardware platforms that POV-Ray is used on. The assumed gamma setting is used in a scene file by adding

global_settings { assumed_gamma Value }

where the assumed gamma value is the correction factor to be applied before the pixels are displayed and/or
saved to disk. For scenes created in older versions of POV-Ray, the assumed gamma value will be the same
as the display gamma value of the system the scene was created on. For PC systems, the most common
display gamma is 2.2, while for scenes created on Macintosh systems should use a scene gamma of 1.8.
Another gamma value that sometimes occurs in scenes is 1.0.

Scenes that do not have agsumed_gamma global setting will not have any gamma correction performed

on them, for compatibility reasons. If you are creating new scenes or rendering old scenes, it is strongly
recommended that you put in an appropriateimed_gamma global setting. For new scenes, you should use

an assumed gamma value of 1.0 as this models how light appears in the real world more realistically.

Before we go to the following sections, that explain more thoroughly what gamma is and why it is important,
a short overview of how gamma works in POV-Ray:

NO assumed_gamma iN SCENe :
No gamma correction is applied to output file.

assumed_gamma 1 :
Gammapisplay_Gamma iS applied to output file.
If Display_Gamma iS not specified, 2.2 is used.

assumed_gamma G :
Gammapisplay-Gamma/G is applied to output file.
If Display_Gamma is not specified, 2.2/G is used.

Recommended value fassumed_gamma is 1.

Monitor Gamma

The differences in how images are displayed is a result of how a computer actually takes an image and
displays it on the monitor. In the process of rendering an image and displaying it on the screen, several
gamma values are important, including the POV scene file or image file gamma and the monitor gamma.

Most image files generated by POV-Ray store numbers in the range from 0 to 255 for each of the red, green
and blue components of a pixel. These numbers represent the intensity of each color component, with O
being black and 255 being the brightest color (either 100% red, 100% green or 100% blue). When an image
is displayed, the graphics card converts each color component into a voltage which is sent to the monitor to

3.3 Global Settings 97

light up the red, green and blue phosphors on the screen. The voltage is usually proportional to the value of
each color component.

Gamma becomes important when displaying intensities that are not the maximum or minimum possible
values. For example, 127 should represent 50% of the maximum intensity for pixels stored as numbers
between 0 and 255. On systems that do not do gamma correction, 127 will be converted to 50% of the
maximum voltage, but because of the way the phosphors and the electron guns in a monitor work, this may
be only 22% of the maximum color intensity on a monitor with a gamma of 2.2. To display a pixel which is
50% of the maximum intensity on this monitor, we would need a voltage of 73% of the maximum voltage,
which translates to storing a pixel value of 186.

The relationship between the input pixel value and the displayed intensity can be approximated by an
exponential functionobright = ibright ~ display _gammawhere obright is the output intensity and
ibright is the input pixel intensity. Both values are in the range from 0 to 1 (0% to 100%). Most monitors
have a fixed gamma value in the range from 1.8 to 2.6. Using the above formula with dispraya

values greater than 1 means that the output brightness will be less than the input brightness. In order to
have the output and input brightness be equal an overall system gamma of 1 is needed. To do this, we need
to gamma correct the input brightness in the same manner as above but with a gamma value of 1/display
gamma before it is sent to the monitor. To correct for a display gamma of 2.2, this pre-monitor gamma
correction uses a gamma value of 1.0/2.2 or approximately 0.45.

How the pre-monitor gamma correction is done depends on what hardware and software is being used. On
Macintosh systems, the operating system has taken it upon itself to insulate applications from the differences
in display hardware. Through a gamma control panel the user may be able to set the actual monitor gamma
and Mac will then convert all pixel intensities so that the monitor will appear to have the specified gamma
value. On Silicon Graphics machines, the display adapter has built-in gamma correction calibrated to the
monitor which gives the desired overall gamma (the default is 1.7). Unfortunately, on PCs and most UNIX
systems, it is up to the application to do any gamma correction needed.

Image File Gamma

Since most PC and UNIX applications and image file formats do not understand display gamma, they do
not do anything to correct for it. As a result, users creating images on these systems adjust the image in
such a way that it has the correct brightness when displayed. This means that the data values stored in the
files are made brighter to compensate for the darkening effect of the monitor. In essence, the 0.45 gamma
correction is built in to the image files created and stored on these systems. When these files are displayed
on a Macintosh system, the gamma correction built in to the file, in addition to gamma correction built into
MacOS, means that the image will be too bright. Similarly, files that look correct on Macintosh or SGI
systems because of the built-in gamma correction will be too dark when displayed on a PC.

The PNG format files generated by POV-Ray overcome the problem of too much or not enough gamma
correction by storing the image file gamma (which is 1.0/disglagnma) inside the PNG file when it is
generated by POV-Ray. When the PNG file is later displayed by a program that has been set up correctly, it
uses this gamma value as well as the current display gamma to correct for the potentially different display
gamma used when originally creating the image.

Unfortunately, of all the image file formats POV-Ray supports, PNG is the only one that has any gamma
correction features and is therefore preferred for images that will be displayed on a wide variety of plat-
forms.

Scene File Gamma

The image file gamma problem itself is just a result of how scenes themselves are generated in POV-Ray.
When you start out with a new scene and are placing light sources and adjusting surface textures and colors,

98 Scene Settings

you generally make several attempts before the lighting is how you like it. How you choose these settings
depends upon the preview image or the image file stored to disk, which in turn is dependent upon the overall
gamma of the display hardware being used.

This means that as the artist you are doing gamma correction in the POV-Ray scene file for your particular
hardware. This scene file will generate an image file that is also gamma corrected for your hardware and
will display correctly on systems similar to your own. However, when this scene is rendered on another

platform, it may be too bright or too dim, regardless of the output file format used. Rather than have you

change all the scene files to have a single fixed gamma value (heaven forbid!), POV-Ray allows you to
specify in the scene file the display gamma of the system that the scene was created on.

The assumed_gamma global setting, in conjunction with th&isplay_Gamma INI setting lets POV-Ray know
how to do gamma correction on a given scene so that the preview and output image files will appear the
correct brightness on any system. Since the gamma correction is done internally to POV-Ray, it will produce
output image files that are the correct brightness for the current display, regardless of what output format
is used. As well, since the gamma correction is performed in the high-precision data format that POV-Ray
uses internally, it produces better results than gamma correction done after the file is written to disk.

Although you may not notice any difference in the output on your system with and withoutamed_-
gamma Setting, the assumed gamma is important if the scene is ever rendered on another platform.

3.3.4 HFGray_16

Thenf_gray_16 setting is useful when using POV-Ray to generate heightfields for use in other POV-Ray
scenes. The syntax is... globsdttings{ hf_gray.16 [Bool] }

The boolean value turns the option on or off. If the keyword is specified without the boolean value then
the option is turned on. Ifaf_gray_16 is not specified in anylobal _settings Statement in the entire scene
then the default is off.

When nf_gray_16 is on, the output file will be in the form of a heightfield, with the height at any point
being dependent on the brightness of the pixel. The brightness of a pixel is calculated in the same way that
color images are converted to grayscale imagesight = 0.3 * red + 0.59 * green + 0.11 *

blue .

Setting the hf_gray_16 option will cause the preview display, if used, to be grayscale rather than color.
This is to allow you to see how the heightfield will look because some file formats store heightfields in a
way that is difficult to understand afterwards. See section "Height Field” for a description of how POV-Ray
heightfields are stored for each file type.

3.3.5 Irid_Wavelength

Iridescence calculations depend upon the dominant wavelengths of the primary colors of red, green and
blue light. You may adjust the values using the global setting wavelength as follows...

global_settings { irid_wavelength COLOR }

The default value isgb <0.25,0.18,0.14> and any filter or transmit values are ignored. These values are
proportional to the wavelength of light but they represent no real world units.

In general, the default values should prove adequate but we provide this option as a means to experiment
with other values.

3.3 Global Settings 99

3.3.6 Charset

This allows you to specify the assumed character set of all text strings. If you specifyonly standard

ASCII character codes in the range from 0 to 127 are valid. You can easily find a table of ASCII characters
on the internet. The optiom:£8 is a special Unicode text encoding and it allows you to specify characters
of nearly all languages in use today. We suggest you use a text editor with the capability to export text to
UTF8 to generate input files. You can find more information, including tables with codes of valid characters
on the Unicode websiteThe last possible option is to use a system specific character set. For details about
the sys character set option refer to the platform specific documentation.

3.3.7 MaxTrace_Level

In scenes with many reflective and transparent surfaces POV-Ray can get bogged down tracing multiple
reflections and refractions that contribute very little to the color of a particular pixel. The global setting
max_trace_level defines the integer maximum number of recursive levels that POV-Ray will trace a ray.

global_settings { max_trace_level Level }

This is used when a ray is reflected or is passing through a transparent object and when shadow rays are
cast. When a ray hits a reflective surface, it spawns another ray to see what that point reflects. That is trace
level one. If it hits another reflective surface another ray is spawned and it goes to trace level two. The
maximum level by default is five.

One speed enhancement added to POV-Ray in version Bdaigtive Depth Contro]ADC). Each time a

new ray is spawned as a result of reflection or refraction its contribution to the overall color of the pixel
is reduced by the amount of reflection or the filter value of the refractive surface. At some point this
contribution can be considered to be insignificant and there is no point in tracing any more rays. Adaptive
depth control is what tracks this contribution and makes the decision of when to bail out. On scenes that use
a lot of partially reflective or refractive surfaces this can result in a considerable reduction in the number of
rays fired and makes it safer to use much highek_trace_level values.

This reduction in color contribution is a result of scaling by the reflection amount and/or the filter values of
each surface, so a perfect mirror or perfectly clear surface will not be optimizable by ADC. You can see the
results of ADC by watching therays saved andrighest Trace Level displays on the statistics screen.

The point at which a ray’s contribution is considered insignificant is controlled bydheailout value.

The default is 1/255 or approximately 0.0039 since a change smaller than that could not be visible in a
24 bitimage. Generally this setting is perfectly adequate and should be left alone. Settirglout to

0 will disable ADC, relying completely onmax_trace_level to set an upper limit on the number of rays
spawned.

If max_trace_level is reached before a non-reflecting surface is found and if ADC has not allowed an early
exit from the ray tree the color is returned as black. Raisetrace_level if you see black areas in a
reflective surface where there should be a color.

The other symptom you could see is with transparent objects. For instance, try making a union of concentric
spheres with a clear texture on them. Make ten of them in the union with radius’s from 1 to 10 and render
the scene. The image will show the first few spheres correctly, then black. This is because a new level is
used every time you pass through a transparent surface. iRaiseace_level to fix this problem.

Note: that raisingnax_trace_level Will use more memory and time and it could cause the program to crash
with a stack overflow error, although ADC will alleviate this to a large extent.

Values formax_trace_level can be set up to a maximum of 256. If there ism@_trace_level set and
during rendering the default value is reached, a warning is issued.

Lhttp://www.unicode.org/

100 Scene Settings

3.3.8 MaxlIntersections

POV-Ray uses a set of internal stacks to collect ray/object intersection points. The usual maximum number
of entries in thesé& Stacksis 64. Complex scenes may cause these stacks to overflow. POV-Ray does not
stop but it may incorrectly render your scene. When POV-Ray finishes rendering, a number of statistics are
displayed. If you see-stack overflows reported in the statistics you should increase the stack size. Add

a global setting to your scene as follows:

global_settings { max_intersections Integer }

If the 1-stack overflows remain increase this value until they stop.

3.3.9 NumberOf_Waves

Thewaves andripples patterns are generated by summing a series of waves, each with a slightly different
center and size. By default, ten waves are summed but this amount can be globally controlled by changing
thenumber_of _waves Setting.

global_settings { number_of_waves Integer }

Changing this value affects both waves and ripples alike on all patterns in the scene.

3.3.10 Noisegenerator

There are three noise generators implemented.
* noise_generator 1 the noise that was used in PQRay 3.1

* noise_generator 2 'range corrected’ version of the old noise, it does not show the plateaus seen with
noise_generator 1

* noise_generator 3 generates Perlin noise
The default imoise_generator 2

Note: The noisegenerators can also be used within the pigment/normal/etc. statement.

3.3.11 Radiosity Basics

Important notice: The radiosity features in POV-Ray are somewhat experimental. There is a high proba-
bility that the design and implementation of these features will be changed in future versions. We cannot
guarantee that scenes using these features in this version will render identically in future releases or that full
backwards compatibility of language syntax can be maintained.

Radiosity is an extra calculation that more realistically computes the diffuse interreflection of light. This
diffuse interreflection can be seen if you place a white chair in a room full of blue carpet, blue walls and blue
curtains. The chair will pick up a blue tint from light reflecting off of other parts of the room. Also notice
that the shadowed areas of your surroundings are not totally dark even if no light source shines directly on
the surface. Diffuse light reflecting off of other objects fills in the shadows. Typically ray-tracing uses a
trick called ambientlight to simulate such effects but it is not very accurate.

Radiosity calculations are only made whemsaiosity{} block is used inside thg obal_settings{} block.

The following sections describes how radiosity works, how to control it with various global settings and
tips on trading quality vs. speed.

3.4 Radiosity 101

3.4 Radiosity

3.4.1 How Radiosity Works

The problem of ray-tracing is to figure out what the light level is at each point that you can see in a scene.
Traditionally, in ray tracing, this is broken into the sum of these components:

Diffuse
the effect that makes the side of things facing the light brighter;
Specular
the effect that makes shiny things have dings or sparkles on them;
Reflection
the effect that mirrors give; and
Ambient
the general all-over light level that any scene has, which keeps things in shadow from being
pure black.

POV-Ray'’s radiosity system, based on a method by Greg Ward, provides a way to replace the last term - the
constant ambient light value - with a light level which is based on what surfaces are nearby and how bright
in turn they are.

The first thing you might notice about this definition is that it is circular: the brightness and color of
everything is dependent on everything else and vice versa. This is true in real life but in the world of ray-
tracing, we can make an approximation. The approximation that is used is: the objects you are looking at
have theirambient values calculated for you by checking the other objects nearby. When those objects are
checked during this process, however, theirfuse term is used. The brightness of radiosity in POV-Ray

is based on two things:

1. the amount of light "gathered”
2. the 'diffuse’ property of the surface finish

An object can have both radiosity and an ambient term. However, it is suggested that if you use radiosity
in a scene, you either setbient_light t0 0 inglobal_settings, OF US€ambient 0 iN each object’s finish.

This lighting model is much more realistic, and POV-Ray will not try to adjust the overall brightness of the
radiosity to match the ambient level specified by the user.

How does POV-Ray calculate the ambient term for each point? By sending out more rays, in many different
directions, and averaging the results. A typical point might use 200 or more rays to calculate its ambient
light level correctly.

Now this sounds like it would make the ray-tracer 200 times slower. This is true, except that the software
takes advantage of the fact that ambient light levels change quite slowly (remember, shadows are calculated
separately, so sharp shadow edges are not a problem). Therefore, these extra rays are senbroee only

in a while (about 1 time in 50), then these calculated values are saved and reused for nearby pixels in the
image when possible.

This process of saving and reusing values is what causes the need for a variety of tuning parameters, so you
can get the scene to look just the way you want.

3.4.2 Adjusting Radiosity

As described earlier, radiosity is turned on by usingith& osity{} block inglobal_setting. Radiosity
has many parameters that are specified as follows:

102 Scene Settings

global_settings { radiosity { [RADIOSITY_ITEMS...] } }
RADIOSITY_ITEMS:
adc_bailout Float | always_sample Bool | brightness Float |
count Integer | error_bound Float | gray_threshold Float |
load_file Filename | low_error_factor Float | max_sample Float |
media Bool | minimum_reuse Float | nearest_count Integer |
normal Bool | pretrace_end Float | pretrace_start Float |
recursion_limit Integer | save_file Filename

Each item is optional and may appear in any order. If an item is specified more than once the last setting
overrides previous values. Details on each item is given in the following sections.

Note: Considerable changes have been made to the way radiosity works in POV-Ray 3.5 compared to POV-
Ray 3.1. Old scene will not render to the same result, if they render at all. It is not possible to use the
#version directive to get backward compatibility for radiosity.

radiosity adc_bailout

You can specify an adbailout for radiosity rays. Usedc bailout = 0.01 / brightest_ambient_object
for good results. Default is 0.01.

always sample

You can force POV-Ray to only use the data from the pretrace step and not gather any new samples during
the final radiosity pass. This may reduce splotchiness. To do this,lusgs_sample off, by default it is
on. It can also be usefully when reusing previously saved radiosity data.

brightness

Thebrightness keyword specifies a float value that is the degree to which objects are brightened before
being returned upwards to the rest of the system. The default value is 1.0. In cases where you would raise
theglobal_settings{ambient_light value} to increase the over all brightness in a non-radiosity scene, you
can usebrightness in a radiosity scene.

count

The integer number of rays that are sent out whenever a new radiosity value has to be calculated is given
by count. A value of 35 is the default, the maximum is 1600. When this value is too low, the light level
will tend to look a little bit blotchy, as if the surfaces you are looking at were slightly warped. If this is not
important to your scene (as in the case that you have a bump map or if you have a strong texture) then by
all means use a lower number.

error _bound

Theerror_bound float value is one of the two main speed/quality tuning values (the other is of course the
number of rays shot). In an ideal world, this would be they value needed. It is intended to mean the
fraction of error tolerated. For example, if it were set to 1 the algorithm would not calculate a new value
until the error on the last one was estimated at as high as 100%. Ignoring the error introduced by rotation for
the moment, on flat surfaces this is equal to the fraction of the reuse distance, which in turn is the distance
to the closest item hit. If you have an old sample on the floor 10 inches from a wall, an error bound of 0.5
will get you a new sample at a distance of about 5 inches from the wall.

3.4 Radiosity 103

The default value of 1.8 is good for a smooth general lighting effect. Using lower values is more accurate,
but it will strongly increase the danger of artifacts and therefore require higher. You can use values
even lower than 0.1 but both render time and memory use can become extremely high then.

gray_threshold

Diffusely interreflected light is a function of the objects around the point in question. Since this is recur-
sively defined to millions of levels of recursion, in any real life scene, every point is illuminated at least in
part by every other part of the scene. Since we cannot afford to compute this, if we only do one bounce,
the calculated ambient light is very strongly affected by the colors of the objects near it. This is known as
color bleed and it really happens but not as much as this calculation method would have you believe. The
gray_threshold float value grays it down a little, to make your scene more believable. A value of .6 means
to calculate the ambient value as 60% of the equivalent gray value calculated, plus 40% of the actual value
calculated. At 0%, this feature does nothing. At 100%, you always get white/gray ambient light, with no
hue.

Note: this does not change the lightness/darkness, only the strength of hue/grayness (in HLS terms, it
changes S only). The default value is 0.0

low_error _factor

If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting.
What you want is just a few extra interspersed, so that the blending will be nice and smooth. The solution
to this is the mosaic preview, controlled pyet race: it goes over the image one or more times beforehand,
calculating radiosity values. To ensure that you get a few extra, the radiosity algorithm lowers the error
bound during the pre-final passes, then sets it back just before the final passiofheror_factor is

a float tuning value which sets the amount that the error bound is dropped during the preliminary image
passes. If your low error factor is 0.8 and your error bound is set to 0.4 it will really use an error bound of
0.32 during the first passes and 0.4 on the final pass. The default value is 0.5.

max_sample

Sometimes there can be problems with splotchiness that is caused by objects that are very bright. This can
be sometimes avoided by using the_sample keyword.max_sample takes a float parameter which specifies

the brightest that any gathered sample is allowed to be. Any samples brighter than this will have their
brightness decreased (without affecting color). Specifying a non-positive valuesfeemple will allow

any brightness of samples (which is the default).

Media and Radiosity

Radiosity estimation can be affected by media. To enable this featureieattd on to theradiosity{}
block. The defaultis<t

minimum _reuse

The minimum effective radius ratio is set bynimnum_reuse float value. This is the fraction of the screen
width which sets the minimum radius of reuse for each sample point (actually, it is the fraction of the
distance from the eye but the two are roughly equal). For example, if the value is 0.02, the radius of
maximum reuse for every sample is set to whatever ground distance corresponds to 2% of the width of the
screen. Imagine you sent a ray off to the horizon and it hits the ground at a distance of 100 miles from your

104 Scene Settings

eye point. The reuse distance for that sample will be set to 2 miles. At a resolution of 300*400 this will
correspond to (very roughly) 8 pixels. The theory is that you do not want to calculate values for every pixel
into every crevice everywhere in the scene, it will take too long. This sets a minimum bound for the reuse.
If this value is too low, (which it should be in theory) rendering gets slow, and inside corners can get a little
grainy. If it is set too high, you do not get the natural darkening of illumination near inside edges, since it
reuses. At values higher than 2% you start getting more just plain errors, like reusing the illumination of
the open table underneath the apple. Remember that this is a unit less ratio. The default value is 0.015.

nearestcount

Thenearest_count integer value is the minimum number of old ambient values blended together to create a
new interpolated value. The total number blended will vary dependirgan _bound. All previous values
that fit within the specified errdbound will be used in the average.

It will always be the n geometrically closest reusable points that get used. If you go lower than 4, things
can get pretty patchy. This can be good for debugging, though. Must be no more than 20, since that is the
size of the array allocated. The default value is 5.

Normal and Radiosity

Radiosity estimation can be affected by normals. To enable this featureoadd on to theradiosity{}
block. The defaultistt

Pretrace

To control the radiosity pre-trace gathering step, use the keyweogdsace_start andpretrace_end within
theradiosity{} block. Each of these is followed by a decimal value between 0.0 and 1.0 which specifies
the size of the blocks in the mosaic preview as a percentage of the image size. The defaults are 0.08 for
pretrace_start and 0.04 fopretrace_end

recursion_limit

Therecursion_limit iS an integer value which determines how many recursion levels are used to calculate
the diffuse inter-reflection. The default value is 3, the upper limit is 20.

Save and load radiosity data

You can save the radiosity data usisgre file "file name" and load the same data later usingd_-

file "file_name". In general, it is not a good idea to save and load radiosity data if scene objects are
moving. Even if data are loaded, more samples may be taken during rendering (which produces a better
approximation). You can disable samples from being taken during the final rendering phase by specifying
always_sample off.

3.4.3 Tips on Radiosity

Have a look at the "Radiosity Tutorial” in the "Advanced Tutorial” section, to get a feel for what the visual
result of changing radiosity parameters is.

3.4 Radiosity 105

If you want to see where your values are being calculated set radioesity down to about 20, set radiosity
nearest_count t0 1 and sefray threshold to 0. This will make everything maximally patchy, so you will

be able to see the borders between patches. There will have been a radiosity calculation at the center of
most patches. As a bonus, this is quick to run. You can then changedthe bound up and down to see

how it changes things. Likewise modifyynimum_reuse.

One way to get extra smooth results: crank up the sample count (we have gone as high as 1300) and drop the
low_error_factor to something small like 0.6. Bump up theearest_count to 7 or 8. This will get better

values, and more of them, then interpolate among more of them on the last pass. This is not for people with
a lack of patience since it is like a squared function. If your blotchiness is only in certain corners or near
certain objects try tuning the error bound instead. Never drop it by more than a little at a time, since the run
time will get very long.

Sometimes extra samples are taken during the final rendering pass. These newer samples can cause discon-
tinuities in the radiosity in some scenes. To decrease these artefacts, use a jpredrat®.04 (or even

0.02 if you are really patient and picky). This will cause the majority of the samples to be taken during the
preview passes, and decrease the artefacts created during the final rendering pass. You can force POV-Ray
to only use the data from the pretrace step and not gather any new samples during the final radiosity pass.
To do this, use "alwaysample no” within the radiosity block inside globsgttings.

If your scene uses ambient objects (especially small ambient objects) as light sources, you should probably
use a higher count (100-150 and higher). For such scenes, arbeund of 1.0 is usually good. Higher
causes too much error, but lower causes very slow rendering. And it is important to ad#yatiladt.

106 Scene Settings

Chapter 4

Objects

Objects are the building blocks of your scene. There are a lot of different types of objects supported by
POV-Ray. In the sections which follows, we describe "Finite Solid Primitives”, "Finite Patch Primitives”,
"Infinite Solid Primitives”, "Isosurface Object”, "Parametric Object”, and "Light Sources”. These primitive
shapes may be combined into complex shapes using "Constructive Solid Geometry” (also known as CSG).

The basic syntax of an object is a keyword describing its type, some floats, vectors or other parameters
which further define its location and/or shape and some optional object modifiers such as texture,-interior
texture, pigment, normal, finish, interior, bounding, clipping or transformations. Specifically the syntax
is:

OBJECT:
FINITE_SOLID_OBJECT | FINITE_PATCH OBJECT |
INFINITE_SOLID_OBJECT | ISOSURFACE_OBJECT | PARAMETRIC_OBJECT |
CSG_OBJECT | LIGHT_SOURCE |
object { OBJECT_IDENTIFIER [OBJECT MODIFIERS...] }

FINITE_SOLID_OBJECT:

BLOB | BOX | CONE | CYLINDER | HEIGHT FIELD | JULIA_FRACTAL |
LATHE | PRISM | SPHERE | SPHERESWEEP | SUPERELLIPSOID | SOR |
TEXT | TORUS

FINITE_PATCH_OBJECT:
BICUBIC_PATCH | DISC | MESH | MESH2 | POLYGON | TRIANGLE |
SMOOTH_TRIANGLE

INFINITE_SOLID_OBJECT:
PLANE | POLY | CUBIC | QUARTIC | QUADRIC

ISOSURFACE_OBJECT:

ISOSURFACE

PARAMETRIC_OBJECT:

PARAMETRIC

CSG_OBJECT:

UNION | INTERSECTION | DIFFERENCE | MERGE

Object identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

OBJECT_DECLARATION:
#declare IDENTIFIER = OBJECT |
#local IDENTIFIER = OBJECT

WherelDENTIFIERIs the name of the identifier up to 40 characters long@BJECTis any valid object.
To invoke an object identifier, you wrap it in amject{...} statement. You use th&ject Statement
regardless of what type of object it originally was. Although early versions of POV-Ray required this

108 Objects

object wrapper all of the time, now it is only used witBBJECTIDENTIFIERS
Object modifiers are covered in detail later. However here is a brief overview.

The texture describes the surface properties of the object. Complete details are in "Textures”. Textures are
combinations of pigments, normals, and finishes. In the section "Pigment” you will learn how to specify the
color or pattern of colors inherent in the material. In "Normal” we describe a method of simulating various
patterns of bumps, dents, ripples or waves by modifying the surface normal vector. The section on "Finish”
describes the reflective properties of the surface. The "Interior” is a feature introduced in POV-Ray 3.1. It
contains information about the interior of the object which was formerly contained in the finish and halo
parts of a texture. Interior items are no longer part of the texture. Instead, they attach directly to the objects.
The halo feature has been discontinued and replaced with a new feature called "Media” which replaces both
halo and atmosphere.

Bounding shapes are finite, invisible shapes which wrap around complex, slow rendering shapes in order to
speed up rendering time. Clipping shapes are used to cut away parts of shapes to expose a hollow interior.
Transformations tell the ray-tracer how to move, size or rotate the shape and/or the texture in the scene.

4.1 Finite Solid Primitives

There are fourteen different solid finite primitive shapes: blob, box, cone, cylinder, height field, Julia fractal,
lathe, prism, sphere, spheresweep, superellipsoid, surface of revolution, text object and torus. These have a
well-definedinsideand can be used in CSG (see section "Constructive Solid Geometry”). They are finite
and respond to automatic bounding. You may specify an interior for these objects.

4.1.1 Blob

Blobs are an interesting and flexible object type. Mathematically they are iso-surfaces of scalar fields, i.e.
their surface is defined by the strength of the field in each point. If this strength is equal to a threshold value
you are on the surface otherwise you are not.

Picture each blob component as an object floating in space. This objéiledwith a field that has its
maximum at the center of the object and drops off to zero at the object’s surface. The field strength of all
those components are added together to form the field of the blob. Now POV-Ray looks for points where
this field has a given value, the threshold value. All these points form the surface of the blob object. Points
with a greater field value than the threshold value are considered to be inside while points with a smaller
field value are outside.

There’s another, simpler way of looking at blobs. They can be seen as a union of flexible components
that attract or repel each other to form a blobby organic looking shape. The components’ surfaces actually
stretch out smoothly and connect as if they were made of honey or something similar.

The syntax fobiob is defined as follows:

BLOB:
blob { BLOB_ITEM... [BLOB_MODIFIERS...]}
BLOB_ITEM:
sphere{<Center>, Radius,
[strength] Strength[COMPONENT_MODIFIER...] } |
cylinder{<Endl>, <End2>, Radius,
[strength] Strength [COMPONENT_MODIFIER...] } |
component Strength, Radius, <Center> |
threshold Amount
COMPONENT_MODIFIER:
TEXTURE | PIGMENT | NORMAL | FINISH | TRANSFORMATION

4.1 Finite Solid Primitives 109

BLOB_MODIFIER:
hierarchy [Boolean] | sturm [Boolean] | OBJECT_MODIFIER

Blob default values:

hierarchy : on
sturm : off
threshold : 1.0

The threshold keyword is followed by a float value which determines the total field strength value that
POV-Ray is looking for. The default value if none is specifiedhseshold 1.0. By following the ray out

into space and looking at how each blob component affects the ray, POV-Ray will find the points in space
where the field strength is equal to the threshold value. The following list shows some things you should
know about the threshold value.

1. The threshold value must be positive.

2. A component disappears if the threshold value is greater than its strength.

3. As the threshold value gets larger, the surface you see gets closer to the centers of the components.
4. As the threshold value gets smaller, the surface you see gets closer to the surface of the components.

Cylindrical components are specified bya inder statement. The center of the end-caps of the cylinder

is defined by the vectors<Endl> and <End2>. Next is the float value of thRadiusfollowed by the

float Strength These vectors and floats are required and should be separated by commas. The keyword
strength may optionally precede the strength value. The cylinder has hemispherical caps at each end.

Spherical components are specified bysgere statement. The location is defined by the vector
<Center >. Next is the float value of theRadiusfollowed by the float Strength These vector and float
values are required and should be separated by commas. The keywesthth may optionally precede
the strength value.

You usually will apply a single texture to the entire blob object, and you typically use transformations to
change its size, location, and orientation. However both:thender andsphere statements may have in-
dividual texture, pigment, normal, finish, and transformations applied to them. You may not apply separate
interior statements to the components but you may specify one for the entire blob.

Note: by unevenly scaling a spherical component you can create ellipsoidal components. The tutorial
section on "Blob Object” illustrates individually textured blob components and many other blob examples.

The component keyword is an obsolete method for specifying a spherical component and is only used for
compatibility with earlier POV-Ray versions. It may not have textures or transformations individually
applied to it.

Thestrength parameter of either type of blob component is a float value specifying the field strength at the

center of the object. The strength may be positive or negative. A positive value will make that component
attract other components while a negative value will make it repel other components. Components in
different, separate blob shapes do not affect each other.

You should keep the following things in mind.

1. The strength value may be positive or negative. Zero is a bad value, as the net result is that no field
was added — you might just as well have not used this component.

2. If strength is positive, then POV-Ray will add the component’s field to the space around the center of
the component. If this adds enough field strength to be greater than the threshold value you will see
a surface.

3. If the strength value is negative, then POV-Ray will subtract the component’s field from the space
around the center of the component. This will only do something if there happen to be positive

110 Objects

components nearby. The surface around any nearby positive components will be dented away from
the center of the negative component.

After all components and the optionalresho1d value have been specified you may specify zero or more
blob modifiers. A blob modifier is any regular object modifier or therarchy or sturm keywords.

The components of each blob object are internally bounded by a spherical bounding hierarchy to speed
up blob intersection tests and other operations. Using the optional keywosezrchy followed by an
optional boolean float value will turn it off or on. By default it is on.

The calculations for blobs must be very accurate. If this shape renders improperly you may add the keyword
sturm followed by an optional boolean float value to turn off or on POV-Ray’s slower-yet-more-accurate
Sturmian root solver. By default it is off.

An example of a three component blob is:

BLOB:

blob {
threshold 0.6
sphere { <.75, 0, 0>, 1, 1}
sphere { <-.375, .64952, 0>, 1, 1 }
sphere { <-.375, -.64952, 0>, 1, 1}
scale 2

}

If you have a single blob component then the surface you see will just look like the object used, i.e. a sphere
or a cylinder, with the surface being somewhere inside the surface specified for the component. The exact
surface location can be determined from the blob equation listed below (you will probably never need to
know this, blobs are more for visual appeal than for exact modeling).

For the more mathematically minded, here’s the formula used internally by POV-Ray to create blobs. You
do not need to understand this to use blobs. The density of the blob field of a single component is:

2
. distance\ 2
density= strength (1— (radius))

Equation 4.1: Density of a blob field.

wheredistanceis the distance of a given point from the spherical blob’s center or cylinder blob’s axis. This
formula has the nice property that it is exactly equal to the strength parameter at the center of the component
and drops off to exactly 0 at a distance from the center of the component that is equal to the radius value. The
density formula for more than one blob component is just the sum of the individual component densities.

4.1.2 Box

A simple box can be defined by listing two corners of the box using the following syntaxfarsatement:

BOX:
box
{
<Corner_1>, <Corner_2>
[OBJECT_MODIFIERS...]
}

Where<Corner _1>and <Corner _2> are vectors defining the X, y, z coordinates of the opposite corners
of the box.

4.1 Finite Solid Primitives 111

corner 2

corner 1

Figure 4.1: The geometry of a box.

Note: that all boxes are defined with their faces parallel to the coordinate axes. They may later be rotated
to any orientation using therotate keyword.

Boxes are calculated efficiently and make good bounding shapes (if manually bounding seems to be neces-
sary).

4.1.3 Cone

Thecone statement creates a finite length cone drustum(a cone with the point cut off). The syntax is:

CONE:
cone
{
<Base_Point>, Base_Radius, <Cap_Point>, Cap_Radius
[open] [OBJECT_MODIFIERS...]

cap radius

base radius

Figure 4.2: The geometry of a cone.

Where<Base _Point > and< Cap_Point > are vectors defining the X, y, z coordinates of the center of the
cone’s base and cap an8ase Radius andCap_Radius are float values for the corresponding radii.

Normally the ends of a cone are closed by flat discs that are parallel to each other and perpendicular to
the length of the cone. Adding the optional keywetdn after Cap_Radius will remove the end caps and
results in a tapered hollow tube like a megaphone or funnel.

112 Objects

4.1.4 Cylinder

Thecylinder statement creates a finite length cylinder with parallel end caps The syntax is:

CYLINDER:
cylinder
{
<Base_Point>, <Cap_Point>, Radius
[open] [OBJECT_MODIFIERS...]

/,} cap point

w
I
:
I
: radius
/]
I
1
- _i:_/(/ base point
e 1 =

Figure 4.3: The geometry of a cylinder.

Where<Base _Point > and <Cap-Point > are vectors defining the x, y, z coordinates of the cylinder’s
base and cap arRhdius is a float value for the radius.

Normally the ends of a cylinder are closed by flat discs that are parallel to each other and perpendicular to
the length of the cylinder. Adding the optional keywaxgn after the radius will remove the end caps and
results in a hollow tube.

4.1.5 Height Field

Height fields are fast, efficient objects that are generally used to create mountains or other raised surfaces
out of hundreds of triangles in a mesh. Theght _field Statement syntax is:

HEIGHT_FIELD:
height_field{
[HF_TYPE]
"filename"
[HF_MODIFIER...]
[OBJECT_MODIFIER...]
}
HF_TYPE:
gif | tga | pot | png | pgm | ppm | jpeg | tiff | sys | function
HF_MODIFIER:
hierarchy [Boolean] |
smooth |
water_level Level

Heightfield default values:

hierarchy : on
smooth . off
water_level : 0.0

4.1 Finite Solid Primitives 113

A height field is essentially a one unit wide by one unit long square with a mountainous surface on top.
The height of the mountain at each point is taken from the color number or palette index of the pixels in
a graphic image file. The maximum height is one, which corresponds to the maximum possible color or
palette index value in the image file.

X

Figure 4.4: The size and orientation of an un-scaled height field.

The mesh of triangles corresponds directly to the pixels in the image file. Each square formed by four neigh-
boring pixels is divided into two triangles. An image with a resolutiomNafl pixels has(N-1)*(M-1)
squares that are divided into2*(N-1)*(M-1) triangles.

/ color height

1.00
0.75
0.50
0.25
0.00

LR Y

Figure 4.5: Relationship of pixels and triangles in a height field.

The resolution of the height field is influenced by two factors: the resolution of the image and the resolution
of the color/index values. The size of the image determines the resolution in the x- and z-direction. A
larger image uses more triangles and looks smoother. The resolution of the color/index value determines
the resolution along the y-axis. A height field made from an 8-bit image can have 256 different height levels
while one made from a 16-bit image can have up to 65536 different height levels. Thus the second height
field will look much smoother in the y-direction if the height field is created appropriately.

The size/resolution of the image does not affect the size of the height field. The un-scaled height field size
will always be 1 by 1 by 1. Higher resolution image files will create smaller triangles, not larger height
fields.

There are eight or possibly nine types of files which can define a height field. The image file type used
to create a height field is specified by one of the keywatds tga, pot, png, pgm, ppm, tiff, jpeg and
possibly sys which is a system specific (e. g. Windows BMP or Macintosh Pict) format file. Specifying
the file type is optional. If it is not defined the same file type will be assumed as the one that is set as the
output file type. This is useful when the source fortheght _field is also generated with POV-Ray.

114 Objects

The GIF, PNG, PGM, TIFF and possibly SYS format files are the only ones that can be created using a
standard paint program. Though there are paint programs for creating TGA image files they will not be
of much use for creating the special 16 bit TGA files used by POV-Ray (see below an@r&iF16” for

more details).

In an image file that uses a color palette, like GIF, the color number is the palette index at a given pixel.

Use a paint program to look at the palette of a GIF image. The first color is palette index zero, the second
is index one, the third is index two and so on. The last palette entry is index 255. Portions of the image that
use low palette entries will result in lower parts of the height field. Portions of the image that use higher

palette entries will result in higher parts of the height field.

Height fields created from GIF files can only have 256 different height levels because the maximum number
of colors in a GIF file is 256.

The color of the palette entry does not affect the height of the pixel. Color entry 0 could be red, blue, black
or orange but the height of any pixel that uses color entry O will always be 0. Color entry 255 could be
indigo, hot pink, white or sky blue but the height of any pixel that uses color entry 255 will always be 1.

You can create height field GIF images with a paint program or a fractal progranrlke:int. You can
usually get Fractint from most of the same sources as POV-Ray.

A POT file is essentially a GIF file with a 16 bit palette. The maximum number of colors in a POT file is
65536. This means a POT height field can have up to 65536 possible height values. This makes it possible
to have much smoother height fields.

Note: the maximum height of the field is still 1 even though more intermediate values are possible.

At the time of this writing the only program that created POT files was a freeware MS-Dos/Windows
program calledractint. POT files generated with this fractal program create fantastic landscapes.

The TGA and PPM file formats may be used as a storage device for 16 bit numbers rather than an image file.

These formats use the red and green bytes of each pixel to store the high and low bytes of a height value.

These files are as smooth as POT files but they must be generated with special custom-made programs.
Several programs can create TGA heightfields in the format POV uses, setir@sandTerrain Maker.

PNG format heightfields are usually stored in the form of a grayscale image with black corresponding to
lower and white to higher parts of the height field. Because PNG files can store up to 16 bits in grayscale
images they will be as smooth as TGA and PPM images. Since they are grayscale images you will be able
to view them with a regular image viewer. gforge can create 16-bit heightfields in PNG format. Color

PNG images will be used in the same way as TGA and PPM images.

SYS format is a platform specific file format. See your platform specific documentation for details.
In addition to all the usual object modifiers, there are three additional height field modifiers available.

The optionakater_level parameter may be added after the file name. It consists of the keyaorel -

1evel followed by a float value telling the program to ignore parts of the height field below that value. The
default value is zero and legal values are between zero and one. For exampleevel 0.5 tells POV-

Ray to only render the top half of the height field. The other hadlfelow the wateand could not be seen
anyway. Usingvater_level renders faster than cutting off the lower part using CSG or clipping. This term
comes from the popular use of height fields to render landscapes. A height field would be used to create
islands and another shape would be used to simulate water around the islands. A large portion of the height
field would be obscured by the water so theter_level parameter was introduced to allow the ray-tracer

to ignore the unseen parts of the height fielgker_1evel is also used to cut away unwanted lower values

in a height field. For example if you have an image of a fractal on a solid colored background, where
the background color is palette entry 0, you can remove the background in the height field by specifying,
water_level 0.001.

Normally height fields have a rough, jagged look because they are made of lots of flat triangles. Adding

4.1 Finite Solid Primitives 115

the keyword smooth causes POV-Ray to modify the surface normal vectors of the triangles in such a way
that the lighting and shading of the triangles will give a smooth look. This may allow you to use a lower
resolution file for your height field than would otherwise be needed. However, smooth triangles will take
longer to render. The default value is off.

In order to speed up the intersection tests a one-level bounding hierarchy is available. By default it is always
used but it can be switched off usiagerarchy off to improve the rendering speed for small height fields

(i.e. low resolution images). You may optionally use a boolean value suchi@sirchy on Or hierarchy

off.

4.1.6 Julia Fractal

A julia fractal object is a 3-Dslice of a 4-D object created by generalizing the process used to create
the classic Julia sets. You can make a wide variety of strange objects usingithe fractal statement
including some that look like bizarre blobs of twisted taffy. Theia_fractal syntax is:

JULIA_FRACTAL:
julia_fractal
{
<4D_Julia_Parameter>
[JF_ITEM...] [OBJECT_MODIFIER...]
}
JF_ITEM:
ALGEBRA_TYPE | FUNCTION_TYPE | max_iteration Count |
precision Amt | slice <4D_Normal>, Distance
ALGEBRA_TYPE:
quaternion | hypercomplex
FUNCTION_TYPE:
QUATERNATION:
sqr | cube
HYPERCOMPLEX:
sqr | cube | exp | reciprocal | sin | asin | sinh |
asinh | cos | acos | cosh | acosh | tan | atan |tanh |
atanh | In | pwr(X_Val, Y_Val)

Julia Fractal default values:

ALGEBRA_TYPE : quaternion
FUNCTION_TYPE ¢ sqr
max_iteration : 20
precision : 20

slice, DISTANCE : <0,0,0,1>, 0.0

The required 4-D vector4D_Julia _Parameter > is the classic Julia parameteiin the iterated formula

f(h) + p . The julia fractal object is calculated by using an algorithm that determines whether an arbitrary
point h(0) in 4-D space is inside or outside the object. The algorithm requires generating the sequence
of vectorsh(0), h(1), ... by iterating the formulan(n+1) = f(h(n)) + p (n = 0, 1, ...,

max_iteration-1) where p is the fixed 4-D vector parameter of the julia fractal &d is one of

the functionssqr, cube, ... specified by the presence of the corresponding keyword. The ggdt that

begins the sequence is considered inside the julia fractal object if none of the vectors in the sequence escapes
a hypersphere of radius 4 about the origin before the iteration number reaches theriftteget-ation

value. As you increasexx_iteration, SOme points escape that did not previously escape, forming the julia
fractal. Depending on the<4D_Julia _Parameter >, the julia fractal object is not necessarily connected;

it may be scattered fractal dust. Using a lomax_iteration can fuse together the dust to make a solid
object. A highnax_iteration iS more accurate but slows rendering. Even though it is not accurate, the solid

116 Objects

shapes you get with a lowsx_iteration value can be quite interesting. If none is specified, the default is
max_iteration 20.

Since the mathematical object described by this algorithm is four-dimensional and POV-Ray renders three
dimensional objects, there must be a way to reduce the number of dimensions of the object from four
dimensions to three. This is accomplished by intersecting the 4-D fractal with a 3-D "plane” defined by the
slice modifier and then projecting the intersection to 3-D space. The keyword is followed by 4-D vector
and a float separated by a comma. The slice plane is the 3-D space that is perpendicidax kmrmal >

and is Distance units from the origin. Zero length<4D_Normal > vectors or a <4D_Normal > vector

with a zero fourth component are illegal. If none is specified, the defaultise <0,0,0,1>,0.

You can get a good feel for the four dimensional nature of a julia fractal by using POV-Ray’s animation
feature to vary a slice’'sDistance parameter. You can make the julia fractal appear from nothing, grow,
then shrink to nothing asDistance changes, much as the cross section of a 3-D object changes as it
passes through a plane.

The precision parameter is a tolerance used in the determination of whether points are inside or outside
the fractal object. Larger values give more accurate results but slower rendering. Use as low a value as you
can without visibly degrading the fractal object’'s appearance but note values less than 1.0 are clipped at 1.0.
The default if none is specified igecision 20.

The presence of the keywordguaternion Or hypercomplex determine which 4-D algebra is used to
calculate the fractal. The default igaternion. Both are 4-D generalizations of the complex numbers

but neither satisfies all the field properties (all the properties of real and complex numbers that many of
us slept through in high school). Quaternions have non-commutative multiplication and hypercomplex
numbers can fail to have a multiplicative inverse for some non-zero elements (it has been proved that you
cannot successfully generalize complex numbers to four dimensions with all the field properties intact, so
something has to break). Both of these algebras were discovered in the 19th century. Of the two, the
quaternions are much better known, but one can argue that hypercomplex numbers are more useful for our
purposes, since complex valued functions such as sin, cos, etc. can be generalized to work for hypercomplex
numbers in a uniform way.

For the mathematically curious, the algebraic properties of these two algebras can be derived from the
multiplication properties of the unit basis vectors ¥%,0,0,0>, i=< 0,1,0,0>, j=<0,0,1,0> and k= 0,

0,0,>. In both algebras 1 x = x 1 = x for any x (1 is the multiplicative identity). The basis vectors 1 and i
behave exactly like the familiar complex numbers 1 and i in both algebras.

iy =k ik = 1 ki = 3
i1 = -k ki = -1 ik = -3
ii = 99 = kk = -1 ik = -1

Table 4.1: Quaternion basis vector multiplication rules

iy =k jk = -1 ki = -3
ji =k kj = -1 ik = -3
i1 = 3 = kk = -1 ijk = 1

Table 4.2: Hypercomplex basis vector multiplication rules

A distance estimation calculation is used with the quaternion calculations to speed them up. The proof that
this distance estimation formula works does not generalize from two to four dimensions but the formula
seems to work well anyway, the absence of proof notwithstanding!

The presence of one of the function keywogds, cube, etc. determines which function is used fdgh)
in the iteration formulah(n+1) = f(h(n)) + p . The default issqr. Most of the function keywords
work only if the hypercomplex keyword is present. Onlysqr and cube work with quaternion. The

4.1 Finite Solid Primitives 117

functions are all familiar complex functions generalized to four dimensions. Function Keyword Maps 4-D
value h to:

sqr h*h

cube h*h*h

exp e raised to the power h
reciprocal 1/h

sin sine of h

asin arcsine of h

sinh hyperbolic sine of h

asinh inverse hyperbolic sine of h
cos cosine of h

acos arccosine of h

cosh hyperbolic cos of h

acosh inverse hyperbolic cosine of h
tan tangent of h

atan arctangent of h

tanh hyperbolic tangent of h

atanh inverse hyperbolic tangent of h
1n natural logarithm of h

pwr (x,y) h raised to the complex power x+iy

Table 4.3: Function Keyword Maps 4-D value of h

A simple example of a julia fractal object is:

julia_fractal {
<-0.083,0.0,-0.83,-0.025>
quaternion

sqr

max_iteration 8

precision 15

}

The first renderings of julia fractals using quaternions were done by Alan Norton and later by John Hart
in the '80's. This POV-Ray implementation followsactint in pushing beyond what is known in the
literature by using hypercomplex numbers and by generalizing the iterating formula to use a variety of
transcendental functions instead of just the classic MandaBrecformula. With an extra two dimensions

and eighteen functions to work with, intrepid explorers should be able to locate some new fractal beasts in
hyperspace, so have at it!

4.1.7 Lathe

The1lathe is an object generated from rotating a two-dimensional curve about an axis. This curve is defined
by a set of points which are connected by linear, quadratic, cubic or bezier spline curves. The syntax is:

LATHE:
lathe
{
[SPLINE_TYPE] Number_Of_Points, <Point_1>
<Point_2>... <Point_n>
[LATHE_MODIFIER...]
}
SPLINE_TYPE:
linear_spline | quadratic_spline | cubic_spline | bezier_spline

118 Objects

LATHE_MODIFIER:
sturm | OBJECT_MODIFIER

Lathe default values:

SPLINE_TYPE : linear_spline
sturm : off

The first item is a keyword specifying the type of spline. The default if none is specifieddsr_spline.

The required integer valugumber_Of _Points specifies how many two-dimensional points are used to
define the curve. The points follow and are specified by 2-D vectors. The curve is not automatically closed,
i.e. the first and last points are not automatically connected. You will have to do this yourself if you want

a closed curve. The curve thus defined is rotated about the y-axis to form the lathe object, centered at the
origin.

The following examples creates a simple lathe object that looks like a thick cylinder, i.e. a cylinder with a
thick wall:

lathe {

linear_spline

5l

<2, 0>, <3, 0>, <3, 5>, <2, 5, <2, 0>
pigment {Red}

}

The cylinder has an inner radius of 2 and an outer radius of 3, giving a wall width of 1. It's height is 5 and
it's located at the origin pointing up, i.e. the rotation axis is the y-axis.

Note: the first and last point are equal to get a closed curve.

The splines that are used by the lathe and prism objects are a little bit difficult to understand. The basic
concept of splines is to draw a curve through a given set of points in a determined way. The default
linear_spline is the simplest spline because it's nothing more than connecting consecutive points with
a line. This means the curve that is drawn between two points only depends on those two points. No
additional information is taken into account. The other splines are different in that they do take other points
into account when connecting two points. This creates a smooth curve and, in the case of the cubic spline,
produces smoother transitions at each point.

The quadratic_spline keyword creates splines that are made of quadratic curves. Each of them connects
two consecutive points. Since those two points (call them second and third point) are not sufficient to
describe a quadratic curve, the predecessor of the second point is taken into account when the curve is
drawn. Mathematically, the relationship (their relative locations on the 2-D plane) between the first and
second point determines the slope of the curve at the second point. The slope of the curve at the third point
is out of control. Thus quadratic splines look much smoother than linear splines but the transitions at each
point are generally not smooth because the slopes on both sides of the point are different.

The cubic_spline keyword creates splines which overcome the transition problem of quadratic splines
because they also take a fourth point into account when drawing the curve between the second and third
point. The slope at the fourth point is under control now and allows a smooth transition at each point. Thus
cubic splines produce the most flexible and smooth curves.

Thebezier_spline is an alternate kind of cubic spline. Points 1 and 4 specify the end points of a segment
and points 2 and 3 are control points which specify the slope at the endpoints. Points 2 and 3 do not actually
lie on the spline. They adjust the slope of the spline. If you draw an imaginary line between point 1 and
2, it represents the slope at point 1. It is a line tangent to the curve at point 1. The greater the distance
between 1 and 2, the flatter the curve. With a short tangent the spline can bend more. The same holds true
for control point 3 and endpoint 4. If you want the spline to be smooth between segments, points 3 and 4 on
one segment and points 1 and 2 on the next segment must form a straight line and point 4 of one segment
must be the same as point 1 on the next segment.

4.1 Finite Solid Primitives 119

You should note that the number of spline segments, i. e. curves between two points, depends on the spline
type used. For linear splines you get n-1 segments connecting the points P[i], i=1,...,n. A quadratic spline
gives you n-2 segments because the last point is only used for determining the slope, as explained above
(thus you will need at least three points to define a quadratic spline). The same holds for cubic splines
where you get n-3 segments with the first and last point used only for slope calculations (thus needing at
least four points). The bezier spline requires 4 points per segment, creating n/4 segments.

If you want to get a closed quadratic and cubic spline with smooth transitions at the end points you have
to make sure that in the cubic case P[n-1] = P[2] (to get a closed curve), P[n] = P[3] and P[n-2] = P[1] (to
smooth the transition). In the quadratic case P[n-1] = P[1] (to close the curve) and P[n] = P[2].

The sturm keyword can be used to specify that the slower, but more accurate, Sturmian root solver should
be used. Use it, if the shape does not render properly. Since a quadratic polynomial has to be solved for the
linear spline lathe, the Sturmian root solver is not needed.

4.1.8 Prism

Theprism is an object generated specifying one or more two-dimensional, closed curves in the x-z plane
and sweeping them along y axis. These curves are defined by a set of points which are connected by linear,
quadratic, cubic or bezier splines. The syntax for the prism is:

PRISM:
prism
{
[PRISM_ITEMS...] Height_1, Height_2, Number_Of_Points,
<Point_1>, <Point_2>, ... <Point_n>
[open] [PRISM_MODIFIERS...]
}
PRISM_ITEM:
linear_spline | quadratic_spline | cubic_spline |
bezier_spline | linear_sweep | conic_sweep
PRISM_MODIFIER:
sturm | OBJECT_MODIFIER

Prism default values:

SPLINE_TYPE : linear_spline
SWEEP_TYPE : linear_sweep
sturm : off

The first items specify the spline type and sweep type. The defaults if none is spedifieghisspline and
linear_sweep. This is followed by two float valuesHeight _1 and Height _2 which are the y coordinates

of the top and bottom of the prism. This is followed by a float value specifying the number of 2-D points
you will use to define the prism. (This includes all control points needed for quadratic, cubic and bezier
splines). This is followed by the specified number of 2-D vectors which define the shape in the x-z plane.

The interpretation of the points depends on the spline type. The prism object allows you to use any number
of sub-prisms inside one prism statement (they are of the same spline and sweep type). Wherever an even
number of sub-prisms overlaps a hole appears.

Note: you need not have multiple sub-prisms and they need not overlap as these examples do.

In the 1inear_spline the first point specified is the start of the first sub-prism. The following points are
connected by straight lines. If you specify a value identical to the first point, this closes the sub-prism and
next point starts a new one. When you specify the value of that sub-prism’s start, then it is closed. Each of
the sub-prisms has to be closed by repeating the first point of a sub-prism at the end of the sub-prism’s point
sequence. In this example, there are two rectangular sub-prisms nested inside each other to create a frame.

120 Objects

prism {
linear_spline
0, 1, 10,
<0,0>, <6,0>, <6,8>, <0,8>, <0,0>, //outer rim
<1,1>, <5,1>, <5,7>, <1,7>, <1,1> //inner rim

}

The last sub-prism of a linear spline prism is automatically closed - just like the last sub-polygon in the
polygon statement - if the first and last point of the sub-polygon’s point sequence are not the same. This
make it very easy to convert between polygons and prisms. Quadratic, cubic and bezier splines are never
automatically closed.

In the quadratic_spline, each sub-prism needs an additional control point at the beginning of each sub-
prisms’ point sequence to determine the slope at the start of the curve. The first point specified is the control
point which is not actually part of the spline. The second point is the start of the spline. The sub-prism ends
when this second point is duplicated. The next point is the control point of the next sub-prism. The point
after that is the first point of the second sub-prism. Here is an example:

prism {
quadratic_spline
0, 1, 12,
<1,-1>, <0,0>, <6,0>, //outer rim; <1,-1> is control point and
<6,8>, <0,8>, <0,0>, //<0,0> is first \& last point

<2,0>, <1,1>, <5,1>, //inner rim; <2,0> is control point and
<5,7>, <1,7>, <1,1> //<1,1> is first \& last point
}

In the cubic_spline, each sub-prism needs two additional control points — one at the beginning of each
sub-prisms’ point sequence to determine the slope at the start of the curve and one at the end. The first point
specified is the control point which is not actually part of the spline. The second point is the start of the
spline. The sub-prism ends when this second point is duplicated. The next point is the control point of the
end of the first sub-prism. Next is the beginning control point of the next sub-prism. The point after that is
the first point of the second sub-prism.

Here is an example:

prism {
cubic_spline
0, 1, 14,
<1,-1>, <0,0>, <6,0>, //outer rim; First control is <1,-1> and
<6,8>, <0,8>, <0,0>, //<0,0> is first \& last point.
<-1,1>, //Last control of first spline is <-1,1>

<2,0>, <1,1>, <5,1>, //inner rim; First control is <2,0> and

<5,7>, <1,7>, <1,1>, //<1,1> is first \& last point

<0,2> //Last control of first spline is <0,2>
}

Thebezier_spline iS an alternate kind of cubic spline. Points 1 and 4 specify the end points of a segment
and points 2 and 3 are control points which specify the slope at the endpoints. Points 2 and 3 do not actually
lie on the spline. They adjust the slope of the spline. If you draw an imaginary line between point 1 and
2, it represents the slope at point 1. It is a line tangent to the curve at point 1. The greater the distance
between 1 and 2, the flatter the curve. With a short tangent the spline can bend more. The same holds true
for control point 3 and endpoint 4. If you want the spline to be smooth between segments, point 3 and 4 on
one segment and point 1 and 2 on the next segment must form a straight line and point 4 of one segment
must be the same as point one on the next segment.

By default linear sweeping is used to create the prism, i.e. the prism’s walls are perpendicular to the x-z-

4.1 Finite Solid Primitives 121

plane (the size of the curve does not change during the sweep). You can atsaidsereep that leads to
a prism with cone-like walls by scaling the curve down during the sweep.

Like cylinders the prism is normally closed. You can remove the caps on the prism by usingethe
keyword. If you do so you should not use it with CSG because the results may get wrong.

For an explanation of the spline concept read the description of the "Lathe” object. Also see the tutorials
on "Lathe Object” and "Prism Object”.

The sturm keyword specifies the slower but more accurate Sturmian root solver which may be used with
the cubic or bezier spline prisms if the shape does not render properly. The linear and quadratic spline
prisms do not need the Sturmian root solver.

4.1.9 Sphere

The syntax of thephere oObject is:

SPHERE :
sphere

{
<Center>, Radius
[OBJECT_MODIFIERS...]

radius
center

Figure 4.6: The geometry of a sphere.

Where<Center > is a vector specifying the X, y, z coordinates of the center of the sphereRaniilis is
a float value specifying the radius. Spheres may be scaled unevenly giving an ellipsoid shape.

Because spheres are highly optimized they make good bounding shapes (if manual bounding seems to be
necessary).

4.1.10 Sphere Sweep

The syntax of thephere_sweep Object is:

SPHERE_SWEEP:

sphere_sweep {
linear_spline | b_spline | cubic_spline
NUM_OF_SPHERES,

CENTER, RADIUS,
CENTER, RADIUS,

122 Objects

CENTER, RADIUS
[tolerance DEPTH_TOLERANCE]
[OBJECT_MODIFIERS]

}

Spheresweep default values:
tolerance : 1.0e-6 (0.000001)

A Sphere Sweep is the envelope of a moving sphere with varying radius, or, in other words, the space a
sphere occupies during its movement along a spline.

Sphere Sweeps are modeled by specifying a list of single spheres which are then interpolated.

Three kinds of interpolation are supported:

* linear_spline : Interpolating the input data with a linear function, which means that the single
spheres are connected by straight tubes.

* b_spline : Approximating the input data using a cubic b-spline function, which results in a curved
object.

* cubic_spline : Approximating the input data using a cubic spline, which results in a curved object.

The sphere list (center and radius of each sphere) can take as many spheres as you like to describe the object,
but you will need at least two spheres foriaear_spline, and four spheres far.spline Or cubic_spline.

Optional: The depth tolerance that should be used for the intersection calculations. This is done by adding
thetolerance keyword and the desired value: the default distance is 1.0e-6 (0.000001) and should do for
most sphere sweep objects.

You should change this when you see dark spots on the surface of the object. These are probably caused
by an effect called "Self-Shading”. This means that the object casts shadows onto itself at some points
because of calculation errors. A ray tracing program usually defines the minimal distance a ray must travel
before it actually hits another (or the same) object to avoid this effect. If this distance is chosen too small,
Self-Shading may occur.

If so, specifytolerance 1.0e-4 or higher.

Note: if these dark spots remain after raising the tolerance, you might get rid of these spots by using
Adaptive Supersampling (Method 2) for antialiasing. Images look better with antialiasing anyway.

Note: the merge CSG operation is not recommended with Sphere Sweeps: there could be a small gap
between the merged objects!

4.1.11 Superquadric Ellipsoid

Thesuperellipsoid Object creates a shape known asuperquadric ellipsoiebject. It is an extension of
the quadric ellipsoid. It can be used to create boxes and cylinders with round edges and other interesting
shapes. Mathematically it is given by the equation:

(%)

Sl

fxy2) = (1) +1y1(8)) " 2 —1=0

Equation 4.2:

The values ofe andn, called theeast-westand north-southexponent, determine the shape of the su-
perquadric ellipsoid. Both have to be greater than zero. The sphere is gieen bandn = 1.

The syntax of the superquadric ellipsoid is:

4.1 Finite Solid Primitives 123

SUPERELLIPSOID:
superellipsoid
{
<Value_E, Value_N>
[OBJECT_MODIFIERS...]
}

The 2-D vector specifies tleeand n values in the equation above. The object sits at the origin and occupies
a space about the size of sox{<-1,-1,-1>,<1,1,1>}.

Two useful objects are the rounded box and the rounded cylinder. These are declared in the following way.

#declare Rounded_Box = superellipsoid { <Round, Round> }
#declare Rounded_Cylinder = superellipsoid { <1, Round> }

The roundedness valeeund determines the roundedness of the edges and has to be greater than zero and
smaller than one. The smaller you choose the values, the smaller and sharper the edges will get.

Very small values oé andn might cause problems with the root solver (the Sturmian root solver cannot be
used).

4.1.12 Surface of Revolution

Thesor object is asurface of revolutiogenerated by rotating the graph of a function about the y-axis. This
function describes the dependence of the radius from the position on the rotation axis. The syntax is:

SOR:
sor

Number_Of_Points, <Point_1>, <Point_2>, ... <Point_n>
[open] [SOR_MODIFIERS...]

}
SOR_MODIFIER:
sturm | OBJECT_MODIFIER

SOR default values:
sturm : off

The float valueNumber_Of Points specifies the number of 2-D vectors which follow. The points
<Point _1> through<Point _n> are two-dimensional vectors consisting of the radius and the correspond-
ing height, i.e. the position on the rotation axis. These points are smoothly connected (the curve is passing
through the specified points) and rotated about the y-axis to form the SOR object. The first and last points
are only used to determine the slopes of the function at the start and end point. They do not actually lie
on the curve. The function used for the SOR object is similar to the splines used for the lathe object. The
difference is that the SOR object is less flexible because it underlies the restrictions of any mathematical
function, i.e. to any given point y on the rotation axis belongs at most one function value, i.e. one radius
value. You cannot rotate closed curves with the SOR object. Also, make sure that the curve does not cross
zero (y-axis) as this can result in "less than perfect’ bounding cylinders. POV-Ray will very likely fail to
render large chunks of the part of the spline contained in such an interval.

The optional keyword open allows you to remove the caps on the SOR object. If you do this you should
not use it with CSG because the results may be wrong.

The SOR object is useful for creating bottles, vases, and things like that. A simple vase could look like this:

#declare Vase = sor {
7,

<0.000000, 0.000000>
<0.118143, 0.000000>

124 Objects

<0.620253, 0.540084>
<0.210970, 0.827004>
<0.194093, 0.962025>
<0.286920, 1.000000>
<0.468354, 1.033755>
open

}

One might ask why there is any need for a SOR object if there is already a lathe object which is much
more flexible. The reason is quite simple. The intersection test with a SOR object involves solving a cubic
polynomial while the test with a lathe object requires to solve a 6th order polynomial (you need a cubic
spline for the same smoothness). Since most SOR and lathe objects will have several segments this will
make a great difference in speed. The roots of the 3rd order polynomial will also be more accurate and
easier to find.

The sturm keyword may be added to specify the slower but more accurate Sturmian root solver. It may be
used with the surface of revolution object if the shape does not render properly.

The following explanations are for the mathematically interested reader who wants to know how the surface
of revolution is calculated. Though it is not necessary to read on it might help in understanding the SOR
object.

The function that is rotated about the y-axis to get the final SOR object is given by

r?=f(h)=A-h*+B-h>+C-h+D

Equation 4.3:

with radiusr and heighth. Since this is a cubic function in h it has enough flexibility to allow smooth
curves.

The curve itself is defined by a set of n points P(i), i=0...n-1, which are interpolated using one function for
every segment of the curve. A segment j, j=1...n-3, goes from point P(j) to point P(j+1) and uses points
P(j-1) and P(j+2) to determine the slopes at the endpoints. If there are n points we will have n-3 segments.
This means that we need at least four points to get a proper curve. The coefficients A(j), B(j), C(j) and D(j)
are calculated for every segment using the equation

where r(j) is the radius and h(j) is the height of point P(j).

The figure below shows the configuration of the points P(i), the location of segment j, and the curve that is
defined by this segment.

6.0 *IP.

Height h
B
°
2

2.0 x
\

-4.0 -2.0 0.0 2.0 4.0
Radius r

Figure 4.7: Points on a surface of revolution.

4.1 Finite Solid Primitives 125

b=M-x with:

r(j)?
r(j+1)?
po |2r)(r(i+1)—r(j=1)
h(j+1)—h(j—-1)
2:r(j+1)-(r(j+2)—r(j)
h(j+2)—h(j)

h(j)® h(j)? h(j) 1
v— | hG+2° h(j+1)? h(j+1) 1
~ | 3-h(j)? 2-h(j) 1 0
3-h(j+1)? 2-h(j+1) 1 0
s
_ | B(
=1 c
D(j)

Equation 4.4:

4.1.13 Text

A text Object creates 3-D text as an extruded block letter. Currently only TrueType fonts (ttf) and TrueType
Collections (ttc) are supported but the syntax allows for other font types to be added in the future. If
TrueType Collections are used, the first font found in the collection will be used. The syntax is:

TEXT_OBECT:
text {
ttf "fontname.ttf/ttc" "String_of_ Text"
Thickness, <Offset>
[OBJECT_MODIFIERS...]
}

Wherefontname.ttf OF fontname.ttc iS the name of the TrueType font file. It is a quoted string literal or
string expression. The string expression which follows is the actual text of the string object. It too may be
a quoted string literal or string expression. See section "Strings” for more on string expressions.

The text will start with the origin at the lower left, front of the first character and will extend in the +x-
direction. The baseline of the text follows the x-axis and descender drop into the -y-direction. The front of
the character sits in the x-y-plane and the text is extruded in the +z-direction. The front-to-back thickness
is specified by the required valu&hickness

Characters are generally sized so that 1 unit of vertical spacing is correct. The characters are about 0.5 to
0.75 units tall.

The horizontal spacing is handled by POV-Ray internally including any kerning information stored in the
font. The required vector<Offset > defines any extra translation between each character. Normally you
should specify a zero for this value. Specifying *x would put additional 0.1 units of space between each
character. Here is an example:

text {
ttf "timrom.ttf" "POV-Ray" 1, 0
pigment { Red }

}

126 Objects

Only printable characters are allowed in text objects. Characters such as return, line feed, tabs, backspace
etc. are not supported.

For easy access to your fonts, set the LibrBath to the directory that contains your font collection.

4.1.14 Torus

A torus is a 4th order quartic polynomial shape that looks like a donut or inner tube. Because this shape is
so useful and quartics are difficult to define, POV-Ray lets you take a short-cut and define a torus by:

TORUS:
torus

{
Major, Minor
[TORUS_MODIFIER...]

}
TORUS_MODIFIER:
sturm | OBJECT_MODIFIER

Torus default values:
sturm : off

whereMajor is a float value giving the major radius amihor is a float specifying the minor radius. The
major radius extends from the center of the hole to the mid-line of the rim while the minor radius is the
radius of the cross-section of the rim. The torus is centered at the origin and lies in the x-z-plane with the
y-axis sticking through the hole.

major radius

minor radius

center line

Figure 4.8: Major and minor radius of a torus.

The torus is internally bounded by two cylinders and two rings forming a thick cylinder. With this bounding
cylinder the performance of the torus intersection test is vastly increased. The test for a valid torus inter-
section, i.e. solving a 4th order polynomial, is only performed if the bounding cylinder is hit. Thus a lot of
slow root solving calculations are avoided.

Calculations for all higher order polynomials must be very accurate. If the torus renders improperly you
may add the keywordsturm to use POV-Ray’s slower-yet-more-accurate Sturmian root solver.

4.2 Finite Patch Primitives

There are six totally thin, finite objects which have no well-defined inside. They are bicubic patch, disc,
smooth triangle, triangle, polygon and mesh / mesh2. They may be combined in CSG union but cannot

4.2 Finite Patch Primitives 127

be used in other types of CSG (or insidelapped_by Statement). Because these types are finite POV-Ray
can use automatic bounding on them to speed up rendering time. As with all shapes they can be translated,
rotated and scaled.

