The Objective Caml system
release 3.00

Documentation and user’s manual

Xavier Leroy
(with Damien Doligez, Jacques Garrigue, Didier Rémy and Jéréme Vouillon)

April 27, 2000

Copyright (© 2000 Institut National de Recherche en Informatique et en Automatique

Contents

I An introduction to Objective Caml

1 The core language

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

Basics . .. e
Data types o .o
Functions as values L L
Records and variants
Imperative features
Exceptions
Symbolic processing of expressionso oo
Pretty-printing and parsing Lo
Standalone Caml programs

2 Labels and variants

2.1
2.2

Labels o o
Polymorphic variants L Lo

3 Objects in Caml

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Classes and objects L
Reference toself
Initializers e
Virtual methods e
Private methods
Class interfaces e
Inheritance
Multiple inheritance
Parameterized classes
Using COercions« o i it e e e
Functional objects L
Cloning objects
Recursive classes e
Binary methods
Friends e

11
11
12
13
14
16
17
19
20
22

25
25
31

4 The module system 59
4.1 Structures e 59
4.2 Signatures e e 60
4.3 Functors e e 61
4.4 Functors and type abstraction Lo oo 63
4.5 Modules and separate compilationo 65

5 Advanced examples with classes and modules 67
5.1 Extended example: bank accounts 67
5.2 Simple modules as classes 73
5.3 The subject/observer pattern 79

ITI The Objective Caml language 83

6 The Objective Caml language 85
6.1 Lexical conventions L L e 85
6.2 Values e 89
6.3 Names e 90
6.4 Type expressionso e e e e 93
6.5 Constants e e 95
6.6 Patterns e 96
6.7 Expressions 99
6.8 Type and exception definitions L Lo 109
6.9 Classes e e 111
6.10 Module types (module specifications)o 117
6.11 Module expressions (module implementations) L 121
6.12 Compilation units L. 124

7 Language extensions 125
7.1 Streams and stream parsers e e e e e e e 125
7.2 Range patterns 126
7.3 Assertion checking 127
7.4 Deferred computations 127
7.5 Record copy with update L 127
7.6 Local modules 127

IIT The Objective Caml tools 129

8 Batch compilation (ocamlc) 131
8.1 Overview of the compiler 131
8.2 Options. o e 132
8.3 Modules and the file system oo o 135

8.4 ComINOM EITOTS . .« v v v v v e e e e e e e e e 136

9 The toplevel system (ocaml)
9.1 Options. e
9.2 Toplevel directives e
9.3 The toplevel and the module system L.
9.4 ComIMON €ITOTS . « .« v v v v v et et et e e e
9.5 Building custom toplevel systems: ocamlmktop.
9.6 Options. e
10 The runtime system (ocamlrun)
10.1 Overview oo e
10.2 Options. e e
10.3 Common eITOTS« v v v v i e e e e e e e e
11 Native-code compilation (ocamlopt)
11.1 Overview of the compiler
11.2 Options o o o e
11.3 Common €ITOTS v v v v i e e e e e e e e e e e
11.4 Compatibility with the bytecode compiler
12 Lexer and parser generators (ocamllex, ocamlyacc)
12.1 Overview of ocamllex ot i e
12.2 Syntax of lexer definitions
12.3 Overview of ocamlyacc
12.4 Syntax of grammar definitions L o oL o
12,5 Options o o e
12.6 A complete example
12.7 Common €ITOTS v v v v vt e e e e e e e e e e
13 Dependency generator (ocamldep)
13.1 Options o o
13.2 A typical Makefile L
14 The browser/editor (ocamlbrowser)
14.1 Invocation e
14.2 Viewer e
14.3 Module walking Lo
14.4 Fileeditor e
14.5 Shell L e
15 The debugger (ocamldebug)
15.1 Compiling for debugging L
15.2 Invocation L
15.3 Commandso
15.4 Executing a program Lo e e e e e e
15.5 Breakpointso
15.6 Thecall stack e

139
141
142
143
143
144
144

147
147
147
148

151
151
152
155
155

157
157
158
160
160
162
163
164

167
167
168

171
171
172
172
173
173

15.7
15.8
15.9
15.10

Examining variable values oo L
Controlling the debugger L
Miscellaneous commandsl Lo
Running the debugger under Emacs L.

16 Profiling (ocamlprof)

16.1
16.2
16.3
16.4

Compiling for profiling
Profiling an execution L
Printing profiling informationo
Time profiling L

17 Interfacing C with Objective Caml

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

Overview and compilation information
The value type e e
Representation of Caml data types
Operations on values L
Living in harmony with the garbage collector
A complete example e
Advanced topic: callbacks from Cto Caml
Advanced example with callbacks L
Advanced topic: custom blocks

IV The Objective Caml library

18 The core library

18.1

Module Pervasives: the initially opened module

19 The standard library

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14
19.15
19.16
19.17

Module Arg: parsing of command line arguments
Module Array: array operations
Module Buffer: extensible string buffers 000
Module Callback: registering Caml values with the C runtime
Module Char: character operations
Module Digest: MD5 message digest L.
Module Filename: operations on file names
Module Format: pretty printing
Module Gec: memory management control and statistics; finalised values
Module Genlex: a generic lexical analyzer
Module Hashtbl: hash tables and hash functions
Module Int32: 32-bit integers
Module Int64: 64-bit integers L
Module Lazy: deferred computations. Lo
Module Lexing: the run-time library for lexers generated by ocamllex
Module List: list operations e
Module Map: association tables over ordered types

189
189
190
190
190

193
193
198
199
200
203
207
209
212
214

219

221
221

19.18 Module Marshal: marshaling of data structures
19.19 Module Nativeint: processor-native integers.
19.20 Module Oo: object-oriented extension
19.21 Module Parsing: the run-time library for parsers generated by ocamlyacc
19.22 Module Printexc: a catch-all exception handler
19.23 Module Printf: formatting printing functions
19.24 Module Queue: first-in first-out queueso
19.25 Module Random: pseudo-random number generator
19.26 Module Set: sets over ordered types
19.27 Module Sort: sorting and merging lists
19.28 Module Stack: last-in first-out stackso
19.29 Module Stream: streams and parsers
19.30 Module String: string operations
19.31 Module Sys: system interface
19.32 Module Weak: arrays of weak pointers

20 The unix library: Unix system calls

20.1 Module Unix: interface to the Unix system

21 The num library: arbitrary-precision rational arithmetic

21.1 Module Num: operation on arbitrary-precision numbers
21.2 Module Arith_status: flags that control rational arithmetic

22 The str library: regular expressions and string processing

22.1 Module Str: regular expressions and high-level string processing

23 The threads library

23.1 Module Thread: lightweight threads
23.2 Module Mutex: locks for mutual exclusion

23.3 Module Condition: condition variables to synchronize between threads

23.4 Module Event: first-class synchronous communication.
23.5 Module ThreadUnix: thread-compatible system calls

24 The graphics library

24.1 Module Graphics: machine-independent graphics primitives

25 The dbm library: access to NDBM databases

25.1 Module Dbm: interface to the NDBM database

26 The dynlink library: dynamic loading and linking of object files

26.1 Module Dynlink: dynamic loading of bytecode object files

27 The LablTk library: Tcl/Tk GUI interface

27.1 Module Tk: basic functions and types for LablTk

295
295

319
319
322

325
325

331
332
334
334
335
336

339
340

347
347

349
349

351

28 The bigarray library 357
28.1 Module Bigarray: large, multi-dimensional, numerical arrays 358
28.2 Big arrays in the Caml-C interface 369

V Appendix 373
Index to the library o 375

Index of keywords L 385

Foreword

This manual documents the release 3.00 of the Objective Caml system. It is organized as follows.

e Part I, “An introduction to Objective Caml”, gives an overview of the language.
e Part II, “The Objective Caml language”, is the reference description of the language.

e Part III, “The Objective Caml tools”, documents the compilers, toplevel system, and pro-
gramming utilities.

e Part IV, “The Objective Caml library”, describes the modules provided in the standard
library.

e Part V, “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

Objective Caml runs on several operating systems. The parts of this manual that are specific to
one operating system are presented as shown below:

MacOS:
This is material specific to MacOS 7, 8, 9. MacOS X is a version of Unix as far as Objective
Caml is concerned.

Unix:
This is material specific to Unix.

Windows:
This is material specific to MS Windows (NT and 95).

License

The Objective Caml system is copyright (©) 1996, 1997, 1998 Institut National de Recherche en
Informatique et en Automatique (INRIA). INRIA holds all ownership rights to the Objective Caml
system. See the file LICENSE in the distribution for licensing information.

The Objective Caml system can be freely redistributed. More precisely, INRIA grants any user
of the Objective Caml system the right to reproduce it, provided that the copies are distributed
under the conditions given in the LICENSE file. The present documentation is distributed under
the same conditions.

8 Foreword

Availability

The complete Objective Caml distribution resides on the machine ftp.inria.fr. The distribution
files can be transferred by anonymous FTP:

Host: ftp.inria.fr (Internet address 192.93.2.54)
Login name: anonymous

Password: your e-mail address

Directory: lang/caml-light

Files: see the index in file README

More information on the Caml family of languages is also available on the World Wide Web,
http://caml.inria.fr/.

Part 1

An introduction to Objective Caml

Chapter 1

The core language

This part of the manual is a tutorial introduction to the Objective Caml language. A good famil-
iarity with programming in a conventional languages (say, Pascal or C) is assumed, but no prior
exposure to functional languages is required. The present chapter introduces the core language.
Chapter 3 deals with the object-oriented features, and chapter 4 with the module system.

1.1 Basics

For this overview of Caml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the 0OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types Caml phrases, terminated by ;;, in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

142%3;;
- : int =7

let pi = 4.0 *. atan 1.0;;
val pi : float = 3.141593

let square x = x *. X;;
val square : float -> float = <fun>

square(sin pi) +. square(cos pi);;
- : float = 1.000000

The Caml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

1.0 x 2;;
This expression has type float but is here used with type int

11

12

Recursive functions are defined with the let rec binding:

let rec fib n =

if n < 2 then 1 else fib(n-1) + fib(n-2);;
val fib : int -> int = <fun>

fib 10;;

- : int = 89

1.2 Data types

In addition to integers and floating-point numbers, Caml offers the usual basic data types: booleans,
characters, and character strings.

