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Chapter 1

| ntroduction

Let’s start at the very beginning,

a very nice place to start,

when you sing, you begin with A, B, C,

when you simulate, you begin with the topology,*

This document (ns Notes and Documentation) provides reference documentation for ns. Although we begin with a simple
simulation script, resources like Marc Greis’s tutorial web pages (originally at his web site, now at http://www. iSi.
edu/nsnam/ns/tutorial/) or the slides from one of the ns tutorials are problably better places to begin for the ns
novice.

We first begin by showing a simple simulation script. This script is also available in the sources in ~ns/tcl/ex/simple.tcl.

This script defines a simple topology of four nodes, and two agents, a UDP agent with a CBR traffic generator, and a TCP
agent. The simulation runs for 3s. The output is two trace files, out.tr and out.nam. When the simulation completes at
the end of 3s, it will attempt to run a nam visualisation of the simulation on your screen.

# The preamble
set ns [new Simulator] ; # initialise the simulation

# Predefine tracing

set T [open out.tr w]
$ns trace-all $f

set nf [open out_nam w]
$ns namtrace-all $nf

with apologies to Rodgers and Hammerstein
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#s0, we lied. now, we define the topology
no

\
5Mb \
2ms  \

HoH HHHHHHHHH R
>
N
|
|
|
|
|
|
|
|
|
>
w

set nO [$ns node]
set nl [$ns node]
set n2 [$ns node]
set n3 [$ns node]

$ns duplex-link $n0 $n2 5Mb 2ms DropTail
$ns duplex-link $n1 $n2 5Mb 2ms DropTail
$ns duplex-link $n2 $n3 1.5Mb 10ms DropTail

# Some agents.

set udpO [new Agent/UDP]

$ns attach-agent $n0 $udpO

set cbrO [new Application/Traffic/CBR]
$cbr0 attach-agent $udpO

$udpO set class_ 0

set null0 [new Agent/Null]
$ns attach-agent $n3 $nullo

$ns connect $udp0 $null0
$ns at 1.0 "$cbrO start"

puts [$cbrO0 set packetSize ]
puts [$cbrO set interval ]

# A FTP over TCP/Tahoe from $n1 to $n3, flowid 2
set tcp [new Agent/TCP]

$tcp set class_ 1

$ns attach-agent $nl $tcp

set sink [new Agent/TCPSink]
$ns attach-agent $n3 $sink

set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ns at 1.2 "$ftp start”

$ns connect $tcp $sink

$ns at 1.35 "$ns detach-agent $n0 $tcp ;

;# A UDP agent

;# on node $n0

;# A CBR traffic generator agent
; # attached to the UDP agent

; # actually, the default, but. ..

;# Its sink
;# on node $n3

;# TCP does not generate its own traffic

$ns detach-agent $n3 $sink"

12
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# The simulation runs for 3s.
# The simulation comes to an end when the scheduler invokes the finish{} procedure below.
# This procedure closes all trace files, and invokes nam visualization on one of the trace files.

$ns at 3.0 "Finish"
proc finish {} {
global ns f nf
$ns flush-trace
close $f
close $nf

puts "running nam..."
exec nam out.nam &
exit O

}

# Finally, start the simulation.
$ns run

14



Chapter 2

Undocumented Facilities

Ns is often growing to include new protocols. Unfortunately the documention doesn’t grow quite as often. This section lists
what remains to be documented, or what needs to be improved.

(The documentation is in the doc subdirectory of the ns source code if you want to add to it. :-)

Interface to the Interpreter e nothing currently

Simulator Basics e LANS need to be updated for new wired/wireless support (Yuri updated this?)
e wireless support needs to be added (done)
o should explicitly list queueing options in the queue mgt chapter?

Support e should pick a single list mgt package and document it
¢ should document the trace-post-processing utilities in bin
Routing e The usage and design of link state and MPLS routing modules are not documented at all. (Note: link state and
MPLS appeared only in daily snapshots and releases after 09/14/2000.)
e need to document hierarchical routing/addressing (Padma has done)
e need a chapter on supported ad-hoc routing protocols
Queueing e CBQ needs documentation (can maybe build off of Ftp://ftp.ee.lbl_gov/papers/cbqgsims.
ps.Z?)
Transport e need to document MFTP
o need to document RTP (session-rtp.cc, etc.)
e need to document multicast building blocks
o should repair and document snoop and tcp-int

Traffic and scenarios (new section)

e should add a description of how to drive the simulator from traces
e should add discussion of the scenario generator
o should add discussion of http traffic sources

Application e is the non-Haobo http stuff documented? no.
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Scale e should add disucssion of mixed mode (pending)
Emulation e nothing currently

Other e should document admission control policies?
e should add a validation chapter and snarf up the contents of ns-tests.html
o should snarf up Marc Greis’ tutorial rather than just referring to it?

16
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Interfaceto the Interpreter
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Chapter 3

OTcl Linkage

ns is an object oriented simulator, written in C++, with an OTcl interpreter as a frontend. The simulator supports a class
hierarchy in C++ (also called the compiled hierarchy in this document), and a similar class hierarchy within the OTcl inter-
preter (also called the interpreted hierarchy in this document). The two hierarchies are closely related to each other; from the
user’s perspective, there is a one-to-one correspondence between a class in the interpreted hierarchy and one in the compiled
hierarchy. The root of this hierarchy is the class TclObject. Users create new simulator objects through the interpreter; these
objects are instantiated within the interpreter, and are closely mirrored by a corresponding object in the compiled hierarchy.
The interpreted class hierarchy is automatically established through methods defined in the class TclClass. user instantiated
objects are mirrored through methods defined in the class TclObject. There are other hierarchies in the C++ code and OTcl
scripts; these other hierarchies are not mirrored in the manner of TclObject.

3.1 Concept Overview

Why two languages? ns uses two languages because simulator has two different kinds of things it needs to do. On one hand,
detailed simulations of protocols requires a systems programming language which can efficiently manipulate bytes, packet
headers, and implement algorithms that run over large data sets. For these tasks run-time speed is important and turn-around
time (run simulation, find bug, fix bug, recompile, re-run) is less important.

On the other hand, a large part of network research involves slightly varying parameters or configurations, or quickly exploring
a number of scenarios. In these cases, iteration time (change the model and re-run) is more important. Since configuration
runs once (at the beginning of the simulation), run-time of this part of the task is less important.

ns meets both of these needs with two languages, C++ and OTcl. C++ is fast to run but slower to change, making it suitable
for detailed protocol implementation. OTcl runs much slower but can be changed very quickly (and interactively), making it
ideal for simulation configuration. ns (via tclcl) provides glue to make objects and variables appear on both langauges.

For more information about the idea of scripting languages and split-language programming, see Ousterhout’s article in IEEE
Computer [26]. For more information about split level programming for network simulation, see the ns paper [2].

Which language for what? Having two languages raises the question of which language should be used for what purpose.

Our basic advice is to use OTcl:

o for configuration, setup, and “one-time” stuff
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o if you can do what you want by manipulating existing C++ objects
and use C++:

e if you are doing anything that requires processing each packet of a flow

¢ if you have to change the behavior of an existing C++ class in ways that weren’t anticipated

For example, links are OTcl objects that assemble delay, queueing, and possibly loss modules. If your experiment can be
done with those pieces, great. If instead you want do something fancier (a special queueing dicipline or model of loss), then
you’ll need a new C++ object.

There are certainly grey areas in this spectrum: most routing is done in OTcl (although the core Dijkstra algorithm is in C++).
We’ve had HTTP simulations where each flow was started in OTcl and per-packet processing was all in C++. This approache
worked OK until we had 100s of flows starting per second of simulated time. In general, if you’re ever having to invoke Tcl
many times per second, you problably should move that code to C++.

3.2 Code Overview

In this document, we use the term “interpreter” to be synonymous with the OTcl interpreter. The code to interface with the
interpreter resides in a separate directory, tclcl. The rest of the simulator code resides in the directory, ns-2. We will use
the notation ~tclcl/(file) to refer to a particular (file) in the Tcl directory. Similarly, we will use the notation, ~ns/(file) to
refer to a particular (file) in the ns-2 directory.

There are a number of classes defined in ~tclcl/. We only focus on the six that are used in ns: The Class Tcl (Section 3.3)
contains the methods that C++ code will use to access the interpreter. The class TclObject (Section 3.4) is the base class for
all simulator objects that are also mirrored in the compiled hierarchy. The class TclClass (Section 3.5) defines the interpreted
class hierarchy, and the methods to permit the user to instantiate TclObjects. The class TclCommand (Section 3.6) is used to
define simple global interpreter commands. The class EmbeddedTcl (Section 3.7) contains the methods to load higher level
builtin commands that make configuring simulations easier. Finally, the class InstVar (Section 3.8) contains methods to access
C++ member variables as OTcl instance variables.

The procedures and functions described in this chapter can be found in ~tclcl/Tcl.{cc, h}, ~tclcl/Tcl2.cc, ~tclcl/tcl-object.tcl,
and, ~tclcl/tracedvar.{cc, h}. The file ~tclcl/tcl2c++.c is used in building ns, and is mentioned briefly in this chapter.

3.3 Class Tcl

The class Tcl encapsulates the actual instance of the OTcl interpreter, and provides the methods to access and communi-
cate with that interpreter. The methods described in this section are relevant to the ns programmer who is writing C++ code.
The class provides methods for the following operations:

e obtain a reference to the Tcl instance;

e invoke OTcl procedures through the interpreter;

e retrieve, or pass back results to the interpreter;

e report error situations and exit in an uniform manner; and
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¢ store and lookup “TclObjects”.
e acquire direct access to the interpreter.