4.2.1 Bicubic Patch

A bicubic_patch is @ 3D curved surface created from a mesh of triangles. POV-Ray supports a type of
bicubic patch called Bezier patch A bicubic patch is defined as follows:

BICUBIC_PATCH:
bicubic_patch
{
PATCH_ITEMS...
<Point_1>,<Point_2>,<Point_3>,<Point_4>,
<Point_5>,<Point_6>,<Point_7>,<Point_8>,
<Point_9>,<Point_10>,<Point_11>,<Point_12>,
<Point_13>,<Point_14>,<Point_15>,<Point_16>
[OBJECT_MODIFIERS...]
}
PATCH_ITEMS:
type Patch_Type | u_steps Num_U_Steps | v_steps Num_V_Steps
flatness Flatness

Bicubic patch default values:

flatness : 0.0
u_steps : 0
0

v_steps

The keywordtype is followed by a float Patch _Type which currently must be either O or 1. For type

0 only the control points are retained within POV-Ray. This means that a minimal amount of memory is
needed but POV-Ray will need to perform many extra calculations when trying to render the patch. Type 1
preprocesses the patch into many subpatches. This results in a significant speedup in rendering at the cost
of memory.

The four parameterspe, flatness, u_steps andv_steps may appear in any order. Onlype is required.

They are followed by 16 vectors (4 rows of 4) that define the X, y, z coordinates of the 16 control points
which define the patch. The patch touches the four corner poit®sint 1>, <Point 4>, <Point _-

13> and <Point _16> while the other 12 points pull and stretch the patch into shape. The Bezier surface
is enclosed by the convex hull formed by the 16 control points, this is known astivex hull property

The keywordsu_steps andv_steps are each followed by integer values which tell how many rows and
columns of triangles are the minimum to use to create the surface, both default to 0. The maximum number
of individual pieces of the patch that are tested by POV-Ray can be calculated from the follpigicgs =
2"u_steps * 2°vsteps

This means that you really should keepteps and v_steps under 4. Most patches look just fine with
u_steps 3 andv_steps 3, which translates to 64 subpatches (128 smooth triangles).

As POV-Ray processes the Bezier patch it makes a test of the current piece of the patch to see if it is flat
enough to just pretend it is a rectangle. The statement that controls this test is specified withthess

keyword followed by a float. Typical flatness values range from 0 to 1 (the lower the slower). The default
if none is specified is 0.0.

If the value for flatness is 0 POV-Ray will always subdivide the patch to the extend specified bys and
v_steps. If flatness is greater than 0 then every time the patch is split, POV-Ray will check to see if there is
any need to split further.

128 Objects

There are both advantages and disadvantages to using a non-zero flatness. The advantages include:

- If the patch is not very curved, then this will be detected and POV-Ray will not waste a lot of time looking
at the wrong pieces.

- If the patch is only highly curved in a couple of places, POV-Ray will keep subdividing there and concen-
trate its efforts on the hard part.

The biggest disadvantage is that if POV-Ray stops subdividing at a particular level on one part of the patch
and at a different level on an adjacent part of the patch there is the potential for cracking. This is typically
visible as spots within the patch where you can see through. How bad this appears depends very highly on
the angle at which you are viewing the patch.

Like triangles, the bicubic patch is not meant to be generated by hand. These shapes should be created by
a special utility. You may be able to acquire utilities to generate these shapes from the same source from
which you obtained POV-Ray. Here is an example:

bicubic_patch {

type 0

flatness 0.01

u_steps 4

v_steps 4

<0, 0, 2>, <1, 0, 0>, <2, 0, 0>, <3, 0,-2>,
<0, 1 0>, <1, 1, 0>, <2, 1, 0>, <3, 1, 0>,
<0, 2, 0>, <1, 2, 0>, <2, 2, 0>, <3, 2, 0>,
<0, 3, 2>, <1, 3, 0>, <2, 3, 0>, <3, 3, -2>

~

}

The triangles in a POV-Rayicubic_patch are automatically smoothed using normal interpolation but it is
up to the user (or the user’s utility program) to create control points which smoothly stitch together groups
of patches.

4.2.2 Disc

Another flat, finite object available with POV-Ray is th& sc. The disc is infinitely thin, it has no thickness.
If you want a disc with true thickness you should use a very short cylinder. A disc shape may be defined
by:

DISC:
disc
{
<Center>, <Normal>, Radius [, Hole_Radius]
[OBJECT_MODIFIERS...]
}

Disc default values:
HOLE RADIUS : 0.0

The vector<Center > defines the X, y, z coordinates of the center of the disc. Tdigormal > vector
describes its orientation by describing its surface normal vector. This is followed by a float specifying the
Radius . This may be optionally followed by another float specifying the radius of a hole to be cut from the
center of the disc.

Note: The inside of a disc is the inside of the plane that contains the disc. Also note that it is not constrained
by the radius of the disc.

4.2 Finite Patch Primitives 129

4.2.3 Mesh

Themesh object can be used to efficiently store large numbers of triangles. Its syntax is:

MESH:
mesh

{
MESH_TRIANGLE...
[MESH_MODIFIER...]

}
MESH_TRIANGLE:

triangle

{
<Corner_1>, <Corner_2>, <Corner_3>
[uv_vectors <uv_Corner_1>, <uv_Corner_2>, <uv_Corner_3>]
[MESH_TEXTURE]

b

smooth_triangle
{
<Corner_1>, <Normal_1>,
<Corner_2>, <Normal_ 2>,
<Corner_3>, <Normal_3>
[uv_vectors <uv_Corner_1>, <uv_Corner_2>, <uv_Corner_3>]
[MESH_TEXTURE]
}
MESH_TEXTURE:
texture { TEXTURE_IDENTIFIER }
texture_list {
TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER
}

MESH_MODIFIER:
inside_vector <direction> | hierarchy [Boolean] |
OBJECT_MODIFIER

Mesh default values:
hierarchy : on

Any number oftriangle and/orsmooth_triangle Statements can be used and each of those triangles can be
individually textured by assigning a texture identifier to it. The texture has to be declared before the mesh
is parsed. It is not possible to use texture definitions inside the triangle or smooth triangle statements. This
is a restriction that is necessary for an efficient storage of the assigned textures. See "Triangle and Smooth
Triangle” for more information on triangles.

Themesh object can supportv_mapping. For this, per triangle the keyword: vectors has to be given,
together with three 2D uv-vectors. Each vector specifies a location in the xy-plane from which the texture
has to be mapped to the matching points of the triangle. Also see the sectibapping.

The mesh’s components are internally bounded by a bounding box hierarchy to speed up intersection testing.
The bounding hierarchy can be turned off with therarchy off keyword. This should only be done if
memory is short or the mesh consists of only a few triangles. The defaliltrisrchy on.

Copies of a mesh object refer to the same triangle data and thus consume very little memory. You can easily
trace a hundred copies of a 10000 triangle mesh without running out of memory (assuming the first mesh
fits into memory). The mesh object has two advantages over a union of triangles: it needs less memory and
it is transformed faster. The memory requirements are reduced by efficiently storing the triangles vertices
and normals. The parsing time for transformed meshes is reduced because only the mesh object has to be
transformed and not every single triangle as it is necessary for unions.

130 Objects

The mesh object can currently only include triangle and smooth triangle components. That restriction may
change, allowing polygonal components, at some point in the future.

Solid Mesh

Triangle mesh objectsésh andmesh2) can now be used in CSG objects such as difference and intersect,
because, after addingside vector, they do have a defined 'inside’. This will only work for well-behaved
meshes, which are completely closed volumes. If meshes have any holes in them, this might work, but the
results are not guaranteed.

To determine if a point is inside a triangle mesh, POV-Ray shoots a ray from the point in some arbitrary
direction. If this vector intersects an odd number of triangles, the point is inside the mesh. If it intersects
an even number of triangles, the point is outside of the mesh. You can specify the direction of this vector.
For example, to usez as the direction, you would add the following line to the triangle mesh description
(following all other mesh data, but before the object modifiers).

inside_vector <0, 0, 1>

This change does not have any effect on unions of triangles... these will still be always hollow.

424 Mesh2

The new mesh syntax is designed for use in conversion from other file formats.

MESH2 :
mesh?2 {
VECTORS. ..
LISTS... |
INDICES... |
MESH_MODIFIERS
}
VECTORS :
vertex_vectors
{
number_of_vertices,
<vertexl>, <vertex2>,
H
normal_vectors
{
number_of_normals,
<normall>, <normal2>,
H
uv_vectors
{
number_of_uv_vectors,
<uv_vectl>, <uv_vect2>,
}
LISTS :
texture_list
{
number_of_textures,
texture { Texturel 1},
texture { Texture2 },
H
INDICES :
face_indices

4.2 Finite Patch Primitives 131

{
number_of_faces,
<index_a, index_b, index_c> [,texture_index [,
texture_index, texture_index]],
<index_d, index_e, index_f> [,texture_index [,
texture_index, texture_index]],

H

normal_indices

{
number_of_faces,
<index_a, index_b, index_c>,
<index_d, index_e, index_£f>,

H

uv_indices {
number_of_faces,
<index_a, index_b, index_c>,
<index_d, index_e, index_f>,

}
MESH_MODIFIER :
inside_vector <direction> | OBJECT_MODIFIERS

mesh2 has to be specified in the orddECTORS., LISTS...INDICES... Thenormal _vectors, uv_vectors,
andtexture_list sections are optional. If the number of normals equals the number of vertices then the
normalindices section is optional and the indexes fromfhe _indices section are used instead. Likewise

for theuv_indices section.

Note: that the numbers of uindices must equal number of faces.

The indexes are ZERO-BASED! So the first item in each list has an index of zero.

Smooth and Flat triangles in the same mesh

You can specify both flat and smooth triangles in the same mesh. To do this, specify the smooth triangles
firstin theface_indices section, followed by the flat triangles. Then, specify normal indices (indh&1_-

indices section) for only the smooth triangles. Any remaining triangles that do not have normal indices
associated with them will be assumed to be flat triangles.

Mesh Triangle Textures
To specify a texture for an individual mesh triangle, specify a single integer texture index following the
face-index vector for that triangle.

To specify three textures for vertex-texture interpolation, specify three integer texture indices (separated by
commas) following the face-index vector for that triangle.

Vertex-texture interpolation and textures for an individual triangle can be mixed in the same mesh

4.2.5 Polygon

Thepolygon object is useful for creating rectangles, squares and other planar shapes with more than three
edges. Their syntax is:

132 Objects

POLYGON:
polygon
{
Number_Of_Points, <Point_1> <Point_2>... <Point_n>
[OBJECT_MODIFIER...]
}

The floatNumber_Of _Points tells how many points are used to define the polygon. The poi®sint _-

1> through<Point _n> describe the polygon or polygons. A polygon can contain any number of sub-
polygons, either overlapping or not. In places where an even number of polygons overlaps a hole appears.
When you repeat the first point of a sub-polygon, it closes it and starts a new sub-polygon’s point sequence.
This means that all points of a sub-polygon are different.

If the last sub-polygon is not closed a warning is issued and the program automatically closes the polygon.
This is useful because polygons imported from other programs may not be closed, i.e. their first and last
point are not the same.

All points of a polygon are three-dimensional vectors that have to lay on the same plane. If this is not
the case an error occurs. It is common to use two-dimensional vectors to describe the polygon. POV-Ray
assumes that the z value is zero in this case.

A square polygon that matches the default planar image map is simply:

polygon {
41
<0, 0>, <0, 1>, <1, 1>, <1, 0>
texture {
finish { ambient 1 diffuse 0 }
pigment { image_map { gif "test.gif" } }
}
//scale and rotate as needed here

}

The sub-polygon feature can be used to generate complex shapes like the letter "P”, where a hole is cut into
another polygon:

#declare P = polygon {
12,
<0, 0>, <0, 6>, <4, 6>, <4, 3>, <1, 3>, <1,0>, <0, 0>,
<1, 4>, <1, 5>, <3, 5>, <3, 4>, <1, 4>

}

The first sub-polygon (on the first line) describes the outer shape of the letter "P”. The second sub-polygon
(on the second line) describes the rectangular hole that is cut in the top of the letter "P”. Both rectangles are
closed, i.e. their first and last points are the same.

The feature of cutting holes into a polygon is based on the polygon inside/outside test used. A point is
considered to be inside a polygon if a straight line drawn from this point in an arbitrary direction crosses an
odd number of edges (this is knowndmdan’s curve theorejn

Another very complex example showing one large triangle with three small holes and three separate, small
triangles is given below:

polygon {
28,
<0, 0> <1, 0> <0, 1> <0, 0> // large outer triangle
<.3, 7> <.4, 7> <.3, .8><.3, .7> // small outer triangle #1
<.5, .5> <.6, .5> <.5, .6> <.5, .5> // small outer triangle #2
<.7, .3><.8, .3><.7, .4> <.7, .3> // small outer triangle #3
<.5, .2> <.6, .2> <.5, .3> <.5, .2> // inner triangle #1
<.2, .5> <.3, .5> <.2, .6> <.2, .5> // inner triangle #2

4.3 Infinite Solid Primitives 133

<.1, .1>» <.2, .1> <.1, .2> <.1, .1> // inner triangle #3
}

4.2.6 Triangle and Smooth Triangle

The triangle primitive is available in order to make more complex objects than the built-in shapes will
permit. Triangles are usually not created by hand but are converted from other files or generated by utilities.
A triangle is defined by

TRIANGLE:
triangle
{
<Corner_1>, <Corner_2>, <Corner_3>
[OBJECT_MODIFIER...]
}

where<Corner _n> is a vector defining the x, y, z coordinates of each corner of the triangle.

Because triangles are perfectly flat surfaces it would require extremely large numbers of very small triangles
to approximate a smooth, curved surface. However much of our perception of smooth surfaces is dependent
upon the way light and shading is done. By atrtificially modifying the surface normals we can simulate a
smooth surface and hide the sharp-edged seams between individual triangles.

The smooth_triangle primitive is used for just such purposes. The smooth triangles use a formula called
Phong normal interpolation to calculate the surface normal for any point on the triangle based on normal
vectors which you define for the three corners. This makes the triangle appear to be a smooth curved
surface. A smooth triangle is defined by

SMOOTH_TRIANGLE:
smooth_triangle
{
<Corner_1>, <Normal_1>, <Corner_2>,
<Normal_2>, <Corner_3>, <Normal_ 3>
[OBJECT_MODIFIER...]
}

where the corners are defined as in regular triangles anbrmal _n> is a vector describing the direction
of the surface normal at each corner.

These normal vectors are prohibitively difficult to compute by hand. Therefore smooth triangles are almost

always generated by utility programs. To achieve smooth results, any triangles which share a common
vertex should have the same normal vector at that vertex. Generally the smoothed normal should be the
average of all the actual normals of the triangles which share that point.

The nesh object is a way to combine manyiangle and smooth triangle objects together in a very
efficient way. See "Mesh” for details.

4.3 Infinite Solid Primitives

There are five polynomial primitive shapes that are possibly infinite and do not respond to automatic bound-
ing. They are plane, cubic, poly, quadric and quartic. They do have a well defined inside and may be used
in CSG and inside a1ipped_by statement. As with all shapes they can be translated, rotated and scaled.

134 Objects

4.3.1 Plane

Theplane primitive is a simple way to define an infinite flat surface. The plane is not a thin boundary or
can be compared to a sheet of paper. A plane is a solid object of infinite size that divides POV-space in two
parts, inside and outside the plane. The plane is specified as follows:

PLANE:
plane
{
<Normal>, Distance
[OBJECT_MODIFIERS...]
}

The <Normal > vector defines the surface normal of the plane. A surface normal is a vector which points
up from the surface at a 90 degree angle. This is followed by a float value that gives the distance along the
normal that the plane is from the origin (that is only true if the normal vector has unit length; see below).
For example:

plane { <0, 1, 0>, 4}

This is a plane where straight up is defined in the positive y-direction. The plane is 4 units in that direction
away from the origin. Because most planes are defined with surface normals in the direction of an axis you
will often see planes defined using the vy or z built-in vector identifiers. The example above could be
specified as:

plane { y, 4}

The plane extends infinitely in the x- and z-directions. It effectively divides the world into two pieces. By
definition the normal vector points to the outside of the plane while any points away from the vector are
defined as inside. This inside/outside distinction is important when using planes in CSGigsd by. It

is also important when using fog or atmospheric media. If you place a camera on the "inside” half of the
world, then the fog or media will not appear. Such issues arise in any solid object but it is more common
with planes. Users typically know when they have accidentally placed a camera inside a sphere or box but
"inside a plane” is an unusual concept. In general you can reverse the inside/outside properties of an object
by adding the object modifierinverse. See "Inverse” and "Empty and Solid Objects” for details.

A plane is called golynomialshape because it is defined by a first order polynomial equation. Given a
plane:

plane { <A, B, C>, D }
it can be represented by the equatiarx + B*y + C*z - D*sqrt(A2 + B2 + C2) = 0

Therefore our exampleriane{y, 4} is actually the polynomial equation y=4. You can think of this as a set
of all x, y, z points where all have y values equal to 4, regardless of the x or z values.

This equation is a first order polynomial because each term contains only single powers of x, y or z. A
second order equation has terms like X"2, y"2, 22, xy, xz and yz. Another name for a 2nd order equation is
a quadric equation. Third order polys are called cubics. A 4th order equation is a quartic. Such shapes are
described in the sections below.

4.3.2 Poly, Cubic and Quartic

Higher order polynomial surfaces may be defined by the use pfia shape. The syntax is

POLY:
poly
{
Order, <Al, A2, A3,... An>

4.3 Infinite Solid Primitives 135

[POLY_MODIFIERS...]

}
POLY_MODIFIERS:
sturm | OBJECT_MODIFIER

Poly default values:

sturm : off

whereOrder is an integer number from 2 to 15 inclusively that specifies the order of the equation.
A2, ... An are float values for the coefficients of the equation. Therenasach terms wheren =
((Order+1)*(Order+2)*(Order+3))/6.

Thecubic object is an alternate way to specify 3rd order polys. Its syntax is:

CUBIC:
cubic
{
<Al, A2, A3,... A20>
[POLY_MODIFIERS...]
}

Also 4th order equations may be specified with ¢hertic object. Its syntax is:

QUARTIC:
quartic
{
<Al, A2, A3,... A35>
[POLY_MODIFIERS...]
}

The following table shows which polynomial terms correspond to which x,y,z factors for the orders 2 to 7.
Remembetubic is actually a 3rd order polynomial andartic is 4th order.

Polynomial shapes can be used to describe a large class of shapes including the torus, the lemniscate, etc.
For example, to declare a quartic surface requires that each of the coeffigients (A35) be placed in

order into a single long vector of 35 terms. As an example let’s define a torus the hard way. A Torus can
be represented by the equatiof:+ y* + z* + 2 x2 y2 + 2 x% 22 + 2 y? 22 - 2 (r.02 + r.12) %% + 2

(r02 - r_12) y2 - 2 (r.02 + r_12) z2 + (r.02 - r.12)2 = 0

Where 0 is the major radius of the torus, the distance from the hole of the donut to the middle of the ring
of the donut, and_d is the minor radius of the torus, the distance from the middle of the ring of the donut
to the outer surface. The following object declaration is for a torus having major radius 6.3 minor radius
3.5 (Making the maximum width just under 20).

// Torus having major radius sqrt(40), minor radius sqrt(12)

quartic {
<1, 0, 0, 0, 2, 0, 0, 2, 0,
-104, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 2, 0, 56, 0,
0, 0, 0, 1, 0, -104, 0, 784 >
sturm

Poly, cubic and quartics are just like quadrics in that you do not have to understand one to use one. The file
shapesq.inc has plenty of pre-defined quartics for you to play with.

Polys use highly complex computations and will not always render perfectly. If the surface is not smooth,
has dropouts, or extra random pixels, try using the optional keyweoreh in the definition. This will

cause a slower but more accurate calculation method to be used. Usually, but not always, this will solve the
problem. If sturm does not work, try rotating or translating the shape by some small amount.

136 Objects
2nd 3rd 4th 5th 6th 7th 5th 6th 7th 6th 7th
Al X2 X2 X2 X x8 x? Asu Vo xy? x%y3 Ag1 22 xZ°
A xy Xy x%y xty xdy xBy A V222 xy?Z X3’ Ag 72 xZP
A; xz2 X%z X3z Xz X0z X8z Asz Y222 xy?Z2 x¥?Z2 Mgz z xz
Az x x2 x3 x4 x5 x8 Asu Yz xy’z x¥°z Ags 1 X
As V2 xy? B2 X2 xiy2 x5y Ass V2 xy? x2y? Ags y7
As yz xyz Xyz X%yz Xyz Xdyz A YZ* xyZ* Xy Ags y6z
Az y xy Xy xy xly X% Agr y22 xy2 Xy Ag y®
As 72 xz2 X222 X322 x*Z22 X% A yZ2 xyZ2 x¥y7Z® Ags y°z2
Ag z xz ¥z Xz ¥z x5z Aso Yz Xyz Xyz Agg y°z
Apl x x2 X8 x4 x5 Asg Y Xy X2y Ago y°
Arr Voxy® BB x3yd xdys As; 25 %75 255 Acy VA7
Ao vz xy’z x¥’z xX3y’z Xz Asy Z° xz* x2z* Ao y*z2
A3 y2 o oxy? x%y? x3y?2 x%y? Asz 728 xz3 x2z3 Aog3 y*z
A1 yz? xyz? x%y72 x3yZ2 xtyz? Asy 72 xz° x%z? Ags y*
Als yz xyz Xyz xyz Xyz Ass z Xz Xz Ags y3z4
A1 y xy xy Xy x%y Ase 1 X X Age y3z®
A1z 22 xz2B X222 X322 X4 As7 y® xy® Ag7 y3z2
A 2 xZ22 X222 X322 X2 Assg y°z Xy°z Agg y3z
Ao z xz Xz Xz Xz Asg 5 xy® Agg y3
Ago 1 x X2 x3 x4 Aso vz xy*Z? Ao y2z°
A21 ytooxyt Aty Ae1 y*z xy*z A101 y?z*
Az vz xy’z ¥z xy’z Ae 4 xy* A102 y?z3
Az y2ooxy® Ay X8 Ae3 y3Z xy’Z Asos y’z?
A V22 22 X322 22 A V2 2 A vz
Azs Y’z xy’z ¥y’z %Y’z Aes y3z xy’z Aos y?
Az y2 oxy? xd? x3y? Ass xy3 A106 yz°
Aoz yZ2 xyz2 x¥yZ? X%y Ag vy xy?Zr Ay yz°
Az yz2 xyz2 x%yz? x%yz? A v’z xy’Z® Aws Y
A29 yz xyz Xyz Xyz As9 y’2> xy*Z® Asog yz>
Agzp y Xy X2y x3y A70 y?z xy’z A110 yz?
Aszp xzr xr x3A A7q y? xy? A1 yz
Az 2 x2B xE2 x38 A7 yz° xyz® A112 y
Az 2 xz2 X2 X3 A73 yz* xyz* A113 z’
Azg z Xz Xz x3z A7y yz3 xyz® Al1a 28
Ass 1 X X2 x3 Azs yz2 xyz2 A11s pd
Ase % xy° x%y° Avs yz Xyz A116 z
Asz7 vz xy'z ¥y'z Ap y Xy A117 z
Asg 4 xy* x2y* Azg PAL xz° A11s z2
Asg y3Z2 xy?Z2 x%3Z2 Aqg z° xz° A11g z
Ao v’z xy’z X%z Ag z xz* A120 1

Table 4.4: Cubic and quartic polynomial terms

4.4 Isosurface Object 137

There are really so many different polynomial shapes, we cannot even begin to list or describe them all. We
suggest you find a good reference or text book if you want to investigate the subject further.

4.3.3 Quadric

Thequadric object can produce shapes like paraboloids (dish shapes) and hyperboloids (saddle or hourglass
shapes). It can also produce ellipsoids, spheres, cones, and cylinders but you should sise becone,
andcylinder objects built into POV-Ray because they are faster than the quadric version.

Note: do not confuse "quaDRic” with "quaRTic”. A quadric is a 2nd order polynomial while a quatrtic is
4th order.

Quadrics render much faster and are less error-prone but produce less complex objects. The syntax is:

QUADRIC:
quadric
{
<A,B,C>,<D,E,F>,<G,H,I>,J
[OBJECT_MODIFIERS...]
}

Although the syntax actually will parse 3 vector expressions followed by a float, we traditionally have
written the syntax as above whera throughJ are float expressions. These 10 float that define a surface
of X, y, z points which satisfy the equation Ax By’ +CZ+Dxy+Exz+Fyz+Gx+Hy+1z+J=

0

Different values oA, B, C, ... J will give different shapes. If you take any three dimensional point
and use its x, y and z coordinates in the above equation the answer will be 0 if the point is on the surface of
the object. The answer will be negative if the point is inside the object and positive if the point is outside
the object. Here are some examples:

X2+Y2+72-1=0 Sphere
X2+Y2-1=0 Infinite cylinder along the Z axis
X2+Y2-72=0 Infinite cone along the Z axis

Table 4.5: Some quartic shapes

The easiest way to use these shapes is to include the standasddiles . inc into your program. It contains
several pre-defined quadrics and you can transform these pre-defined shapes (using translate, rotate and
scale) into the ones you want. For a complete list, see thesfilees. inc.

4.4 Isosurface Object

Details about many of the things that can be done with the isosurface object are discussed in the isosurface
tutorial section. Below you will only find the syntax basics:

isosurface {
function { FUNCTION_ITEMS }
[contained_by { SPHERE | BOX }]
[threshold FLOAT_VALUE]
[accuracy FLOAT_VALUE]
[max_gradient FLOAT_VALUE]
[evaluate PO, P1, P2]
[open]
[max_trace INTEGER] | [all_intersections]

138 Objects

[OBJECT_MODIFIERS...]
}

Isosurface default values:

contained_by : box{-1,1}
threshold : 0.0
accuracy : 0.001
max_gradient : 1.1

function { ... } This must be specified and be the first item of thesurface Statement. Here you
place all the mathematical functions that will describe the surface.

containedby { ... } Thecontained by 'object’ limits the area where POV-Ray samples for the surface
of the function. This container can either be a sphere or a box, both of which use the standard POV-Ray
syntax. If not specified Box {<-1,-1,-1>, <1,1,1>} will be used as default.

contained_by { sphere { CENTER, RADIUS } }
contained_by { box { CORNER1, CORNER2 } }

threshold This specifies how much strength, or substance to give dbeirface. The surface appears
where thefunction value equals thenreshold value. The default threshold is 0.

function = threshold

accuracy The isosurface finding method is a recursive subdivision method. This subdivision goes on until
the length of the interval where POV-Ray finds a surface point is less than the specifiedcy. The
default value is 0.001.

Smaller values produces more accurate surfaces, but it takes longer to render.

max_gradient POV-Ray can find the first intersecting point between a ray andsi¥rface of any contin-

uous function if the maximum gradient of the function is known. Therefore you can specifygadient

for the function. The default value is 1.1. When the_gradient used to find the intersecting point is too

high, the render slows down considerably. When it is too low, artefacts or holes may appear on the isosur-
face. When it is way too low, the surface does not show at all. While rendering the isosurface POV-Ray
records the found gradient values and prints a warning if these values are higher or much lower than the
specifiednax_gradient:

Warning: The maximum gradient found was 5.257, but max_gradient of
the isosurface was set to 5.000. The isosurface may contain holes!
Adjust max_gradient to get a proper rendering of the isosurface.

Warning: The maximum gradient found was 5.257, but max_gradient of
the isosurface was set to 7.000. Adjust max_gradient to
get a faster rendering of the isosurface.

For best performance you should specify a value close to the real maximum gradient.

evaluate POV-Ray can also dynamically adapt the used meadient. To activate this technique you have
to specify thesvaluate keyword followed by three parameters:

* PO: the minimum maxgradient in the estimation process,
» P1: an over-estimating factor. This means that the jgradient is multiplied by the P1 parameter.
» P2: an attenuation parameter (1 or less)

In this case POV-Ray starts with thex_gradient valuero and dynamically changes it during the render
usingr1 andp2. In the evaluation process, the P1 and P2 parameters are used in quadratic functions. This
means that over-estimation increases more rapidly with higher values and attenuation more rapidly with
lower values. Also with dynamigax_gradient, there can be artefacts and holes.

4.5 Parametric Object 139

If you are unsure what values to use, start a render witheutiate to get a value fomax_gradient. Now
you can use it withvaluate like this:

» PO : found maxgradient * minfactor
'min_factor’ being a float between 0 and 1 to reducenthegradient to a 'minimum maxgradient’.
The ideal value for PO would be the average of the found_graxlients, but we do not have access
to that information.
A good starting point is 0.6 for the mifactor

» P1: sqgrt(found maxgradient/(found maxgradient * minfactor))
'min_factor’ being the same as used in PO this will give an over-estimation factor of more than 1,
based on your minimum magradient and the found magradient.

* P2:1orless
0.7 is a good starting point.

When there are artifacts / holes in the isosurface, increase théactor and / or P2 a bit. Example: when
the first run gives a found magradient of 356, start with

#declare Min_factor= 0.6;
isosurface {

evaluate 356*Min_factor, sqrt(356/(356*Min_factor)), 0.7
//evaluate 213.6, 1.29, 0.7

}

This method is only an approximation of what happens internally, but it gives faster rendering speeds with
the majority of isosurfaces.

open When the isosurface is not fully contained within the contaibgabject, there will be a cross section.
Where this happens, you will see the surface of the container. Withothiekeyword, these cross section
surfaces are removed. The inside of the isosurface becomes visible.

Note: thatopen slows down the render speed. Also, it is not recommended to use it with CSG operations.

max_trace Isosurfaces can be used in CSG shapes since they are solid finite objects - if not finite by them-
selves, they are through the cross section with the container.

By default POV-Ray searches only for the first surface which the ray intersects. But when using an
isosurface in CSG operations, the other surfaces must also be found. Therefore, the keywatdce

must be added to thesosurface statement. It must be followed by an integer value. To check for all
surfaces, use the keywosd1 _intersections instead.

With all_intersections POV-Ray keeps looking until all surfaces are found. Withaa trace it only

checks until that number is reached.

4.5 Parametric Object

Where the isosurface object uses implicit surface functions, F(x,y,z)=0, the parametric object is a set of
equations for a surface expressed in the form of the parameters that locate points on the surface, x(u,v),
y(u,v), z(u,v). Each pair of values for u and v gives a single painty, z> in 3d space

The parametric object is not a solid object it is "hollow”, like a thin shell.
Syntax:

parametric {
function { FUNCTION_ITEMS },
function { FUNCTION_ITEMS },

140 Objects

function { FUNCTION_ITEMS }
<ul,vl>, <u2,v2>
[contained_by { SPHERE | BOX }]
[max_gradient FLOAT_VALUE]
[accuracy FLOAT_VALUE]
[precompute DEPTH, VarList]

}

Parametric default values:
accuracy : 0.001

The first function calculates thevalue of the surface, the secondnd the third the value. Allowed is
any function that results in a float.

<ul,vl>, <u2,v2> boundaries of theu, v) space, in which the surface has to be calculated

containedby { ... } The containedy 'object’ limits the area where POV-Ray samples for the surface
of the function. This container can either be a sphere or a box, both of which use the standard POV-Ray
syntax. If not specified Box {<-1,-1,-1>, <1,1,1>} will be used as default.

max_gradient, It is not really the maximum gradient. It's the maximum magnitude of all six partial deriva-
tives over the specified ranges of u and v. That is, if you takeu, dx/dv, dy/du, dy/dv, dz/du, anddz/dv

and calculate them over the entire range,ithegradient is the maximum of the absolute values of all of
those values.

accuracy The default value is 0.001. Smaller values produces more accurate surfaces, but take longer to
render.

precompute can speedup rendering of parametric surfaces. It simply divides parametric surfaces into small

ones (2°depth) and precomputes ranges of the variables(x,y,z) which you specify after depth. The maximum
depth is 20. High values of depth can produce arrays that use a lot of memory, take longer to parse and
render faster. If you declare a parametric surface with the precompute keyword and then use it twice, all

arrays are in memory only once.

Example, a unit sphere:

parametric {
function { sin(u) *cos(v) }
function { sin(u)*sin(v) }
function { cos(u)

<0,0>, <2*pi,pi>

contained_by { sphere{0, 1.1} }
max_gradient ?°?

accuracy 0.0001

precompute 10 x,v,z

pigment {rgb 1}

4.6 Constructive Solid Geometry

In addition to all of the primitive shapes POV-Ray supports, you can also combine multiple simple shapes
into complex shapes usingGonstructive Solid Geomet{SG). There are four basic types of CSG opera-
tions: union, intersection, difference, and merge. CSG objects can be composed of primitives or other CSG
objects to create more, and more complex shapes.

4.6 Constructive Solid Geometry 141

4.6.1 Inside and Outside

Most shape primitives, like spheres, boxes and blobs divide the world into two regions. One region is
inside the object and one is outside. Given any point in space you can say it is either inside or outside any
particular primitive object. Well, it could be exactly on the surface but this case is rather hard to determine
due to numerical problems.

Even planes have an inside and an outside. By definition, the surface normal of the plane points towards the
outside of the plane. You should note that triangles cannot be used as solid objects in CSG since they have
no well defined inside and outside. Triangle-based shapes,(mesh2) can only be used in CSG when

they are closed objects and have an inside vector specified.

Note:: Although triangles, bicubipatches and some other shapes have no well defined inside and outside,
they have a front- and backside which makes it possible to use a texture on the front side and ar+ interior
texture on the back side.

CSG uses the concepts of inside and outside to combine shapes together as explained in the following
sections.

Imagine you have two objects that partially overlap like shown in the figure below. Four different areas of
points can be distinguished: points that are neither in obhject in objects, points that are in objeetbut

not in objects, points that are not in objeatbut in objects and last not least points that are in object

and objecs.

Figure 4.9: Two overlapping objects.

Keeping this in mind it will be quite easy to understand how the CSG operations work.

When using CSG it is often useful to invert an object so that it will be inside-out. The appearance of the
object is not changed, just the way that POV-Ray perceives it. Whenthese keyword is used thénside
of the shape is flipped to become toatsideand vice versa.

The inside/outside distinction is not important forra on, but is important for intersection, difference,

and merge.Therefore any objects may be combined usiagion but only solid objects, i.e. objects that
have a well-defined interior can be used in the other kinds of CSG. The objects described in "Finite Patch
Primitives” have no well defined inside/outside. All objects described in the sections "Finite Solid Primi-
tives” and "Infinite Solid Primitives”.

4.6.2 Union

The simplest kind of CSG is theion. The syntax is:

UNION:
union

{

142 Objects

Figure 4.10: The union of two objects.

OBJECTS. ..
[OBJECT_MODIFIERS...]
}

Unions are simply glue used to bind two or more shapes into a single entity that can be manipulated as a
single object. The image above shows the union ahds. The new object created by the union operation

can be scaled, translated and rotated as a single shape. The entire union can share a single texture but each
object contained in the union may also have its own texture, which will override any texture statements in
the parent object.

You should be aware that the surfaces inside the union will not be removed. As you can see from the figure
this may be a problem for transparent unions. If you want those surfaces to be removed you will have to
use the merge Operations explained in a later section.

The following union will contain a box and a sphere.

union {
box { <-1.5, -1, -1>, <0.5, 1, 1> }
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

Earlier versions of POV-Ray placed restrictions on unions so you often had to combine objects with
composite statements. Those earlier restrictions have been lifteebssite is No longer needed. It
is still supported for backwards compatibility.

Split_Union

split_union is a boolean keyword that can be added to a union. It has two stdtes, its default ison.

split_union is used when photons are shot at the CSG-object. The object is split up in its compound parts,
photons are shot at each part separately. This is to prevent photons from being shot at 'empty spaces’ in the
object, for example the holes in a grid. With compact objects, without ’'empty spaces’union off can

improve photon gathering.

union {
object {...}
object {...}
split_union off

}

4.6 Constructive Solid Geometry 143

4.6.3 Intersection

Theintersection Object creates a shape containing only those areas where all components overlap. A point
is part of an intersection if it is inside both objectgndg, as show in the figure below.

Figure 4.11: The intersection of two objects.

The syntax is:

INTERSECTION:
intersection
{
SOLID_OBJECTS...
[OBJECT_MODIFIERS...]
}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.
Note: if all components do not overlap, the intersection object disappears.
Here is an example that overlaps:

intersection {
box { <-1.5, -1, -1>, <0.5, 1, 1>}
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

4.6.4 Difference

The CSGdifference operation takes the intersection between the first object and the inverse of all sub-
sequent objects. Thus only points inside objeend outside objec belong to the difference of both
objects.

The result is a subtraction of the 2nd shape from the first shape as shown in the figure below.
The syntax is:

DIFFERENCE:
difference
{
SOLID_OBJECTS...
[OBJECT_MODIFIERS...]
}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.

Note: if the first object is entirely inside the subtracted objects, the difference object disappears.

144 Objects

Figure 4.12: The difference between two objects.

Here is an example of a properly formed difference:

difference {
box { <-1.5, -1, -1>, <0.5, 1, 1>}
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1}
}

Note: internally, POV-Ray simply adds thiewverse keyword to the second (and subsequent) objects and
then performs an intersection.

The example above is equivalent to:

intersection {
box { <-1.5, -1, -1>, <0.5, 1, 1>}
cylinder { <0.5, 0, -1>, <0.5, 0, 1>, 1 inverse }

}

4.6.5 Merge

Theunion operation just glues objects together, it does not remove the objects’ surfaces inside-the
Under most circumstances this does not matter. However if a transpargnt is used, those interior
surfaces will be visible. Themerge operations can be used to avoid this problem. It works justdiken
but it eliminates the inner surfaces like shown in the figure below.

Figure 4.13: Merge removes inner surfaces.

The syntax is:

MERGE:
merge

{

4.7 Light Sources 145

SOLID_OBJECTS...
[OBJECT_MODIFIERS...]
}

The component objects must have well defined inside/outside properties. Patch objects are not allowed.

Note: that in generaherge is slower rendering thamion when used with non transparent objects. A small
test may be needed to determine what is the optimal solution regarding speed and visual result.

4.7 Light Sources

The 1ight_source is not really an object. Light sources have no visible shape of their own. They are just
points or areas which emit light. They are categorized as objects so that they can be combined with regular
objects usinginion. Their full syntax is:

LIGHT_SOURCE:
light_source
{
<Location>, COLOR
[LIGHT_MODIFIERS...]
}
LIGHT_MODIFIER:
LIGHT_TYPE | SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS |
GENERAL_LIGHT_MODIFIERS
LIGHT_TYPE:
spotlight | shadowless | cylinder | parallel
SPOTLIGHT_ITEM:
radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>
PARALLEL_ITEM:
point_at <Spot>
AREA_LIGHT_ITEM:
area_light <Axis_1>, <Axis_2>, Size_1, Size_2 |
adaptive Adaptive | jitter Jitter | circular | orient
GENERAL_LIGHT_ MODIFIERS:
looks_like { OBJECT } |
TRANSFORMATION fade_distance Fade_Distance |
fade_power Fade_Power | media_attenuation [Bool] |
media_interaction [Bool] | projected_through

Light source default values:

LIGHT_TYPE : pointlight
falloff : 70
media_interaction : on
media_attenuation : off

point_at : <0,0,0>
radius : 70
tightness : 10

The different types of light sources and the optional modifiers are described in the following sections.

The first two items are common to all light sources. Hiscation > vector gives the location of the
light. The COLORgives the color of the light. Only the red, green, and blue components are significant.
Any transmit or filter values are ignored.

Note: you vary the intensity of the light as well as the color using this parameter. A color sugf as
<0.5,0.5,0.5> gives a white light that is half the normal intensity.

146 Objects

All of the keywords or items in the syntax specification above may appear in any order. Some keywords
only have effect if specified with other keywords. The keywords are grouped into functional categories to
make it clear which keywords work together. TBENERALLIGHT_MODIFIERSwork with all types of

lights and all options.

Note: that TRANSFORMATIONSuch asranslate, rotate etc. may be applied but no oth&BJECT-
MODIFIERSmay be used.

There are three mutually exclusive light types. IfldGHT_TYPEis specified it is a point light. The other
choices arespotlight andcylinder.

4.7.1 Point Lights

The simplest kind of light is a point light. A point light source sends light of the specified color uniformly
in all directions. The default light type is a point source. Hiscation > and COLORIs all that is
required. For example:

light_source {
<1000,1000,-1000>, rgb <1,0.75,0> //an orange light
}

4.7.2 Spotlights

Normally light radiates outward equally in all directions from the source. Howeversthe ight keyword
can be used to create a cone of light that is bright in the center and falls of to darkness in a soft fringe effect
at the edge.

Although the cone of light fades to soft edges, objects illuminated by spotlights still cast hard shadows. The
syntax is:

SPOTLIGHT_SOURCE:
light_source
{
<Location>, COLOR spotlight
[LIGHT_MODIFIERS...]
}
LIGHT_MODIFIER:
SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS
SPOTLIGHT_ITEM:
radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>

Default values:

radius: 30 degrees
falloff: 45 degrees
tightness: 0

Thepoint_at keyword tells the spotlight to point at a particular 3D coordinate. A line from the location of
the spotlight to theoint _at coordinate forms the center line of the cone of light. The following illustration
will be helpful in understanding how these values relate to each other.

The falloff, radius, and tightness keywords control the way that light tapers off at the edges of the
cone. These four keywords apply only when thgot1ight Oor cylinder keywords are used.

The falloff keyword specifies the overall size of the cone of light. This is the point where the light falls
off to zero intensity. The float value you specify is the angle, in degrees, between the edge of the cone and

4.7 Light Sources 147

location

point_at

Figure 4.14: The geometry of a spotlight.

center line. The radius keyword specifies the size of the "hot-spot” at the center of the cone of light. The
"hot-spot” is a brighter cone of light inside the spotlight cone and has the same center lineadThe

value specifies the angle, in degrees, between the edge of this bright, inner cone and the center line. The
light inside the inner cone is of uniform intensity. The light between the inner and outer cones tapers off to
zero.

For example, assumingtaghtness 0, with radius 10 andfalloff 20 the light from the center line out to
10 degrees is full intensity. From 10 to 20 degrees from the center line the light falls off to zero intensity.
At 20 degrees or greater there is no light.

Note: if the radius and falloff values are close or equal the light intensity drops rapidly and the spotlight
has a sharp edge.

The values for theadius, andtightness parameters are half the opening angles of the corresponding
cones, both angles have to be smaller than 90 degrees. The light smoothly falls off between the radius and
the falloff angle like shown in the figures below (as long as the radius angle is not negative).

1.0

radius = 0

radius = 15
===~ radius = 30
——- radius = 45

0.5

Light intensity multiplier

0.0
0.0 10.0 200 30.0 40.0 500 600 70.0 800 90.0
Angle between light ray and spotlight’s centerline

Figure 4.15: Intensity multiplier curve with a fixed falloff angle of 45 degrees.

Thetightness keyword is used to specify aadditionalexponential softening of the edges. A value other
than 0O, will affect light within the radius cone as well as light in the falloff cone. The intensity of light at
an angle from the center line is given bigtensity * cos(angle)tightness . The default value for
tightness is 0. Lower tightness values will make the spotlight brighter, making the spot wider and the edges
sharper. Higher values will dim the spotlight, making the spot tighter and the edges softer. Values from 0
to 100 are acceptable.

You should note from the figures that the radius and falloff angles interact with the tightness parameter. To

148

Objects
1.0
N
N
W\
— falloff =45 Y
falloff = 60 v\
--~- falloff = 75 "\
——- falloff = 90 \ o\
N
5 LAY
g Voo
3 Vo
: VN
205 Voo
2 \
g A
€ [N
= \ \
o) ‘\ \
\ \
' \
\ \
\
\
\
|“ \
\
. N
0.0

0.0 100 200 300 400 500 600 700 80.0 900
Angle between light ray and spotlight's centerline

Figure 4.16: Intensity multiplier curve with a fixed radius angle of 45 degrees

0.5 |

Light intensity multiplier

0.0 10.0 200 300 40.0 500 600 700 800 90.0
Angle between light ray and spotlight’s centerline

Figure 4.17: Intensity multiplier curve with fixed angle and falloff angles of 30 and 60 degrees respectively
and different tightness values.

give the tightness value full control over the spotlight’s appearance use radius 0 falloff 90. As you can see

from the figure below. In that case the falloff angle has no effect and the lit area is only determined by the
tightness parameter.

0.5

Light intensity multiplier

0.0
00 100 200 300 400 500 60.0

70.0 80.0 90.0
Angle between light ray and spotlight’s centerline

Figure 4.18: Intensity multiplier curve with a negative radius angle and different tightness values.

Spotlights may be used anyplace that a normal light source is used. Like any light sources, they are invisible.
They may also be used in conjunction with area lights.

4.7 Light Sources 149

4.7.3 Cylindrical Lights

The cylinder keyword specifies a cylindrical light source that is great for simulating laser beams. Cylin-
drical light sources work pretty much like spotlights except that the light rays are constrained by a cylinder
and not a cone. The syntax is:

CYLINDER_LIGHT_SOURCE:
light_source
{
<Location>, COLOR cylinder
[LIGHT_MODIFIERS...]
}
LIGHT_MODIFIER:
SPOTLIGHT_ITEM | AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS
SPOTLIGHT_ITEM:
radius Radius | falloff Falloff | tightness Tightness |
point_at <Spot>

Default values:

radius: 0.75 degrees
falloff: 1 degrees
tightness: 0

Thepoint_at, radius, falloff andtightness keywords control the same features as with the spotlight. See
"Spotlights” for details.

You should keep in mind that the cylindrical light source is still a point light source. The rays are emitted
from one point and are only constraint by a cylinder. The light rays are not parallel.

4.7.4 Parallel Lights

syntax:

light_source {
LOCATION_VECTOR, COLOR
[LIGHT_SOURCE_ITEMS...]
parallel
point_at VECTOR

}

Theparallel keyword can be used with any type of light source.
Note: for normal point lightspoint _at must come afteparaliel.

Parallel lights are useful for simulating very distant light sources, such as sunlight. As the name suggests,
it makes the light rays parallel.

Technically this is done by shooting rays from the closest point on a plane to the object intersection point.
The plane is determined by a perpendicular defined by thelight ion and thepoint_at vector.

Two things must be considered when choosing the light location (specifically, its distance):

1. Any parts of an object "above” the light plane still get illuminated according to the light direction,
but they will not cast or receive shadows.

2. fade_distance andfade_power Use the lightiocation to determine distance for light attenuation, so
the attenuation still looks like that of a point source.
Area light also uses the light location in its calculations.

150 Objects

4.7.5 Area Lights

Area light sources occupy a finite, one- or two-dimensional area of space. They can cast soft shadows
because an object can partially block their light. Point sources are either totally blocked or not blocked.

Thearea_1ight keyword in POV-Ray creates sources that are rectangular in shape, sort of like a flat panel
light. Rather than performing the complex calculations that would be required to model a true area light,
it is approximated as an array of point light sources spread out over the area occupied by the light. The
array-effect applies to shadows only. The object’s illumination is still that of a point source. The intensity
of each individual point light in the array is dimmed so that the total amount of light emitted by the light is
equal to the light color specified in the declaration. The syntax is:

AREA_LIGHT_SOURCE:

light_source {
LOCATION_VECTOR, COLOR
area_light
AXIS_1 VECTOR, AXIS_2_VECTOR, Size_1, Size 2
[adaptive Adaptive] [jitter]
[circular] [orient]
[[LIGHT_MODIFIERS...]
}

Any type of light source may be an area light.

The aredight command defines the location, the size and orientation of the area light as well as the number
of lights in the light source array. The location vector is the centre of a rectangle defined by the two vectors
<Axis _1> and<Axis _2>. These specify the lengths and directions of the edges of the light.

Figure 4.19: 4x4 Area light, location and vectors.

Since the area lights are rectangular in shape these vectors should be perpendicular to each other. The larger
the size of the light the thicker the soft part of shadows will be. The integersiSirel Size? specify the

number of rows and columns of point sources of the. The more lights you use the smoother your shadows
will be but the longer they will take to render.

Note: it is possible to specify spotlight parameters along with the area light parameters to create area
spotlights. Using area spotlights is a good way to speed up scenes that use area lights since you can confine
the lengthy soft shadow calculations to only the parts of your scene that need them.

An interesting effect can be created using a linear light source. Rather than having a rectangular shape, a
linear light stretches along a line sort of like a thin fluorescent tube. To create a linear light just create an
area light with one of the array dimensions set to 1.

4.7 Light Sources 151

The jitter command is optional. When used it causes the positions of the point lights in the array to be
randomly jittered to eliminate any shadow banding that may occur. The jittering is completely random from
render to render and should not be used when generating animations.

The adaptive command is used to enable adaptive sampling of the light source. By default POV-Ray
calculates the amount of light that reaches a surface from an area light by shooting a test ray at every point
light within the array. As you can imagine this is very slow. Adaptive sampling on the other hand attempts
to approximate the same calculation by using a minimum number of test rays. The number specified after
the keyword controls how much adaptive sampling is used. The higher the number the more accurate your
shadows will be but the longer they will take to render. If you are not sure what value to use a good starting
pointis adaptive 1. Theadaptive keyword only accepts integer values and cannot be set lower than 0.

When performing adaptive sampling POV-Ray starts by shooting a test ray at each of the four corners of the
area light. If the amount of light received from all four corners is approximately the same then the area light
is assumed to be either fully in view or fully blocked. The light intensity is then calculated as the average
intensity of the light received from the four corners. However, if the light intensity from the four corners
differs significantly then the area light is partially blocked. The area light is split into four quarters and each
section is sampled as described above. This allows POV-Ray to rapidly approximate how much of the area
light is in view without having to shoot a test ray at every light in the array. Visually the sampling goes like
shown below.

level O level 1 level 2
2X2 rays 3x3 rays 5x5 rays
{] ® O @ O OeO O
' o000
® ¢ ¢ 000 O
° e O 0 0 0O

@® new ray samples

O samples reused from the previous level

Figure 4.20: Area light adaptive samples.

While the adaptive sampling method is fast (relatively speaking) it can sometimes produce inaccurate shad-
ows. The solution is to reduce the amount of adaptive sampling without completely turning it off. The
number after the adaptive keyword adjusts the number of times that the area light will be split before the
adaptive phase begins. For example if you uskptive 0 a minimum of 4 rays will be shot at the light.

If you use adaptive 1 a minimum of 9 rays will be shotflaptive 2 gives 25 raySadaptive 3 gives 81

rays, etc). Obviously the more shadow rays you shoot the slower the rendering will be so you should use
the lowest value that gives acceptable results.

The number of rays never exceeds the values you specify for rows and columns of points. For example
area_light x,y,4,4 specifies a 4 by 4 array of lights. If you specifyaptive 3 it would mean that you
should start with a 9 by 9 array. In this case no adaptive sampling is done. The 4 by 4 array is used.

Thecircular command has been added to area lights in order to better create circular soft shadows. With
ordinary area lights the pseudo-lights are arranged in a rectangular grid and thus project partly rectangular
shadows around all objects, including circular objects.

By including thecircular tag in an area light, the light is stretched and squashed so that it looks like a
circle: this way, circular or spherical light sources are better simulated.

A few things to remember:

« Circular area lights can be ellipses: the AXIS/ECTOR and AXIS2_VECTOR define the shape

152 Objects

and orientation of the circle; if the vectors are not equal, the light source is elliptical in shape.
» Rectangular artefacts may still show up with very large area grids.
» There is no point in usingircular with linear area lights or area lights which have a 2x2 size.

» The area of a circular light is roughly 78.5 per cent of a similar size rectangular area light. Increase
your axis vectors accordingly if you wish to keep the light source area constant.

The orient command has been added to area lights in order to better create soft shadows. Without this
modifier, you have to take care when choosing the axis vectors of adigingasince they define both its

area and orientation.

Area lights are two dimensional: shadows facing the area light receive light from a larger surface area than
shadows at the sides of the area light.

soft shadow

area light

full shadow

Figure 4.21: Area light facing object

Actually, the area from which light is emitted at the sides of the area light is reduced to a single line, only
casting soft shadows in one direction.

soft shadow

area light

full shadow

Figure 4.22: Area light not facing object

Between these two extremes the surface area emitting light progresses gradually.

By including theorient modifier in an area light, the light is rotated so that for every shadow test, it always
faces the point being tested. The initial orientation is no longer important, so you only have to consider the
desired dimensions (area) of the light source when specifying the axis vectors.

In effect, this makes the area light source appear 3-dimensional (e.g. aligateaith perpendicular axis
vectors of the same size and dimensions usingular andorient Simulates a spherical light source).

Orient has a few restrictions:
1. It can be used with "circular” lights only.

2. The two axes of the area light must be of equal length.

4.7 Light Sources 153

3. The two axes of the area light should use an equal humber of samples, and that number should be
greater than one

These three rules exist because without them, you can get unpredictable results from the orient feature.

If one of the first two rules is broken, POV will issue a warning and correct the problem. If the third rule is
broken, you will only get the error message, and POV will not automatically correct the problem.

4.7.6 Shadowless Lights

Using theshadowless keyword you can stop a light source from casting shadows. These lights are some-
times called "fill lights”. They are another way to simulate ambient light however shadowless lights have a
definite source. The syntax is:

SHADOWLESS_LIGHT_SOURCE:
light_source
{
<Location>, COLOR shadowless
[LIGHT_MODIFIERS...]

}
LIGHT_MODIFIER:
AREA_LIGHT_ITEMS | GENERAL_LIGHT_MODIFIERS

shadowless may be used with all types of light sources. The only restriction isghatowless should be
before or afteall spotlight or cylinder option keywords. Do not mix or you get the message "Keyword 'the
one following shadowless’ cannot be used with standard light source”. Also note that shadowless lights will
not cause highlights on the illuminated objects.

4.7.7 Lookslike

Normally the light source itself has no visible shape. The light simply radiates from an invisible point or
area. You may give a light source any shape by addingas_1ike { OBJECT} statement.

There is an impliedio_shadow attached to thelooks_like object so that light is not blocked by the object.
Without the automatiao_shadow the light inside the object would not escape. The object would, in effect,
cast a shadow over everything.

If you want the attached object to block light then you should attach it wittien and not alooks_like as
follows:

union {
light_source { <100, 200, -300> color White }
object { My_Lamp_Shape }

}

Presumably parts of the lamp shade are transparent to let some light out.

4.7.8 ProjectedThrough

Syntax:

light_source {
LOCATION_VECTOR, COLOR
[LIGHT_SOURCE_ITEMS...]
projected_through { OBJECT }
}

154 Objects

Projectedthrough can be used with any type of light source. Any object can be used, provided it has been
declared before.

Projecting a light through an object can be thought of as the opposite of shadowing: only the light rays that
hit the projectedhrough object will contribute to the scene.

This also works with arefights, producing spots of light with soft edges.

Any objects between the light and the projected through object will not cast shadows for this light. Also
any surface within the projected through object will not cast shadows.

Any textures or interiors on the object will be stripped and the object will not show up in the scene.

4.7.9 Light Fading

By default POV-Ray does not diminish light from any light source as it travels through space. In order to
get a more realistic effecttade_distance andfade_power keywords followed by float values can be used to
model the distance based falloff in light intensity.

Thefade distance is used to specify the distance at which the full light intensity arrives, i. e. the intensity
which was given by theCOLOR specification. The actual attenuation is described bystie power

Fade _Power, which determines the falloff rate. For example linear or quadratic falloff can be used by
settingfade_power to 1 or 2 respectively. The complete formula to calculate the factor by which the light is
attenuated is

2

attenuation=) fade_power

d
1+ fade_distance

Equation 4.5:

with d being the distance the light has traveled.

no fading

fading power 1
-~~~ fading power 2
—-— fading power 3

Light intensity multiplier

0.0 -
0.0 5.0 10.0

Relative distance to light source

Figure 4.23: Light fading functions for different fading powers.

You should note two important facts: First, féade Distance larger than one the light intensity at
distances smaller thafade Distance actually increases. This is necessary to get the light source color if
the distance traveled equals tihade Distance . Second, only light coming directly from light sources is
attenuated. Reflected or refracted light is not attenuated by distance.

4.8 Light Groups 155

4.7.10 Atmospheric Media Interaction

By default light sources will interact with an atmosphere added to the scene. This behavior can be switched
off by usingmedia_interaction off inside the light source statement.

Note: in POV-Ray 3.0 this feature was turned off and on with the atmosphere keyword.

4.7.11 Atmospheric Attenuation

Normally light coming from light sources is not influenced by fog or atmospheric media. This can be
changed by turning the=dia_attenuation on for a given light source on. All light coming from this light
source will now be diminished as it travels through the fog or media. This results in an distance-based,
exponential intensity falloff ruled by the used fog or media. If there is no fog or media no change will be
seen.

Note:in POV-Ray 3.0 this feature was turned off and on with the atmosplatténuation keyword.

4.8 Light Groups

Light groups make it possible to create a 'union’ of ligdtturces and objects, where the objects in the group
are illuminated by the lights in the group or, if desired, also by the global Bglitces. The lighsources
in the group can only illuminate the objects that are in the group.

Light_groups are for example useful when creating scenes in which some objects turn out to be too dark
but the average light is exactly how it should be, as the Igghtrces in the group do not contribute to the
global lighting.

Syntax :

light_group {
LIGHT_GROUP LIGHT |
LIGHT_GROUP OBJECT |
LIGHT_GROUP
[LIGHT_GROUP MODIFIER]
}

LIGHT_GROUP LIGHT:

light_source | light_source IDENTIFIER
LIGHT_GROUP OBJECT:

OBJECT | OBJECT IDENTIFIER
LIGHT_GROUP MODIFIER:

global_lights BOOL | TRANSFORMATION

global_lights. Add this command to the lighlgroup to have objects in the group also be illuminated by
global light sources.

Light groups may be nested. In this case light groups inherit the light sources of the light group they are
contained by.

Light groups can be seen as a 'union of an object with ligiirce’ and can be used in CSG.
Examples, simple lighgroup:

#declare RedLight = light_source {
<-500,500,-500>
rgb <1,0,0>

}

156 Objects

light_group {
light_source {RedLight}
sphere {0,1 pigment {rgb 1}}
global_lights off

}

Nested lightgroup:

#declare L1 = light_group {
light_source {<10,10,0>, rgb <1,0,0>}
light_source {<0,0,-100>, rgb <0,0,1>}
sphere {0,1 pigment {rgb 1}}

light_group {
light_source {<0,100,0>, rgb 0.5}
light_group {L1}

}

Light_groups in CSG:

difference {
light_group {
sphere {0,1 pigment {rgb 1}}
light_source {<-100,0,-100> rgb <1,0,0>}
global_lights off
}
light_group {
sphere {<0,1,0>,1 pigment {rgb 1}}
light_source {<100,100,0> rgb <0,0,1>}
global_lights off
}
rotate <-45,0,0>
}

In the last example the result will be a sphere illuminated red, where the part that is differenced away is
illuminated blue. In result comparable to the difference between two spheres with a different pigment.

4.9 Object Modifiers

A variety of modifiers may be attached to objects. The following items may be applied to any object:

OBJECT_MODIFIER:
clipped_by { UNTEXTURED_SOLID_OBJECT... }
clipped_by { bounded_by }
bounded_by { UNTEXTURED_SOLID_OBJECT... }
bounded_by { clipped_by }
no_shadow |
no_image [Bool] |
no_reflection [Bool]
inverse |
\
\
\
\

sturm [Bool]

hierarchy [Bool]

double_illuminate [Bool]

hollow [Bool]

interior { INTERIOR_ITEMS... } |
material { [MATERIAL_IDENTIFIER] [MATERIAL_ITEMS...] } |

4.9 Object Modifiers 157

texture { TEXTURE_BODY } |
interior_texture { TEXTURE_BODY } |
pigment { PIGMENT_BODY } |

normal { NORMAL_BODY }
finish { FINISH_ITEMS... } |
photons { PHOTON_ITEMS...}
TRANSFORMATION

Transformations such as translate, rotate and scale have already been discussed. The modifiers "Textures”
and its parts "Pigment”, "Normal”, and "Finish” as well as "Interior”, and "Media” (which is part of inte-

rior) are each in major chapters of their own below. In the sub-sections below we cover several other impor-
tantrnOdiﬁerSchipped,by,boundedﬁby,material,inverse,hollow,no,shadow,no,image,no,reflection
double_illuminate andsturm. Although the examples below use object statements and object identifiers,
these modifiers may be used on any type of object such as sphere, box etc.

4.9.1 ClippedBy

The clipped.by statement is technically an object modifier but it provides a type of CSG similar to CSG
intersection. The syntax is:

CLIPPED_BY:
clipped_by { UNTEXTURED_SOLID_OBJECT... } |
clipped_by { bounded_by }

WhereUNTEXTUREDSOLID. OBJECTis one or more solid objects which have had no texture applied.
For example:

object {
My_Thing
clipped_by{plane{y,0}}
}

Every part of the objeaty_Thing that is inside the plane is retained while the remaining part is clipped off
and discarded. In anintersection object the hole is closed off. Withc1ipped by it leaves an opening.
For example the following figure shows objedbeing clipped by objedt.

Figure 4.24: An object clipped by another object.

You may useclipped by to slice off portions of any shape. In many cases it will also result in faster
rendering times than other methods of altering a shape. Occasionally you will want to useithed by
andbounded_by options with the same object. The following shortcut saves typing and uses less memory.

object {
My_Thing
bounded_by { box { <0,0,0>, <1,1,1> } }
clipped_by { bounded_by }

158 Objects

}
This tells POV-Ray to use the same box as a clip that was used as a bound.

4.9.2 BoundedBy

The calculations necessary to test if a ray hits an object can be quite time consuming. Each ray has to be
tested against every object in the scene. POV-Ray attempts to speed up the process by building a set of
invisible boxes, called bounding boxes, which cluster the objects together. This way a ray that travels in
one part of the scene does not have to be tested against objects in another, far away part of the scene. When
a large number of objects are present the boxes are nested inside each other. POV-Ray can use bounding
boxes on any finite object and even some clipped or bounded quadrics. However infinite objects (such as
a planes, quartic, cubic and poly) cannot be automatically bound. CSG objects are automatically bound if
they contain finite (and in some cases even infinite) objects. This works by applying the CSG set operations
to the bounding boxes of all objects used inside the CSG object. For difference and intersection operations
this will hardly ever lead to an optimal bounding box. It is sometimes better (depending on the complexity

of the CSG object) to have you place a bounding shape yourself usingiaied_by statement.

Normally bounding shapes are not necessary but there are cases where they can be used to speed up the
rendering of complex objects. Bounding shapes tell the ray-tracer that the object is totally enclosed by a
simple shape. When tracing rays, the ray is first tested against the simple bounding shape. If it strikes the
bounding shape the ray is further tested against the more complicated object inside. Otherwise the entire
complex shape is skipped, which greatly speeds rendering. The syntax is:

BOUNDED_BY:
bounded_by { UNTEXTURED_SOLID_OBJECT... } |
bounded_by { clipped_by }

WhereUNTEXTUREDSOLID.OBJECTis one or more solid objects which have had no texture applied.
For example:

intersection {
sphere { <0,0,0>, 2
plane { <0,1,0>, O
plane { <1,0,0>, 0
bounded_by { sphere
}

<0,0,0>, 2} }

The best bounding shape is a sphere or a box since these shapes are highly optimized, although, any shape
may be used. If the bounding shape is itself a finite shape which responds to bounding slabs then the object
which it encloses will also be used in the slab system.

While it may a good idea to manually addb&inded by to intersection, difference and merge, it is best to
neverbound a union. If a union has ne@ounded by POV-Ray can internally split apart the components

of a union and apply automatic bounding slabs to any of its finite parts. Note that some utilities such as
raw2pov may be able to generate bounds more efficiently than POV-Ray’s current system. However most
unions you create yourself can be easily bounded by the automatic system. For technical reasons POV-Ray
cannot split a merge object. It is maybe best to hand bound a merge, especially if it is very complex.

Note: if bounding shape is too small or positioned incorrectly it may clip the object in undefined ways
or the object may not appear at all. To do true clipping, tisgped by as explained in the previous
section. Occasionally you will want to use theipped by andbounded by options with the same object.
The following shortcut saves typing and uses less memory.

object {
My_Thing
clipped_by{ box { <0,0,0>,<1,1,1 > }}
bounded_by{ clipped_by }

4.9 Object Modifiers 159

}

This tells POV-Ray to use the same box as a bound that was used as a clip.

4.9.3 Material

One of the changes in POV-Ray 3.1 was the removal of several items fromure { finish{...} } andto
move them to the newinterior statement. Thealo statement, formerly part akxture, is now renamed
media and made a part of theiterior.

This split was deliberate and purposeful (see "Why are Interior and Media Necessary?”) however beta
testers pointed out that it made it difficult to entirely describe the surface properties and interior of an object
in one statement that can be referenced by a single identifier in a texture library.

The result is that we created a "wrapper” arounéxture and interior which we callnaterial.
The syntax is:

MATERIAL:

material { [MATERIAL_IDENTIFIER] [MATERIAL_ITEMS...] }
MATERIAL_ITEMS:

TEXTURE | INTERIOR_TEXTURE | INTERIOR | TRANSFORMATIONS

For example:

#declare MyGlass=material{ texture{ Glass_T } interior{ Glass_I }}
object { MyObject material{ MyGlass}}

Internally, the "material” is not attached to the object. The material is just a container that brings the texture
and interior to the object. It is the texture and interior itself that is attached to the object. Users should still
consider texture and interior as separate items attached to the object.

The material is just a "bucket” to carry them. If the object already has a texture, then the material texture is
layered over it. If the object already has an interior, the material interior fully replaces it and the old interior
is destroyed. Transformations inside the material affect only the textures and interiors which are inside the
material{} wrapper and only those textures or interiors specified are affected. For example:

object {
MyObject
material {
texture { MyTexture }
scale 4 //affects texture but not object or interior
interior { MyInterior }
translate 5*x //affects texture and interior, not object

}

Note: Thematerial statement has nothing to do with thecerial map Statement. Anaterial map iS not
a way to create patterned material. See "Material Maps” for explanation of this unrelated, yet similarly
named, older feature.

49.4 Inverse

When using CSG it is often useful to invert an object so that it will be inside-out. The appearance of the
object is not changed, just the way that POV-Ray perceives it. Whenthese keyword is used thénside
of the shape is flipped to become thetsideand vice versa. For example:

object { MyObject inverse }

160 Objects

The inside/outside distinction is also important when attachingrior to an object especially ifiedia
is also used. Atmospheric media and fog also do not work as expected if your camera is inside an object.
Usinginverse is useful to correct that problem.

495 Hollow

POV-Ray by default assumes that objects are made of a solid material that completely fills the interior of
an object. By adding theno11ow keyword to the object you can make it hollow, also see the "Empty and
Solid Objects” chapter. That is very useful if you want atmospheric effects to exist inside an object. It
is even required for objects containing an interior media. The keyword may optionally be followed by a
float expression which is interpreted as a boolean value. For examiples off may be used to force it

off. When the keyword is specified alone, it is the samedasow on. By defaulthollow is off when not
specified.

In order to get a hollow CSG object you just have to make the top level object hollow. All children will
assume the sameollow State except when their state is explicitly set. The following example will set both
spheres inside the union hollow

union {
sphere { -0.5*x, 1 }
sphere { 0.5*x, 1}
hollow

}

while the next example will only set the second sphere hollow because the first sphere was explicitly set to
be not hollow.

union {
sphere { -0.5*x, 1 hollow off }
sphere { 0.5*x, 1}
hollow on

496 NaShadow

You may specify thewo_shadow keyword in an object to make that object cast no shadow. This is useful
for special effects and for creating the illusion that a light source actually is visible. This keyword was
necessary in earlier versions of POV-Ray which did not have theks_1ike statement. Now it is useful

for creating things like laser beams or other unreal effects. During test rendering it speeds things up if
no_shadow is applied.

Simply attach the keyword as follows:

object {
My_Thing
no_shadow

}

4.9.7 Nalmage, NaReflection

Syntax:

OBJECT {
[OBJECT_ITEMS...]
no_image

4.9 Object Modifiers 161

no_reflection

}

These two keywords are very similar in usage and function tadh@adow keyword, and control an object’s
visibility.

You can use any combination of the three with your object.

Whenno_image is used, the object will not be seen by the camera, either directly or through transpar-

ent/refractive objects. However, it will still cast shadows, and show up in reflections (unlesslection
and/ormo_shadow is used also).

Whenno_reflection is used, the object will not show up in reflections. It will be seen by the camera (and
through transparent/refractive objects) and cast shadows, unlegsge and/ormo_shadow is used.

Using these three keywords you can produce interesting effects like a sphere casting a rectangular shadow,
a cube that shows up as a cone in mirrors, etc.