(1 < 2) = false;;

- : bool = false

#0a’;;

- : char = ’a’

"Hello world";;

- : string = "Hello world"

Predefined data structures include tuples, arrays, and lists. General mechanisms for defining
your own data structures are also provided. They will be covered in more details later; for now, we
concentrate on lists. Lists are either given in extension as a bracketed list of semicolon-separated
elements, or built from the empty list [1 (pronounce “nil”) by adding elements in front using the
:: (“cons”) operator.

let 1 = ["is"; "a"; "tale"; "told"; "etc."];;

val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

"Life" :: 1;;

- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other Caml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in Caml. Similarly, there is no explicit
handling of pointers: the Caml compiler silently introduces pointers where necessary.

As with most Caml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have the exact same shape as list expressions, with identifier representing
unspecified parts of the list. As an example, here is insertion sort on a list:

let rec sort lst =

match 1st with

0 -> [

| head :: tail —-> insert head (sort tail)
and insert elt 1lst =

match 1st with

Chapter 1. The core language 13

[0 -> [elt]

| head :: tail -> if elt <= head then elt :: 1lst else head :: insert elt tail
#*55

val sort : ’a list -> ’a list = <fun>

val insert : ’a -> ’a list -> ’a list = <fun>

sort 1;;
- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, ’a list -> ’a list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type ’a is a type variable, and stands for any
given type. The reason why sort can apply to lists of any type is that the comparisons (=, <=,
etc.) are polymorphic in Caml: they operate between any two values of the same type. This makes
sort itself polymorphic over all list types.

+*

sort [6;2;5;3];;
- : int list = [2; 3; 5; 6]

sort [3.14; 2.718];;
: float list = [2.718000; 3.140000]

The sort function above does not modify its input list: it builds and returns a new list con-
taining the same elements as the input list, in ascending order. There is actually no way in Caml
to modify in-place a list once it is built: we say that lists are immutable data structures. Most
Caml data structures are immutable, but a few (most notably arrays) are mutable, meaning that
they can be modified in-place at any time.

1.3 Functions as values

Caml is a functional language: functions in the full mathematical sense are supported and can be
passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f(x +. dx) -. f(x)) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>

let sin’ = deriv sin 1le-6;;
val sin’ : float -> float = <fun>

sin’ pi;;

- : float = -1.000000

Even function composition is definable:

let compose f g = function x —> f(g(x));;
val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

let cos2 = compose square cos;;
val cos2 : float -> float = <fun>

14

Functions that take other functions as arguments are called “functionals”, or “higher-order
functions”. Functionals are especially useful to provide iterators or similar generic operations over
a data structure. For instance, the standard Caml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

let recmap £ 1 =

match 1 with

0 ->10

| hd :: t1 -> f hd :: map £ tl;;

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

type ratio = {num: int; denum: int};;

type ratio = { num : int; denum : int; }

let add_ratio rl r2 =

{num = r1.num * r2.denum + r2.num * rl.denum;
denum = rl.denum * r2.denum};;

val add_ratio : ratio -> ratio -> ratio = <fun>

add_ratio {num=1; denum=3} {num=2; denum=5};;
- : ratio = {num=11; denum=15}

The declaration of a variant type lists all possible shapes for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):

type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

Chapter 1. The core language 15

type sign = Positive | Negative;;

type sign = Positive | Negative

let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

let add_num nl n2 =

match (nl, n2) with

(Int i1, Int i2) ->

(* Check for overflow of integer addition *)
if sign_int il = sign_int i2 && sign_int(il + i2) <> sign_int il
then Float(float il +. float i2)

else Int(il + i2)

| (Int il, Float f2) -> Float(float il +. f2)

| (Float f1, Int i2) -> Float(f1 +. float i2)

| (Float f1, Float f2) -> Float(fl +. £2)

| (Error, _) -> Error

| (_, Error) -> Error;;

val add_num : number -> number -> number = <fun>

add_num (Int 123) (Float 3.14159);;
- : number = Float 126.141590

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

type ’a btree = Empty | Node of ’a * ’a btree * ’a btree;;
type ’a btree = Empty | Node of ’a * ’a btree * ’a btree

This definition reads as follow: a binary tree containing values of type ’a (an arbitrary type) is
either empty, or is a node containing one value of type ’a and two subtrees containing also values
of type ’a, that is, two ’a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

let rec member x btree =

match btree with

Empty -> false

| Node(y, left, right) ->

if x = y then true else
#

if x < y then member x left else member x right;;
val member : ’a -> ’a btree -> bool = <fun>

let rec insert x btree =
match btree with

16

Empty -> Node(x, Empty, Empty)
| Node(y, left, right) ->
if x <= y then Node(y, insert x left, right)
else Node(y, left, insert x right);;
val insert : ’a —-> ’a btree —-> ’a btree = <fun>

#
#
#
#

1.5 Imperative features

Though all examples so far were written in purely applicative style, Caml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either given in extension between [| and |] brackets, or
allocated and initialized with the Array.create function, then filled up later by assignments. For
instance, the function below sums two vectors (represented as float arrays) componentwise.

let add_vect vl v2 =

let len = min (Array.length vl) (Array.length v2) in
let res = Array.create len 0.0 in

for i = 0 to len - 1 do
#

#

#

res. (i) <- v1.(i) +. v2.(1)
done;
res;;
val add_vect : float array -> float array -> float array = <fun>

add_vect [| 1.0; 2.0 |1 [l 3.0; 4.0 |];;
- : float array = [[4.000000; 6.000000]]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

let translate p dx dy =

p.x <- p.x +. dx; p.y <- p.y +. dy;;

val translate : mutable_point -> float -> float -> unit = <fun>
let mypoint = { x = 0.0; y = 0.0 };;

val mypoint : mutable_point = {x=0.000000; y=0.000000}

translate mypoint 1.0 2.0;;

- : unit = ()

mypoint;;

- : mutable_point = {x=1.000000; y=2.000000}

Caml has no built-in notion of variable — identifiers whose current value can be changed by
assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells (or
one-element arrays), with operators ! to fetch the current contents of the reference and := to assign
the contents. Variables can then be emulated by let-binding a reference. For instance, here is an
in-place insertion sort over arrays:

Chapter 1. The core language 17

let insertion_sort a =

for i = 1 to Array.length a - 1 do

let val_i = a.(i) in

let j = ref i in

while !j > 0 && val_i < a.(!'j - 1) do
a.(17) <= a. (1§ - 1);

jo:=1j-1

done;

a.(!'j) <- val_i

done; ;

val insertion_sort : ’a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

let current_rand = ref O;;
val current_rand : int ref = {contents=0}

let random () =

current_rand := !current_rand * 25713 + 1345;
lcurrent_rand;;

val random : unit -> int = <fun>

Again, there is nothing magic with references: they are implemented as a one-field mutable
record, as follows.

type ’a ref = { mutable contents: ’a };;
type ’a ref = { mutable contents : ’a; }

let (!) r = r.contents;;
val (!) : ’a ref -> ’a = <fun>

let (:=) r newval = r.contents <- newval;;
val (:=) : ’a ref -> ’a -> unit = <fun>

1.6 Exceptions

Caml provides exceptions for signalling and handling exceptional conditions. Exceptions can also be
used as a general-purpose non-local control structure. Exceptions are declared with the exception
construct, and signalled with the raise operator. For instance, the function below for taking the
head of a list uses an exception to signal the case where an empty list is given.

exception Empty_list;;
exception Empty_list
let head 1 =

match 1 with
[l -> raise Empty_list

18

| hd :: t1 -> hd;;

val head : ’a list -> ’a = <fun>
head [1;2];;

- : int =1

head []1;;

Uncaught exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:

List.assoc 1 [(0, "zero"); (1, "one")];;

- : string = "one"

List.assoc 2 [(0, "zero"); (1, "one")];;
Uncaught exception: Not_found.

Exceptions can be trapped with the try...with construct:

let name_of_binary_digit digit =

try

List.assoc digit [0, "zero"; 1, "one"]
with Not_found ->

"not a binary digit";;

val name_of_binary_digit : int -> string = <fun>
name_of_binary_digit O;;

- : string = "zero"

name_of_binary_digit (-1);;

- : string = "not a binary digit"

The with part is actually a regular pattern-matching on the exception value. Thus, several
exceptions can be caught by one try...with construct. Also, finalization can be performed by
trapping all exceptions, performing the finalization, then raising again the exception:

let temporarily_set_reference ref newval funct =
let oldval = !ref in

try

ref := newval;

let res = funct () in

ref := oldval;

res

with x —>

ref := oldval;

raise x;;

val temporarily_set_reference : ’a ref -> ’a -> (unit -> ’b) -> ’b = <fun>

Chapter 1. The core language 19

1.7 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of Caml for
symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:

type expression =

Const of float
| Var of string
| Sum of expression * expression (x el + e2 %)
| Diff of expression * expression (x el - e2 *)
| Prod of expression * expression (* el * e2 x)
| Quot of expression * expression (x el / e2 %)

H OH O HF H H H R

0
type expression =

Const of float
| Var of string
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list

exception Unbound_variable of string;;
exception Unbound_variable of string

let rec eval env exp =

match exp with

Const ¢ -> ¢

| Var v ->

(try List.assoc v env with Not_found -> raise(Unbound_variable v))
| Sum(f, g) -> eval env f +. eval env g

| Diff(f, g) -> eval env f —-. eval env g

| Prod(f, g) -> eval env f *. eval env g

| Quot(f, g) -> eval env f /. eval env g;;

val eval : (string * float) list -> expression -> float = <fun>

eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.420000

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

let rec deriv exp dv =

match exp with

Const ¢ -> Const 0.0

| Var v => if v = dv then Const 1.0 else Const 0.0

| Sum(f, g) -> Sum(deriv f dv, deriv g dv)

| Diff(f, g) -> Diff(deriv f dv, deriv g dv)

| Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))

| Quot(f, g) -> Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)),
Prod(g, g))