We describe each of the methods in the following subsections.

3.3.1 Obtain a Reference to the class Tcl instance

A single instance of the class is declared in ~tclcl/Tcl.cc as a static member variable; the programmer must obtain a reference
to this instance to access other methods described in this section. The statement required to access this instance is:

Tcl& tcl = Tcl::instance();

3.3.2 Invoking OTcl Procedures

There are four different methods to invoke an OTcl command through the instance, tcl. They differ essentially in their
calling arguments. Each function passes a string to the interpreter, that then evaluates the string in a global context. These
methods will return to the caller if the interpreter returns TCL_OK. On the other hand, if the interpreter returns TCL_ERROR,
the methods will call tkerror{}. The user can overload this procedure to selectively disregard certain types of errors. Such
intricacies of OTcl programming are outside the scope of this document. The next section (Section 3.3.3) describes methods
to access the result returned by the interpreter.

e tcl.eval(char* s) invokes Tcl_GlobalEval() to execute s through the interpreter.

e tcl ._evalc(constchar* s) preserves the argumentstring s. It copies the string s into its internal buffer; it then invokes
the previous eval(char* s) on the internal buffer.

o tcl._eval()assumes that the command is already stored in the class’ internal bp_; it directly invokes tcl - eval (char*
bp_). A handle to the buffer itself is available through the method tcl . buffer(void).

e tcl_evalf(constchar* s, ...) isa Printf(3) like equivalent. It uses vsprintf(3) internally to create the input
string.

As an example, here are some of the ways of using the above methods:

Tcl& tcl = Tcl::instance();

char wrk[128];

strcpy(wrk, "'Simulator set Numberlnterfaces_1');
tcl.eval (wrk);

sprintf(tcl . buffer (), "Agent/SRM set requestFunction_ %s", "Fixed);
tcl.eval QQ;

tcl.eval c("puts stdout hello world™);
tcl.eval f (""%s request %d %d", name_, sender, msgid);

3.3.3 Passing Results to/from the Interpreter

When the interpreter invokes a C++ method, it expects the result back in the private member variable, tcl_->result. Two
methods are available to set this variable.
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e tcl._result(constchar* s)
Pass the result string s back to the interpreter.

e tcl._resultf(constchar* fmt,...)
varargs(3) variant of above to format the result using vspr intf(3), pass the result string back to the interpreter.

it (strcmp(argv[1l], "now'™) == 0) {
tcl.resultf ("%.17g9", clock(Q));
return TCL_OK;

}

tcl.result (""Invalid operation specified™);
return TCL_ERROR;

Likewise, when a C++ method invokes an OTcl command, the interpreter returns the result in tcl_->result.

e tcl.result(void) must be used to retrieve the result. Note that the result is a string, that must be converted into an
internal format appropriate to the type of result.

tcl_evalc('Simulator set NumberiInterfaces '");
char* ni = tcl.result Q;
if (atoi(ni) = 1)
tcl.evalc("Simulator set Numberinterfaces_ 1");

3.3.4 Error Reporting and Exit
This method provides a uniform way to report errors in the compiled code.

e tcl _error(constchar* s) performs the following functions: write s to stdout; write tcl_->result to stdout; exit
with error code 1.

tcl.resultf (emd = %s'™, cmd);
tcl.error (""invalid command specified™);
/*NOTREACHED*/

Note that there are minor differences between returning TCL_ERROR as we did in the previous subsection (Section 3.3.3),
and calling Tcl: zerror(). The former generates an exception within the interpreter; the user can trap the exception and
possibly recover from the error. If the user has not specified any traps, the interpreter will print a stack trace and exit. However,
if the code invokes error (), then the simulation user cannot trap the error; in addition, ns will not print any stack trace.

3.3.5 Hash Functions within the Interpreter

ns stores a reference to every TclObject in the compiled hierarchy in a hash table; this permits quick access to the objects.
The hash table is internal to the interpreter. ns uses the name of the TclObject as the key to enter, lookup, or delete the
TclObject in the hash table.
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e tcl ._enter(TclObject* o) will insert a pointer to the TclObject o into the hash table.
Itis used by TclClass: :create_shadow() to insert an object into the table, when that object is created.

e tcl . lookup(char* s) will retrieve the TclObject with the name s.
Itis used by TclObject: : lookup().

e tcl.remove(TclObject* o) will delete references to the TclObject o from the hash table.

It isused by TcIClass: :delete_shadow() to remove an existing entry from the hash table, when that object is
deleted.

These functions are used internally by the class TclObject and class TclClass.

3.3.6 Other Operations on the Interpreter
If the above methods are not sufficient, then we must acquire the handle to the interpreter, and write our own functions.

e tcl.interp(void) returns the handle to the interpreter that is stored within the class Tcl.

3.4 Class TclObject

class TclObject s the base class for most of the other classes in the interpreted and compiled hierarchies. Every object
in the class TclObject is created by the user from within the interpreter. An equivalent shadow object is created in the compiled
hierarchy. The two objects are closely associated with each other. The class TclClass, described in the next section, contains
the mechanisms that perform this shadowing.

In the rest of this document, we often refer to an object as a TclObject!. By this, we refer to a particular object that is either
in the class TclObject, or in a class that is derived from the class TclObject. If it is necessary, we will explicitly qualify
whether that object is an object within the interpreter, or an object within the compiled code. In such cases, we will use the
abbreviations “interpreted object”, and “compiled object” to distinguish the two. and within the compiled code respectively.

Differences from nsvl Unlike ns v1, the class TclObject subsumes the earlier functions of the NsObject class. It therefore
stores the interface variable bindings (Section 3.4.2) that tie OTcl instance variables in the interpreted object to corresponding
C++ member variables in the compiled object. The binding is stronger than in ns v1 in that any changes to the OTcl variables
are trapped, and the current C++ and OTcl values are made consistent after each access through the interpreter. The consis-
tency is done through the class InstVar (Section 3.8). Also unlike ns v1, objects in the class TclObject are no longer stored as
a global link list. Instead, they are stored in a hash table in the class Tcl (Section 3.3.5).

Example configuration of a TclObject The following example illustrates the configuration of an SRM agent (class
Agent/SRM/Adaptive).

set srm [new Agent/SRM/Adaptive]
$srm set packetSize 1024
$srm traffic-source $s0

LIn the latest release of nsand ns/tclcl, this object has been renamed to Spl i t Obj ef ct , which more accurately reflects its nature of existence. However,
for the moment, we will continue to use the term TclObject to refer to these objects and this class.
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By convention in ns, the class Agent/SRM/Adaptive is a subclass of Agent/SRM, is a subclass of Agent, is a subclass of

TclObject. The corresponding compiled class hierarchy is the ASRMAgent, derived from SRMAgent, derived from Agent,

derived from TclObject respectively. The first line of the above example shows how a TclObject is created (or destroyed)
(Section 3.4.1); the next line configures a bound variable (Section 3.4.2); and finally, the last line illustrates the interpreted
object invoking a C++ method as if they were an instance procedure (Section 3.4.4).

3.4.1 Creating and Destroying TclObjects

When the user creates a new TclObject, using the procedures new{} and delete{}; these procedures are defined in
~tclcl/tcl-object.tcl. They can be used to create and destroy objects in all classes, including TclObjects.. In this section,
we describe the internal actions executed when a TclObject is created.

Creating TclObjects By using new{}, the user creates an interpreted TclObject. the interpreter will execute the constructor
for that object, Init{}, passing it any arguments provided by the user. ns is responsible for automatically creating the
compiled object. The shadow object gets created by the base class TclObject’s constructor. Therefore, the constructor for
the new TclObject must call the parent class constructor first. new{} returns a handle to the object, that can then be used for
further operations upon that object.

The following example illustrates the Agent/SRM/Adaptive constructor:

Agent/SRM/Adaptive instproc init args {
eval $self next $args
$self array set closest_ "requestor 0 repairor 0"
$self set eps_ [$class set eps ]

}

The following sequence of actions are performed by the interpreter as part of instantiating a new TclObject. For ease of
exposition, we describe the steps that are executed to create an Agent/SRM/Adaptive object. The steps are:

1. Obtain an unique handle for the new object from the TclObject name space. The handle is returned to the user. Most
handles in ns have the form _o(NNN), where (NNN}) is an integer. This handle is created by getid{}. It can be
retrieved from C++ with the name (Q{} method.

2. Execute the constructor for the new object. Any user-specified arguments are passed as arguments to the constructor.
This constructor must invoke the constructor associated with its parent class.
In our example above, the Agent/SRM/Adaptive calls its parent class in the very first line.

Note that each constructor, in turn invokes its parent class’ constructor ad nauseum. The last constructor in ns is the
TclObject constructor. This constructor is responsible for setting up the shadow object, and performing other initial-
izations and bindings, as we explain below. It is preferable to call the parent constructors first before performing the
initializations required in this class. This allows the shadow objects to be set up, and the variable bindings established.

3. The TclObject constructor invokes the instance procedure create-shadow{} for the class Agent/SRM/Adaptive.

4. When the shadow object is created, ns calls all of the constructors for the compiled object, each of which may establish
variable bindings for objects in that class, and perform other necessary initializations. Hence our earlier injunction that
it is preferable to invoke the parent constructors prior to performing the class initializations.