4.9.8 Doublellluminate

Syntax:

OBJECT {
[OBJECT_ITEMS...]
double_illuminate

}

A surface has two sides; usually, only the side facing the light source is illuminated, the other side remains
in shadow. Wherouble_illuminate iS used, the other side is also illuminated.
This is useful for simulating effects like translucency (as in a lamp shade, sheet of paper, etc).

Note: double_illuminate only illuminates both sides of the same surface, so on a sphere, for example, you
will not see the effect unless the sphere is either partially transparent, or if the camera is inside and the light
source outside of the sphere (or vise versa).

4.9.9 Sturm

Some of POV-Ray’s objects allow you to choose between a fast but sometimes inaccurate root solver and a
slower but more accurate one. This is the case for all objects that involve the solution of a cubic or quartic
polynomial. There are analytic mathematical solutions for those polynomials that can be used.

Lower order polynomials are trivial to solve while higher order polynomials require iterative algorithms to
solve them. One of those algorithms is the Sturmian root solver. For example:

blob {
threshold .65
sphere { <.5,0,0>, .8,
sphere { <-.5,0,0>,.8,
sturm

11}
13

The keyword may optionally be followed by a float expression which is interpreted as a boolean value. For
examplesturm off may be used to force it off. When the keyword is specified alone, it is the sagmeras
on. By defaultsturm is of £ when not specified.

The following list shows all objects for which the Sturmian root solver can be used.
* blob

162 Objects

* cubic

* lathe (only with quadratic splines)
* poly

* prism (only with cubic splines)

* quartic

* SOr

Chapter 5

Textures

Thetexture statement is an object modifier which describes what the surface of an object looks like, i.e. its
material. Textures are combinations of pigments, normals, and finishes. Pigment is the color or pattern of
colors inherent in the material. Normal is a method of simulating various patterns of bumps, dents, ripples
or waves by modifying the surface normal vector. Finish describes the reflective properties of a material.

Note: that in previous versions of POV-Ray, the texture also contained information about the interior of an
object. This information has been moved to a separate object modifier cafled or. See "Interior” for
details.

There are three basic kinds of textures: plain, patterned, and layerpthinAtextureconsists of a single
pigment, an optional normal, and a single finishpdtterned textureombines two or more textures using

a block pattern or blending function pattern. Patterned textures may be made quite complex by nesting
patterns within patterns. At the innermost levels however, they are made up from plain textiagered
textureconsists of two or more semi-transparent textures layered on top of one another.

Note: although we call a plain textuggain it may be a very complex texture with patterned pigments and
normals. The ternplain only means that it has a single pigment, normal, and finish.

The syntax forexture is as follows:

TEXTURE :
PLAIN_TEXTURE | PATTERNED_TEXTURE | LAYERED_TEXTURE
PLAIN_TEXTURE:
texture
{
[TEXTURE_IDENTIFIER]
[PNF_IDENTIFIER...]
[PNF_ITEMS...]
}
PNF_IDENTIFIER:
PIGMENT_IDENTIFIER | NORMAL_IDENTIFIER | FINISH_IDENTIFIER
PNF_ITEMS:
PIGMENT | NORMAL | FINISH | TRANSFORMATION
LAYERED_TEXTURE:
NON_PATTERNED_TEXTURE. ..
PATTERNED_TEXTURE:
texture
{
[PATTERNED_TEXTURE_ID]
[TRANSFORMATIONS...]

164 Textures

texture
{
PATTERN_TYPE
[TEXTURE_PATTERN_MODIFIERS...]
bl
texture
{
tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS...]
b
texture
{
material_map
{
BITMAP_TYPE "bitmap.ext"
[MATERIAL_MODS...] TEXTURE... [TRANSFORMATIONS...]
}
}
TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map { TEXTURE_MAP_BODY }

In the PLAIN.-TEXTURE each of the items are optional but if they are presenTEXTUREIDENTIFIER
must be first. If no texture identifier is given, then POV-Ray creates a copy of the default texture. See "The
#default Directive” for details.

Next are optional pigment, normal, and/or finish identifiers which fully override any pigment, normal
and finish already specified in the previous texture identifier or default texture. Typically this is used
for backward compatibility to allow things liketexture { MyPigment } wheremypigment iS @ pigment
identifier.

Finally we have optionapigment, normal Or finish Statements which modify any pigment, normal and
finish already specified in the identifier. If no texture identifier is specifiedgh@nent, normal andfinish
statements modify the current default values. This is the typical plain texture:

texture {

pigment { MyPigment }
normal { MyNormal }
finish { MyFinish }
scale SoBig
rotate SoMuch
translate SoFar

}

The TRANSFORMATION®ay be interspersed between the pigment, normal and finish statements but are
generally specified last. If they are interspersed, then they modify only those parts of the texture already
specified. For example:

texture {
pigment { MyPigment }
scale SoBig //affects pigment only
normal { MyNormal }
rotate SoMuch //affects pigment and normal
finish { MyFinish }
translate SoFar //finish is never transformable no matter what.
//Therefore affects pigment and normal only
}

Texture identifiers may be declared to make scene files more readable and to parameterize scenes so that

5.1 Pigment 165

changing a single declaration changes many values. An identifier is declared as follows.

TEXTURE_DECLARATION:
#declare IDENTIFIER = TEXTURE |
#local IDENTIFIER = TEXTURE

Where IDENTIFIER is the name of the identifier up to 40 characters long &BKTUREis any valid
texture Statement. See "#declare vs. #local” for information on identifier scope.

The sections below describe all of the options available in "Pigment”, "Normal”, and "Finish” which are
the main part of plain textures.. There are also separate sections for "Patterned Textures” and "Layered
Textures” which are made up of plain textures.

Note: thetiles andmaterial map Versions of patterned textures are obsolete and are only supported for
backwards compatibility.

5.1 Pigment

The color or pattern of colors for an object is defined by ament statement. All plain textures must have

a pigment. If you do not specify one the default pigment is used. The color you define is the way you
want the object to look if fully illuminated. You pick the basic color inherent in the object and POV-Ray
brightens or darkens it depending on the lighting in the scene. The parameter isscalled because we

are defining the basic color the object actually is rather than how it looks.

The syntax for pigment is:

PIGMENT:
pigment {
[PIGMENT_IDENTIFIER]
[PIGMENT_TYPE]
[PIGMENT_MODIFIER...]
}
PIGMENT_TYPE:
PATTERN_TYPE | COLOR |
image_map {
BITMAP_TYPE "bitmap.ext" [IMAGE_MAP_MODS...]
}
PIGMENT_MODIFIER:
PATTERN_MODIFIER | COLOR_LIST | PIGMENT_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY } | quick_color COLOR |
quick_colour COLOR

Each of the items in a pigment are optional but if they are present, they must be in the order shown. Any
items after thePIGMENT.IDENTIFIERmodify or override settings given in the identifier. If no identifier is
specified then the items modify the pigment values in the current default textur@IGMENT.TYPEfall

into roughly four categories. Each category is discussed the sub-sections which follow. The four categories
are solid color and image map patterns which are specificde:nt statements or color list patterns, color
mapped patterns which use POV-Ray’s wide selection of general patterns. See "Patterns” for details about
specific patterns.

The pattern type is optionally followed by one or more pigment modifiers. In addition to general pattern
modifiers such as transformations, turbulence, and warp modifiers, pigments may alsoCLOR -

LIST, PIGMENT.LIST, colormap, pigment map, andquick_color Which are specific to pigments. See
"Pattern Modifiers” for information on general modifiers. The pigment-specific modifiers are described in
sub-sections which follow. Pigment modifiers of any kind apply only to the pigment and not to other parts
of the texture. Modifiers must be specified last.

166 Textures

A pigment statement is part ofaxture specification. However it can be tedious to use-aure statement
just to add a color to an object. Therefore you may attach a pigment directly to an object without explicitly
specifying that it as part of a texture. For example instead of this:

object { My_Object texture {pigment { color Red } } }
you may shorten it to:
object { My_Object pigment {color Red } }

Doing so creates an entitexture structure with defaultormal andfinish statements just as if you had
explicitly typed the full texture {...} around it.

Pigment identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

PIGMENT_DECLARATION:
#declare IDENTIFIER = PIGMENT |
#local IDENTIFIER = PIGMENT

Where IDENTIFIER is the name of the identifier up to 40 characters long BMAMENT is any valid
pigment Statement. See "#declare vs. #local” for information on identifier scope.

5.1.1 Solid Color Pigments

The simplest type of pigment is a solid color. To specify a solid color you simply put a color specification
inside apigment Statement. For example:

pigment { color Orange }

A color specification consists of the optional keyword1or followed by a color identifier or by a spec-
ification of the amount of red, green, blue, filtered and unfiltered transparency in the surface. See section
"Specifying Colors” for more details about colors. Any pattern modifiers used with a solid color are ignored
because there is no pattern to modify.

5.1.2 Color List Pigments

There are four color list patternghecker, hexagon, brick andobject. The result is a pattern of solid
colors with distinct edges rather than a blending of colors as with color mapped patterns. Each of these
patterns is covered in more detail in a later section. The syntax is:

COLOR_LIST_ PIGMENT:
pigment {brick [COLOR_1, [COLOR_2]] [PIGMENT_MODIFIERS...] }|
pigment {checker [COLOR_1, [COLOR_2]] [PIGMENT_MODIFIERS...]}|
pigment {
hexagon [COLOR_1, [COLOR_2, [COLOR_3]]] [PIGMENT_MODIFIERS...]
H
pigment {object OBJECT_IDENTIFIER | OBJECT {} [COLOR_1, COLOR_2]}

EachCOLORnN s any valid color specification. There should be a comma between each colorcer dhe

keyword should be used as a separator so that POV-Ray can determine where each color specification starts
and ends. Therick andchecker pattern expects two colors améxagon expects three. If an insufficient
number of colors is specified then default colors are used.

5.1 Pigment 167

5.1.3 Color Maps

Most of the color patterns do not use abrupt color changes of just two or three colors like those in the brick,
checker or hexagon patterns. They instead use smooth transitions of many colors that gradually change
from one point to the next. The colors are defined in a pigment modifier calletha nap that describes

how the pattern blends from one color to the next.

Each of the various pattern types available is in fact a mathematical function that takes any x, y, z location
and turns it into a number between 0.0 and 1.0 inclusive. That number is used to specify what mix of colors
to use from the color map.

The syntax for color_map is as follows:

COLOR_MAP:

color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY }
COLOR_MAP_BODY:

COLOR_MAP_IDENTIFIER | COLOR_MAP_ENTRY...
COLOR_MAP_ENTRY:

[Value COLOR] |

[Value_1, Value_2 color COLOR_1 color COLOR_2]

Where eaclvalue _n is a float values between 0.0 and 1.0 inclusive and €42hORNn, is color specifica-
tions.

Note: the [] brackets are part of the actuBIOLORMAP_ENTRY They are not notational symbols denot-
ing optional parts. The brackets surround each entry in the color map.

There may be from 2 to 256 entries in the map. The alternate spellingr_map may be used.
Here is an example:

sphere {
<0,1,2>, 2
pigment {
gradient x //this is the PATTERN_TYPE
color_map {
[0. color Red]
0. color Yellow]
color Blue]
color Green]
color Cyan]

w0 o o W |

(
(
[
[

}
}

The pattern functiogradient x is evaluated and the result is a value from 0.0 to 1.0. If the value is less
than the first entry (in this case 0.1) then the first color (red) is used. Values from 0.1 to 0.3 use a blend
of red and yellow using linear interpolation of the two colors. Similarly values from 0.3 to 0.6 blend from
yellow to blue.

The 3rd and 4th entries both have values of 0.6. This causes an immediate abrupt shift of color from blue to
green. Specifically a value that is less than 0.6 will be blue but exactly equal to 0.6 will be green. Moving
along, values from 0.6 to 0.8 will be a blend of green and cyan. Finally any value greater than or equal to
0.8 will be cyan.

If you want areas of unchanging color you simply specify the same color for two adjacent entries. For
example:

color_map f{
[0.1 color Red]
[0.3 color Yellow]

168 Textures

[0.6 color Yellow]
[0.8 color Green]

}
In this case any value from 0.3 to 0.6 will be pure yellow.

The first syntax version dEOLORMAP_ENTRYwith one float and one color is the current standard. The
other double entry version is obsolete and should be avoided. The previous example would look as follows
using the old syntax.

color_map {
0. color Red color Red]

color Red color Yellow]
color Yellow color Yellow]
color Yellow color Green]

color Green color Green]

©0 o W — o |
o o o
O o W

}

You may usecolor_map With any patterns excepbrick, checker, hexagon, object and imagemap. YOU
may declare and uselor_ map identifiers. For example:

#declare Rainbow_Colors=
color_map f{
[0.0 color Magenta]
[0 color Yellow]
[0.67 color Cyan]
1 color Magenta]
}
object {
My_Object
pigment {
gradient x
color_map { Rainbow_Colors }
}
}

5.1.4 Pigment Maps and Pigment Lists

In addition to specifying blended colors with a color map you may create a blend of pigments using a
pigment map. The syntax for a pigment map is identical to a color map except you specify a pigment in each
map entry (and not a color).

The syntax fopigment map is as follows:

PIGMENT_MAP:

pigment_map { PIGMENT_MAP_BODY }
PIGMENT_MAP_BODY:

PIGMENT_MAP_IDENTIFIER | PIGMENT_MAP_ENTRY...
PIGMENT_MAP_ENTRY:

[Value PIGMENT_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and €&1&MENTBODY is anything which
can be inside aigment{. ..} statement. Theigment keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actuBIGMENT.MAP_ENTRY They are not notational symbols
denoting optional parts. The brackets surround each entry in the pigment map.

There may be from 2 to 256 entries in the map.

For example

5.1 Pigment 169

sphere {
<0,1,2>, 2
pigment {
gradient x //this is the PATTERN_TYPE
pigment_map {
[0.3 wood scale 0.2]
[0.3 Jade] //this is a pigment identifier
[0.6 Jade]
[0.9 marble turbulence 1]

}
}

When thegradient x function returns values from 0.0 to 0.3 the scaled wood pigment is used. From 0.3 to
0.6 the pigment identifier Jade is used. From 0.6 up to 0.9 a blend of Jade and a turbulent marble is used.
From 0.9 on up only the turbulent marble is used.

Pigment maps may be nested to any level of complexity you desire. The pigments in a map may have color
maps or pigment maps or any type of pigment you want. Any entry of a pigment map may be a solid color
however if all entries are solid colors you should use &r_map which will render slightly faster.

Entire pigments may also be used with the block patterns suchrasker, hexagon andbrick. For
example...

pigment {

checker

pigment { Jade scale .8 }

pigment { White_Marble scale .5 }
}

Note: that in the case of block patterns thiement wrapping is required around the pigment information.
A pigment map is also used with theerage pigment type. See "Average” for details.

You may not useigment map or individual pigments with afimage_map. See section "Texture Maps” for an
alternative way to do this.

You may declare and use pigment map identifiers but the only way to declare a pigment block pattern list is
to declare a pigment identifier for the entire pigment.

5.1.5 Image Maps

When all else fails and none of the above pigment pattern types meets your needs you Caihiugenan
to wrap a 2-D bit-mapped image around your 3-D objects.

Specifying an Image Map

The syntax for anmage_map is:

IMAGE_MAP:
pigment
{
image_map
{
[BITMAP_TYPE] "bitmap[.ext]"
[IMAGE_MAP_MODS...]
}
[PIGMENT_MODFIERS...]

170 Textures

}
BITMAP_TYPE:

gif | tga | iff | ppm | pgm | png | Jjpeg | tiff | sys
IMAGE_MAP_MOD:

map_type Type | once | interpolate Type |

filter Palette, Amount | filter all Amount |

transmit Palette, Amount | transmit all Amount

After the optionaBITMAP_TYPEkeyword is a string expression containing the name of a bitmapped image
file of the specified type. If thBITMAP_TYPEIs not given, the same type is expected as the type set for
output.

Example:

plane {
-z,0
pigment {
image_map {png "Eggs.png"}
}
}

plane {
-z,0
pigment {
image_map {"Eggs"}
}
}

The second method will look for, and use "Eggs.png” if the output file type is set tad@utputFile_-
Type=N in INI-file or +FN on command line). Itis particularly useful when the image used itmthe map
is also rendered with POV-Ray.

Several optional modifiers may follow the file specification. The modifiers are described below.

Note: earlier versions of POV-Ray allowed some modifiers beforeBReMAP_TYPEbut that syntax is
being phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in thenage map statements will be searched for in the home (current) directory first
and, if not found, will then be searched for in directories specified by+anyr Library_Path options
active. This would facilitate keeping all your image maps files in a separate subdirectory and giving a
Library_Path option to specify where your library of image maps are. See "Library Paths” for details.

By default, the image is mapped onto the x-y-plane. The imagprigectedonto the object as though

there were a slide projector somewhere in the -z-direction. The image exactly fills the square area from
(x,y) coordinates (0,0) to (1,1) regardless of the image’s original size in pixels. If you would like to change
this default you may translate, rotate or scale the pigment or texture to map it onto the object’s surface as
desired.

In the section "Checker”, thenecker pigment pattern is explained. The checks are described as solid cubes
of colored clay from which objects are carved. With image maps you should imagine that each pixel is a
long, thin, square, colored rod that extends parallel to the z-axis. The image is made from rows and columns
of these rods bundled together and the object is then carved from the bundle.

If you would like to change this default orientation you may translate, rotate or scale the pigment or texture
to map it onto the object’s surface as desired.

The file name is optionally followed by one or moITMAP.MODIFIERS The filter, filter all,
transmit, and transmit all modifiers are specific to image maps and are discussed in the following

5.1 Pigment 171

sections. An image_map may also use generic bitmap modifiees_t ype, once and interpolate described
in "Bitmap Modifiers”

The Filter and Transmit Bitmap Modifiers

To make all or part of an image map transparent you can spetifyter and/ortransmit values for the

color palette/registers of PNG, GIF or IFF pictures (at least for the modes that use palettes). You can do
this by adding the keywordiiter or transmit following the filename. The keyword is followed by two
numbers. The first number is the palette number value and the second is the amount of transparency. The
values should be separated by a comma. For example:

image_map {
gif "mypic.gif"
filter 0, 0.5 // Make color 0 50\% filtered transparent
filter 5, 1.0 // Make color 5 100\% filtered transparent
transmit 8, 0.3 // Make color 8 30\% non-filtered transparent

}

You can give the entire imagefalter Or transmit value usingfilter all Amount Of transmit all
Amount. For example:

image_map {
gif "stnglass.gif"
filter all 0.9

}

Note: early versions of POV-Ray used the keywearghha to specify filtered transparency however that
word is often used to describe non-filtered transparency. For this reasenis no longer used.

See section "Specifying Colors” for details on the differences between filtered and non-filtered transparency.

Using the Alpha Channel

Another way to specify non-filtered transmit transparency in an image map is by usiafpkizechannel
POV-Ray will automatically use the alpha channel for transmittance when one is stored in the image. PNG
file format allows you to store a different transparency for each color index in the PNG file, if desired. If
your paint programs support this feature of PNG you can do the transparency editing within your paint
program rather than specifying transmit values for each color in the POV file. Since PNG and TGA image
formats can also store full alpha channel (transparency) information you can generate image maps that have
transparency which is not dependent on the color of a pixel but rather its location in the image.

Although POV usesransmit 0.0 to specify no transparency and.o to specify full transparency, the
alpha data ranges from 0 to 255 in the opposite direction. Alpha data 0 means the same®@st 1.0
and alpha data 255 producesinsmit 0.0.

5.1.6 Quick Color

When developing POV-Ray scenes it is often useful to do low quality test runs that render fastep. The
command line switch orouality INI option can be used to turn off some time consuming color pattern
and lighting calculations to speed things up. See "Quality Settings” for details. However all settings of
or guality=>5 or lower turns off pigment calculations and creates gray objects.

By adding aquick_color to a pigment you tell POV-Ray what solid color to use for quick renders instead
of a patterned pigment. For example:

172 Textures

pigment {
gradient x
color_map({
[0.0 color Yellow]
[0.3 color Cyan]
[0.6 color Magenta]
[1.0 color Cyan]

}

turbulence 0.5

lambda 1.5

omega 0.75

octaves 8

quick_color Neon_Pink

}

This tells POV-Ray to use soligeon_Pink for test runs at quality-os or lower but to use the turbulent
gradient pattern for rendering at6 and higher. Solid color pigments such as

pigment {color Magenta}

automatically set thguick_color to that value. You may override this if you want. Suppose you have 10
spheres on the screen and all are yellow. If you want to identify them individually you could give each a
differentquick_color like this:

sphere {
<1,2,3>,4
pigment { color Yellow quick_color Red }

}
sphere {
<-1,-2,-3>,4
pigment { color Yellow quick_color Blue }

}

and so on. Ato6 or higher they will all be yellow but atos or lower each would be different colors so you
could identify them.

The alternate spellinguick_colour is also supported.

5.2 Normal

Ray-tracing is known for the dramatic way it depicts reflection, refraction and lighting effects. Much of our
perception depends on the reflective properties of an object. Ray tracing can exploit this by playing tricks
on our perception to make us see complex details that are not really there.

Suppose you wanted a very bumpy surface on the object. It would be very difficult to mathematically model
lots of bumps. We can however simulate the way bumps look by altering the way light reflects off of the
surface. Reflection calculations depend on a vector calledréace normalector. This is a vector which
points away from the surface and is perpendicular to it. By artificially modifying (or perturbing) this normal
vector you can simulate bumps. This is done by adding an optienahal statement.

Note: that attaching a normal pattern does not really modify the surface. It only affects the way light reflects
or refracts at the surface so that it looks bumpy.

The syntax is:

NORMAL:
normal { [NORMAL_IDENTIFIER] [NORMAL_TYPE] [NORMAL_MODIFIER...] }
NORMAL_TYPE:

5.2 Normal 173

PATTERN_TYPE Amount |

bump_map { BITMAP_TYPE "bitmap.ext" [BUMP_MAP_MODS...]}
NORMAL_MODIFIER:

PATTERN_MODIFIER | NORMAL_LIST | normal_map { NORMAL_MAP_BODY } |

slope_map{ SLOPE_MAP_BODY } | bump_size Amount |

no_bump_scale Bool | accuracy Float

Each of the items in a normal are optional but if they are present, they must be in the order shown. Any
items after the&NORMALIDENTIFIER modify or override settings given in the identifier. If no identifier is
specified then the items modify the normal values in the current default texturéATTMEERNTYPEmay
optionally be followed by a float value that controls the apparent depth of the bumps. Typical values range
from 0.0 to 1.0 but any value may be used. Negative values invert the pattern. The default value if none is
specified is 0.5.

There are four basic types BFORMALTYPEs. They are block pattern normals, continuous pattern nor-
mals, specialized normals and bump maps. They differ in the types of modifiers you may use with them.
The pattern type is optionally followed by one or more normal modifiers. In addition to general pattern
modifiers such as transformations, turbulence, and warp modifiers, normals may alsoNT2RMEAL -

LIST, slopemap, normal_map, andbump_size Which are specific to normals. See "Pattern Modifiers” for
information on general modifiers. The normal-specific modifiers are described in sub-sections which fol-
low. Normal modifiers of any kind apply only to the normal and not to other parts of the texture. Modifiers
must be specified last.

Originally POV-Ray had some patterns which were exclusively used for pigments while others were ex-
clusively used for normals. Since POV-Ray 3.0 you can use any pattern for either pigments or normals.
For example it is now valid to useipples as a pigment ofiood as a normal type. The patteragnps,

dents, ripples, waves, wrinkles, and bump_map Were once exclusively normal patterns which could not

be used as pigments. Because these six types use specialized normal modification calculations they cannot
have slopemap, normal map Or wave shape modifiers. All other normal pattern types may use them. Be-
cause block patternghecker, hexagon, object and brick do not return a continuous series of values, they
cannot use these modifiers either. See "Patterns” for details about specific patterns.

A normal statement is part of atexture specification. However it can be tedious to usetaxture
statement just to add bumps to an object. Therefore you may attach a normal directly to an object without
explicitly specifying that it as part of a texture. For example instead of this:

object {My_Object texture { normal { bumps 0.5 } } }
you may shorten it to:
object { My_Object normal { bumps 0.5 } }

Doing so creates an entitexture structure with defaulpignent andfinish statements just as if you had
explicitly typed the full texture {...} around it. Normal identifiers may be declared to make scene files
more readable and to parameterize scenes so that changing a single declaration changes many values. An
identifier is declared as follows.

NORMAL_DECLARATION:
#declare IDENTIFIER = NORMAL |
#local IDENTIFIER = NORMAL

WherelDENTIFIERIs the name of the identifier up to 40 characters longl@RMALIs any validnormal
statement. See "#declare vs. #local” for information on identifier scope.

5.2.1 Slope Maps

A slope_map iS a normal pattern modifier which gives the user a great deal of control over the exact shape
of the bumpy features. Each of the various pattern types available is in fact a mathematical function that

174 Textures

takes any x, y, z location and turns it into a number between 0.0 and 1.0 inclusive. That number is used to
specify where the various high and low spots are. Thee_ map lets you further shape the contours. It is
best illustrated with a gradient normal pattern. Suppose you have...

plane{ z, 0
pigment{ White }
normal { gradient x }

}

This gives a ramp wave pattern that looks like small linear ramps that climb from the points at x=0 to x=1
and then abruptly drops to 0 again to repeat the ramp from x=1 to x=2. A slope map turns this simple linear
ramp into almost any wave shape you want. The syntax is as follows...

SLOPE_MAP:

slope_map { SLOPE_MAP_BODY }
SLOPE_MAP_BODY:

SLOPE_MAP_IDENTIFIER | SLOPE_MAP_ENTRY...
SLOPE_MAP_ENTRY:

[Value, <Height, Slope>]

Note: the [] brackets are part of the actuBLOPEMAP_ENTRY They are not notational symbols denoting
optional parts. The brackets surround each entry in the slope map.

There may be from 2 to 256 entries in the map.

Eachvalue is a float value between 0.0 and 1.0 inclusive and eadfeight , Slope > is a2 component

vector such asc0,1> where the first value represents the apparent height of the wave and the second value
represents the slope of the wave at that point. The height should range between 0.0 and 1.0 but any value
could be used.

The slope value is the change in height per unit of distance. For example a slope of zero means flat, a
slope of 1.0 means slope upwards at a 45 degree angle and a slope of -1 means slope down at 45 degrees.
Theoretically a slope straight up would have infinite slope. In practice, slope values should be kept in the
range -3.0 to +3.0. Keep in mind that this is only the visually apparent slope. A normal does not actually
change the surface.

For example here is how to make the ramp slope up for the first half and back down on the second half
creating a triangle wave with a sharp peak in the center.

normal {
gradient x // this is the PATTERN_TYPE
slope_map {
[0 <0, 1>] // start at bottom and slope up
[0.5 <1, 1>] // halfway through reach top still climbing
[0.5 <1,-1>] // abruptly slope down
1 <0,-1>] // finish on down slope at bottom

}

The pattern function is evaluated and the result is a value from 0.0 to 1.0. The first entry says that at x=0 the
apparent height is 0 and the slope is 1. At x=0.5 we are at height 1 and slope is still up at 1. The third entry
also specifies that at x=0.5 (actually at some tiny fraction above 0.5) we have height 1 but slope -1 which is
downwards. Finally at x=1 we are at height 0 again and still sloping down with slope -1.

Although this example connects the points using straight lines the shape is actually a cubic spline. This
example creates a smooth sine wave.

normal {
gradient x // this is the PATTERN_TYPE
slope_map {
[0 <0.5, 1>] // start in middle and slope up

5.2 Normal 175

[0.25 <1.0, 0>] // flat slope at top of wave
[0.5 <0.5,-1>] // slope down at mid point
[0.75 <0.0, 0>] // flat slope at bottom
(1 <0.5, 1>] // finish in middle and slope up
}
}

This example starts at height 0.5 sloping up at slope 1. At a fourth of the way through we are at the top of
the curve at height 1 with slope 0 which is flat. The space between these two is a gentle curve because the
start and end slopes are different. At half way we are at half height sloping down to bottom out at 3/4ths. By
the end we are climbing at slope 1 again to complete the cycle. There are more examplesdep . pov

in the sample scenes.

A slopemap may be used with any pattern exceptrick, checker, object, hexagon, bumps, dents,
ripples, waves, wrinkles and bump_map.

You may declare and use slope map identifiers. For example:

#declare Fancy_Wave =

slope_map { // Now let’s get fancy
[0.0 <0, 1>] // Do tiny triangle here
[0.2 <1, 1>] // down
[0.2 <1,-1>] // to
[0.4 <0,-1>] // here.
(0.4 <0, 0>] // Flat area
[0.5 <0, 0>] // through here.
[0.5 <1, 0>] // Square wave leading edge
(0.6 <1, 0>] // trailing edge
[0.6 <0, 0>] // Flat again
[0.7 <0, 0>] // through here.
[0.7 <0, 3>] // Start scallop
[0.8 <1, 0>] // flat on top
[0.9 <0,-3>] // finish here.
[0.9 <0, 0>] // Flat remaining through 1.0

}
object{ My_Object
pigment { White }
normal {
wood
slope_map { Fancy_Wave }

}

Normals, Accuracy

Surface normals that use patterns that were not designed for use with normals (anything other than bumps,
dents, waves, ripples, and wrinkles) uses @e_map Whether you specify one or not. To create a perturbed
normal from a pattern, POV-Ray samples the pattern at four points in a pyramid surrounding the desired
point to determine the gradient of the pattern at the center of the pyramid. The distance that these points are
from the center point determines the accuracy of the approximation. Using points too close together causes
floating-point inaccuracies. However, using points too far apart can lead to artefacts as well as smoothing
out features that should not be smooth.

Usually, points very close together are desired. POV-Ray currently uses a delta or accuracy distance of 0.02.
Sometimes it is necessary to decrease this value to get better accuracy if you are viewing a close-up of the
texture. Other times, it is nice to increase this value to smooth out sharp edges in the normal (for example,

176 Textures

when using a 'solid’ crackle pattern). For this reason, a new propextyracy, has been added to normals.
It only makes a difference if the normal usesiape nap (either specified or implied).

You can specify the value of this accuracy (which is the distance between the sample points when deter-
mining the gradient of the pattern for slapgap) by addingiccuracy <float> to your normal. For all
patterns, the default is 0.02.

5.2.2 Normal Maps and Normal Lists

Most of the time you will apply single normal pattern to an entire surface but you may also create a pattern
or blend of normals using aormal_map. The syntax for aormal map is identical to aigment_map except
you specify a normal in each map entry. The syntax fesrmal_map is as follows:

NORMAL_MAP:

normal_map { NORMAL_MAP_BODY }
NORMAL_MAP_BODY:

NORMAL_MAP_IDENTIFIER | NORMAL_MAP_ENTRY...
NORMAL_MAP_ENTRY:

[Value NORMAL_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and &&ORMALBODY is anything which
can be inside aormal{...} statement. Theormal keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actullORMALMAP_ENTRY They are not notational symbols
denoting optional parts. The brackets surround each entry in the normal map.

There may be from 2 to 256 entries in the map.
For example

normal {
gradient x //this is the PATTERN_TYPE
normal_map {
[0.3 bumps scale 2]
[0.3 dents]
[0.6 dents]
[0.9 marble turbulence 1]

}

When thegradient x function returns values from 0.0 to 0.3 then the scaled bumps normal is used. From
0.3 to 0.6 dents pattern is used. From 0.6 up to 0.9 a blend of dents and a turbulent marble is used. From
0.9 on up only the turbulent marble is used.

Normal maps may be nested to any level of complexity you desire. The normals in a map may have slope
maps or normal maps or any type of normal you want.

A normal map is also used with theerage normal type. See "Average” for detalils.

Entire normals in a normal list may also be used with the block patterns sughr@sr, hexagon and
brick. For example...

normal {
checker
normal { gradient x scale .2 }
normal { gradient y scale .2 }

}

Note: in the case of block patterns therna1l wrapping is required around the normal information.

5.2 Normal 177

You may not usenormal_map Or individual normals with abump_map. See section "Texture Maps” for an
alternative way to do this.

You may declare and use normal map identifiers but the only way to declare a normal block pattern list is
to declare a normal identifier for the entire normal.

5.2.3 Bump Maps

When all else fails and none of the above normal pattern types meets your needs you campsa@ato
wrap a 2-D bit-mapped bump pattern around your 3-D objects.

Instead of placing the color of the image on the shape likeiabge map a bump_map perturbs the surface
normal based on the color of the image at that point. The result looks like the image has been embossed
into the surface. By default, a bump map uses the brightness of the actual color of the pixel. Colors are
converted to gray scale internally before calculating height. Black is a low spot, white is a high spot. The
image’s index values may be used instead (see sectionlidex and UseColor” below).

Specifying a Bump Map

The syntax for @ump_map is:

BUMP_MAP:
normal
{
bump_map
{
BITMAP_TYPE "bitmap.ext"
[BUMP_MAP_MODS. . .]

}
[NORMAL_MODFIERS. . .]

}
BITMAP_TYPE:
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
BUMP_MAP_MOD:
map_type Type | once | interpolate Type | use_color |
use_colour | bump_size Value

After the requiredBITMAP_TYPEkeyword is a string expression containing the name of a bitmapped bump
file of the specified type. Several optional modifiers may follow the file specification. The modifiers are
described below.

Note: earlier versions of POV-Ray allowed some modifiers beforeBAMAP_TYPEbut that syntax is
being phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in themnp_nap statements will be searched for in the home (current) directory first and,
if not found, will then be searched for in directories specified by angr Library Path options active.
This would facilitate keeping all your bump maps files in a separate subdirectory and givifig-ary_path
option to specify where your library of bump maps are. See "Library Paths” for details.

By default, the bump pattern is mapped onto the x-y-plane. The bump pati@jeéstedonto the object

as though there were a slide projector somewhere in the -z-direction. The pattern exactly fills the square
area from (x,y) coordinates (0,0) to (1,1) regardless of the pattern’s original size in pixels. If you would like
to change this default you may translate, rotate or scale the pigment or texture to map it onto the object’s
surface as desired. If you would like to change this default orientation you may translate, rotate or scale the
pigment or texture to map it onto the object’s surface as desired.

178 Textures

The file name is optionally followed by one or moBITMAP_-MODIFIERS Thebump_size, use_color

and use_index modifiers are specific to bump maps and are discussed in the following sections. See
section "Bitmap Modifiers” for the generic bitmap modifi@es_type, once and interpolate described in
"Bitmap Modifiers”

Bump_Size

The relative bump size can be scaled usingihe_size modifier. The bump size number can be any
number other than 0 but typical values are from about 0.1 to as high as 4.0 or 5.0.

normal {
bump_map {
gif "stuff.gif"
bump_size 5.0
}
}

Originally bump_size could only be used inside a bump map but it can now be used with any normal.
Typically it is used to override a previously defined size. For example:

normal {
My_Normal //this is a previously defined normal identifier
bump_size 2.0

}

Uselndex and UseColor

Usually the bump map converts the color of the pixel in the map to a gray scale intensity value in the range
0.0 to 1.0 and calculates the bumps based on that value. If you speeify.dex, the bump map uses the
color’s palette number to compute as the height of the bump at that point. So, color number 0 would be low
and color number 255 would be high (if the image has 256 palette entries). The actual color of the pixels
doesn’t matter when using the index. This option is only available on palette based formatse Eheor

keyword may be specified to explicitly note that the color methods should be used instead. The alternate
spellinguse_colour is also valid. These modifiers may only be used inside-the map Statement.

5.2.4 Scaling normals

When scaling a normal, or when scaling an object after a normal is applied to it, the depth of the normal
is affected by the scaling. This is not always wanted. If you want to turn off bump scaling for a texture or
normal, you can do this by adding the keywoerdbump_scale to the texture’'s or normal’s modifiers. This
modifier will get passed on to all textures or normals contained in that texture or normal. Think of this like
the way nashadow gets passed on to objects contained in a CSG.

It is also important to note that if you ad@ bump_scale to @ normal or texture that is contained within
another pattern (such as withir-ature map Or normal map), then the only scaling that will be ignored is

the scaling of that texture or normal. Scaling of the parent texture or normal or of the object will affect
the depth of the bumps, unlessbump_scale is specified at the top-level of the texture (or normal, if the
normal is not wrapped in a texture).

5.3 Finish 179

5.3 Finish

The finish properties of a surface can greatly affect its appearance. How does light reflect? What happens
in shadows? What kind of highlights are visible. To answer these questions you ngedia

The syntax forfinish is as follows:

FINISH:
finish { [FINISH_IDENTIFIER] [FINISH_ITEMS...] }
FINISH_ITEMS:
ambient COLOR | diffuse Amount | brilliance Amount |
phong Amount | phong_size Amount | specular Amount |
roughness Amount | metallic [Amount] | reflection COLOR |
crand Amount | conserve_energy BOOL_ON_OF |
reflection { Color_Reflecting_Min [REFLECTION_ITEMS...] }|
irid { Irid_Amount [IRID_ITEMS...] }
REFLECTION_ITEMS:
COLOR_REFLECTION_MAX | fresnel BOOL_ON_OFF |
falloff FLOAT_FALLOFF | exponent FLOAT_EXPONENT |
metallic FLOAT_METALLIC
IRID_ITEMS:
thickness Amount | turbulence Amount

The FINISH.IDENTIFIER is optional but should proceed all other items. Any items afterRINSH -
IDENTIFIER modify or override settings given in tHeNISHIDENTIFIER If no identifier is specified
then the items modify the finish values in the current default texture.

Note: transformations are not allowed inside a finish because finish items cover the entire surface uniformly.
Each of theFINISH_ITEMSlisted above is described in sub-sections below.

In earlier versions of POV-Ray, thefraction, ior, andcaustics keywords were part of thefinish
statement but they are now part of thecerior statement. They are still supported undetish for
backward compatibility but the results may not be 100% identical to previous versions. See "Why are
Interior and Media Necessary?” for details.

A finish statement is part of &xture specification. However it can be tedious to uses&ure statement
just to add a highlights or other lighting properties to an object. Therefore you may attach a finish directly
to an object without explicitly specifying that it as part of a texture. For example instead of this:

object { My_Object texture { finish { phong 0.5 } } }
you may shorten it to:
object { My_Object finish { phong 0.5 } }

Doing so creates an entitexture structure with defaulpigment andnormal statements just as if you had
explicitly typed the full texture {...} around it.

Finish identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

FINISH _DECLARATION:
#declare IDENTIFIER = FINISH |
#local IDENTIFIER = FINISH

WherelDENTIFIERIs the name of the identifier up to 40 characters longRINISH is any validfinish
statement. See "#declare vs. #local” for information on identifier scope.

180 Textures

5.3.1 Ambient

The light you see in dark shadowed areas comes from diffuse reflection off of other objects. This light
cannot be directly modeled using ray-tracing. However we can use a trick @atibient lightingto
simulate the light inside a shadowed area.

Ambient light is light that is scattered everywhere in the room. It bounces all over the place and manages
to light objects up a bit even where no light is directly shining. Computing real ambient light would take
far too much time, so we simulate ambient light by adding a small amount of white light to each texture
whether or not a light is actually shining on that texture.

This means that the portions of a shape that are completely in shadow will still have a little bit of their
surface color. Itis almost as if the texture glows, though the ambient light in a texture only affects the shape
itis used on.

Theambient keyword controls the amount of ambient light. Usually a single float value is specified even
though the syntax calls for a color. For example a float value ofgets promoted to the full color vector
<0.3,0.3,0.3,0.3,0.3> which is acceptable because only the red, green and blue parts are used.

The default value is 0.1 which gives very little ambient light. The value can range from 0.0 to 1.0. Ambient
light affects both shadowed and non-shadowed areas so if you turn ugrthent value you may want to
turn down thediffuse andreflection values.

Note: that this method does not account for the color of surrounding objects. If you walk into a room
that has red walls, floor and ceiling then your white clothing will look pink from the reflected light. POV-
Ray’s ambient shortcut does not account for this. There is also no way to model specular reflected indirect
illumination such as the flashlight shining in a mirror.

You may color the ambient light using one of two methods. You may specify a color rather than a float after
the ambient keyword in each finish statement. For example

finish { ambient rgb <0.3,0.1,0.1> } //a pink ambient

You may also specify the overall ambient light source used when calculating the ambient lighting of an
object using the globalambient _1ight setting. The formula is given byAmbient = FinishAmbient *
Global AmbientLight_ SourceSee section "Ambient Light” for details.

5.3.2 Diffuse Reflection Items

When light reflects off of a surface the laws of physics say that it should leave the surface at the exact
same angle it came in. This is similar to the way a billiard ball bounces off a bumper of a pool table. This
perfect reflection is callegpecular reflectionHowever only very smooth polished surfaces reflect light in
this way. Most of the time, light reflects and is scattered in all directions by the roughness of the surface.
This scattering is callediffuse reflectiorbecause the light diffuses or spreads in a variety of directions. It
accounts for the majority of the reflected light we see.

Diffuse
The keyworddiffuse is used in &inish statement to control how much of the light coming directly from
any light sources is reflected via diffuse reflection. For example

finish { diffuse 0.7 }

means that 70% of the light seen comes from direct illumination from light sources. The default value is
diffuse 0.6.

5.3 Finish 181

Brilliance

The amount of direct light that diffuses from an object depends upon the angle at which it hits the surface.
When light hits at a shallow angle it illuminates less. When it is directly above a surface it illuminates
more. Thebrilliance keyword can be used infanish statement to vary the way light falls off depending

upon the angle of incidence. This controls the tightness of the basic diffuse illumination on objects and
slightly adjusts the appearance of surface shininess. Objects may appear more metallic by increasing their
brilliance. The default value is 1.0. Higher values from 5.0 to about 10.0 cause the light to fall off less at
medium to low angles. There are no limits to the brilliance value. Experiment to see what works best for a
particular situation. This is best used in concert with highlighting.

Crand Graininess

Very rough surfaces, such as concrete or sand, exhibit a dark graininess in their apparent color. This is
caused by the shadows of the pits or holes in the surfacecrHae keyword can be added to @inish to

cause a minor random darkening in the diffuse reflection of direct illumination. Typical values range from
crand 0.01 tocrand 0.5 or higher. The default value is 0. For example:

finish { crand 0.05 }

This feature is carried over from the earliest versions of POV-Ray and is considered obsolete. This is
because the grain or noise introduced by this feature is applied on a pixel-by-pixel basis. This means that it
will look the same on far away objects as on close objects. The effect also looks different depending upon
the resolution you are using for the rendering.

Note: this should not be used when rendering animations. This is the one of a few truly random features in
POV-Ray and will produce an annoying flicker of flying pixels on any textures animated withavalue.
For these reasons it is not a very accurate way to model the rough surface effect.

5.3.3 Highlights

Highlights are the bright spots that appear when a light source reflects off of a smooth object. They are a
blend of specular reflection and diffuse reflection. They are specular-like because they depend upon viewing
angle and illumination angle. However they are diffuse-like because some scattering occurs. In order to
exactly model a highlight you would have to calculate specular reflection off of thousands of microscopic
bumps called micro facets. The more that micro facets are facing the viewer the shinier the object appears
and the tighter the highlights become. POV-Ray uses two different models to simulate highlights without
calculating micro facets. They are tepecularandPhongmodels.

Note: specular and Phong highlights aret mutually exclusive. It is possible to specify both and they will
both take effect. Normally, however, you will only specify one or the other.

Phong Highlights
The phong keyword in thefinish statement controls the amount of Phong highlighting on the object. It
causes bright shiny spots on the object that are the color of the light source being reflected.

The Phong method measures the average of the facets facing in the mirror direction from the light sources
to the viewer.

Phong’s value is typically from 0.0 to 1.0, where 1.0 causes complete saturation to the light source’s color
at the brightest area (center) of the highlight. The defaultg 0.0 gives no highlight.

182 Textures

The size of the highlight spot is defined by thteng_size value. The larger the phong size the tighter, or
smaller, the highlight and the shinier the appearance. The smaller the phong size the looser, or larger, the
highlight and the less glossy the appearance.

Typical values range from 1.0 (very dull) to 250 (highly polished) though any values may be used. Default
phong size is 40 (plastic) ifohong_size is not specified. For example:

finish { phong 0.9 phong_size 60 }

If phong is not specifiedhong_size has no effect.

Specular Highlight

Thespecular keyword in afinish statement produces a highlight which is very similar to Phong highlight-
ing but it uses slightly different model. The specular model more closely resembles real specular reflection
and provides a more credible spreading of the highlights occurring near the object horizons.

The specular value is typically from 0.0 to 1.0, where 1.0 causes complete saturation to the light source’s
color at the brightest area (center) of the highlight. The defaugltular 0.0 gives no highlight.

The size of the spot is defined by the value given th&ighness keyword. Typical values range from 1.0
(very rough - large highlight) to 0.0005 (very smooth - small highlight). The default value, if roughness is
not specified, is 0.05 (plastic).

It is possible to specify wrong values for roughness that will generate an error when you try to render the
file. Do not use 0 and if you get errors check to see if you are using a very, very small roughness value that
may be causing the error. For example:

finish { specular 0.9 roughness 0.02 }
If specular is not specifiedoughness has no effect.

Note: that when light is reflected by a surface such as a mirror, it is calpedular reflectiorhowever
such reflection is not controlled by theecular keyword. The reflection keyword controls mirror-like
specular reflection.

Metallic Highlight Modifier

The keywordretallic may be used withbhong Or specular highlights. This keyword indicates that the
color of the highlights will be calculated by an empirical function that models the reflectivity of metallic
surfaces.

Normally highlights are the color of the light source. Adding this keyword filters the highlight so that white
light reflected from a metallic surface takes the color specified by the pigment

Themetallic keyword may optionally be follow by a numeric value to specify the influence the amount of
the effect. If no keyword is specified, the default value is zero. If the keyword is specified without a value,
the default value is one. For example:

finish {
phong 0.9
phong_size 60
metallic

}

If phong Or specular keywords are not specified thestallic has no effect.

5.3 Finish 183

5.3.4 Specular Reflection

When light does not diffuse and doesreflect at the same angle as it hits an object, it is cadleecular
reflection Such mirror-like reflection is controlled by thefiection {...} block in afinish statement.

Syntax:

finish {

reflection {
[COLOR_REFLECTION_MIN,] COLOR_REFLECTION_MAX
[fresnel BOOL_ON_OFF]
[falloff FLOAT_FALLOFF]
[exponent FLOAT_EXPONENT]
[metallic FLOAT_METALLIC]

}

}

[interior { ior IOR }]

The simplest use would be a perfect mirror:
finish { reflection {1.0} ambient 0 diffuse 0 }

This gives the object a mirrored finish. It will reflect all other elements in the scene. Usually a single float
value is specified after the keyword even though the syntax calls for a color. For example a float value of
0.3 gets promoted to the full color vectai0.3,0.3,0.3,0.3,0:3 which is acceptable because only the red,
green and blue parts are used.

The value can range from 0.0 to 1.0. By default there is no reflection.
Note:
» Adding reflection to a texture makes it take longer to render because an additional ray must be traced.

» The reflected light may be tinted by specifying a color rather than a float.
For example:
finish { reflection rgb <1,0,0> }
gives a red mirror that only reflects red light.

« Although such reflection is called specular it is not controlled bystheular keyword. That key-
word controls a specular highlight.

» The old syntax for simple reflection:rf1lection corLor” and "reflectionexponent Float” without
braces is still supported for backward compatibility.

falloff sets a falloff exponent in the variable reflection. This is the exponent telling how fast the reflectivity
will fall off, i.e. linear, squared, cubed, etc.

The metallic keyword is similar in function to the "metallic” keyword used for highlights in finishes:

it simulates the reflective properties of metallic surfaces, where reflected light takes on the colour of the
surface. Whemetallic is used, the "reflection” color is multiplied by the pigment color at each point.
You can specify an optional float value, which is the amount of influencedthe 11 c keyword has on the
reflected color. metallic uses the Fresnel equation so that the color of the light is reflected at glancing
angles, and the color of the metal is reflected for angles close to the surface’s normal.

exponent

POV-Ray uses a limited light model that cannot distinguish between objects which are simply brightly
colored and objects which are extremely bright. A white piece of paper, a light bulb, the sun, and a
supernova, all would be modeled ag<1,1,1> and slightly off-white objects would be only slightly
darker. It is especially difficult to model partially reflective surfaces in a realistic way. Middle and lower
brightness objects typically look too bright when reflected. If you reducedhe:ction value, it tends to

184 Textures

darken the bright objects too much. Therefore the optienalnent keyword has been added. It produces
non-linear reflection intensities. The default value of 1.0 produces a linear curve. Lower values darken
middle and low intensities and keeps high intensity reflections bright. This is a somewhat experimental
feature designed for artistic use. It does not directly correspond to any real world reflective properties.

Variable reflection

Many materials, such as water, ceramic glaze, and linoleum are more reflective when viewed at shallow
angles. This can be simulated by also specifying a minimum reflection irethection {...} statement.

For example:

finish { reflection { 0.03, 1 }}

uses the same function as the standard reflection, but the first parameter sets the minimum reflectivity. It
could be a color vector or a float (which is automatically promoted to a gray vector). This minimum value
is how reflective the surface will be when viewed from a direction parallel to its normal.

The second parameter sets the maximum reflectivity, which could also be a color vector or a float (which
is automatically promoted to a gray vector). This maximum parameter is how reflective the surface will be
when viewed at a 90-degree angle to its normal.

Note: You can make maximum reflection less than minimum reflection if you want, although the result is
something that does not occur in nature.

When adding theresnel keyword, the Fresnel reflectivity function is used instead of standard reflection.

It calculates reflectivity using the finish’s IOR. So with a fresnel reflectigre aninterior { ior I0R }
statement is required, even with opaque pigments. Remember that in real life many opaque objects have
a thin layer of transparent glaze on their surface, and it is the glaze (which -does- have an IOR) that is
reflective.

5.3.5 Conserve Energy for Reflection

One of the features in POV-Ray is variable reflection, including realistic Fresnel reflection (see section
"Variable Reflection). Unfortunately, when this is coupled with constant transmittance, the texture can
look unrealistic. This unrealism is caused by the scene breaking the law of conservation of energy. As the
amount of light reflected changes, the amount of light transmitted should also change (in a give-and-take
relationship).

This can be achieved by adding theserve_energy keyword to the object'sinish {}.
When conserveenergy is enabled, POV-Ray will multiply the amount filtered and transmitted by what is
left over from reflection (for example, if reflection is 80%, filter/transmit will be multiplied by 20%).

5.3.6 Iridescence

Iridescenceor Newton’s thin film interference, simulates the effect of light on surfaces with a microscopic
transparent film overlay. The effect is like an oil slick on a puddle of water or the rainbow hues of a soap
bubble. This effect is controlled by therid statement specified insideranish statement.

This parameter modifies the surface color as a function of the angle between the light source and the surface.
Since the effect works in conjunction with the position and angle of the light sources to the surface it does
not behave in the same ways as a procedural pigment pattern.

The syntax is:

IRID:

irid { Irid_Amount [IRID_ITEMS...] }
IRID_ITEMS:

thickness Amount | turbulence Amount

5.4 Halo 185

The requiredrid _Amount parameter is the contribution of the iridescence effect to the overall surface
color. As a rule of thumb keep to around 0.25 (25% contribution) or less, but experiment. If the surface is
coming out too white, try lowering theii ffuse and possibly thembient values of the surface.

The thickness keyword represents the film’s thickness. This is an awkward parameter to set, since the
thickness value has no relationship to the object’s scale. Changing it affects the staisyenessf the

effect. A very thin film will have a high frequency of color changes while a thick film will have large areas
of color. The default value is zero.

The thickness of the film can be varied with therbulence keyword. You can only specify the amount of
turbulence with iridescence. The octaves, lambda, and omega values are internally set and are not adjustable
by the user at this time. This parameter varies only a single value: the thickness. Therefore the value must
be a single float value. It cannot be a vector as in other uses efithelence keyword.

In addition, perturbing the object’s surface normal through the use of bump patterns will affect iridescence.

For the curious, thin film interference occurs because, when the ray hits the surface of the film, part of the
light is reflected from that surface, while a portion is transmitted into the film. Jiltisurfaceay travels
through the film and eventually reflects off the opaque substrate. The light emerges from the film slightly
out of phase with the ray that was reflected from the surface.

This phase shift creates interference, which varies with the wavelength of the component colors, result-
ing in some wavelengths being reinforced, while others are cancelled out. When these components are
recombined, the result is iridescence. See also the global settingVhietlength”.

The concept used for this feature came from the bBakdamentals of Three-Dimensional Computer
Graphicsby Alan Watt (Addison-Wesley).

5.4 Halo

Earlier versions of POV-Ray used a feature calleth to simulate fine particles such as smoke, steam, fog,
or flames. Thehalo statement was part of thexture statement. This feature has been discontinued and
replaced by thenterior andmedia Statements which are object modifiers outside theture statement.

See "Why are Interior and Media Necessary?” for a detailed explanation on the reasons for the change. See
"Media” for details onmedia.

5.5 Patterned Textures

Patterned textures are complex textures made up of multiple textures. The component textures may be plain
textures or may be made up of patterned textures. A plain texture has just one pigment, normal and finish
statement. Even a pigment with a pigment map is still one pigment and thus considered a plain texture as
are normals with normal map statements.

Patterned textures use eithet&ture map statement to specify a blend or pattern of textures or they use
block textures such asiecker with a texture list or a bitmap similar to an image map calledaderial map
specified with anaterial map Statement.

The syntax is...

PATTERNED_TEXTURE:
texture
{
[PATTERNED_TEXTURE_ID]
[TRANSFORMATIONS...]

186 Textures

b

texture
{
PATTERN_TYPE
[TEXTURE_PATTERN_MODIFIERS...]
bl

texture

{
tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS. ..]

bl

texture

{

material_map

{
BITMAP_TYPE "bitmap.ext"
[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]

}

TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map { TEXTURE_MAP_BODY }

There are restrictions on using patterned textures. A patterned texture may not be used as a default texture
(see section "The #default Directive”). A patterned texture cannot be used as a layer in a layered texture
however you may use layered textures as any of the textures contained within a patterned texture.

5.5.1 Texture Maps

In addition to specifying blended color with a color map or a pigment map you may create a blend of
textures usingexture map. The syntax for a texture map is identical to the pigment map except you specify
a texture in each map entry.

The syntax fokexture map is as follows:

TEXTURE_MAP :
texture_map { TEXTURE_MAP_BODY }
TEXTURE_MAP_BODY:
TEXTURE_MAP_IDENTIFIER | TEXTURE_MAP_ENTRY...
TEXTURE_MAP_ENTRY:
[Value TEXTURE_BODY]

WhereValue is a float value between 0.0 and 1.0 inclusive and 84&EKTUREBODY is anything which
can be inside aexture{. ..} statement. Theexture keyword and{} braces need not be specified.

Note: the [] brackets are part of the actudIEXTUREMAP_ENTRY They are not notational symbols
denoting optional parts. The brackets surround each entry in the texture map.

There may be from 2 to 256 entries in the map.
For example:

texture {
gradient x //this is the PATTERN_TYPE
texture_map {
[0.3 pigment{Red} finish{phong 1}]
[0.3 T_Woodll] //this is a texture identifier
[0.6 T_Woodll]
[0.9 pigment{DMFWood4} finish{Shiny}]

5.5 Patterned Textures 187

}

When thegradient x function returns values from 0.0 to 0.3 the red highlighted texture is used. From 0.3
to 0.6 the texture identifieriood11 is used. From 0.6 up to 0.9 a blend afwood11 and a shinywvriood4
is used. From 0.9 on up only the shiny wood is used.

Texture maps may be nested to any level of complexity you desire. The textures in a map may have color
maps or texture maps or any type of texture you want.

The blended area of a texture map works by fully calculating both contributing textures in their entirety
and then linearly interpolating the apparent colors. This means that reflection, refraction and lighting
calculations are done twice for every point. This is in contrast to using a pigment map and a normal map in
a plain texture, where the pigment is computed, then the normal, then reflection, refraction and lighting are
calculated once for that point.

Entire textures may also be used with the block patterns suckhasker, hexagon andbrick. For exam-
ple...

texture {
checker
texture { T_Woodl2 scale .8 }
texture {
pigment { White_Marble }
finish { Shiny }
scale .5

}
}

Note: that in the case of block patterns thexture wrapping is required around the texture information.
Also note that this syntax prohibits the use of a layered texture however you can work around this by
declaring a texture identifier for the layered texture and referencing the identifier.

A texture map is also used with theverage texture type. See "Average” for details.

You may declare and use texture map identifiers but the only way to declare a texture block pattern list is to
declare a texture identifier for the entire texture.

5.5.2 Tiles

Earlier versions of POV-Ray had a patterned texture calléitbs: texture It used thetiles andtile2
keywords to create a checkered pattern of textures.

TILES_TEXTURE:
texture
{
tiles TEXTURE tile2 TEXTURE
[TRANSFORMATIONS...]

}

Although it is still supported for backwards compatibility you should useesaker block texture pattern
described in section "Texture Maps” rather than tiles textures.

5.5.3 Material Maps

Thematerial map patterned texture extends the concept of image maps to apply to entire textures rather
than solid colors. A material map allows you to wrap a 2-D bit-mapped texture pattern around your 3-D

188 Textures

objects.

Instead of placing a solid color of the image on the shape like an image map, an entire texture is specified
based on the index or color of the image at that point. You must specify a list of textures to be used like a
texture paletteather than the usual color palette.

When used with mapped file types such as GIF, and some PNG and TGA images, the index of the pixel is
used as an index into the list of textures you supply. For unmapped file types such as some PNG and TGA
images the 8 bit value of the red component in the range 0-255 is used as an index.

If the index of a pixel is greater than the number of textures in your list then the index is taken modulo N
where N is the length of your list of textures.

Note: The material map Statement has nothing to do with thexterial statement. Awaterial map iS not
a way to create patternedterial. See "Material” for explanation of this unrelated, yet similarly named,
older feature.

Specifying a Material Map

The syntax for aaterial map iS:

MATERIAL_MAP:
texture

{

material_map
{
BITMAP_TYPE "bitmap.ext"
[BITMAP_MODS...] TEXTURE... [TRANSFORMATIONS...]
}
}
BITMAP_TYPE:
gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
BITMAP_MOD:
map_type Type | once | interpolate Type

After the requiredBITMAP_TYPE keyword is a string expression containing the name of a bitmapped
material file of the specified type. Several optional modifiers may follow the file specification. The modifiers
are described below.

Note: earlier versions of POV-Ray allowed some modifiers beforeBR@MAP_TYPEbut that syntax is
being phased out in favor of the syntax described here.

Note: sys format is a system-specific format such as BMP for Windows or Pict for Macintosh.

Filenames specified in thexiterial map statements will be searched for in the home (current) directory
first and, if not found, will then be searched for in directories specified by angr Library_Path options

active. This would facilitate keeping all your material maps files in a separate subdirectory and giving a
Library Path option to specify where your library of material maps are. See "Library Paths” for details.

By default, the material is mapped onto the x-y-plane. The materipfagectedonto the object as though

there were a slide projector somewhere in the -z-direction. The material exactly fills the square area from (X,
y) coordinates (0,0) to (1,1) regardless of the material’s original size in pixels. If you would like to change
this default you may translate, rotate or scale the texture to map it onto the object’s surface as desired.

The file name is optionally followed by one or moBATMAP_-MODIFIERS There are no modifiers which
are unigue to amaterial_map. It only uses the generic bitmap modifiersp_type, once and interpolate
described in "Bitmap Modifiers”.

5.5 Patterned Textures 189

Although interpolate islegal in material maps, the color index is interpolated before the texture is chosen.
It does not interpolate the final color as you might hope it would. In general, interpolation of material maps
serves no useful purpose but this may be fixed in future versions.

Next is one or moreexture Statements. Each texture in the list corresponds to an index in the bitmap file.
For example:

texture {
material_map {
png "povmap.png"
texture { //used with index 0
pigment {color red 0.3 green 0.1 blue 1}
normal {ripples 0.85 frequency 10 }
finish {specular 0.75}
scale 5
}
texture { //used with index 1
pigment {White}
finish {
ambient 0 diffuse 0
reflection 0.9 specular 0.75

}
// used with index 2
texture {pigment{NeonPink} finish{Luminous}}

texture { //used with index 3
pigment {

gradient y

color_map {
[0.00 rgb <1, 0, 0>]
[0.33 rgb <0, 0, 1>]
[0.66 rgb <0, 1, 0>]
[1.00 rgb <1, 0, 0>]

}
finish{specular 0.75}
scale 8

}

scale 30

translate <-15, -15, 0>
}

After amaterial_map Statement but still inside the texture statement you may apply any legal texture modi-
fiers.

Note: no other pigment, normal, or finish statements may be added to the texture outside the material map.
The following is illegal:

texture {

material_map {
gif "matmap.gif"
texture {T1}
texture {T2}
texture {T3}

}

finish {phong 1.0}

190 Textures

The finish must be individually added to each texture. Earlier versions of POV-Ray allowed such specifi-
cations but they were ignored. The above restrictions on syntax were necessary for various bug fixes. This
means some POV-Ray 1.0 scenes using material maps many need minor modifications that cannot be done
automatically with the version compatibility mode.

If particular index values are not used in an image then it may be necessary to supply dummy textures. It
may be necessary to use a paint program or other utility to examine the map file’s palette to determine how
to arrange the texture list.

The textures within a material map texture may be layered but material map textures do not work as part of
a layered texture. To use a layered texture inside a material map you must declare it as a texture identifier
and invoke it in the texture list.

5.6 Layered Textures

Itis possible to create a variety of special effects using layered textures. A layered texture consists of several
textures that are partially transparent and are laid one on top of the other to create a more complex texture.
The different texture layers show through the transparent portions to create the appearance of one texture
that is a combination of several textures.

You create layered textures by listing two or more textures one right after the other. The last texture listed
will be the top layer, the first one listed will be the bottom layer. All textures in a layered texture other than
the bottom layer should have some transparency. For example:

object {
My_Object
texture {T1} // the bottom layer
texture {T2} // a semi-transparent layer
texture {T3} // the top semi-transparent layer

}
In this example T2 shows only where T3 is transparent and T1 shows only where T2 and T3 are transparent.

The color of underlying layers is filtered by upper layers but the results do not look exactly like a series
of transparent surfaces. If you had a stack of surfaces with the textures applied to each, the light would
be filtered twice: once on the way in as the lower layers are illuminated by filtered light and once on
the way out. Layered textures do not filter the illumination on the way in. Other parts of the lighting
calculations work differently as well. The results look great and allow for fantastic looking textures but
they are simply different from multiple surfaces. Seeones. inc in the standard include files directory for
some magnificent layered textures.

Note: in versions predating POV-Ray 3.5,1ter used to work the same asansnit in layered textures. It
has been changed to work as filter should. This can change the appearance of "pre 3.5” textures a lot. The
#version directive can be used to get the "pre 3.5” behaviour.

Note: layered textures must use thexture wrapped around any pigment, normal or finish statements. Do
not use multiple pigment, normal or finish statements without putting them inside the texture statement.

Layered textures may be declared. For example

#declare Layered_Examp =
texture {T1}
texture {T2}
texture {T3}

may be invoked as follows:

5.7 UV Mapping 191

object {
My_Object
texture {
Layer_Examp
// Any pigment, normal or finish here
// modifies the bottom layer only.
}
}

Note: No macros are allowed in layered textures. The problem is that if a macro would contain a declare
the parser could no longer guess that two or more texture identifiers are supposed to belong to the layered
texture and not some other declare.

If you wish to use a layered texture in a block pattern, suchcascker, hexagon, Or brick, Or in a

material map, you must declare it first and then reference it inside a single texture statement. A patterned
texture cannot be used as a layer in a layered texture however you may use layered textures as any of the
textures contained within a patterned texture.

5.7 UV Mapping

All textures in POV-Ray are defined in 3 dimensions. Even planar image mapping is done this way. How-
ever, it is sometimes more desirable to have the texture defined for the surface of the object. This is es-
pecially true for bicubigpatch objects and mesh objects, that can be stretched and compressed. When the
object is stretched or compressed, it would be nice for the texture iulee to the object’s surface and
follow the object’s deformations.

When uvmapping is used, then that object’s texture will be mapped to it using surface coordinates (u and
V) instead of spatial coordinates (x, y, and z). This is done by taking a slice of the object’s regular 3D texture
from the XY plane (Z=0) and wrapping it around the surface of the object, following the object’s surface
coordinates.

Note: some textures should be rotated to fit the slice in the XY plane.

Syntax:

texture {

uv_mapping pigment {PIGMENT_BODY} | pigment{uv_mapping PIGMENT_BODY}
uv_mapping normal {NORMAL_BODY } | normal {uv_mapping NORMAL_BODY }

uv_mapping texture{TEXTURE_BODY} | texture{uv_mapping TEXTURE_BODY)
}

5.7.1 Supported Objects

Surface mapping is currently defined for the following objects:

* bicubic_patch : UV coordinates are based on the patch’s parametric coordinates. They stretch with
the control points. The default range is (0..1) and can be changed.

» mesh, mesh2 UV coordinates are defined for each vertex and interpolated between.

« lathe, sor: modified spherical mapping... the u coordinate (0..1) wraps around the y axis, while the
v coordinate is linked to the object’s control points (also ranging 0..1).
Surface of Revolution also has special disc mapping on the end caps if the object is not 'open’.

192 Textures

* sphere: boring spherical mapping.

» box: the image isvrappedaround the box, as shown below.

Figure 5.1: UV Boxmap

» parametric : In this case the map is not taken from a "fixed” set of coordinates but the map is taken
from the area defined by the boundaries of the uv-space, in which the parametric surface has to be
calculated.

* torus : The map is taken from the ared,0><1,1> where the u-coordinate is wrapped around the
major radius and the the v-coordinate is wrapped around the minor radius.

5.7.2 UV Vectors

With the keyworduv_vectors, the UV coordinates of the corners can be controlled for bicubic patches and
standard triangle mesh.

For bicubic patches the UV coordinates can be specified for each of the four corners of the patch. This goes
right before the control points.
The syntax is:

uv_vectors <cornerl>, <corner2>,<corner3>, <cornerd>
with default
uv_vectors <0,0>,<1,0>,<1,1>,<0,1>

For standard triangle meshes (not mesh2) you can specify the UV coordinates for each of the three vertices
uv_vectors <uvl>,<uv2>,<uv3> inside each mesh triangle. This goes right after the coordinates (or
coordinates & normals with smooth triangles) and right before the texture.

Example:

mesh {
triangle {
<0,0,0>», <0.5,0,0>, <0.5,0.5,0>
uv_vectors <0,0>, <1,0>, <1,1>
}
triangle {
<0,0,0>», <0.5,0.5,0>, <0,0.5,0>
uv_vectors <0,0>, <1,1>, <0,1>
}

texture {

5.8 Triangle Texture Interpolation 193

uv_mapping pigment {
image_map {
sys "SomeImage"
map_type 0
interpolate 0

}

5.8 Triangle Texture Interpolation

This feature is utilized in a number of visualization approaches: triangles with individual textures for each
vertex, which are interpolated during rendering.

Syntax:

MESH_TRIANGLE:

triangle {
<Corner_1>,
<Corner_2>,
<Corner_3>
[MESH_TEXTURE]

} \

smooth_triangle {
<Corner_1>, <Normal_1>,
<Corner_2>, <Normal_2>,
<Corner_3>, <Normal_ 3>
[MESH_TEXTURE]

MESH_TEXTURE:
texture { TEXTURE_IDENTIFIER } |
texture_list {
TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER

}

To specify three vertex textures for the triangle, simply tiseure_1ist instead of texture.

5.9 Interior Texture

Syntax:

object {
texture { TEXTURE_ITEMS... }
interior_texture { TEXTURE_ITEMS...}

}

All surfaces have an exterior and interior surface. Therior_texture Simply allows to specify a separate
texture for the interior surface of the object. For objects with no well defined inside/outside (bpatbit

triangle, ...) theinterior_texture is applied to the backside of the surface. Interior surface textures use
exactly the same syntax and should work in exactly the same way as regular surface textures, except that
they use the keyworthterior_texture instead ofexture.

194 Textures

Note: Do not confusenterior_texture {} with interior {}: the first one specifies surface properties, the
second one specifies volume properties.

5.10 Cutaway Textures

Syntax:

difference | intersection {
OBJECT_1_WITH TEXTURES
OBJECT_2_WITH_NO_TEXTURE
cutaway_textures

}

When using a CSG difference or intersectiorctd away parts of an object, it is sometimes desirable to
allow the object to retain its original texture. Generally, however, the texture of the surface that was used to
do the cutting will be displayed.

Also, if the cutting object was not given a texture by the user, the default texture is assigned to it.

By using thecutaway_textures keyword in a CSG difference or intersection, you specify that you do not
want the default texture on the intersected surface, but instead, the textures of the parent objects in the CSG
should be used.