H OH O HF H H H

val deriv : expression -> string -> expression = <fun>
deriv (Quot(Const 1.0, Var "x")) "x";;
- : expression =
Quot
(Diff
(Prod (Const 0.000000, Var "x"), Prod (Const 1.000000, Const 1.000000)),
Prod (Var "x", Var "x"))

1.8 Pretty-printing and parsing

As shown in the examples above, the internal representation (also called abstract syntaz) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the

case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
precedence and print parentheses around an operator only if its precedence is less than the current

precedence

let print_expr exp =

(x Local function definitions *)
let open_paren prec op_prec =
if prec > op_prec then print_string "(" in
let close_paren prec op_prec =
if prec > op_prec then print_string ")" in
let rec print prec exp = (* prec is the current precedence *)
match exp with

Const ¢ -> print_float c

| Var v -> print_string v

| Sum(f, g) —>

open_paren prec O;

print O f; print_string " + "; print 0 g;
close_paren prec O

| Diff(f, g) ->

open_paren prec O;

print O f; print_string " - "; print 1 g;
close_paren prec O

| Prod(f, g) ->

open_paren prec 2;

Chapter 1. The core language 21

print 2 f; print_string " * "; print 2 g;
close_paren prec 2
| Quot(f, g) —->
open_paren prec 2;
print 2 f; print_string " / "; print 3 g;
close_paren prec 2
in print O exp;;

val print_expr : expression —> unit = <fun>

let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;

val e : expression = Sum (Prod (Const 2.000000, Var "x"), Const 1.000000)
print_expr e; print_newline();;

2 *xx + 1

- : unit = ()

+*

print_expr (deriv e "x"); print_newline();;
* 1 +0*x+0
- : unit = ()

N

Parsing (transforming concrete syntax into abstract syntax) is usually more delicate. Caml
offers several tools to help write parsers: on the one hand, Caml versions of the lexer generator
Lex and the parser generator Yacc (see chapter 12), which handle LALR(1) languages using push-
down automata; on the other hand, a predefined type of streams (of characters or tokens) and
pattern-matching over streams, which facilitate the writing of recursive-descent parsers for LL(1)
languages. An example using ocamllex and ocamlyacc is given in chapter 12. Here, we will use
stream parsers.

open Genlex;;

let lexer = make_lexer [n(u; n)n; ll+ll; II_ll; n*n; ll/ll];;
val lexer : char Stream.t -> Genlex.token Stream.t = <fun>

For the lexical analysis phase (transformation of the input text into a stream of tokens), we use a
“generic” lexer provided in the standard library module Genlex. The make_lexer function takes
a list of keywords and returns a lexing function that “tokenizes” an input stream of characters.
Tokens are either identifiers, keywords, or literals (integer, floats, characters, strings). Whitespace
and comments are skipped.

let token_stream = lexer(Stream.of_string "1.0 +x");;
val token_stream : Genlex.token Stream.t = <abstr>

Stream.next token_stream;;
- : Genlex.token = Float 1.000000

Stream.next token_stream;;
- : Genlex.token = Kwd "+"

Stream.next token_stream;;
- : Genlex.token = Ident "x"

22

The parser itself operates by pattern-matching on the stream of tokens. As usual with re-
cursive descent parsers, we use several intermediate parsing functions to reflect the precedence
and associativity of operators. Pattern-matching over streams is more powerful than on regular
data structures, as it allows recursive calls to parsing functions inside the patterns, for matching
sub-components of the input stream. See chapter 7 for more details.

let rec parse_expr = parser
[< el = parse_mult; e = parse_more_adds el >] -> e
and parse_more_adds el = parser
[< ’Kwd "+"; e2 = parse_mult; e = parse_more_adds (Sum(el, e2)) >] -> e
| [< ’Kwd "-"; e2 = parse_mult; e = parse_more_adds (Diff(el, e2)) >] -> e
| [<>] > el
and parse_mult = parser
[< el = parse_simple; e = parse_more_mults el >] -> e
parse_more_mults el = parser
[< ’Kwd "x"; e2 = parse_simple; e = parse_more_mults (Prod(el, e2)) >] -> e
| [< °Kwd "/"; e2 = parse_simple; e = parse_more_mults (Quot(el, e2)) >] -> e
| [<>] > el
and parse_simple = parser
[< ’Ident s >] -> Var s
| [< ’Int i >] -> Const(float i)
| [< ’Float f >] -> Comst f
| [< ’Kwd "("; e = parse_expr; ’Kud ")" >] -> e;;
val parse_expr : Genlex.token Stream.t -> expression = <fun>
val parse_more_adds : expression -> Genlex.token Stream.t -> expression =
<fun>
val parse_mult : Genlex.token Stream.t -> expression = <fun>
val parse_more_mults : expression -> Genlex.token Stream.t -> expression =
<fun>
val parse_simple : Genlex.token Stream.t -> expression = <fun>

H OH OH OH H H OHF OHF OH HF H H H OH HE HE H
)
=]
Q.

Composing the lexer and parser, we finally obtain a function to read an expression from a
character string:

let read_expr s = parse_expr(lexer(Stream.of_string s));;
val read_expr : string -> expression = <fun>

read_expr "2x(x+y)";;
- : expression = Prod (Comst 2.000000, Sum (Var "x", Var "y"))

1.9 Standalone Caml programs

All examples given so far were executed under the interactive system. Caml code can also be
compiled separately and executed non-interactively using the batch compilers ocamlc or ocamlopt.
The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive

Chapter 1. The core language 23

mode, types and values are not printed automatically; the program must call printing functions
explicitly to produce some output. Here is a sample standalone program to print Fibonacci numbers:

(x File fib.ml *)
let rec fib n =
if n < 2 then 1 else fib(n-1) + fib(n-2);;
let main () =
let arg = int_of_string Sys.argv.(l) in
print_int(fib arg);
print_newline();
exit 0;;
main Q) ;;

Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus
the first command-line parameter. The program above is compiled and executed with the following
shell commands:

$ ocamlc -o fib fib.ml

$./fib 10
89
$./fib 20

10946

24

Chapter 2

Labels and variants

(Chapter written by Jacques Garrigue)

This chapter gives an overview of the new features in Objective Caml 3: labels, and polymorphic
variants.

2.1 Labels

If you have a look at the standard library, you will see that function types have annotations you
did not see in the functions you defined yourself.

List.map;;

- : f:(’a -> ’b) -> ’a list -> ’b list = <fun>

String.sub;;

- : string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code,
and allow more checking where needed. You can simply add them in interfaces, just like they appear

in the above types; but you can also give names to arguments in your programs, by prefixing them
with a tilde ~.

let £ "x "y = x - y;;
val f : x:int -> y:int -> int = <fun>
let x =3 and y = 2 in £ "x 7y;;
- : int =1
When you want to use distinct names for the variable and the label appearing in the type, you
can use a naming label of the form “name:. This also applies when the argument is not a variable.

let £ "x:x1 "y:yl = x1 - yi;;
val £ : x:int -> y:int -> int = <fun>
f "x:3 Ty:2;;

- :int =1

Labels obey the same rules as other identifiers in Caml, that is you cannot use a reserved
keyword (like in or to) as label.

25

26

2.1.1 Classic mode

In Objective Caml, there are two ways of using labels, either the default classic mode, or the
commuting label mode.

You need do nothing special to be in classic mode, and legacy programs written for previous
versions of Objective Caml will work with no modifications in this mode. Indeed, all the first
chapter was written in this mode.

In the classic mode, labels need not be explicitly written in function applications, but whenever
they are given they are checked against the labels in the function type.

f 3 2;;

- :int =1

f "x:3 7z:2;;

Expecting function has type y:int -> int
This argument cannot be applied with label z

The above error message gives the the type of the function applied to its previous arguments (here
x), and the position of the unexpected argument.

Similar processing is done for functions defined inside an application. If you define inline a
function with labels, they are checked against the labels expected by the enclosing function.

Hashtbl.iter;;
- : f:(key:’a -> data:’b -> unit) -> (’a, ’b) Hashtbl.t -> unit = <fun>

let print_all tbl =
Hashtbl.iter “f:(fun “key “data -> Printf.printf "%s: %s\n" key data) tbl;;
val print_all : (string, string) Hashtbl.t -> unit = <fun>

let print_all tbl =

Hashtbl.iter "f:(fun “data “key -> Printf.printf "Ys: %s\n" key data) tbl;;
This function should have type key:’a —-> data:’b -> unit

but its first argument is labeled data

2.1.2 Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional
parameters, the question mark ? replaces the tilde ~ of non-optional ones, and the label is also
prefixed by 7 in the function type. Default values may be given for such optional parameters.

let bump ?(step = 1) x = x + step;;
val bump : 7step:int -> int -> int = <fun>

bump 2;;

- : int = 3

bump “step:3 2;;
- : int = 5

Chapter 2. Labels and variants 27

A function taking some optional arguments must also take at least one non-labeled argument.
This is because the criterion for deciding whether an optional has been omitted is the application
on a non-labeled argument appearing after this optional argument in the function type.

let test ?7(x =0) ?(y=0) O ?(z=0) O = (x, 79, 2);;
val test : ?x:int -> ?y:int -> unit -> ?z:int -> unit -> int * int * int =
<fun>

+*+

test O;;

- : ?z:int -> unit -> int * int * int = <fun>
test "x:2 O "z:3 O;;

- : int * int * int = 2, 0, 3

Optional arguments behave similarly in classic and commuting label mode. Omitting the label
of an optional argument is not allowed, and in both cases commutation between differently labeled
optional arguments may occur.

test "y:2 "x:3 O O;;