5. After the shadow object is successfully created, create_shadow(void)

2As an example, the classes Simulator, Node, Link, or rtObject, are classes that are not derived from the class TclObject. Objects in these classes are not,
therefore, TclObjects. However, a Simulator, Node, Link, or route Object is also instantiated using the new procedure in ns.
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(a) adds the new object to hash table of TclObjects described earlier (Section 3.3.5).

(b) makes cmd{} an instance procedure of the newly created interpreted object. This instance procedure invokes the
command() method of the compiled object. In a later subsection (Section 3.4.4), we describe how the command
method is defined, and invoked.

Note that all of the above shadowing mechanisms only work when the user creates a new TclObject through the interpreter.
It will not work if the programmer creates a compiled TclObject unilaterally. Therefore, the programmer is enjoined not to
use the C++ new method to create compiled objects directly.

Deletion of TclObjects The delete operation destroys the interpreted object, and the corresponding shadow object. For
example, use-scheduler{(scheduler)} uses the de lete procedure to remove the default list scheduler, and instantiate
an alternate scheduler in its place.

Simulator instproc use-scheduler type {
$self instvar scheduler_

delete scheduler_ ; # first delete the existing list scheduler
set scheduler_ [new Scheduler/$type]

As with the constructor, the object destructor must call the destructor for the parent class explicitly as the very last statement
of the destructor. The TclObject destructor will invoke the instance procedure de lete-shadow, that in turn invokes the
equivalent compiled method to destroy the shadow object. The interpreter itself will destroy the interpreted object.

3.4.2 Variable Bindings

In most cases, access to compiled member variables is restricted to compiled code, and access to interpreted member variables
is likewise confined to access via interpreted code; however, it is possible to establish bi-directional bindings such that both
the interpreted member variable and the compiled member variable access the same data, and changing the value of either
variable changes the value of the corresponding paired variable to same value.

The binding is established by the compiled constructor when that object is instantiated; it is automatically accessible by the
interpreted object as an instance variable. ns supports five different data types: reals, bandwidth valued variables, time valued
variables, integers, and booleans. The syntax of how these values can be specified in OTcl is different for each variable type.

¢ Real and Integer valued variables are specified in the “normal” form. For example,

$object set realvar 1.2e3
$object set intvar 12

e Bandwidth is specified as a real value, optionally suffixed by a ‘k’ or ‘K’ to mean kilo-quantities, or ‘m’ or ‘M’ to mean
mega-quantities. A final optional suffix of ‘B’ indicates that the quantity expressed is in Bytes per second. The default
is bandwidth expressed in bits per second. For example, all of the following are equivalent:

$object set bwvar 1.5m

$object set bwvar 1.5mb
$object set bwvar 1500k
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$object set bwvar 1500kb
$object set bwvar .1875MB
$object set bwvar 187.5kB
$object set bwvar 1.5e6

e Time is specified as a real value, optionally suffixed by a ‘m’ to express time in milli-seconds, ‘n’ to express time in
nano-seconds, or ‘p’ to express time in pico-seconds. The default is time expressed in seconds. For example, all of the

following are equivalent:

$object set timevar 1500m
$object set timevar 1.5
$object set timevar 1.5e9n
$object set timevar 1500e9p

Note that we can also safely add a s to reflect the time unit of seconds. ns will ignore anything other than a valid real

number specification, or a trailing ‘m’, ‘n’, or ‘p’.

e Booleans can be expressed either as an integer, or as ‘T’ or ‘t’ for true. Subsequent characters after the first letter are
ignored. If the value is neither an integer, nor a true value, then it is assumed to be false. For example,

$object set boolvar t
$object set boolvar true
$object set boolvar 1

$object set boolvar false
$object set boolvar junk
$object set boolvar 0O

The following example shows the constructor for the ASRMAgent?,

ASRMAgent: : ASRMAgent() {
bind(""pdistance ', &pdistance );
bind(*'requestor_", &requestor_);
bind_time("lastSent_ ", &lastSessSent );
bind bw('ctriLimit_", &ctriIBWLIimit );
bind_bool (*'running_", &running_);

}

;# set to true
;# or any non-zero value

;# set to false

/™ real variable */
/> integer variable */
/* time variable */

/* bandwidth variable */

/* boolean variable */

Note that all of the functions above take two arguments, the name of an OTcl variable, and the address of the corresponding
compiled member variable that is linked. While it is often the case that these bindings are established by the constructor of
the object, it need not always be done in this manner. We will discuss such alternate methods when we describe the class

InstVar (Section 3.8) in detail later.

Each of the variables that is bound is automatically initialised with default values when the object is created. The default
values are specified as interpreted class variables. This initialisation is done by the routing init-instvar{}, invoked by
methods in the class Instvar, described later (Section 3.8). init-instvar{} checks the class of the interpreted object, and
all of the parent class of that object, to find the first class in which the variable is defined. It uses the value of the variable in
that class to initialise the object. Most of the bind initialisation values are defined in ~ns/tcl/lib/ns-default.tcl.

For example, if the following class variables are defined for the ASRMAgent:

3Note that this constructor is embellished to illustrate the features of the variable binding mechanism.
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Agent/SRM/Adaptive set pdistance_ 15.0
Agent/SRM set pdistance_ 10.0
Agent/SRM set lastSent_ 8.345m

Agent set ctriLimit_ 1.44M
Agent/SRM/Adaptive set running_ f

Therefore, every new Agent/SRM/Adaptive object will have pdistance_ set to 15.0; lastSent__is set to 8.345m from
the setting of the class variable of the parent class; ctrILimit_ is set to 1.44M using the class variable of the parent class
twice removed; running is set to false; the instance variable pdistance_ is not initialised, because no class variable exists
in any of the class hierarchy of the interpreted object. In such instance, init-instvar{} will invoke warn-instvar{},
to print out a warning about such a variable. The user can selectively override this procedure in their simulation scripts, to
elide this warning.

Note that the actual binding is done by instantiating objects in the class InstVar. Each object in the class InstVar binds one
compiled member variable to one interpreted member variable. A TclObject stores a list of InstVar objects corresponding to
each of its member variable that is bound in this fashion. The head of this list is stored in its member variable instvar_ of
the TclObject.

One last point to consider is that ns will guarantee that the actual values of the variable, both in the interpreted object and the
compiled object, will be identical at all times. However, if there are methods and other variables of the compiled object that
track the value of this variable, they must be explicitly invoked or changed whenever the value of this variable is changed.
This usually requires additional primitives that the user should invoke. One way of providing such primitives in ns is through
the command() method described in the next section.

3.4.3 \Variable Tracing

In addition to variable bindings, TclObject also supports tracing of both C++ and Tcl instance variables. A traced variable
can be created and configured either in C++ or Tcl. To establish variable tracing at the Tcl level, the variable must be visible
in Tcl, which means that it must be a bounded C++/Tcl or a pure Tcl instance variable. In addition, the object that owns
the traced variable is also required to establish tracing using the Tcl trace method of TclObject. The first argument to the
trace method must be the name of the variable. The optional second argument specifies the trace object that is responsible
for tracing that variable. If the trace object is not specified, the object that own the variable is responsible for tracing it.

For a TclObject to trace variables, it must extend the C++ trace method that is virtually defined in TclObject. The Trace
class implements a simple trace method, thereby, it can act as a generic tracer for variables.

class Trace : public Connector {

virtual void trace(TracedVar®);

}:
Below is a simple example for setting up variable tracing in Tcl:

# \$tcp tracing its own variable cwnd_
\$tcp trace cwnd_

# the variable ssthresh_ of \$tcp is traced by a generic \$tracer

set tracer [new Trace/ Var]
\$tcp trace ssthresh_ \$tracer
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For a C++ variable to be traceable, it must belong to a class that derives from TracedVar. The virtual base class TracedVar
keeps track of the variable’s name, owner, and tracer. Classes that derives from TracedVar must implement the virtual method
value, that takes a character buffer as an argument and writes the value of the variable into that buffer.

class TracedVar {

virtual char* value(char* buf) = 0;

pr ot ect ed:
TracedVar (const char* nane);
const char* nane_; // nane of the variable
Tcl Qhj ect* owner _; /1 the object that owns this variable
Tcl hj ect* tracer_; /1 call back when the variable is changed
b

The TclCL library exports two classes of TracedVar: TracedInt and TracedDouble. These classes can be used in
place of the basic type int and double respectively. Both TracedInt and TracedDouble overload all the operators that can
change the value of the variable such as assignment, increment, and decrement. These overloaded operators use the assign
method to assign the new value to the variable and call the tracer if the new value is different from the old one. TracedInt and
TracedDouble also implement their value methods that output the value of the variable into string. The width and precision
of the output can be pre-specified.

3.4.4 command Methods: Definition and Invocation

For every TclObject that is created, ns establishes the instance procedure, cmd{}, as a hook to executing methods through the
compiled shadow object. The procedure cmd{} invokes the method command() of the shadow object automatically, passing
the arguments to cmd{} as an argument vector to the command() method.

The user can invoke the cmd{} method in one of two ways: by explicitly invoking the procedure, specifying the desired
operation as the first argument, or implicitly, as if there were an instance procedure of the same name as the desired operation.
Most simulation scripts will use the latter form, hence, we will describe that mode of invocation first.

Consider the that the distance computation in SRM is done by the compiled object; however, it is often used by the interpreted
object. It is usually invoked as:

$srmObject distance? (agentAddress)

If there is no instance procedure called distance?, the interpreter will invoke the instance procedure unknown{}, defined
in the base class TclObject. The unknown procedure then invokes

$srmObject cmd distance? (agentAddress)

to execute the operation through the compiled object’s command() procedure.