POV-Ray will determine which texture(s) to use by doing insidedness tests on the objects in the difference
or intersection. If the intersection point is inside an object, that object’s texture will be used (and evaluated
at the interior point).

If the parent object is a CSG of objects with different textures, then the textures on overlapping parts will
be averaged together.

5.11 Patterns

POV-Ray uses a method calléttee-dimensional solid texturing define the color, bumpiness and other
properties of an object. You specify the way that the texture varies over a surface by specifyatigan
Patterns are used in pigments, normals and texture maps as well as media density.

All patterns in POV-Ray are three dimensional. For every point in space, each pattern has a unique value.
Patterns do not wrap around a surface like putting wallpaper on an object. The patterns exist in 3d and the
objects are carved from them like carving an object from a solid block of wood or stone.

Consider a block of wood. It contains light and dark bands that are concentric cylinders being the growth
rings of the wood. On the end of the block you see these concentric circles. Along its length you see lines
that are the veins. However the pattern exists throughout the entire block. If you cut or carve the wood it
reveals the pattern inside. Similarly an onion consists of concentric spheres that are visible only when you
slice it. Marble stone consists of wavy layers of colored sediments that harden into rock.

These solid patterns can be simulated using mathematical functions. Other random patterns such as granite
or bumps and dents can be generated using a random number system and a noise function.

In each case, the x, y, z coordinate of a point on a surface is used to compute some mathematical function
that returns a float value. When used with color maps or pigment maps, that value looks up the color of

the pigment to be used. In normal statements the pattern function result modifies or perturbs the surface
normal vector to give a bumpy appearance. Used with a texture map, the function result determines which
combinations of entire textures to be used. When used with media density it specifies the density of the

particles or gasses.

5.11 Patterns 195

The following sections describe each pattern. See the sections "Pigment”, "Normal” "Patterned Textures”
and "Density” for more details on how to use patterns. Unless mentioned otherwise, all patterns use the
ramp_wave Wave type by default but may use any wave type and may be usedavith map, pigment map,
normal_map, slope_map, texture_map,density, anddensity_map.

Note: Some patterns have a built in default caloap that does not result in a grey-scale pattern. This
may lead to unexpected results when one of these patterns is used without a user specifisdgolor
example in functions or media.

These patterns are:

® agate

® bozo

* brick

® checker

* mandel

® hexagon

® marble

® radial

® wood

5.11.1 Agate

Theagate pattern is a banded pattern similar to marble but it uses a specialized built-in turbulence function
that is different from the traditional turbulence. The traditional turbulence can be used as well but it is
generally not necessary because agate is already very turbulent. You may control the amount of the built-in
turbulence by adding the optionalgate_turb keyword followed by a float value. For example:

pigment {
agate
agate_turb 0.5
color_map {MyMap}
}

The agate pattern has a default colanap built in that results in a brown and white pattern with smooth
transitions.

Agate as used in a normal:

normal {
agate [Bump_Size]
[MODIFIERS...]

5.11.2 Average

Technicallyaverage is not a pattern type but it is listed here because the syntax is similar to other patterns.
Typically a pattern type specifies how colors or normals are chosen fremrant map, texture map,
density.map, OfF normal map , howeveraverage tells POV-Ray to average together all of the patterns you
specify. Average was originally designed to be used in a normal statement withaa map as a method

of specifying more than one normal pattern on the same surface. However average may be used in a

196 Textures

pigment statement with @igment_map Or in a texture statement with @aexture_map or media density with
density_map to average colors too.

When used with pigments, the syntax is:

AVERAGED_PIGMENT:
pigment
{
pigment_map
{
PIGMENT_MAP_ENTRY...
}
}
PIGMENT_MAP_ENTRY:
[[Weight] PIGMENT_BODY]

WhereWweight is an optional float value that defaults to 1.0 if not specified. This weight value is the relative
weight applied to that pigment. EaeHGMENTBODY is anything which can be insidepagment{...}
statement. Theigment keyword and{} braces need not be specified.

Note: that the[] brackets are part of the actuBIGMENT.MAP_ENTRY They are not notational symbols
denoting optional parts. The brackets surround each entry inithent map.

There may be from 2 to 256 entries in the map.
For example

pigment {
average
pigment_map {
[1.0 Pigment_1]
[2.0 Pigment_2]
[0.5 Pigment_3]
}
}

All three pigments are evaluated. The weight values are multiplied by the resulting color. It is then divided
by the total of the weights which, in this example is 3.5. When used withure map Or density map it
works the same way.

When used with anormal map in @ normal statement, multiple copies of the original surface normal are
created and are perturbed by each pattern. The perturbed normals are then weighted, added and normalized.

See the sections "Pigment Maps and Pigment Lists”, "Normal Maps and Normal Lists”, "Texture Maps”,
and "Density Maps and Density Lists” for more information.

5.11.3 Boxed

Theboxed pattern creates a 2x2x2 unit cube centered at the origin. It is computeddiye =1.0- min(1,
max(abs(X), abs(Y), abs(Z)f)starts at 1.0 at the origin and decreases to a minimum value of 0.0 as it
approaches any plane which is one unit from the origin. It remains at 0.0 for all areas beyond that distance.
This pattern was originally created for use withi o or media but it may be used anywhere any pattern may

be used.

5.11.4 Bozo

Thebozo pattern is a very smooth, random noise function that is traditionally used with some turbulence to
create clouds. Thespotted pattern is identical t@ozo but in early versions of POV-Ray spotted did not

5.11 Patterns 197

allow turbulence to be added. Turbulence can now be added to any pattern so these are redundant but both
are retained for backwards compatibility. Thews pattern is also identical taozo when used anywhere

except in a normal Statement. When used as a normal pattetfips uses a slightly different method to
perturb the normal with a similar noise function.

Thebozo noise function has the following properties:

1. Itis defined over 3D space i.e., it takes x, y, and z and returns the noise value there.

2. If two points are far apart, the noise values at those points are relatively random.

3. If two points are close together, the noise values at those points are close to each other.

You can visualize this as having a large room and a thermometer that ranges from 0.0 to 1.0. Each point
in the room has a temperature. Points that are far apart have relatively random temperatures. Points that
are close together have close temperatures. The temperature changes smoothly but randomly as we move
through the room.

Now let's place an object into this room along with an artist. The artist measures the temperature at each
point on the object and paints that point a different color depending on the temperature. What do we get?
A POV-Ray bozo texture!

Thebozo pattern has a default colonap built in that results in a green, blue, red and white pattern with
sharp transitions.

Note: The appearance of the bozo pattern depends on the geisgrator used. The default type is 2. This
may be changed using theise_generator keyword (See section "Pattern Modifiers / Naigenerator”).

5.11.5 Brick

Thebrick pattern generates a pattern of bricks. The bricks are offset by half a brick length on every other
row in the x- and z-directions. A layer of mortar surrounds each brick. The syntax is given by

pigment {
brick COLOR_1, COLOR_2
[brick_size <Size>] [mortar Size]

}

whereCOLORL1 is the color of the mortar anBOLORZ2 is the color of the brick itself. If no colors are
specified a default deep red and dark gray are used. The default size of the brick and mortar together is
<8, 3, 4.5> units. The default thickness of the mortar is 0.5 units. These values may be changed using the
optional brick_size andmortar pattern modifiers. You may also use pigment statements in place of the
colors. For example:

pigment {
brick pigment{Jade}, pigment{Black_Marble}
}

This example uses normals:
normal { brick 0.5 }
The float value is an optional bump size. You may also use full normal statements. For example:

normal {
brick normal{bumps 0.2}, normal{granite 0.3}

}

When used with textures, the syntax is

198 Textures

texture {
brick texture{T_Gold_1A}, texture{Stonel2}
}

This is a block pattern which cannot use wave typeslor map, Or slope_map modifiers.

Thebrick pattern has a default colonap built in that results in red bricks and grey mortar.

5.11.6 Bumps

The bumps pattern was originally designed only to be used as a normal pattern. It uses a very smooth,
random noise function that creates the look of rolling hills when scaled large or a bumpy orange peel when
scaled small. Usually the bumps are about 1 unit apart.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means
that the pattern cannot be used witldrmal map, slope_map Or wave type modifiers in anormal Statement.

When used as a pigment pattern or texture pattermythes pattern is identical teozo oOr spotted and is
similar to normal bumps but is not identical as are most normals when compared to pigments.

Note: The appearance of the bumps pattern depends on thegeigzator used. The default type is 2. This
may be changed using theise_generator keyword (See section "Pattern Modifiers / Naigenerator”).

5.11.7 Cells

Thecells pattern fills 3d space with unit cubes. Each cube gets a random value from O to 1.

cells is not very suitable as a normal as it has no smooth transitions of one grey value to another.

5.11.8 Checker

The checker pattern produces a checkered pattern consisting of alternating squares of two colors. The
syntax is:

pigment { checker [COLOR_1 [, COLOR_2]] [PATTERN_MODIFIERS...] }
If no colors are specified then default blue and green colors are used.

The checker pattern is actually a series of cubes that are one unit in size. Imagine a bunch of 1 inch cubes
made from two different colors of modeling clay. Now imagine arranging the cubes in an alternating check
pattern and stacking them in layer after layer so that the colors still alternate in every direction. Eventually
you would have a larger cube. The pattern of checks on each side is what the POV-Ray checker pattern
produces when applied to a box object. Finally imagine cutting away at the cube until it is carved into a
smooth sphere or any other shape. This is what the checker pattern would look like on an object of any
kind.

You may also use pigment statements in place of the colors. For example:
pigment { checker pigment{Jade}, pigment{Black_Marble} }

This example uses normals:
normal { checker 0.5 }

The float value is an optional bump size. You may also use full normal statements. For example:

5.11 Patterns 199

normal {
checker normal{gradient x scale .2},
normal{gradient y scale .2}

}
When used with textures, the syntax is

texture { checker texture{T_Wood_3A},texture{Stonel2} }
Thechecker pattern has a default colanap built in that results in blue and green tiles.

This use of checker as a texture pattern replaces the special tiles texture in previous versions of POV-Ray.
You may still use tiles but it may be phased out in future versions so checker textures are best.

This is a block pattern which cannot use wave types]or_map, Of slope_map modifiers.

5.11.9 Crackle Patterns

Thecrackle pattern is a set of random tiled multifaceted cells.
There is a choice between different types:

Standard Crackle

Mathematically, the set crackle(p)=0 is a 3D Voronoi diagram of a field of semi random points and
crackle(p)< 0 is the distance from the set along the shortest path (a Voronoi diagram is the locus of points
equidistant from their two nearest neighbors from a set of disjoint points, like the membranes in suds are to
the centers of the bubbles).

With a large scale and no turbulence it makes a pretty good stone wall or floor.

With a small scale and no turbulence it makes a pretty good crackle ceramic glaze.

Using high turbulence it makes a good marble that avoids the problem of apparent parallel layers in tradi-
tional marble.

Form

pigment {
crackle form <FORM_VECTOR>
[PIGMENT_ITEMS ...]

}

normal {
crackle [Bump_Size]
form <FORM_VECTOR>
[NORMAL_ITEMS ...]

}

Form determines the linear combination of distances used to create the pattern. Form is a vector.

The first component determines the multiple of the distance to the closest point to be used in determining
the value of the pattern at a particular point.

The second component determines the coefficient applied to the second-closest distance.

The third component corresponds to the third-closest distance.

The standard form is<-1,1,0> (also the default), corresponding to the difference in the distances to the
closest and second-closest points in the cell array. Another commonly-used foin®i§>, corresponding

to the distance to the closest point, which produces a pattern that looks roughly like a random collection of
intersecting spheres or cells.

Other forms can create very interesting effects, but it is best to keep the sum of the coefficients low.

If the final computed value is too low or too high, the resultant pigment will be saturated with the color at
the low or high end of theolor_map. In this case, try multiplying the form vector by a constant.

Metric

200 Textures

pigment {
crackle metric METRIC_VALUE
[PIGMENT_ITEMS ...]

}

normal {
crackle [Bump_Size]
metric METRIC_VALUE
[NORMAL_ITEMS ...]

Changing the metric changes the function used to determine which cell center is closer, for purposes of
determining which cell a particular point falls in. The standard Euclidean distance function has a metric of
2. Changing the metric value changes the boundaries of the cells. A metric value of 3, for example, causes
the boundaries to curve, while a very large metric constrains the boundaries to a very small set of possible
orientations.

The default for metric is 2, as used by the standard crackle texture.

Metrics other than 1 or 2 can lead to substantially longer render times, as the method used to calculate such
metrics is not as efficient.

Offset

pigment {
crackle offset OFFSET_VALUE
[PIGMENT_ITEMS ...]

}

normal {
crackle [Bump_Size]
offset OFFSET_VALUE
[NORMAL_ITEMS ...]

The offset is used to displace the pattern from the standard xyz space along a fourth dimension.

It can be used to round off the "pointy” parts of a cellular normal texture or procedural heightfield by
keeping the distances from becoming zero.

It can also be used to move the calculated values into a specific range if the result is saturated at one end of
the colormap.

The default offset is zero.

Solid

pigment {
crackle solid
[PIGMENT_ITEMS ...]
}
normal {
crackle [Bump_Size]
solid
[NORMAL_ITEMS ...]

Causes the same value to be generated for every point within a specific cell. This has practical applications
in making easy stained-glass windows or flagstones. There is no provision for mortar, but mortar may be
created by layering or texture-mapping a standard crackle texture with a solid one.

The default for this parameter is off.

5.11 Patterns 201

5.11.10 Cylindrical

The cylindrical pattern creates a one unit radius cylinder along the Y axis. It is computedviajue

= 1.0-min(1, sqrt(X"2 + Z"2))it starts at 1.0 at the origin and decreases to a minimum value of 0.0 as it
approaches a distance of 1 unit from the Y axis. It remains at 0.0 for all areas beyond that distance. This
pattern was originally created for use withio or media but it may be used anywhere any pattern may be
used.

5.11.11 DensityFile

Thedensity_file pattern is a 3-D bitmap pattern that occupies a unit cube from locatip8,0> to <1,1,

1>. The data file is a raw binary file format created for POV-Ray calted format. The syntax provides

for the possibility of implementing other formats in the future. This pattern was originally created for use
with halo Ormedia but it may be used anywhere any pattern may be used. The syntax is:

pigment
{
density_file df3 "filename.df3"
[interpolate Type] [PIGMENT_MODIFIERS...]
}

where"filename.df3" is a file name of the data file.
As a normal pattern, the syntax is

normal

{
density_file df3 "filename.df3" [, Bump_Size]
[interpolate Type]
[NORMAL_MODIFIERS...]

}

The optional floaBumpSize should follow the file name and any other modifiers follow that.

The density pattern occupies the unit cube regardless of the dimensions in voxels. It remains at 0.0 for all
areas beyond the unit cube. The data in the range of 0 to 255, in case of 8 bit resolution, are scaled into a
float value in the range 0.0 to 1.0.

The interpolate keyword may be specified to add interpolation of the data. The default value of zero
specifies no interpolation. A value of one specifies tri-linear interpolation, a value of two specifies tri-cubic
interpolation

See the sample scenes for data fitelude\spiral.df3,and the scenes which use Htenes\textures\
patterns\densfile.pov, scenes\interior\media\galaxy.pov for examples.

df3 file format

Header:
The d£3 format consists of a 6 byte header of three 16-bit integers with high order byte first.
These three values give the x,y,z size of the data in pixels (or more appropriatelyvaaitdd
).

Data:

The header is followed by x*y*z unsigned integer bytes of data with a resolution of 8, 16 or 32
bit. The data are written with high order byte first (big-endian). The resolution of the data is
determined by the size of the df3-file. That is, if the file is twice (minus header, of course) as

202 Textures

long as an 8 bit file then it is assumed to contain 16 bit ints and if it is four times as long 32 bit
ints.

5.11.12 Dents

The dents pattern was originally designed only to be used as a normal pattern. It is especially interesting
when used with metallic textures. It gives impressions into the metal surface that look like dents have been
beaten into the surface with a hammer. Usually the dents are about 1 unit apart.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means
that the pattern cannot be used withrmal map, slope_map Or wave type modifiers in anormal statement.

When used as a pigment pattern or texture patterngdhes pattern is similar to normal dents but is not
identical as are most normals when compared to pigments.

5.11.13 Facets

normal {
facets [coords SCALE_VALUE | size FACTOR]
[NORMAL_ITEMS...]

}

The facets pattern is designed to be used as a normal, it is not suitable for use as a pigment: it will cause
an error.

There are two forms of the facets pattern. One is most suited for use with rounded surfaces, and one is most
suited for use with flat surfaces.

If coords is specified, the facets pattern creates facets with a size on the same order as the specified SCALE
VALUE. This version of facets is most suited for use with flat surfaces, but will also work with curved
surfaces. The boundaries of the facets coincide with the boundaries of the cells in the standard crackle
pattern. The coords version of this pattern may be quite similar to a crackle normal pattern with solid
specified.

If size is specified, the facets texture uses a different function that creates facets only on curved surfaces.
The FACTOR determines how many facets are created, with smaller values creating more facets, but it is
not directly related to any real-world measurement. The same factor will create the same pattern of facets
on a sphere of any size.

This pattern creates facets by snapping normal vectors to the closest vectors in a perturbed grid of normal
vectors. Because of this, if a surface has normal vectors that do not vary along one or more axes, there will
be no facet boundaries along those axes.

5.11.14 Fractal Patterns

Fractal patterns supported in POV-Ray:

» The Mandelbrot set with exponents up to 33.(The formula for thesgisi) = z(n) "p + ¢, where
p is the correspondent exponent.)

» The equivalent Julia sets.

» The magnetl and magnet2 fractals (which are derived from some magnetic renormalization transfor-
mations; see the fractint help for more details).
Both 'Mandelbrot’ and 'Julia’ versions of them are supported.

For the Mandelbrot and Julia sets, higher exponents will be slower for two reasons:

5.11 Patterns 203

1. Forthe exponents 2,3 and 4 an optimized algorithm is used. Higher exponents use a generic algorithm
for raising a complex number to an integer exponent, and this is a bit slower than an optimized version
for a certain exponent.

2. The higher the exponent, the slower it will be. This is because the amount of operations needed to
raise a complex number to an integer exponent is directly proportional to the exponent. This means
that exponent 10 will be (very) roughly twice as slow as exponent 5.

Syntax:

MANDELBROT :
mandel ITERATIONS [, BUMP_SIZE]
[exponent EXPONENT]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

JULIA:
julia COMPLEX, ITERATIONS [, BUMP_SIZE]
[exponent EXPONENT]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

MAGNET MANDEL:
magnet MAGNET_TYPE mandel ITERATIONS [, BUMP_SIZE]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

MAGNET JULIA:
magnet MAGNET_TYPE julia COMPLEX, ITERATIONS [, BUMP_SIZE]
[exterior EXTERIOR_TYPE, FACTOR]
[interior INTERIOR_TYPE, FACTOR]

Where:

ITERATIONS IS the number of times to iterate the algorithm.

coMPLEX is a 2D vector denoting a complex number.

MAGNET_TYPE IS either 1 or 2.

exponent iS an integer between 2 and 33. If not given, the default is 2.

interior andexterior specify special coloring algorithms. You can specify one of them or both at the
same time. They only work with the fractal patterns.

EXTERIOR_TYPE andINTERIOR_TYPE are integer values between 0 and 6 (inclusive). When not specified, the
default value of INTERIORTYPE is 0 and for EXTERIORTYPE 1.

FACTOR is a float. The return value of the pattern is multipliedsaytor before returning it. This can be

used to scale the value range of the pattern when using interior and exterior coloring (this is often needed
to get the desired effect). The default value of FACTOR is 1.

The different values of EXTERIOR YPE and INTERIORTYPE have the following meaning:
* 0: Returnsjust 1

» 1: For exterior: The number of iterations until bailout divided by ITERATIONS.
Note: this is not scaled by FACTOR (since it is internally scaled by 1/ITERATIONS instead).
For interior: The absolute value of the smallest point in the orbit of the calculated point

» 2: Real part of the last point in the orbit

» 3: Imaginary part of the last point in the orbit

204 Textures

* 4: Squared real part of the last point in the orbit
» 5: Squared imaginary part of the last point in the orbit
» 6 : Absolute value of the last point in the orbit

Example:

box {
<=2, -2, 0>, <2, 2, 0.1>
pigment {
julia <0.353, 0.288>, 30
interior 1, 1
color_map {
[0 rgb 0]
[0.2 rgb x]
0.4 rgb x+y]
1 rgb 1]
1 rgb 0]

5.11.15 Function as pattern

Allows you to use a functio# } block as pattern.

pigment {
function { USER_DEFINED_FUNCTIONS }
[PIGMENT_MODIFIERS...]

}

Declaring a function:
By default a function takes three parameters (X,y,z) and you do not have to explicitly specify the parameter
names when declaring it. When using the identifier, the parameters must be specified.

#declare Foo = function { x + y + z}
pigment {
function { Foo(x, y, z) }
[PIGMENT_MODIFIERS...]
}

On the other hand, if you need more or less than three parameters when declaring a function, you also have
to explicitly specify the parameter names.

#declare Foo = function(x,y,z,t) { x + vy + z + t}
pigment {
function { Foo(x, vy, z, 4) }
[PIGMENT_MODIFIERS...]
}

Using function in a normal:

#declare Foo = function { x + y + z}
normal {
function { Foo(x, y, z) } [Bump_Size]
[MODIFIERS...]

5.11 Patterns 205

What can be used

All float expressions and operators (see section "User-Defined Functions”) which are legal in POV-Ray. Of
special interest here is thattern option, that makes it possible to use patterns as functions

#declare FOO = function {
pattern {
checker

}
}

User defined functions (like equations).

Since pigments can be declared as functions, they can also be used in functions. They must be declared
first. When using the identifier, you have to specify which component of the color vector should be used.
To do this, the dot notation is used: Function(x,y,z).red

#declare FOO = function {pigment { checker } }
pigment {
function { FOO(x,y,z).green }
[PIGMENT_MODIFIERS...]
}

POV-Ray has a large amount of pre-defined functions. These are mainly algebraic surfaces but there is
also a mesh function and noise3d function. See section "Internal Functions” for a complete list and some
explanation on the parameters to use. These internal functions can be included through the functions.inc
include file.

#include "functions.inc"

#declare FOO = function {pigment { checker } }

pigment {
function { FOO(x,y,z).green \& f_noise3d(x*2, y*3,z)}
[PIGMENT_MODIFIERS...]

5.11.16 Function Image

Syntax function Width, Height { FUNCTION_BODY }

Not a real pattern, but listed here for convenience. This keyword defines a new 'internal’ bitmap image
type. The pixels of the image are derived from the FuncBaaly, with FunctionBody either being a
regular function, a pattern function or a pigment function. In case of a pigment function the output image
will be in color, in case of a pattern or regular function the output image will be grayscale. All variants of
grayscale pigment functions are available using the regular function syntax, too. In either case the image
will use 16 bit per component

Note: functions are evaluated on the x-y plane. This is different from the pattern image type for the reason
that it makes using uv functions easier.

Width and Height specify the resolution of the resulting ’internal’ bitmap image. The image is taken from
the square regiono,0,0>, <1,1,0>

The function Statement can be used wherever an image specifietdiker png may be used. Some uses
include creating heightfields from procedural textures or wrapping a slice of a 3d texture or function around
a cylinder or extrude it along an axis.

Examples:

206 Textures

plane {
y, -1
pigment {
image_map {
function 10,10 {
pigment { checker 1,0 scale .5 }
}
}

rotate x*90

}

height_field {
function 200,200 {
pattern {
bozo

}
}
translate -0.5
scale 10
pigment {rgb 1}
}

Note: that for height fields and other situations where color is not needed it is easier tondseon n, n
{pattern{...}} than function n,n {pigment{...}}. The pattern functions are returning a scalar, not a
color vector, thus a pattern is grayscale.

5.11.17 Gradient

One of the simplest patterns is thexdient pattern. It is specified as

pigment {
gradient <Orientation>
[PIGMENT_MODIFIERS...]
}

where<Orientation > is a vector pointing in the direction that the colors blend. For example

pigment { gradient x } // bands of color vary as you move
// along the "x" direction.

produces a series of smooth bands of color that look like layers of colors next to each other. Points at x=0
are the first color in the color map. As the x location increases it smoothly turns to the last color at x=1.
Then it starts over with the first again and gradually turns into the last color at x=2. In POV-Ray versions
older than 3.5 the pattern reverses for negative values of x. As per POV-Ray 3.5 this is not the case anymore
[1]. Usinggradient y Of gradient z makes the colors blend along the y- or z-axis. Any vector may be
used but x, y and z are most common.

As a normal pattern, gradient generates a saw-tooth or ramped wave appearance. The syntax is

normal {
gradient <Orientation> [, Bump_Size]
[NORMAL_MODIFIERS...]

}

where the vectokOrientation > iS a required parameter but the fl@impSize which follows is
optional.

Note: the comma is required especiallygiimpSizeis negative.

5.11 Patterns 207

[1] If only the range -1 to 1 was used of the old gradient, for exampledkyaphere, it can be replaced
by theplanar Ormarble pattern and revert the colanap. Also rotate the pattern for other orientations than
y. A more general solution is to usenction{abs (x) } as a pattern instead efadient x and similar for
gradient y andgradient z.

5.11.18 Granite

Thegranite pattern uses a simple 1/f fractal noise function to give a good granite pattern. This pattern is
used with creative color maps #fones. inc to create some gorgeous layered stone textures.

As a normal pattern it creates an extremely bumpy surface that looks like a gravel driveway or rough stone.

Note: The appearance of the granite pattern depends on thegeisator used. The default type is 2. This
may be changed using theise_generator keyword (See section "Pattern Modifiers / Naigenerator”).

5.11.19 Hexagon

Thenhexagon pattern is a block pattern that generates a repeating pattern of hexagons in the x-z-plane. In this
instance imagine tall rods that are hexagonal in shape and are parallel to the y-axis and grouped in bundles
like shown in the example image. Three separate colors should be specified as follows:

pigment {
hexagon [COLOR_1 [, COLOR_2 [, COLOR_3]1]]
[PATTERN_MODIFIERS...]

z
» color 1
— color 2
{) @ color3
[X X 2%

e X

Figure 5.2: The hexagon pattern.

The three colors will repeat the hexagonal pattern with hexa@@hOR 1 centered at the origitGOLOR-

2in the +z-direction an€OLOR 3 to either side. Each side of the hexagon is one unit long. The hexagonal
rods of color extend infinitely in the +y- and -y-directions. If no colors are specified then default blue, green
and red colors are used.

You may also use pigment statements in place of the colors. For example:

pigment {
hexagon
pigment { Jade },
pigment { White_Marble },
pigment { Black_Marble }
}

This example uses normals:

normal { hexagon 0.5 }

208 Textures

The float value is an optional bump size. You may also use full normal statements. For example:

normal {
hexagon
normal { gradient x scale
normal { gradient y scale
normal { bumps scale .2 }

220}y
20}

}
When used with textures, the syntax is...

texture {
hexagon
texture { T_Gold_3A },
texture { T_Wood_3A },
texture { Stonel2 }
}

Thehexagon pattern has a default colanap built in that results in red, blue and green tiles.

This is a block pattern which cannot use wave typeslor map, Or slope_map modifiers.

5.11.20 Image Pattern

Instead of placing the color of the image on the object like an intagp an imaggattern specifies an

entire texture item (color, pigment, normal or texture) based on the gray value at that point.

This gray-value is checked against a list and the corresponding item is then used for the texture at that
particular point. For values between listed items, an averaged texture is calculated.

It takes a standard image specification and has one optier,1pha which works similar tause_color or
use_index.

Syntax:

PIGMENT:
pigment {
IMAGE_PATTERN
color_map { COLOR_MAP_BODY } |
colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY }

NORMAL:
normal {
IMAGE_PATTERN [Bump_Size]
normal_map { NORMAL_MAP_BODY }

TEXTURE:
texture {
IMAGE_PATTERN
texture_map { TEXTURE_MAP_BODY }

IMAGE_PATTERN
image_pattern {
BITMAP_TYPE "bitmap.ext"
[IMAGE_MAP_MODS...]
}
IMAGE_MAP_MOD:

5.11 Patterns 209

map_type Type | once | interpolate Type | use_alpha
ITEM_MAP_BODY:

ITEM_MAP_IDENTIFIER | ITEM_MAP_ENTRY...
ITEM_MAP_ENTRY:

[GRAY_VALUE ITEM_MAP_ENTRY...]

It is also useful for creating texture "masks”, like the following:

texture {
image_pattern { tga "image.tga" use_alpha }
texture_map {
[0 Mytex]
[1 pigment { transmit 1 }]
}
}

Note: This pattern uses an image to get the gray values from. If you want exactly the same possibilities but
need to get gray values from a pigment, you can use the pigpstern.

5.11.21 Leopard

Leopard creates regular geometric pattern of circular spots. The formula usedus:= Sqr((sin(x)+sin(y)+sin(z))/3)

5.11.22 Marble

Thenmarble pattern is very similar to theradient x pattern. The gradient pattern uses a defaailp_wave

wave type which means it uses colors from the color map from 0.0 up to 1.0 at location x=1 but then jumps
back to the first color for x> 1 and repeats the pattern again and again. Howevetathiee pattern uses

the triangle_wave Wave type in which it uses the color map from 0 to 1 but then it reverses the map and
blends from 1 back to zero. For example:

pigment {
gradient x
color_map {
[0.0 color Yellow]
[1.0 color Cyan]

}

This blends from yellow to cyan and then it abruptly changes back to yellow and repeats. However replacing
gradient x With marble smoothly blends from yellow to cyan as the x coordinate goes from 0.0 to 0.5 and
then smoothly blends back from cyan to yellow by x=1.0.

Earlier versions of POV-Ray did not allow you to change wave types. Now that wave types can be changed
for most any pattern, the distinction betweenrble andgradient x is only a matter of default wave types.

When used with turbulence and an appropriate color map, this pattern looks like veins of color of real
marble, jade or other types of stone. By default, marble has no turbulence.

Themarble pattern has a default colonap built in that results in a red, black and white pattern with smooth
and sharp transitions.

5.11.23 Object Pattern

Theobject pattern takes an object as input. It generates a, two item, color list pattern. Whether a point is
assigned to one item or the other depends on whether it is inside the specified object or not.

210 Textures

Object’s used in thebject pattern cannot have a texture and must be solid - these are the same limitations
as forbounded_by andclipped.by.

Syntax:

object {
OBJECT_IDENTIFIER | OBJECT ({}
LIST_ITEM A, LIST_ITEM B

}

Where OBJIDENTIFIER is the target object (which must be declared), or use the full object syntax.-LIST
ITEM_A and LISTITEM _B are the colors, pigments, or whatever the pattern is controlling. LTEM_A
is used for all points outside the object, and LIFEM _B is used for all points inside the object.

Example:

pigment {
object {
myTextObject
color White
color Red

}
turbulence 0.15

}

Note: This is a block pattern which cannot use wave types, calap, or slopanap modifiers.

5.11.24 Onion

Theonion is a pattern of concentric spheres like the layers of an oni@ue = mod(sqrt(Sqr(X)+Sqr(Y)+Sqr(2)),
1.0) Each layer is one unit thick.

5.11.25 Pigment Pattern

Use any pigment as a pattern. Instead of using the pattern directly on the object, a pigitemt converts

the pigment to gray-scale first. For each point, the gray-value is checked against a list and the corresponding
item is then used for the texture at that particular point. For values between listed items, an averaged texture
is calculated.

Texture items can be color, pigment, normal or texture and are specified in ancafgrpigmenimap,
normalmap or texturemap.

It takes a standard pigment specification.

Syntax:

PIGMENT:
pigment {
pigment_pattern { PIGMENT_BODY }
color_map { COLOR_MAP_BODY } |
colour_map { COLOR_MAP_BODY } |
pigment_map { PIGMENT_MAP_BODY }
}

NORMAL:
normal {
pigment_pattern { PIGMENT_BODY } [Bump_Size]
normal_map { NORMAL_MAP_BODY }
}

5.11 Patterns 211

TEXTURE:
texture {
pigment_pattern { PIGMENT_BODY }
texture_map { TEXTURE_MAP_BODY }
}

ITEM_MAP_BODY:
ITEM_MAP_IDENTIFIER | ITEM_MAP_ENTRY...
ITEM MAP ENTRY:
[GRAY VALUE ITEM_MAP_ENTRY...]

This pattern is also useful when parent and children patterns need to be transformed independently from
each other. Transforming the pigmeguattern will not affect the child textures. When any of the child
textures should be transformed, apply it to the specific MENPTRY.

This can be used with any pigments, ranging from a simple checker to very complicated nested pigments.
For example:

pigment {
pigment_pattern {
checker White, Black
scale 2
turbulence .5
}
pigment_map {
[0, checker Red, Green scale .5]
[1, checker Blue, Yellow scale .2]
}
}

Note: This pattern uses a pigment to get the gray values from. If you want to get the pattern from an image,
you should use the imageattern.

5.11.26 Planar

Theplanar pattern creates a horizontal stripe plus or minus one unit above and below the X-Z plane. Itis
computed by: value =1.0- min(1, abs(Y) starts at 1.0 at the origin and decreases to a minimum value

of 0.0 as the Y values approaches a distance of 1 unit from the X-Z plane. It remains at 0.0 for all areas
beyond that distance. This pattern was originally created for usenwithor media but it may be used
anywhere any pattern may be used.

5.11.27 Quilted

The quilted pattern was originally designed only to be used as a normal pattern. The quilted pattern is so
named because it can create a pattern somewhat like a quilt or a tiled surface. The squares are actually 3-D
cubes that are 1 unit in size.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means
that the pattern cannot be used withirmal map, slope_map Or wave type modifiers in anormal statement.

When used as a pigment pattern or texture patterngitheed pattern is similar to normal quilted but is
not identical as are most normals when compared to pigments.

The two parametersontrol0 and controll are used to adjust the curvature of tkeamor gougearea
between theuilts.

212 Textures

The syntax is:

pigment { quilted [QUILTED_MODIFIERS...] }
QUILTED_MODIFIERS:
control0 Value_0 | controll Value_1 | PIGMENT_MODIFIERS

The values should generally be kept to around the 0.0 to 1.0 range. The default value is 1.0 if none is
specified. Think of this gouge between the tiles in cross-section as a sloped line.

Figure 5.3: Quilted pattern with c0=0 and different values for c1.

Figure 5.5: Quilted pattern with c0=0.67 and different values for c1.

This straight slope can be made to curve by adjusting the two control values. The control values adjust the

5.11 Patterns 213

Figure 5.6: Quilted pattern with cO=1 and different values for c1.

slope at the top and bottom of the curve. A control values of 0 at both ends will give a linear slope, as shown
above, yielding a hard edge. A control value of 1 at both ends will give an "s” shaped curve, resulting in a
softer, more rounded edge.

The syntax for use as a normal is:

normal {
quilted [Bump_Size]
[QUILTED_MODIFIERS...]

}
QUILTED_MODIFIERS:
controlO Value_0 | controll Value_1 | PIGMENT_MODIFIERS

5.11.28 Radial

The radial pattern is a radial blend that wraps around the +y-axis. The color for value 0.0 starts at the
+x-direction and wraps the color map around from east to west with 0.25 in the -z-direction, 0.5 in -x, 0.75
at +z and back to 1.0 at +x. Typically the pattern is used withiquency modifier to create multiple
bands that radiate from the y-axis. For example:

pigment {
radial color_map{[0.5 Black][0.5 White]}
frequency 10

}

creates 10 white bands and 10 black bands radiating from the y axis.

Theradial pattern has a default colanap built in that results in a yellow, magenta and cyan pattern with
smooth transitions.

5.11.29 Ripples

Theripples pattern was originally designed only to be used as a normal pattern. It makes the surface look
like ripples of water. The ripples radiate from 10 random locations inside the unit cube@re#> to
<1,1,1>. Scale the pattern to make the centers closer or farther apart.

Usually the ripples from any given center are about 1 unit apart. Fhemuency keyword changes the
spacing between ripples. Thehase keyword can be used to move the ripples outwards for realistic
animation.

214 Textures

The number of ripple centers can be changed with the global parameter_giibagg numberof_waves
Count}

somewhere in the scene. This affects the entire scene. You cannot change the number of wave centers on
individual patterns. See section "Numb@f_Waves” for details.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means
that the pattern cannot be used witlirmal map, slope_map Or wave type modifiers in anormal Statement.

When used as a pigment pattern or texture patternsithg es pattern is similar to normal ripples but is not
identical as are most normals when compared to pigments.

5.11.30 Slope

The slope pattern uses the normal of a surface to calculate the slope at a given point. It then creates the
pattern value dependent on the slope and optionally the altitude. It can be used for pigments, normals and
textures, but not for media densities. For pigments the syntax is:

pigment {
slope {
<Direction> [, Lo_slope, Hi_slope]
[altitude <Altitude> [, Lo_alt, Hi_alt]]

}
[PIGMENT_MODIFIERS...]

}

The slope value at a given point is dependent on the angle betweenithe:tion> vector and the normal
of the surface at that point. For example:

- When the surface normal points in the opposite direction okifterection> vector (180 degrees), the
slope is 0.0.

- When the surface normal is perpendicular to #nerection> vector (90 degrees), the slope is 0.5.

- When the surface normal is parallel to theirection> vector (O degrees), the slope is 1.0.

When using the simplest variant of the syntax:
slope { <Direction> }

the pattern value for a given point is the same as the slope valugection> is a 3-dimensional vector
and will usually be<o, -1, 0> for landscapes, but any direction can be used.

By specifyingro_s1lope andHi_slope you get more control:
slope { <Direction>, Lo_slope, Hi_slope }

Lo-slope andHi_slope specifies which range of slopes are used, so you can control which slope values
return which pattern valueso_slope is the slope value that returns 0.0 anids1ope is the slope value that
returns 1.0.

For example, if you have a heigfield and<pirection> is set to<o0, -1, 0>, then the slope values would

only range from 0.0 to 0.5 because heidjietds cannot have overhangs. If you do not spetify1ope and
Hi_slope, you should keep in mind that the texture for the flat (horizontal) areas must be set at 0.0 and the
texture for the steep (vertical) areas at 0.5 when designing the texiape The part from 0.5 up to 1.0 is

not used then. But, by setting_s1ope andHi_slope to 0.0 and 0.5 respectively, the slope range will be
stretched over the entire map, and the teximap can then be defined from 0.0 to 1.0.

By adding an optionakaititude> vector:

slope {
<Direction>
altitude <Altitude>

5.11 Patterns 215

}

the pattern will be influenced not only by the slope but also by a special gradient.itude> is a 3-
dimensional vector that specifies the direction of the gradient. Whenitude> is specified, the pattern

value is a weighted average of the slope value and the gradient value. The weights are the lengths of the
vectors<birection> and<altitude>. SO if <Direction> is much longer tharaltitude> it means that

the slope has greater effect on the results than the gradient. If on the other4iandude> is longer, it

means that the gradient has more effect on the results than the slope.

When adding the<altitude> vector, the default gradient is defined from O to 1 units along the specified
axis. This is fine when your object is defined within this range, otherwise a correction is needed. This can
be done with the optionab_a1t andui_alt parameters:

slope {

<Direction>

altitude <Altitude>, Lo_alt, Hi_alt
}

They define the range of the gradient along the axis defined by Miitude> vector.

For example, with arcaltitude> vector set to y and an object going from -3 to 2 on the y axisrtheit
andui_alt parameters should be set to -3 and 2 respectively.

Note:

* You may use the turbulence keyword inside slope pattern definitions but it may cause unexpected
results. Turbulence is a 3-dimensional distortion of a pattern. Since slope is only defined on surfaces
of objects, a 3-dimensional turbulence is not applicable to the slope component. However, if you are
using altitude, the altitude component of the pattern will be affected by turbulence.

« If your object is larger than the range of altitude you have specified, you may experience unexpected
discontinuities. In that case it is best to adjustithe 1t andni_alt values so they fit to your object.

» The slope pattern does not work for the siyhere, because the skphere is a background feature
and does not have a surface. similarly, it does not work for media densities.

5.11.31 Spherical

The spherical pattern creates a one unit radius sphere, with its center at the origin. It is computed by:
value = 1.0-min(1, sqrt(X"2 + Y"2 + Z"2)} starts at 1.0 at the origin and decreases to a minimum value
of 0.0 as it approaches a distance of 1 unit from the origin in any direction. It remains at 0.0 for all areas
beyond that distance. This pattern was originally created for usenwithor mnedia but it may be used
anywhere any pattern may be used.

5.11.32 Spirall

Thespirall pattern creates a spiral that winds around the z-axis similar to a screw. When viewed sliced in
the x-y plane, it looks like the spiral arms of a galaxy. Its syntax is:

pigment
{

spirall Number_of_Arms
[PIGMENT_MODIFIERS...]
}

TheNumber_of _Arms value determines how may arms are winding around the z-axis.

As a normal pattern, the syntax is

216 Textures

normal

{

spirall Number_of_Arms [, Bump_Size]
[NORMAL_MODIFIERS...]
}

where thevunber_of Arms value is a required parameter but the flBainp Size which follows is optional.
Note: the comma is required especiallyBtimpSizeis negative.

The pattern uses theiangle_wave wWave type by default but may use any wave type.

5.11.33 Spiral2

The spiral2 pattern creates a double spiral that winds around the z-axis simitat @11 except that it

has two overlapping spirals which twist in opposite directions. The result sometimes looks like a basket
weave or perhaps the skin of pineapple. The center of a sunflower also has a similar double spiral pattern.
Its syntax is:

pigment
{
spiral2 Number_of_ Arms
[PIGMENT_MODIFIERS...]
}

TheNumber_of _Arms value determines how may arms are winding around the z-axis. As a normal pattern,
the syntax is

normal

{

spiral2 Number_of Arms [, Bump_Size]
[NORMAL_MODIFIERS...]
}

where thevunber_of _Arms value is a required parameter but the flBainp Size which follows is optional.

Note: the comma is required especiallyBiimpSizeis negative. The pattern uses theangle wave wave
type by default but may use any wave type.

5.11.34 Spotted

The spotted pattern is identical to theozo pattern. Early versions of POV-Ray did not allow turbulence
to be used with spotted. Now that any pattern can use turbulence there is no difference betweeml
spotted. See section "Bozo” for details.

5.11.35 Waves

Thewaves pattern was originally designed only to be used as a normal pattern. It makes the surface look
like waves on water. Thesaves pattern looks similar to theipples pattern except the features are rounder

and broader. The effect is to make waves that look more like deep ocean waves. The waves radiate from
10 random locations inside the unit cube axre)0,0> to <1,1,1>. Scale the pattern to make the centers
closer or farther apart.

Usually the waves from any given center are about 1 unit apart. ftheuency keyword changes the spac-
ing between waves. Thehase keyword can be used to move the waves outwards for realistic animation.

5.12 Pattern Modifiers 217

The number of wave centers can be changed with the global parameter
global_settings { number_of_waves Count }

somewhere in the scene. This affects the entire scene. You cannot change the number of wave centers on
individual patterns. See section "Numb@f_Waves” for details.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means
that the pattern cannot be used witlbrmal map, slope_map Or wave type modifiers in anormal statement.

When used as a pigment pattern or texture patternyates pattern is similar to normal waves but is not
identical as are most normals when compared to pigments.

5.11.36 Wood

Thewood pattern consists of concentric cylinders centered on the z-axis. When appropriately colored, the
bands look like the growth rings and veins in real wood. Small amounts of turbulence should be added to
make it look more realistic. By default, wood has no turbulence.

Unlike most patterns, theood pattern uses thecriangle wave wave type by default. This means that like
marble, wood uses color map values 0.0 to 1.0 then repeats the colors in reverse order from 1.0 to 0.0.
However you may use any wave type.

Thewood pattern has a default colanap built in that results in a light and dark brown pattern with sharp
transitions.

5.11.37 Wrinkles

Thewrinkles pattern was originally designed only to be used as a normal pattern. It uses a 1/f noise pattern
similar to granite but the features in wrinkles are sharper. The pattern can be used to simulate wrinkled
cellophane or foil. It also makes an excellent stucco texture.

When used as a normal pattern, this pattern uses a specialized normal perturbation function. This means
that the pattern cannot be used witlhrmal map, slope_map Or wave type modifiers in anormal Statement.

When used as a pigment pattern or texture patternsithe1es pattern is similar to normal wrinkles but is
not identical as are most normals when compared to pigments.

Note: The appearance of the wrinkles pattern depends on the_gerserator used. The default type is
2. This may be changed using theise_generator keyword (See section "Pattern Modifiers / Naise
generator”).

5.12 Pattern Modifiers

Pattern modifiers are statements or parameters which modify how a pattern is evaluated or tells what to do
with the pattern. The complete syntax is:

PATTERN_MODIFIER:
BLEND_MAP_MODIFIER | AGATE_MODIFIER | DENSITY_FILE_MODIFIER |
QUILTED_MODIFIER | BRICK_MODIFIER | SLOPE_MODIFIER |
noise_generator Number| turbulence <Amount> |
octaves Count | omega Amount | lambda Amount |
warp { [WARP_ITEMS...] } | TRANSFORMATION
BLEND_MAP_MODIFIER:
frequency Amount | phase Amount | ramp_wave | triangle_wave |

218 Textures

sine_wave | scallop_wave | cubic_wave | poly_wave [Exponent]
AGATE_MODIFIER:
agate_turb Value
BRICK_MODIFIER:
brick_size Size | mortar Size
DENSITY FILE_MODIFIER:
interpolate Type
SLOPE_MODIFIERS:
<Altitude>
<Lo_slope, Hi_slope>
<Lo_alt,Hi_alt>
QUILTED_MODIFIER:
control0 Value | controll Value
PIGMENT_MODIFIER:
PATTERN_MODIFIER | COLOR_LIST | PIGMENT_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
pigment_map{ PIGMENT_MAP_BODY } | quick_color COLOR |
quick_colour COLOR
COLOR NORMAL_MODIFIER:
PATTERN_MODIFIER | NORMAL_LIST |
normal_map { NORMAL_MAP_BODY } | slope_map{ SLOPE_MAP_BODY } |
bump_size Amount
TEXTURE_PATTERN_MODIFIER:
PATTERN_MODIFIER | TEXTURE_LIST |
texture_map{ TEXTURE_MAP_BODY }
DENSITY_MODIFIER:
PATTERN_MODIFIER | DENSITY_LIST | COLOR_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
density_map { DENSITY_MAP_BODY }

Default values for pattern modifiers:

dist_exp
falloff
frequency
lambda
major_radius
map_type
noise_generator :
octaves
omega .5
orientation . <0,0,1>
phase : 0.0
poly_wave : 1.0
strength : 1.0
turbulence : <0,0,0>

O o N O DN DN O

The modifiersPIGMENT.LIST, quick_color, and pigment_map apply only to pigments. See section "Pig-
ment” for details on these pigment-specific pattern modifiers.

The modifiers COLORLIST andcolor_map apply only to pigments and densities. See sections "Pigment”
and "Density” for details on these pigment-specific pattern modifiers.

The modifiersNORMALLIST, bump_size, slopemap and normalmap apply only to normals. See section
"Normal” for details on these normal-specific pattern modifiers.

The TEXTURELIST andtexture_map modifiers can only be used with patterned textures. See section
"Texture Maps” for detalils.

The DENSITYLIST and densitymap modifiers only work withmedia{density{..}} Statements. See

5.12 Pattern Modifiers 219

"Density” for details.

Theagate_turb modifier can only be used with thegate pattern. See "Agate” for details.

The brick_size andmortar modifiers can only be used with therick pattern. See "Brick” for details.
The control0 andcontroll modifiers can only be used with thei1ted pattern. See "Quilted” for details.
The interpolate modifier can only be used with theensity_file pattern. See "Densit¥ile” for details.

The general purpose pattern modifiers in the following sections can be useg witht, normal, texture,
Or density patterns.

5.12.1 Transforming Patterns

The most common pattern modifiers are the transformation modifiersnslate, rotate, scale,
transform, andmatrix. For details on these commands see section "Transformations”.

These modifiers may be placed inside pigment, normal, texture, and density statements to change the
position, size and orientation of the patterns.

Transformations are performed in the order in which you specify them. However in general the order of
transformations relative to other pattern modifiers suchcasoulence, color.map and other maps is not
important. For example scaling before or after turbulence makes no difference. The turbulence is done
first, then the scaling regardless of which is specified first. However the order in which transformations are
performed relative ta@arp statements is important. See "Warps” for details.

5.12.2 Frequency and Phase

The frequency andphase modifiers act as a type of scale and translate modifiers for various blend maps.
They only have effect when blend maps are used. Blend maps@rer map, pigment map, normal map,
slope_map, density map, andtexture map. This discussion uses a color map as an example but the same
principles apply to the other blend map types.

Thefrequency keyword adjusts the number of times that a color map repeats over one cycle of a pattern. For
example gradient covers color map values 0 to 1 over the range from x=0 to x=1. By addighency

2.0 the color map repeats twice over that same range. The same effect can be achieveehusings+x

so the frequency keyword is not that useful for patterns like gradient.

However the radial pattern wraps the color map around the +y-axis once. If you wanted two copies of the
map (or 3 or 10 or 100) you would have to build a bigger map. Addingquency 2.0 causes the color
map to be used twice per revolution. Try this:

pigment {
radial
color_map{[0.5 color Red] [0.5 color White]}
frequency 6

}
The result is six sets of red and white radial stripes evenly spaced around the object.

The float afterfrequency can be any value. Values greater than 1.0 causes more than one copy of the map
to be used. Values from 0.0 to 1.0 cause a fraction of the map to be used. Negative values reverses the map.

Thephase value causes the map entries to be shifted so that the map starts and ends at a different place. In
the example above if you render successive framesaat 0 thenphase 0.1, phase 0.2, etc. you could

create an animation that rotates the stripes. The same effect can be easily achieved by rotatiagahe
pigment using rotate y*angle but there are other uses where phase can be handy.

220 Textures

Sometimes you create a great looking gradient or wood color map but you want the grain slightly adjusted in
or out. You could re-order the color map entries but that is a pain. A phase adjustment will shift everything
but keep the same scale. Try animating:adel pigment for a color palette rotation effect.

These values work by applying the following formula
New Value = fmod (OldValue * Frequency + Phase, 1.0).

The frequency andphase modifiers have no effect on block patternsecker, brick, and hexagon nor do
they effectimage map, bumpmap OF material map. They also have no effect in normal statements when
used withbumps, dents, quilted OF wrinkles because these normal patterns cannot usemal map Or
slope_map.

They can be used with normal patternsples and waves even though these two patterns cannot use
normal map Of slope map either. When used withripples Or waves, frequency adjusts the space between
features an@hase can be adjusted from 0.0 to 1.0 to cause the ripples or waves to move relative to their
center for animating the features.

5.12.3 Waveforms

POV-Ray allows you to apply various wave forms to the pattern function before applying it to a blend map.
Blend maps aréolor_map, pigment_map, normal_map, slope_map, density_map, andtexturejnap.

Most of the patterns which use a blend map, use the entries in the map in order from 0.0 to 1.0. The effect
can most easily be seen when these patterns are used as normal patterns with no maps. Patterns such as
gradient Or onion generate a groove or slot that looks like a ramp that drops off sharply. This is called

a ramp_wave Wave type and it is the default wave type for most patterns. Howeverdtheand marble

patterns use the map from 0.0 to 1.0 and then reverses it and runs it from 1.0 to 0.0. The result is a wave
form which slopes upwards to a peak, then slopes down againtniangle wave. In earlier versions of

POV-Ray there was no way to change the wave types. You could simulate a triangle wave on a ramp wave
pattern by duplicating the map entries in reverse, however there was no way to use a ramp wave on wood
or marble.

Now any pattern that takes a map can have the default wave type overridden. For example:
pigment { wood color_map { MyMap } ramp_wave }

Also available areine_wave, scallop_wave, cubic_wave andpoly_wave types. These types are of most use

in normal patterns as a type of built-in slope map. The&e wave takes the zig-zag of a ramp wave and
turns it into a gentle rolling wave with smooth transitions. Ehellop_wave uses the absolute value of the

sine wave which looks like corduroy when scaled small or like a stack of cylinders when scaled larger. The
cubic_wave iS a gentle cubic curve from 0.0 to 1.0 with zero slope at the start and endpoTheave is

an exponential function. It is followed by an optional float value which specifies exponent. For example
poly_wave 2 Starts low and climbs rapidly at the end whilely wave 0.5 climbs rapidly at first and levels

off at the end. If no float value is specified, the default is 1.0 which produces a linear function identical to
ramp-wave.

Although any of these wave types can be used for pigments, normals, textures, or density the effect of many
of the wave types are not as noticeable on pigments, textures, or density as they are for normals.

Wave type modifiers have no effect on block pattemigcker, brick, object andhexagon nor do they effect
image_map, bump.map OF materialmap. They also have no effect in normal statements when used with
bumps, dents, quilted, ripples, waves, Ofwrinkles because these normal patterns cannohusel map

Or slope_map.

5.12 Pattern Modifiers 221

5.12.4 Noise Generators

There are three noise generators implemented. Changing ke generator will change the appearance
of noise based patterns, like bozo and granite.

* noise_generator 1 the noise thatwas used in PQRay 3.1

* noise_generator 2 'range corrected’ version of the old noise, it does not show the plateaus seen with

noise_generator 1
* noise_generator 3 generates Perlin noise
The default imoise_generator 2

Note: The noisegenerator can also be setgrobal settings

5.12.5 Turbulence

The turbulence pattern modifier is still supported for compatibility issues, but it is better nowadays to
use thewarp {turbulence} feature, which does not have turbulence’s limitation in transformation order
(turbulence is always applied first, before any scale, translate or rotate, whatever the order you specify). For
a detailed discussion see 'Turbulence versus Turbulence Warp’

The old-style turbulence is handled slightly differently when used with the agate, marble, spirall, spiral2,
and wood textures.

5.12.6 Warps

Thewarp statement is a pattern modifier that is similar to turbulence. Turbulence works by taking the pattern
evaluation point and pushing it about in a series of random steps. However warps push the point in very
well-defined, non-random, geometric ways. Taep statement also overcomes some limitations of tradi-
tional turbulence and transformations by giving the user more control over the order in which turbulence,
transformation and warp modifiers are applied to the pattern.

Currently there are seven types of warps but the syntax was designed to allow future expansion. The turbu-
lence warp provides an alternative way to specify turbulence. The others modify the pattern in geometric
ways.

The syntax for using aarp statement is:

WARP:
warp { WARP_ITEM }

WARP_ITEM:
repeat <Direction> [REPEAT_ITEMS...] |
black_hole <Location>, Radius [BLACK_HOLE_ITEMS...] |
turbulence <Amount> [TURB_ITEMS...]
cylindrical [orientation VECTOR | dist_exp FLOAT]
spherical [orientation VECTOR | dist_exp FLOAT]
toroidal [orientation VECTOR | dist_exp FLOAT |

major_radius FLOAT]

planar [VECTOR , FLOAT]

REPEAT_ITEMS:
offset <Amount> |
flip <Axis>

BLACK_HOLE_ITEMS:
strength Strength | falloff Amount | inverse |
repeat <Repeat> | turbulence <Amount>

222 Textures

TURB_ITEMS:
octaves Count | omega Amount | lambda Amount

You may have as many separate warp statements as you like in each pattern. The placement of warp state-
ments relative to other modifiers such @s1lor_map Or turbulence iS not important. However placement

of warp statements relative to each other and to transformations is significant. Multiple warps and transfor-
mations are evaluated in the order in which you specify them. For example if you translate, then warp or
warp, then translate, the results can be different.

Black Hole Warp

A black_hole warp is so hamed because of its similarity to real black holes. Just like the real thing, you
cannot actually see a black hole. The only way to detect its presence is by the effect it has on things that
surround it.

Take, for example, a wood grain. Using POV-Ray’s normal turbulence and other texture modifier functions,
you can get a nice, random appearance to the grain. But in its randomness it is regular - it is regularly
random! Adding a black hole allows you to create a localized disturbance in a wood grain in either one or
multiple locations. The black hole can have the effect of eifugkingthe surrounding texture into itself

(like the real thing) ompushingit away. In the latter case, applied to a wood grain, it would look to the
viewer as if there were a knothole in the wood. In this text we use a wood grain regularly as an example,
because it is ideally suitable to explaining black holes. However, black holes may in fact be used with any
texture or pattern. The effect that the black hole has on the texture can be specified. By defadks it

with the strength calculated exponentially (inverse-square). You can change this if you like.

Black holes may be used anywhere a warp is permitted. The syntax is:

BLACK_HOLE_WARP:
warp
{
black_hole <Location>, Radius
[BLACK_HOLE_ITEMS...]

}

BLACK_HOLE_ITEMS:
strength Strength | falloff Amount | inverse | type Type |
repeat <Repeat> | turbulence <Amount>

The minimal requirement is thelack hole keyword followed by a vectokLocation > followed by a
comma and a floaRadius . Black holes effect all points within the spherical region around the location
and within the radius. This is optionally followed by any number of other keywords which control how the
texture is warped.

The falloff keyword may be used with a float value to specify the power by which the effect of the black
hole falls off. The default is two. The force of the black hole at any given point, before applying the
strength modifier, is as follows.

First, convert the distance from the point to the center to a proportion (0 to 1) that the point is from the edge

of the black hole. A point on the perimeter of the black hole will be 0.0; a point at the center will be 1.0; a
point exactly halfway will be 0.5, and so forth. Mentally you can consider this to be a closeness factor. A
closeness of 1.0 is as close as you can get to the center (i.e. at the center), a closeness of 0.0 is as far away
as you can get from the center and still be inside the black hole and a closeness of 0.5 means the point is
exactly halfway between the two.

Call this value c. Raise c to the power specifiecciniorf. By default Falloff is 2, so this is ¢2 or ¢
squared. The resulting value is the force of the black hole at that exact location and is used, after applying
thestrength scaling factor as described below, to determine how much the point is perturbed in space. For
example, if c is 0.5 the force is 0.572 or 0.25. If c is 0.25 the force is 0.125. But if ¢ is exactly 1.0 the force

5.12 Pattern Modifiers 223

is 1.0. Recall that as c gets smaller the point is farther from the center of the black hole. Using the default
power of 2, you can see that as c reduces, the force reduces exponentially in an inverse-square relationship.
Put in plain English, it means that the force is much stronger (by a power of two) towards the center than it
is at the outside.

By increasingfalloff, you can increase the magnitude of the falloff. A large value will mean points
towards the perimeter will hardly be affected at all and points towards the center will be affected strongly.

A value of 1.0 forfalioff will mean that the effect is linear. A point that is exactly halfway to the center of

the black hole will be affected by a force of exactly 0.5. A valueaafiof of less than one but greater than

zero means that as you get closer to the outside, the force increases rather than decreases. This can have
some uses but there is a side effect. Recall that the effect of a black hole ceases outside its perimeter. This
means that points just within the perimeter will be affected strongly and those just outside not at all. This
would lead to a visible border, shaped as a sphere. A valuerfanotf of O would mean that the force

would be 1.0 for all points within the black hole, since any number larger O raised to the power of 0 is 1.0.

The strength keyword may be specified with a float value to give you a bit more control over how much
a point is perturbed by the black hole. Basically, the force of the black hole (as determined above) is
multiplied by the value oft rength, which defaults to 1.0. If you set strength to 0.5, for example, all points
within the black hole will be moved by only half as much as they would have been. If you set it to 2.0 they
will be moved twice as much.

There is a rider to the latter example, though - the movement is clipped to a maximum of the original

distance from the center. That is to say, a point that is 0.75 units from the center may only be moved by
a maximum of 0.75 units either towards the center or away from it, regardless of the value@fyth.

The result of this clipping is that you will have an exclusion area near the center of the black hole where all
points whose final force value exceeded or equaled 1.0 were moved by a fixed amount.

If the inverse keyword is specified then the poingsishedaway from the center instead of being pulled in.

The repeat keyword followed by a vector, allows you to simulate the effect of many black holes without
having to explicitly declare them. Repeat is a vector that tells POV-Ray to use this black hole at multiple
locations. Usingrepeat logically divides your scene up into cubes, the first being locatedda®,0> and
goingto <Repeat >. Suppose your repeat vector was,5,2>. The first cube would be frorr0,0,0> to

< 1,5,2>. This cube repeats, so there would be one at,-5,-2>, <1,5,2>, <2,10,4> and so forth in all
directions, ad infinitum.

When you useepeat, the center of the black hole does not specify an absolute location in your scene but
an offset into each block. It is only possible to use positive offsets. Negative values will produce undefined
results.

Suppose your center wa$).5,1,0.25- and the repeat vector is2,2,2>. This gives us a block at 0,0,0>
and<2,2,2>, etc. The centers of the black hole’s for these blocks would ®®,0> + < 0.5,1.0,0.25, i.
e.<0.5,1.0,0.25, and< 2,2,2> + <0.5,1.0,0.25, i. e. < 2,5,3.0,2.25..

Due to the way repeats are calculated internally, there is a restriction on the values you specify for the
repeat vector. Basically, each black hole must be totally enclosed within each block (or cube), with no part
crossing into a neighboring one. This means that, for each of the x, y and z dimensions, the offset of the
center may not be less than the radius, and the repeat value for that dimension meshéeenter plus

the radius since any other values would allow the black hole to cross a boundary. Put another way, for each
ofx,yandz

Radius<= Offset or Centexk = Repeat - Radius.

If the repeat vector in any dimension is too small to fit this criteria, it will be increased and a warning
message issued. If the center is less than the radius it will also be moved but no message will be issued.

Note that none of the above should be read to mean that you cannot overlap black holes. You most certainly
can and in fact this can produce some most useful effects. The restriction only applies to elements of the

224 Textures

same black hole which is repeating. You can declare a second black hole that also repeats and its elements
can quite happily overlap the first and causing the appropriate interactions. It is legal for the repeat value
for any dimension to be 0, meaning that POV-Ray will not repeat the black hole in that direction.

Theturbulence can only be used in a black hole withepeat. It allows an element of randomness to be
inserted into the way the black holes repeat, to cause a more natural look. A good example would be an
array of knotholes in wood - it would look rather artificial if each knothole were an exact distance from the
previous.

The turbulence Vector is a measurement that is added to each individual black hole in an array, after each
axis of the vector is multiplied by a different random amount ranging from 0 to 1. The resulting actual
position of the black hole’s center for that particular repeat element is random (but consistent, so renders
will be repeatable) and somewhere within the above coordinates. There is a rider on the use of turbulence,
which basically is the same as that of the repeat vector. You cannot specify a value which would cause a
black hole to potentially cross outside of its particular block.

In summary: For each of x, y and z the offset of the center mustdmadius and the value of the repeat
must be>= center + radius + turbulence. The exception being that repeat may be 0 for any dimension,
which means do not repeat in that direction.

Some examples are given by

warp {
black_hole <0, 0, 0>, 0.5
}
warp {
black_hole <0.15, 0.125, 0>, 0.5
falloff 7
strength 1.0
repeat <1.25, 1.25, 0>
turbulence <0.25, 0.25, 0>
inverse
}
warp {
black_hole <0, 0, 0>, 1.0
falloff 2
strength 2
inverse

Repeat Warp

The repeat Warp causes a section of the pattern to be repeated over and over. It takes a slice out of the
pattern and makes multiple copies of it side-by-side. The warp has many uses but was originally designed
to make it easy to model wood veneer textures. Veneer is made by taking very thin slices from a log
and placing them side-by-side on some other backing material. You see side-by-side nearly identical ring
patterns but each will be a slice perhaps 1/32th of an inch deeper.

The syntax for a repeat warp is

REPEAT_WARP:

warp { repeat <Direction> [REPEAT_ITEMS...] }
REPEAT_ITEMS:

offset <Amount> | flip <Axis>

The repeat vector specifies the direction in which the pattern repeats and the width of the repeated area.
This vector must lie entirely along an axis. In other words, two of its three components must be 0. For
example

5.12 Pattern Modifiers 225

pigment {
wood
warp { repeat 2*x }

}

which means that from x=0 to x=2 you get whatever the pattern usually is. But from x=2 to x=4 you get the
same thing exactly shifted two units over in the x-direction. To evaluate it you simply take the x-coordinate
modulo 2. Unfortunately you get exact duplicates which is not very realistic. The optienal vector

tells how much to translate the pattern each time it repeats. For example

pigment {

wood

warp {repeat x*2 offset z*0.05}
}

means that we slice the first copy from x=0 to x=2 at z=0 but at x=2 to x=4 we offset to z=0.05. In the 4
to 6 interval we slice at z=0.10. At the n-th copy we slice at 0.05 n z. Thus each copy is slightly different.
There are no restrictions on the offset vector.

Finally thef1ip vector causes the pattern to be flipped or mirrored every other copy of the pattern. The first
copy of the pattern in the positive direction from the axis is not flipped. The next farther is, the next is not,
etc. The flip vector is a three component x, y, z vector but each component is treated as a boolean value that
tells if you should or should not flip along a given axis. For example

pigment {

wood

warp {repeat 2*x flip <1,1,0>}
}

means that every other copy of the pattern will be mirrored about the x- and y- axis but not the z-axis. A
non-zero value means flip and zero means do not flip about that axis. The magnitude of the values in the
flip vector does not matter.

Turbulence versus Turbulence Warp

The POV-Ray language contains an ambiguity and limitation on the way you spegcifylence and trans-
formations such astranslate, rotate, scale, matrix, andtransform transforms. Usually the turbulence

is done first. Then all translate, rotate, scale, matrix, and transform operations are always done after turbu-
lence regardless of the order in which you specify them. For example this

pigment {
wood
scale .5
turbulence .2

}
works exactly the same as

pigment {
wood
turbulence .2
scale .5

}
The turbulence is always first. A better example of this limitation is with uneven turbulence and rotations.

pigment {
wood
turbulence 0.5*%y
rotate z*60

226 Textures

}
// as compared to
pigment {
wood
rotate z*60
turbulence 0.5*%y
}

The results will be the same either way even though you would think it should look different.

We cannot change this basic behavior in POV-Ray now because lots of scenes would potentially render
differently if suddenly the order transformation vs. turbulence mattered when in the past, it did not.

However, by specifying our turbulence inside warp statement you tell POV-Ray that the order in which
turbulence, transformations and other warps are applied is significant. Here is an example of a turbulence
warp.

warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }
The significance is that this

pigment {
wood
translate <1,2,3> rotate x*45 scale 2
warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }

}
producedifferent resultghan this...

pigment {
wood
warp { turbulence <0,1,1> octaves 3 lambda 1.5 omega 0.3 }
translate <1,2,3> rotate x*45 scale 2

}

You may specify turbulence without using a warp statement. However you cannot control the order in which
they are evaluated unless you put them in a warp.

The evaluation rules are as follows:

1. First any turbulence not inside a warp statement is applied regardless of the order in which it appears
relative to warps or transformations.

2. Next each warp statement, translate, rotate, scale or matrix one-by-one, is applied in the order the
user specifies. If you want turbulence done in a specific order, you simply specify it inside a warp in
the proper place.

Turbulence Warp

Inside thewarp statement, the keyworthrbulence followed by a float or vector may be used to stir up any
pigment, normal Of density. A number of optional parameters may be used with turbulence to control how
it is computed. The syntax is:

TURBULENCE_ITEM:
turbulence <Amount> | octaves Count |
omega Amount | lambda Amount

Typical turbulence values range from the default 0.0, which is no turbulence, to 1.0 or more, which is very
turbulent. If a vector is specified different amounts of turbulence are applied in the x-, y- and z-direction.
For example

5.12 Pattern Modifiers 227

turbulence <1.0, 0.6, 0.1>

has much turbulence in the x-direction, a moderate amount in the y-direction and a small amount in the
z-direction.

Turbulence uses a random noise function calbise This is similar to the noise used in thezo pattern

except that instead of giving a single value it gives a direction. You can think of it as the direction that the
wind is blowing at that spot. Points close together generate almost the same value but points far apart are
randomly different.

Turbulence useBNoiseto push a point around in several steps calledives. We locate the point we want
to evaluate, then push it around a bit using turbulence to get to a different point then look up the color or
pattern of the new point.

It says in effect”’Do not give me the color at this spot... take a few random steps in different directions and
give me that color’ Each step is typically half as long as the one before. For example:

Figure 5.7: Turbulence random walk.

The magnitude of these steps is controlled by the turbulence value. There are three additional parameters
which control how turbulence is computed. They ateaves, lambda and omega. Each is optional. Each
is followed by a single float value. Each has no effect when there is no turbulence.

Octaves

The octaves keyword may be followed by an integer value to control the number of steps of turbulence
that are computed. Legal values range from kttD. The default value of 6 is a fairly high value; you

will not see much change by setting it to a higher value because the extra steps are too small. Float values
are truncated to integer. Smaller numbers of octaves give a gentler, wavy turbulence and computes faster.
Higher octaves create more jagged or fuzzy turbulence and takes longer to compute.