- : int * int * int = 3, 2, O

Optional arguments are actually implemented as option types. If you do not give a default
value, you have access to their internal representation, type ’a option = None | Some of ’a.
You can then provide different behaviors when an argument is present or not.

let bump 7step x =
match step with

| None —> x * 2
| Some y > x +y
#55

val bump : ?step:int -> int -> int = <fun>

It may also be useful to relay a functional argument from a function call to another. This can
be done by prefixing the applied argument with 7. This question mark disables the wrapping of
optional argument in an option type.

let test2 7x 7y (O = test 7x 7y OO O;;
val test2 : 7x:int -> ?y:int -> unit -> int * int * int = <fun>

test2 7x:Nomne;;
- : ?y:int -> unit -> int * int * int = <fun>

28

2.1.3 Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional
arguments have the pitfall that they cannot be inferred as completely as the rest of the language.
You can see it in the following example.

let bump_it bump x =

bump “step:2 x;;

val bump_it : (step:int -> ’a -> ’b) -> ’a -> ’b = <fun>

bump_it bump 1;;

This expression has type 7step:int -> int -> int but is here used with type
int -> int -> ’a

While we intended the argument bump to be of type ?step:int -> int -> int, it is inferred
as step:int -> ’a -> ’b. These two types being incompatible (internally normal and optional
arguments are different), a type error occurs when applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand
that there is not enough information in the above program to deduce the correct type of bump.
That is, there is no way to know whether an argument is optional or not, or which is the correct
order (for commuting label mode), by looking only at how a function is applied. The strategy used
by the compiler is to assume that there are no optional arguments, and that applications are done
in the right order.

The right way to solve this problem is to add a type annotation to the argument bump.

let bump_it (bump : 7?step:int -> int -> int) x =

bump “step:2 x;;

val bump_it : (?step:int -> int -> int) -> int -> int = <fun>
bump_it bump 1;;

- : int = 3

In practive, such problems appear mostly when using objects whose methods have optional argu-
ments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter
whose type is different from the expected one. However, in the specific case where the expected
type is a non-labeled function type, and the argument is a function expecting optional parameters,
the compiler will attempt to transform the argument to have it match the expected type, by passing
None for all optional parameters.

let twice f (x : int) = f(f x);;
val twice : (int -> int) -> int -> int = <fun>

twice bump 2;;
- : int = 8

This transformation is coherent with the intended semantics, including side-effects. That is, if
the application of optional parameters shall produce side-effects, these are delayed until the received
function is really applied to an argument.

Chapter 2. Labels and variants 29

2.1.4 Commuting label mode

The commuting label mode allows a freer syntax, at the constraint that you must write all labels
both in function definition and application, and that labels must match in all types.

If this is your first reading of this tutorial, or if you are satisfied with classic mode, you can
probably skip the rest of this section. You need not know anything more on labels. In particular,
you should not be bothered by the fact that some libraries are written in commuting label mode: the
mode in which a library is written and the mode in which one uses it are completely independent.

You can switch to commuting label mode giving the -1labels flag to the various Objective Caml
compilers. At the toplevel, you can also switch from classic mode to commuting label mode, and
back, with the #labels pragma.

#labels true;;

In commuting label mode, formal parameters and arguments are only matched according to
their respective labels. This allows commuting arguments in applications. One can also partially
apply a function on any argument, creating a new function of the remaining parameters.

let £ "x "y = x - y;;
val £ : x:int -> y:int -> int = <fun>
f "y:2 "x:3;;

- : int =1
List.fold_left [1;2;3] ~“init:0 ~“f:(+);;
- : int = 6

List.fold_left “init:0;;
: f:(int -> ’a -> int) -> ’a list -> int = <fun>

[

Optional parameters may also commute with non-optional or unlabelled ones.

=+

test O () "z:1 "y:2 "x:3;;
: int * int * int = 3, 2, 1

As described in section 2.1.3, for out-of-order applications, the type of the function must be
known previous to the application, otherwise an incompatible out-of-order type will be generated.

let hg=g "y:2 "x:3;;

val h : (y:int -> x:int -> ’a) -> ’a = <fun>

#h f;;

This expression has type x:int -> y:int -> int but is here used with type
y:int -> x:int -> ’a

If in a function several arguments bear the same label (or no label), they will not commute
among themselves, and order matters. But they can still commute with other arguments.

let hline “x:x1 "x:x2 7y = (x1, %2, y);;

val hline : x:’a -> x:’b -> y:’c -> ’a * ’b ¥ ’c = <fun>
hline "x:3 "y:2 "x:5;;

- : int * int * int = 3, 5, 2

30

2.1.5 Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling
which

e makes programs more readable,
e is easy to remember,
e when possible, allows useful partial applications.

We explain here the rules we applied when labeling Objective Caml libraries.

To speak in an “object-oriented” way, one can consider that each function has a main argument,
its object, and other arguments related with its action, the parameters. To permit the combination
of functions through functionals in commuting label mode, the object will not be labeled. Its role
is clear by the function itself. The parameters are labeled with names reminding either of their
nature or role. Best labels combine in their meaning nature and role. When this is not possible

the role is to prefer, since the nature will often be given by the type itself. Obscure abbreviations
should be avoided.

List.map : f:(’a -> ’b) -> ’a list -> ’b list
output : out_channel -> buf:string -> pos:int —-> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.
List.iter2 : f:(’a -> ’b => ’c) -> ’a list -> ’b list -> unit
When there is no preferable object, all arguments are labeled.

Sys.rename : src:string -> dst:string -> unit
String.blit :
src:string —-> src_pos:int -> dst:string -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.
Format.open_hvbox : int -> unit

In the standard library, this principle also applies to functions of two or three arguments, as long
as their role is clear from the function’s name.
Here are some of the label names you will find throughout the libraries.

Label | Meaning

f: a function to be applied

pos: a position in a string or array

len: | alength

buf: a string used as buffer

src: the source of an operation

dst: the destination of an operation

cmp: a comparison function, e.g. Pervasives.compare
key: | a value used as index

data: | a value associated to an index
mode: | an operation mode or a flag list
perm: | file permissions

ms: a duration in milliseconds

Chapter 2. Labels and variants 31

All these are only suggestions, but one shall keep in mind that the choice of labels is essential
for readability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels shall be enough to understand the
function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel,
the documentation is only used when a more detailed specification is needed.

2.2 Polymorphic variants

Variants as presented in section 1.4 are a powerful tool to build data structures and algorithms.
However they sometimes lack flexibility when used in modular programming. This is due to the
fact every constructor reserves a name to be used with a unique type. On cannot use the same
name in another type, or consider a value of some type to belong to some other type with more
constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does
not belong to any type in particular, the type system will just check that it is an admissible value
according to its use. You need not define a type before using a variant tag. A variant type will be
inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with
a backquote character ‘.

[‘On; ‘Off];;
- : [> On | ‘Off] list = [‘On; °‘Off]
‘Number 1;;

- : [> ‘Number of int] = ‘Number 1

let £ = function ‘On -> 1 | ‘0Off -> 0 | ‘Number n -> n;;
val £ : [< ‘On | ‘Off | ‘Number of int] -> int = <fun>

List.map "f [‘On; ‘0ff];;
- : int list = [1; 0]

[>‘0ff| ‘On] 1list means that to match this list, you should at least be able to match ‘0ff and
‘On, without argument. [<‘0On| ‘0ff| ‘Number of int] means that £ may be applied to ‘0Off, ‘On
(both without argument), or ‘Number n where n is an integer. The > and < inside the variant type
shows that they may still be refined, either by defining more tags or allowing less. As such they
contain an implicit type variable. Both variant types appearing only once in the type, the implicit
type variables they constrain are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type
annotations, one will most often describe fixed variant types, that is types that can be no longer
refined. This is also the case for type abbreviations. Such types do not contain < or >, but just an
enumeration of the tags and their associated types, just like in a normal datatype definition. For
conciseness, of is omitted in polymorphic variant types.

type ’a vlist = [‘Nil | ‘Cons of ’a * ’a vlist];;

32

type ’a vlist = [‘Nil | ‘Cons of ’a * ’a vlist]

let rec map "f : ’a vlist -> ’b vlist = function
| ‘Nil -> ‘Nil

| ‘Cons(a, 1) -> ‘Cons(f a, map “f 1)

5,

val map : f:(’a -> ’b) -> ’a vlist -> ’b vlist = <fun>

Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more
complex type information.

function ‘A -> ‘B | x -> x;;
- :([< ‘B| ‘Al .. > ‘B] as ’a) -> ’a = <fun>

Here the .. means that we know that ‘A and ‘B may not have an argument, but there is no
specified upper bound on the number of variant tags in this variant type. We know also that ‘B
can appear in the result, and input and output types have to be kept equal because x is returned
as is.

let f1 function ‘A x > x =11 ‘B -> true | ‘C -> false
let f2 = function ‘A x -> x = "a" | ‘B -> true ;;

val f1 : [< ‘A of int | ‘B | ‘C] -> bool = <fun>

val f2 : [< ‘A of string | ‘B] -> bool = <fun>

let £ x = f1 x && 2 x;;
val f : [< ‘A of string & int | ‘B] -> bool = <fun>

Here £1 and £2 both accept the variant tags ‘A and ‘B, but the argument of ‘A is int for £1 and
string for £2. In £’s type ‘C, only accepted by f1, disappears, but both argument types appear
for ‘A as int & string. This means that if we pass the variant tag ‘A to £, its argument should
be both int and string. Since there is no such value, £ cannot be applied to ‘A, and ‘B is the only
accepted input.

Even if a value has a fixed variant type, one can still give it a larger type through coercions.
Coercions are normally written with both the source type and the destination type, but in simple
cases the source type may be omitted.

type ’a wlist = [‘Nil | ‘Cons of ’a * ’a wlist | ‘Snoc of ’a wlist * ’al;;
type ’a wlist = [‘Nil | ‘Cons of ’a * ’a wlist | ‘Snoc of ’a wlist * ’a]

let wlist_of_vlist 1 = (1 : ’a vlist :> ’a wlist);;
val wlist_of_vlist : ’a vlist -> ’a wlist = <fun>

fun x > (x :> [‘A|‘Bl‘Cl);;
-:[< 4] ‘B ‘c] ->1[‘A ‘B[‘C] = <fun>

You may also selectively coerce values through pattern matching.