Ofcourse, the user could explicitly invoke the operation directly. One reason for this might be to overload the operation by
using an instance procedure of the same name. For example,

Agent/SRM/Adaptive instproc distance? addr {
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$self instvar distanceCache_
if I[info exists distanceCache_ ($addr)] {

set distanceCache_($addr) [$self cnd di stance? $addr]
3

set distanceCache_($addr)
}

We now illustrate how the command() method using ASRMAgent: : command() as an example.

int ASRMAgent::command(int argc, const char*const*argv) {
Tcl& tcl = Tcl::instance();
if (argc == 3) {
it (strcmp(argv[1l], "distance?") == 0) {

int sender = atoi(argv[2]);
SRMinfo* sp = get state(sender);
tcl.tesultf("%f", sp->distance );
return TCL_OK;

}
}
return (SRMAgent::command(argc, argv));

}

We can make the following observations from this piece of code:

e The function is called with two arguments:
The first argument (argc) indicates the number of arguments specified in the command line to the interpreter.
The command line arguments vector (argv) consists of
— argv[0] contains the name of the method, “cmd”.
— argv|[1] specifies the desired operation.
— If the user specified any arguments, then they are placed inargv[2...(argc - 1)].
The arguments are passed as strings; they must be converted to the appropriate data type.

o If the operation is successfully matched, the match should return the result of the operation using methods described
earlier (Section 3.3.3).

o command() itself must return either TCL_OK or TCL_ERROR to indicate success or failure as its return code.
o Ifthe operation is not matched in this method, it must invoke its parent’s command method, and return the corresponding

result.

This permits the user to concieve of operations as having the same inheritance properties as instance procedures or
compiled methods.

In the event that this command method is defined for a class with multiple inheritance, the programmer has the liberty
to choose one of two implementations:

1) Either they can invoke one of the parent’s command method, and return the result of that invocation, or

2) They can each of the parent’s command methods in some sequence, and return the result of the first invocation that
is successful. If none of them are successful, then they should return an error.

In our document, we call operations executed through the command() instproc-likes. This reflects the usage of these opera-
tions as if they were OTcl instance procedures of an object, but can be very subtly different in their realisation and usage.
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3.5

Class TclClass

This compiled class (class TclClass)is apure virtual class. Classes derived from this base class provide two functions:
construct the interpreted class hierarchy to mirror the compiled class hierarchy; and provide methods to instantiate new
TclObjects. Each such derived class is associated with a particular compiled class in the compiled class hierarchy, and can
instantiate new objects in the associated class.

As an example, consider a class such as the class RenoTcpClass. It is derived from class TclClass, and is associated
with the class RenoTcpAgent. It will instantiate new objects in the class RenoTcpAgent. The compiled class hierarchy
for RenoTcpAgent is that it derives from TcpAgent, that in turn derives from Agent, that in turn derives (roughly) from
TclObject. RenoTcpClass is defined as

static class RenoTcpClass: public TclClass {
public:
RenoTcpClass() : TclClass("'Agent/TCP/Reno™) {}
TclObject* create(int argc, const char*const* argv) {
return (new RenoTcpAgent());
}

} class_reno;

We can make the following observations from this definition:

~N o o b

The class defines only the constructor, and one additional method, to create instances of the associated TclObject.

. nswill execute the RenoTcpClass constructor for the static variable class_reno, when it is first started. This sets

up the appropriate methods and the interpreted class hierarchy.

. The constructor specifies the interpreted class explicitly as Agent/TCP/Reno. This also specifies the interpreted

class hierarchy implicitly.

Recall that the convention in ns is to use the character slash (’/”) is a separator. For any given class A/B/C/D, the
class A/B/C/D is a sub-class of A/B/C, that is itself a sub-class of A/B, that, in turn, is a sub-class of A. A itself is a
sub-class of TclObject.

In our case above, the TclClass constructor creates three classes, Agent/TCP/Reno sub-class of Agent/TCP sub-
class of Agent sub-class of TclObject.

. This class is associated with the class RenoTcpAgent; it creats new objects in this associated class.
. The RenoTcpClass: : create method returns TclObjects in the class RenoTcpAgent.
. When the user specifies new Agent/TCP/Reno, the routine RenoTcpClass: :create is invoked.

. The arguments vector (argv) consists of

— argv[0] contains the name of the object.

— argv[1...3] contain $self, $class, and $proc.Since create is called through the instance procedure
create-shadow, argv[3] contains create-shadow.

— argv[4] contain any additional arguments (passed as a string) provided by the user.

The class Trace illustrates argument handling by TclClass methods.

class TraceClass : public TclIClass {
public:
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TraceClass() : TclClass("Trace™) {}
TclObject* create(int args, const char*const* argv) {
if (args >= 5)
return (new Trace(*argv[4]));
else
return NULL;
}

} trace_class;

A new Trace object is created as

new Trace "X

Finally, the nitty-gritty details of how the interpreted class hierarchy is constructed:

o M w0 bdoRE

o

The object constructor is executed when ns first starts.

This constructor calls the TclClass constructor with the name of the interpreted class as its argument.

The TclClass constructor stores the name of the class, and inserts this object into a linked list of the TclClass objects.
During initialization of the simulator, Tcl_App Ini t(void) invokes Tcl1Class: -bind(void)

For each object in the list of TclClass objects, bind() invokes register{}, specifying the name of the interpreted
class as its argument.

register{} establishes the class hierarchy, creating the classes that are required, and not yet created.

Finally, bind() defines instance procedures create-shadow and dellete-shadow for this new class.

3.5.1 How to Bind Static C++ Class Member Variables

In Section 3.4, we have seen how to expose member variables of a C++ object into OTcl space. This, however, does not apply
to static member variables of a C++ class. Of course, one may create an OTcl variable for the static member variable of every
C++ object; obviously this defeats the whole meaning of static members.

We cannot solve this binding problem using a similar solution as binding in TclObject, which is based on InstVar, because
InstVars in TcICL require the presence of a TclObject. However, we can create a method of the corresponding TclClass and
access static members of a C++ class through the methods of its corresponding TclClass. The procedure is as follows:

1.
2.
3.

Create your own derived TclClass as described above;
Declare methods bind() and method() in your derived class;

Create your binding methods in the implementation of your bind() with add_method ("'your_method'), then
implement the handler in method() in a similar way as you would do in TclObject: : command(). Notice that the
number of arguments passed to TcIClass: : method() are different from those passed to TclObject: : command().
The former has two more arguments in the front.

As an example, we show a simplified version of PacketHeaderClass in ~ns/packet.cc. Suppose we have the following
class Packet which has a static variable hdrlen__ that we want to access from OTcl:
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class Packet {

static int hdrlen_;

};

Then we do the following to construct an accessor for this variable:

class PacketHeaderClass : public TclClass {

protected:
PacketHeaderClass(const char* classname, int hdrsize);
TclObject* create(int argc, const char*const* argv);

/* These two implements OTcl class access methods */

virtual void bind(Q);
virtual int method(int argc, const char*const* argv);

/* Call to base class bind() must precede add_method() */

}:
void PacketHeaderClass::bind()
{
TclClass::bind();
add_method("'hdrlen™);
}
int PacketHeaderClass::method(int ac, const char*const* av)
{
Tcl& tcl = Tcl::instance();
/* Notice this argument translation; we can then handle them as if in
int argc = ac - 2;
const char*const* argv = av + 2;
it (argc == 2) {
it (strcmp(argv[l], "hdrlen™) == 0) {
tcl.resultf(""%d", Packet::hdrlen );
return (TCL_OK);
}
} else if (argc == 3) {
it (strcmp(argv[l], "hdrlen™) == 0) {
Packet::hdrlen_ = atoi(argv[2]);
return (TCL_OK);
}
}
return TclClass::method(ac, av);
}

After this, we can then use the following OTcl command to access and change values of Packet

PacketHeader hdrlen 120
set 1 [PacketHeader hdrlen]
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3.6 Class TclICommand

This class (class TclCommand) provides just the mechanism for ns to export simple commands to the interpreter, that can
then be executed within a global context by the interpreter. There are two functions defined in ~ns/misc.cc: ns-random and
ns-version. These two functions are initialized by the function init_misc(void), defined in ~ns/misc.cc; init_misc
is invoked by Tcl_App Init(void) during startup.

e class VersionCommand defines the command ns-version. It takes no argument, and returns the current ns
version string.

% ns-version ;# get the current version
2.0a12

e class RandomCommand defines the command ns-random. With no argument, ns-random returns an integer,
uniformly distributed in the interval [0, 23! — 1].

When specified an argument, it takes that argument as the seed. If this seed value is 0, the command uses a heuristic
seed value; otherwise, it sets the seed for the random number generator to the specified value.

% ns-random ;# return a random number
2078917053

% ns-random O ; #set the seed heuristically
858190129

% ns-random 23786 ; #set seed to specified value
23786

Note that, it is generally not advisable to construct top-level commands that are available to the user. We now describe how
to define a new command using the example class say hel lo. The example defines the command hi, to print the string
“hello world”, followed by any command line arguments specified by the user. For example,

% hi this is ns [ns-version]
hello world, this is ns 2.0al2

1. The command must be defined within a class derived from the class TclCommand. The class definition is:
class say hello : public TclCommand {
public:

say hello(Q);
int command(int argc, const char*const* argv);

2. The constructor for the class must invoke the TclCommand constructor with the command as argument; i.e.,

say hello() : TclCommand('hi'") {}

The TcICommand constructor sets up "hi" as a global procedure that invokes TclCommand: :dispatch_cmd().