Lambda

Thelambda parameter controls how statistically different the random move of an octave is compared to its
previous octave. The default value is 2.0 which is quite random. Values close to lambda 1.0 will straighten
out the randomness of the path in the diagram above. The zig-zag steps in the calculation are in nearly the
same direction. Higher values can look mevérly under some circumstances.

228 Textures

Omega

The omega value controls how large each successive octave step is compared to the previous value. Each
successive octave of turbulence is multiplied by the omega value. The defegt 0.5 means that each

octave is 1/2 the size of the previous one. Higher omega values mean that 2nd, 3rd, 4th and up octaves con-
tribute more turbulence giving a sharpeninkly look while smaller omegas give a fuzzy kind of turbulence

that gets blurry in places.

Mapping using warps

Syntax:

CYLINDRICAL_WARP:

warp { cylindrical [CYLINDRICAL_ITEMS...]}
CYLINDRICAL_ITEMS:

orientation VECTOR | dist_exp FLOAT
SPHERICAL_WARP:

warp { spherical [SPHERICAL_ITEMS...]}
SPHERICAL_ITEMS:

orientation VECTOR | dist_exp FLOAT
TOROIDAL_WARP:

warp { toroidal [TOROIDAL_ITEMS...]}
TOROIDAL_ITEMS:

orientation VECTOR | dist_exp FLOAT | major_radius FLOAT
PLANAR_WARP:

warp { planar [VECTOR , FLOAT]}

With the cylindrical, spherical andtoroidal warps you can wrap checkers, bricks and other patterns
around cylinders, spheres, toruses and other objects. In essence, these warps use the same mapping as the
image maps use.

However it does 3D mapping and some concession had to be made on depth. This is controllable by
dist_exp (distance exponent). In the default of 0, imagine a k0> to <1,1> (actually it is<0,0>,
<dist"dist_exp,dist"dist_exp>) stretching to infinity along the orientation vector. The warp takes its
points from that box.

For a sphereistance is distance from origin, cylinder is distance from y-axis, torus is distance from major
radius. (or distance is minor radius if you prefer to look at it that way)

Defaults: orientation <0,0,1>
dist_exp 0
major_radius 1

Examples:

torus {
1, 0.5
pigment {
hexagon
scale 0.1
warp {
toroidal
orientation y
dist_exp 1
major_radius 1

}

5.12 Pattern Modifiers 229

}
}
sphere {
0,1
pigment {
hexagon
scale <0.5/pi,0.25/pi, 1>*0.1
warp {
spherical
orientation y
dist_exp 1
}
}
}
cylinder {
“Yr Yr 1
pigment {
hexagon
scale <0.5/pi, 1, 1>*0.1
warp |
cylindrical
orientation y
dist_exp 1
}
}
}

Theplanar warp was made to make a pattern act like an image, of infinite size and can be useful

in combination with other mapping-warps. By default the pigment in the XY-plane is extruded along the
Z-axis. The pigment can be taken from an other plane, by specifying the optional vector (normal of the
plane) and float (distance along the normal). The result, again, is extruded along the Z-axis.

5.12.7 Bitmap Modifiers

A bitmap modifier is a modifier used inside aftge_map, bump_map Of material map to specify how the 2-D

bitmap is to be applied to the 3-D surface. Several bitmap modifiers apply to specific kinds of maps and
they are covered in the appropriate sections. The bitmap modifiers discussed in the following sections are
applicable to all three types of bitmaps.

The once Option

Normally there are an infinite number of repeating image maps, bump maps or material maps created over
every unit square of the x-y-plane like tiles. By addingdhe= keyword after a file name you can eliminate

all other copies of the map except the one at (0,0) to (1,1). In image maps, areas outside this unit square
are treated as fully transparent. In bump maps, areas outside this unit square are left flat with no normal
modification. In material maps, areas outside this unit square are textured with the first texture of the texture
list.

For example:
image_map {

gif "mypic.gif"
once

230 Textures

The map_type Option

The default projection of the image onto the x-y-plane is calleplanar map type This option may be
changed by adding thenap_type keyword followed by an integer number specifying the way to wrap the
image around the object.

A map_type 0 gives the default planar mapping already described.

A map_type 1 gives a spherical mapping. It assumes that the object is a sphere of any size sitting at the
origin. The y-axis is the north/south pole of the spherical mapping. The top and bottom edges of the image
just touch the pole regardless of any scaling. The left edge of the image begins at the positive x-axis and
wraps the image around the sphere from west to east in a -y-rotation. The image covers the sphere exactly
once. The once keyword has no meaning for this mapping type.

With map_type 2 you get a cylindrical mapping. It assumes that a cylinder of any diameter lies along the
y-axis. The image wraps around the cylinder just like the spherical map but the image remains one unit tall
from y=0 to y=1. This band of color is repeated at all heights unlessdhe keyword is applied.

Finally map_type 5 is a torus or donut shaped mapping. It assumes that a torus of major radius one sits at
the origin in the x-z-plane. The image is wrapped around similar to spherical or cylindrical maps. However
the top and bottom edges of the map wrap over and under the torus where they meet each other on the inner
rim.

Types 3 and 4 are still under development.
Note: that the map_type Option may also be applied t@ump_map andmaterial_map Statements.
For example:

sphere{<0,0,0>,1
pigment{
image_map {
gif "world.gif"
map_type 1
}

The interpolate Option

Adding theinterpolate keyword can smooth the jagged look of a bitmap. When POV-Ray checks a color
for an image map or a bump amount for a bump map, it often checks a point that is not directly on top of
one pixel but sort of between several differently colored pixels. Interpolations return an in-between value
so that the steps between the pixels in the map will look smoother.

Althoughinterpolate is legal in material maps, the color index is interpolated before the texture is chosen.
It does not interpolate the final color as you might hope it would. In general, interpolation of material maps
serves no useful purpose but this may be fixed in future versions.

There are currently two types of interpolation: interpolate 2 gives bilinear interpolation while
interpolate 4 gives normalized distance. For example:

image_map {
gif "mypic.gif"
interpolate 2

}

Default is no interpolation. Normalized distance is the slightly faster of the two, bilinear does a better job
of picking the between color. Normally bilinear is used.

5.12 Pattern Modifiers 231

If your map looks jaggy, try using interpolation instead of going to a higher resolution image. The results
can be very good.

232 Textures

Chapter 6

Interior & Media & Photons

6.1 Interior

Introduced in POV-Ray 3.1 is an object modifier statement calleterior. The syntax is:

INTERIOR:
interior { [INTERIOR_IDENTIFIER] [INTERIOR_ITEMS...] }
INTERIOR_ITEM:
ior Value | caustics Value | dispersion Value |
dispersion_samples Samples | fade_distance Distance |
fade_power Power | fade_color <Color>
MEDIA...

Interior default values:

ior
caustics
dispersion :
dispersion_samples :
fade_distance .0
fade_power .0
fade_color : <0,0,0>

O O 9B O

The interior contains items which describe the properties of the interior of the object. This is in contrast
to the texture andinterior_texture wWhich describe the surface properties only. The interior of an object

is only of interest if it has a transparent texture which allows you to see inside the object. It also applies
only to solid objects which have a well-defined inside/outside distinction.

Note: the open keyword, orclipped_ by modifier also allows you to see inside but interior features may not
render properly. They should be avoided if accurate interiors are required.

Interior identifiers may be declared to make scene files more readable and to parameterize scenes so that
changing a single declaration changes many values. An identifier is declared as follows.

INTERIOR_DECLARATION:
#declare IDENTIFIER = INTERIOR |
#local IDENTIFIER = INTERIOR

Where IDENTIFIER is the name of the identifier up to 40 characters long BMIBERIORIs any valid
interior Statement. See "#declare vs. #local” for information on identifier scope.

234 Interior & Media & Photons

6.1.1 Why are Interior and Media Necessary?

In previous versions of POV-Ray, most of the items in theerior Statement were previously part of
the finish statement. Also thealo statement which was once part of thexture statement has been
discontinued and has been replaced byxthea statement which is part ahterior.

You are probably askingVHY? As explained earlier, thenterior contains items which describe the
properties of the interior of the object. This is in contrast to thecure which describes the surface
properties only. However this is not just a philosophical change. There were serious inconsistencies in the
old model.

The main problem arises when@ture map Or other patterned texture is used. These features allow you to
create textures that are a blend of two textures and which vary the entire texture from one point to another.
It does its blending by fully evaluating the apparent color as though only one texture was applied and then
fully reevaluating it with the other texture. The two final results are blended.

It is totally illogical to have a ray enter an object with one index or refraction and then recalculate with
another index. The result is not an average of the two ior values. Similarly it makes no sense to have a ray
enter at one ior and exit at a different ior without transitioning between them along the way. POV-Ray only
calculates refraction as the ray enters or leaves. It cannot incrementally compute a changing ior through
the interior of an object. Real world objects such as optical fibers or no-line bifocal eyeglasses can have
variable iors but POV-Ray cannot simulate them.

Similarly thehalo calculations were not performed as the syntax implied. Usingia in such multi-

textured objects did not vary the1o through the interior of the object. Rather, it computed two separate
halos through the whole object and averaged the results. The new desigafowhich replaceshalo

makes it possible to have media that varies throughout the interior of the object according to a pattern but it
does so independently of the surface texture. Because there are other changes in the design of this feature
which make it significantly different, it was not only moved to theerior but the name was changed.

During our development, someone asked if we will create patterned interiors or a hypotheticabr_map
feature. We will not. That would defeat the whole purpose of moving these features in the first place. They
cannot be patterned and have logical or self-consistent results.

6.1.2 Empty and Solid Objects

It is very important that you know the basic concept behind empty and solid objects in POV-Ray to fully
understand how features like interior and translucency are used. Objects in POV-Ray can either be solid,
empty or filled with (small) particles.

A solid object is made from the material specified by its pigment and finish statements (and to some degree
its normal statement). By default all objects are assumed to be solid. If you assign a stone texture to a
sphere you will get a ball made completely of stone. Itis like you had cut this ball from a block of stone. A
glass ball is a massive sphere made of glass. You should be aware that solid objects are conceptual things.
If you clip away parts of the sphere you will clearly see that the interior is empty and it just has a very thin
surface.

This is not contrary to the concept of a solid object used in POV-Ray. It is assumed that all space inside
the sphere is covered by the spherescerior. Light passing through the object is affected by attenuation
and refraction properties. However there is no room for any other particles like those used by fog or interior
media.

Empty objects are created by adding the1ow keyword (see "Hollow”) to the object statement. An empty
(or hollow) object is assumed to be made of a very thin surface which is of the material specified by the
pigment, finish and normal statements. The object’s interior is empty, it normally contains air molecules.

6.1 Interior 235

An empty object can be filled with particles by adding fog or atmospheric media to the scene or by adding
an interior media to the object. It is very important to understand that in order to fill an object with any kind
of particles it first has to be made hollow.

There is a pitfall in the empty/solid object implementation that you have to be aware of.

In order to be able to put solid objects inside a media or fog, a test has to be made for every ray that passes
through the media. If this ray travels through a solid object the media will not be calculated. This is what
anyone will expect. A solid glass sphere in a fog bank does not contain fog.

The problem arises when the camera ray is inside any non-hollow object. In this case the ray is already
traveling through a solid object and even if the media’s container object is hit and it is hollow, the media
will not be calculated. There is no way of telling between these two cases.

POV-Ray has to determine whether the camera is inside any object prior to tracing a camera ray in order to
be able to correctly render medias when the camera is inside the container object. There is no way around
doing this.

The solution to this problem (that will often happen with infinite objects like planes) is to make those objects
hollow too. Thus the ray will travel through a hollow object, will hit the container object and the media will
be calculated.

6.1.3 Scaling objects with an interior

All the statements that can be put in an interior represent aspects of the matter that an object is made of.
Scaling an object, changing its size, does not change its matter. Two pieces of the same quality steel, one
twice as big as the other, both have the same density. The bigger piece is quite a bit heavier though.

So, in POV-Ray, if you design a lens from a glass with an ior of 1.5 and you scale it bigger, the focal distance

of the lens will get longer as the ior stays the same. For light attenuation it means that an object will be

"darker” after being scaled up. The light intensity decreases a certain amount per pov-unit. The object has
become bigger, more pov-units, so more light is faded. fidde_distance, fade_power themselves have

not been changed.

The same applies to media. Imagine media as a density of particles, you specify 100 particles per cubic
pov-unit. If we scale a 1 cubic pov-unit object to be twice as big in every direction, we will have a total of
800 patrticles in the object. The object will look different, as we have more particles to look through. Yet the
objects density is still 100 particles per cubic pov-unit. In media this "particle density” is set by the color
afteremission, absorption, Or in thescattering Statement

#version 3.5;
global_settings {assumed_gamma 1.0}
camera {location <0, 0,-12.0> look_at 0 angle 30 }
#declare Container_T= texture {
pigment {rgbt <1,1,1,1>}
finish {ambient 0 diffuse 0}
}

#declare Scale=2;

box { //The reference
<-1,-1,0>,<1,1,.3>
hollow
texture {Container_T}
interior {
media {
intervals 1

236 Interior & Media & Photons

samples 1,1
emission 1
}
}
translate <-2.1,0,0>

}

box { //Object scaled twice as big
<-1,-1,0>,<1,1,.3> //looks different but same
hollow //particle density

texture {Container_T}
interior {
media {
intervals 1
samples 1,1
emission 1
}
}
scale Scale
translate<0,0,12>
}

box { //Object scaled twice as big
<-1,-1,0>,<1,1,.3> //looks the same but particle
hollow //density scaled down

texture {Container_T}
interior {
media {
intervals 1
samples 1,1
emission 1/Scale
}
}
scale Scale
translate<0,0,12>
translate<4.2,0,0>
}

The third object in the scene above, shows what to do, if you want to scale theajeeant it to keep the
same look as before. The interior feature has to be divided by the same amount, that the object was scaled
by. This is only possible when the object is scaled uniform.

In general, the correct approach is to scale the media density proportionally to the change in container
volume. For non-uniform scaling to get an unambiguous result, that can be explained in physical terms, we
need to do:

Density*sqrt (3) /vlength(Scale)
where Density is your original media density and Scale is the scaling vector applied to the container.

Note: the density modifiers inside thensity{} statement are scaled along with the object.

6.1.4 Refraction

When light passes through a surface either into or out of a dense medium the path of the ray of light is bent.
Such bending is calledefraction The amount of bending or refracting of light depends upon the density
of the material. Air, water, crystal and diamonds all have different densities and thus refract differently. The

6.1 Interior 237

index of refractioror ior value is used by scientists to describe the relative density of substances.rThe
keyword is used in POV-Ray in theterior to turn on refraction and to specify the ior value. For example:

object { MyObject pigment {Clear } interior { ior 1.5 } }

The default ior value of 1.0 will give no refraction. The index of refraction for air is 1.0, water is 1.33, glass
is 1.5 and diamond is 2.4.

Normally transparent or semi-transparent surfaces in POV-Ray do not refract light. Earlier versions of POV-
Ray required you to use theefraction keyword in thefinish statement to turn on refraction. This is no
longer necessary. Any non-zereér value now turns refraction on.

In addition to turning refraction on or off, the ot@fraction keyword was followed by a float value from

0.0to 1.0. Values in between 0.0 and 1.0 would darken the refracted light in ways that do not correspond to
any physical property. Many POV-Ray scenes were created with intermediate refraction values before this
bug was discovered so the feature has been maintained. A more appropriate way to reduce the brightness
of refracted light is to change thelter or transnit value in the colors specified in the pigment statement

or to use th&ade power andfade_distance keywords. See "Attenuation”.

Note: neither theior nor refraction keywords cause the object to be transparent. Transparency only
occurs if there is a non-zem1ter Or transmit value in the color.

The refraction andior keywords were originally specified ifinish but are now properly specified in
interior. They are accepted ifinish for backward compatibility and generate a warning message.

6.1.5 Dispersion

For all materials with a ior different from 1.0 the refractive index is not constant throughout the spectrum. It
changes as a function of wavelength. Generally the refractive index decreases as the wavelength increases.
Therefore light passing through a material will be separated according to wavelength. This is known as
chromatic dispersion.

By default POV-Ray does not calculate dispersion as light travels through a transparent object. In or-
der to get a more realistic effect thespersion anddispersion_samples keywords can be added to the
interior{} block. They will simulate dispersion by creating a prismatic color effect in the object.

Thedispersion value is the ratio of refractive indices for violet to red. It controls the strength of dispersion
(how much the colors are spread out) used. A DISPERSWBNUE of 1 will give no dispersion, good
values are 1.01to 1.1.

Note: there will be no dispersion, unless the keyword has been specifiedifterior{ }. Aniorof1lis
legal. The ior has no influence on the dispersion strength, only on the angle of refraction.

As POV-Ray does not use wavelengths for raytracing, a spectrum is simulated.isphesion_samples
value controls the amount of color-steps and smoothness in the spectrum. The default value is 7, the
minimum is 2. Values up to 100 or higher may be needed to get a very smooth result.

Dispersion & Caustics

Dispersion only affects the interior of an object and has no effect on faked caustics (See "Faked Caustics”).
To see the effects of dispersion in caustics, photon mapping is needed (See the sections "Photons” and
"Dispersion & Photons”).

238 Interior & Media & Photons

6.1.6 Attenuation

Light attenuation is used to model the decrease in light intensity as the light travels through a transparent
object. The keywordsade power, fade_distance andfade_color are specified in theénterior Statement.

The fade_distance value determines the distance the light has to travel to reach half intensity while the
fade_power value determines how fast the light will fall offfade_color colorizes the attenuation. For
realistic effects a fade power of 1 to 2 should be used. Default valugsderower andfade_distance is

0.0 which turns this feature off. Default f@ade_color is <0,0, 0>, if fade_color is <1,1,1> there is no
attenuation. The actual colors give colored attenuatiano, 0> looks red, not cyan as in media.

The attenuation is calculated by a formula similar to that used for light source attenuation.

1

attenuation=)fad&pOWEI'

1+ (

fade_distance,

Equation 6.1:

If you set fadepower in the interior of an object at 1000 or above, a realistic exponential attenuation function
will be used:

Attenuation = exp(-depth/fade_dist)

The fade_power and fade_distance keywords were originally specified ininish but are now properly
specified ininterior. They are accepted ifinish for backward compatibility and generate a warning
message.

6.1.7 Simulated Caustics

Caustics are light effects that occur if light is reflected or refracted by specular reflective or refractive
surfaces. Imagine a glass of water standing on a table. If sunlight falls onto the glass you will see spots of
light on the table. Some of the spots are caused by light being reflected by the glass while some of them are
caused by light being refracted by the water in the glass.

Since it is a very difficult and time-consuming process to actually calculate those effects (though it is not
impossible, see the sections "Photons”) POV-Ray uses a quite simple method to simulate caustics caused by
refraction. The method calculates the angle between the incoming light ray and the surface normal. Where
they are nearly parallel it makes the shadow brighter. Where the angle is greater, the effect is diminished.
Unlike real-world caustics, the effect does not vary based on distance. This caustic effect is limited to areas
that are shaded by the transparent object. You will get no caustic effects from reflective surfaces nor in parts
that are not shaded by the object.

Thecaustics Power keyword controls the effect. Values typically range from 0.0 to 1.0 or higher. Zero is
the default which is no caustics. Low, non-zero values give broad hot-spots while higher values give tighter,
smaller simulated focal points.

The caustics keyword was originally specified infinish but is now properly specified ithterior. Itis
accepted in finish for backward compatibility and generates a warning message.

6.1.8 Object-Media

The interior statement may contain one or makeiia statements. Media is used to simulate suspended
particles such as smoke, haze, or dust. Or visible gasses such as steam or fire and explosions. When used

6.2 Media 239

with an object interior, the effect is constrained by the object’s shape. The calculations begin when the
ray enters an object and ends when it leaves the object. This section only discusses media when used with
object interior. The complete syntax and an explanation of all of the parameters and optiaas fois

given in the section "Media”.

Typically the object itself is given a fully transparent texture however media also works in partially trans-
parent objects. The texture pattern itself does not effect the interior media except perhaps to create shadows
on it. The texture pattern of an object applies only to the surface shell. Any interior media patterns are
totally independent of the texture.

In previous versions of POV-Ray, this feature was called o and was part of thetexture specification
along with pigment, normal,andfinish. See "Why are Interior and Media Necessary?” for an explanation
of the reasons for the change.

Media may also be specified outside an object to simulate atmospheric media. There is no constraining
object in this case. If you only want media effects in a particular area, you should use object media rather
than only relying upon the media pattern. In general it will be faster and more accurate because it only
calculates inside the constraining object. See "Atmospheric Media” for details on unconstrained uses of
media.

You may specify more than onedia statement perinterior Statement. In that case, all of the media
participate and where they overlap, they add together.

Any object which is supposed to have media effects inside it, whether those effects are object media or
atmospheric media, must have thelow on keyword applied. Otherwise the media is blocked. See "Empty
and Solid Objects” for detalils.

6.2 Media

Themedia Statement is used to specify particulate matter suspended in a medium such air or water. It can
be used to specify smoke, haze, fog, gas, fire, dust etc. Previous versions of POV-Ray had two incompatible
systems for generating such effects. One was for effects enclosed in a transparent or semi-transparent
object. The other wastnosphere for effects that permeated the entire scene. This duplication of systems
was complex and unnecessary. Botlalo andatmosphere have been eliminated. See "Why are Interior

and Media Necessary?” for further details on this change. See "Object Media” for details on how to use
media With objects. See "Atmospheric Media” for details on usiagia for atmospheric effects outside of
objects. This section and the sub-sections which follow explains the details of the vatiaus options

which are useful for either object media or atmospheric media.

Media works by sampling the density of particles at some specified number of points along the ray’s path.
Sub-samples are also taken until the results reach a specified confidence level. POV-Ray provides three
methods of sampling. When used in an object'sterior statement, sampling only occurs inside the
object. When used for atmospheric media, the samples run from the camera location until the ray strikes an
object. Therefore for localized effects, it is best to use an enclosing object even though the density pattern
might only produce results in a small area whether the media was enclosed or not.

The complete syntax forsedia statement is as follows:

MEDIA:
media { [MEDIA_IDENTIFIER] [MEDIA_ITEMS...] }
MEDIA_ITEMS:
method Number | intervals Number | samples Min, Max |
confidence Value | variance Value | ratio Value |
absorption COLOR | emission COLOR | aa_threshold Value |
aa_level Value |
scattering {

240 Interior & Media & Photons

Type, COLOR [eccentricity Value] [extinction Value]
b
density {
[DENSITY_IDENTIFIER] [PATTERN_TYPE] [DENSITY_ MODIFIER...]
} \
TRANSFORMATIONS
DENSITY_MODIFIER:
PATTERN_MODIFIER | DENSITY_ LIST | COLOR_LIST |
color_map { COLOR_MAP_BODY } | colour_map { COLOR_MAP_BODY } |
density_map { DENSITY_MAP_BODY }

Media default values:

aa_level 4
aa_threshold : 0.1
absorption : <0,0,0>
confidence : 0.9
emission : <0,0,0>
intervals . 10
method : 3
ratio : 0.9
samples : Min 1, Max 1
variance : 1/128
SCATTERING
COLOR : <0,0,0>
eccentricity : 0.0
extinction : 1.0

If a media identifier is specified, it must be the first item. All other media items may be specified in
any order. All are optional. You may have multiplensity statements in a single:dia statement. See
"Multiple Density vs. Multiple Media” for details. Transformations apply only thesity statements

which have been already specified. Adwnsity after a transformation is not affected. If theiia has no
density statements and none was specified in any media identifier, then the transformation has no effect.
All other media items except forensity and transformations override default values or any previously set
values for thisnedia statement.

Note: some media effects depend upon light sources. However the participation of a light source depends
upon themedia_interaction andmedia_attenuation keywords. See "Atmospheric Media Interaction” and
"Atmospheric Attenuation” for details.

Note: In the POV-Ray 3.1 documentation it said: "Note a strange design side-effect was discovered during
testing and it was too difficult to fix. If the enclosing object usesnsmit rather thanfilter for trans-
parency, then theedia casts no shadows.” This is not the case anymore since POV-Ray 3.5. Whether you
specifytransmit Or filter tO create a transparent container objectthea will always cast a shadow. If

a shadow is not desired, use theshadow keyword for the container object.

6.2.1 Media Types

There are three types of particle interactiondnia: absorbing, emitting, and scattering. All three activities

may occur in a single media. Each of these three specifications requires a color. Only the red, green, and
blue components of the color are used. The filter and transmit values are ignored. For this reason it is
permissible to use one float value to specify an intensity of white color. For example the following two
lines are legal and produce the same results:

emission 0.75
emission rgb<0.75,0.75,0.75>

6.2 Media 241

Absorption

Theabsorption keyword specifies a color of light which is absorbed when looking through the media. For
examplesbsorption rgb<0, 1, 0> blocks the green light but permits red and blue to get through. Therefore
a white object behind the media will appear magenta.

The default value isgb<0, 0, 0> which means no light is absorbed — all light passes through normally.

Emission

Theenission keyword specifies a color of the light emitted from the particles. Although we say they "emit”
light, this only means that they are visible without any illumination shining on them. They do not really
emit light that is cast on to nearby objects. This is similar to an object withdrigtent values. The default
value is rgb<0, 0, 0> which means no light is emitted.

Scattering

The syntax of acattering Statement is:

SCATTERING:
scattering {
Type, COLOR [eccentricity Value] [extinction Value]
}

The first float value specifies the type of scattering. This is followed by the color of the scattered light. The
default value if no scattering Statement is given isgb<0, 0, 0> which means no scattering occurs.

The scattering effect is only visible when light is shining on the media from a light source. This is similar to
diffuse reflection off of an object. In addition to reflecting light, a scattering media also absorbs light like
an absorption media. The balance between how much absorption occurs for a given amount of scattering
is controlled by the optionakxtinction keyword and a single float value. The default value of 1.0 gives an
extinction effect that matches the scattering. Values suehtasction 0.25 give 25% the normal amount.
Using extinction 0.0 turns it off completely. Any value other than the 1.0 default is contrary to the real
physical model but decreasing extinction can give you more artistic flexibility.

The integer value Type specifies one of five different scattering phase functions representing the different
models: isotropic, Mie (haze and murky atmosphere), Rayleigh, and Henyey-Greenstein.

Type 1,isotropic scatterings the simplest form of scattering because it is independent of direction. The
amount of light scattered by particles in the atmosphere does not depend on the angle between the viewing
direction and the incoming light.

Types 2 and 3 ardlie hazeand Mie murkyscattering which are used for relatively small particles such

as minuscule water droplets of fog, cloud particles, and particles responsible for the polluted sky. In this
model the scattering is extremely directional in the forward direction i.e. the amount of scattered light is
largest when the incident light is anti-parallel to the viewing direction (the light goes directly to the viewer).
It is smallest when the incident light is parallel to the viewing direction. The haze and murky atmosphere
models differ in their scattering characteristics. The murky model is much more directional than the haze
model.

Type 4Rayleigh scatteringnodels the scattering for extremely small particles such as molecules of the air.
The amount of scattered light depends on the incident light angle. It is largest when the incident light is
parallel or anti-parallel to the viewing direction and smallest when the incident light is perpendicular to the
viewing direction. You should note that the Rayleigh model used in POV-Ray does not take the dependency
of scattering on the wavelength into account.

242 Interior & Media & Photons

05

0.0

The light is coming from here

0.0 05 1.0

Figure 6.1: The Mie haze scattering function

05

The light is coming from here

0.0 05 1.0

Figure 6.2: The Mie murky scattering function.

The light is coming from here
o
53

Figure 6.3: The Rayleigh scattering function.

6.2 Media 243

Type 5 is theHenyey-Greenstein scatterimgodel. It is based on an analytical function and can be used to
model a large variety of different scattering types. The function models an ellipse with a given eccentricity
e. This eccentricity is specified by the optional keywogdcentricity which is only used for scattering

type five. The default eccentricity value of zero defines isotropic scattering while positive values lead to
scattering in the direction of the light and negative values lead to scattering in the opposite direction of the
light. Larger values of e (or smaller values in the negative case) increase the directional property of the
scattering.

1.00

The light is coming from here
)
=]
S
p
&2
ANA
i~
! i
| i
! i
| i
Vg
\, o/

Figure 6.4: The Henyey-Greenstein scattering function for different eccentricity values.

6.2.2 Sampling Parameters & Methods

Media effects are calculated by sampling the media along the path of the ray. It uses a method called
Monte Carlo integration.The intervals keyword may be used to specify the integer number of intervals
used to sample the ray. The default number of intervals is 10. For object media the intervals are spread
between the entry and exit points as the ray passes through the container object. For atmospheric media,
the intervals spans the entire length of the ray from its start until it hits an object. For media types which
interact with spotlights or cylinder lights, the intervals which are not illuminated by these light types are
weighted differently than the illuminated intervals when distributing samples.

Theratio keyword distributes intervals differently between lit and unlit areas. The default value af

0.9 means that lit intervals get more samples than unlit intervals. Note that the total number of intervals
must exceed the number of illuminated intervals. If a ray passes in and out of 8 spotlights but you have only
specified 5 intervals then an error occurs.

The samples Min, Max keyword specifies the minimum and maximum number of samples taken per
interval. The default values ak@mples 1,1.

As each interval is sampled, the variance is computed. If the variance is below a threshold value, then no
more samples are needed. Theiance andconfidence keywords specify the permitted variance allowed

and the confidence that you are within that variance. The exact calculations are quite complex and involve
chi-squared tests and other statistical principles too messy to describe here. The default valiiesrare

1.0/128 andconfidence 0.9. For slower more accurate results, decrease the variance and increase the
confidence.

Note: the maximum number of samples limits the calculations even if the proper variance and confidence
are never reached.

Thenethod keyword lets you specify what sampling method is used, POV-Ray provides threed 1 is
the method described above.

244 Interior & Media & Photons

Samplermethod 2 distributes samples evenly along the viewing ray or light ray. The latter can make things
look smoother sometimes. If you specify a max samples higher than the minimum samples, POV will take
additional samples, but they will be random, just like in method 1. Therefore, it is suggested you set the
max samples equal to the minimum samples.ter will cause method 2 to look similar to method 1. It
should be followed by a float, and a value of 1 will stagger the samples in the full range between samples.

Samplemethod 3 uses adaptive sampling (similar to adaptive anti-aliasing) which is very much like the
sampling method used in POV-Ray 3.0’s atmosphere. This code was written from the ground-up to work
with media, however. Adaptive sampling works by taking another sample between two existing samples if
there is too much variance in the original two samples. This leads to fewer samples being taken in areas
where the effect from the media remains constant. The adaptive sampling is only performed if the minimum
samples are set to 3 or more.

You can specify the anti-aliasing recursion depth usingthe=ve1 keyword followed by an integer. You

can specify the anti-aliasing threshold by using4hehresho1d followed by a float. The default fara_-

level is 4 and the defaulta_threshold is 0.1.5itter also works with method 3. Sample method 3 ignores
the maximum samples value. It is usually best to only use one interval with method 3. Too many intervals
can lead to artefacts, and POV will create more intervals if it needs them.

6.2.3 Density

Particles of media are normally distributed in constant density throughout the media. Howeuersthe
statement allows you to vary the density across space using any of POV-Ray’s pattern functions such as
those used in textures. If nensity statement is given then the density remains a constant value of 1.0
throughout the media. More than ofesity may be specified pekedia statement. See "Multiple Density

vs. Multiple Media”. The syntax fofiensity is:

DENSITY:
density
{
[DENSITY_ IDENTIFIER]
[DENSITY_TYPE]
[DENSITY_MODIFIER...]
}
DENSITY_TYPE:
PATTERN_TYPE | COLOR
DENSITY_MODIFIER:
PATTERN_MODIFIER | DENSITY_LIST | color_map { COLOR_MAP_BODY } |
colour_map { COLOR_MAP_BODY } | density_map { DENSITY_MAP_BODY }

The density statement may begin with an optional density identifier. All subsequent values modify the
defaults or the values in the identifier. The next item is a pattern type. This is any one of POV-Ray'’s pattern
functions such asozo, wood, gradient, waves, etc. Of particular usefulness are thgerical, planar,
cylindrical, andboxed patterns which were previously available only for use with our discontinues
feature. All patterns return a value from 0.0 to 1.0. This value is interpreted as the density of the media at
that particular point. See "Patterns” for details on particular pattern types. Although £€alli@Rpattern

is legal, in general it is used only when thesity statement is inside @&nsity map.

General Density Modifiers

A density statement may be modified by any of the general pattern modifiers such as transformations,
turbulence and warp. See "Pattern Modifiers” for details. In addition there are several density-specific
modifiers which can be used.

6.2 Media 245

Density with color_map

Typically amedia uses just one constant color throughout. Even if you vary the density, it is usually just
one color which is specified by th@sorption, emission, Or scattering keywords. However when using
emission to simulate fire or explosions, the center of the flame (high density area) is typically brighter and
white or yellow. The outer edge of the flame (less density) fades to orange, red, or in some cases deep
blue. To model the density-dependent change in color which is visible, you may speeifyoa_map. The

pattern function returns a value from 0.0 to 1.0 and the value is passed to the color map to compute what
color or blend of colors is used. See "Color Maps” for details on how pattern values workavith nap.

This resulting color is multiplied by theabsorption, emission and scattering color. Currently there is

no way to specify different color maps for each media type within the same statement.

Consider this example:

media{
emission 0.75
scattering {1, 0.5}
density { spherical
color_map {
[0.0 rgb <0,0,0.5>]
[0.5 rgb <0.8, 0.8, 0.4>]
[1.0 rgb <1,1,1>]
}
}
}

The color map ranges from white at density 1.0 to bright yellow at density 0.5 to deep blue at density O.
Assume we sample a point at density 0.5. The emission is €.0%0.8,0.4- or <0.6,0.6,0.3-. Similarly
the scattering color is 0.5*0.8,0.8,0.4 or <0.4,0.4,0.2..

For block pattern typeshecker, hexagon, and brick you may specify a color list such as this:

density({
checker
density {rgb<1,0,0>}
density {rgb<0,0,0>}
}

See "Color List Pigments” which describes hewment uses a color list. The same principles apply when
using them withdensity.

Density Maps and Density Lists

In addition to specifying blended colors with a color map you may create a blend of densities using a
density.map. The syntax for a density map is identical to a color map except you specify a density in each
map entry (and not a color).

The syntax forensity_map is as follows:

DENSITY MAP:

density_map { DENSITY_MAP_BODY }
DENSITY MAP_BODY:

DENSITY MAP_IDENTIFIER | DENSITY MAP_ENTRY...
DENSITY MAP ENTRY:

[Value DENSITY BODY]

Wherevalue is a float value between 0.0 and 1.0 inclusive and €2ENSITYBODY is anything which
can be inside a@ensity{...} statement. Theensity keyword and{} braces need not be specified.

246 Interior & Media & Photons

Note: the [1 brackets are part of the actudENSITYMAP_ENTRY They are not notational symbols
denoting optional parts. The brackets surround each entry in the density map.

There may be from 2 to 256 entries in the map.

Density maps may be nested to any level of complexity you desire. The densities in a map may have color
maps or density maps or any type of density you want.

Entire densities may also be used with the block patterns sucthascer, hexagon andbrick. For exam-
ple...

density {
checker
density { Flame scale .8 }
density { Fire scale .5 }

}
Note: in the case of block patterns thensity wrapping is required around the density information.
A density map is also used with theerage density type. See "Average” for details.

You may declare and use density map identifiers but the only way to declare a density block pattern list is
to declare a density identifier for the entire density.

Multiple Density vs. Multiple Media

Itis possible to have more than oneiia specified per object and it is legal to have more thandneity
per media. The effects are quite different. Consider this example:

object {
MyObject
pigment { rgbf 1 }
interior {
media {
density { Some_Density }
density { Another_Density }
}
}
}

As the media is sampled, calculations are performed for each density pattern at each sample point. The
resulting samples are multiplied together. Suppose one density retugpeds, .8, .4> and the other
returnedrgb<.25, .25,0>. The resulting color isrgb<.2, .2, 0>.

Note: in areas where one density returns zero, it will wipe out the other density. The end result is that only
density areas which overlap will be visible. This is similar to a CSG intersection operation. Now consider

object {
MyObject
pigment { rgbf 1 }
interior {
media {
density { Some_Density }
}
media {
density { Another_Density }
}
}

6.3 Photons 247

In this case each media is computed independently. The resulting colors are added together. Suppose one
density and media returnedgb<.8, .8, .4> and the other returnedgb<.25, .25, 0>. The resulting color

iS rgb<1.05,1.05,.4>. The end result is that density areas which overlap will be especially bright and alll
areas will be visible. This is similar to a CSG union operation. See the sample seeBe\interior\
media\media4.pov for an example which illustrates this.

6.3 Photons

6.3.1 Overview

The basic goal of this implementation of the photon map is to render true reflective and refractive caustics.
The photon map was first introduced by Henrik Wann Jensen (see Suggested Reading).

Photon mapping is a technique which uses a forward ray-tracing pre-processing step to render refractive
and reflective caustics realistically. This means that mirrors can reflect light rays and lenses can focus light.

Photon mapping works by shooting packets of light (photons) from light sources into the scene. The photons
are directed towards specific objects. When a photon hits an object after passing through (or bouncing off
of) the target object, the ray intersection is stored in memory. This data is later used to estimate the amount
of light contributed by reflective and refractive caustics.

Examples

Figure 6.5: Reflective caustics

This image shows refractive caustics from a sphere and a cylinder. Both use an index of refraction of
Also visible is a small amount of reflective caustics from the metal sphere, and also from the clear cylinder
and sphere.

Here we have three lenses and three light sources. The middle lens has photon mapping turned off. You can
also see some reflective caustics from the brass box (some light reflects and hits the blue box, other light
bounces through the nearest lens and is focused in the lower left corner of the image).

6.3.2 Using Photon Mapping in Your Scene

When designing a scene with photons, it helps to think of the scene objects in two categories. Objects in the
first category will show photon caustics when hit by photons. Objects in the second category cause photon

248 Interior & Media & Photons

Figure 6.6: Photons used for lenses and caustics

caustics by reflecting or refracting photons. Some objects may be in both categories, and some objects may
be in neither category.

Category 1 - Objects that show photon caustics

By default, all objects are in the first category. Whenever a photon hits an object, the photon is stored and
will later be used to render caustics on that object. This means that, by default, caustics from photons can
appear on any surface. To speed up rendering, you can take objects out of this category. You do this with
the line:photons{collect off}. If you use this syntax, caustics from photons will not appear on the object.
This will save both memory and computational time during rendering.

Category 2 - Objects that cause photon caustics

By default, there are no objects in the second category. If you want your object to cause caustics, you need
to do two things. First, make your object into a "target.” You do this withttheet keyword. This enables

light sources to shoot photons at your object. Second, you need to specify if your object reflects photons,
refracts photons, or both. This is done with th&lection on andrefraction on keywords. To allow an

object to reflect and refract photons, you would use the following lines of code inside the object:

photons{
target
reflection on
refraction on

}

Generally speaking, you do not want an object to be in both categories. Most objects that cause photon
caustics do not themselves have much color or brightness. Usually they simply refract or reflect their
surroundings. For this reason, it is usually a waste of time to display photon caustics on such surfaces.
Even if computed, the effects from the caustics would be so dim that they would go unnoticed.

Sometimes, you may also wish to agithtons{collect off} to other clear or reflective objects, even if
they are not photon targets. Again, this is done to prevent unnecessary computation of caustic lighting.

Finally, you may wish to enable photon reflection and refraction for a surface, even if it is not a target. This
allows indirect photons (photons that have already hit a target and been reflected or refracted) to continue
their journey after hitting this object.

Photon Global Settings

global_photon_block:
photons {
spacing <photon_spacing> | count <photons_to_shoot>

6.3 Photons 249

[gather <min_gather>, <max_gather>]

[media <max_steps> [,<factor>]]

[jitter <jitter_amount>]

[max_trace_level <photon_trace_level>]

[adc_bailout <photon_adc_bailout>]

[save_file "filename" | load_file "filename"]

[autostop <autostop_fraction>]

[expand_thresholds <percent_increase>, <expand_min>]

[radius <gather_radius>,<multiplier>,
<gather_radius_media>,<multiplier>]

}

All photons default values:

Global :
expand_min . 40
gather : 20, 100
jitter : 0.4
media : 0
Object
collect : on
refraction : off
reflection . off
split_union : on
target : 1.0

Light_source:

area_light . off
refraction . off
reflection : off

To specify photon gathering and storage options you need to add a photons block to thesgitibgs
section of your scene.

For example:

global_settings {
photons {
count 20000
autostop 0
jitter .4

}
The number of photons generated can be set using either the spacing or count keywords:

« If spacing is used, it specifies approximately the average distance between photons on surfaces. If
you cut the spacing in half, you will get four times as many surface photons, and eight times as many
media photons.

« If count is used, POV-Ray will shoot the approximately number of photons specified. The actual
number of photons that result from this will almost always be at least slightly different from the
number specified. Still, if you double the photaiesshoot value, then twice as many photons will be
shot. If you cut the value in half, then half the number of photons will be shot.

— It may be less, because POV shoots photons at a target object’s bounding box, which means that
some photons will miss the target object.

250 Interior & Media & Photons

— On the other hand, may be more, because each time one object hits an object that has both
reflection and refraction, two photons are created (one for reflection and one for refraction).

— POV will attempt to compensate for these two factors, but it can only estimate how many
photons will actually be generated. Sometimes this estimation is rather poor, but the feature
is still usable.

The keywordyather allows you to specify how many photons are gathered at each point during the regular
rendering step. The first number (default 20) is the minimum number to gather, while the second number
(default 100) is the maximum number to gather. These are good values and you should only use different
ones if you know what you are doing.

The keywordnedia turns on media photons. The parameter_steps specifies the maximum number of
photons to deposit over an interval. The optional parameter factor specifies the difference in media spacing
compared to surface spacing. You can increase factor and decreastapsaif too many photons are being
deposited in media.

The keywordjitter specifies the amount of jitter used in the sampling of light rays in the pre-processing
step. The default value is good and usually does not need to be changed.

The keywordsax_trace_level andadc_bailout allow you to specify these attributes for the photon-tracing
step. If you do not specify these, the values for the primary ray-tracing step will be used.

The keywordssave_file andload_file allow you to save and load photon maps. If you load a photon map,
no photons will be shot. The photon map file contains all surface (caustic) and media photons.

radius is used for gathering photons. The larger the radius, the longer it takes to gather photons. But
if you use too small of a radius, you might not get enough photons to get a good estimate. Therefore,
choosing a good radius is important. Normally POV-Ray looks through the photon map and uses some
ad-hoc statistical analysis to determine a reasonable radius. Sometimes it does a good job, sometimes it
does not. The radius keyword lets you override or adjust POV-Ray’s guess.

radius parameters (all are optional):

1. Manually set the gather radius for surface photons. If this is either zero or if you leave it out, POV-Ray
will analyze and guess.

2. Adjust the radius for surface photons by setting a multiplier. If POV-Ray, for example, is picking a
radius that you think is too big (render is too slow), you can useitus ,0.5” to lower the radius
(multiply by 0.5) and speed up the render at the cost of quality.

3. Manually set the gather radius for media photons.
4. Adjust the radius for media photons by setting a multiplier.

The keywords:utostop andexpand_thresholds will be explained later.

Shooting Photons at an Object

object_photon_block:
photons {
[target [<spacing_multiplier>]]
[refraction on|off]
[reflection on|off]
[collect onloff]
[pass_through]
}

To shoot photons at an object, you need to tell POV that the object receives photons. To do this, create a
photons { } block within the object. For example:

6.3 Photons 251

object {
MyObject
photons {
target
refraction on
reflection on
collect off
}
}

In this example, the object both reflects and refracts photons. Either of these options could be turned off (by
specifying reflection off, for example). By using this, you can have an object with a reflective finish which
does not reflect photons for speed and memory reasons.

The keyword-arget makes this object a target.

The density of the photons can be adjusted by specifyinggheing muitiplier. If, for example, you
specify aspacingmultiplier Of 0.5, then the spacing for photons hitting this object will be 1/2 of the
distance of the spacing for other objects.

Note: This means four times as many surface photons, and eight times as many media photons.

The keywordcollect off causes the object to ignore photons. Photons are neither deposited nor gathered
on that object.

The keywordpass_through causes photons to pass through the ohjectffected on their way to a target
object. Once a photon hits the target object, it will ignoregthss_through flag. This is basically a photon
version of theno_shadow keyword, with the exception that media within the object will still be affected by
the photons (unless that media specifies collect off). If you usedheadow keyword, the object will be
tagged agass_through automatically. You can then turn offiss_through if necessary by simply using
photons { pass_through off }

Note: Photons will not be shot at an object unless you specify thget keyword. Simply turning refrac-
tion on will not suffice.

When shooting photons at a CSG-union, it may sometimes be of advantagesta tisenion off inside
the union. POV-Ray will be forced to shoot at the whole object, instead of splitting it up and shooting
photons at its compound parts.

Photons and Light Sources

light_photon_block:

photons {
[refraction on | off]
[reflection on | off]
[area_light]

}

Example:

light_source {
MyLight
photons {
refraction on
reflection on

252 Interior & Media & Photons

Sometimes, you want photons to be shot from one light source and not another. In that case, you can turn
photons on for an object, but specifyotons { reflection off refraction off } in the light source’s
definition. You can also turn off only reflection or only refraction for any light source.

Photons and Media

global_settings {
photons {
count 10000
media 100
}
}

Photons also interact fully with media. This means that volumetric photons are stored in scattering media.
This is enabled by using the keyword media within the photons block.

To store photons in media, POV deposits photons as it steps through the media during the photon-tracing
phase of the render. It will deposit these photons as it traces caustic photons, so the number of media
photons is dependent on the number of caustic photons. As a light ray passes through a section of media,
the photons are deposited, separated by approximately the same distance that separates surface photons.

You can specify a factor as a second optional parameter to the media keyword. If, for example, factor is set
to 2.0, then photons will be spaced twice as far apart as they would otherwise have been spaced.

Sometimes, however, if a section of media is very large, using these settings could create a large number
of photons very fast and overload memory. Therefore, following the media keyword, you must specify the
maximum number of photons that are deposited for each ray that travels through each section of media. A
setting of 100 should probably work in most cases.

You can putcollect off into media to make that media ignore photons. Photons will neither be deposited
nor gathered in a media that is ignoring them. Photons will also not be gathered nor deposited in non-
scattering media. However, if multiple medias exist in the same space, and at least one does not ignore
photons and is scattering, then photons will be deposited in that interval and will be gathered for use with
all media in that interval.

6.3.3 Photons FAQ

I made an object with IOR 1.0 and the shadows look weird.

If the borders of your shadows look odd when using photon mapping, do not be alarmed. This is an

unfortunate side-effect of the method. If you increase the density of photons (by decreasing spacing and
gather radius) you will notice the problem diminish. We suggest not using photons if your object does not

cause much refraction (such as with a window pane or other flat piece of glass or any objects with an IOR
very close to 1.0).

My scene takes forever to render.

When POV-Ray builds the photon maps, it continually displays in the status bar the number of photons that
have been shot. Is POV-Ray stuck in this step and does it keep shooting lots and lots of photons?

yes

If you are shooting photons at an infinite object (like a plane), then you should expect this. Either be patient
or do not shoot photons at infinite objects.

Are you shooting photons at a CSG difference? Sometimes POV-Ray does a bad job creating bounding
boxes for these objects. And since photons are shot at the bounding box, you could get bad results. Try

6.3 Photons 253

manually bounding the object. You can also try the autostop featureuftsy:op 0). See the docs for more
info on autostop.

no
Does your scene have lots of glass (or other clear objects)? Glass is slow and you need to be patient.
My scene has polka dots but renders really quickly. Why?

You should increase the number of photons (or decrease the spacing).

The photons in my scene show up only as small, bright dots. How can | fix this?

The automatic calculation of the gather radius is probably not working correctly, most likely because there
are many photons not visible in your scene which are affecting the statistical analysis.

You can fix this by either reducing the number of photons that are in your scene but not visible to the
camera (which confuse the auto-computation), or by specifying the initial gather radius manually by using
the keyword radius. If you must manually specify a gather radius, it is usually best to also use spacing
instead of count, and then set radius and spacing to a 5:1 (radius:spacing) ratio.

Adding photons slowed down my scene a lot, and | see polka dots.

This is usually caused by having both high- and low-density photons in the same scene. The low density
ones cause polka dots, while the high density ones slow down the scene. It is usually best if the all photons
are on the same order of magnitude for spacing and brightness. Be careful if you are shooting photons
objects close to and far from a light source. There is an optional parameter to the target keyword which

allows you to adjust the spacing of photons at the target object. You may need to adjust this factor for

objects very close to or surrounding the light source.

| added photons, but | do not see any caustics.

When POV-Ray builds the photon maps, it continually displays in the status bar the number of photons that
have been shot. Did it show any photons being shot?

no
Try avoidingautostop, or you might want to bound your object manually.

Try increasing the number of photons (or decreasing the spacing).

yes

Were any photons stored (the number aftesl in the rendering message as POV-Ray shoots photons)?
no

It is possible that the photons are not hitting the target object (because another object is between the light
source and the other object).

yes

The photons may be diverging more than you expect. They are probably there, but you cannot see them
since they are spread out too much

The base of my glass object is really bright.
Usecollect off with that object.
Will area lights work with photon mapping?

Photons do work with area lights. However, normally photon mapping ignores all area light options and
treats all light sources as point lights. If you would like photon mapping to use your area light options, you
must specify the "arefight” keywordwithin thephotons { } block in your light source’s code. Doing this

254 Interior & Media & Photons

will not increase the number of photons shot by the light source, but it might cause regular patterns to show
up in the rendered caustics (possibly splotchiness).

What do the stats mean?

In the statsphotons shot means how many light rays were shot from the light sourgestons stored
means how many photons are deposited on surfaces in the scene. If you turn on reflection and refraction,
you could get more photons stored than photons shot, since the each ray can get split into two.

6.3.4 Photon Tips
— Usecollect off in objects that photons do not hit. Just pubtons { collect off } in the
object’s definition.
— Usecollect off in glass objects.
— Useautostop unless it causes problems.

— A big tip is to make sure that all of the final densities of photons are of the same general
magnitude. You do not want spots with really high density photons and another area with really
low density photons. You will always have some variation (which is a good thing), but having
really big differences in photon density is what causes some scenes to take many hours to render.

6.3.5 Advanced Techniques

Autostop

Bounding Box Bounding Sphere

Radial Spiral Pattern

Target Object

Figure 6.7: Example of the photon autostop option

To understand theutostop option, you need to understand the way photons are shot from light sources.
Photons are shot in a spiral pattern with uniform angular density. Imagine a sphere with a spiral starting at
one of the poles and spiraling out in ever-increasing circles to the equator. Two angles are involved here.
The first, phi, is the how far progress has been made in the current circle of the spiral. The second, theta, is
how far we are from the pole to the equator. Now, imagine this sphere centered at the light source with the
pole where the spiral starts pointed towards the center of the object receiving photons. Now, photons are
shot out of the light in this spiral pattern.

Normally, POV does not stop shooting photons until the target object’'s entire bounding box has been
thoroughly covered. Sometimes, however, an object is much smaller than its bounding box. At these times,
we want to stop shooting if we do a complete circle in the spiral without hitting the object. Unfortunately,
some objects (such as copper rings), have holes in the middle. Since we start shooting at the middle of
the object, the photons just go through the hole in the middle, thus fooling the system into thinking that

6.3 Photons 255

it is done. To avoid this, theutostop keyword lets you specify how far the system must go before this
auto-stopping feature kicks in. The value specified is a fraction of the object’s bounding box. Valid values
are 0.0 through 1.0 (0% through 100%). POV will continue to shoot photons until the spiral has exceeded
this value or the bounding box is completely covered. If a complete circle of photons fails to hit the target
object after the spiral has passed the autostop threshold, POV will then stop shooting photons.

The autostop feature will also not kick in until at least one photon has hit the object. This allows you to
useautostop 0 even with objects that have holes in the middle.

Note:lf the light source is within the object’s bounding box, the photons are shot in all directions from the
light source.

Adaptive Search Radius

Unless photons are interacting with media, POV-Ray uses an adaptive search radius while gathering pho-
tons. If the minimum number of photons is not found in the original search radius, the radius is expanded
and searched again. Using this adaptive search radius can both decrease the amount of time it takes to
render the image, and sharpen the borders in the caustic patterns.

Sometimes this adaptive search technique can create unwanted artefacts at borders. To remove these arte-
facts, a few thresholds are used, which can be specifieddayid_thresholds. For example, if expanding

the radius increases the estimated density of photons by too much (threshold is_penesase, default

is 20%, or 0.2), the expanded search is discarded and the old search is used instead. However, if too few
photons are gathered in the expanded seatghfd min, default is 40), the new search will be used always,

even if it means more than a 20% increase in photon density.

Photons and Dispersion

When dispersion is specified for interior of a transparent object, photons will make use of that and show
"colored” caustics.

Saving and Loading Photon Maps

It is possible to save and load photon maps to speed up rendering. The photon map itself is view-
independent, so if you want to animate a scene that contains photons and you know the photon map will not
change during the animation, you can save it on the first frame and then load it for all subsequent frames.

To save the photon map, put the line
save_file "myfile.ph"
into thephotons { } block inside theylobal_settings section.

Loading the photon map is the same, but withd_fi1le instead ofsave_file. You cannot both load and
save a photon map in the POV file. If you load the photon map, it will load all of the photons. No photons
will be shot if the map is loaded from a file. All other options (such as gather radius) must still be specified
in the POV scene file and are not loaded with the photon map.

When can you safely re-use a saved photon map?
» Moving the camera ialwayssafe.
» Moving lights that do not cast photonsakvayssafe.

» Moving objects that do not have photons shot at them, that do not receive photons, and would not
receive photons in the new locationalvayssafe.

256 Interior & Media & Photons

» Moving an object that recieves photons to a new location where it does not receive phctomeis
timessafe.

» Moving an object to a location where it recieves photonsissafe
» Moving an object that has photons shot at in@t safe

» Moving a light that casts photonsn®t safe.

» Changing the texture of an object that recieves photons is safe.

» Changing the texture of an object that has photons shot at it produces results that are not realistic, but
can be useful sometimes.

In general, changes to the scene geometry require photons to be re-shot. Changing the camera parameters
or changing the image resolution does not.

Chapter 7

Include Files

The "Standard Include File” section describes the include files that can be found in every standard distribu-
tion of POV-Ray. It is supposed to be used as a reference for looking up things. It does not contain detailed
explanations on how scenes are written or how POV-Ray is used. It just explains all features, their syntax,
applications, limits, drawbacks, etc.

7.1 arrays.inc

This file contains macros for manipulating arrays.

Rand_Array_Ttem(Array, Stream). Randomly Picks an item from a 1D array.
Parameters:

» Array = The array from which to choose the item.
* stream = A random number stream.

Resize Array (Array, NewSize). Resize a 1D array, retaining its contents.
Parameters:

* Array = The array to be resized.
* NewSize = The desired new size of the array.

Reverse Array (Array). Reverses the order of items in a 1D array.
Parameters:

* Array = The array to be reversed.

Sort_Compare (Array, IdxA, IdxB). This macro is used by th&)rtArray() and Sort_Partial_Array ()

macros. The given macro works for 1D arrays of floats, but you can redefine it in your scene file for
more complex situations, arrays of vectors or multidimensional arrays for example. Just make sure your
macro returns true if the item at 1dxA the item at 1dxB, and otherwise returns false.

Parameters:

* Array = The array containing the data being sorted.
* Idxa, IdxB = The array offsets of the data elements being compared.

Sort_Swap-Data (Array, IdxA, IdxB). This macro is used by th&rtﬂrray() and Sort_Partial_Array ()
macros. The given macro works for 1D arrays only, but you can redefine it in your scene file to handle
multidimensional arrays if needed. The only requirement is that your macro swaps the data at IdxA with

258 Include Files

that at |dxB.
Parameters:

» Array = The array containing the data being sorted.
» IdxA, IdxB = The array offsets of the data elements being swapped.

Sort_Array (Array). This macro sorts a 1D array of floats, though you can redefinssthtecompare () and
Sort_Swap_Data () macros to handle multidimensional arrays and other data types.
Parameters:

» Array = The array to be sorted.

Sort_Partial Array (Array, FirstInd, LastInd). This macro is likesort Array(), but sorts a specific
range of an array instead of the whole array.
Parameters:

* Array = The array to be sorted.

e FirstInd, LastInd = The start and end indices of the range being sorted.

7.2 chars.inc

This file includes 26 upper-case letter and other characters defined as objects. The size of all characters is 4
5 1. The center of the bottom side of a character face is set to the origin, so you may need to translate a
character appropriately before rotating it about the x or z axes.

Letters:

char_ A, char_B, char.C,
charD, char_E, char.F,
char_G, char_H, char_I,
char_J, char_K, char_L,
charM, char_N, char.O,
char_P, char_Q, charR,
char_S, char.T, char.U,
char_V, char.W, char.X,
char_Y, char_Z

Numerals:
char_0, char_1,
char_2, char_3,
char_4, char.5,
char_6, char.7,
char_8, char_9

Symbols:

char_Dash, char_Plus, char_ExclPt,
char_Amps, char_Num, char_Dol,
char_Perc, char_Astr, char_Hat,
char_LPar, char_RPar, char_AtSign,
char_LSqu, char_RSqu

Usage:

7.3 colors.inc 259

#include "chars.inc"
object {char_A ...}
7.3 colors.inc
This file is mainly a list of predefined colors, but also has a few color manipulation macros.

7.3.1 Predefined colors

Color Red Color Green Color Blue

S

Color Yellow Color Cyan Color Magenta

Lt
1]

Color Clear Color White Color Black

Table 7.1: Primary colors

7.3.2 Color macros

In POV-Ray all colors are handled in RGB color space with a component for the amount of red, green
and blue light. However, not everybody thinks this is the most intuitive way to specify colors. For your
convenience there are macros included in colors.inc that converts between a few different types of color
spaces.

The three supported color spaces:

» RGB = < Red, Green, Blue, Filter, Transmit
* HSL = < Hue, Saturation, Lightness, Filter, Transmit
» HSV = < Hue, Saturation, Value, Filter, Transmit

CHSL2RGB (Color). Converts a color given iAsL space to one iRGB space.
Parameters:

* Color = HSL color to be converted.

CRGB2HSL (Color). Converts a color given irce space to one iRsL space.
Parameters:

* Color = RGB color to be converted.

CHSV2RGB (Color). Converts a color given iasv space to one iRGe space.
Parameters:

» Color = Hsv color to be converted.

26 Include Files

' |

Color Gray05 Color Gray10 Color Gray15

Color Gray20 Color Gray25 Color Gray30

Color Gray35 Color Gray40 Color Gray45

Color Gray50 Color Gray55 Color Gray60

Color Gray65 Color Gray70 Color Gray75

— ——)

Color Gray80 Color Gray85 Color Gray90

S—

Color Gray95

Table 7.2: Shades of gray...from 5% to 95%, in 5% increments

CRGB2HSV (Color). Converts a color given irce space to one insv space.
Parameters:

* Color =RGB color to be converted.

Convert _Color (SourceType, DestType, Color). Converts a color from one color space to another. Color
spaces available arecs, HsL, andHsv.
Parameters:

¢ sourceType = Color space of input color.
* DestType = Desired output color space.

¢ color = Color to be converted, in SourceType color space.

7.4 consts.inc

This file defines a number of constants, including things such as mapping types and ior definitions.

7.4.1 \Vector constants

0=<0,0, 0> (origin)

7.4 consts.inc

261

@) (@) 0O
=} =] =}
S = S
® < o
) C 5
2 S)
S 2 o
3 <
<
O O (@) @) h
=} o =] =}
S S = S
4 H H E
= (=} c Q
~) [<
@ & 3
@ = QD
@ < =,
> @ =]
]

Color CornflowerBlue

Color DarkOrchid

Color DarkTurquoise

Color Gold

i Color Khaki
Color LimeGreen

Color LightSteelBlue

Color DarkSlateBlue

Color Firebrick

Color Goldenrod

Q)
=
o
=
—
«Q
-0
—
®
o
<

Color BlueViolet

Color DarkOliveGreen

Color DarkSlateGray

Color ForestGreen

Color GreenYellow

Color LightBlue

Color MediumAguamarine Color MediumBlue Color MediumForestGreen

Color MediumSeaGreen

Color MediumOrchid

Color MediumGoldenrod

Table 7.3: Misc. colors - plate 1

26

Include Files

' |

Color MediumSlateBlue

Color MediumVioletRed

b

(@) . O O O . O O
=} =l =] =] =] =]
S 8 S S S S
B o) 0 o) z
=y =}) c o
a 5 = 3 = S
) «Q o o o]
Q c
=)
0]
5

Q) Q) 0 . 0O

=3 = = 2

o o o o

- - - -

@ 2 < =

o o) > =

> = D .8

N

() % 2 o,

%)

@ (9]

0 0

= S

o o

= =

[o9] [o9)

- -

o Q

> 0

N "

[©]

N

h

0
=
Q

<
=
o
Py
@

o

(@) (@)
S o
S S)
(@) wn
3 5
3 3
= @

wn

)

Color MediumSpringGreen

Color MidnightBlue

D
Color Navy
P—
Color OrangeRed
— cmd
Color Pink
P
Color SeaGreen
S

Color SlateBlue

Color Tan
Color Violet

Color Salmon

Color SkyBlue

Color SteelBlue

Color MediumTurquoise

Color YellowGreen

Table 7.4: Misc. colors - plate 2

7.4 consts.inc

263

0 Q) '
=] =}
(@] @)
- -
iy %
2 k3
o

[0 o
o

QD

-

o _

=]

o

-

re)

c

Q

—

N

Color NeonPink

9] Q)
=} o
S S
=z e)
2 8
g S
o
S 2
O -~
o

CoIor SemiSweetChoc

- 0O O (@) O‘-
=X =} =} o
] e e]
1 H H E
8 > 2 g

: o @ o) >
— @ 8 3
2 =
O 5
o
S
S
)
=

.
«Q
=0
—
o
c
=
°
D

0
S
Q
&

-

Color BrightGold

Color DarkPurple

Color MandarinOrange

Color DarkWood

Color BakersChoc

Color NewMidnightBlue

0 0 0
S S S

e e e

=z O O

[9) c)

5 g A

c 2 z

= 2

D D

O @)
=3 o
e e
= o
o o
o Q)

o

o

Color NeonBlue

Color LightWood
Color SpicyPink
Color Flesh

Color VeryDarkBrown

Color GreenCopper

Color HuntersGreen

Color Light Purple

Table 7.5: Misc. colors - plate 3

264

Include Files

xy:<l,l,0>
yz=<0,1,]>
xz=<1,0, 1>

7.4.2 Map type constants

Plane Map =0
Sphere Map =1
Cylinder_ Map =2

TorusMap =5

7.4.3 Interpolation type constants

Bi=2

Norm = 4

7.4.4 Fog type constants

Uniform_Fog =1

Ground_Fog = 2

7.4.5 Focal blur hexgrid constants

Hex Blurl =7
Hex_Blur2 =19

Hex_Blur3 = 37

7.46 I0Rs

Air_Tor =1.000292
Amethyst_Ior = 1.550
Apatite_Ior = 1.635
Aquamarine_Tor = 1.575
Beryl_Tor = 1.575
Citrine_Tor = 1.550
Crown_Glass_Tor = 1.51
Corundum_Tor = 1.765
Diamond_Tor = 2.47

Emerald_Tor = 1.575

7.5 debug.inc 265

Flint_Glass_Tor =1.71
Flint_Glass_Heavy_Tor = 1.8
Flint_Glass Medium_Tor = 1.63
Flint_Glass_Light_Tor = 1.6
Fluorite_Tor = 1.434
Gypsum_Ior = 1.525

Ice_Tor =1.31
Plexiglas_Ior = 1.5
Quartz_Ior = 1.550
Quartz_Glass_Ior = 1.458
Ruby_Ior = 1.765

Salt_Ior = 1.544
Sapphire_Tor = 1.765
Topaz_Tor = 1.620
Tourmaline_Tor = 1.650

Water_Ior = 1.33

7.4.7 Dispersion amounts

Quartz_Glass_Dispersion =1.012
Water_Dispersion = 1.007
Diamond_Dispersion = 1.035

Sapphire Dispersion =1.015

7.4.8 Scattering media type constants

ISOTROPIC_SCATTERING = 1;
MIE_HAZY_SCATTERING = 2;
MIE_MURKY_SCATTERING = 3;
RAYLEIGH_SCATTERING = 4;

HENYEY_GREENSTEIN_SCATTERING = 5;

7.5 debug.inc

This file contains a set of macros designed to make debugging easier. It also functions like the old debug.inc,
with the exception that you have to call the Deldag_Stack() macro to get the include stack output.

266 Include Files

Debug_Inc_Stack (). Activates include file tracking, each included file will send a debug message when it is
included.
Parameters: None.

Set_Debug (Bool). Activate or deactivate the debugging macros.
Parameters:

* Bool = A boolean (true/false) value.

Debug_Message (Str). If debugging, sends the message to the debug stream.
Parameters:

* str = The desired message.

Debug (Condition, Message)

Warning (Condition, Message)

Error (Condition, Message)

These macros send a message to the #debug, #warning, and #error streams depending on a given condition.
They are just a shortcut for anf () ... #end block, intended to make scenes easier to read.

Parameters:

* Condition = Any boolean expression.

* Message = The message to be sent if Condition evaluates as "true”.

7.6 finish.inc

This file contains some predefined finishes.

Dull
Dull, with a large, soft specular highlight.
Shiny
Shiny, with a small, tight specular highlight.
Glossy
Very shiny with very tight specular highlights and a fair amount of reflection.
Phong_Dull

Dull, with a large, soft phong highlight.

Phong_Shiny
Shiny, with a small, tight phong highlight.

Phong_Glossy
Very shiny with very tight phong highlights and a fair amount of reflection.

Luminous
A glowing surface, unaffected by liglstources.

Mirror
A perfectly reflective surface, no highlights or shading.

7.7 functions.inc

This include file contains interfaces to internal functions as well as several predefined functions. The ID’s
used to access the internal functions through calls to "internal(XX)", are not guaranteed to stay the same

7.7 functions.inc 267

between POV-Ray versions, so users are encouraged to use the functions declared here.

The number of required parameters and what they control are also given in the include file, this chapter
gives more information.
For starter values of the parameters, check thiatérnal.pov” demo file.

Syntax to be used:

#include "functions.inc"
isosurface {
function { f_torus_gumdrop(x,y,z, P0) }

}

pigment {
function { f_cross_ellipsoids(x,y,z, PO, P1l, P2, P3) }
COLOR_MAP ...

)

Some special parameters are found in several of these functions. These are described in the next section
and later referred to as "Cross section type”, "Field Strength”, "Field Limit”, "SOR” parameters.

7.7.1 Common Parameters

Cross Section Type:
In the helixes and spiral functions, the 9th parameter is the cross section type.
Some shapes are:

0:
square

0.0 to 1.0:
rounded squares

circle

1.0 to 2.0:
rounded diamonds

diamond

2.0 to 3.0:
partially concave diamonds

concave diamond

Field Strength

The numerical value at a point in space generated by the function is multiplied by the Field Strength. The
set of points where the function evaluates to zero are unaffected by any positive value of this parameter, so

if you are just using the function on its own with threshold = 0, the generated surface is still the same.

In some cases, the field strength has a considerable effect on the speed and accuracy of rendering the surface.
In general, increasing the field strength speeds up the rendering, but if you set the value too high the surface
starts to break up and may disappear completely.

268 Include Files

Setting the field strength to a negative value produces the inverse of the surface, like making the function
negative.

Field Limit

This will not make any difference to the generated surface if you are using threshold that is within the field
limit (and will kill the surface completely if the threshold is greater than the field limit). However, it may
make a huge difference to the rendering times.

If you use the function to generate a pigment, then all points that are a long way from the surface will have
the same color, the color that corresponds to the numerical value of the field limit.

SOR Switch

If greater than zero, the curve is swept out as a surface of revolution (SOR).
If the value is zero or negative, the curve is extruded linearly in the Z direction.

SOR Offset

If the SOR switch is on, then the curve is shifted this distance in the X direction before being swept out.

SOR Angle

If the SOR switch is on, then the curve is rotated this number of degrees about the Z axis before being swept
out.

Invert Isosurface

Sometimes, when you render a surface, you may find that you get only the shape of the container. This
could be caused by the fact that some of the build in functions are defined inside out.

We can invert the isosurface by negating the whole function:

- (function) - threshold

7.7.2 Internal Functions

Here is a list of the internal functions in the order they appear in the "functions.inc” include file

f_algbr_cyll(x,vy,z, PO, P1, P2, P3, P4). Analgebraic cylinderis what you get if you take any 2d curve
and plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.