Chapter 2. Labels and variants 33

let split_cases = function

| ‘Nil | ‘Coms _ as x -> ‘A x
| ‘Snoc _ as x > ‘B x
%5,

val split_cases :
[< ‘Nil | ‘Cons of ’a | ‘Snmoc of ’b] ->
[> ‘A of [> ‘Nil | ‘Cons of ’a] | ‘B of [> ‘Snoc of ’b]] = <fun>

When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given
a type containing only the tags enumerated in the or-pattern. this allows for many useful idioms,
like incremental definition of functions.

let num x = ‘Num x

let evall eval (‘Num x) = x

let rec eval x = evall eval x ;;

val num : ’a -> [> ‘Num of ’a] = <fun>

val evall : ’a -> [< ‘Num of ’b] -> ’b = <fun>
val eval : [< ‘Num of ’a] -> ’a = <fun>

let plus x y = ‘Plus(x,y)
let eval2 eval = function

| ‘Plus(x,y) -> eval x + eval y

| ‘Num _ as x -> evall eval x

let rec eval x = eval2 eval x ;;

val plus : ’a -> ’b -> [> ‘Plus of ’a * ’b] = <fun>

val eval2 : (’a -> int) -> [< ‘Plus of ’a * ’a | ‘Num of int] -> int = <fun>
val eval : ([< ‘Plus of ’a * ’a | ‘Num of int] as ’a) -> int = <fun>

To make this even more confortable, you may use type definitions as abbreviations for or-
patterns. That is, if you have defined type myvariant = [‘Tagl int | ‘Tag2 bool], then the
pattern #myvariant is equivalent to writing (‘Tagl(_ : int) | ‘Tag2(_ : bool)).

Such abbreviations may be used alone,

let f = function

| #myvariant -> "myvariant"

| ‘Tag3 -> "Tag3";;

val f : [< ‘Tagl of int | ‘Tag2 of bool | ‘Tag3] -> string = <fun>

or combined with with aliases.

let gl = function ‘Tagl _ -> "Tagl" | ‘Tag2 _ -> "Tag2";;
val g1 : [< ‘Tagl of ’a | ‘Tag2 of ’b] -> string = <fun>

let g = function

| #myvariant as x -> gl x

| ‘Tag3 -> "Tag3";;

val g : [< ‘Tagl of int | ‘Tag2 of bool | ‘Tag3] -> string = <fun>

34

Chapter 3

Objects in Caml

(Chapter written by Jérome Vouillon and Didier Rémy)

This chapter gives an overview of the object-oriented features of Objective Caml.

3.1 Classes and objects

The class point has one instance variable x and two methods get_x and move. The initial value
of the instance variable is 0. The variable x is declared mutable, so the method move can change
its value.

class point =

object

val mutable x = 0

method get_x = x

method move d = x <- x + d
end;;

class point :
object val mutable x : int method get_x : int method move : int -> unit end

We now create a new point p.

let p = new point;;
val p : point = <obj>
Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the
methods of class point along with their types.

Let us apply some methods to p:

+H+

pHget_x;;
:int =0

H+

p#move 3;;
:unit = (O

|

p#get_x;;
: int = 3

35

36

The evaluation of the body of a class only takes place at object creation time. Therefore, in the
following example, the instance variable x is initialized to different values for two different objects.

let x0 = ref 0;;
val x0 : int ref = {contents=0}

class point =
object
val mutable x = incr x0; !x0
method get_x = x
method move d = x <- x + d
end;;
class point :
object val mutable x : int method get_x : int method move : int -> unit end

H O H H

new point#get_x;;

- : int =1

new point#get_x;;
: int = 2

The class point can also be abstracted over the initial values of points.

class point = fun x_init ->
object
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

#
#
#
#
#
#

As for declaration of functions, the above definition can be abbreviated as:

class point x_init =
object
val mutable x = x_init
method get_x = x
method move d = x <- x +d
end;;
class point :
int ->

object val mutable x : int method get_x : int method move : int -> unit end

An instance of the class point is now a function that expects an initial parameter to create a point
object:

new point;;
- : int -> point = <fun>

let p = new point 7;;
val p : point = <obj>

Chapter 3. Objects in Caml 37

The parameter x_init is, of course, visible in the whole body of the definition, including methods.
For instance, the method get_offset in the class below returns the position of the object to the
origin.

class point x_init =
object
val mutable x = x_init
method get_x = x
method get_offset = x - x_init
method move d = x <- x + d
end; ;
class point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end

Expressions can be evaluated and bound before defining the object body of the class. This is useful
to enforce invariants. For instance, points can be automatically adjusted to grid as follows:

class adjusted_point x_init =
let origin = (x_init / 10) * 10 in
object
val mutable x = origin
method get_x = x
method get_offset = x - origin
method move d = x <- x + d
end;;
class adjusted_point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

#
#
#
#
#
#
#
#

(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same
effect could here be obtained by calling the definition of class point with the value of the origin.

class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternative solution would have been to define the adjustment in a special allocation function:

38

let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

However, the former pattern is generally more appropriate, since the code for adjustment is part
of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors
can be defined this way to build objects of the same class but with different initialization patterns;
an alternative is to use initializers, as decribed below in section 3.3.

3.2 Reference to self

A method can also send messages to self (that is, the current object). For that, self must be
explicitly bound, here to the variable s (s could be any identifier, even though we will often choose
the name self.)

class printable_point x_init
object (s)
val mutable x = x_init
method get_x = x
method move d = x <- x +d
method print = print_int s#get_x
end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 7;;
val p : printable_point = <obj>
p#print;;

7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class
printable_point will be inherited, the variable s will be correctly bound to the object of the
subclass.

3.3 Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible
to evaluate an expression immediately after the object has been built. Such code is written as an
anonymous hidden method called an initializer. Therefore, is can access self and the instance
variables.

Chapter 3. Objects in Caml 39

class printable_point x_init =
let origin = (x_init / 10) * 10 in
object (self)
val mutable x = origin
method get_x = x
method move d = x <- x + d
method print = print_int self#get_x
initializer print_string "new point at "; self#print; print_newline()
end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 17;;
new point at 10
val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Ini-
tializers are particularly useful to enforce invariants. Another example can be seen in section 5.1.

3.4 Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This
method will be provided latter in subclasses. A class containing virtual methods must be flagged
virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines
abbreviations (treating virtual methods as other methods.)

class virtual abstract_point x_init =
object (self)
val mutable x = x_init
method virtual get_x : int
method get_offset = self#get_x - x_init
method virtual move : int -> unit
end;;
class virtual abstract_point :
int ->
object
val mutable x : int
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit
end

class point x_init =

object
inherit abstract_point x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

3.5 Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked
from other methods of the same object.

class restricted_point x_init =
object (self)
val mutable x = x_init
method get_x = x
method private move d = x <- x + d
method bump = self#move 1
end;;
class restricted_point :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method private move : int -> unit
end

let p = new restricted_point O;;
val p : restricted_point = <obj>
p#move 10;;

This expression has type restricted_point
It has no method move

p#bump; ;
- : unit = ()

Private methods are inherited (they are by default visible in subclasses), unless they are hidden by
signature matching, as described below.
Private methods can be made public in a subclass.

Chapter 3. Objects in Caml 41

class point_again x =
object (self)

inherit restricted_point x
method virtual move
end;;
class point_again :
int ->
object

val mutable x : int

method bump : unit

method get_x : int

method move : int -> unit
end

The annotation virtual here is only used to mentioned a method without providing its definition.
An alternative definition is

class point_again x =
object (self : < move : _; ..>)
inherit restricted_point x
end;;
class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end

One could think that a private method should remain private in a subclass. However, since the
method is visible in a subclass, it is always possible pick it’s code and define a method of the same
name that run that code, so yet another (heavier) solution would be:

class point_again x =

object (self : < move : _; ..>)
inherit restricted_point x as super
method move = super#move
end;;
class point_again :
int ->
object

val mutable x : int

method bump : unit

method get_x : int

method move : int -> unit
end

Of course, private methods can also be virtual. Then, the keywords must appear in this order
method private virtual.

42

3.6 Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to
restrict the type of a class. As class declarations, they also define a new type constructor.

class type restricted_point_type =

object

method get_x : int
method bump : unit
end;;

class type restricted_point_type =
object method bump : unit method get_x : int end

fun (x : restricted_point_type) -> x;;
- : restricted_point_type —-> restricted_point_type = <fun>

In addition to documentation, these class interfaces can be used to constrain the type of a class.
Both instance variables and concrete private methods can be hidden by a class type constraint.
Public and virtual methods, however, cannot.

class restricted_point’ x = (restricted_point x : restricted_point_type);;
class restricted_point’ : int -> restricted_point_type

Or, equivalently:

class restricted_point’ = (restricted_point : int -> restricted_point_type);;
class restricted_point’ : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred
signature of a module.

module type POINT = sig

class restricted_point’ : int ->
object
method get_x : int
method bump : unit
end
end;;
module type POINT =

sig

class restricted_point’
int -> object method bump : unit method get_x : int end
end

module Point : POINT = struct

class restricted_point’ = restricted_point
end;;

module Point : POINT

Chapter 3. Objects in Caml 43

3.7 Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points.
This class has all instance variables and all methods of class point, plus a new instance variable c
and a new method color.

class colored_point x (c : string) =
object
inherit point x
val ¢ = ¢
method color = c
end;;
class colored_point :
int ->
string ->
object

val ¢ : string

val mutable x : int

method color : string

method get_offset : int

method get_x : int

method move : int -> unit
end

let p’ new colored_point 5 "red";;
val p’ : colored_point = <obj>

p’#get_x, p’#color;;
- : int * string = 5, '"red"

A point and a colored point have incompatible types, since a point has no method color. However,
the function get_x below is a generic function applying method get_x to any object p that has
this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it
applies to both points and colored points.

let get_succ_x p = p#get_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>

get_succ_x p + get_succ_x p’;;

- : int = 8

Methods need not be declared previously, as shown by the example:

let set_x p = p#set_x;;
val set_x : < set_x : ’a; .. > -> ’a = <fun>

let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> ’a; .. > -> ’a = <fun>

44

3.8 Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a
subclass of a method that was visible in the parent class overrides the definition in the parent class.
Previous definitions of a method can be reused by binding the related ancestor. Below, super is
bound to the ancestor printable_point. The name super is not actually a variable and can only
be used to select a method as in super#print.

class printable_colored_point y ¢ =
object (self)
val ¢ = ¢
method color = ¢
inherit printable_point y as super
method print =
print_string "(";
super#print;
print_string ", ";
print_string (self#color);
print_string ")"
end;;
class printable_colored_point :
int ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit

end

let p’ = new printable_colored_point 17 "red";;
new point at (10, red)
val p’ : printable_colored_point = <obj>

p’#print;;
(10, red)- : unit = ()

A private method that has been hidden in the parent class is no more visible, and is thus not
overridden. Since initializers are treated as private methods, all initializers along the class hierarchy
are evaluated, in the order they are introduced.