3. The method command() must perform the desired action.

The method is passed two arguments. The first argument, argc, contains the number of actual arguments passed by
the user.
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The actual arguments passed by the user are passed as an argument vector (argv) and contains the following:
— argv[0] contains the name of the command (hi).

—argv[1l...(argc - 1)] contains additional arguments specified on the command line by the user.
commandy() is invoked by dispatch_cmd().

#include <streams.h> /> because we are using stream 1/0 */

int say hello::command(int argc, const char*const* argv) {
cout << "hello world:";
for (int 1 = 1; i1 < argc; i++)
cout << 7 7 << argv[i];
cout << ”\ n7;
return TCL_OK;
}

4. Finally, we require an instance of this class. TcICommand instances are created in the routine init_misc(void).

new say hello;

Note that there used to be more functions such as ns-at and ns-now that were accessible in this manner. Most of these
functions have been subsumed into existing classes. In particular, ns—at and ns-now are accessible through the scheduler
TclObject. These functions are defined in ~ns/tcl/lib/ns-lib.tcl.

% set ns [new Simulator] ; # get new instance of simulator
_ol

% $ns now ;# query simulator for current time
0

% $ns at ... ; # specify at operations for simulator

3.7 Class EmbeddedTcl

ns permits the development of functionality in either compiled code, or through interpreter code, that is evaluated at initializa-
tion. For example, the scripts ~tclcl/tcl-object.tcl or the scripts in ~ns/tcl/lib. Such loading and evaluation of scripts is done
through objects in the class EmbeddedTcl.

The easiest way to extend ns is to add OTcl code to either ~tclcl/tcl-object.tcl or through scripts in the ~ns/tcl/lib directory.
Note that, in the latter case, ns sources ~ns/tcl/lib/ns-lib.tcl automatically, and hence the programmer must add a couple of lines

to this file so that their script will also get automatically sourced by ns at startup. As an example, the file ~ns/tcl/mcast/srm.tcl
defines some of the instance procedures to run SRM. In ~ns/tcl/lib/ns-lib.tcl, we have the lines:

source tcl/mcast/srm.tcl

to automatically get srm.tcl sourced by ns at startup.

Three points to note with EmbeddedTcl code are that firstly, if the code has an error that is caught during the eval, then ns will
not run. Secondly, the user can explicitly override any of the code in the scripts. In particular, they can re-source the entire
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script after making their own changes. Finally, after adding the scripts to ~ns/tcl/lib/ns-lib.tcl, and every time thereafter that
they change their script, the user must recompile ns for their changes to take effect. Of course, in most cases*, the user can
source their script to override the embedded code.

The rest of this subsection illustrate how to integrate individual scripts directly into ns. The first step is convert the script into
an EmbeddedTcl object. The lines below expand ns-lib.tcl and create the EmbeddedTcl object instance called et_ns_lib:

tclsh bin/tcl-expand.tcl tcl/lib/ns-l1ib._tcl | \
../Tcl/tcl2c++ et_ns_lib > gen/ns_tcl.cc

The script, ~ns/bin/tcl-expand.tcl expands ns-Hib.tcl by replacing all source lines with the corresponding source files.
The program, ~tclcl/tcl2cc.c, converts the OTcl code into an equivalent EmbeddedTcl object, et_ns_lib.

During initialization, invoking the method EmbeddedTcl : = 1oad explicitly evaluates the array.

— ~tclcl/tcl-object.tcl is evaluated by the method Tcl - - init(void); Tcl_ApplInit() invokes Tcl:z:Init(). The
exact command syntax for the load is:

et_tclobject.load();

— Similarly, ~ns/tcl/lib/ns-lib.tcl is evaluated directly by Tcl_ApplInitin ~ns/ns_tclsh.cc.

et_ns_lib.load(Q);

3.8 Class InstVar

This section describes the internals of the class InstVar. This class defines the methods and mechanisms to bind a C++
member variable in the compiled shadow object to a specified OTcl instance variable in the equivalent interpreted object. The
binding is set up such that the value of the variable can be set or accessed either from within the interpreter, or from within
the compiled code at all times.

There are five instance variable classes: class InstVarReal,class InstVarTime,class InstVarBandwidth,
class InstVarint, and class InstVarBool, corresponding to bindings for real, time, bandwidth, integer, and
boolean valued variables respectively.

We now describe the mechanism by which instance variables are set up. We use the class InstVarReal to illustrate the
concept. However, this mechanism is applicable to all five types of instance variables.

When setting up an interpreted variable to access a member variable, the member functions of the class InstVar assume that
they are executing in the appropriate method execution context; therefore, they do not query the interpreter to determine the
context in which this variable must exist.

In order to guarantee the correct method execution context, a variable must only be bound if its class is already established
within the interpreter, and the interpreter is currently operating on an object in that class. Note that the former requires that
when a method in a given class is going to make its variables accessible via the interpreter, there must be an associated

4The few places where this might not work are when certain variables might have to be defined or undefined, or otherwise the script contains code other
than procedure and variable definitions and executes actions directly that might not be reversible.
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class TclClass (Section 3.5) defined that identifies the appropriate class hierarchy to the interpreter. The appropriate method
execution context can therefore be created in one of two ways.

An implicit solution occurs whenever a new TclObiject is created within the interpreter. This sets up the method execution
context within the interpreter. When the compiled shadow object of the interpreted TclObject is created, the constructor for
that compiled object can bind its member variables of that object to interpreted instance variables in the context of the newly
created interpreted object.

An explicit solution is to define a bind-variables operation within a command function, that can then be invoked
via the cmd method. The correct method execution context is established in order to execute the cmd method. Likewise,
the compiled code is now operating on the appropriate shadow object, and can therefore safely bind the required member
variables.

An instance variable is created by specifying the name of the interpreted variable, and the address of the member variable in
the compiled object. The constructor for the base class InstVar creates an instance of the variable in the interpreter, and then
sets up a trap routine to catch all accesses to the variable through the interpreter.

Whenever the variable is read through the interpreter, the trap routine is invoked just prior to the occurrence of the read. The
routine invokes the appropriate get function that returns the current value of the variable. This value is then used to set the
value of the interpreted variable that is then read by the interpreter.

Likewise, whenever the variable is set through the interpreter, the trap routine is invoked just after to the write is completed.

The routine gets the current value set by the interpreter, and invokes the appropriate set function that sets the value of the
compiled member to the current value set within the interpreter.
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Chapter 4

The Class Simulator

The overall simulator is described by a Tcl class Simulator. It provides a set of interfaces for configuring a simulation
and for choosing the type of event scheduler used to drive the simulation. A simulation script generally begins by creating an
instance of this class and calling various methods to create nodes, topologies, and configure other aspects of the simulation.
A subclass of Simulator called OldSim is used to support ns v1 backward compatibility.

The procedures and functions described in this chapter can be found in ~ns/tcl/lib/ns-lib.tcl, ~ns/scheduler.{cc,h}, and,
~ns/heap.h.

4.1 Simulator Initialization

When a new simulation object is created in tcl, the initialization procedure performs the following operations:

e initialize the packet format (calls create_packetformat)
o create a scheduler (defaults to a calendar scheduler)

e create a “null agent” (a discard sink used in various places)

The packet format initialization sets up field offsets within packets used by the entire simulation. It is described in more detail
in the following chapter on packets (Chapter 12). The scheduler runs the simulation in an event-driven manner and may be
replaced by alternative schedulers which provide somewhat different semantics (see the following section for more detail).
The null agent is created with the following call:

set nullAgent_ [new Agent/Null]

This agent is generally useful as a sink for dropped packets or as a destination for packets that are not counted or recorded.

4.2 Schedulers and Events

The simulator is an event-driven simulator. There are presently four schedulers available in the simulator, each of which is
implemented using a different data structure: a simple linked-list, heap, calendar queue (default), and a special type called
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“real-time”. Each of these are described below. The scheduler runs by selecting the next earliest event, executing it to
completion, and returning to execute the next event.Unit of time used by scheduler is seconds. Presently, the simulator is
single-threaded, and only one event in execution at any given time. If more than one event are scheduled to execute at the
same time, their execution is performed on the first scheduled — first dispatched manner. Simultaneous events are not re-

ordered anymore by schedulers (as it was in earlier versions) and all schedulers should yeild the same order of dispatching
given the same input.

No partial execution of events or pre-emption is supported.

An event generally comprises a “firing time” and a handler function. The actual definition of an event is found in ~ns/scheduler.h:

class Event {

public:
Event* next_; /* event list */
Handler* handler_; /* handler to call when event ready */
double time_; /* time at which event is ready */
int uid_; /* unique ID */
Event() : time_(0), uid_(0) {}

};

/*

* The base class for all event handlers. When an event’s scheduled
* time arrives, it is passed to handle which must consume it.
*j.e., IF It needs to be freed it, it must be freed by the handler.
*/
class Handler {
public:
virtual void handle(Event* event);

3

Two types of objects are derived from the base class Event: packets and “at-events”. Packets are described in detail in
the next chapter (Chapter 12.2.1). An at-event is a tcl procedure execution scheduled to occur at a particular time. This is
frequently used in simulation scripts. A simple example of how it is used is as follows:

set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 "$self complete_sim”

This tcl code fragment first creates a simulation object, then changes the default scheduler implementation to be heap-based
(see below), and finally schedules the function $sel ¥ complete_sim to be executed at time 300.5 (seconds)(Note that
this particular code fragment expects to be encapsulated in an object instance procedure, where the appropriate reference to

$sel T is correctly defined.). At-events are implemented as events where the handler is effectively an execution of the tcl
interpreter.