With the SOR Switch switched on, the figure-of-eight curve will be rotated around the Y axis instead of
being extruded along the Z axis.

 p0: Field Strength
 p1: Field Limit

* p2: SOR Switch

* p3: SOR Offset

* p4: SOR Angle

7.7 functions.inc 269

f_algbr_cyl2(x,v,z, PO, P1, P2, P3, P4). Analgebraic cylinderis what you get if you take any 2d curve
and plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.

With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

» 0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Field Limit

* p2: SOR Switch

* p3: SOR Offset

* p4: SOR Angle

f_algbr_cyl3(x,y,z, PO, P1, P2, P3, P4). Analgebraic cylinderis what you get if you take any 2d curve
and plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the Z axis.

With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

» p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Field Limit

* p2 : SOR Switch

* p3: SOR Offset

* p4: SOR Angle

f_algbr_cyl4 (x,vy,z, PO, P1, P2, P3, P4). Analgebraic cylinderis what you get if you take any 2d curve
and plot it in 3d. The 2d curve is simply extruded along the third axis, in this case the z axis.

With the SOR Switch switched on, the cross section curve will be rotated around the Y axis instead of being
extruded along the Z axis.

» p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Field Limit
* p2: SOR Switch
* p3: SOR Offset
* p4: SOR Angle
fbicorn(x,y,z, P0, P1). The surface is a surface of revolution.
 p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Scale. The mathematics of this surface suggest that the shape should be different for different
values of this parameter. In practice the difference in shape is hard to spot. Setting the scale to 3 gives
a surface with a radius of about 1 unit

fbifolia(x,y,z, PO, P1). The bifolia surface looks something like the top part of a a paraboloid bounded
below by another paraboloid.

 p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Scale. The surface is always the same shape. Changing this parameter has the same effect as
adding a scale modifier. Setting the scale to 1 gives a surface with a radius of about 1 unit

fblob(x,y,z, PO, P1, P2, P3, P4). This function generates blobs that are similar to a CSG blob with
two spherical components. This function only seems to work with negative threshold settings.

» 0 : X distance between the two components

270 Include Files

* p1: Blob strength of component 1
» p2: Inverse blob radius of component 1
* p3: Blob strength of component 2
* p4: Inverse blob radius of component 2
fblob2(x,y,z, PO, P1, P2, P3). The surface is similar to a CSG blob with two spherical components.

» P0 : Separation. One blob component is at the origin, and the other is this distance away on the X
axis

» p1: Inverse size. Increase this to decrease the size of the surface
» p2: Blob strength

» p3: Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as
setting this parameter to zero and the threshold to -1

f boy_surface(x,y,z, P0, P1). For this surface, it helps if the field strength is set low, otherwise the
surface has a tendency to break up or disappear entirely. This has the side effect of making the rendering
times extremely long.

 p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Scale. The surface is always the same shape. Changing this parameter has the same effect as
adding a scale modifier

f_comma (x,v,z, PO). The '’comma’ surface is very much like a comma-shape.
* p0: Scale

f_cross_ellipsoids(x,y,z, PO, P1, P2, P3). The ’cross ellipsoids’ surface is like the union of three
crossed ellipsoids, one oriented along each axis.

» p0 : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the ellipsoids are
prolate, when zero the ellipsoids are spherical (and hence the whole surface is a sphere)

» p1: Inverse size. Increase this to decrease the size of the surface
 p2 : Diameter. Increase this to increase the size of the ellipsoids

» p3: Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as
setting this parameter to zero and the threshold to -1

f_crossed_trough(x,y,z, PO)
 p0 : Field Strength (Needs a negative field strength or a negated function)

f_cubic_saddle(x,y,z, P0). For this surface, it helps if the field strength is set quite low, otherwise the
surface has a tendency to break up or disappear entirely.

* p0 : Field Strength (Needs a negative field strength or a negated function)
f_cushion (x,y,z, PO)

» p0 : Field Strength (Needs a negative field strength or a negated function)
f_ devils_curve(x,y,z, PO)

 p0 : Field Strength (Needs a negative field strength or a negated function)

f_devils_curve_2d(x,y,z, PO, P1, P2, P3, P4, P5). Thef_devils_curve_2d curve can be extruded along
the z axis, or using the SOR parameters it can be made into a surface of revolution. The X and Y factors
control the size of the central feature.

7.7 functions.inc 271

 p0 : Field Strength (Needs a negative field strength or a negated function)
» p1: X factor
» p2: Y factor
* P3: SOR Switch
» P4 : SOR Offset
* p5: SOR Angle
f_dupin_cyclid(x,y,z, PO, P1, P2, P3, P4, P5)
 p0 : Field Strength (Needs a negative field strength or a negated function)
» p1: Major radius of torus
 p2 : Minor radius of torus
» p3: X displacement of torus
e p4: Y displacement of torus
 p5: Radius of inversion

fellipsoid(x,y,z, PO, P1, P2). fellipsoid generates spheres and ellipsoids. Needs "threshold 1”.
Setting these scaling parameters to 1/n gives exactly the same effect as performing a scale operation to
increase the scaling by n in the corresponding direction.

» p0: X scale (inverse)
» p1: Y scale (inverse)
e p2: Z scale (inverse)
f_enneper(x,y,z, PO)
» p0 : Field Strength (Needs a negative field strength or a negated function)
f_flange_cover (x,y,z, PO, P1, P2, P3)
» 0 : Spikiness. Set this to very low values to increase the spikes. Setitto 1 and you get a sphere

» P1 : Inverse size. Increase this to decrease the size of the surface. (The other parameters also
drastically affect the size, but this parameter has no other effects)

» P2 : Flange. Increase this to increase the flanges that appear between the spikes. Set it to 1 for no
flanges

» p3: Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as
setting this parameter to zero and the threshold to -1

f_folium_surface(x,y,z, PO, P1, P2). A 'folium surface’ looks something like a paraboloid glued to a
plane.

 p0 : Field Strength (Needs a negative field strength or a negated function)

 p1: Neck width factor - the larger you set this, the narrower the neck where the paraboloid meets the
plane

 p2 : Divergence - the higher you set this value, the wider the paraboloid gets

f_folium surface_2d(x,y,z, P0, P1, P2, P3, P4, P5). The f_folium surface_2d curve can be rotated
around the X axis to generate the same 3d surface asthe un_surface, Or it can be extruded in the Z
direction (by switching the SOR switch off)

272

Include Files

PO :

P1

P2

P3

P4

: SOR Angle

P5

Field Strength (Needs a negative field strength or a negated function)

: Neck width factor - same as the 3d surface if you are revolving it around the Y axis

Divergence - same as the 3d surface if you are revolving it around the Y axis

: SOR Switch

SOR Offset

f_glob(x,y,z, P0). One part of this surface would actually go off to infinity if it were not restricted by the
containedby shape.

 p0 : Field Strength (Needs a negative field strength or a negated function)

f_heart (x,y,2z, PO)

 p0 : Field Strength (Needs a negative field strength or a negated function)

f_helical_torus(x,y,z, PO, P1, P2, P3, P4, P5, P6, P7, P8, P9). With some sets of parameters, it
looks like a torus with a helical winding around it. The winding optionally has grooves around the outside.

* P0: Major radius

P1:

P2

Number of winding loops

Twistiness of winding. When zero, each winding loop is separate. When set to one, each loop

twists into the next one. When set to two, each loop twists into the one after next

P3:

P4

Fatness of winding?

Threshold. Setting this parameter to 1 and the threshold to zero has s similar effect as setting this

parameter to zero and the threshold to 1

P5:

Negative minor radius? Reducing this parameter increases the minor radius of the central torus.

Increasing it can make the torus disappear and be replaced by a vertical column. The value at which
the surface switches from one form to the other depends on several other parameters

P6 .

P7:

P8

P9

Another fatness of winding control?

Groove period. Increase this for more grooves

: Groove amplitude. Increase this for deeper grooves

Groove phase. Set this to zero for symmetrical grooves

f helixl(x,y,z, PO, P1, P2, P3, P4, P5, P6)

* 20 : Number of helixes - e.g. 2 for a double helix

P1:

P2

P3:

P4

P5

P6 .

Period - is related to the number of turns per unit length
Minor radius (major radius- minor radius)
Major radius

Shape parameter. If this is greater than 1 then the tube becomes fatter in the y direction

: Cross section type

Cross section rotation angle (degrees)

f helix2(x,y,z, PO, P1, P2, P3, P4, P5, P6). Needs a negated function

* p0: Not used

7.7 functions.inc 273

» p1: Period - is related to the number of turns per unit length
¢ p2 : Minor radius (minor radius> major radius)

* p3: Major radius

* p4: Not used

* p5: Cross section type

 p6: Cross section rotation angle (degrees)

fhex_x(x,y,z, P0). This creates a grid of hexagonal cylinders stretching along the z-axis. The fatness

is controlled by the threshold value. When this value equals 0.8660254 or cos(30) the sides will touch,
because this is the distance between centers. Negating the function will inverse the surface and create a
honey-comb structure. This function is also useful as pigment function.

» 20 : No effect (but the syntax requires at least one parameter)

f hex_y(x,y,z, P0). This is function forms a lattice of infinite boxes stretching along the z-axis. The
fatness is controlled by the threshold value. These boxes are rotated 60 degrees around centers, which are
0.8660254 or cos(30) away from each other. This function is also useful as pigment function.

» 0 : No effect (but the syntax requires at least one parameter)

f_heteromf (x,y,z, PO, P1, P2, P3, P4, P5). f_heteronmf (x,0,z) makes multifractal height fields and
patterns of '1/f’ noise

"Multifractal’ refers to their characteristic of having a fractal dimension which varies with altitude. Built
from summing noise of a number of frequencies, the heterparameters determine how many, and which
frequencies are to be summed.

An advantage to using these instead of a hefighd {} from an image (a number of height field programs
output multifractal types of images) is that the heterbfunction domain extends arbitrarily far in the x

and z directions so huge landscapes can be made without losing resolution or having to tile a height field.
Other functions of interest aferidged.mf andf_ridge.

* p0 : His the negative of the exponent of the basis noise frequencies used in building these functions
(each frequency f's amplitude is weighted by the factor f - H). In landscapes, and many natural forms,
the amplitude of high frequency contributions are usually less than the lower frequencies.

When H is 1, the fractalization is relatively smooth ("1/f noise”).
As H nears 0, the high frequencies contribute equally with low frequencies as in "white noise”.

 p1: Lacunarity’ is the multiplier used to get from one 'octave’ to the next. This parameter affects the
size of the frequency gaps in the pattern. Make this greater than 1.0

 p2 : Octaves is the number of different frequencies added to the fractal. Each 'Octave’ frequency is
the previous one multiplied by 'Lacunarity’, so that using a large number of octaves can get into very
high frequencies very quickly.

» p3: Offset is the 'base altitude’ (sea level) used for the heterogeneous scaling

e p4 : T scales the 'heterogeneity’ of the fractal. T=0 gives 'straight 1/f' (no heterogeneous scaling).
T=1 suppresses higher frequencies at lower altitudes

» p5: Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.
f_hunt_surface (x,y,z, PO)

* p0 : Field Strength (Needs a negative field strength or a negated function)
f_hyperbolic_torus(x,y,z, PO, P1, P2)

 p0 : Field Strength (Needs a negative field strength or a negated function)

274 Include Files

* p1: Major radius: separation between the centers of the tubes at the closest point
 p2 : Minor radius: thickness of the tubes at the closest point

f_isect_ellipsoids(x,y,z, PO, P1, P2, P3). The'isect ellipsoids’ surface is like the intersection of three
crossed ellipsoids, one oriented along each axis.

 p0 : Eccentricity. When less than 1, the ellipsoids are oblate, when greater than 1 the ellipsoids are
prolate, when zero the ellipsoids are spherical (and hence the whole surface is a sphere)

» p1: Inverse size. Increase this to decrease the size of the surface
» p2 : Diameter. Increase this to increase the size of the ellipsoids

» p3: Threshold. Setting this parameter to 1 and the threshold to zero has exactly the same effect as
setting this parameter to zero and the threshold to -1

f_kampyle_of eudoxus (x,y,z, PO, P1, P2). The 'kampyle of eudoxus’ is like two infinite planes with a
dimple at the center.

 p0 : Field Strength (Needs a negative field strength or a negated function)

» p1 : Dimple: When zero, the two dimples punch right through and meet at the center. Non-zero
values give less dimpling

* p2: Closeness: Higher values make the two planes become closer

f_kampyle_of eudoxus_2d(x,y,z, PO, P1, P2, P3, P4, P5)The 2d curve that generates the above surface
can be extruded in the Z direction or rotated about various axes by using the SOR parameters.

* p0 : Field Strength (Needs a negative field strength or a negated function)

e p1 : Dimple: When zero, the two dimples punch right through and meet at the center. Non-zero
values give less dimpling

» p2: Closeness: Higher values make the two planes become closer

* P3: SOR Switch

* P4 : SOR Offset

* p5: SOR Angle
f kleinbottle(x,y,z, PO)

» p0 : Field Strength (Needs a negative field strength or a negated function)
f_kummer_surface_vl(x,y,z, P0). The Kummer surface consists of a collection of radiating rods.

» p0 : Field Strength (Needs a negative field strength or a negated function)

f_kummer_surface_v2(x,y,z, P0, P1, P2, P3). Version 2 of the kummer surface only looks like radiating
rods when the parameters are set to particular negative values. For positive values it tends to look rather
like a superellipsoid.

 p0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Rod width (negative): Setting this parameter to larger negative values increases the diameter of
the rods

» p2 : Divergence (negative): Setting this number to -1 causes the rods to become approximately
cylindrical. Larger negative values cause the rods to become fatter further from the origin. Smaller
negative numbers cause the rods to become narrower away from the origin, and have a finite length

3 : Influences the length of half of the rods. Changing the sign affects the other half of the rods. 0
has no effect

7.7 functions.inc 275

f_lemniscate_of_gerono(x,y,z, P0). The "Lemniscate of Gerono” surface is an hourglass shape. Two
teardrops with their ends connected.

 p0 : Field Strength (Needs a negative field strength or a negated function)

f_lemniscate_of_gerono_2d(x,vy,z, PO, P1, P2, P3, P4, P5). The 2d version of the Lemniscate can be
extruded in the Z direction, or used as a surface of revolution to generate the equivalent of the 3d version,
or revolved in different ways.

 p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Size: increasing this makes the 2d curve larger and less rounded

» p2 : Width: increasing this makes the 2d curve fatter

* p3: SOR Switch

* p4: SOR Offset

* p5: SOR Angle

fmeshl(x,y,z, PO, P1, P2, P3, P4) The overall thickness of the threads is controlled by the isosurface
threshold, not by a parameter. If you render a meshl with zero threshold, the threads have zero thickness
and are therefore invisible. Parameters P2 and P4 control the shape of the thread relative to this threshold
parameter.

* p0 : Distance between neighboring threads in the x direction
« p1: Distance between neighboring threads in the z direction
» p2 : Relative thickness in the x and z directions

* p3: Amplitude of the weaving effect. Set to zero for a flat grid
 p4 : Relative thickness in the y direction

fmitre(x,y,z, P0). The 'Mitre’ surface looks a bit like an ellipsoid which has been nipped at each end
with a pair of sharp nosed pliers.

 p0 : Field Strength (Needs a negative field strength or a negated function)

f_nodal_cubic(x,y,z, P0). The 'Nodal Cubic’is something like what you would get if you were to extrude
the Stophid2D curve along the X axis and then lean it over.

 p0 : Field Strength (Needs a negative field strength or a negated function)
f noise3d(x,y,z)
f_noise_generator (x,y,z, PO)
* p0 : Noise generator number
foodd(x,y,z, P0O)
 p0 : Field Strength (Needs a negative field strength or a negated function)
f_ovals_of_cassini(x,y,z, PO, P1, P2, P3). The Ovals of Cassini are a generalization of the torus shape.
* p0 : Field Strength (Needs a negative field strength or a negated function)
* p1: Major radius - like the major radius of a torus

 p2: Filling. Set this to zero, and you get a torus. Set this to a higher value and the hole in the middle
starts to heal up. Set it even higher and you get an ellipsoid with a dimple

» p3: Thickness. The higher you set this value, the plumper is the result

276 Include Files

f_paraboloid(x,y,z, P0). This paraboloid is the surface of revolution that you get if you rotate a parabola
about the Y axis.

 p0 : Field Strength (Needs a negative field strength or a negated function)
f_parabolic_torus(x,y,z, P0, P1, P2)

 p0 : Field Strength (Needs a negative field strength or a negated function)

* p1: Major radius

 p2: Minor radius

fph(x,y,z) = atan2(sqrt(x*x + z*z), y)

When used alone, the "PH” function gives a surface that consists of all points that are at a particular latitude,
i.e. a cone. If you use a threshold of zero (the default) this gives a cone of width zero, which is invisible.
Also look atf_th andf_r

f_pillow(x,y,z, PO)
 p0 : Field Strength

fpiriform(x,y,z, P0). The piriform surface looks rather like half a lemniscate.
 p0 : Field Strength

fpiriform2d(x,y,z, PO, P1, P2, P3, P4, P5, P6). The 2d version of the "Piriform” can be extruded
in the Z direction, or used as a surface of revolution to generate the equivalent of the 3d version.

» p0 : Field Strength (Needs a negative field strength or a negated function)

 p1: Size factor 1: increasing this makes the curve larger

» p2: Size factor 2: making this less negative makes the curve larger but also thinner
 p3: Fatness: increasing this makes the curve fatter

* p4: SOR Switch

* p5: SOR Offset

* p6: SOR Angle

fpoly4d(x,y,z, PO, P1, P2, P3, P4). Thisf_poly4 can be used to generate the surface of revolution of
any polynomial up to degree 4.

To put it another way: If we call the parameters A, B, C, D, E; then this function generates the surface of
revolution formed by revolving "x = A + By + Cy2 + Dy3 + Ey4” around the Y axis.

* p0 : Constant

» p1: Y coefficient
* p2: Y2 coefficient
» p3: Y3 coefficient
» p4: Y4 coefficient

f_polytubes(x,v,z, PO, P1, P2, P3, P4, P5). The 'Polytubes’ surface consists of a number of tubes.
Each tube follows a 2d curve which is specified by a polynomial of degree 4 or less. If we look at the
parameters, then this function generates "P0” tubes which all follow the equation " x = P1 + P2y + P3y2 +
P4y3 + P5y4 " arranged around the Y axis.

This function needs a positive threshold (fatness of the tubes).

* p0 : Number of tubes

7.7 functions.inc 277

* p1: Constant
» p2: Y coefficient
* p3: Y2 coefficient
» p4: Y3 coefficient
* p5: Y4 coefficient
f_quantum(x,y,z, P0). It resembles the shape of the electron density cloud for one of the d orbitals.
» p0 : Not used, but required

f_quartic_paraboloid(x,y,z, P0). The 'Quartic Paraboloid’ is similar to a paraboloid, but has a squarer
shape.

» p0 : Field Strength (Needs a negative field strength or a negated function)
f_quartic_saddle (x,y,z, P0). The 'Quartic saddle’ is similar to a saddle, but has a squarer shape.
 p0 : Field Strength

f_quartic_cylinder (x,y,z, PO, P1, P2). The 'Quartic cylinder looks a bit like a cylinder that is swal-
lowed an egg.

 p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Diameter of the "egg”
» p2: Controls the width of the tube and the vertical scale of the "egg”

for(x,y,z) =sqri(X*X + y*y + z*z)
When used alone, the "R” function gives a surface that consists of all the points that are a specific distance
(threshold value) from the origin, i.e. a sphere. Also look at andf_th

f_ridge(x,v,z, PO, P1, P2, P3, P4, P5). This function is mainly intended for modifying other surfaces
as you might use a height field or to use as pigment function. Other functions of interestaate o nf
andf_ridged_nf.

* p0: Lambda

» p1: Octaves

* p2: Omega

» p3: Offset

» p4: Ridge

» p5: Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.
f_ridged.mf (x,y,z, PO, P1, P2, P3, P4, P5). The "Ridged Multifractal” surface can be used to create
multifractal height fields and patterns. 'Multifractal’ refers to their characteristic of having a fractal di-
mension which varies with altitude. They are built from summing noise of a number of frequencies. The
f_ridgedmf parameters determine how many, and which frequencies are to be summed, and how the differ-
ent frequencies are weighted in the sum.
An advantage to using these instead afeaght _field{} from an image is that the ridgadf function

domain extends arbitrarily far in the x and z directions so huge landscapes can be made without losing
resolution or having to tile a height field. Other functions of interestate:eromf andf_ridge.

» p0 : His the negative of the exponent of the basis noise frequencies used in building these functions
(each frequency f's amplitude is weighted by the factor fE- H). When H is 1, the fractalization is
relatively smooth. As H nears 0, the high frequencies contribute equally with low frequencies

278

Include Files

P1:

Lacunarity is the multiplier used to get from one "octave” to the next in the "fractalization”.

This parameter affects the size of the frequency gaps in the pattern. (Use values greater than 1.0)

P2

Octaves is the number of different frequencies added to the fractal. Each octave frequency is the

previous one multiplied by "Lacunarity”. So, using a large number of octaves can get into very high
frequencies very quickly

P3

. Offset gives a fractal whose fractal dimension changes from altitude to altitude. The high

frequencies at low altitudes are more damped than at higher altitudes, so that lower altitudes are
smoother than higher areas

P4 :

Gain weights the successive contributions to the accumulated fractal result to make creases stick

up as ridges

P5:

Generator type used to generate the noise3d. 0, 1, 2 and 3 are legal values.

f_rounded box (x,vy,z, P0, P1, P2, P3). The Rounded Box is defined in a cube frerl, -1, -1> to <1,
1, I>. By changing the " Scale” parameters, the size can be adjusted, without affecting the Radius of
curvature.

PO

P1:

P2

P3:

: Radius of curvature. Zero gives square corners, 0.1 gives corners that match "gptcedg”

Scale x
Scaley

Scale z

f_sphere (x,y,z, PO)

« p0: radius of the sphere

f_spikes(x,y,z, PO, P1, P2, P3, P4)

PO :

P1:

P2

P3:

P4

Spikiness. Set this to very low values to increase the spikes. Set it to 1 and you get a sphere
Hollowness. Increasing this causes the sides to bend in more

Size. Increasing this increases the size of the object

Roundness. This parameter has a subtle effect on the roundness of the spikes

Fatness. Increasing this makes the spikes fatter

f_spikes_2d(x,vy,z, PO, P1, P2, p3) =2-Dfunction:f=f(x,z)-y

PO :

P1:

P2

P31

Height of central spike
Frequency of spikes in the X direction
Frequency of spikes in the Z direction

Rate at which the spikes reduce as you move away from the center

f_spiral(x,y,z, PO, P1, P2, P3, P4, P5)

PO

P1:

P2

P3:

P4

P51

Distance between windings
Thickness
Outer diameter of the spiral. The surface behaves as if it is contdipadsphere of this diameter

Not used

- Not used

Cross section type

7.7 functions.inc 279

f_steiners_roman(x,y,z, P0). The "Steiners Roman” is composed of four identical triangular pads which
together make up a sort of rounded tetrahedron. There are creases along the X, Y and Z axes where the pads
meet.

 p0 : Field Strength (Needs a negative field strength or a negated function)

f_strophoid(x,y,z, PO, P1, P2, P3). The"Strophoid”is like an infinite plane with a bulb sticking out of
it.

» 0 : Field Strength (Needs a negative field strength or a negated function)

» p1: Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of the
plane

» p2: Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, there
is a crossover point. When negative the bulb simply bulges out of the plane like a pimple

 p3: Flatness. Higher values make the top end of the bulb fatter

f_strophoid_2d(x,y,z, P0, P1, P2, P3, P4, P5, P6). The 2d strophoid curve can be extruded in the Z
direction or rotated about various axes by using the SOR parameters.

 p0 : Field Strength

» p1: Size of bulb. Larger values give larger bulbs. Negative values give a bulb on the other side of the
plane

» p2: Sharpness. When zero, the bulb is like a sphere that just touches the plane. When positive, there
is a crossover point. When negative the bulb simply bulges out of the plane like a pimple

 p3: Fatness. Higher values make the top end of the bulb fatter
* P4 : SOR Switch
* p5: SOR Offset
* p6: SOR Angle
f_superellipsoid(x,y,z, PO, P1). Needs a negative field strength or a negated function.
* PO : east-west exponentx
* P1: north-south exponent

fth(x,y,z) =atan2(x, z)

f_th() is a function that is only useful when combined with other surfaces.

It produces a value which is equal to the "theta” angle, in radians, at any point. The theta angle is like the
longitude coordinate on the Earth. It stays the same as you move north or south, but varies from east to
west. Also look at_ph andf_r

f_torus(x,y,z, PO, P1)
* p0 : Major radius
e p1: Minor radius

f_torus2(x,y,z, PO, P1, P2). This is different from the forus function which just has the major and
minor radii as parameters.

 p0 : Field Strength (Needs a negative field strength or a negated function)
» p1: Major radius

e p2 : Minor radius

280 Include Files

f_torus_gumdrop (x,y,z, P0). The "Torus Gumdrop” surface is something like a torus with a couple of
gumdrops hanging off the end.

» p0 : Field Strength (Needs a negative field strength or a negated function)
f_umbrella(x,y,z, PO)
» p0 : Field Strength (Needs a negative field strength or a negated function)

f_witch_of_agnesi (x,y,z, PO, P1, P2, P3, P4, P5). The "Witch of Agnesi” surface looks something
like a witches hat.

* p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Controls the width of the spike. The height of the spike is always about 1 unit

f_witch_of_agnesi_2d(x,vy,z, PO, P1, P2, P3, P4, P5). The 2d version of the "Witch of Agnesi” curve
can be extruded in the Z direction or rotated about various axes by use of the SOR parameters.

 p0 : Field Strength (Needs a negative field strength or a negated function)
 p1: Controls the size of the spike

» p2: Controls the height of the spike

* p3: SOR Switch

* p4: SOR Offset

* p5: SOR Angle

7.7.3 Pre defined functions

eval_pigment (Pigm, Vect), This macro evaluates the color of a pigment at a specific point. Some pigments
require more information than simply a point, slope pattern based pigments for example, and will not work
with this macro. However, most pigments will work fine.

Parameters:

* vect = The point at which to evaluate the pigment.

» pigm = The pigment to evaluate.
f_snoise3d(x, y, z).Justlike fnoise3d(), but returns values in the range [-1, 1].
f_sinewave (val, amplitude, frequency). Turns aramping waveform into a sine waveform.

f_scallop_wave (val, amplitude, frequency). Turns a ramping waveform into a "scallapave” wave-
form.

Pattern functions

Predefined pattern functions, useful for building custom function patterns or performing "displacement
mapping” on isosurfaces. Many of them are not really useful for these purposes, they are simply included
for completeness.

Some are not implemented at all because they require special parameters that must be specified in the
definition, or information that is not available to pattern functions. For this reason, you probably would
want to define your own versions of these functions.

All of these functions take three parameters, the XYZ coordinates of the point to evaluate the pattern at.

f_agate(x, vy, z)

7.8 glass.inc, glass_old.inc 281

fboxed(x, y, 2z)
fbozo(x, y, z)
fbrick(x, y, z)
f_bumps (x, vy, z)
f_checker(x, vy, z)

f_crackle(x, y, z)
This pattern has many more options, this function uses the defaults.

f_cylindrical (x, vy, z)
f_dents(x, vy, 2z)
f_gradientX(x, y, z)
f_gradientY(x, y, z)
f_gradientZ(x, y, z)
f_granite(x, y, z)
f_hexagon (x, vy, z)
f_leopard(x, y, z)

f_mandel (x, vy, 2z)
Only the basic mandel pattern is implemented, its variants and the other fractal patterns are not
implemented.

fmarble(x, y, z)
f_onion(x, y, z)
f_planar(x, y, z)
f_radial(x, y, 2z)
f_ripples(x, y, z)
f_spherical (x, y, z)
f_spirall(x, vy, z)
f_spiral2(x, vy, z)
f_spotted(x, y, z)
f_waves (x, y, 2z)
fowood(x, y, 2z)

f_wrinkles(x, y, z)

7.8 glass.inc, glassld.inc

This file contains glass materials using new features introduced in POV 3.1 and 3.5. The old glass.inc file
is still included for backwards compatibility (it is named glasd.inc, and is included by glass.inc, so you
do not need to change any scenes), but these materials will give more realistic results.

282 Include Files

7.8.1 Glass colors (with transparency)

Col_Glass_Beerbottle Col_Glass_General Col_Glass_Ruby
Col_Glass_Bluish Col_Glass_Green Col_Glass_Vicksbottle
Col_Glass_Clear Col_Glass_Old Col_Glass_Winebottle
Col_Glass_Dark_Green Col_Glass_Orange Col_Glass-Yellow

Table 7.6: glass.inc glass colors with transparency

7.8.2 Glass colors (without transparency, for fadecolor)

7.8.3 Glass finishes

F_Glass5, ..., F_Glassl0

7.8.4 Glass interiors

I_Glassl, ..., I.Glass4
I_Glass_Fade_Sqrl (identical toT_Glass1)
I_Glass_Fade Expl (identical to1_Glass2)
I_Glass_Fade Exp2 (identical to1_Glass3)
I_Glass_Fade Exp3 (identical to1_Glass4)
Glass interiors with various fadgower settings.

I_Glass_Dispersionl, I_Glass_Dispersion2
Glass interiors with dispersion_class_Dispersionl has an approximately natural glass dis-
persion.I_Glass_Dispersion2 IS exaggerated.

I_Glass_Causticsl, I_Glass_Caustics2
Glass interiors with caustics.

7.8.5 Glass interior macros
I_Glass_Exp (Distance) andI_Glass_Sqr (Distance).

These macros return an interior with either exponential or faaeer 2 falloff, and a fadelistance of
Distance.

7.8.6 (glassold.inc
This file contains glass textures for POV-Ray versions 3.1 and earlier. These textures do not take advantage

of the new features introduced with POV-Ray 3.5 and are included for backwards compatability, you will
get better results with the materials in glass.inc.

These textures are designed to be used with {B&aks interior, also defined in this file.

Glass finishes

F_Glassl, ..., F_Glass4

7.8 glass.inc, glass_old.inc

283

Col_Amber 01
Col_Amber_02
Col_Amber_03
Col_Amber_04
Col_Amber_05

Col Apatite_01
Col_Apatite_02
Col_Apatite_03
Col_Apatite_04
Col_Apatite_05

Col_Beerbottle
Col Blue_ 01
Col Blue_02
Col_Blue_03
Col Blue_04

Col Fluorite_02
Col_Fluorite_03
Col Fluorite_04
Col_Fluorite_05
Col Fluorite_06

Col_Gypsum_03
Col_Gypsum_04
Col_Gypsum_05
Col_Gypsum_06
Col_Orange

Col_Sapphire_01
Col_Sapphire_02
Col_Sapphire_03
Col_Topaz-01
Col_Topaz-02

Col_Yellow 01
Col_Yellow_02
Col_Yellow 03
Col_Yellow_04

Col_Amber_06
Col_Amber_07
Col_Amber_08
Col_Amber_09
Col_Amethyst_01

Col_ Aquamarine_01
Col_Aquamarine_02
Col_Aquamarine_03
Col_Aquamarine_04
Col_Aquamarine_05

Col Citrine_01
Col_Dark_Green
Col_Emerald_ 01
Col_Emerald_02
Col_Emerald_03

Col_Fluorite_07
Col_Fluorite_08
Col_Fluorite_09
Col_Green
Col_Green 01

Col_Red 01
Col_Red_02
Col_Red 03
Col_Red_04
Col_Ruby

Col_Topaz_03
Col_Tourmaline_ 01
Col_Tourmaline_02
Col_Tourmaline_03
Col_Tourmaline_04

Col_Amethyst_02
Col_Amethyst_03
Col_Amethyst_04
Col_Amethyst_05
Col_Amethyst_06

Col_Aquamarine_06
Col_Azurite_01
Col_Azurite_02
Col_Azurite_03
Col Azurite_04

Col_Emerald_04
Col_Emerald-05
Col_Emerald_06
Col_Emerald_07
Col_Fluorite_01

Col_Green_02
Col_Green_03
Col_Green_04
Col_Gypsum_01
Col_Gypsum_02

Col_Ruby_01
Col_Ruby-02
Col_Ruby_03
Col_Ruby_04
Col_Ruby_05

Col_Tourmaline_05
Col_Tourmaline_06
Col_Vicksbottle
Col_Winebottle
Col_Yellow

Table 7.7: glass.inc glass colors without transparency for_tadier

284 Include Files

Glass textures
T_Glassl
Simple clear glass.

T_Glass2
More like an acrylic plastic.

T_Glass3
An excellent lead crystal glass.

T_Glass4
T_0ld_Glass
T_Winebottle_Glass
T_Beerbottle_Glass
T_Ruby_Glass
T_Green_Glass
T_Dark_Green_Glass
T_Yellow_Glass

T_Orange_Glass
Orange/amber glass.

T_Vicksbottle_Glass

7.9 math.inc

This file contains many general math functions and macros.

7.9.1 Float functions and macros
even (N). A function to test whether N is even, returns 1 when true, 0 when false.
Parameters

* N = Input value

odd (N). A function to test whether N is odd, returns 1 when true, 0 when false.
Parameters

* N =Input value

Interpolate(GC, GS, GE, TS, TE, Method). Interpolation macro, interpolates between the float vataes
andTe. The method of interpolation is cosine, linear or exponential. The position where to evaluate the
interpolation is determined by the positionafin the rangess - Ge. See example.

Parameters:

* cc = global current, float value within the range GS - GE
* Gs = global start
* GE = global end

* Ts = target start

7.9 math.inc 285

 TE = target end
* Method = interpolation method, float value:
— Method < 0 : exponential, using the value of Method as exponent.
— Method = 0 : cosine interpolation.
— Method > 0 : exponential, using the value of Method as exponent.
* Method = 1: linear interpolation,
Example:

#declare A = Interpolate(0.5, 0, 1, 0, 10, 1);
#debug str (A, 0,2)
// result A = 5.00

#declare A = Interpolate(0.0,-2, 2, 0, 10, 1);
#debug str(a,0,2)
// result A = 5.00

#declare A = Interpolate(0.5, 0, 1, 0, 10, 2);
#debug str(a,0,2)
// result A = 2.50

Mean (A) . A macro to compute the average of an array of values.
Parameters:

» 2= An array of float or vector values.

std_Dev (A, M).A macro to compute the standard deviation.
Parameters:

e 2= An array of float values.
» u = Mean of the floats in the array.

GetStats (valarr). This macro declares a global array namee:tisticsarray” containing: N, Mean,
Min, Max, and Standard Deviation
Parameters:

* 2 =An array of float values.

Histogram(vValArr, Intervals). This macro declares a global, 2D array nametkfogramarray”. The
first value in the array is the center of the interval/bin, the second the number of values in that interval.
Parameters:

* valarr = An array with values.
e Intervals = The desired number of intervals/bins.

sind(v), cosd(v), tand(v), asind(v), acosd(v), atan2d(a, b). These functions are versions of the
trigonometric functions using degrees, instead of radians, as the angle unit.

Parameters:

The same as for the analogous built-in trig function.

max3(a, b, c). Afunction to find the largest of three numbers.
Parameters:

* a, b, c=Inputvalues.

min3(a, b, c). A function to find the smallest of three numbers.
Parameters:

286 Include Files

* 3, b, c¢=Inputvalues.

f_sqr (v). A function to square a number.
Parameters:

* v = Input value.

sgn (v). A function to show the sign of the number. Returns -1 or 1 depending on the sign of v.
Parameters:

* v =Input value.

clip (v, Min, Max). A function that limits a value to a specific range, if it goes outside that range it is
"clipped”. Input values larger thamx will return max, those less thamin will return min.
Parameters:

* v = Input value.
 Min = Minimum of output range.
* Max = Maximum of output range.

clamp (V, Min, Max). A function that limits a value to a specific range, if it goes outside that range it is
"clamped” to this range, wrapping around. As the input increases or decreases outside the given range, the
output will repeatedly sweep through that range, making a "sawtooth” waveform.

Parameters:

* v = Input value.
* Min = Minimum of output range.
* Max = Maximum of output range.

adj_range (V, Min, Max). A function that adjusts input values in the range [0, 1] to a given range. An input
value of O will returnmin, 1 will returnmax, and values outside the [0, 1] range will be linearly extrapolated
(the graph will continue in a straight line).

Parameters:

* v =Input value.
* Min = Minimum of output range.
* Max = Maximum of output range.

adj_range2 (V, InMin, InMax, OutMin, OutMax). Like f_range(), but adjusts input values in the range
[InMin, InMax] tOthe ranggoutMin, OutMax].
Parameters:

e v =Input value.

* InMin = Minimum of input range.

e InMax = Maximum of input range.

* outMin = Minimum of output range.

* outMax = Maximum of output range.

7.9.2 \Vector functions and macros

These are all macros in the current version because functions can not take vector parameters, but this may
change in the future.

7.9 math.inc 287

vsqr (V). Square each individual component of a vector, equivalentito
Parameters:

» v = Vector to be squared.

VPow(V, P), VPow5D(V, P).Raise each individual component of a vector to a given power.
Parameters:

* v = Input vector.
» p = Power.

VEq(V1, Vv2). Tests for equal vectors, returns true if all three componeritseaxfual the respective compo-
nents ofv2.
Parameters:

e v1, v2 = The vectors to be compared.

VEG5D (V1, v2). A 5D version ofveq (). Tests for equal vectors, returns true if all 5 components aéqual
the respective componentswof.
Parameters:

e v1, v2 = The vectors to be compared.

vzero (V). Tests for a< 0, 0, 0> vector.
Parameters:

e v = Input vector.

vzero5D (V). Tests for a< 0, 0, 0, 0, B> vector.
Parameters:

* v = Input vector.

VLength5D (V). Computes the length of a 5D vector.
Parameters:

* v = Input vector.

VNormalize5D (V). Normalizes a 5D vector.
Parameters:

* v = Input vector.

VDot 5D (V1, v2). Computes the dot product of two 5D vectors. See vdot() for more information on dot
products.
Parameters:

* v = Input vector.

VCos_Angle (v1, v2). Compute the cosine of the angle between two vectors.
Parameters:

* V1, v2 = Inputvectors.

VAngle (V1, V2), VAngleD(vl, v2). Compute the angle between two vectorsngle () returns the angle
in radiansyangleD () in degrees.
Parameters:

* V1, v2 = Inputvectors.

VRotation(V1, V2, Axis), VRotationD(V1, V2, Axis).Compute the rotation angle from V1 to V2 around
Axis. Axis should be perpendicular to both V1 and V2. The output will be in the range between -pi and pi
radians or between -180 degrees and 180 degrees if you are using the degree version. However, if Axis is

288 Include Files

set t0<0,0,0> the output will always be positive or zero, the same result you will get with the VAngle()
macros.
Parameters:

* v1, V2 = Input vectors.

vDist (v1, v2). Compute the distance between two points.
Parameters:

* V1, v2 = Input vectors.

VPerp_To_Vector (V). Find a vector perpendicular to the given vector.
Parameters:

* v = Input vector.

VPerp_To_Plane (vl, v2). Find a vector perpendicular to both given vectors. In other words, perpendicular
to the plane defined by the two input vectors
Parameters:

* V1, v2 = Inputvectors.

VPerp_Adjust (V1, Axis). Find a vector perpendicular to Axis and in the plane of V1 and Axis. In other
words, the new vector is a version of V1 adjusted to be perpendicular to Axis.
Parameters:

* V1, Axis = Inputvectors.

VProject_Plane (V1, Axis). Projectvector V1 onto the plane defined by Axis.
Parameters:

* V1 = Input vectors.
» axis = Normal of the plane.

VProject Axis(Vl, Axis). Projectvector V1 onto the axis defined by Axis.
Parameters:

* V1, Axis = Input vectors.

VMin (V), VMax (V). Find the smallest or largest component of a vector.
Parameters:

* v = Input vector.

VvWith_Len(V, Len). Create a vector parallel to a given vector but with a given length.
Parameters:

» v = Direction vector.

* Len = Length of desired vector.

7.9.3 Vector Analysis

SetGradientAccuracy (Value): all below macros make use of a constant name@radientFn_Accuracy’
for numerical approximation of the derivatives. This constant can be changed with the macro, the default
value is 0.001.

fn_Gradient (Fn): macro calculating the gradient of a function as a function.
Parameters:

 rn = function to calculate the gradient from.

7.9 math.inc 289

Output: the length of the gradient as a function.

fn_Gradient Directional (Fn, Dir): macro calculating the gradient of a function in one direction as a
function.
Parameters:

 rn = function to calculate the gradient from.
 pir = direction to calculate the gradient.
Output: the gradient in that direction as a function.

fn_Divergence (Fnx, Fny, Fnz): macro calculating the divergence of a (vector) function as a function.
Parameters:

* Fnx, Fny, Fnz= X,y and z components of a vector function.
Output: the divergence as a function.

vGradient (Fn, p0): macro calculating the gradient of a function as a vector expression.
Parameters:

 rn = function to calculate the gradient from.
* p0 = point where to calculate the gradient.
Output: the gradient as a vector expression.

vCurl (Fnx, Fny, Fnz, p0): macro calculating the curl of a (vector) function as a vector expression
Parameters:

* Fnx, Fny, Fnz =X,y and z components of a vector function.
 p0 = point where to calculate the gradient.
Output: the curl as a vector expression

Divergence (Fnx, Fny, Fnz, p0): macro calculating the divergence of a (vector) function as a float expres-
sion
Parameters:

* Fnx, Fny, Fnz =X,y and z components of a vector function.
* p0 = point where to calculate the gradient.
Output: the divergence as a float expression.

Gradient_Length (Fn, p0): mMacro calculating the length of the gradient of a function as a float expression.
Parameters:

 rn = function to calculate the gradient from.
 p0 = point where to calculate the gradient.
Output: the length of the gradient as a float expression.

Gradient Directional (Fn, p0, Dir): macro calculating the gradient of a function in one direction as a
float expression.
Parameters:

» rn = function to calculate the gradient from.
 p0 = point where to calculate the gradient.
* pir = direction to calculate the gradient.

Output: the gradient in that direction as a float expression

290 Include Files

7.10 metals.inc, golds.inc

These files define several metal textures. The file metals.inc contains copper, silver, chrome, and brass
textures, and golds.inc contains the gold textures.
Rendering the demo files will come in useful in using these textures.

7.10.1 metals.inc

Colors:

P Brassl

Dark brown bronze.
P_Brass2

Somewhat lighter brown than Brass4. Old penny, in soft finishes.
P_Brass3

Used by Steve Anger’s Polishd®fass. Slightly coppery.
P_Brass4

A little yellower than Brass1.
P_Brassd

Very light bronze, ranges from med tan to almost white.
P_Copperl

Bronze-like. Best in finish #C.
P_Copper?2

Slightly brownish copper/bronze. Best in finishes #B-#D.
P_Copper3

Reddish-brown copper. Best in finishes #C-#E.
P_Copperd

Pink copper, like new tubing. Best in finishes #C-#E.
P_Copper5

Bronze in softer finishes, gold in harder finishes.
P_Chromel

20% Gray. Used in Steve Anger’s Polish€tirome.
P_Chrome2

Slightly blueish 60% gray. Good steel w/finish #A.
P_Chrome3

50% neutral gray.
P_Chrome4

75% neutral gray.
P_Chrome5

95% neutral gray.
P_Silverl

Yellowish silverplate. Somewhat tarnished looking.
P_Silver?2

Not quite as yellowish as Silverl but more so than Silver3.

7.11 rand.inc

291

P_Silver3
Reasonably neutral silver.

P_Silverd
P_Silver5
Finishes:

F_MetalA
Very soft and dull.

F_MetalB
Fairly soft and dull.

F_MetalC
Medium reflectivity. Holds color well.

F_MetalD

Very hard and highly polished. High reflectivity.

F_MetalE
Very highly polished and reflective.

Textures:

T_Brass-1A to T_Brass_5E
T_Copper_1A to T_Copper_5E
T_Chrome_1A to T_Chrome_5E

T_Silver_1A to T_Silver_5E

7.10.2 golds.inc

This file has its own versions @fvetala throughr Metals.

The gold textures themselves areo1d_1a throught_co1d_5E.

7.11 rand.inc

A collection of macros for generating random numbers, as well as 4 predefined random number streams:
RdmA, RdmB, RdmC, andRrdmp. There are macros for creating random numbers in a flat distribution (all
numbers equally likely) in various ranges, and a variety of other distributions.

7.11.1 Flat Distributions

SRand (stream) . "Signed rand()”, returns random numbers in the range [-1, 1].

Parameters:

* stream = Random number stream.

RRand (Min, Max, Stream). Returnsrandom numbers in the range [Min, Max].

Parameters:

» Min = The lower end of the output range.

292 Include Files

 Max = The upper end of the output range.
* Stream = Random number stream.

VRand (Stream). Returns random vectors in a box from0, 0, 0>to< 1, 1, I>
Parameters:

* Stream = Random number stream.

VRand_In_Box (PtA, PtB, Stream). Like VRand(), this macro returns a random vector in a box, but this
version lets you specify the two corners of the box.
Parameters:

» ptA = Lower-left-bottom corner of box.
» ptB = Upper-right-top corner of box.
e stream = Random number stream.

VRand_In_Sphere (Stream). Returns a random vector in a unit-radius sphere located at the origin.
Parameters:

* stream = Random number stream.
VRand_On_Sphere (Stream). Returns a random vector on the surface of a unit-radius sphere located at the
origin.
Parameters:

* Stream = Random number stream.

VRand_In_Obj(Object, Stream) This macro takes a solid object and returns a random point that is inside

it. It does this by randomly sampling the bounding box of the object, and can be quite slow if the object
occupies a small percentage of the volume of its bounding box (because it will take more attempts to find a
point inside the object). This macro is best used on finite, solid objects (non-solid objects, such as meshes
and bezier patches, do not have a defined "inside”, and will not work).

Parameters:

* Object = The object the macro chooses the points from.

* stream = Random number stream.

7.11.2 Other Distributions
Continuous Symmetric Distributions
Rand_Cauchy (Mu, Sigma, Stream). Cauchy distribution.
Parameters:
e Mu = Mean.
* sigma = Standard deviation.
e stream = Random number stream.

Rand_Student (N, Stream). Student’s-t distribution.
Parameters:

» N = degrees of freedom.

* stream = Random number stream.

7.11 rand.inc 293

Rand_Normal (Mu, Sigma, Stream). Normal distribution.
Parameters:

e My = Mean.
* sigma = Standard deviation.
* Stream = Random number stream.

Rand_Gauss (Mu, Sigma, Stream). Gaussian distribution. Like Raridormal(), but a bit faster.
Parameters:

e Mu = Mean.
* sigma = Standard deviation.

* Stream = Random number stream.

Continuous Skewed Distributions

Rand_Spline (Spline, Stream). This macro takes a spline describing the desired distribution. The T value
of the spline is the output value, and the .y value its chance of occuring.
Parameters:

* spline = A spline determining the distribution.
* stream = Random number stream.

Rand_Gamma (Alpha, Beta, Stream). Gamma distribution.
Parameters:

* alpha = Shape parameter O.
* Beta = Scale parameter 0.
* Stream = Random number stream.

Rand_Beta (Alpha, Beta, Stream). Beta variate.
Parameters:

* Alpha = Shape Gammal.
e Beta = Scale Gammaz2.
* stream = Random number stream.

Rand_Chi_Square (N, Stream). Chi Square random variate.
Parameters:

» N = Degrees of freedom (integer).
* stream = Random number stream.

Rand_F_Dist (N, M, Stream). F-distribution.
Parameters:

» N, M= Degrees of freedom.
* stream = Random number stream.

Rand_Tri (Min, Max, Mode, Stream). Triangular distribution
Parameters:

e Min, Max, Mode: Min < Mode < Max.

294 Include Files

* Stream = Random number stream.

Rand_Erlang (Mu, K, Stream). Erlang variate.
Parameters:

* Mu = Mean>=0.
» ¥ = Number of exponential samples.
* stream = Random number stream.

Rand_Exp (Lambda, Stream). EXponential distribution.
Parameters:

* Lambda = rate = 1/mean.
* Stream = Random number stream.

Rand_Lognormal (Mu, Sigma, Stream). Lognormal distribution.
Parameters:

e Mu = Mean.
* sigma = Standard deviation.
* stream = Random number stream.

Rand_Pareto (Alpha, Stream). Pareto distribution.
Parameters:

e Alpha =7?
* Stream = Random number stream.

Rand_Weibull (Alpha, Beta, Stream). Weibull distribution.

Parameters:
* Alpha =7?
* Beta=7?

* Stream = Random number stream.

Discrete Distributions

Rand_Bernoulli (P, Stream) andprob (P, Stream). Bernoulli distribution. Output is true with probability
equal to the value of P and false with a probability of 1 - P.
Parameters:

* p = probability range (0-1).
* stream = Random number stream.

Rand_Binomial (N, P, Stream). Binomial distribution.
Parameters:

* N = Number of trials.
 p = Probability (0-1)
* stream = Random number stream.

Rand_Geo (P, Stream). Geometric distribution.
Parameters:

7.12 shapes.inc, shapes_old.inc, shapes2.inc, shapesqg.inc 295

* p = Probability (0-1).
* stream = Random number stream.

Rand_Poisson (Mu, Stream). Poisson distribution.
Parameters:

e My = Mean.

¢ Stream = Random number stream.

7.12 shapes.inc, shapesid.inc, shapes2.inc, shapesq.inc

These files contain predefined shapes and shape-generation macros.

"shapes.inc” includes "shapasd.inc” and contains many macros for working with objects, and for creating
special objects, such as bevelled text, spherical height fields, and rounded shapes.

Many of the objects in "shapedd.inc” are not very useful in the newer versions of POV-Ray, and are kept
for backwards compatability with old scenes written for versions of POV-Ray that lacked primitives like
cones, disks, planes, etc.

The file "shapes2.inc” contains some more useful shapes, including regular polyhedrons, and "shapesqg.inc”
contains several quartic and cubic shape definitions.

Some of the shapes in "shapesq.inc” would be much easier to generate, more flexible, and possibly faster
rendering as isosurfaces, but are still useful for two reasons: backwards compatability, and the fact that
isosurfaces are always finite.

7.12.1 shapes.inc

Isect (Pt, Dir, Obj, OPt) andIsectN(Pt, Dir, Obj, OPt, ONorm)

These macros are interfaces to the trace() function. Isect() only returns the intersection point, IsectN()
returns the surface normal as well. These macros return the point and normal information through their
parameters, and true or false depending on whether an intersection was found:

If an intersection is found, they return true and set OPt to the intersection point, and ONorm to the normal.
Otherwise they return false, and do not modify OPt or ONorm.

Parameters:

» pt = The origin (starting point) of the ray.

» pir = The direction of the ray.

* 0bj = The object to test for intersection with.

» ort = A declared variable, the macro will set this to the intersection point.

 oNorm = A declared variable, the macro will set this to the surface normal at the intersection point.

Extents (Obj, Min, Max). This macro is a shortcut for calling both méxtent() and maxextent() to get the
corners of the bounding box of an object. It returns these values through the Min and Max parameters.
Parameters:

» 0bj = The object you are getting the extents of.
» Min = A declared variable, the macro will set this to the mixtent of the object.

» Max = A declared variable, the macro will set this to the metent of the object.

296 Include Files

Center_Object (Object, Axis). A shortcut for using the Centéirans() macro with an object.
Parameters:

* Object = The object to be centered.
* axis = See Centefirans() in the transforms.inc documentation.

Align_Object (Object, Axis, Pt). A shortcut for using the AligiiTrans() macro with an object.
Parameters:

* Object = The object to be aligned.
* axis = See AlignTrans() in the transforms.inc documentation.
» point = The point to which to align the bounding box of the object.

Bevelled_Text (Font, String, Cuts, BevelAng, BevelDepth, Depth, Offset, UseMerge). This macro
attempts to "bevel” the front edges of a text object. It accomplishes this by making an intersection of
multiple copies of the text object, each sheared in a different direction. The results are no perfect, but may
be entirely acceptable for some purposes. Warning: the object generated may render considerably more
slowly than an ordinary text object.

Parameters:

* Font = A string specifying the font to use.
* string = The text string the object is generated from.

 cuts = The number of intersections to use in bevelling the text. More cuts give smoother results, but
take more memory and are slower rendering.

* BevelAng = The angle of the bevelled edge.
* BevelDepth = The thickness of the bevelled portion.
* Depth = The total thickness of the resulting text object.

» offset = The offset parameter for the text object. The z value of this vector will be ignored, because
the front faces of all the letters need to be coplanar for the bevelling to work.

* UseMerge = Switch between merge (1) and union (0).

Text_Space (Font, String, Size, Spacing). Computes the width of a text string, including "white space”,

it returns the advance widths of all n letters. T&gace gives the space atext, or a glyph, occupies in regard
to its surroundings.

Parameters:

* Font = A string specifying the font to use.

* string = The text string the object is generated from.

* size = A scaling value.

* Spacing = The amount of space to add between the characters.

Text_Width (Font, String, Size, Spacing). Computes the width of a text string, it returns the advance
widths of the first n-1 letters, plus the glyph width of the last letter. Wfdth gives the "physical” width

of the text and if you use only one letter the "fysical” width of one glyph.

Parameters:

 Font = A string specifying the font to use.
» string = The text string the object is generated from.

* size = A scaling value.

7.12 shapes.inc, shapes_old.inc, shapes2.inc, shapesqg.inc 297

* spacing = The amount of space to add between the characters.
Align_Left, Align_Right, Align_Center. These constants are used by thecle Text () macro.

Circle_Text (Font, String, Size, Spacing, Depth, Radius, Inverted, Justification, Angle). Cre-

ates a text object with the bottom (or top) of the character cells aligned with all or part of a circle. This
macro should be used inside agyect{. ..} block.

Parameters:

» Font = A string specifying the font to use.

* string = The text string the object is generated from.

* size = A scaling value.

* spacing = The amount of space to add between the characters.
* Depth = The thickness of the text object.

* Radius = The radius of the circle the letters are aligned to.

 Inverted = Controls what part of the text faces "outside”. If this parameter is nonzero, the tops of the
letters will point toward the center of the circle. Otherwise, the bottoms of the letters will do so.

e Justification = Align_Left, Align_Right, or Align.Center.

* angle = The point on the circle from which rendering will begin. The +x direction is 0 and the +y
direction is 90 (i.e. the angle increases anti-clockwise).

Wedge (Angle). This macro creates an infinite wedge shape, an intersection of two planes. Itis mainly useful
in CSG, for example to obtain a specific arc of a torus. The edge of the wedge is positioned along the y
axis, and one side is fixed to the zy plane, the other side rotates clockwise around the y axis.

Parameters:

* Angle = The angle, in degrees, between the sides of the wedge shape.

Spheroid(Center, Radius). This macro creates an unevenly scaled sphere. Radius is a vector where each
component is the radius along that axis.
Parameters:

 center = Center of the spheroid.
 Radius = A vector specifying the radii of the spheroid.

Supertorus (MajorRadius, MinorRadius, MajorControl, MinorControl, Accuracy, MaxGradient). This

macro creates an isosurface of the torus equivalent of a superellipsoid. If you specify a MaxGradient of
less than 1, evaluate will be used. You will have to adjust MaxGradient to fit the parameters you choose,
a squarer supertorus will have a higher gradient. You may want to use the function alone in your own
isosurface.

Parameters:

* MajorRadius, MinorRadius = Base radii for the torus.

* MajorControl, MinorControl = Controls for the roundness of the supertorus. Use numbers in the
range [0, 1].

* Accuracy = The accuracy parameter.
* MaxGradient = The maxgradient parameter.

Supercone (EndA, A, B, EndB, C, D). This macro creates an object similar to a cone, but where the end
points are ellipses. The actual object is an intersection of a quartic with a cylinder.
Parameters:

298 Include Files

* Enda = Center of end A.
* 2, B = Controls for the radii of end A.
* £EndB = Center of end B.
* ¢, D= Controls for the radii of end B.

Connect_Spheres (PtA, RadiusA, PtB, RadiusB). This macro creates a cone that will smoothly join two
spheres. It creates only the cone object, however, you will have to supply the spheres yourself or use the
RoundCone2() macro instead.

Parameters:

 pta = Center of sphere A.
» RadiusA = Radius of sphere A.
 ptB = Center of sphere B.
* radiusB = Radius of sphere B.

Wire_Box_Union (PtA, PtB, Radius),

Wire_Box_Merge (PtA, PtB, Radius),

Wire_Box (PtA, PtB, Radius, UseMerge). Creates a wire-frame box from cylinders and spheres. The re-
sulting object will fit entirely within a box object with the same corner points.

Parameters:

» pta = Lower-left-front corner of box.

 ptB = Upper-right-back corner of box.

* Radius = The radius of the cylinders and spheres composing the object.
* UseMerge = Whether or not to use a merge.

Round_Box_Union (PtA, PtB, EdgeRadius),

Round_Box_Merge (PtA, PtB, EdgeRadius),

Round_Box (PtA, PtB, EdgeRadius, UseMerge). Creates a box with rounded edges from boxes, cylinders
and spheres. The resulting object will fit entirely within a box object with the same corner points. The
result is slightly different from a superellipsoid, which has no truely flat areas.

Parameters:

 pta = Lower-left-front corner of box.

 ptB = Upper-right-back corner of box.

* EdgeRadius = The radius of the edges of the box.
* UseMerge = Whether or not to use a merge.

Round_Cylinder_Union (PtA, PtB, Radius, EdgeRadius),

Round_Cylinder_Merge (PtA, PtB, Radius, EdgeRadius),

Round_Cylinder (PtA, PtB, Radius, EdgeRadius, UseMerge). Creates a cylinder with rounded edges from
cylinders and tori. The resulting object will fit entirely within a cylinder object with the same end points
and radius. The result is slightly different from a superellipsoid, which has no truely flat areas.
Parameters:

e pta, ptB = The end points of the cylinder.
* Radius = The radius of the cylinder.
* EdgeRadius = The radius of the edges of the cylinder.

* UseMerge = Whether or not to use a merge.

7.12 shapes.inc, shapes_old.inc, shapes2.inc, shapesqg.inc 299

Round_Cone_Union (PtA, RadiusA, PtB, RadiusB, EdgeRadius),

Round_Cone_Merge (PtA, RadiusA, PtB, RadiusB, EdgeRadius),

Round_Cone (PtA, RadiusA, PtB, RadiusB, EdgeRadius, UseMerge) Creates a cone with rounded edges
from cones and tori. The resulting object will fit entirely within a cone object with the same end points
and radii.

Parameters:

» pta, ptB = The end points of the cone.

* RadiusA, RadiusB = The radii of the cone.

* EdgeRadius = The radius of the edges of the cone.
* UseMerge = Whether or not to use a merge.

Round_Cone2_Union (PtA, RadiusA, PtB, RadiusB),

Round_Cone2_Merge (PtA, RadiusA, PtB, RadiusB),

Round_Cone2 (PtA, RadiusA, PtB, RadiusB, UseMerge). Creates a cone with rounded edges from a cone

and two spheres. The resulting object will not fit entirely within a cone object with the same end points and
radii because of the spherical caps. The end points are not used for the conical portion, but for the spheres,
a suitable cone is then generated to smoothly join them.

Parameters:

* pta, ptB = The centers of the sphere caps.
* RadiusA, RadiusB = The radii of the sphere caps.
* UseMerge = Whether or not to use a merge.

Round_Cone3_Union (PtA, RadiusA, PtB, RadiusB),

Round_Cone3_Merge (PtA, RadiusA, PtB, RadiusB)

Round_Cone3 (PtA, RadiusA, PtB, RadiusB, UseMerge). Like RoundCone2(), this creates a cone with
rounded edges from a cone and two spheres, and the resulting object will not fit entirely within a cone
object with the same end points and radii because of the spherical caps. The difference is that this macro
takes the end points of the conical portion and moves the spheres to be flush with the surface, instead of
putting the spheres at the end points and generating a cone to join them.

Parameters:

» pta, PtB = The end points of the cone.
* RadiusA, RadiusB = The radii of the cone.
* UseMerge = Whether or not to use a merge.

Quad(a, B, C, D) andsmooth Quad(a, NA, B, NB, C, NC, D, ND). These macros create "quads”, 4-sided
polygonal objects, using triangle pairs.
Parameters:

* A, B, ¢, D= Vertices of the quad.

* NA, NB, NC, ND = Vertex normals of the quad.

The HF Macros
There are several HF macros in shapes.inc, which generate meshes in various shapes. All the HF macros
have these things in common:

e The HF macros do not directly use an image for input, but evaluate a user-defined function. The
macros deform the surface based on the function values.

300 Include Files

» The macros can either write to a file to be included later, or create an object directly. If you want to
output to a file, simply specify a filename. If you want to create an object directly, specify " as the
file name (an empty string).

» The function values used for the heights will be taken from the square that goes<Bdiy0> to
<1,1,06> if UV height mapping is on. Otherwise the function values will be taken from the points
where the surface is (before the deformation).

» The texture you apply to the shape will be evaluated in the square that goes i@h@®> to <1,1,
0> if UV texture mapping is on. Otherwise the texture is evaluated at the points where the surface is
(after the deformation.

The usage of the different HF macros is described below.

HF_Square (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, MnExt, MxExt). This
macro generates a mesh in the form of a square height field, similar to the built-in_fielghgrimitive.
Also see the general description of the HF macros above.

Parameters:

* runction = The function to use for deforming the height field.

* UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.

» UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.
* res = A 2D vector specifying the resolution of the generated mesh.

* smooth = A boolean value telling the macro whether or not to smooth the generated mesh.

» FileName = The name of the output file.

* vnExt = Lower-left-front corner of a box containing the height field.

» MxExt = Upper-right-back corner of a box containing the height field.

HF _Sphere (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Center, Radius, Depth).

This macro generates a mesh in the form of a spherical height field. When UV-mapping is used, the UV
square will be wrapped around the sphere starting at +x and going anti-clockwise around the y axis. Also
see the general description of the HF macros above. Parameters:

 runction = The function to use for deforming the height field.

* UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.

* UseUvtexture = A boolean value telling the macro whether or not to use UV texture mapping.
* res = A 2D vector specifying the resolution of the generated mesh.

* smooth = A boolean value telling the macro whether or not to smooth the generated mesh.

* FileName = The name of the output file.

 center = The center of the height field before being displaced, the displacement can, and most likely
will, make the object off-center.

» Radius = The starting radius of the sphere, before being displaced.
 Depth = The depth of the height field.

HF Cylinder (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, EndA, EndB, Radius,

Depth). This macro generates a mesh in the form of an open-ended cylindrical height field. When
UV-mapping is used, the UV square will be wrapped around the cylinder. Also see the general description
of the HF macros above.

Parameters:

7.12 shapes.inc, shapes_old.inc, shapes2.inc, shapesqg.inc 301

Function = The function to use for deforming the height field.

UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.
UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.
Res = A 2D vector specifying the resolution of the generated mesh.

smooth = A boolean value telling the macro whether or not to smooth the generated mesh.
FileName = The name of the output file.

Enda, EndB = The end points of the cylinder.

Radius = The (pre-displacement) radius of the cylinder.

pepth = The depth of the height field.

HF _Torus (Function, UseUVheight, UseUVtexture, Res, Smooth, FileName, Major, Minor, Depth).

This macro generates a mesh in the form of a torus-shaped height field. When UV-mapping is used, the UV
square is wrapped around similar to spherical or cylindrical mapping. However the top and bottom edges
of the map wrap over and under the torus where they meet each other on the inner rim. Also see the general
description of the HF macros above.

Parameters:

Function = The function to use for deforming the height field.

UseUVheight = A boolean value telling the macro whether or not to use UV height mapping.
UseUVtexture = A boolean value telling the macro whether or not to use UV texture mapping.
Res = A 2D vector specifying the resolution of the generated mesh.

smooth = A boolean value telling the macro whether or not to smooth the generated mesh.
FileName = The name of the output file.

Major = The major radius of the torus.

Minor = The minor radius of the torus.

7.12.2 shape®ld.inc

Ellipsoid, Sphere

Unit-radius sphere at the origin.

Cylinder_X, Cylinder.Y, Cylinder_Z

Infinite cylinders.

QCone_X, QCone.Y, QCone_Zz

Infinite cones.

Cone_X, Cone.Y, Cone_Z

Closed capped cones: unit-radius at -1 and O radius at +1 along each axis.

Plane_YZ, Plane_XZ, Plane_XY

Infinite planes passing through the origin.

Paraboloid_X, Paraboloid.Y, Paraboloid._Z

y2+22-x=0

Hyperboloid, Hyperboloid-Y

y-X2+22=0

302 Include Files

UnitBox, Cube
A cube 2 units on each side, centered on the origin.

Disk_X, Disk.Y, Disk_z
"Capped” cylinders, with a radius of 1 unit and a length of 2 units, centered on the origin.

7.12.3 shapes2.inc

Tetrahedron

4-sided regular polyhedron.

Octahedron
8-sided regular polyhedron.

Dodecahedron

12-sided regular polyhedron.

Icosahedron

20-sided regular polyhedron.

Rhomboid
Three dimensional 4-sided diamond, basically a sheared box.

Hexagon
6-sided regular polygonal solid, axis along x.

HalfCone.Y
Convenient finite cone primitive, pointing up in the Y axis.

Pyramid
4-sided pyramid (union of triangles, can not be used in CSG).

Pyramid2
4-sided pyramid (intersection of planes, can be used in CSG).

Square_X, Square.Y, Square_Z
Finite planes stretching 1 unit along each axis. In other words, 2X2 unit squares.

7.12.4 shapesg.inc

Bicorn
This curve looks like the top part of a paraboloid, bounded from below by another paraboloid.
The basic equation is:
YV2-X2+272)y2-(X2+22+2y-1)2=

Crossed-Trough
This is a surface with four pieces that sweep up from the x-z plane.
The equationis: y =x"2 z"2

Cubic_Cylinder
A drop coming out of water? This is a curve formed by using the equation:
y=1/2x2 (x+1)
as the radius of a cylinder having the x-axis as its central axis. The final form of the equation is:
y2+2722=05(X3+x72)

Cubic_Saddle_1
A cubic saddle. The equationis: z=X"3-y"3

7.12 shapes.inc, shapes_old.inc, shapes2.inc, shapesqg.inc 303

Devils_Curve
Variant of a devil’s curve in 3-space. This figure has a top and bottom part that are very similar
to a hyperboloid of one sheet, however the central region is pinched in the middle leaving two
teardrop shaped holes. The equation is:
X4+2X222-036x2-y4+0.25y2+24=0

Folium
This is a folium rotated about the x-axis. The formula is:
2X2-3xXy2-3x272+y2+722=0

Glob.5
Glob - sort of like basic teardrop shape. The equation is:
y2+22=05x5+05x"4

Twin_Glob
Variant of a lemniscate - the two lobes are much more teardrop-like.

Helix, Helix_1
Approximation to the helix z = arctan(y/x). The helix can be approximated with an algebraic
equation (kept to the range of a quartic) with the following steps:
tan(z) = y/x => sin(z)/cos(z) = y/x >
(1) x sin(z) - y cos(z) = 0 Using the taylor expansions for sin, cos about z = 0,
sin(z)=z-2z"3/3! + 2°5/5! - ...
cos(z)=1-2"2/2! +Z°6/6! - ...
Throwing out the high order terms, the expression (1) can be written as:
X(z-2"3/6)-y(1+2°2/2)=0, or

(2)-1/6x23+xz+1/2yz2-y=0
This helix (2) turns 90 degrees in the range8 z <= sqrt(2)/2. By using scale?2 2 2>, the
helix defined below turns 90 degrees in the range=z <= sqrt(2) = 1.4042.

Hyperbolic_Torus
Hyperbolic Torus having major radius sqrt(40), minor radius sqrt(12). This figure is generated
by sweeping a circle along the arms of a hyperbola. The equation is:
XA4+2X2y2-2X272-104X2+Yy4-2y2722+56y2+24+1042°2+784=0

Lemniscate
Lemniscate of Gerono. This figure looks like two teardrops with their pointed ends connected.
It is formed by rotating the Lemniscate of Gerono about the x-axis. The formula is:
X4-X2+y2+22=0

Quartic_Loop-1
This is a figure with a bumpy sheet on one side and something that looks like a paraboloid (but
with an internal bubble). The formula is:
X2+y2+acx)2-(X2+y2)(c-ax)2
-99*X"4+40*X"3-98*X"2*y"2-98*X"2*2"2+99*X"2+40*x*y"2
+A40*X*2"2+Y 4+2*y " 2*7"2-y"2+7"4-2"2

Monkey_Saddle
This surface has three parts that sweep up and three down. This gives a saddle that has a place
for two legs and a tail... The equation is:
z=c¢ ("3 -3xy"2)
The value c gives a vertical scale to the surface - the smaller the value of c, the flatter the surface
will be (near the origin).