3.9 Parameterized classes

Reference cells can also be implemented as objects. The naive definition fails to typecheck:

class ref x_init =

Chapter 3. Objects in Caml 45

object
val mutable x = x_init
method get = x
method set y = x <- y
end;;
Some type variables are unbound in this type:
class ref :
‘a —>
object val mutable x : ’a method get : ’a method set : ’a -> unit end

The method get has type ’a where ’a is unbound

The reason is that at least one of the methods has a polymorphic type (here, the type of the value
stored in the reference cell), thus the class should be parametric, or the method type should be
constrained to a monomorphic type. A monomorphic instance of the class could be defined by:

class ref (x_init:int) =
object
val mutable x = x_init
method get = x
method set y = x <- y
end;;
class ref :
int ->

object val mutable x : int method get : int method set : int -> unit end

A class for polymorphic references must explicitly list the type parameters in its declaration. Class
type parameters are always listed between [and]. The type parameters must also be bound
somewhere in the class body by a type constraint.

class [’a] ref x_init =
object
val mutable x = (x_init : ’a)
method get = x
method set y = x <- y
end;;
class [’al] ref :
’a -> object val mutable x : ’a method get : ’a method set : ’a -> unit end

let r = new ref 1 in r#set 2; (r#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class def-
inition. In the class type, the actual value of the type parameter is displayed in the constraint
clause.

class [’al ref_succ (x_init:’a) =
object
val mutable x = x_init + 1

46

method get = x
method set y = x <- y
end;;
class [’a] ref_succ :
)a _>
object

constraint ’a = int

val mutable x : int

method get : int

method set : int -> unit
end

Let us consider a more realistic example. We put an additional type constraint in method move,
since no free variables must remain uncaptured by a type parameter.

class [’al] circle (¢ : ’a) =
object
val mutable center = c
method center = center
method set_center ¢ = center <- ¢
method move = (center#tmove : int -> unit)
end;;
class [’a] circle :

‘a —>

object

constraint ’a = < move : int -> unit; .. >

val mutable center : ’a

method center : ’a

method move : int -> unit

method set_center : ’a -> unit
end

An alternate definition of circle, using a constraint clause in the class definition, is shown below.
The type #point used below in the constraint clause is an abbreviation produced by the definition
of class point. This abbreviation unifies with the type of any object belonging to a subclass of class
point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the
following alternate definition of circle, which has slightly stronger constraints on its argument, as
we now expect center to have a method get_x.

class [’a]l circle (¢ : ’a) =

object

constraint ’a = #point

val mutable center = c

method center = center

method set_center ¢ = center <- ¢
method move = center#move

end;;

class [’a] circle :

Chapter 3. Objects in Caml 47

‘a ->
object
constraint ’a = #point
val mutable center : ’a
method center : ’a
method move : int -> unit
method set_center : ’a -> unit
end

The class colored_circle is a specialized version of class circle which requires the type of the
center to unify with #colored_point, and adds a method color. Note that when specializing a
parameterized class, the instance of type parameter must always be explicitly given. It is again
written inside [and].

class [’al] colored_circle c =
object
constraint ’a = #colored_point
inherit [’a] circle c
method color = center#color
end;;
class [’a] colored_circle :
‘a =>
object

constraint ’a = #colored_point

val mutable center : ’a

method center : ’a

method color : string

method move : int —-> unit

method set_center : ’a -> unit
end

3.10 Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general
construction is fully explicit: both the domain and the codomain of the type coercion must be
given.

We have seen that points and colored points have incompatible types. For instance, they cannot
be mixed in the same list. However, a colored point can be coerced to a point, hiding its color
method:

let colored_point_to_point cp = (cp : colored_point :> point);;
val colored_point_to_point : colored_point -> point = <fun>

let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj>
val q : colored_point = <obj>

let 1 = [p; (colored_point_to_point q)l;;
val 1 : point list = [<obj>; <obj>]

48

An object of type t can be seen as an object of type t’ only if t is a subtype of t’. For instance,
a point cannot be seen as a colored point.

(p : point :> colored_point);;

Type point < get_offset : int; get_x :
is not a subtype of type

colored_point

< color : string; get_offset :

int; move : int -> unit >

int; get_x : int; move : int -> unit >

Indeed, backward coercions are unsafe, and should be combined with a type case, possibly raising
a runtime error. However, there is no such operation available in the language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation
between classes while subtyping is a semantic relation between types. For instance, the class of
colored points could have been defined directly, without inheriting from the class of points; the
type of colored points would remain unchanged and thus still be a subtype of points.

The domain of a coercion can usually be omitted. For instance, one can define:

let to_point cp = (cp :> point);;
val to_point :
< get_offset :

int; get_x : int; move : int -> unit; .. > -> point <fun>

In this case, the function colored_point_to_point is an instance of the function to_point. This is
not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable.
Here is an example where the shorter form fails:

class virtual ¢ = object method virtual m : c end;;

class virtual c : object method virtual m : c end

class ¢’ =

object (self)

inherit c

method m = (gself :> c)

method m’ =1

end;;

This expression cannot be coerced to type ¢ = <m : ¢ >; it has type
<m : c; m’ ‘a; .. >

but is here used with type <m : ’b; m’ : ’a; .. > as ’b

Type ¢ = <m : ¢ > is not compatible with type ’b

Self type cannot be unified with a closed

The type of the coercion to type ¢ can be

object type

seen here:

function x -> (x :> ¢);;
-:(m: ’a; .. >as ’a) > c

<fun>

As class ¢’ inherits from class c, its method m must have type c. On the other hand, in expression
(self :> c) the type of self and the domain of the coercion above must be unified. That is, the
type of the method m in self (i.e. c) is also the type of self. So, the type of self is c. This is a
contradiction, as the type of self has a method m’, whereas type ¢ does not.

The desired coercion of type <m : c;..> => c can be obtained by using a fully explicit coercion:

Chapter 3. Objects in Caml 49

function x -> (x : #c :> c);;
- : #c -> ¢ = <fun>

Thus one can define class ¢’ as follows:

class ¢’ =

object (self)

inherit c

method m = (self : #c :> c)

method m’ =1

end;;

class ¢’ : object method m : ¢ method m’ : int end

An alternative is to define class c this way (of course this definition is not equivalent to the previous
one):

class virtual c = object (_ : ’a) method virtual m : ’a end;;
class virtual c : object (’a) method virtual m : ’a end

Then, a coercion operator is not even required.

class ¢’ = object (self) inherit ¢ method m = self method m’ = 1 end;;
class ¢’ : object (’a) method m : ’a method m’ : int end

Here, the simple coercion operator (e :> c) can be used to coerce an object expression e from
type ¢’ to type c. Semi-implicit coercions are actually defined so as to work correctly with classes
returning self.

(new c’ :> c);;
- : ¢ = <obj>

Another common problem may occur when one tries to define a coercion to a class ¢ inside the
definition of class c. The problem is due to the type abbreviation not being completely defined
yet, and so its subtypes are not clearly known. Then, a coercion (_ : #c :> c) is taken to be the
identity function, as in

function x -> (x :> ’a);;
- : ’a -> ’a = <fun>

As a consequence, if the coercion is applied to self, as in the following example, the type of self is
unified with the closed type ¢ (a closed object type is an object type without ellipsis). This would
constrains the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed:
this would prevent any further extension of the class. Therefore, a type error is generated when
the unification of this type with another type would result in a closed object type.

class c = object (self) method m = (self : #c :> c) end;;
This expression has type <m : c¢; .. > but is here used with type ¢ = < .. >
Self type cannot escape its class

50

This problem can sometimes be avoided by first defining the abbreviation, using a class type:

class type cO = object method m : cO end;;
class type cO = object method m : cO end

class ¢ : cO = object (self) method m = (self : #cO :> c0) end;;

class ¢ : cO

It is also possible to use a virtual class. Inheriting from this class simultaneously allows to enforce
all methods of ¢ to have the same type as the methods of cO.

class virtual cO = object method virtual m : cO end;;
class virtual cO : object method virtual m : cO end

class ¢ = object (self) inherit cO method m = (self : #cO :> c0) end;;
class ¢ : object method m : cO end

One could think of defining the type abbreviation directly:

type cl = <m : cl>;;
type c1 = <m : cl >

However, the abbreviation #c0 cannot be defined directly in a similar It can only be defined by
a class or a classtyped definition. (One reason is that # sharp abbreviations carry an implicit

anonymous variable .. that cannot be explicitly named). Thus, the abbreviation #c0 should be
expanded:
class ¢ = object (self) method m = (self : <m : cl; ..> as ’a :> cl) end;;

Already bound type parameter a

3.11 Functional objects

It is possible to write a version of class point without assignments on the instance variables. The
construct {< ... >} returns a copy of “self” (that is, the current object), possibly changing the
value of some instance variables.

class functional_point y
object

val x = y

method get_x = x

#
#

method move d = {< x = x + d >}

end;;
class functional_point :
int ->
object (’a) val x : int method get_x : int method move : int -> ’a end

let p = new functional_point 7;;
val p : functional_point = <obj>

Chapter 3. Objects in Caml 51

pH#get_x;;
- : int =7

(p#move 3)#get_x;;

- : int = 10
pH#get_x;;
- : int =7

Note that the type abbreviation functional_point is recursive, which can be seen in the class
type of functional_point: the type of self is ’a and ’a appears inside the type of the method
move.