4.2.1 The List Scheduler

The list scheduler (class Scheduler/List) implements the scheduler using a simple linked-list structure. The list is
kept in time-order (earliest to latest), so event insertion and deletion require scanning the list to find the appropriate entry.
Choosing the next event for execution requires trimming the first entry off the head of the list. This implementation preserves
event execution in a FIFO manner for simultaneous events.
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4.2.2 the heap scheduler

The heap scheduler (class Scheduler/Heap) implements the scheduler using a heap structure. This structure is su-
perior to the list structure for a large number of events, as insertion and deletion times are in O(logn) for n events. This
implementation in ns v2 is borrowed from the MaRS-2.0 simulator [1]; it is believed that MaRS itself borrowed the code from
NetSim [14], although this lineage has not been completely verified.

4.2.3 The Calendar Queue Scheduler

The calendar queue scheduler (class Scheduler/Calendar) uses a data structure analogous to a one-year desk cal-
endar, in which events on the same month/day of multiple years can be recorded in one day. It is formally described in [6],
and informally described in Jain (p. 410) [15]. The implementation of Calendar queues in ns v2 was contributed by David
Wetherall (presently at MIT/LCS).

4.2.4 The Real-Time Scheduler

The real-time scheduler (class Scheduler/Real Time) attempts to synchronize the execution of events with real-time.

It is currently implemented as a subclass of the list scheduler. The real-time capability in ns is still under development,

but is used to introduce an ns simulated network into a real-world topology to experiment with easily-configured network
topologies, cross-traffic, etc. This only works for relatively slow network traffic data rates, as the simulator must be able to
keep pace with the real-world packet arrival rate, and this synchronization is not presently enforced.

4.25 Precision of the scheduler clock used in ns

Precision of the scheduler clock can be defined as the smallest time-scale of the simulator that can be correctly represented.
The clock variable for ns is represented by a double. As per the IEEE std for floating numbers, a double, consisting of 64 bits
must allocate the following bits between its sign, exponent and mantissa fields.

sign exponent mantissa
1 bit 11 bits 52 bits

Any floating number can be represented in the form (X x2™) where X is the mantissa and n is the exponent. Thus the precision
of timeclock in ns can be defined as (1/252)). As simulation runs for longer times the number of remaining bits to represent
the time educes thus reducing the accuracy. Given 52 bits we can safely say time upto around (2(40)) can be represented with
considerable accuracy. Anything greater than that might not be very accurate as you have remaining 12 bits to represent the
time change. However (2(40)) is a very large number and we donot anticipate any problem regarding precision of time in ns.

4.3 Other Methods

The Simulator class provides a number of methods used to set up the simulation. They generally fall into three categories:
methods to create and manage the topology (which in turn consists of managing the nodes (Chapter 5) and managing the links
(Chapter 6)), methods to perform tracing (Chapter 24), and helper functions to deal with the scheduler. The following is a list
of the non-topology related simulator methods:
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Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator

instproc
instproc
instproc
instproc
instproc
instproc
instproc
instproc

now ;# return scheduler’s notion of current time
at args ;# schedule execution of code at specified time
cancel args ;# cancel event
run args ; # start scheduler
halt ; # stop (pause) the scheduler
flush-trace ;# flush all trace object write buffers
create-trace type files src dst ; # create trace object
create_packetformat ; # set up the simulator’s packet format
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4.4 Commands at a glance

Synopsis:

ns <otclfile> <arg> <arg>..

Description:

Basic command to run a simulation script In ns.

The simulator (ns) is invoked via the ns interpreter, an extension of the
vanilla otclsh command shell. A simulation is defined by a OTcl script

(file). Several examples of OTcl scripts can be found under ns/tcl/ex
directory.

The following is a list of simulator commands commonly used in simulation
scripts:
set ns_ [new Simulator]

This command creates an instance of the simulator object.

set now [$ns_ now]

The scheduler keeps track of time in a simulation. This returns scheduler’s
notion of current time.

$ns_ halt

This stops or pauses the scheduler.

$ns_ run

This starts the scheduler.

$ns_ at <time> <event>

This schedules an <event> (which is normally a piece of code) to be executed
at the specified <time>.

e.g $ns_ at $opt(stop) "puts NS EXITING..” ; $ns_ halt"

or, $ns_ at 10.0 "$ftp start”
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$ns_ cancel <event>

Cancels the event. In effect, event is removed from scheduler’s list of

ready to run events.

$ns_ create-trace <type> <file> <src> <dst> <optional arg: op>

This creates a trace-object of type <type> between <src> and <dst> objects

and attaches trace-object to <file> for writing trace-outputs. If op is defined
as "'nam', this creates nam tracefiles; otherwise if op is not defined, ns
tracefiles are created on default.

$ns_  flush-trace

Flushes all trace object write buffers.

$ns_ gen-map

This dumps information like nodes, node components, links etc created for a
given simulation. This may be broken for some scenarios (like wireless).

$ns_ at-now <args>

This is in effect like command "$ns_ at $now $args'. Note that this function
may not work because of tcl’s string number resolution.

These are additional simulator (internal) helper functions (normally used

for developing/changing the ns core code) :

$ns_ use-scheduler <type>

Used to specify the type of scheduler to be used for simulation. The different
types of scheduler available are List, Calendar, Heap and RealTime. Currently
Calendar is used as default.

$ns_ after <delay> <event>

Scheduling an <event> to be executed after the lapse of time <delay>.

$ns_ clearMemTrace

Used for memory debugging purposes.

$ns_ is-started

This returns true if simulator has started to run and false if not.
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$ns_ dumpq

Command for dumping events queued in scheduler while scheduler is halted.

$ns_ create_packetformat

This sets up simulator’s packet format.
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Chapter 5

Nodes and Packet Forwarding

This chapter describes one aspect of creating a topology in ns, i.e., creating the nodes. In the next chapter (Chapter 6), we
will describe second aspect of creating the topology, i.e., connecting the nodes to form links.

Recall that each simulation requires a single instance of the class Simulator to control and operate that simulation.
The class provides instance procedures to create and manage the topology, and internally stores references to each element
of the topology. We begin by describing the procedures in the class Simulator (Section 5.1). We then describe the instance
procedures in the class Node (Section 5.2) to access and operate on individual nodes. We conclude with detailed descriptions
of the Classifier (Section 5.4) from which the more complex node objects are formed.

The procedures and functions described in this chapter can be found in ~ns/tcl/lib/ns-lib.tcl, ~ns/tcl/lib/ns-node.tcl,
~ns/tcl/lib/ns-rtmodule.tcl, ~ns/rtmodule.{cc,h}, ~ns/classifier.{cc, h}, ~ns/classifier-addr.cc, ~ns/classifier-mcast.cc, ~ns/classifier-
mpath.cc, and, ~ns/replicator.cc.

5.1 Node Basics

The basic primitive for creating a node is

set ns [new Simulator]
$ns node

The instance procedure node constructs a node out of more simple classifier objects (Section 5.4). The Node itself is a
standalone class in OTcl. However, most of the components of the node are themselves TclObjects. The typical struc-

ture of a (unicast) node is as shown in Figure 5.1. This simple structure consists of two TclObjects: an address classifer

(classifer_ ) and a port classifier (dmux_). The function of these classifiers is to distribute incoming packets to the
correct agent or outgoing link.

All nodes contain at least the following components:
e an address or 1d_, monotonically increasing by 1 (from initial value 0) across the simulation namespace as nodes are
created,

e a list of neighbors (neighbor ),
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Figure 5.1: Structure of a Unicast Node. Notice that entry_ is simply a label variable instead of a real object, e.g., the
classifier_.

e alist of agents (agent_),
e anode type identifier (nodetype_), and

e arouting module (described in Section 5.5 below)

By default, nodes in ns are constructed for unicast simulations. In order to enable multicast simulation, the simulation should
be created with an option “-multicast on”, e.g.:

set ns [new Simulator -multicast on]

The internal structure of a typical multicast node is shown in Figure 5.2.
When a simulation uses multicast routing, the highest bit of the address indicates whether the particular address is a multicast

address or an unicast address. If the bit is 0, the address represents a unicast address, else the address represents a multicast
address.
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Figure 5.2: Internal Structure of a Multicast Node.

5.2 Node Methods: Configuring the Node

Procedures to configure an individual node can be classified into:
— Control functions
— Address and Port number management, unicast routing functions
— Agent management

— Adding neighbors

We describe each of the functions in the following paragraphs.

Control functions

1. $node entry returns the entry point for a node. This is the first element which will handle packets arriving at that
node.
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The Node instance variable, entry_, stores the reference this element. For unicast nodes, this is the address classifier
that looks at the higher bits of the destination address. The instance variable, classifier_ contains the reference

to this classifier. However, for multicast nodes, the entry point is the switch_ which looks at the first bit to decide
whether it should forward the packet to the unicast classifier, or the multicast classifier as appropriate.

2. $node reset will reset all agents at the node.

Address and Port number management The procedure $node id returns the node number of the node. This number
is automatically incremented and assigned to each node at creation by the class Simulator method, $ns node.The class
Simulator also stores an instance variable array!, Node_, indexed by the node id, and contains a reference to the node with
that id.

The procedure $node agent (port) returns the handle of the agent at the specified port. If no agent at the specified port
number is available, the procedure returns the null string.