Parabolic_Torus_40_12

304 Include Files

Parabolic Torus having major radius sqrt(40), minor radius sqrt(12). This figure is generated by
sweeping a circle along the arms of a parabola. The equation is:
XA4+2X2y2-2X22-104X2+y4-2y272+56y2+722+104z2+784=0

Piriform
This figure looks like a hersheys kiss. It is formed by sweeping a Piriform about the x-axis. A
basic form of the equation is:
X4-x3)+y2+z22=0.

Quartic_Paraboloid
Quartic parabola - a 4th degree polynomial (has two bumps at the bottom) that has been swept
around the z axis. The equation is:
01X4-Xx2-y2-272+09=0

Quartic_Cylinder
Quartic Cylinder - a Space Needle?

Steiner_Surface
Steiners quartic surface

Torus-40.12
Torus having major radius sqrt(40), minor radius sqrt(12).

Witch_Hat
Witch of Agnesi.

Sinsurf
Very rough approximation to the sin-wave surface z = sin(2 pi x y).
In order to get an approximation good to 7 decimals at a distance of 1 from the origin would
require a polynomial of degree around 60, which would require around 200,000 coefficients.
For best results, scale by something liké& 1 0.2>.

7.13 skies.inc, stars.inc

These files contain some predefined skies for you to use in your scenes.

skies.inc:
There are textures and pigment definitions in this file. All pigment definitions start witha&lPsky_spheres
start with "S”, all textures start with "T”, and all objects start with "C.

stars.inc:
This file contains predefined starfield textures. The starfields become denser and more colorful with the
number, with Starfield6 being the densest and most colorful.

7.13.1 skies.inc

Pigments:
P_Cloudl
P_Cloud2
P_Cloud3

Sky Spheres:

S_Cloudl

7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc 305

This sky.sphere uses_Eloud2 and ECloud3.

S_Cloud2
This sky.sphere uses_Eloud4.

S_Cloud3
This sky sphere uses_Eloud?2.

S_Cloud4
This sky sphere uses_Eloud3.

S_Cloudb5
This sky.sphere uses a custom pigment.

Textures:

T_Cloudl
2-layer texture using Eloud1 pigment, contains clear regions.

T_Cloud2
1-layer texture, contains clear regions.

T_Cloud3
2-layer texture, contains clear regions.

Objects:

0_Cloudl
Sphere, radius 10000 with Tloud1 texture.

0-Cloud2
Union of 2 planes, with TCloud2 and TCloud3.

7.13.2 stars.inc

Starfieldl
Starfield2
Starfield3
Starfield4
Starfield5

Starfield6

7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc

The two files stonesl.inc and stones2.inc contain lists of predefined stone textures.

The file "stonesl.inc” contains texture definitions faiGFnt0 to T-Grnt29, T.Grntla to TGrnt24a, and
T_Stone0 to TStone24.

The T_GrntXX, T_GrntXXa, and CrackX textures are "building blocks that are used to create the final
"usable” T_StoneX textures (and other textures that *you* design, of course!)

The T_.GrntXX textures generally contain no transparency, but th@riitXXa textures do contain trans-
parency. The CrackX textures are clear with thin opaque bands, simulating cracks.

306 Include Files

The file "stones2.inc” provides additional stone textures, and contains texture definitionsfon&25 to
T_Stone44.

The file "stones.inc” simply includes both "stonesl.inc” and "stones2.inc”, and the file "stoneold.inc” pro-
vides backwards compatability for old scenes, the user is advised to use the textures in "stonesl.inc” instead.

7.14.1 stonesl.inc

T_Grnt0

Gray/Tan with Rose.
T_Grntl

Creamy Whites with Yellow & Light Gray.
T_Grnt2

Deep Cream with Light Rose, Yellow, Orchid, & Tan.
T_Grnt3

Warm tans olive & light rose with cream.
T_Grntéd

Orchid, Sand & Mauve.
T_Grntb

Medium Mauve Med.Rose & Deep Cream.
T_Grnt6

Med. Orchid, Olive & Dark Tan "mud pie”.
T_Grnt7

Dark Orchid, Olive & Dark Pultty.
T_Grnt8

Rose & Light Cream Yellows
T_Grnt9

Light Steely Grays
T_Grntl0

Gray Creams & Lavender Tans
T_Grntll

Creams & Grays Kabhki
T_Grntl2

Tan Cream & Red Rose
T_Grntl3

Cream Rose Orange
T_Grntl4

Cream Rose & Light Moss w/Light Violet
T_Grntl5

Black with subtle chroma
T_Grntlé

White Cream & Peach
T_Grntl7

Bug Juice & Green

7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc 307

T_Grntl18
Rose & Creamy Yellow

T_Grntl9
Gray Marble with White feather Viens

T_Grnt20
White Marble with Gray feather Viens

T_Grnt21l
Green Jade

T_Grnt22
Clear with White feather Viens (has some transparency)

T_Grnt23
Light Tan to Mauve

T_Grnt24
Light Grays

T_Grnt25
Moss Greens & Tan

T_Grnt26
Salmon with thin Green Viens

T_Grnt27
Dark Green & Browns

T_Grnt28
Red Swirl

T_Grnt29
White, Tan, w/ thin Red Viens

T_Grnt0Oa
Translucent TGrntO

T_Grntla
Translucent TGrntl

T_Grnt2a
Translucent TGrnt2

T_Grnt3a
Translucent TGrnt3

T_Grntda
Translucent TGrnt4

T_Grntb5a
Translucent TGrnt5

T_Grnto6a
Translucent TGrnt6

T_Grnt7a
Translucent TGrnt7

T_Grnt8a
Aqua Tints

308

Include Files

T_Grnt9a
Transmit Creams With Cracks

T_Grntl0a
Transmit Cream Rose & light yellow

T_Grntlla
Transmit Light Grays

T_Grntl2a
Transmit Creams & Tans

T_Grntl3a
Transmit Creams & Grays

T_Grntlda
Cream Rose & light moss

T_Grntlba
Transmit Sand & light Orange

T_Grntlé6a
Cream Rose & light moss (again?)

T_Grntl7a
?7?7?

T_Grntl8a
7?7

T_Grntl9a
Gray Marble with White feather Viens with Transmit

T_Grnt20a
White Feather Viens

T_Grnt2la
Thin White Feather Viens

T_Grnt22a
?7?7?

T_Grnt23a
Transparent Green Moss

T_Grnt24a
7?7

T_Crackl
T_Crack & Red Overtint

T_Crack?2
Translucent Dark TCracks

T_Crack3
Overtint Green w/ Black TCracks

T_Crack4
Overtint w/ White T.Crack

The StoneXX textures are the complete textures, ready to use.

T_Stonel

7.14 stones.inc, stonesl.inc, stones2.inc, stoneold.inc

309

T_Stone2

T_Stone3

T_Stoned

T_Stoneb

T_Stoneb6

T_Stone7

T_Stone8

T_Stone9

T_Stonel0

T_Stonell

T_Stonel2

T_Stonel3

T_Stoneld

T_Stonel5

T_Stonel6

T_Stonel7

T_Stonel8

T_Stonel9

T_Stone20

T_Stone2l

T_Stone22

Deep Rose & Green Marble with large White Swirls

Light Greenish Tan Marble with Agate style veining

Rose & Yellow Marble with fog white veining

Tan Marble with Rose patches

White Cream Marble with Pink veining

Rose & Yellow Cream Marble

Light Coffee Marble with darker patches

Gray Granite with white patches

White & Light Blue Marble with light violets

Dark Brown & Tan swirl Granite with gray undertones

Rose & White Marble with dark tan swirl

White & Pinkish Tan Marble

Medium Gray Blue Marble

Tan & Olive Marble with gray white veins

Deep Gray Marble with white veining

Peach & Yellow Marble with white veining

White Marble with gray veining

Green Jade with white veining

Peach Granite with white patches & green trim

Brown & Olive Marble with white veining

Red Marble with gray & white veining

310 Include Files

Dark Tan Marble with gray & white veining

T_Stone23
Peach & Cream Marble with orange veining

T_Stone24
Green & Tan Moss Marble

7.14.2 stones2.inc

T_Stone25, ..., T_Stoned4

7.15 stdinc.inc

This file simply includes the most commonly used include files, so you can get all of them with a single
#include. The files included are:

e colors.inc
 shapes.inc

« transforms.inc
* consts.inc

« functions.inc
* math.inc

e rand.inc

7.16 strings.inc

This include contains macros for manipulating and generating text strings.

CRGBStr(C, MinLen, Padding) andCRGBFTStr(C, MinLen, Padding)

These macros convert a color to a string. The format of the output string is<'igbG, B>" or "rgbft <
R, G, B, F, ", depending on the macro being called.

Parameters:

» ¢ =The color to be turned into a string.

* MinLen = The minimum length of the individual components, analogous to the second parameter of
str().

* Padding = The padding to use for the components, see the third parameter of the str() function for
details.

str(a). This macro creates a string containing a float with the systems default precision. It is a shortcut for
using the str() function.
Parameters:

» A =The float to be converted to a string.

7.17 textures.inc 311

vstr2D(v), vstr(v). These macros create strings containing vectors using POV sy, >) with

the default system precision. VStr2D() works with 2D vectors, VStr() with 3D vectors. They are shortcuts
for using thevstr () function.

Parameters:

» v = The vector to be converted to a string.

Vstr2D(V,L,P), Vstr(v,L,P). These macros create strings containing vectors using POV syabey,(

Z>) with user specified precision. Vstr2D() works with 2D vectors, Vstr() with 3D vectors. They are
shortcuts for using the vstr() function. The function of L and P is the same &as irspecified in String
Functions.

Parameters:

» v = The vector to be converted to a string.

* L. = Minimum length of the string and the type of left padding used if the string’s representation is
shorter than the minimum.

» » = Number of digits after the decimal point.”

Triangle_Str (A, B, C) andSmooth,Triangle,Str(A, NA, B, NB, C, NC)

These macros take vertex and normal information and return a string representing a triangle in POV-Ray
syntax. They are mainly useful for generating mesh files.

Parameters:

* A, B, C=Triangle vertex points.
e N, NB, NC = Triangle vertex normals (Smoaffriangle Str() only).

Parse_String(String). This macro takes a string, writes it to a file, and then includes that file. This has the
effect of parsing that stringP4rse_string ("MyColor")” will be seen by POV-Ray astycolor”.
Parameters:

* string = The string to be parsed.

7.17 textures.inc

This file contains many predefined textures, including wood, glass, and metal textures, and a few tex-
ture/pattern generation macros.

7.17.1 Stones

Stone Pigments:

Jade_Map, Jade
Drew Wells’ superb Jade. Color map works nicely with other textures, too.

Red-Marble Map, Red-Marble
Classic white marble with red veins. Over-worked, like checkers.

White Marble Map, White Marble
White marble with black veins.

Blood Marble Map, Blood Marble
Light blue and black marble with a thin red vein.

Blue_Agate_Map, Blue_Agate
A grey blue agate — kind of purplish.

312 Include Files

Sapphire_Agate_Map, Sapphire_Agate
Deep blue agate — almost glows.

Brown_Agate_Map, Brown_Agate
Brown and white agate — very pretty.

Pink_Granite_Map, Pink_Granite
Umm, well, pink granite.

Stone textures:

PinkAlabaster
Gray-pink alabaster or marble. Layers are scaled for a unit object and relative to each other.
Note: This texture has very tiny dark blue specks that are often mistaken for rendering errors.
They are not errors. Just a strange texture design.
Underlying surface is very subtly mottled with bozo.
Second layer texture has some transmit values, yet a fair amount of color.
Veining is kept quite thin in color map and by the largish scale.

7.17.2 Skies

Sky pigments:

Blue_Sky_Map, Blue_Sky
Basic blue sky with clouds.

Bright_Blue_Sky
Bright blue sky with very white clouds.

Blue_Sky2
Another sky.

Blue_Sky3
Small puffs of white clouds.

Blood_Sky
Red sky with yellow clouds — very surreal.

Apocalypse
Black sky with red and purple clouds.
Try adding turbulence values from 0.1 - 5.0 - CdW

Clouds
White clouds with transparent sky.

FBM_Clouds

Shadow_Clouds
A multilayered cloud texture (a real texture, not a pigment).

7.17.3 Woods

Wood pigments:
Several wooden pigments by Tom Price:

Cherry_Wood
A light reddish wood.

7.17 textures.inc 313

Pine_Wood
A light tan wood whiteish rings.

Dark_Wood
Dark wood with a,ish hue to it.

Tan_Wood
Light tan wood with brown rings.

White_Wood
A very pale wood with tan rings — kind of balsa-ish.

Tom_Wood
Brown wood - looks stained.

DMFWoodl, DMFWood2, DMFWood3, DMFWood4, DMFWood5
The scaling in these definitions is relative to a unit-sized object (radius 1).

Note: woods are functionally equivalent to a log lying along the z axis. For best results, think
like a woodcutter trying to extract the nicest board out of that log. A little tilt along the x axis
will give elliptical rings of grain like you would expect to find on most boards. Experiment.

Wood textures:

DMFWood6
This is a three-layer wood texture. Renders rather slowly because of the transparent layers

and the two layers of turbulence, but it looks great. Try other colors of "varnish” for simple
variations.

DMFLightOak
Is this really oak? | dunno. Quite light, maybe more like spruce.

DMFDarkOak
Looks like old desk oak if used correctly.

EMBWood1l
Wood by Eric Barish

Doug Otwell woods:

Yellow_Pine
Yellow pine, close grained.

Rosewood

Sandalwood
makes a great burled maple, too

7.17.4 Glass

Glass_Finish is @ generic glass finishlass_Interior is a generic glass interior, it just adds an ior of 1.5.

Glass materials:

M_Glass
Just glass.

M_Glass2
Probably more of a "Plexiglas” than glass.

M_Glass3

314 Include Files

An excellent lead crystal glass!
M_Green_Glass
Glass textures contributed by Norm Bowler, of Richland WA. NBgfsish is used by these materials.
M_NBglass
M_NBoldglass
M_NBwinebottle
M_NBbeerbottle
A few color variations on Norm'’s glass.
M_Ruby_Glass
M_Dark_Green_Glass
M_Yellow_Glass
M_Orange_Glass

M_Vicks_Bottle_Glass

7.17.5 Metals

Metal finishes:

Metal
Generic metal finish.

SilverFinish
Basic silver finish

Metallic_Finish
Metal textures:

Chrome_Metal, Brass_Metal, Bronze Metal, Gold Metal, Silver Metal, Copper_Metal
A series of metallic textures using the Metal finish (except for Chrdegal, which has a
custom finish). There are identical textures endingTiexture instead ofMetal, but use of
those names is discouraged.

Polished_Chrome
A highly reflective Chrome texture.

Polished Brass
A highly reflective brass texture.

New_Brass
Beautiful military brass texture!

Spun_Brass
Spun Brass texture for cymbals & such

Brushed_Aluminum
Brushed aluminum (brushed along X axis)

Silverl

Silver?2

7.17 textures.inc 315

Silver3

Brass_Valley
Sort of a "Black Hills Gold”, black, white, and orange specks or splotches.

Rust
Rusty_Iron
Soft_Silver
New_Penny
Tinny_Brass
Gold-Nugget
Aluminum

Bright_Bronze

7.17.6 Special textures

Candy-Cane
Red & white stripes - Looks best on a y axis Cylinder.
It "spirals” because it's gradient on two axis.

Peel
Orange and Clear stripes spiral around the texture to make an object look like it was "Peeled”.
Now, you too can be M.C. Escher!

Y_Gradient

X_Gradient

M Water
Wavy water material. Requires a sub-plane, and may require scaling to fit your scene.
WARNING: Water texture has been changed toNater material, see explanation in the "glass”
section of this file.

Cork

Lightning_CMapl, Lightningl, and Lightning_CMap2, Lightning2
These are just lightning textures, they look like arcing electricity...earlier versions misspelled
them as "Lightening”.

Starfield
A starfield texture by Jeff Burton

7.17.7 Texture and pattern macros

Irreqular Bricks_Ptrn (Mortar Thickness, X-scaling, Variation, Roundness). This function peutern
creates a pattern of bricks of varying lengths on the x-y plane. This can be useful in building walls that do
not look like they were built by a computer. Note that mortar thickness between bricks can vary somewhat,
too.

Parameters:

* Mortar Thickness = Thickness of the mortar (0-1).

» x-scaling = The scaling of the bricks (but not the mortar) in the x direction.

316 Include Files

* variation = The amount by which brick lengths will vary (O=none, 1=100%).
* Roundness = The roundness of the bricks (0.01=almost rectangular, 1=very round).

Tiles_Ptrn(). This macro creates a repeating box pattern on the x-y plane. It can be useful for creating
grids. The cells shade continuously from the center to the edges.
Parameters: None.

Hex_Tiles_Ptrn(). This macro creates a pattern that is a sort of cross between the hexagon pattern and a
repeating box pattern. The hexagonal cells shade continuously from the center to the edges.
Parameters: None.

Star_Ptrn (Radius, Points, Skip). This macro creates a pattern that resembles a star. The pattern is in
the x-y plane, centered around the origin.
Parameters:

* Radius = The radius of a circle drawn through the points of the star.
* Points = The number of points on the star.

* skip = The number of points to skip when drawing lines between points to form the star. A normal
5-pointed star skips 2 points. A Star of David also skips 2 points. Skip must be less than Points/2
and greater than 0. Integers are preferred but not required. Skipping 1 point makes a regular polygon
with Points sides.

pigment = The pigment to be applied to the star.

 Background = The pigment to be applied to the background.

7.18 transforms.inc

Several useful transformation macros. All these macros produce transformations, you can use them any-
where you can use scale, rotate, etc. The descriptions will assume you are working with an object, but the
macros will work fine for textures, etc.

Shear_Trans (A, B, C). This macro reorients and deforms an object so its original XYZ axes point along A,

B, and C, resulting in a shearing effect when the vectors are not perpendicular. You can also use vectors of
different lengths to affect scaling, or use perpendicular vectors to reorient the object.

Parameters:

* 2, B, C=\Vectors representing the new XYZ axes for the transformation.

Matrix Trans (2, B, C, D). This macro provides a way to specify a matrix transform with 4 vectors. The
effects are very similar to that of the Sheknans() macro, but the fourth parameter controls translation.
Parameters:

* 2, B, ¢, D= Vectors for each row of the resulting matrix.

Axial_Scale_Trans (Axis, Amt). A kind of directional scale, this macro will "stretch” an object along a
specified axis.
Parameters:

» Axis = A vector indicating the direction to stretch along.
» Amt = The amount to stretch.

Axis_Rotate_Trans (Axis, Angle). This is equivalent to the transformation done by the vaatate() func-
tion, it rotates around an arbitrary axis.
Parameters:

7.18 transforms.inc 317

* axis = A vector representing the axis to rotate around.
* angle = The amount to rotate by.

Rotate_Around_Trans (Rotation, Point). Ordinary rotation operates around the origin, this macro rotates
around a specific point.
Parameters:

* Rotation = The rotation vector, the same as the parameter to the rotate keyword.
* Point = The point to rotate around.

Reorient Trans (Axisl, Axis2). This alignsaxisl to axis2 by rotating the object around a vector perpen-
dicular to both axis1 and axis2.
Parameters:

» axisl = Vector to be rotated.
» Axis2 = Vectors to be rotated towards.

Point_At_Trans (YAxis). This macro is similar to Reorieffrans(), but it points the y axis along Axis.
Parameters:

* vaxis = The direction to point the y axis in.

Center_Trans (Object, Axis). Calculates a transformation which will center an object along a specified

axis. You indicate the axes you want to center along by adding "x", "y", and "z” together in the Axis

parameter.

Note: this macro actually computes the transform to center the bounding box of the object, which may not
be entirely accurate. There is no way to define the "center” of an arbitrary object.

Parameters:
* Object = The object the center transform is being computed for.
* Axis = The axes to center the object on.

Usage:

object {MyObj Center_Trans (MyObj, x)} //center along x axis

You can also center along multiple axes:

object {MyObj Center_Trans (MyObj, x+y)} //center along x and y axis

Align_Trans (Object, Axis, pt). Calculates a transformation which will align the sides of the bounding
box of an object to a point. Negative values on Axis will align to the sides facing the negative ends of the
coordinate system, positive values will align to the opposite sides, 0 means not to do any alignment on that
axis.

Parameters:

* Object = The object being aligned.

» Axis = A combination of +x, +y, +z, -X, -y, and -z, or a vector where each component is -1, 0, or +1
specifying the faces of the bounding box to align to the point.

* point = The point to which to align the bounding box of the object.
Usage:

object {
MyObj

318 Include Files

Align_Trans (MyObj, x, Pt) //Align right side of object to be
//coplanar with Pt

Align_Trans (MyObj,-y, Pt) //Align bottom of object to be
// coplanar with Pt

vtransform(Vect, Trans) andvinv,transform(Vect, Trans).

The vtransform() macro takes a transformation (rotate, scale, translate, etc...) and a point, and returns
the result of applying the transformation to the point. Thev_transform() macro is similar, but applies

the inverse of the transform, in effect "undoing” the transformation. You can combine transformations by
enclosing them in a transform block.

Parameters:

 vect = The vector to which to apply the transformation.
* Trans = The transformation to apply to Vect.

Spline_Trans(Spline, Time, SkyVector, ForeSight, Banking). This macro aligns an object to a spline
for a given time value. The Z axis of the object will point in the forward direction of the spline and the Y
axis of the object will point upwards.

Parameters:

* spline = The spline that the object is aligned to.
* Time = The time value to feed to the spline, for example clock.
* sky = The vector that is upwards in your scene, usually y.

* Foresight = A positive value that controls how much in advance the object will turn and bank. Values
close to 0 will give precise results, while higher values give smoother results. It will not affect parsing
speed, so just find the value that looks best.

* Banking = How much the object tilts when turning. The amount of tilting is equally much controlled
by the ForeSight value.

Usage:

object {MyObj Spline_Trans (MySpline, clock, y, 0.1, 0.5)}

7.19 woodmaps.inc, woods.inc

The file woodmaps.inc contains coloraps designed for use in wood textures. Th&\ldodXA maps are
intended to be used in the first layer of a multilayer texture, but can be used in single-layer textures. The
M_WoodXB maps contain transparent areas, and are intended to be used in upper texture layers.

The file woods.inc contains predefined wood textures and pigments.

The pigments are prefixed with Fand do not have colamaps, allowing you to specify a color map from
woodmaps.inc or create your own. There are two groups, "A” and "B”: the A series is designed to work
better on the bottom texture layer, and the B series is designed for the upper layers, with semitransparent
color maps. The pigments with the same number were designed to work well together, but you do not
necessarily have to use them that way.

The textures are prefixed with_Tand are ready to use. They are designed with the major axis of the

woodgrain "cylinder” aligned along the Z axis. With the exception of the few of the textures which have a
small amount of rotation built-in, the textures will exhibit a very straight grain pattern unless you apply a
small amount of x-axis rotation to them (generally 2 to 4 degrees seems to work well).

7.19 woodmaps.inc, woods.inc

319

7.19.1 woodmaps.inc

Color maps:
M_WoodlA, ..., M_Woodl9A
M_WoodlB, ..., M_.Woodl9B

7.19.2 woods.inc

Pigments:
P_WoodGrainla, ..., P_WoodGrainA
P_WoodGrainlB, ..., P_WoodGrainB
Textures:
T_Woodl

T_Wood2

T_Wood3

T_Wood4

T_Woodb5

T_Wood6

T_Wood7

T_Wood8

T_Wood9

T_Woodl0

T_Woodll

T_Woodl2

T_Woodl3

T_Woodl4

T_Woodl5

Natural oak (light)

Dark brown

Bleached oak (white)

Mahogany (purplish-red)

Dark yellow with reddish overgrain

Cocabola (red)

Yellow pine (ragged grain)

Dark brown. Walnut?

Yellowish-brown burl (heavily turbulated)

Soft pine (light yellow, smooth grain)

Spruce (yellowish, very straight, fine grain)

Another very dark brown. Walnut-stained pine, perhaps?

Very straight grained, whitish

Red, rough grain

Medium brown

320 Include Files

T_Woodl6
Medium brown

T_Woodl7
Medium brown

T_Woodl8
Orange

T_Woodl9, ..., T_Wood30
Golden Oak.

T_Wood31
A light tan wood - heavily grained (variable coloration)

T_Wood32
A rich dark reddish wood, like rosewood, with smooth-flowing grain

T_Wood33
Similar to TWoodB, but brighter

T_Wood34
Reddish-orange, large, smooth grain.

T_Wood35
Orangish, with a grain more like a veneer than a plank

7.20 Other files

There are various other files in the include collection, including font files, color maps, and images for use
in height fields or imagenaps, and includes that are too small to have their own section.

7.20.1 logo.inc

The official POV-Ray logo designed by Chris Colefax, in two versions

Povray_Logo

The POV-Ray logo object

Povray_-Logo_Prism

The POV-Ray logo as a prism

Povray-Logo_Bevel

The POV-Ray logo as a beveled prism

7.20.2 raddef.inc

This file defines a macro that sets some common radiosity settings. These settings are extremely general
and are intended for ease of use, and do not necessarily give the best results.

Usage:

#include "rad_def.inc"
global_settings {

7.20 Other files 321

radiosity {
Rad_Settings(Setting, Normal, Media)
}
}

Parameters:

 Setting = Quality setting. Use one of the predefined constants:

— Radiosity Default
— RadiosityDebug
— Radiosity Fast
— RadiosityNormal
— Radiosity2Bounce
— RadiosityFinal
— RadiosityOutdoorLQ
— RadiosityOutdoorHQ
— Radiosity OutdoorLight
— RadiosityIndoorLQ
— RadiosityIndoorHQ
» Normal = Boolean value, whether or not to use surface normal modifiers for radiosity samples.

» Media = Boolean value, whether or not to calculate media for radiosity samples.

7.20.3 screen.inc

Screen.inc will enable you to place objects and textures right in front of the camera. When you move the
camera, the objects placed with screen.inc will follow the movement and stay in the same position on the
screen. One use of this is to place your signature or a logo in the corner of the image.

You can only use screen.inc with the perspective camera. Screen.inc will automatically create a default
camera definition for you when it is included. All aspects of the camera can than be changed, by invoking
the appropriate 'SeCamera... macros in your scene. After calling these setup macros you can use the
macros Scree@bject and ScreeRlane.

Note: even though objects aligned using screen.inc follow the camera, they are still part of the scene. That
means that they will be affected by perspective, lighting, the surroundings etc.

For an example of use, see the screen.pov demo file.

Set_Camera_Location (Loc) Changes the position of the default camera to a new location as specified by the
Loc vector.

Set_Camera_Look_ At (LookAt) Changes the position the default camera looks at to a new location as specified
by theLookat vector.

Set_Camera_Aspect_Ratio (Aspect) Changes the default aspect ratiepect is a float value, usually width
divided by the height of the image.

Set_Camera_Aspect (Width,Height) Changes the default aspect ratio of the camera.

Set_Camera_Sky (Sky) Sets a new Sky-vector for the camera.

322 Include Files

Set_Camera_Zoom (Zoom) The amount to zoom in or outpon is a float.
Set_Camera_Angle (Angle) Sets a new camera angle.

Set_Camera (Location, LookAt, Angle) Setlocation, look_at andangle in one go.
Reset_Camera () Resets the camera to its default values.

Screen_Object (Object, Position, Spacing, Confine, Scaling) Puts an object in front of the camera.
Parameters:

* Object = The object to place in front of the screen.

* position = UV coordinates for the object<0,0> is lower left corner of the screen ardL,1> is
upper right corner.

* spacing = Float describing minimum distance from object to the borders. UV vector can be used to
get different horizontal and vertical spacing.

» Confine = Set to true to confine objects to visible screen area. Set to false to allow objects to be
outside visible screen area.

* scaling = If the object intersects or interacts with the scene, try to move it closer to the camera by
decreasing Scaling.

Screen_Plane (Texture, Scaling, BLCorner, TRCorner) ScreenPlane is a macro that will place a texture
of your choice on a plane right in front of the camera.
Parameters:

* Texture = The texture to be displayed on the camera plan@0,0> is lower left corner anec1,1,
0> is upper right corner.

e scaling = If the plane intersects or interacts with the scene, try to move it closer to the camera by
decreasing Scaling.

* BLCorner = The bottom left corner of the Screé¢hane.

* TRCorner = The top right corner of the Scredfane.

7.20.4 stdcam.inc

This file simply contains a camera, a lighdurce, and a ground plane.

7.20.5 stagel.inc

This file simply contains a camera, a lighdurce, and a ground plane, and includes colors.inc, textures.inc,
and shapes.inc.

7.20.6 sunpos.inc

This file only contains the sunpos() macro

sunpos (Year, Month, Day, Hour, Minute, Lstm, LAT, LONG). The macro returns the position of the sun,

for a given date, time, and location on earth. The suns position is also globally declared as the vector
SolarPosition. Two other declared vectors are the(Azimuth) andal (Altitude), these can be useful for
aligning an object (media container) with the sunlight.

Assumption: in the scene north is in the +Z direction, south is -Z.

Parameters:

7.20 Other files 323

* Year= The year in four digits.

* Month= The month number (1-12).

* Day= The day number (1-31).

* Hour= The hour of day in 24 hour format (0-23).
* Minute= The minutes (0-59).

* Lstm= Meridian of your local time zone in degrees (+1 hour = +15 deg, east = positive, west =
negative)

» 1AT= Lattitude in degrees.decimal, northern hemisphere = positive, southern = negative
» LONG= Longitude in degrees.decimal, east = positive, west is negative
Use:

#include "sunpos.inc"

light_source {
//Greenwich, noon on the longest day of 2000
SunPos (2000, 6, 21, 12, 2, 0, 51.4667, 0.00)
rgb 1

}

cylinder{
<-2,0,0»,<2,0,0>,0.1
rotate <0, Az-90, Al> //align cylinder with sun
texture {...}

7.20.7 font files (*.ttf)

The fonts cyrvetic.ttf and timrom.ttf were donated to the POV-Team by their creator, Ted Harrison
(CompuServe:70220,344) and were built using his FontLab for Windows by SoftUnion, Ltd. of St.
Petersburg, Russia.

The font crystal.ttf was donated courtesy of Jerry Fitzpatrick, Red Mountain Corporation, redmtn [at] ix.
netcom.com

The font povlogo.ttf is created by Fabien Mosen and based on the POV-Ray logo design by Chris Colefax.

crystal.ttf
A fixed space programmer’s font.

cyrvetic.ttf
A proportional spaces sans-serif font.

timrom.ttf
A proportional spaces serif font.

povlogo.ttf
Only contains the POV-Ray logo.

7.20.8 colormap files (*.map)

These are 255-color colanaps, and are in individual files because of their size.

324 Include Files

ash.map
benediti.map
bubinga.map
cedar.map
marbteal.map
orngwood.map
pinkmarb.map
rdgranit.map
teak.map

whiteash.map

7.20.9 image files (*.png, *.pot, *.df3)

bumpmap-.png
A color mandelbrot fractal image, presumably intended for use as a bumpmap.

fract003.png
Some kind of fractal landscape, with color for blue water, brown land, and white peaks.

maze.png
A maze.

mtmand.pot
A grayscale mandelbrot fractal.

mtmandj.png
A 2D color julia fractal.

plasma2.png, plasma3.png
"Plasma fractal” images, mainly useful for landscape height fields. The file plasma3.png is a
smoother version of plasma2.png, plasmal.png does not exist.

povmap.png
The text "Persistance of Vision” in green on a blue background, framed in black and red.

test.png
A "testimage”, the image is divided into 4 areas of different colors (magenta, yellow, cyan, red)
with black text on them, and the text "POV-Ray” is centered on the image in white.

spiral.df3
A 3D bitmap density file. A spiral, "galaxy” shape.

Chapter 8

Quick Reference

This is a consolidation of the entire syntax for the POV-Ray’s Scene Description Language. Note that the
syntax conventions used here are slightly different than those used in the user documentation.

The following syntax conventions are used:

ITEM
An item not in brackets indicates that it is a required item.
[ITEM]
Brackets surround an optional item. If brackets are part of the item, that is noted where appli-
cable.
ITEM...
An ellipsis indicates an item that may be used one or more times.
[ITEM...]
An ellipsis within brackets indicates an item that may be used zero or more times.
ITEM ITEM
Two or more juxtaposed items indicates that they should be used in the given order.
ITEM | ITEM
A pipe separates two or more alternatives from which only one item should be used.
ITEM & ITEM

An ampersand separates two or more items that may be used in any order.

Juxtaposition has precedence over the pipe or ampersand. In the following example, you would select one
of the keyword and vector pairs. For that last pair, the keyword itself is optional.

rgb 3D_VECTOR —rgbf 4D_VECTOR —rgbt 4D_VECTOR — [gbft]5D_VECTOR

Some item names are simply descriptive in nature. An indication of the item’s type is given by a prefix on
the item name, as follows:

F_
A FLOAT item
An INT item

A VECTOR item

326

Quick Reference

Va_
A 4-D VECTOR item

NOTE:this document provides only the syntax of the Scene Description Language (SDL). The intent is to
provide a single reference for all statements and keywords. It does not provide definitions for the numerous

keywords nor explain their usage.

8.1 Quick Reference Contents

The Scene

Language Basics
Floats
\ectors
Colors
User-Defined Functions
Strings
Arrays
Splines

Language Directives
File Inclusion
Identifier Declaration
File Input/Output
Default Texture
Version Compatibility
Conditional Directives
Message Streams
Macros
Embedded Directives

Transformations

Camera

Lights
Light Source
Light Group

Objects
Finite Solid Objects
Finite Patch Objects
Infinite Solid Objects
Isosurface
Parametric

Constructive Solid Geometry

Object Modifiers

Texture

Media

UV Mapping
Material
Interior

Interior Texture

Plain Texture
Layered Texture
Patterned Texture
Pigment

Normal

Finish

Pattern

Pattern Modifiers

Atmospheric Effects

Background
Fog

Sky Sphere
Rainbow

Global Settings

Radiosity
Photons

Table 8.1: Quick Reference Overview

8.2 The Scene

Describe a POV-Ray scene:

SCENE:
SCENE_ITEM. ..

8.3 Language Basics 327

SCENEITEM:
LANGUAGE_DIRECTIVE | CAMERA | LIGHT | OBJECT | ATMOSPHERIC_EFFECT | GLOBAL_SETTINGS

Quick Reference Contents

8.3 Language Basics

8.3.1 Floats

Float Expressions

FLOAT:
NUMERIC_TERM [SIGN NUMERIC_TERM]...

SIGN:

+ | -

NUMERIC_TERM:
NUMERIC_FACTOR [MULT NUMERIC_FACTOR]...

MULT:
*

NUMERIC_EXPRESSION:
FLOAT_LITERAL | FLOAT_IDENTIFIER | SIGN NUMERIC_EXPRESSION | FLOAT_FUNCTION | FLOAT_-
BUILT_IN_IDENT | (FULL_EXPRESSION) | ! NUMERIC_EXPRESSION | VECTOR. DOT_ITEM |
FLOAT_FUNCTION_INVOCATION

FLOAT_LITERAL:
[DIGIT...][.]DIGIT...[EXP[SIGN]DIGIT...]

DIGIT:
0|12 3|4 /5,161]71]181]°9

EXP:
e | E

FLOAT_FUNCTION:
abs (FLOAT) | acos (FLOAT) | acosh (FLOAT) | asc (STRING) | asin (FLOAT) |
asinh (FLOAT) | atan (FLOAT) | atanh (FLOAT) | atan2 (FLOAT,FLOAT) | ceil
(FLOAT) | cos (FLOAT) | cosh (FLOAT) | defined (IDENTIFIER) | degrees (FLOAT)
| dimensions (ARRAY_IDENTIFIER) | dimension _size (ARRAY_IDENTIFIER,INT) | div
(FLOAT,FLOAT) | exp (FLOAT) | file _exists (STRING) | floor (FLOAT) | int
(FLOAT) | inside (SOLID_OBJECT_IDENT, VECTOR) | In (FLOAT) | log (FLOAT) | max
(FLOAT,FLOAT[,FLOAT]...) | min (FLOAT,FLOAT[,FLOAT]...) | mod (FLOAT,FLOAT) |
pow (FLOAT,FLOAT) | radians (FLOAT) | rand (FLOAT) | seed (FLOAT) | select
(FLOAT,FLOAT, FLOAT, [FLOAT]) | sin (FLOAT) | sinh (FLOAT) | sqgrt (FLOAT) |
strcmp (STRING, STRING) | strlen (STRING) | tan (FLOAT) | tanh (FLOAT) | val
(STRING) | vdot (VECTOR,VECTOR) | vlength (VECTOR)

FLOAT _BUILT _IN_IDENT:
BOOLEAN_KEYWORD | clock | clock _delta | clock _on | final _clock | final _frame
| frame _number | image _height | image width | initial _clock | initial -
frame | pi | version

BOOLEAN_KEYWORD:
true | yes | on | false | no | off

328 Quick Reference

FULL_EXPRESSION:
LOGICAL_EXPRESSION [? FULL_EXPRESSION : FULL_EXPRESSION]

LOGICAL_EXPRESSION:
REL_TERM [LOGICAL_OPERATOR REL_TERM]...

LOGICAL _OPERATOR;:
& ||

REL_TERM:
FLOAT [REL_OPERATOR FLOAT]...

REL_-OPERATOR:

<l <=l =] > 1>]!=
DOT.ITEM:

X |y lz |t]|Jul|v|red | green | blue | filter | transmit | gray
INT:

FLOAT

Any fractional part is discarded.
BOOL:

BOOLEAN_KEYWORD | LOGICAL_EXPRESSION

Quick Reference Contents

8.3.2 Vectors

Vector Expressions

VECTOR:
VECTOR_TERM [SIGN VECTOR-TERM]...

VECTORTERM:
VECTOR_EXPRESSION [MULT VECTOR_EXPRESSION]...

VECTOREXPRESSION:
VECTOR_LITERAL | VECTOR_IDENTIFIER | SIGN VECTOR_EXPRESSION | VECTOR_FUNCTION |
VECTOR-BUILT_IN_IDENT | ! VECTOR.EXPRESSION | FLOAT | VECTOR_FUNCTION_INVOCATION
| COLOR-FUNCTION_INVOCATION | SPLINE_INVOCATION

VECTORLITERAL:
< FLOAT, FLOAT [, FLOAT [, FLOAT [, FLOAT]]] >

VECTOR FUNCTION:
min _extent (OBJECT_IDENTIFIER) | maxextent (OBJECT_IDENTIFIER) | trace (OBJECT_IDENTIFIER,
VECTOR, VECTOR [, VECTOR_IDENTIFIER]) | vaxis _rotate (VECTOR,VECTOR,FLOAT) | VCross
(VECTOR,VECTOR) | vrotate (VECTOR,VECTOR) | vnormalize (VECTOR) | vturbulence
(FLOAT, FLOAT, FLOAT, VECTOR)

VECTORBUILT _IN_IDENT:
Xlylzl|ltlulyv

Quick Reference Contents

8.3 Language Basics 329

8.3.3 Colors

Color Expressions

COLOR:

[color] COLOR.BODY | colour COLOR_BODY
COLORBODY:

COLOR_VECTOR | COLOR_KEYWORD_GROUP | COLOR_IDENTIFIER
COLOR.VECTOR:

rgb 3D_VECTOR | rgbf 4D_VECTOR | rgbt 4D_VECTOR | [rgbft] 5D_VECTOR

COLORKEYWORD_GROUP:
[COLOR-IDENTIFIER] COLOR_KEYWORD_ITEMS

COLORKEYWORDL.ITEMS:
[red FLOAT] & [green FLOAT] & [blue FLOAT] & [filter FLOAT] & [transmit FLOAT]

Quick Reference Contents

8.3.4 User defined Functions

User-Defined Functions

USERFUNCTION:
FLOAT_USER_FUNCTION | VECTOR.USER_FUNCTION | COLOR.USER_FUNCTION

FLOAT_USERFUNCTION:
function { FN_FLOAT } | function (IDENT_LIST) { EN_FLOAT } | function { pattern
{ PATTERN [PATTERN.MODIFIERS]} }

IDENT_LIST:
IDENT_ITEM [, IDENT_LIST]
The maximum number of parameter identifiers is 56. An identifier may not be repeated in the
list.

IDENT_ITEM:
X |y |z |u/| v | PARAM_IDENTIFIER

PATTERN:
MAP_PATTERN | brick [BRICK_-ITEM] | checker | hexagon | object { LIST_OBJECT }

VECTORUSERFUNCTION:
function { SPECIAL_VECTOR_FUNCTION }

SPECIALVECTOR FUNCTION:
TRANSFORM | SPLINE

COLORUSERFUNCTION:
function { PIGMENT }

Specify a float expression in a user-defined function:

FN_FLOAT
LOGICAND [OR LOGIC_AND]

OR:
I

LOGIC_AND:

330 Quick Reference

REL_TERM [AND REL_TERM]

AND:

&
REL_TERM:

TERM [REL_OPERATOR TERM]
REL_OPERATOR:

< |l <=1 =|>1>|1!=
TERM:

FACTOR [SIGN FACTOR]
SIGN:

+ | -
FACTOR:

EXPRESSION [MULT EXPRESSION]
MULT:

* ‘ /
EXPRESSION:

FLOAT_LITERAL | FLOAT_IDENTIFIER | FN_FLOAT_FUNCTION | FLOAT-BUILT_IN_IDENT | (FN_-
FLOAT) | IDENT_ITEM | SIGN EXPRESSION | VECTOR_FUNCTION_INVOCATION. FN_.DOT_ITEM |
COLOR_FUNCTION_INVOCATION. FN.DOT_ITEM | FLOAT_FUNCTION_INVOCATION

FN_DOT_ITEM:
DOT_ITEM | hf

FN_FLOAT_FUNCTION:

abs (FN_FLOAT) | acos (FN_FLOAT) | acosh (FN_FLOAT) | asin (FN_FLOAT) | asinh
(FN_FLOAT) | atan (FN_FLOAT) | atanh (FN_FLOAT) | atan2 (FN_FLOAT,FN_FLOAT) |
ceil (FN_FLOAT) | cos (FN_FLOAT) | cosh (FN_.FLOAT) | degrees (FN_FLOAT) | exp
(FN_FLOAT) | floor (FN_FLOAT) | int (FN_FLOAT) | In (FN_FLOAT) | log (FN_FLOAT)
| max (FN_FLOAT,FN_FLOAT[,FN_FLOAT]...) | min (FN_FLOAT,FN_FLOAT[,FN_FLOAT]...)

| mod (FN_FLOAT,FN_FLOAT) | pow (FN_FLOAT,FN_FLOAT) | prod (IDENTIFIER, FN_FLOAT,
FN_FLOAT, FN_FLOAT) | radians (FN_FLOAT) | sin (FN_FLOAT) | sinh (FN_FLOAT) |
sgrt (FN_FLOAT) | sum (IDENTIFIER, FN_FLOAT, FN_FLOAT, FN_FLOAT) |[tan (FN_FLOAT)
| tanh (FN_FLOAT) | select (FN_FLOAT,FN_FLOAT,FN_FLOAT [,FN_FLOAT])

Create an identifier for a user-defined function:

USERFUNCTION.DECLARATION:
#declare FLOAT_FUNCTION_IDENTIFIER = FLOAT_USER_FUNCTION |
#local FLOAT_FUNCTION_IDENTIFIER = FLOAT_USER_FUNCTION |
#declare ~ VECTOR_FUNCTION_IDENTIFIER = VECTOR-USER_FUNCTION |
#local ~VECTOR-FUNCTION_IDENTIFIER = VECTOR.-USER-FUNCTION |
#declare COLOR_FUNCTION_IDENTIFIER = COLOR.-USER_FUNCTION |
#local COLOR_FUNCTION_IDENTIFIER = COLOR_USER_FUNCTION

Reference a user-defined function:

FLOAT_FUNCTION.INVOCATION:
FLOAT_FUNCTION_IDENTIFIER (FN_PARAM_LIST)

VECTOR FUNCTION.INVOCATION:
VECTOR_FUNCTION_IDENTIFIFR (FN_PARAM_LIST)

COLORFUNCTION.INVOCATION:

8.3 Language Basics 331

COLOR_FUNCTION_IDENTIFIER (FN_PARAM_LIST)

FN_PARAM_LIST:
FN_PARAM_ITEM [, FN_PARAM_LIST]

FN_PARAM_ITEM:
X 1Yy |l zZz]| u/|Vv | FLOAT

Quick Reference Contents

8.3.5 Strings

String Expressions

STRING:
STRING_FUNCTION | STRING_IDENTIFIER | STRING_LITERAL

STRING.FUNCTION:

chr (INT) | concat (STRING,STRING[,STRING]...) | str (FLOAT,INT,INT) | strlwr
(STRING) | strupr (STRING) | substr (STRING, INT,INT) | vstr (INT,VECTOR,STRING,
INT, INT)
STRING.LITERAL:
QUOTE [CHARACTER...] QUOTE
Limited to 256 characters.
QUOTE:
CHARACTER:

Any ASCII or Unicode character, depending on ttiearset setting inglobal_settings The
following escape sequences might be useful when writing to files or message streams:
\a - alarm

\b - backspace

\f - form feed

\n - new line

\r - carriage return

\t - horizontal tab

\UNNNN- unicode character four-digit code

\v - vertical tab

\\ - backslash

\' -single quote

\" - double quote

Quick Reference Contents

8.3.6 Arrays

Define an array:

ARRAY _DECLARATION:
#declare ARRAY_IDENTIFIER = array DIMENSION... [ARRAY_INITIALIZER] |
#local ARRAY_IDENTIFIER = array DIMENSION... [ARRAY_INITIALIZER]
Limited to five dimensions.

DIMENSION:

332 Quick Reference

[INT]
The brackets here are part of the dimension specification. The integer must be greater than zero.

ARRAY _INITIALIZER:
{ ARRAY_INITIALIZER [, ARRAY_INITIALIZER]... } |
{ RVALUE [, RVALUE]... }

Place a value into an array:

ARRAY _ELEMENT_ASSIGNMENT:
#declare ARRAY_REFERENCE =RVALUE [;] |
#local ARRAY_REFERENCE = RVALUE [;]
The semicolon is required for a FLOAT, VECTOR or COLOR assignment.

Reference an array:

ARRAY _REFERENCE:
ARRAY_IDENTIFIER ELEMENT...

ELEMENT:
[INT]
The brackets here are part of the element specification.

Quick Reference Contents

8.3.7 Splines
Define a spline:
SPLINE:

spline { SPLINE_ITEMS }
SPLINEITEMS

[SPLINE_TYPE] PATH_LIST | SPLINE_IDENTIFIER [SPLINE_TYPE][PATH.LIST]
SPLINETYPE:

linear _spline | quadratic _spline | cubic _spline | natural _spline
PATH_LIST:

FLOAT, VECTOR [[,] PATH.LIST]

Reference a spline:

SPLINE.INVOCATION:
SPLINE_IDENTIFIFR (FLOAT [, SPLINE_TYPE])

Quick Reference Contents

8.4 Language Directives

Control the parsing of sections of the scene file:

LANGUAGE_DIRECTIVE:
INCLUDE_DIRECTIVE | IDENTIFIERDECLARATION | UNDEF_DIRECTIVE | FOPEN_DIRECTIVE |
FCLOSE_DIRECTIVE | READ_DIRECTIVE | WRITE_DIRECTIVE | DEFAULT_DIRECTIVE | VERSION_-
DIRECTIVE | IF_DIRECTIVE | IFDEF_DIRECTIVE | IFNDEF_DIRECTIVE | SWITCH.DIRECTIVE |
WHILE_DIRECTIVE | TEXT_STREAM_DIRECTIVE | MACRO_DEFINITION

8.4 Language Directives 333

Quick Reference Contents

8.4.1 File Inclusion

Insert content of another scene file:

INCLUDE_DIRECTIVE:
#include FILE_NAME
File inclusion may be nested at most 10 levels deep.

FILE_ZNAME:
STRING

Quick Reference Contents

8.4.2 Identifier Declaration

Create an identifier for a value, object, etc.

IDENTIFIER_.DECLARATION:
#declare IDENTIFIER = RVALUE [;] |
#local IDENTIFIER = RVALUE [;]
Up to 127 characters, starting with a letter, consisting of letters, digits and/or the underscore.
The semicolon is required for a FLOAT, VECTOR or COLOR declaration.

RVALUE:
FLOAT | VECTOR | COLOR | USER_FUNCTION | STRING | ARRAY_REFERENCE | SPLINE | TRANSFORM
| CAMERA | LIGHT | OBJECT | MATERIAL | INTERIOR | TEXTURE | TEXTURE_MAP | PIGMENT
| COLORMAP | PIGMENT_MAP | NORMAL | SLOPE_MAP | NORMAL_MAP | FINISH | MEDIA |
DENSITY | DENSITY.MAP | FOG | RAINBOW | SKY_SPHERE

Destroy an identifier:

UNDEF.DIRECTIVE:
#undef IDENTIFIER

Quick Reference Contents

8.4.3 File Input/Output

Open a text file:

FOPENDIRECTIVE:
#fopen FILE_HANDLE_IDENTIFIER FILE_NAME OPEN_TYPE

OPENTYPE:
read | write | append

Close a text file:

FCLOSEDIRECTIVE:
#fclose FILE_HANDLE_IDENTIFIER

Read string, float and/or vector values from a text file:

READ_DIRECTIVE:
#read (FILE_HANDLE_IDENTIFIER, DATA_IDENTIFIER [, DATA_IDENTIFIER]...)

334 Quick Reference

Usedefined(FILE_.HANDLE _IDENTIFIER) to detect end-of-file after a read.

DATA _IDENTIFIER:
UNDECLARED_IDENTIFIER | FLOAT_IDENTIFIER | VECTOR_IDENTIFIER | STRING_IDENTIFIER |
ARRAY_REFERENCE
May read a value into an array reference if the array element’s type has already been established.

Write string, float and/or vector values to a text file:

WRITE_DIRECTIVE:
#write (FILE_HANDLE_IDENTIFIER, DATA_ITEM [, DATA_ITEM]...)

DATA_ITEM:
FLOAT | VECTOR | STRING

Quick Reference Contents

8.4.4 Default Texture

Specify a default texture, pigment, normal or finish:

DEFAULT_DIRECTIVE:
#default ~ { DEFAULT_ITEM }

DEFAULT_ITEM:
PLAIN_TEXTURE | PIGMENT | NORMAL | FINISH

Quick Reference Contents

8.4.5 \Version ldentfier

Specify the POV-Ray compatibility version number:

VERSIONDIRECTIVE:
f#fversion FLOAT;

Quick Reference Contents

8.4.6 Control Flow Directives

Conditionally parse a section of the scene file, depending on a boolean expression:

IF_DIRECTIVE:
#if (BOOL) TOKENS [#else TOKENS] #end

TOKENS:
Any number of POV-Ray keywords, identifiers, values and/or punctuation.

Conditionally parse a section of the scene file, depending on the existence of an identifier:

IFDEF_DIRECTIVE:
#ifdef (IDENTIFIER) TOKENS [#else TOKENS] #end

IFNDEF.DIRECTIVE:
#ifndef (IDENTIFIER) TOKENS [#else TOKENS] #end

Conditionally parse a section of the scene file, depending on the value of a float expression:

SWITCH.DIRECTIVE:

8.4 Language Directives 335

#switch (FLOAT) SWITCH.CLAUSE... [#else TOKENS] #end

SWITCH.CLAUSE:
#case (FLOAT) TOKENS [#break] |
#range (F_LOW, F_HIGH) TOKENS [#break]

Repeat a section of the scene file while a boolean condition is true:

WHILE _DIRECTIVE:
#while (LOGICAL_EXPRESSION) TOKENS #end

Quick Reference Contents

8.4.7 Message Streams

Send a message to a text stream:

TEXT_STREAM_DIRECTIVE:
#debug STRING | #error STRING | #warning STRING

Quick Reference Contents

8.4.8 Macro

Define a macro:

MACRO_DEFINITION:
#macro MACRO_IDENTIFIER ([PARAM_IDENTIFIER [, PARAM_IDENTIFIER]...]) TOKENS
#end
A parameter identifier may not be repeated in the list.

Invoke a macro:

MACRO_INVOCATION:
MACRO_IDENTIFIER ([ACTUAL_PARAM [, ACTUAL_PARAM]...])

ACTUAL _PARAM:
IDENTIFIER | RVALUE

Quick Reference Contents

8.4.9 Embedded Directives

Some directives may be embedded in CAMERA, LIGHT, OBJECT and ATMOSPHEFHEECT state-
ments. However, the directives should only include items (if any) that are valid for a given statement.
Also, they should not disrupt the required order of items, where applicable.

EMBEDDED_DIRECTIVE:
IDENTIFIER DECLARATION | UNDEF_DIRECTIVE | READ.DIRECTIVE | WRITEDIRECTIVE | IF_-
DIRECTIVE | IFDEF_DIRECTIVE | IFNDEF_DIRECTIVE | SWITCH.DIRECTIVE | WHILE_DIRECTIVE
| TEXT_STREAM_DIRECTIVE

Quick Reference Contents

336 Quick Reference

8.5 Transformations

Rotate, resize, move, or otherwise manipulate the coordinates of an object or texture

TRANSFORMATION:

rotate VECTOR | scale VECTOR | translate VECTOR | TRANSFORM | MATRIX
TRANSFORM:

transform TRANSFORM_IDENTIFIER | transform { [TRANSFORM_ITEM...] }
TRANSFORMITEM:

TRANSFORM_IDENTIFIER | TRANSFORMATION | inverse
MATRIX:

matrix < F_VALOO, F_VALOl, F_VAL02, F_VAL10, F_VAL1l, F_VAL12, F_VAL20, F_VAL21,
F_VAL22, F_VAL30, F_VAL31l, F_VAL32 >

Quick Reference Contents

8.6 Camera

Describe the position, projection type and properties of the camera viewing the scene

CAMERA:
Jump to SDL
camera { [CAMERA_TYPE] [CAMERA_ITEMS] [CAMERA MODIFIERS] } |
camera { CAMERA_IDENTIFIER [TANSFORMATIONS ...] }
CAMERA_TYPE:
perspective | orthographic | fisheye | ultra _wide _angle | omnimax | panoramic
| spherical | cylinder CYLINDER_TYPE
CYLINDER_TYPE:
1121314

CAMERAL_ITEMS:
[location VECTOR] & [right VECTOR] & [up VECTOR] & [direction VECTOR] & [Sky
VECTOR]

CAMERA_MODIFIERS:
[angle [angle F_HORIZONTAL] [,F_VERTICAL]] & [look _at VECTOR] & [FOCAL_BLUR] &
[NORMAL] & [TRANSFORMATION...]

FOCAL_BLUR:
aperture FLOAT & blur _samples 1INT & [focal _point VECTOR] & [confidence FLOAT]
& [variance FLOAT]

Quick Reference Contents

8.7 Lights

Specify light sources for the scene or for specific objects

LIGHT:
LIGHT_SOURCE | LIGHT_GROUP

8.8 Objects 337

Describe the position, type and properties of a light source for the scene:

LIGHT_SOURCE:
Jump to SDL
light _source { V_LOCATION, COLOR [LIGHT_SOURCE_ITEMS] }

LIGHT _SOURCEITEMS:
[LIGHT_TYPE] & [AREA_LIGHT_ITEMS] & [LIGHT_MODIFIERS]

LIGHT_TYPE:
spotlight [SPOTLIGHT_ITEMS] | cylinder [SPOTLIGHT_ITEMS]

SPOTLIGHTITEMS:
[radius FLOAT] & [falloff FLOAT] & [tightness FLOAT] & [point _at VECTOR]

AREA_LIGHT_ITEMS:
area _light ~ V_AXIS1, V_AXIS2, I_SIZEl, I_.SIZE2 [AREA_LIGHT_MODIFIERS]

AREA_LIGHT _MODIFIERS:

[adaptive INT] & [jitter] & [circular] & [orient]

LIGHT MODIFIERS:
[LIGHT_PHOTONS] & [looks _like { OBJECT }] & [TRANSFORMATION...] & [fade _distance
FLOAT] & [fade _power FLOAT] & [media _attenuation [BOOL]] & [media _interaction

[BoOL]] & [shadowless] & [projected _through { OBJECT_IDENTIFIER }] & [parallel
[point _at VECTOR]]

Specify how a light source should interact with photons:

LIGHT _PHOTONS:
photons { LIGHT_PHOTON_ITEMS }

LIGHT _PHOTONITEMS:
[refraction BOOL] & [reflection BOOL] & [area _light]

Quick Reference Contents

8.7.1 Lightgroup

Assign objects to specific light sources:

LIGHT _GROUP:
Jump to SDL
light _group { LIGHT_GROUP_ITEM... [LIGHT_GROUP_MODIFIERS] }

LIGHT_GROURITEM:
LIGHT_SOURCE | OBJECT | LIGHT_GROUP

LIGHT _GROUPMODIFIERS:
[global _lights BOOL] & [TRANSFORMATION...]

Quick Reference Contents

8.8 Objects

Describe an object in the scene
OBJECT:

338 Quick Reference

FINITE_SOLID_OBJECT | FINITE_PATCH_OBJECT | INFINITE_SOLID_OBJECT | ISOSURFACE |
PARAMETRIC | CSG_OBJECT | OBJECT_STATEMENT

OBJECT.STATEMENT:
object { OBJECT_IDENTIFIER [OBJECT_MODIFIERS] }

Quick Reference Contents

8.8.1 Finite Solid Objects

Describe a solid finite shape:

FINITE_.SOLID_.OBJECT:
BLOB | BOX | CONE | CYLINDER | HEIGHT_FIELD | JULIA_FRACTAL | LATHE | PRISM | SPHERE
| SPHERE_SWEEP | SUPERELLIPSOID | SOR | TEXT | TORUS

The blob object:

BLOB:

Jump to SDL

blob { [threshold FLOAT] BLOB.ITEM... [BLOB.MODIFIERS] }
BLOB_ITEM:

sphere { V_CENTER, F_RADIUS, [strength] F_STRENGTH [COMPONENT_MODIFIERS] } |
cylinder { V_END1, V.END2, F_RADIUS, [strength] F_STRENGTH [COMPONENT_MODIFIERS]

}

COMPONENTMODIFIERS:
[TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

BLOB_MODIFIERS:
[hierarchy [BOOL]] & [Sturm [BOOL]] & [OBJECT_-MODIFIERS]

The box object:

BOX:
Jump to SDL
box {V,CORNERI, V_CORNER2 [BOX_MODIFIERS] }

BOX_MODIFIERS:
[UV.MAPPING] & [OBJECT-MODIFIERS]

The cone object:

CONE:
Jump to SDL
cone { V_BASE_CENTER, F_BASE_RADIUS, V_CAP_CENTER, F_CAP_RADIUS [open] [OBJECT_-
MODIFIERS] }

The cylinder object:

CYLINDER:
Jump to SDL
cylinder ~ { V_BASE_CENTER, V_CAP_CENTER, F_RADIUS [Oopen] [OBJECT_MODIFIERS] }

The height field object:

HEIGHT_FIELD:
Jump to SDL
height field { HF_IMAGE [HF_MODIFIERS] }

8.8 Objects 339

HF_IMAGE:
FUNCTION_IMAGE | [HF_TYPE] FILE_NAME

HF TYPE:
gif | tga | pot | png | pgm | ppm | jpeg | tiff | sys

HF_MODIFIERS:
[hierarchy [BOOL]] & [smooth] & [water _level FLOAT] & [OBJECT_MODIFIERS]

The Julia fractal object:

JULIA_FRACTAL:

Jump to SDL
julia _fractal { 4D_VECTOR [JF_ITEMS] [OBJECT_MODIFIERS] }
JEITEMS:
[ALGEBRA_ITEM] & [max.iteration INT] & [precision FLOAT] & [slice V4_NORMAL,
F_DISTANCE]
ALGEBRAL_ITEM:
quaternion [QUATER_FUNCTION] | hypercomplex [HYPER_FUNCTION]
QUATER_.FUNCTION:
sqr | cube
HYPER FUNCTION:
sqr | cube | exp | reciprocal | sin | asin | sinh | asinh | cos | acos |
cosh | acosh | tan | atan | tanh | atanh | In | pwr (FLOAT,FLOAT)

The lathe object:

LATHE:
Jump to SDL
lathe { [LATHE_SPLINE_TYPE] I_NUM_POINTS, POINT_LIST [LATHE_-MODIFIERS] }

LATHE _SPLINE.TYPE:
linear _spline | quadratic _spline | cubic _spline | bezier _spline

POINT_LIST:
2D_VECTOR [, 2D_VECTOR]...
The quantity of 2DVECTORSs is specified by theNMUM _POINTS value.

LATHE_MODIFIERS:
[sturm [BOOL]] & [UV_MAPPING] & [OBJECT_MODIFIERS]

The prism object:

PRISM:
Jump to SDL
prism { [PRISM_ITEMS] F_HEIGHT1, F_HEIGHT2, I_NUM_POINTS, POINT_LIST [Oopen] [PRISM_-
MODIFIERS] }

PRISMITEMS:
[PRISM_SPLINE_TYPE] & [PRISM_SWEEP_TYPE]

PRISM.SPLINETYPE:
linear _spline | quadratic _spline | cubic _spline | bezier _spline

PRISM.SWEERTYPE:
linear _sweep | conic _sweep

PRISM_LMODIFIERS:

340 Quick Reference

[sturm [BOOL]] & [OBJECT_MODIFIERS]
The sphere object:

SPHERE:
Jump to SDL
sphere { V_CENTER, F_RADIUS [SPHERE_MODIFIERS] }

SPHEREMODIFIERS:
[UV.MAPPING] & [OBJECTMODIFIERS]

The sphere sweep object:

SPHERESWEEP:
Jump to SDL
sphere _sweep { SWEEP_SPLINE_TYPE I_NUM_SPHERES, SPHERE_LIST [tolerance F_DEPTH_-
TOLERANCE] [OBJECT_-MODIFIERS] }

SWEERSPLINETYPE:
linear _spline | b_spline | cubic _spline

SPHERELIST:
V_CENTER, F_RADIUS [, SPHERE_LIST]
The quantity of VCENTER, ERADIUS pairs is specified by theNMUM _SPHERES value.

The superquadric ellipsoid object:

SUPERELLIPSOID:
Jump to SDL
superellipsoid { < FLOAT, FLOAT > [OBJECT.MODIFIERS] }

The surface of revolution object:

SOR:
Jump to SDL
sor { I_NUM_POINTS, POINT_LIST [open] [SORMODIFIERS] }

SORMODIFIERS:
[sturm [BOOL]] & [UV_MAPPING] & [OBJECTMODIFIERS]

The text object:

TEXT:
Jump to SDL
text { ttf FILE_NAME STRING F_THICKNESS, V_OFFSET [OBJECT_MODIFIERS] }

The torus object:

TORUS:
Jump to SDL
torus { F_MAJOR_RADIUS, F_MINOR_-RADIUS [TORUS_MODIFIERS] }

TORUSMODIFIERS:
[sturm [BOOL]] & [UV_MAPPING] & [OBJECT_MODIFIERS]

Quick Reference Contents

8.8.2 Finite Patch Objects

Describe a totally thin, finite shape:

8.8 Objects 341

FINITE_PATCH.OBJECT:
Jump to SDL
BICUBIC_PATCH | DISC | MESH | MESH2 | POLYGON | TRIANGLE | SMOOTH_TRIANGLE

The bicubic patch object:

BICUBIC_PATCH:
Jump to SDL
bicubic _patch { PATCH.ITEMS [PATCH_UV_VECTORS] CONTROL_POINTS [BICUBIC_PATCH.-
MODIFIERS] }

PATCH.ITEMS:
type PATCH.TYPE & [u._Steps 1INT] & [v_steps INT] & [flatness FLOAT]

PATCH.TYPE:
011

PATCH.UV_VECTORS:
uv_vectors V2_CORNERL, V2_CORNER2, V2_CORNER3, V2_CORNER4

CONTROLPOINTS:
16 VECTORSs, optionally separated by commas.

BICUBIC_PATCH.MODIFIERS:
[UVMAPPING] & [OBJECT-MODIFIERS]

The disc object:

DISC:
Jump to SDL
disc { V_CENTER, V_NORMAL, F_RADIUS [, F_HOLE_RADIUS] [OBJECT_MODIFIERS] }

The mesh object:

MESH:

Jump to SDL

mesh { MESH.TRIANGLE... [MESHMODIFIERS] }
MESH_TRIANGLE:

triangle { V_CORNER1, V_CORNER2, V_CORNER3 [MESH_UV_VECTORS] [MESH.TEXTURE] } |
smooth _triangle { V_CORNER1, V_NORMAL1, V_CORNER2, V_NORMAL2, V_CORNER3, V_NORMAL3
[MESH_UV_VECTORS] [MESH_TEXTURE] }

MESH.UV_VECTORS:
uv_vectors V2_CORNERL, V2_CORNER2, V2_CORNER3

MESH_TEXTURE:
texture { TEXTURE_IDENTIFIER } |
texture _list { TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER TEXTURE_IDENTIFIER }

MESH_MODIFIERS:
[inside _vector V_DIRECTION] & [hierarchy [BOOL]] & [UV_MAPPING] & [OBJECT_-
MODIFIERS]

The mesh2 object:

MESH?2:
Jump to SDL
mesh2 { MESH2 _VECTORS [TEXTURE_LIST] MESH2_INDICES [MESH2_MODIFIERS] }

MESH2VECTORS:
VERTEX_VECTORS [NORMAL_VECTORS] [UV_VECTORS]

342 Quick Reference

VERTEX_VECTORS:

vertex _vectors { I_NUM_VERTICES, VECTOR [, VECTOR]... }
NORMAL_VECTORS:

normal _vectors { I_NUMNORMALS, VECTOR [, VECTOR]... }
UV_VECTORS:

uv_vectors { I_NUM_UV_VECTORS, 2D_VECTOR [, 2D_VECTOR]... }
TEXTURELLIST:

texture _list { I_NUM_TEXTURES, TEXTURE [, TEXTURE]... }

MESHZ2INDICES:
FACE_INDICES [NORMAL_INDICES] [UV_INDICES]

FACE.INDICES:
face _indices { I_NUM_FACES, FACE_INDICES_ITEM [, FACE_INDICES_ITEM]... }

FACEINDICES.ITEM:
VECTOR [, I_-TEXTURE_INDEX [, I_TEXTURE_INDEX, I_TEXTURE_INDEX]]

NORMAL_INDICES:

normal _indices { I_NUM_FACES, VECTOR [, VECTOR]... }
UV_INDICES:
uv_indices { I.NUM_FACES, VECTOR [, VECTOR]... }

MESH2 MODIFIERS:
[inside _vector V_DIRECTION] & [UV_MAPPING] & [OBJECT_MODIFIERS]

The polygon object:

POLYGON:
Jump to SDL
polygon { I_NUM_POINTS, V_POINT [, V_POINT]... [OBJECT_MODIFIERS] }

The quantity of VPOINTS is specified by theMUM _POINTS value.
The triangle object:

TRIANGLE:
Jump to SDL
triangle { V_CORNER1, V_CORNER2, V_CORNER3 [OBJECT_MODIFIERS] }

The smooth triangle object:

SMOOTH.TRIANGLE:
Jump to SDL
smooth _triangle { V_CORNER1, V_NORMALl, V_CORNER2, V_NORMAL2, V_CORNER3, V_NORMAL3
[OBJECT_MODIFIERS] }

Quick Reference Contents

8.8.3 Infinite Solid Objects

Describe a solid, possibly infinite, shape:

INFINITE_SOLID_-OBJECT:
PLANE | POLY | CUBIC | QUARTIC | QUADRIC

The plane object:

8.8 Objects 343

PLANE:
Jump to SDL
plane { V_NORMAL, F_DISTANCE [OBJECT MODIFIERS] }

The poly object:

POLY:
Jump to SDL
poly { ORDER, < POLY_COEFFICIENTS > [POLYMODIFIERS] }

ORDER:
An integer value between 2 and 15 inclusive.

POLY_COEFFICIENTS:
A quantityn of FLOATs separated by commas, wharis ((ORDER+1) * (ORDER+2) * (ORDER+3)) /6.

POLY_MODIFIERS:
[sturm [BOOL]] & [OBJECT_MODIFIERS]

The cubic object:

CUBIC:
cubic { < CUBIC_COEFFICIENTS > [POLY_MODIFIERS] }

CUBIC_COEFFICIENTS:
20 FLOATSs separated by commas.

The quartic object:

QUARTIC:
quartic { < QUARTIC_COEFFICIENTS > [POLY.MODIFIERS] }

QUARTIC_COEFFICIENTS:
35 FLOATSs separated by commas.