The above definition of functional_point is not equivalent to the following:

class bad_functional_point y =
object
val x = y
method get_x = x
method move d = new functional_point (x+d)
end;;
class bad_functional_point :
int ->
object
val x : int
method get_x : int
method move : int -> functional_point
end

let p = new functional_point 7;;
val p : functional_point = <obj>
p#get_x;;

- : int =7

+*

(p#move 3)#get_x;;
- : int = 10

pH#get_x;;

- : int =7

While objects of either class will behave the same, objects of their subclasses will be different. In
a subclass of the latter, the method move will keep returning an object of the parent class. On the
contrary, in a subclass of the former, the method move will return an object of the subclass.

Functional update is often used in conjunction with binary methods as illustrated in section
5.2.1.

3.12 Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function Oo. copy
makes a shallow copy of an object. That is, it returns an object that is equal to the previous one.
The instance variables have been copied but their contents are shared. Assigning a new value to an

52

instance variable of the copy (using a method call) will not affect instance variables of the original,
and conversely. A deeper assignment (for example if the instance variable if a reference cell) will
of course affect both the original and the copy.

The type of Do.copy is the following:

0o.copy;;
- : (< .. > as ’a) -> ’a = <fun>

The keyword as in that type binds the type variable ’a to the object type < .. >. Therefore,
0o . copy takes an object with any methods (represented by the ellipsis), and returns an object of
the same type. The type of Oo.copy is different from type < .. > => < .. > as each ellipsis
represents a different set of methods. Ellipsis actually behaves as a type variable.

let p = new point 5;;

val p : point = <obj>

let q = Oo.copy p;;

val q : point = <obj>

g#tmove 7; (p#get_x, q#get_x);;
- : int * int = 5, 12

In fact, Do.copy p will behave as p#copy assuming that a public method copy with body {< >}
has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are
equal if and only if they are physically equal. In particular, an object and its copy are not equal.

let q = Oo.copy p;;
val q : point = <obj>

#p=4d,p=p;;
- : bool * bool = false, true

Other generic comparissons such as (<, <=,...) can also be used on objects. The relation < defines
an unspecified but strict ordering on objets. The ordering relationship between two objects is fixed
once for all after the two objects have been created and it is not affected by mutation of fields.

Cloning and override have a non empty intersection. They are interchangeable when used within
an object and without overriding any field:

class copy =

object
method copy = {< >}
end;;

class copy : object (’a) method copy : ’a end

class copy =

object (self)

method copy = 0o.copy self

end; ;

class copy : object (’a) method copy : ’a end

Chapter 3. Objects in Caml 53

Only the override can be used to actually override fields, and only the Oo.copy primitive can be
used externally.
Cloning can also be used to provide facilities for saving and restoring the state of objects.

class backup =
object (self : ’mytype)
val mutable copy = None
method save = copy <- Some {< copy = None >}
method restore = match copy with Some x -> x | None -> self
end;;
class backup :
object (’a)
val mutable copy : ’a option
method restore : ’a
method save : unit
end

The above definition will only backup one level. The backup facility can be added to any class
using multiple inheritance.

class [’al backup_ref x = object inherit [’a]l ref x inherit backup end;;
class [’al] backup_ref :
‘a =>
object (’b)
val mutable copy : ’b option
val mutable x : ’a
method get : ’a
method restore : ’b
method save : unit
method set : ’a —-> unit
end

let rec get pn = if n = 0 then p # get else get (p # restore) (n-1);;
val get : (< get : ’b; restore : ’a; .. > as ’a) -> int -> ’b = <fun>

let p = new backup_ref 0 in

p # save; p # set 1; p # save; p # set 2;

[get p 0; get p 1; get p 2; get p 3; get p 4]1;;

- : int list = [2; 1; 1; 1; 1]

A variant of backup could retain all copies. (We then add a method clear to manually erase all
copies.)

class backup =

object (self : ’mytype)

val mutable copy = None

method save = copy <- Some {< >}

method restore = match copy with Some x -> x | None -> self
method clear = copy <- None

end; ;

54

class backup :
object (’a)
val mutable copy : ’a option
method clear : unit
method restore : ’a
method save : unit
end

class [’al] backup_ref x = object inherit [’a] ref x inherit backup end;;
class [’al backup_ref :
)a ->
object (’b)
val mutable copy : ’b option
val mutable x : ’a
method clear : unit
method get : ’a
method restore : ’b
method save : unit
method set : ’a -> unit
end

let p = new backup_ref 0 in

p # save; p # set 1; p # save; p # set 2;

[get p 0; get p 1; get p 2; get p 3; get p 41;;
- : int list = [2; 1; 0; 0; 0]

3.13 Recursive classes

Recursive classes can be used to define objects whose types are mutually recursive.

class window =
object
val mutable top_widget = (None : widget option)
method top_widget = top_widget
end
and widget (w : window) =
object
val window = w
method window = window
end;;
class window :
object
val mutable top_widget : widget option
method top_widget : widget option
end

class widget :
window -> object val window : window method window : window end

Although their types are mutually recursive, the classes widget and window are themselves inde-
pendent.

Chapter 3. Objects in Caml 55

3.14 Binary methods

A binary method is a method which takes an argument of the same type as self. The class
comparable below is a template for classes with a binary method leq of type a -> bool where
the type variable ’a is bound to the type of self. Therefore, #comparable expands to < leq : ’a
-> bool; .. > as ’a. We see here that the binder as also allows to write recursive types.

class virtual comparable =

object (_ : ’a)
method virtual leq : ’a -> bool
end;;

class virtual comparable : object (’a) method virtual leq : ’a -> bool end

We then define a subclass money of comparable. The class money simply wraps floats as comparable
objects. We will extend it below with more operations. There is a type constraint on the class
parameter x as the primitive <= is a polymorphic comparison function in Objective Caml. The
inherit clause ensures that the type of objects of this class is an instance of #comparable.

class money (x : float) =
object

inherit comparable

val repr = x
#
#
#

method value = repr
method leq p = repr <= p#value
end;;
class money :
float ->
object (’a)
val repr : float
method leq : ’a —> bool
method value : float
end

Note that the type moneyl is not a subtype of type comparable, as the self type appears in
contravariant position in the type of method leq. Indeed, an object m of class money has a method
leq that expects an argument of type money since it accesses its value method. Considering m
of type comparable would allow to call method leq on m with an argument that does not have a
method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

class money2 x =

object

inherit money x

method times k = {< repr = k *. repr >}
end;;

class money2 :
float ->

56

object (’a)
val repr : float
method leq : ’a —> bool
method times : float -> ’a
method value : float

end

It is however possible to define functions that manipulate objects of type either money or money2: the
function min will return the minimum of any two objects whose type unifies with #comparable. The
type of min is not the same as #comparable —> #comparable -> #comparable, as the abbreviation
#comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation generates a
new variable.

let min (x : #comparable) y =
if x#leq y then x else y;;
val min : (#comparable as ’a) -> ’a -> ’a = <fun>

This function can be applied to objects of type money or money?2.

(min (new money 1.3) (new money 3.1))#value;;
- : float = 1.300000

(min (new money2 5.0) (new money2 3.14))#value;;
- : float = 3.140000

More examples of binary methods can be found in sections 5.2.1 and 5.2.3.

Notice the use of functional update for method times. Writing new money2 (k *. repr)
instead of {< repr = k *. repr >} would not behave well with inheritance: in a subclass money3
of money2 the times method would return an object of class money2 but not of class money3 as
would be expected.

The class money could naturally carry another binary method. Here is a direct definition:

class money x =

object (self : ’a)

val repr = x

method value = repr

method print = print_float repr
#

#

#

#

method times k = {< repr = k *. x >}
method leq (p : ’a) = repr <= p#value
method plus (p : ’a) = {< repr = x +. p#value >}
end;;
class money :
float ->
object (’a)
val repr : float
method leq : ’a —> bool
method plus : ’a -> ’a
method print : unit
method times : float -> ’a
method value : float
end

Chapter 3. Objects in Caml 57

3.15 Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact
with other objects of the same class, the representation of money objects must be revealed, using a
method such as value. If we remove all binary methods (here plus and leq), the representation
can easily be hidden inside objects by removing the method value as well. However, this is not
possible as long as some binary requires access to the representation on object of the same class
but different from self.

class safe_money x =

object (self : ’a)

val repr = x

method print = print_float repr
#

#

method times k = {< repr = k *. x >}
end;;
class safe_money :

float ->

object (’a)
val repr : float
method print : unit
method times : float -> ’a

end

Here, the representation of the object is known only to a particular object. To make it available to
other objects of the same class, we are forced to make it available to the whole world. However we
can easily restrict the visibility of the representation using the module system.

module type MONEY =

sig

type t

class ¢ : float —>

object (’a)

val repr : t

method value : t

method print : unit

method times : float -> ’a
method leq : ’a -> bool
method plus : ’a -> ’a
end
end; ;
#

#

#

#

#

#

module Euro : MONEY =
struct
type t = float
class c x =
object (self : ’a)
val repr = x

method value = repr
method print = print_float repr
method times k = {< repr = k *. x >}
method leq (p : ’a) = repr <= p#value
method plus (p : ’a) = {< repr = x +. p#value >}
end

end;;

H OH H OH OHF H H

Another example of friend functions may be found in section 5.2.3. These examples occur when
a group of objects (here objects of the same class) and functions should see each others internal
representation, while their representation should be hidden from the outside. The solution is always
to define all friends in the same module, give access to the representation and use a signature
constraint to make the representation abstract outside of the module.