The procedure al loc—port returns the next available port number. It uses an instance variable, np_, to track the next
unallocated port number.

The procedures, add-route and add-routes, are used by unicast routing (Chapter 27) to add routes to populate the
classifier_ The usage syntax is $node add-route (destination id) (TclObject). TclObject is the
entry of dmux_, the port demultiplexer at the node, if the destination id is the same as this node’s id, it is often the head of a
link to send packets for that destination to, but could also be the the entry for other classifiers or types of classifiers.

$node add-routes (destination id) (TclObjects) isused to add multiple routes to the same destination that
must be used simultaneously in round robin manner to spread the bandwidth used to reach that destination across all links
equally. Itis used only if the instance variable multiPath_ is setto 1, and detailed dynamic routing strategies are in effect,
and requires the use of a multiPath classifier. We describe the implementation of the multiPath classifier later in this chapter
(Section 5.4); however, we defer the discussion of multipath routing (Chapter 27) to the chapter on unicast routing.

The dual of add-routes{}is delete-routes{}. It takes the id, a list of TclObjects, and a reference to the simula-

tor’s nul lagent. It removes the TclObjects in the list from the installed routes in the multipath classifier. If the route entry
in the classifier does not point to a multipath classifier, the routine simply clears the entry from classifier_, and installs
the nul lagent in its place.

Detailed dynamic routing also uses two additional methods: the instance procedure init-routing{} sets the instance
variable multiPath_ to be equal to the class variable of the same name. It also adds a reference to the route controller
object at that node in the instance variable, rtObject . The procedure rtObject?{} returns the handle for the route
object at the node.

Finally, the procedure intf-changed{} is invoked by the network dynamics code if a link incident on the node changes
state. Additional details on how this procedure is used are discussed later in the chapter on network dynamics (Chapter 29).

Agent management Given an {agent), the procedure attach{} will add the agent to its list of agents_, assign a port
number the agent and set its source address, set the target of the agent to be its (i.e., the node’s) entry{}, and add a pointer
to the port demultiplexer at the node (dmux_) to the agent at the corresponding slot in the dmux__ classifier.

Conversely, detach{}will remove the agent from agents_, and point the agent’s target, and the entry in the node dmux__
to nul lagent.

1j.e, an instance variable of a class that is also an array variable
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Tracking Neighbors Each node keeps a list of its adjacent neighbors in its instance variable, neighbor_. The procedure
add-neighbor{} adds a neighbor to the list. The procedure neighbors{} returns this list.

5.3 Node Configuration Interface

NOTE: This API, especially its internal implementation which is messy at this point, is still a moving target. It may undergo
significant changes in the near future. However, we will do our best to maintain the same interface as described in this chapter.
In addition, this API currently does not cover all existing nodes in the old format, namely, nodes built using inheritance, and
parts of mobile IP. It is principally oriented towards wireless and satellite simulation. [Sep 15, 2000; updated June 2001].

Simulator : :node-conFfig{} accommodates flexible and modular construction of different node definitions within the
same base Node class. For instance, to create a mobile node capable of wireless communication, one no longer needs a
specialized node creation command, e.g., dsdv-create-mobi le-node{}; instead, one changes default configuration
parameters, such as

$ns node-config -adhocRouting dsdv

before actually creating the node with the command: $ns node. Together with routing modules, this allows one to com-
bine “arbitrary” routing functionalities within a single node without resorting to multiple inheritance and other fancy object
gimmicks. We will describe this in more detail in Section 5.5. The functions and procedures relevant to the new node APIs
may be found in ~ns/tcl/lib/ns-node.tcl.

The node configuration interface consists of two parts. The first part deals with node configuration, while the second part
actually creates nodes of the specified type. We have already seen the latter in Section 5.1, in this section we will describe the
configuration part.

Node configuration essentially consists of defining the different node characteristics before creating them. They may consist
of the type of addressing structure used in the simulation, defining the network components for mobilenodes, turning on or
off the trace options at Agent/Router/MAC levels, selecting the type of adhoc routing protocol for wireless nodes or defining
their energy model.

As an example, node-configuration for a wireless, mobile node that runs AODV as its adhoc routing protocol in a hierarchical
topology would be as shown below. We decide to turn tracing on at the agent and router level only. Also we assume a topology
has been instantiated with "set topo [new Topography]". The node-config command would look like the following:

$ns_ node-config -addressType hierarchical \
—-adhocRouting AODV \
-11Type LL \
-macType Mac/802_11 \
-ifqType Queue/DropTail/PriQueue \
-ifgLen 50 \
-antType Antenna/OmniAntenna \
-propType Propagation/TwoRayGround \
-phyType Phy/WirelessPhy \
-topologylnstance $topo \
—-channel Channel/WirelessChannel \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace OFF
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The default values for all the above options are NULL except —addressingType whose default value is flat. The option
-reset can be used to reset all node-config parameters to their default value.

Note that the config command can be broken down into separate lines like

$ns_ node-config -addressingType hier
$ns_ node-config -macTrace ON

The options that need to be changed may only be called. For example after configuring for AODV mobilenodes as shown
above (and after creating AODV mobilenodes), we may configure for AODV base-station nodes in the following way:

$ns_ node-config -wiredRouting ON

While all other features for base-station nodes and mobilenodes are same, the base-station nodes are capable of wired routing,
while mobilenodes are not. In this way we can change node-configuration only when it is required.

All node instances created after a given node-configuration command will have the same property unless a part or all of the
node-config command is executed with different parameter values. And all parameter values remain unchanged unless they
are expicitly changed. So after creation of the AODV base-station and mobilenodes, if we want to create simple nodes, we
will use the following node-configuration command:

$ns_ node-config -reset

This will set all parameter values to their default setting which basically defines configuration of a simple node.

Currently, this type of node configuration is oriented towards wireless and satellite nodes. Table 5.1 lists the available op-
tions for these kinds of nodes. The example scripts ~ns/tcl/ex/simple-wireless.tcl and ~ns/tcl/ex/sat-mixed.tcl provide usage
examples.

5.4 The Classifier

The function of a node when it receives a packet is to examine the packet’s fields, usually its destination address, and on
occasion, its source address. It should then map the values to an outgoing interface object that is the next downstream
recipient of this packet.

In ns, this task is performed by a simple classifier object. Multiple classifier objects, each looking at a specific portion of the
packet forward the packet through the node. A node in ns uses many different types of classifiers for different purposes. This
section describes some of the more common, or simpler, classifier objects in ns.

We begin with a description of the base class in this section. The next subsections describe the address classifier (Sec-
tion 5.4.1), the multicast classifier (Section 5.4.2), the multipath classifier (Section 5.4.3), the hash classifier (Section 5.4.4),
and finally, the replicator (Section 5.4.5).

A classifier provides a way to match a packet against some logical criteria and retrieve a reference to another simulation
object based on the match results. Each classifier contains a table of simulation objects indexed by slot number. The job of
a classifier is to determine the slot number associated with a received packet and forward that packet to the object referenced
by that particular slot. The C++ class Classifier (defined in ~ns/classifier.h) provides a base class from which other
classifiers are derived.

49



option available values default
general

addressType flat, hierarchical flat

MPLS ON, OFF OFF
both satellite- and wireless-oriented

wiredRouting ON, OFF OFF

IType LL, LL/Sat

macType Mac/802_11, Mac/Csma/Ca, Mac/Sat,

Mac/Sat/UnslottedAloha, Mac/Tdma
ifqType Queue/DropTail, Queue/DropTail/PriQueue
phyType Phy/WirelessPhy, Phy/Sat

wireless-oriented
adhocRouting DIFFUSION/RATE, DIFFUSION/PROB, DSDV,

DSR, FLOODING, OMNIMCAST, AODV, TORA
propType Propagation/TwoRayGround, Propagation/Shadowing
proplnstance Propagation/TwoRayGround, Propagation/Shadowing
antType Antenna/OmniAntenna
channel Channel/WirelessChannel, Channel/Sat
topol nstance <topology file>
mobilel P ON, OFF OFF
energyM odel EnergyModel
initialEnergy <value in Joules>
rxPower <value in W>
txPower <value in W>
idlePower <value in W>
agentTrace ON, OFF OFF
router Trace ON, OFF OFF
macTrace ON, OFF OFF
movementTrace | ON, OFF OFF
errProc UniformErrorProc
FECProc ? ?
toraDebug ON, OFF OFF

satellite-oriented
satNodeType polar, geo, terminal, geo-repeater
downlinkBW <bandwidth value, e.g. "2Mb">

Table 5.1: Available options for node configuration (see tcl/lib/ns-lib.tcl).

class Classifier :
public:

public NsObject {

~Classifier();
void recv(Packet*, Handler* h = 0);
protected:
Classifier();
void install(int slot, NsObject*);
void clear(int slot);
virtual int command(int argc, const char*const* argv);
virtual int classify(Packet *const) = O;
void alloc(int);
NsObject** slot_;
int nslot_;
int maxslot_;

/* table that maps slot number to a NsObject */
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The classiTy() method is pure virtual, indicating the class Classifier is to be used only as a base class. The al 1oc()
method dynamically allocates enough space in the table to hold the specified number of slots. The instal () and clear()
methods add or remove objects from the table. The recv() method and the OTcl interface are implemented as follows in
~ns/classifier.cc:

/*
* objects only ever see "packet" events, which come either
* from an incoming link or a local agent (i.e., packet source).