The quadric object:

QUADRIC:
Jump to SDL
quadric { < FLOAT, FLOAT, FLOAT >, < FLOAT, FLOAT, FLOAT >, < FLOAT, FLOAT,
FLOAT >, FLOAT [OBJECT_MODIFIERS] }

Quick Reference Contents

8.8.4 Isosurface

Describe a surface via a mathematical function:

ISOSURFACE:
Jump to SDL
isosurface { FLOAT_USER_FUNCTION [ISOSURFACE_ITEMS] [OBJECT_MODIFIERS] }

ISOSURFACEITEMS:
[contained _by { CONTAINER }] & [threshold FLOAT] & [accuracy FLOAT] & [max-
gradient FLOAT [evaluate F_MIN.ESTIMATE, F_MAX ESTIMATE, F_ATTENUATION]] & [open]
& [INTERSECTION._LIMIT]

CONTAINER:
sphere { V_CENTER, F_RADIUS } | box { V_CORNER1, V_CORNER2 }

INTERSECTIONLIMIT:

344 Quick Reference

max_trace INT | all _intersections

Quick Reference Contents

8.8.5 Parametric

Describe a surface using functions to locate points on the surface:

PARAMETRIC:
Jump to SDL
paranwetﬁc { FLOAT_USER_FUNCTION, FLOAT_USER_FUNCTION, FLOAT_USER_FUNCTION 2D_-
VECTOR, 2D_VECTOR [PARAMETRIC_ITEMS] [UV_MAPPING] & [OBJECT_MODIFIERS] }

PARAMETRIC.ITEMS:
[contained _by { CONTAINER }] & [maxgradient FLOAT] & [accuracy FLOAT] &
[precompute I DEPTH, X, Y, Z]

CONTAINER:
sphere { V_CENTER, F_RADIUS } | box { V_CORNER1, V_CORNER2 }

Quick Reference Contents

8.8.6 CSG

Describe one complex shape from multiple shapes:

CSGOBJECT:
Jump to SDL
UNION | INTERSECTION | DIFFERENCE | MERGE

Combine multiple shapes into one:

UNION:
union { UNION_OBJECT UNION_OBJECT... [UNION.MODIFIERS] }

UNION_OBJECT:
OBJECT | LIGHT

UNION_MODIFIERS:
[split _union BOOL] & [OBJECT_MODIFIERS]

Create a new shape from the overlapping portions of multiple shapes:

INTERSECTION:
intersection { SOLID_OBJECT SOLID_OBJECT... [INTERSECTION_MODIFIERS] }

SOLID_OBJECT:
FINITE_SOLID_OBJECT | INFINITE_SOLID_OBJECT | ISOSURFACE | CSG_OBJECT

INTERSECTIONMODIFIERS:
[cutaway _textures] & [OBJECTMODIFIERS]

Subtract one or more shapes from another:

DIFFERENCE:
difference { SOLID_OBJECT SOLID_OBJECT... [DIFFERENCE_MODIFIERS] }

DIFFERENCEMODIFIERS:
[cutaway _textures] & [OBJECT_MODIFIERS]

8.9 Object Modifiers 345

Combine multiple shapes into one, removing internal surfaces:

MERGE:
merge { SOLID_OBJECT SOLID_OBJECT... [OBJECT-MODIFIERS] }

Quick Reference Contents

8.9 Object Modifiers

Manipulate the appearance of an object

OBJECTMODIFIERS:
[OBJECT_PHOTONS] & [CLIPPED.BY] & [BOUNDEDBY] & [MATERIAL] & [INTERIOR] & [INTERIOR_-
TEXTURE] & [TEXTURE] & [PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...] &
[no_shadow] & [no_image [BOOL]] & [no_reflection {BooL]] & [inverse] & [double _-
illuminate [BOOL]] & [hollow [BOOL]]

Specify how an object should interact with photons:

OBJECTPHOTONS:
Jump to SDL
photons { OBJECT_PHOTON_ITEMS }
OBJECTPHOTONITEMS:
[target [F_SPACINGMULT]] & [refraction BOOL] & [reflection BOOL] & [collect

BOOL] & [pass _through [BOOL]]
Slice a portion of a shape:

CLIPPEDBY:
clipped _by { UNTEXTURED_SOLID_OBJECT... } |
clipped _by { bounded _by }

UNTEXTURED_SOLID_OBJECT:
FINITE_SOLID_OBJECT | INFINITE_SOLID_OBJECT
Note, neither with a texture applied.

Specify a bounding shape for an object:

BOUNDED_BY:
bounded _by { UNTEXTURED_SOLID_OBJECT... } |
bounded _by { clipped _by }

Quick Reference Contents

8.9.1 UV Mapping

Map a texture to an object using surface coordinates:

UV_MAPPING:
Jump to SDL
uv_mapping PIGMENT | pigment { uv_mapping PIGMENT_BODY } |
uv_mapping NORMAL | normal { uv_mapping NORMAL_BODY } |
uv_mapping TEXTURE | texture { uv_mapping TEXTURE_BODY }

Quick Reference Contents

346 Quick Reference

8.9.2 Material

Group together surface textures and interior properties:

MATERIAL:
material { [MATERIAL_IDENTIFIER] [MATERIAL_ITEM ...] }

MATERIAL _LITEMS:
TEXTURE | INTERIOR_TEXTURE | INTERIOR | TRANSFORMATION

Quick Reference Contents

8.9.3 Interior

Describe the interior of an object:

INTERIOR:
Jump to SDL
interior { [INTERIOR_IDENTIFIER] [INTERIOR_ITEMS] }

INTERIORLITEMS:
[ior FLOAT] & [dispersion FLOAT] & [dispersion _samples INT] & [caustics
FLOAT] & [fade _distance FLOAT] & [fade _power FLOAT] & [fade _color COLOR] &
[MEDIA...]

Quick Reference Contents

8.9.4 Interior Texture

Describe the interior surface of an object:

INTERIOR.TEXTURE:
interior _texture { TEXTURE_BODY }

Quick Reference Contents

8.10 Texture

Describe the surface of an object

TEXTURE:
PLAIN_TEXTURE | LAYERED_TEXTURE | PATTERNED_TEXTURE

Quick Reference Contents

8.10.1 Plain Texture

Describe a texture consisting of a single pigment, normal and finish:

PLAIN_TEXTURE:
texture { PLAIN_TEXTURE_BODY }

PLAIN_TEXTURE_.BODY:
[PLAIN_TEXTURE_IDENT] [PNF_IDENTIFIERS] [PNF_ITEMS]

8.10 Texture 347

PNF.IDENTIFIERS:
[PIGMENT_IDENTIFIER] & [NORMAL_IDENTIFIER] & [FINISH_IDENTIFIER]

PNFEITEMS:
[PIGMENT] & [NORMAL] & [FINISH] & [TRANSFORMATION...]

Quick Reference Contents

8.10.2 Layered Texture

Describe a texture consisting of two or more semi-transparent layers:

LAYERED_TEXTURE:
Jump to SDL
texture { LAYERED_TEXTURE_IDENT } |
PLAIN_TEXTURE PLAIN_TEXTURE...

Quick Reference Contents

8.10.3 Patterned Texture

Describe a texture using a pattern or blending function;

PATTERNED.TEXTURE:
Jump to SDL
texture { PATTERNED_TEXTURE_BODY }

PATTERNED.TEXTURE BODY:
PATTERNED_TEXTURE_IDENT [TRANSFORMATION...] | TEXTURE_PATTERN [PATTERN_MODIFIERS]
| MATERIALMAP [TRANSFORMATION...]

TEXTURE.PATTERN:
TEXTURE_LIST_PATTERN | MAP_PATTERN TEXTURE_MAP

TEXTURE_LIST_PATTERN:
brick TEXTURE, TEXTURE [BRICK_ITEMS] |
checker TEXTURE, TEXTURE |
hexagon TEXTURE, TEXTURE, TEXTURE |
object { LIST_OBJECT TEXTURE, TEXTURE }

BRICK_ITEMS:

[brick _size VECTOR] & [mortar FLOAT]
LIST_OBJECT:

UNTEXTURED_SOLID_OBJECT | UNTEXTURED_SOLID_OBJECT_IDENT
TEXTURE.MAP:

texture _map { TEXTURE_MAP_BODY } [BLEND_MAP_MODIFIERS]

TEXTURE_.MAP_BODY:
TEXTURE_MAP_IDENTIFIER | TEXTURE_MAP_ENTRY...
There may be from 2 to 256 map entries.

TEXTURE.MAP_ENTRY:
[FLOAT TEXTURE_BODY]
The brackets here are part of the map entry.

TEXTURE.BODY:

348 Quick Reference

PLAIN_TEXTURE_BODY | LAYERED_TEXTURE_IDENT | PATTERNED_TEXTURE_BODY

MATERIAL _-MAP:
material _map { BITMAP_IMAGE [BITMAP_MODIFIERS] TEXTURE... }

Quick Reference Contents

8.10.4 Pigment

Describe a color or pattern of colors for a texture:

PIGMENT:
Jump to SDL
pigment { PIGMENT_BODY }

PIGMENT_BODY:
[PIGMENT_IDENTIFIER] [PIGMENT_TYPE] [PIGMENT_MODIFIERS]

PIGMENT_TYPE:
COLOR | COLOR.LIST_PATTERN | PIGMENT_LIST_PATTERN | IMAGEMAP | MAP_PATTERN [COLOR_-
MAP] | MAP_PATTERN PIGMENT_MAP

COLORLIST_PATTERN:
brick [COLOR [, COLOR]] [BRICK_ITEMS] |
checker [COLOR [, COLOR]] |
hexagon [COLOR [, COLOR [, COLOR]]] |
object { LIST_OBJECT [COLOR [, COLOR]] }

PIGMENT_LIST_PATTERN:
brick PIGMENT, PIGMENT [BRICK_ITEMS] |
checker PIGMENT, PIGMENT |
hexagon PIGMENT, PIGMENT, PIGMENT |
object { LIST_OBJECT PIGMENT, PIGMENT }

IMAGE _MAP:
image _.map {BITMAP_IMAGE [IMAGE MAP MODIFIER...] [BITMAP MODIFIERS] }

IMAGE _MAP_MODIFIER:
filter I_PALETTE, F_AMOUNT | filter all F_AMOUNT | transmit I_PALETTE, F_AMOUNT
| transmit all F_AMOUNT

COLORMAP:

color _map { COLOR.MAP_BODY } [BLEND_MAP _MODIFIERS] |
colour _map { COLORMAP_BODY } [BLEND_MAP MODIFIERS]

COLOR MAP_BODY:
COLOR_MAP_IDENTIFIER | COLOR_MAP_ENTRY...
There may be from 2 to 256 map entries.

COLORMAP_ENTRY:
[FLOAT COLOR]
The brackets here are part of the map entry.

PIGMENT_MAP:
pigment _map { PIGMENT_MAP_BODY } [BLEND_MAP_MODIFIERS]

PIGMENT_MAP_BODY:
PIGMENT_MAP_IDENTIFIER | PIGMENT_MAP_ENTRY...
There may be from 2 to 256 map entries.

8.10 Texture 349

PIGMENT_MAP_ENTRY:
[FLOAT PIGMENT_BODY]
The brackets here are part of the map entry.

PIGMENT_MODIFIERS:
[QUICK_COLOR] & [PATTERN_MODIFIERS]

QUICK_COLOR:
quick _color COLOR | quick _colour COLOR

Quick Reference Contents

8.10.5 Normal

Simulate the visual or tactile surface characteristics of a texture:

NORMAL:
Jump to SDL
normal { NORMAL_BODY }

NORMAL_BODY:
[NORMAL_IDENTIFIER] [NORMAL_TYPE] [NORMAL_MODIFIERS]

NORMAL_TYPE:
NORMAL_PATTERN | BUMP_MAP

NORMAL_PATTERN:
NORMAL_LIST_PATTERN |
MAP_PATTERN [F_DEPTH] [SLOPEMAP] |
MAP_PATTERN NORMAL_MAP

NORMAL_LIST_PATTERN:
brick NORMAL, NORMAL [BRICK_ITEMS] | brick [F_DEPTH] [BRICK_ITEMS] |
checker NORMAL, NORMAL | checker [F_DEPTH] |
hexagon NORMAL, NORMAL, NORMAL | hexagon [F.DEPTH] |
object { LIST_OBJECT NORMAL, NORMAL } | object { LIST_OBJECT } [F_DEPTH]

NORMAL_MAP:
normal _map { NORMAL_MAP_BODY } [BLEND_MAP_MODIFIERS]

NORMAL_MAP_BODY:
NORMAL MAP_IDENTIFIER | NORMAL_MAP_ENTRY...
There may be from 2 to 256 map entries.

NORMAL_MAP_ENTRY:
[FLOAT NORMAL_BODY]
The brackets here are part of the map entry.

SLOPEMAP:
slope _map { SLOPE_MAP_BODY } [BLEND_MAP MODIFIERS]

SLOPEMAP_BODY:
SLOPE_MAP_IDENTIFIER | SLOPE_MAP_ENTRY...
There may be from 2 to 256 map entries.

SLOPEMAP_ENTRY:
[FLOAT, < F_HEIGHT, F_SLOPE >]
The brackets here are part of the map entry.

350 Quick Reference

BUMP_MAP:
bump.map { BITMAP_IMAGE [BUMP_MAP MODIFIERS] }

BUMP_MAP_MODIFIERS:
[BITMAP MODIFIERS] & [BUMP.METHOD] & [bump.size FLOAT]

BUMP_METHOD:
use _index | use_color | use _colour

NORMAL_MODIFIERS:
[PATTERN_MODIFIERS] & [bump.size FLOAT] & [no_bump.scale [BOOL]] & [accuracy
FLOAT]

Quick Reference Contents

8.10.6 Finish

Describe the reflective properties of a surface:

FINISH:
Jump to SDL
finish { [FINISH_IDENTIFIER] [FINISH_ITEMS] }
FINISH_ITEMS:
[ambient COLOR] & [diffuse FLOAT] & [brilliance FLOAT] & [PHONG] & [SPECULAR]
& [REFLECTION] & [IRID] & [crand FLOAT] & [conserve _energy [BOOL]]
PHONG:
phong FLOAT & [phong _size FLOAT] & [metallic [FLOAT]]
SPECULAR:
specular FLOAT & [roughness FLOAT] & [metallic [FLOAT]]
REFLECTION:
reflection COLOR [reflection _exponent FLOAT] |
reflection { [COLOR,] COLOR [REFLECTION.ITEMS] }
REFLECTIONITEMS:
[fresnel BooL] & [falloff FLOAT] & [exponent FLOAT] & [metallic [FLOAT]]
Must also usénterior {ior FLOAT} in the object wheifresnel is used.
IRID:

iid ~ { F_AMOUNT [IRID_ITEMS] }

IRID_ITEMS:
[thickness FLOAT] & [turbulence FLOAT]

Quick Reference Contents

8.10.7 Pattern

Specify a pattern function for a texture, pigment, normal or density:

MAP_PATTERN:
Jump to SDL
AGATE | average | boxed | bozo | bumps | cells | CRACKLE | cylindrical \
DENSITY.FILE | dents | FACETS | FRACTAL | function { FN_FLOAT } | gradient
VECTOR | granite | IMAGE_PATTERN | leopard | marble | onion | pigment _pattern

8.10 Texture 351

{ PIGMENT_BODY } | planar | QUILTED | radial | ripples | SLOPE | spherical |
spirall I_NUM_ARMS | spiral2 I_NUM_ARMS | spotted | waves | wood | wrinkles

AGATE:
agate [agate _turb FLOAT]

CRACKLE:
crackle [CRACKLE_TYPES]

CRACKLE_TYPES:
[form VECTOR] & [metric FLOAT] & [offset FLOAT] & [solid]

DENSITY_FILE:
density _file df3 FILE_NAME [interpolate DENSITY_INTERPOLATE]

DENSITY_INTERPOLATE:
01172

FACETS:
facets FACETS_TYPE
Note,facets can only be used asrmrmal pattern.

FACETSTYPE:
coords F_SCALE | Sizé F_SIZE_FACTOR

FRACTAL:
MANDELBROT_FRACTAL | JULIA_FRACTAL | MAGNET_MANDEL_FRACTAL | MAGNET_JULIA_FRACTAL

MANDELBROT_FRACTAL:
mandel I_ITERATIONS [exponent INT] [exterior EXTERIOR_TYPE, F_FACTOR] [interior
INTERIOR_TYPE, F_FACTOR]

JULIA_FRACTAL.:
julia V2_COMPLEX, I_ITERATIONS [exponent INT] [exterior EXTERIOR_TYPE, F_FACTOR]
[interior INTERIOR_TYPE, F_FACTOR]

MAGNET_MANDEL _FRACTAL.:
magnet MAGNET_TYPE mandel I_ITERATIONS [exterior EXTERIOR_TYPE, F_FACTOR] [interior
INTERIOR_TYPE, F_FACTOR]

MAGNET_TYPE:
112

MAGNET_JULIA_FRACTAL:
magnet MAGNET_TYPE julia V2_COMPLEX, I_ITERATIONS [exterior EXTERIOR_TYPE, F_-
FACTOR] [interior INTERIOR_TYPE, F_FACTOR]

EXTERIORTYPE:
011123456

INTERIOR_TYPE:
011123456

IMAGE _PATTERN:
image _pattern ~ {BITMAP_IMAGE [IMAGE_PATTERN_MODIFIERS] }

IMAGE _PATTERN.MODIFIERS:
[BITMAP_MODIFIERS] & [use _alpha]

QUILTED:
quilted [control0 FLOAT] [controll FLOAT]

352 Quick Reference

SLOPE:
slope { V.DIRECTION [, F_LOW.SLOPE, F_HIGH.SLOPE] [altitude VECTOR [, F_LOW_ALT,
F_HIGHALT 1] }
Theslope pattern does not work in media densities.

Quick Reference Contents

8.10.8 Pattern Modifiers

Modify the evaluation of a pattern function:

PATTERN.MODIFIERS:
Jump to SDL
[TURBULENCE] & [WARP...] & [TRANSFORMATION...] & [hoise _generator NG_TYPE]

NG_TYPE:
11213

TURBULENCE:
turbulence VECTOR & [octaves INT] & [omega FLOAT] & [lambda FLOAT]

WARP:
warp { WARP_ITEM }

WARP_ITEM:
REPEAT_WARP | BLACK_HOLE_WARP | TURBULENCE | CYLINDRICAL_WARP | SPHERICAL_WARP |
TOROIDAL_WARP | PLANAR_WARP

REPEAT_WARP:
repeat VECTOR [oOffset VECTOR] [flip VECTOR]

BLACK_HOLE_WARP:
black _hole V_LOCATION, F_RADIUS [BLACK_HOLE_ITEMS]

BLACK_HOLE.ITEMS:

[strength FLOAT] & [falloff FLOAT] & [inverse] & [repeat VECTOR [turbulence
VECTOR]]
CYLINDRICAL WARP:
cylindrical [orientation VECTOR] [dist _exp FLOAT]
SPHERICALWARP:
spherical [orientation VECTOR] [dist _exp FLOAT]
TOROIDAL_WARP:
toroidal [orientation VECTOR] [dist _exp FLOAT] [major _radius FLOAT]

PLANAR_WARP:
planar [V_NORMAL, F_DISTANCE]

Modify the usage of a blend map:

BLEND_MAP_MODIFIERS:
Jump to SDL
frequency FLOAT & [phaseFLOAT] & [WAVEFORM]

WAVEFORM:
Jump to SDL
ramp _wave | triangle _wave | sine _wave | scallop _wave | cubic _wave | poly _-
wave [F_EXPONENT]

8.11 Media

353

Specify a two-dimensional bitmap image for a pattern:

BITMAP_IMAGE:
FUNCTION_IMAGE | BITMAP_TYPE FILE_NAME

FUNCTIONLIMAGE:
Jump to SDL
function ~ I_WIDTH, I_HEIGHT { FUNCTION_IMAGE_BODY }

FUNCTION.IMAGE_BODY:
PIGMENT | FN.FLOAT | pattern { PATTERN [PATTERN.MODIFIERS] }

PATTERN:
MAP_PATTERN | brick [BRICK_ITEMS] | checker | hexagon | object

BITMAP_TYPE:
Jump to SDL

gif | tga | iff | ppm | pgm | png | jpeg | tiff | sys
Modify how a 2-D bitmap is to be applied to a 3-D surface:

BITMAP _MODIFIERS:
Jump to SDL
[once] & [maptype MAP_TYPE] & [interpolate INTERPOLATE_TYPE]

MAP_TYPE:
0111215

INTERPOLATETYPE:
214

Quick Reference Contents

8.11 Media

Describe particulate matter

MEDIA:
Jump to SDL
media { [MEDIA_IDENTIFIER] [MEDIA_ITEMS] }

MEDIA _ITEMS:
[method METHOD_TYPE] & [intervals INT] & [samples I.MIN, I_MAX] & [confidence
FLOAT] & [variance FLOAT] & [ratio FLOAT] & [absorption COLOR] & [emission
COLOR] & [aa_threshold FLOAT] & [aa_level INT] & [SCATTERING]
[TRANSFORMATION...] & [collect BOOL]

METHOD_TYPE:
11213

SCATTERING:
scattering { SCATTERING_TYPE, COLOR [eccentricity FLOAT] [extinction

SCATTERINGTYPE:
112131415

DENSITY:
density { DENSITY_BODY }

DENSITY_BODY:

& [DENSITY...]

{ LIST_OBJECT }

&

FLOAT] }

354 Quick Reference

[DENSITY_IDENTIFIER] [DENSITY_TYPE] [PATTERN_MODIFIERS]

DENSITY_TYPE:
COLOR | COLOR_LIST_PATTERN | DENSITY_LIST_PATTERN | MAP_PATTERN [COLORMAP] | MAP_-
PATTERN DENSITY_MAP

DENSITY_LIST_PATTERN:
brick DENSITY, DENSITY [BRICK_ITEMS] |
checker DENSITY, DENSITY |
hexagon DENSITY, DENSITY, DENSITY |
object { LIST_OBJECT DENSITY, DENSITY }

DENSITY_MAP:
density _map { DENSITY_MAP_BODY } [BLEND_MAP MODIFIERS]

DENSITY_MAP_BODY:
DENSITY_MAP_IDENTIFIER | DENSITY_MAP_ENTRY...
There may be from 2 to 256 map entries.

DENSITY_MAP_ENTRY:
[FLOAT DENSITY_BODY]
The brackets here are part of the map entry.

Quick Reference Contents

8.12 Atmospheric Effects

Describe various background and atmospheric features

ATMOSPHERICEFFECT:
MEDIA | BACKGROUND | FOG | SKY_SPHERE | RAINBOW

Quick Reference Contents

8.12.1 Background

Specify a background color for the scene:

BACKGROUND:
background { coLOR }

Quick Reference Contents

8.12.2 Fog
Simulate a hazy or foggy atmosphere:
FOG:
Jump to SDL
CONSTANT_FOG | GROUND_FOG
CONSTANT.FOG:
fog { [FOG_IDENTIFIER] [fog _type 1] FOG_ITEMS }
FOGITEMS:

distance FLOAT & COLOR & [TURBULENCE [turb _depth FLOAT]]

8.13 Global Settings 355

GROUND_FOG:
fog { [FOG_IDENTIFIER] fog type 2 GROUND_FOG_ITEMS }

GROUND_FOG.ITEMS:
FOG_ITEMS & fog _offset FLOAT & fog _alt FLOAT & [uUp VECTOR [TRANSFORMATION...]]

Quick Reference Contents

8.12.3 Sky Sphere

Specify a sky pigment:

SKY_SPHERE:
sky _sphere { [SKY_SPHERE_IDENTIFIER] [SKY_SPHERE_ITEM...] }

SKY_SPHEREITEM:
PIGMENT | TRANSFORMATION

Quick Reference Contents

8.12.4 Rainbow

Specify a rainbow arc:

RAINBOW:
Jump to SDL
rainbow { [RAINBOW_IDENTIFIER] [RAINBOW_ITEMS] }

RAINBOW_ITEMS:
direction VECTOR & angle FLOAT & width FLOAT & distance FLOAT & COLORMAP &
[jitter FLOAT] & [Uup VECTOR] & [arc _angle FLOAT] & [falloff _angle FLOAT]

Quick Reference Contents

8.13 Global Settings

Specify various settings that apply to the entire scene

GLOBAL_SETTINGS:
Jump to SDL
global _settings { GLOBAL_SETTING_ITEMS }

GLOBAL_SETTINGLITEMS:
[adc _bailout FLOAT] & [ambient _light COLOR] & [assumed _gammaFLoAT] & [hf -
gray 16 [BOOL]] & [irid _wavelength COLOR] & [charset GLOBAL_CHARSET] & [max-
intersections INT] & [maxtrace _level 1INT] &« [number _of waves INT] & [hoise _-
generator NG_TYPE] & [RADIOSITY] & [PHOTONS]

GLOBAL_CHARSET:

ascii | utf8 | sys
NG_TYPE:
1123

Quick Reference Contents

356 Quick Reference

8.13.1 Radiosity

Enable radiosity to compute diffuse inter-reflection of light:

RADIOSITY:
Jump to SDL
radiosity { [RADIOSITY_ITEMS] }

RADIOSITY_ITEMS:
[adc _bailout FLOAT] & [always _sample B0OOL] & [brightness FLOAT] & [count
INT] & [error _bound FLOAT] & [gray -threshold FLOAT] & [load _file FILE_NAME]
& [low _error _factor FLOAT] & [maxsample FLOAT] & [media BOOL] & [minimum _-
reuse FLOAT] & [nearest _count INT] & [normal BOOL] & [pretrace _end FLOAT] &
[pretrace _start FLOAT] & [recursion _limit INT] & [save _file FILE_NAME]

Quick Reference Contents

8.13.2 Photons

Enable photon mapping to render reflective and refractive caustics:

PHOTONS:
Jump to SDL
photons { PHOTON_QUANTITY [PHOTON_ITEMS] }
PHOTONQUANTITY:
spacing FLOAT | count INT
PHOTONLITEMS:
[gather IMIN, IMAX] & [media I_MAX_STEPS [, F_FACTOR]] & [jitter FLOAT] & [max-

trace _level INT] & [adc _bailout FLOAT] & [save file FILENAME] & [load _file
FILENAME] & [autostop FLOAT] & [expand _thresholds F_INCREASE, F.MIN] & [radius
[FLOAT, FLOAT, FLOAT, FLOAT]]

Quick Reference Contents

Index

+a, 26
+am, 26
+b, 13
+c, 7
+d, 8
+ec, 6
+ef, 5
+ep, 10
+er, 6
+f, 11
+fc, 12
+fn, 12
+fp, 12
+fs, 12
+ft, 12
+ga, 22
+gd, 22
+gf, 22
+gi, 7
+gr, 22
+gs, 22
+gw, 22
+h, 6
+hi, 16
+hn, 14
+hs, 14
+ht, 13
+htc, 13
+htn, 13
+htp, 13
+hts, 13
+htt, 13
+htx, 13
+i, 15
+j, 26
+k, 3
+kc, 5
+kff, 3
+kfi, 3
+ki, 3
+l, 16
+mb, 24
+mv, 16
+0, 13

+p, 10
+q, 24
+r, 26
+sc, 6
+sf, 5
+sp, 10
+sr, 6
+su, 25
+ua, 11
+ud, 10
+uf, 5
+ul, 24
+uo, 5
+ur, 25
+uv, 24
+v, 10
+w, 6
+wl, 23
+X, 7
-a, 26
-b, 13
-c, 7
-d, 8

-f, 11
-ga, 22
-gd, 22
-gf, 22
-gr, 22
-gs, 22
-gw, 22
-h, 23
-j, 26
-kc, 5
-mb, 24
-p, 10
-su, 25
-ua, 11
-ud, 10
-uf, 5
-ul, 24
-uo, 5
-ur, 25
-uv, 24
-v, 10

358

INDEX

X, 7
#break, 74
#case, 74
#debug, 75
#declare, 65
#default, 70
#else, 72
#end, 72
#error, 75
#fclose, 69
#fopen, 68
#if, 72
#ifdef, 73
#ifndef, 73
#include, 64
#local, 65
#macro, 76
#range, 74
#read, 69
#render, 75
#statistics, 75
#switch, 74
#undef, 68
#version, 71
#warning, 75
#while, 74
#write, 70

aalevel, 244
media, 239
aathreshold, 244
media, 239
abs, 38
absorption, 241
media, 239
accuracy, 138
isosurface, 137
normal, 172
normals, 175

parametric, 139, 140

acos, 38
julia, 117
julia_fractal, 115
acosd, 285
acosh, 38
julia, 117
julia_fractal, 115
adaptive, 151
light_source, 145
adcbailout, 95

globalsettings, 94, 95

photons, 250
radiosity, 102

adj.range, 286
adj.range2, 286
agate, 195
keyword, 195
pattern, 195
agateturb, 217
agate, 195

pattern modifier, 217

Align_Object, 296
Align_Trans, 317
all, 171
All _Console

ini-option, 22
All _File

ini-option, 23
all_intersections, 139

isosurface, 137
alpha, 171
altitude, 214

slope, 214
alwayssample, 102
ambient, 179

finish, 179
ambientlight, 95

globalsettings, 94, 95

angle, 83
camera, 81, 83
rainbow, 93
Animation
cyclic, 5
external loop, 3
field rendering, 5
internal loop, 3
options, 3

subsets of frames, 4

Antialias
ini-option, 26
Antialias Depth
ini-option, 26
Antialias Threshold
ini-option, 26
aperture, 88
camera, 81
append, 68
arcangle, 93
rainbow, 93, 94
arealight, 150

light_source, 145, 150

Array
declaring, 61
identifiers, 60
initialization, 62
array, 60

INDEX

quickref, 331
arrays
quickref, 331
asc, 38
ascii, 99
globalsettings, 94
asin, 38
julia, 117
julia_fractal, 115
asind, 285
asinh, 38
julia, 117
julia_fractal, 115
assumedyamma, 96
globalsettings, 94, 96
atan, 117
julia_fractal, 115
atan2, 38
atan2d, 285
atanh, 38
julia, 117
julia_fractal, 115
atmosphere, 239
atmospheric effects
quickref, 354
autostop, 250
average, 195
keyword, 195
pattern, 195
Axial_ScaleTrans, 316
Axis_RotateTrans, 316

b_spline, 121
spheresweep, 121
background, 90
keyword, 90
quickref, 354
Bevelled Text, 296
bezier, 127
Bezier Patch, 127
bezierspline, 118
lathe, 117
prism, 119
bicubic patch, 127
keyword, 127
Bits_PerColor
ini-option, 11
black hole, 222
warp, 221, 222
blob, 108
component, 109
component, cylinder, 109
component, sphere, 109

keyword, 108
Blobs, 108
blue, 51
Blur, 88
blur_samples, 88
camera, 81
BMP output, 12
boolean, 40
boundedby, 158
object modifier, 158
Bounding
ini-option, 24
Bounding Threshold
ini-option, 24
box, 110
keyword, 110
boxed, 196
keyword, 196
pattern, 196
bozo, 196
keyword, 196
pattern, 196
break, 74
brick, 197
keyword, 197
pattern, 197
brick_size, 217
brick, 197
pattern modifier, 217
brightness, 102
brilliance, 181
finish, 179
Buffer_Output, 13
Buffer_Size, 13
bumpmap, 177
normal, 172
bumpsize, 178
normal, 172
bumps, 198
keyword, 198
pattern, 198

Camera
coordinate system, 85
focal blur, 88
placing, 82
types of, 86

camera, 81
keyword, 81

case, 74

caustics, 238
interior, 233
simulated, 238

360

INDEX

ceil, 39
cells, 198
keyword, 198
pattern, 198
CenterObiject, 296
CenterTrans, 317
charset
globalsettings, 94, 99
checker, 198
keyword, 198
pattern, 198
chr, 59
CHSL2RGB, 259
CHSV2RGB, 259
Circle_Text, 297
circular, 151
light_source, 145
clamp, 286
clip, 286
clippedby, 157
object modifier, 157
Clock
ini-option, 3
clock, 41
clock delta, 42
clockon, 42
collect, 251
Color
common pitfalls, 52
functions, user-defined, 57
identifiers, 51
keywords, 51
operators, 51
specifying, 48
vectors, 50
color, 49
quickref, 329
color-map, 167
density, 245
pigment, 165
rainbow, 93
colors
quickref, 329
colour, 49
quickref, 329
colourmap, 167
pigment, 165
comment, 34
component, 109
blob, 108
composite, 142
concat, 59
conditional directives

quickref, 334
cone, 111
keyword, 111
confidence, 88
camera, 81
focal blur, 88
media, 239, 243
conicsweep, 120
prism, 119
ConnectSpheres, 298
conserveenergy, 184
finish, 179
constant fog, 91
Constructive Solid Geometry
quickref, 344
containedby, 138
isosurface, 137, 138
parametric, 139, 140
contents
quickref, 326
ContinueTrace
ini-option, 7
control0, 217
pattern modifier, 217
quilted, 211
controll, 217
pattern modifier, 217
quilted, 211
ConvertColor, 260
Coordinate system
camera, 85
coords, 202
facets, 202
cos, 39
julia, 117
julia_fractal, 115
cosd, 285
cosh, 39
julia, 117
julia_fractal, 115
count, 102
crackle, 199
keyword, 199
pattern, 199
crand, 181
finish, 179
Createlni
ini-option, 7
CRGB2HSL, 259
CRGB2HSV, 260
CRGBStr, 310
Cross Section Type, 267
CSG, 140

INDEX

361

difference, 143

intersection, 143

merge, 144

union, 141
cube, 116

julia_fractal, 115
cubic, 135

keyword, 135
cubicspline, 118

lathe, 117

prism, 119

spheresweep, 121
cubicwave, 217

pattern modifier, 217, 220
cutawaytextures, 194
Cyclic_Animation, 5
cylinder, 112

blob, 108

blob component, 109

camera, 81

keyword, 112

light_source, 145, 149
cylindrical, 201

keyword, 201

pattern, 201

projection, 87

warp, 221, 228

debug, 75
debug.inc, 266
DebugConsole
ini-option, 22
DebugFile
ini-option, 23
Declare
ini-option, 15
declare, 65
Declaring
arrays, 61
default, 70
Default Output Directory, 13
default texture
quickref, 334
Default values
bicubic patch, 127
blob, 109
camera, 81
disc, 128
fog, 91
global settings, 94
heightfield, 112
interior, 233
isosurface, 138

julia fractal, 115
lathe, 118
light_source, 145
media, 240
mesh, 129
parametric, 140
pattern modifiers, 218
photons, 249
poly, 135
prism, 119
rainbow, 93
sor, 123
spheresweep, 122
torus, 126
defined, 39
degrees, 39
density
media, 239
densityfile, 201
keyword, 201
pattern, 201
densitymap, 245
dents, 202
keyword, 202
pattern, 202
Depth of field, 88
df3, 201
densityfile, 201
difference, 143
keyword, 143
diffuse
finish, 179
dimensionsize, 39
dimensions, 39
direction, 84
camera, 81
rainbow, 93
Directives
#language, #declare vs. #local, 66
language, 64
language, #banner, 76
language, #break, 74
language, #case, 74
language, #debug, 75, 76
language, #declare, 65
language, #default, 70
language, #else, 72
language, #end, 72, 74
language, #error, 75
language, #fclose, 69
language, #fopen, 68
language, #if, 72
language, #ifdef, 73

362

INDEX

language, #ifndef, 73
language, #include, 64
language, #local, 65
language, #macro, 76, 77
language, #range, 74
language, #read, 69
language, #render, 76
language, #statistics, 76
language, #status, 76
language, #switch, 74
language, #undef, 68
language, #version, 71
language, #warning, 75
language, #while, 74
language, #write, 70
language, conditional, 72
language, default texture, 70
language, file I/0, 68
language, identifiers, 65
language, identifiers, destroying, 68
language, user messages, 75
name collisions, 67

Directory
default output, 13

disc, 128
keyword, 128

dispersion, 237
interior, 233
photons, 255

dispersionsamples, 237
interior, 233

Display
ini-option, 8

Display. Gamma, 8
for your display, 9
ini-option, 8

distexp, 228
warp, 221

distance, 91
fog, 91
rainbow, 93

div, 39

Divergence, 289

doubleilluminate, 161
object modifier, 161

Draw_Vistas
ini-option, 10

dynamic maxgradient, 138

eccentricity, 241
media, 239

else, 72

emission, 241

media, 239
end, 72
End.Column

ini-option, 6
End.Row, 6

ini-option, 6
error, 75

debug.inc, 266
errorbound, 104
evalpigment, 280
evaluate, 138

isosurface, 137
even, 284
exp, 39

julia, 117

julia_fractal, 115
expandthresholds, 255
exponent, 183

finish, 179

julia, 203

mandel, 203

reflection, 183
Expressions

float, 35

vector, 43
Extents, 295
exterior, 203

julia, 203

magnet, 203

mandel, 203
extinction, 241

media, 239

f_algbrcyll, 268
f_algbrcyl2, 269
f_algbrcyl3, 269
f_algbrcyl4, 269
f_bicorn, 269
f_bifolia, 269

f_blob, 269

f_blob2, 270
f_boy_surface, 270
f_.comma, 270
f_crossellipsoids, 270
f_crossedtrough, 270
f_cubicsaddle, 270
f_cushion, 270
f_devils.curve, 270
f_devils curve2d, 270
f_dupincyclid, 271
f_ellipsoid, 271
f_enneper, 271
f_flangecover, 271

INDEX

363

f_folium_surface, 271
f_folium_surface2d, 271
f_glob, 272

f_heart, 272
f_helicaltorus, 272
f_helix1, 272

f_helix2, 272

f_heteramf, 273

f_hexx, 273

f_hexy, 273
f_huntsurface, 273
f_hyperbolictorus, 273
f_isectellipsoids, 274
f_kampyleof_eudoxus, 274
f_kampyleof_eudoxus2d, 274
f_klein_bottle, 274
f_kummetrsurfacevl, 274
f_kummersurfacevz2, 274
f_lemniscateof_gerono, 275
f_lemniscateof_gerona2d, 275
f_-meshl, 275

f_mitre, 275
f_nodalcubic, 275
f_noise3d, 275
f_noisegenerator, 275
f_odd, 275
f_ovalsof_cassini, 275
f_parabolictorus, 276
f_paraboloid, 276

f_ph, 276

f_pillow, 276

f_piriform, 276
f_piriform_2d, 276
f_poly4, 276

f_polytubes, 276
f_quantum, 277
f_quarticcylinder, 277
f_quarticparaboloid, 277
f_quarticsaddle, 277

fr, 277

f_ridge, 277

f_ridgedmf, 277
f_roundedbox, 278
f_scallopwave, 280
f_sinewave, 280
f_snoise3d, 280
f_sphere, 278

f_spikes, 278
f_spikes2d, 278

f_spiral, 278

f_sqr, 286
f_steinersroman, 279
f_strophoid, 279

f_strophoid2d, 279
f_superellipsoid, 279
f_th, 279
f_torus, 279
f_torus2, 279
f_torusgumdrop, 280
f_umbrella, 280
f_witch_of_agnesi, 280
f_witch_of_agnesi2d, 280
faceindices, 130

mesh2, 130
facets, 202

keyword, 202

pattern, 202
fadecolor, 238

interior, 233
fadecolour, 238
fadedistance, 154

interior, 233, 238

light_source, 145, 154
fade power, 154

interior, 233, 238

light_source, 145, 154
falloff, 146

finish, 179

light_source, 145, 146

reflection, 183

warp, 221, 222
falloff _angle, 93

rainbow, 93, 94
false, 41
FatalConsole

ini-option, 22
FatalError.Command

ini-option, 17
FatalError_Return, 18
FatalFile

ini-option, 23
fclose, 69
Field.Render, 5
file iflo

quickref, 333
file inclusion

quickref, 333
file_exists, 39
filter, 49

bitmap modfier, 171
Final.Clock

ini-option, 3
final_clock, 42
FinalLFrame

ini-option, 3
final_frame, 42

364

INDEX

Finding include files, 16
finish, 179
keyword, 179
quickref, 350
fisheye, 87
camera, 81
flatness, 127
bicubic patch, 127
flip, 225
warp, 221
Float
boolean, 40
built-in constants, 40
built-in variables, 41
expressions, 35
functions, 38
functions, user-defined, 56
identifiers, 37
literals, 36
operators, 37
float
quickref, 327
float expressions
quickref, 327
floats
quickref, 327
floor, 39
fn_Divergence, 289
fn_Gradient, 288
fn_GradientDirectional, 289
focal point, 88
camera, 81
fog, 91
keyword, 91
quickref, 354
fog_alt, 91
fog, 91
fog_offset, 91
fog, 91
fog_type, 91
fog, 91
fopen, 68
form, 199
crackle, 199
fractal, 115
Fractal Object, 115
frame.number, 42
frequency, 217
pattern modifier, 217, 219
radial, 213
fresnel, 184
finish, 179
function, 53

as pattern, 204
heightfield, 112
internal bitmap, 205
isosurface, 137
parametric, 139
pattern, 204
function image
pattern, 205
Functions, 53
float, 38
internal, 57
string, 59
user-defined, 53
user-defined, color, 57
user-defined, float, 56
user-defined, vector, 56
vector, 46
VS. macros, 55

Gamma
image file, 97
monitor, 96
scene file, 97
gamma
determining your display, 9
test image, 9
gather, 250
GetStats, 285
gif, 170
heightfield, 112
global settings
quickref, 355
globallights, 155
light_group, 155
globalsettings, 94
keyword, 94
gradient, 206
keyword, 206
pattern, 206
GradientDirectional, 289
GradientLength, 289
granite, 207
keyword, 207
pattern, 207
gray, 51
gray.threshold, 103
green, 51
ground fog, 91

halo, 185
keyword, 185
Height
ini-option, 6

INDEX

365

heightfield, 112
keyword, 112
Hex Tiles_Ptrn, 316
hexagon, 207
keyword, 207
pattern, 207
HF_Cylinder, 300
hf_gray 16, 98
globalsettings, 94, 98
HF_Sphere, 300
HF_Square, 300
HF_Torus, 301
hierarchy, 110
blob, 108, 110
heightfield, 112, 115
mesh, 129
Histogram, 285
HistogramGrid_Size
ini-option, 14
HistogramName
ini-option, 14
HistogramType
ini-option, 13
hollow, 160
object modifier, 160
hypercomplex, 116
julia_fractal, 115

identifier, 30

declaration, quickref, 333

Identifiers, 30
array, 60
color, 51
declaring, 65
destroying, 68
float, 37
string, 59
vector, 45

if, 72

ifdef, 73

iff, 170

ifndef, 73

imageheight, 43

imagemap, 169
pigment, 165

imagepattern, 208
keyword, 208
pattern, 208

imagewidth, 43

include, 64
standard files, 257

Include Files
finding, 16

Include Path, 16
IncludeHeader
ini-option, 16
ini files
constant, 15
Initial_Clock
ini-option, 3
initial _clock, 42
Initial_Frame
ini-option, 3
initial _frame, 42
Initialization
arrays, 62
Input File_Name
ini-option, 15
inside, 39
inside.vector, 130
mesh, 129
mesh2, 130
int, 39
interior, 233
fadedistance, 238
fade power, 238
julia, 203
keyword, 233
magnet, 203
mandel, 203
quickref, 346
interior texture, 346
interior_texture, 193
keyword, 193
internal, 57
functions.inc, 266
Interpolate
macro, 284
interpolate, 217
densityfile, 201
imagepattern, 208

pattern modifier, 217, 230

intersection, 143
keyword, 143
intervals, 243
media, 239
inverse, 159
object modifier, 159
warp, 221
ior, 236
interior, 233
irid, 184
finish, 179
irid_wavelength, 98

globalsettings, 94, 98
Irregular Bricks_Ptrn, 315

366

INDEX

Isect, 295

isosurface, 137
default values, 138
keyword, 137

Jitter
ini-option, 26
jitter, 150
anti-aliasing, 26
arealight, 150
light_source, 145
photons, 250
rainbow, 93
Jitter Amount
ini.option, 26
jpeg, 170
heightfield, 112
julia, 203
keyword, 203
pattern, 203
julia_fractal, 115

keyword, 115
Keyword
aalevel, 239

aathreshold, 239
absorption, 239
accuracy, 137, 139, 172
acos, 115

acosh, 115
adaptive, 145
adcbailout, 94
agate, 195
agateturb, 195
all_intersections, 137
altitude, 214
ambient, 179
ambientlight, 94
angle, 81, 93
aperture, 81
arcangle, 93
arealight, 145

ascii, 94

asin, 115

asinh, 115
assumedyamma, 94
atan, 115

atanh, 115

average, 195
b_spline, 121
background, 90
bezierspline, 117, 119
bicubic patch, 127

black hole, 221
blob, 108
blur_samples, 81
box, 110

boxed, 196
bozo, 196

brick, 197
brick_size, 197
brilliance, 179
bumpmap, 172
bumpsize, 172
bumps, 198
camera, 81
caustics, 233
cells, 198
charset, 94
checker, 198
circular, 145
color_map, 165
colourmap, 165
component, 108
cone, 111
confidence, 81, 239
conicsweep, 119
conserveenergy, 179
containedby, 137, 139
control0, 211
controll, 211
coords, 202

cos, 115

cosh, 115
crackle, 199
crand, 179

cube, 115

cubic, 135

cubicspline, 117,119, 121
cylinder, 81, 108, 112, 145

cylindrical, 201, 221
density, 239
densityfile, 201
dents, 202

df3, 201

difference, 143
diffuse, 179
direction, 81, 93
disc, 128
dispersion, 233

dispersionsamples, 233

distexp, 221
distance, 91, 93
eccentricity, 239
emission, 239
evaluate, 137

INDEX 367

exp, 115 lathe, 117

exponent, 179, 203 leopard, 209

exterior, 203 light_group, 155
extinction, 239 light_source, 145, 155
faceindices, 130 linearspline, 117,119, 121
facets, 202 linearsweep, 119
fadecolor, 233 In, 115

fadedistance, 145, 233 location, 81

fade power, 145, 233 look_at, 81

falloff, 145, 179, 221 looks like, 145

falloff _angle, 93 magnet, 203

finish, 179 mandel, 203

fisheye, 81 maptype, 208
flatness, 127 marble, 209

flip, 221 materialmap, 163
focal point, 81 maxgradient, 137, 139
fog, 91 max.intersections, 94
fog.alt, 91 max.iteration, 115
fog_offset, 91 maxtrace, 137
fog_type, 91 max tracelevel, 94
form, 199 media, 239
frequency, 213 mediaattenuation, 145
fresnel, 179 mediainteraction, 145
function, 112, 137, 139 merge, 144

gif, 112 mesh, 129
globallights, 155 mesh2, 130
globalsettings, 94 metallic, 179
gradient, 206 method, 239

granite, 207 metric, 199

halo, 185 mortar, 197
heightfield, 112 no_bumpscale, 172
hexagon, 207 noisegenerator, 94
hf_gray 16, 94 normal, 172
hierarchy, 108, 112, 129 normalindices, 130
hypercomplex, 115 normalmap, 172
imagemap, 165 normalvectors, 130
imagepattern, 208 numberof_waves, 94
insidevector, 129, 130 object, 209

interior, 203, 233 octaves, 91, 221
interior_texture, 193 offset, 199, 221
interpolate, 201, 208 omega, 91, 221
intersection, 143 omnimax, 81
intervals, 239 once, 208

inverse, 221 onion, 210

ior, 233 open, 111,112,119, 123, 137
irid, 179 orient, 145
irid_wavelength, 94 orientation, 221
isosurface, 137 orthographic, 81
jitter, 93, 145 panoramic, 81

jpeg, 112 parallel, 145

julia, 203 parametric, 139
julia_fractal, 115 perspective, 81

lambda, 91, 221 pgm, 112

368

INDEX

phong, 179
phongsize, 179
photon, 94

pigment, 165
pigmentmap, 165, 195
pigmentpattern, 210
planar, 211, 221
plane, 134

png, 112

pointat, 145

poly, 134

polygon, 131

pot, 112

precision, 115
precompute, 139
prism, 119
projectedthrough, 145
pwr, 115
quadraticspline, 117, 119
quadric, 137
quartic, 135
quaternion, 115
quick color, 165
quick colour, 165
quilted, 211

radial, 213

radiosity, 94

radius, 145

rainbow, 93

ratio, 239
reciprocal, 115
repeat, 221

right, 81

ripples, 213
roughness, 179
samples, 239
scattering, 239
shadowless, 145
sin, 115

sinh, 115

size, 202

sky, 81

sky_sphere, 92
slope, 214
slopemap, 172
smooth, 112
smoothtriangle, 129, 133
solid, 199

sor, 123

specular, 179
sphere, 108, 121
spheresweep, 121
spherical, 81, 215, 221

spirall, 215
spiral2, 216
split.union, 142
spotlight, 145
spotted, 216

sgr, 115

strength, 108, 221

sturm, 108, 117, 119, 123, 126, 134

superellipsoid, 122
sys, 94, 112

tan, 115

tanh, 115

text, 125

texture, 163
texturelist, 129, 130, 193
texturemap, 163
tga, 112

thickness, 179
threshold, 108, 137
tiff, 112

tightness, 145
tolerance, 121
toroidal, 221

torus, 126

triangle, 129, 133
ttf, 125

turb_depth, 91
turbulence, 91, 179, 221
type, 127

u_steps, 127
ultra.wide_angle, 81
union, 141

up, 81, 91, 93
usealpha, 208

utfg, 94

uv.indices, 130
uv_vectors, 129, 130
v_steps, 127
variance, 81, 239
vertexvectors, 130
warp, 221
waterlevel, 112
waves, 216

width, 93

wood, 217
wrinkles, 217

keyword, 30
Keywords

color, 51

keywords, 30

lambda, 217

fog, 91

INDEX 369

pattern modifier, 217, 227 linearspline, 118
warp, 221 lathe, 117
Language prism, 119
directives, 64 spheresweep, 121
identifiers, camera, 89 linearsweep, 119
language prism, 119
basics, quickref, 327 Literals
directives, quickref, 332 float, 36
language basics string, 58
quickref, 327 literals
language directives vector, 44
quickref, 332 In, 39
lathe, 117 julia, 117
keyword, 117 julia_fractal, 115
layered texture load file, 104
quickref, 347 photons, 250
leopard, 209 radiosity, 104
keyword, 209 local, 65
pattern, 209 location, 83
Library_Path camera, 81
ini-option, 16 log, 39
Light Sources look_at, 83
and photons, 251 camera, 81
Light_Buffer looks like
ini-option, 24 light_source, 145, 153
light_group, 155 low_error_factor, 103
keyword, 155
light_source, 145 macro, 76
arealight, 150 quickref, 335
arealight, adaptive, 151 Macros, 76
arealight, circular, 151 declaring, 77
arealight, jitter, 150 invoking, 77
arealight, orient, 152 return values in parameters, 80
cylinder, 149 returning values from, 79
fadedistance, 154 vs. functions, 55
fade power, 154 vs. splines, 63
keyword, 145 macros
light_group, 155 quickref, 335
looks like, 153 magnet, 203
mediaattenuation, 155 keyword, 203
mediainteraction, 155 pattern, 203
parallel, 149 major.radius, 228
point light, 146 mandel, 203
projectedthrough, 153 keyword, 203
shadowless, 153 pattern, 203
spotlight, 146 maptype, 230
spotlight, falloff, 146 imagepattern, 208
spotlight, radius, 146 marble, 209
spotlight, tightness, 146 keyword, 209
lightgroup pattern, 209
quickref, 337 material, 159
lights object modifier, 159

quickref, 336 quickref, 346

370

materialmap, 187
texture, 163

matrix, 336

Matrix_Trans, 316

max, 39

max3, 285

maxextent, 46

maxgradient, 138
isosurface, 137, 138
parametric, 139, 140

max.intersections, 100

globalsettings, 94, 100

max.teration, 115
julia_fractal, 115
maxsample, 103
maxtrace, 139
isosurface, 137
maxtracelevel, 99
globalsettings, 94, 99
photons, 250
Mean, 285
Media
and photons, 252
media, 239
atmospheric, 90
density, 244
keyword, 239
object, 238
photons, 250
quickref, 353
reference, 239
types, 240
mediaattenuation, 155
light_source, 145
mediainteraction, 155
light_source, 145, 155
merge, 144
keyword, 144
mesh, 129
keyword, 129
mesh2, 130
keyword, 130
message streams
quickref, 335
metallic, 182
finish, 179
highlight, 182
reflection, 183
method, 243
media, 239
metric, 199
crackle, 199
min, 39

min3, 285
min_extent, 46
minimum.reuse, 103
mod, 39
mortar, 217

brick, 197

pattern modifier, 217
Mountains

generating with a height field, 112

Moving
camera, 82

naturalspline, 62
nearesicount, 104
no, 41
no image, 160
no reflection, 160
no_bumpscale, 178
normal, 172
no.image, 160
object modifier, 160
no_reflection, 160
object modifier, 160
no_shadow, 160
object modifier, 160
noise generator
pattern modifier, 221
noisegenerator, 217
globalsettings, 94, 100
pattern modifier, 217
normal, 172
keyword, 172
quickref, 349
normalindices, 130
mesh2, 130
normalmap, 176
normal, 172
normalvectors, 130
mesh2, 130
numberof_waves, 100
globalsettings, 94, 100

object, 209
keyword, 209
modifiers, quickref, 345
pattern, 209

object media, 238

Object modifiers
boundedby, 158
clippedby, 157
doubleilluminate, 161
hollow, 160
inverse, 159

INDEX

371

material, 159
no.image, 160
no_reflection, 160
no_shadow, 160
sturm, 161
object modifiers
quickref, 345
Objects
empty and solid, 234
objects, 107
csg, quickref, 344
finite patch, quickref, 340
finite solid, quickref, 338
infinite solid, quickref, 342
isosurface, quickref, 343
parametric, quickref, 344
quickref, 337
octaves, 217
fog, 91
pattern modifier, 217, 227
warp, 221
odd, 284
OddField, 5
off, 41
offset, 225
crackle, 199
repeat warp, 225
warp, 221
omega, 217
fog, 91
pattern modifier, 217, 228
warp, 221
omnimax, 87
camera, 81
on, 41
once, 229
imagepattern, 208
onion, 210
keyword, 210
pattern, 210
open, 233
cone, 111
cylinder, 112
isosurface, 137, 139
prism, 119
sor, 123
Operators
color, 51
float, 37
promotion, 46
vector, 45
Options
animation, 3

anti-aliasing, 25
bounding, automatic, 24
bounding, manual, 25
display, 8
general output, 6
height and width, 6
help screen, 22
interruption, 7
parsing, 14
partial output, 6
rendering, 23
resuming, 7
text output, 20
tracing, 23
orient, 152
light_source, 145
orientation, 228
warp, 221
orthographic, 86
camera, 81
Output
BMP, 12
PNG, 12
PPM, 12
system-specific, 12
Targa, compressed, 12
Targa, uncompressed, 12
output
streams, 20
Output File

placing in a default directory, 13

output formats, 11
OutputAlpha
ini-option, 11
OutputFile_ZName
ini-option, 13
OutputFile_Type
ini-option, 11
Outputto_File, 11
ini-option, 11

Palette

ini-option, 8
panoramic, 87

camera, 81
parallel, 149

light_source, 145, 149
parametric, 139

keyword, 139
ParseString, 311
passthrough, 251
Path

includ files, 16

372 INDEX
Pattern mortar, 217
agate, 195 noisegenerator, 217
average, 195 octaves, 217
boxed, 196 omega, 217
bozo, 196 phase, 217
brick, 197 poly_ wave, 217
bumps, 198 rampwave, 217
cells, 198 scallopwave, 217
checker, 198 sinewave, 217
crackle, 199 trianglewave, 217

cylindrical, 201
densityfile, 201
dents, 202
facets, 202
function, 204

function image, 205

gradient, 206
granite, 207
hexagon, 207

imagepattern, 208

julia, 203
leopard, 209
magnet, 203
mandel, 203
marble, 209
object, 209
onion, 210

pigmentpattern, 210

planar, 211
quilted, 211
radial, 213
ripples, 213
slope, 214
spherical, 215
spirall, 215
spiral2, 216
spotted, 216
waves, 216
wood, 217
wrinkles, 217
pattern, 56
quickref, 350
Pattern modifier
warp, 221
Pattern modifiers
agateturb, 217
brick_size, 217
control0, 217
controll, 217
cubicwave, 217
frequency, 217
interpolate, 217
lambda, 217

turbulence, 217
warp, 217
pattern modifiers
quickref, 352
patterned texture
quickref, 347
PauseéWhenDone
ini-option, 10
perspective, 86
camera, 81
Perturbation
camera ray, 89
pgm, 170
heightfield, 112
phase, 217

pattern modifier, 217, 219

phong, 181
finish, 179
phongsize, 181
finish, 179
photon

globalsettings, 94

photons, 248
dispersion, 255
media, 250
quickref, 356

pi, 41

pigment, 165
keyword, 165
quickref, 348

pigmentmap, 168
average, 195
pigment, 165

pigmentpattern, 210
keyword, 210
pattern, 210

Pigments
color list, 166
color maps, 167
pigment list, 168
solid color, 166

Pitfalls
color, 52

INDEX

373

plain texture
quickref, 346
planar, 211
keyword, 211
pattern, 211
warp, 221, 228
plane, 134
keyword, 134
png, 170
heightfield, 112
PNG output, 12
point light
light_source, 146
point.at, 146
light_source, 145
parallel, 149
spotlight, 146
Point At_Trans, 317
poly, 134
keyword, 134
poly_wave, 217
pattern modifier, 217, 220
polygon, 131
keyword, 131
PostFrameCommand
ini-option, 17
PostFrameReturn, 18
PostSceneCommand
ini-option, 17
PostSceneReturn, 18
pot, 113
heightfield, 112
pow, 39
ppm, 170
PPM output, 12
Pre FrameCommand
ini-option, 17
PreFrameReturn, 18
Pre. SceneCommand
ini-option, 17
Pre SceneReturn, 18
precision, 116
julia_fractal, 115
precompute, 140
parametric, 139
pretraceend, 104
pretracestart, 104
PreviewEnd Size
ini-option, 10
PreviewStart Size
ini-option, 10
prism, 119
keyword, 119

prod, 54
projectedthrough, 153
light_source, 145, 153
projection
cylindrical, 87
fisheye, 87
omnimax, 87
orthographic, 86
panoramic, 87
perspective, 86
spherical, 88
ultra.wide_angle, 87
pwr, 117
julia_fractal, 115

Quad, 299
guadraticspline, 118
lathe, 117
prism, 119
quadric, 137
keyword, 137
Quality
ini-option, 24
quartic, 135
keyword, 135
quaternion, 116
julia_fractal, 115
quickcolor, 171
pigment, 165
quick colour, 171
pigment, 165
quickref, 325
arrays, 331
atmospheric effects, 354
background, 354
bitmap, 353
blendmapmodifiers, 352
brick_item, 347
camera, 336
colors, 329
conditional directives, 334
contents, 326
csg objects, 344
default texture, 334
dotitem, 328
embedded directives, 335
file i/o, 333
file inclusion, 333
finish, 350
finite patch objects, 340
finite solid objects, 338
floats, 327
fog, 354

374

INDEX

function.invocation, 330
global settings, 355
identifier declaration, 333
infinite solid objects, 342
interior, 346

interior texture, 346
isosurface objects, 343
language basics, 327
language directives, 332
layered texture, 347
lightgroup, 337

lights, 336

list_object, 347
logical.expression, 328
macros, 335

material, 346

media, 353

message streams, 335
normal, 349

object modifiers, 345
objects, 337

parametric objects, 344
pattern, 350

pattern modifiers, 352
patterned texture, 347
photons, 356

pigment, 348

plain texture, 346
radiosity, 356

rainbow, 355

scene, 326

sky sphere, 355

splines, 332

strings, 331

texture, 346
transformations, 336
user-defined functions, 329
uv_mapping, 345
vectors, 328

version, 334
quilted, 211
keyword, 211
pattern, 211
radial, 213
keyword, 213
pattern, 213
radians, 39
Radiosity

adjusting, 101
how it works, 101
reference, 101
tips, 104

radiosity, 101
globalsettings, 94
quickref, 356

radius, 146
light_source, 145, 146
photons, 250

rainbow, 93
keyword, 93
quickref, 355

rampwave, 217

pattern modifier, 217, 220

rand, 39
RandArray_ltem, 257
RandBernoulli, 294
RandBeta, 293
RandBinomial, 294
RandCauchy, 292
RandChi_Square, 293
RandErlang, 294
RandExp, 294
RandF_Dist, 293
RandGamma, 293
RandGauss, 293
RandGeo, 294
RandLognormal, 294
RandNormal, 293
RandPareto, 294
RandPoisson, 295
RandSpline, 293
RandStudent, 292
RandTri, 293
RandWeibull, 294
range, 74
ratio, 243

media, 239
read, 69
reciprocal, 117

julia_fractal, 115
recursionlimit, 104
red, 51

redirecting stream output, 22

refelection
metallic, 183
reflection, 183
exponent, 183
falloff, 183
reflectionexponent, 183
refraction, 248
RemoveBounds
ini-option, 25
render, 75
RenderConsole
ini-option, 22

INDEX 375
RenderFile ShearTrans, 316
ini-option, 23 sin, 40
ReorientTrans, 317 julia, 117
repeat, 224 julia_fractal, 115
warp, 221 sind, 285
ResizeArray, 257 sinewave, 217
Resolution, 6 pattern modifier, 217, 220
ReverseArray, 257 sinh, 40
rgb, 50 julia, 117
rgbf, 50 julia_fractal, 115
rgbft, 50 size, 202
rgbt, 50 facets, 202
right, 84 sky, 83
camera, 81 camera, 81
ripples, 213 sky sphere
keyword, 213 quickref, 355
pattern, 213 sky_sphere, 92
rotate, 336 keyword, 92
RotateAround.Trans, 317 slice, 116
roughness, 182 slope, 214

finish, 179
RoundBox_Union, 298
RoundCone2Union, 299
RoundCone3Union, 299
RoundConeUnion, 299
RoundCylinder.Union, 298
RRand, 291

samples, 243
media, 239
SamplingMethod
ini-option, 26
savefile, 104
photons, 250
radiosity, 104
scale, 336
scallopwave, 217
pattern modifier, 217, 220
scattering, 241
media, 239
scene
description language, 29
quickref, 326
Scene Description Language, 29
Search Path, 16
seed, 39
select, 40
SetGradientAccuracy, 288
Settings
global, 94
sgn, 286
shadowless, 153
light_source, 145, 153

keyword, 214
pattern, 214
slopemap, 173
normal, 172
smooth, 114
heightfield, 112
smoothtriangle, 133
keyword, 133
mesh, 129
solid, 199
crackle, 199

solid triangle mesh, 130

sor, 123

keyword, 123
SortArray, 258
SortCompare, 257

Sort Partial Array, 258

SortSwapData, 257
spacing, 249

spacingmultiplier, 251

specular, 182
finish, 179

sphere, 121
blob, 108

blob component, 109

keyword, 121
spheresweep, 121
keyword, 121
spherical, 215
camera, 81
keyword, 215
pattern, 215
projection, 88

376

INDEX

warp, 221, 228
Spheroid, 297
spiral, 215
spirall, 215

keyword, 215

pattern, 215
spiral2, 216

keyword, 216

pattern, 216
spline, 62

quickref, 332
splinetrans, 318
Splines

VS. macros, 63
splines

quickref, 332
split.union

union, 142
Split.Unions

ini-option, 25
spotlight

light_source, 145, 146
spotted, 216

keyword, 216

pattern, 216
sgr, 116

julia_fractal, 115
sqrt, 40
SRand, 291
StarPtrn, 316
StartColumn

ini-option, 6
StartRow

ini-option, 6
StatisticConsole

ini-option, 22
StatisticFile

ini-option, 23
statistics, 75
Std.Deyv, 285
Str

strings.inc, 310
str, 59
strcmp, 40
streams, 20

redirecting, 22
strength, 109

black hole warp, 222

blob, 108, 109

warp, 221
String

functions, 59

identifiers, 59

literals, 58
string
quickref, 331
String Literals, 58
Strings, 58
strings
quickref, 331
strlen, 40
striwr, 60
strupr, 60
sturm, 161
blob, 108
lathe, 117, 119
object modifier, 161
poly, 134
prism, 119, 121
sor, 123, 124
torus, 126
SubsetEnd Frame, 5
ini-option, 5
SubsetStartFrame, 5
ini-option, 5
substr, 60
sum, 54
sunpos, 322
Supercone, 297
superellipsoid, 122
keyword, 122
superquadric, 122
Supertorus, 297
switch, 74
sys, 99
global settings, 94
heightfield, 112
imagemap, 170
System-specific output, 12

t, 45
tan, 40
julia, 117
julia_fractal, 115
tand, 285
tanh, 40
julia, 117
julia_fractal, 115
Targa output
compressed, 12
uncompressed, 12
target, 251
TestAbort
ini-option, 7
TestAbort Count
ini-option, 7

INDEX

text, 125
keyword, 125
text streams, 20
Text Space, 296
Text Width, 296
texture, 163
keyword, 163
layered, quickref, 347
patterned, quickref, 347
plain, quickref, 346
quickref, 346
texture-list, 130
texturelist, 193
keyword, 193
mesh, 129
mesh2, 130
texturemap, 186
texture, 163
Textures
default, 70
tga, 170
heightfield, 112
The scene
quickref, 326
thickness, 185
finish, 179
threshold, 109
blob, 108
isosurface, 137, 138
tiff, 170
heightfield, 112
tightness, 146
light_source, 145
tile2, 187
tiles, 187
Tiles_Ptrn, 316
tolerance, 121
spheresweep, 121
toroidal, 228
warp, 221, 228
torus, 126
keyword, 126
trace, 46
transform, 336
transformations
quickref, 336
translate, 336
transmit, 49
bitmap modifier, 171
triangle, 133
keyword, 133
mesh, 129
Triangle Str, 311

trianglewave, 217
pattern modifier, 217
true, 41
ttf, 125
text, 125
turb_depth, 92
fog, 91
turbulence, 217
finish, 179
fog, 91, 92
irid, 185
pattern modifier, 217
warp, 221, 225
type, 127
bicubic patch, 127

u, 45
u_steps, 127
bicubic patch, 127
ultrawide_angle, 87
camera, 81
undef, 68
union, 141
keyword, 141
up, 84
camera, 81
fog, 91
rainbow, 93, 94
usealpha, 208
imagepattern, 208
usecolor, 178
usecolour, 178
useindex, 178
user-defined functions
quickref, 329
UserAbort Command
ini-option, 17
UserAbort_Return, 18
utf8, 99
global settings, 94
uv_indices, 130
mesh2, 130
uv_mapping, 191
quickref, 345
uv_vectors, 130
mesh, 129
mesh2, 130

v, 45
v_steps, 127
bicubic patch, 127
val, 40
VAngle, 287

378

INDEX

variable reflection, 184
variance, 88
camera, 81
focal blur, 88
media, 239, 243
vaxisrotate, 47
VCos Angle, 287
VCross, 47
vCurl, 289
VDist, 288
vdot, 40
VDot5D, 287
Vector, 43
built-in identifiers, 48
color, 50
expressions, 43
functions, 46
functions, user-defined, 56
identifiers, 45
literals, 44
operators, 45
Vectors
direction, 84
sky, 83
VEq, 287
VEQ5D, 287
Verbose
ini-option, 10
\ersion
ini-option, 16
version, 71
quickref, 334
version identfier
quickref, 334
vertexvectors, 130
mesh2, 130
vGradient, 289
Video_Mode
ini-option, 8
Vista_ Buffer
ini-option, 24
vlength, 40
VLength5D, 287
VMin, 288
vnormalize, 47
VNormalize5D, 287
VPerpAdjust, 288
VPerpTo_Plane, 288
VPerpTo_Vector, 288
VPow, 287
VPow5D, 287
VProjectAxis, 288
VProjectPlane, 288

VRand, 292
VRand.In_Box, 292
VRandlIn_Obj, 292
VRandIn_Sphere, 292
VRand On_Sphere, 292
vrotate, 47
VRotation, 287
VSqar, 286
Vstr

strings.inc, 311
vstr, 60
VStr2D

short form, 311
Vstr2D

long form, 311
vtransform, 318
vturbulence, 47
VWith_Len, 288
VZero, 287
VZero5D, 287

warning, 75
debug.inc, 266
Warning.Console
ini-option, 22
Warning File
ini-option, 23
WarningLevel
ini-option, 23
warp, 217
cylindrical, 228
falloff, 222
keyword, 221
pattern modifier, 217, 221
planar, 228
spherical, 228
toroidal, 228
waterlevel, 114
heightfield, 112
waves, 216
keyword, 216
pattern, 216
Wedge, 297
while, 74
Width
ini-option, 6
width, 93
rainbow, 93
Wire_Box_Union, 298
wood, 217
keyword, 217
pattern, 217
wrinkles, 217

INDEX

379

keyword, 217
pattern, 217
write, 70