Chapter 4

The module system

This chapter introduces the module system of Objective Caml.

4.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme
for these definitions. This avoids running out of names or accidentally confusing names. Such a
package is called a structure and is introduced by the struct...end construct, which contains an
arbitrary sequence of definitions. The structure is usually given a name with the module binding.
Here is for instance a structure packaging together a type of priority queues and their operations:

module PrioQueue =

struct

type priority = int

type ’a queue = Empty | Node of priority * ’a * ’a queue * ’a queue
let empty = Empty

let rec insert queue prio elt =

match queue with

Empty -> Node(prio, elt, Empty, Empty)

| Node(p, e, left, right) ->

if prio <=p

then Node(prio, elt, insert right p e, left)

else Node(p, e, insert right prio elt, left)

exception Queue_is_empty

let rec remove_top = function

Empty -> raise Queue_is_empty

| Node(prio, elt, left, Empty) -> left

| Node(prio, elt, Empty, right) -> right

| Node(prio, elt, (Node(lprio, lelt, _, _) as left),

(Node(rprio, relt, _, _) as right)) ->
if lprio <= rprio

then Node(lprio, lelt, remove_top left, right)

99

else Node(rprio, relt, left, remove_top right)
let extract = function
Empty -> raise Queue_is_empty
| Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)
end;;
module PrioQueue :
sig

type priority = int
and ’a queue = Empty | Node of priority * ’a * ’a queue * ’a queue
val empty : ’a queue
val insert : ’a queue -> priority -> ’a -> ’a queue
exception Queue_is_empty
val remove_top : ’a queue —-> ’a queue
val extract : ’a queue -> priority * ’a * ’a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue. insert in a value context is the function
insert defined inside the structure PrioQueue. Similarly, PrioQueue.queue in a type context is
the type queue defined in PrioQueue.

PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string Prioueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

4.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

module type PRIOQUEUE =

sig
type priority = int (* still concrete *)
type ’a queue (* now abstract *)
val empty : ’a queue
val insert : ’a queue -> int -> ’a -> ’a queue
val extract : ’a queue -> int * ’a * ’a queue
exception Queue_is_empty
end;;
module type PRIOQUEUE =
sig

type priority = int

Chapter 4. The module system 61

and ’a queue
val empty : ’a queue
val insert : ’a queue -> int -> ’a -> ’a queue
val extract : ’a queue -> int * ’a * ’a queue
exception (ueue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE

AbstractPrioQueue.remove_top;;
Unbound value AbstractPrio(Jueue.remove_top

AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;
An alternate syntax is provided for the above:

module PrioQueue : PRIOQUEUE = struct ... end;;

4.3 Functors

Functors are “functions” from structures to structures. They are used to express parameterized
structures: a structure A parameterized by a structure B is simply a functor F with a formal
parameter B (along with the expected signature for B) which returns the actual structure A itself.
The functor F can then be applied to one or several implementations B ... B, of B, yielding the
corresponding structures Ay ... A,.

For instance, here is a structure implementing sets as sorted lists, parameterized by a structure
providing the type of the set elements and an ordering function over this type (used to keep the
sets sorted):

type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

module type ORDERED_TYPE =

sig

type t

val cmp: t -> t -> comparison
end;;

module type ORDERED_TYPE = sig type t val cmp : t -> t -> comparison end

module Set =
functor (Elt: ORDERED_TYPE) —>

D
[\)

struct
type element = Elt.t
type set = element list
let empty = []
let rec add x s =
match s with

0 - [x]
| hd::t1l —>
match Elt.cmp x hd with
Equal -> s (* x is already in s *)
| Less ->x :: 8 (* x is smaller than all elements of s *)

| Greater -> hd :: add x tl
let rec member x s =
match s with

H o H O H HHHEFHHHHHHHHEH R HEH

[-> false
| hd::t1l —>
match Elt.cmp x hd with
Equal -> true (* x belongs to s *)
| Less -> false (* x is smaller than all elements of s *)
| Greater -> member x tl
end;;
module Set :
functor (E1t : ORDERED_TYPE) ->
sig

type element = Elt.t

and set = element list

val empty : ’a list

val add : Elt.t -> Elt.t list -> Elt.t list

val member : Elt.t -> Elt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

module OrderedString =
struct

type t = string
let cmp x y = if x = y then Equal else if x < y then Less else Greater
end;;

module OrderedString :
sig type t = string val cmp : ’a -> ’a —-> comparison end

module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t
and set = element list
val empty : ’a list
val add : OrderedString.t -> OrderedString.t list —-> OrderedString.t list
val member : OrderedString.t -> OrderedString.t list -> bool
end

Chapter 4. The module system 63

StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

4.4 Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to
another, more efficient representation of sets without breaking their code. This can be achieved by
restricting Set by a suitable functor signature:

module type SETFUNCTOR =

functor (Elt: ORDERED_TYPE) ->
sig
type element = Elt.t (* concrete *)
type set (* abstract *)

val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->

#
#
#
#
#
#
#
#

sig
type element = Elt.t
and set

val empty : set

val add : element -> set -> set

val member : element -> set -> bool
end

module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
and set = AbstractSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

AbstractStringSet.add "gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

module type SET =

sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
module type SET =
sig
type element
and set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

H OH H OH OHF H H

module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (E1t : ORDERED_TYPE) -> SET

module WrongStringSet = WrongSet(OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
and set = WrongSet(OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

WrongStringSet.add "gee" WrongStringSet.empty;;
This expression has type string but is here used with type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in
the signature SET be declared equal to E1t.t; unfortunately, this is impossible above since SET is
defined in a context where E1t does not exist. To overcome this difficulty, Objective Caml provides
a with type construct over signatures that allows to enrich a signature with extra type equalities:

module AbstractSet =
(Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet :

functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
and set

val empty : set
val add : element -> set -> set
val member : element -> set -> bool

Chapter 4. The module system 65

end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.

module NoCaseString =
struct
type t = string
let cmp sl s2 =
OrderedString.cmp (String.lowercase sl1l) (String.lowercase s2)
end;;
module NoCaseString :
sig type t = string val cmp : string -> string -> comparison end

module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
and set = AbstractSet (NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

NoCaseStringSet.add "FOO" AbstractStringSet.empty;;
This expression has type

AbstractStringSet.set = AbstractSet (OrderedString).set
but is here used with type

NoCaseStringSet.set = AbstractSet(NoCaseString).set

Notice that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), both are built upon different orderings
of that type, and different invariants need to be maintained by the operations (being strictly
increasing for the standard ordering and for the case-insensitive ordering). Applying operations
from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or
build lists that violate the invariants of NoCaseStringSet.

4.5 Modules and separate compilation

66

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-
cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In Objective Caml, compilation units are special cases of structures and signatures, and the
relationship between the units can be explained easily in terms of the module system. A compilation
unit a comprises two files:

e the implementation file a.ml, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

e the interface file a.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

Both files define a structure named A (same name as the base name a of the two files, with the
first letter capitalized), as if the following definition was entered at top-level:

module A: sig (* contents of file a.mli *) end
= struct (* contents of file a.ml *) end;;

The files defining the compilation units can be compiled separately using the ocaml -c command
(the -c option means “compile only, do not try to link”); this produces compiled interface files
(with extension .cmi) and compiled object code files (with extension .cmo). When all units have
been compiled, their .cmo files are linked together using the ocaml command. For instance, the
following commands compile and link a program composed of two compilation units aux and main:

$ ocamlc -c aux.mli # produces aux.cmi
$ ocamlc -c aux.ml # produces aux.cmo
$ ocamlc -c main.mli # produces main.cmi
$ ocamlc -c main.ml # produces main.cmo
$ ocamlc -o theprogram aux.cmo main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of aux.mli *) end

= struct (* contents of aux.ml *) end;;
module Main: sig (* contents of main.mli *) end

= struct (* contents of main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in main.ml and
main.mli can refer to definition in aux.ml, using the Aux. ident notation, provided these definitions
are exported in aux.mli.

The order in which the .cmo files are given to ocaml during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Notice that only top-level structures can be mapped to separately-compiled files, but not func-
tors nor module types. However, all module-class objects can appear as components of a structure,
so the solution is to put the functor or module type inside a structure, which can then be mapped
to a file.

Chapter 5

Advanced examples with classes and
modules

(Chapter written by Didier Rémy)

In this chapter, we show some larger examples using objects, classes and modules. We review
many of the object features simultaneously on the example of a bank account. We show how modules
taken from the standard library can be expressed as classes. Lastly, we describe a programming
pattern know of as virtual types through the example of window managers.

5.1 Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and
specializing the following initial naive definition of a simple bank account. (We reuse the module
Euro defined at the end of chapter 3.)

let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>

let zero = euro O.;;
val zero : Euro.c = <obj>

let neg x = x#ttimes (-1.);;
val neg : < times : float -> ’a; .. > -> ’a = <fun>

class account =
object
val mutable balance = zero
method balance = balance
method deposit x = balance <- balance # plus x
method withdraw x =
if x#leq balance then (balance <- balance # plus (neg x); x) else zero
end;;
class account :
object
val mutable balance : Euro.c
method balance : Euro.c

H o H O H H

67

68

method deposit : Euro.c -> unit
method withdraw : Euro.c -> Euro.c
end

let c = new account in c # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

class account_with_interests =
object (self)
inherit account
method private interest = self # deposit (self # balance # times 0.03)
end;;
class account_with_interests :
object
val mutable balance : Euro.c
method balance : Euro.c
method deposit : Euro.c -> unit
method private interest : unit
method withdraw : Euro.c -> Euro.c
end

We make the method interest private, since clearly it should not be called freely from the outside.
Here, it is only made accessible t