*/
void Classifier::recv(Packet* p, Handler*)
{
NsObject* node;
int cl = classify(p);
it (cl <0 |] cl >= nslot_ || (node = slot_[clI]) == 0) {
Tcl::instance().evalf('%s no-slot %d", name(), cl);
Packet: :free(p);
return;
}
node->recv(p);
}
int Classifier::command(int argc, const char*const* argv)
{

Tcl& tcl = Tcl::instance();
if (argc == 3) {
/*
* $classifier clear $slot
*/
if (strcmp(argv[l], "clear’™) == 0) {
int slot = atoi(argv[2]);
clear(slot);
return (TCL_OK);
by
/*
* $classifier installNext $node
*/
if (strcmp(argv[l], "installNext™) == 0) {
int slot = maxslot_ + 1;
NsObject* node = (NsObject*)TclObject: :lookup(argv[2]);
install(slot, node);
tel.resultf("%u™, slot);
return TCL_OK;
}
if (stremp(argv[l], "slot™) == 0) {
int slot = atoi(argv[2]);
if ((slot >= 0) || (slot < nslot)) {
tcl _resultf("%s', slot_[slot]->name());
return TCL_OK;

tcl.resultf("'Classifier: no object at slot %d", slot);
return (TCL_ERROR);

}
} else if (argc == 4) {
/*
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* $classifier install $slot $node

*/

if (strcmp(argv[l], "install™) == 0) {
int slot = atoi(argv[2]);

NsObject* node = (NsObject*)TclObject: :lookup(argv[3])

install(slot, node);
return (TCL_OK);

}
}
return (NsObject: :command(argc, argv));

}

When a classifier recv()’s a packet, it hands it to the classify() method. This is defined differently in each type of
classifier derived from the base class. The usual format is for the classify() method to determine and return a slot index
into the table of slots. If the index is valid, and points to a valid TclObject, the classifier will hand the packet to that object
using that object’s recv() method. If the index is not valid, the classifier will invoke the instance procedure no-slot{} to
attempt to populate the table correctly. However, in the base class Classifier: :no-slot{} prints and error message

and terminates execution.

The command() method provides the following instproc-likes to the interpreter:

e clear{(slot)} clears the entry in a particular slot.
e instal INext{({object)} installs the object in the next available slot, and returns the slot number.

Note that this instproc-like is overloaded by an instance procedure of the same name that stores a reference to the object
stored. This then helps quick query of the objects installed in the classifier from OTcl.

e slot{(index)} returns the object stored in the specified slot.
e instal 1{{index), (object)} installs the specified (object) at the slot (index).

Note that this instproc-like too is overloaded by an instance procedure of the same name that stores a reference to the
object stored. This is also to quickly query of the objects installed in the classifier from OTcl.

5.4.1 Address Classifiers

An address classifier is used in supporting unicast packet forwarding. It applies a bitwise shift and mask operation to a
packet’s destination address to produce a slot number. The slot number is returned from the classify() method. The
class AddressClassifier (defined in ~ns/classifier-addr.cc) ide defined as follows:

class AddressClassifier : public Classifier {

public:

AddressClassifier() : mask (~0), shift _(0) {
bind("'mask_", (int*)&mask_);
bind("shift_", &shift );

}

protected:

int classify(Packet *const p) {
IPHeader *h = IPHeader::access(p->bits());
return ((h->dst() >> shift_ ) & mask );

}
nsaddr_t mask_;
int shift_;
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The class imposes no direct semantic meaning on a packet’s destination address field. Rather, it returns some number of bits
from the packet’s dst__ field as the slot number used in the Classifier: :recv() method. The mask and shift_

values are set through OTcl.

5.4.2 Multicast Classifiers

The multicast classifier classifies packets according to both source and destination (group) addresses. It maintains a (chained
hash) table mapping source/group pairs to slot numbers. When a packet arrives containing a source/group unknown to the
classifier, it invokes an Otcl procedure Node : : new—-group{} to add an entry to its table. This OTcl procedure may use the
method set-hash to add new (source, group, slot) 3-tuples to the classifier’s table. The multicast classifier is defined in
~ns/classifier-mcast.cc as follows:

static class MCastClassifierClass : public TcIClass {
public:
MCastClassifierClass() : TclClass('Classifier/Multicast™) {}
TclObject* create(int argc, const char*const* argv) {
return (new MCastClassifier());

} class_mcast_classifier;

class MCastClassifier : public Classifier {
public:
MCastClassifier();
~MCastClassifier();
protected:
int command(int argc, const char*const* argv);
int classify(Packet *const p);
int findslot();
void set_hash(nsaddr_t src, nsaddr_t dst, int slot);
int hash(nsaddr_t src, nsaddr_t dst) const {
u_int32_t s = src ™ dst;
s M= s >> 16;
s M= s >> §8;
return (s & OxffF);
}
struct hashnode {
int slot;
nsaddr_t src;
nsaddr_t dst;
hashnode* next;
};
hashnode* ht [256];
const hashnode* lookup(nsaddr_t src, nsaddr_t dst) const;

¥

int MCastClassifier::classify(Packet *const pkt)

{
IPHeader *h = IPHeader::access(pkt->bits());

nsaddr_t src = h->src() >> 8; /*XXX*/
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nsaddr_t dst = h->dst();
const hashnode* p = lookup(src, dst);
it (p==0){
/*
* Didn’t find an entry.
* Call tcl exactly once to install one.
* IT tcl doesn’t come through then fail.
*/
Tcl::instance().evalf("'%s new-group %u %u'", name(), src, dst);
p = lookup(src, dst);
if (p ==0)
return (-1);
}

return (p->slot);

The class MCastClassifiermplements a chained hash table and applies a hash function on both the packet source
and destination addresses. The hash function returns the slot number to index the slot__ table in the underlying object. A
hash miss implies packet delivery to a previously-unknown group; OTcl is called to handle the situation. The OTcl code is
expected to insert an appropriate entry into the hash table.

5.4.3 MultiPath Classifier

This object is devised to support equal cost multipath forwarding, where the node has multiple equal cost routes to the same
destination, and would like to use all of them simultaneously. This object does not look at any field in the packet. With
every succeeding packet, it simply returns the next filled slot in round robin fashion. The definitions for this classifier are in
~ns/classifier-mpath.cc, and are shown below:

class MultiPathForwarder : public Classifier {

public:
MultiPathForwarder() : ns_(0), Classifier( {}
virtual int classify(Packet* const) {
int cl;
int fail = ns_;
do {
cl = ns_++;
ns_ %= (maxslot_ + 1);
} while (slot_[cl] == 0 && ns_ 1= fail);
return cl;
) }
private:
int ns_; /* next slot to be used. Probably a misnomer? */
}:

5.4.4 Hash Classifier

This object is used to classify a packet as a member of a particular flow. As their name indicates, hash classifiers use a
hash table internally to assign packets to flows. These objects are used where flow-level information is required (e.g. in
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flow-specific queuing disciplines and statistics collection). Several “flow granularities” are available. In particular, pack-
ets may be assigned to flows based on flow ID, destination address, source/destination addresses, or the combination of
source/destination addresses plus flow ID. The fields accessed by the hash classifier are limited to the §ip header: src(),
dst(), Flowid() (see ip.h).

The hash classifier is created with an integer argument specifying the initial size of its hash table. The current hash table
size may be subsequently altered with the resize method (see below). When created, the instance variables shift_ and

mask__ are initialized with the simulator’s current NodeShift and NodeMask values, respectively. These values are retrieved

from the AddrParams object when the hash classifier is instantiated. The hash classifier will fail to operate properly if the
AddrParams structure is not initialized. The following constructors are used for the various hash classifiers:

Classifier/Hash/SrcDest
Classifier/Hash/Dest
Classifier/Hash/Fid
Classifier/Hash/SrcDestFid

The hash classifier receives packets, classifies them according to their flow criteria, and retrieves the classifier slot indicating
the next node that should receive the packet. In several circumstances with hash classifiers, most packets should be associated
with a single slot, while only a few flows should be directed elsewhere. The hash classifier includes a default_ instance
variable indicating which slot is to be used for packets that do not match any of the per-flow criteria. The default__ may be
set optionally.

The methods for a hash classifier are as follows:

$hashcl set-hash buck src dst fid slot
$hashcl lookup buck src dst fid
$hashcl del-hash src dst fid

$hashcl resize nbuck

The set-hash() method inserts a new entry into the hash table within the hash classifier. The buck argument specifies
the hash table bucket number to use for the insertion of this entry. When the bucket number is not known, buck may be
specified as auto. The src, dst and Fid arguments specify the IP source, destination, and flow I1Ds to be matched for
flow classification. Fields not used by a particular classifier (e.g. specifying src for a flow-id classifier) is ignored. The slot
argument indicates the index into the underlying slot table in the base Classifier object from which the hash classifier is
derived. The Tookup function returns the name of the object associated with the given buck/src/dst/fid tuple. The
buck argument may be auto, as for set-hash. The del-hash function removes the specified entry from the hash table.
Currently, this is done by simply marking the entry as inactive, so it is possible to populate the hash table with unused entries.
The resize function resizes the hash table to include the number of buckets specified by the argument nbuck.

Provided no default is defined, a hash classifier will perform a call into OTcl when it receives a packet which matches no flow
criteria. The call takes the following form:

$obj unknown-flow src dst flowid buck

Thus, when a packet matching no flow criteria is received, the method unknown-Fflow of the instantiated hash classifier
object is invoked with the source, destination, and flow id fields from the packet. In addition, the buck field indicates the hash
bucket which should contain this flow if it were inserted using set-hash. This arrangement avoids another hash lookup
wh