This section defines a set of objects and interfaces for
accessing and manipulating document objects. The functionality
specified in this section (the Core functionality) is
sufficient to allow software developers and web script authors to
access and manipulate parsed HTML and XML content inside conforming
products. The DOM Core API also allows creation and population of a
Document
object
using only DOM API calls; loading a Document
and saving it
persistently is left to the product that implements the DOM
API.
The DOM presents documents as a hierarchy of Node
objects that also
implement other, more specialized interfaces. Some types of nodes
may have child nodes
of various types, and others are leaf nodes that cannot have
anything below them in the document structure. For XML and HTML,
the node types, and which node types they may have as children, are
as follows:
Document
-- Element
(maximum of
one), ProcessingInstruction
,
Comment
, DocumentType
(maximum of one)DocumentFragment
-- Element
, ProcessingInstruction
,
Comment
, Text
, CDATASection
, EntityReference
DocumentType
-- no childrenEntityReference
-- Element
, ProcessingInstruction
,
Comment
, Text
, CDATASection
, EntityReference
Element
-- Element
, Text
, Comment
, ProcessingInstruction
,
CDATASection
, EntityReference
Attr
-- Text
, EntityReference
ProcessingInstruction
--
no childrenComment
--
no childrenText
-- no
childrenCDATASection
-- no childrenEntity
-- Element
, ProcessingInstruction
,
Comment
, Text
, CDATASection
, EntityReference
Notation
-- no
childrenThe DOM also specifies a NodeList
interface to
handle ordered lists of Nodes
, such as the
children of a Node
, or the elements returned by the
getElementsByTagName
method of the Element
interface, and
also a NamedNodeMap
interface
to handle unordered sets of nodes referenced by their name
attribute, such as the attributes of an Element
. NodeList
and NamedNodeMap
objects in
the DOM are live; that is, changes to the underlying
document structure are reflected in all relevant NodeList
and NamedNodeMap
objects.
For example, if a DOM user gets a NodeList
object
containing the children of an Element
, then
subsequently adds more children to that element (or removes
children, or modifies them), those changes are automatically
reflected in the NodeList
, without further
action on the user's part. Likewise, changes to a Node
in the tree are
reflected in all references to that Node
in NodeList
and NamedNodeMap
objects.
Finally, the interfaces Text
, Comment
, and CDATASection
all inherit
from the CharacterData
interface.
Most of the APIs defined by this specification are
interfaces rather than classes. That means that an
implementation need only expose methods with the defined names and
specified operation, not implement classes that correspond directly
to the interfaces. This allows the DOM APIs to be implemented as a
thin veneer on top of legacy applications with their own data
structures, or on top of newer applications with different class
hierarchies. This also means that ordinary constructors (in the
Java or C++ sense) cannot be used to create DOM objects, since the
underlying objects to be constructed may have little relationship
to the DOM interfaces. The conventional solution to this in
object-oriented design is to define factory methods that
create instances of objects that implement the various interfaces.
Objects implementing some interface "X" are created by a
"createX()" method on the Document
interface; this is
because all DOM objects live in the context of a specific
Document.
The Core DOM APIs are designed to be compatible with a wide range of languages, including both general-user scripting languages and the more challenging languages used mostly by professional programmers. Thus, the DOM APIs need to operate across a variety of memory management philosophies, from language bindings that do not expose memory management to the user at all, through those (notably Java) that provide explicit constructors but provide an automatic garbage collection mechanism to automatically reclaim unused memory, to those (especially C/C++) that generally require the programmer to explicitly allocate object memory, track where it is used, and explicitly free it for re-use. To ensure a consistent API across these platforms, the DOM does not address memory management issues at all, but instead leaves these for the implementation. Neither of the explicit language bindings defined by the DOM API (for ECMAScript and Java) require any memory management methods, but DOM bindings for other languages (especially C or C++) may require such support. These extensions will be the responsibility of those adapting the DOM API to a specific language, not the DOM Working Group.
While it would be nice to have attribute and method names that
are short, informative, internally consistent, and familiar to
users of similar APIs, the names also should not clash with the
names in legacy APIs supported by DOM implementations. Furthermore,
both OMG IDL and ECMAScript
have significant
limitations in their ability to disambiguate names from different
namespaces that make it difficult to avoid naming conflicts with
short, familiar names. So, DOM names tend to be long and
descriptive in order to be unique across all environments.
The Working Group has also attempted to be internally consistent in its use of various terms, even though these may not be common distinctions in other APIs. For example, the DOM API uses the method name "remove" when the method changes the structural model, and the method name "delete" when the method gets rid of something inside the structure model. The thing that is deleted is not returned. The thing that is removed may be returned, when it makes sense to return it.
The DOM Core APIs
present two somewhat different sets of interfaces to an XML/HTML
document: one presenting an "object oriented" approach with a
hierarchy of inheritance, and a
"simplified" view that allows all manipulation to be done via the
Node
interface
without requiring casts (in Java and other C-like languages) or
query interface calls in COM environments. These
operations are fairly expensive in Java and COM, and the DOM may be
used in performance-critical environments, so we allow significant
functionality using just the Node
interface. Because
many other users will find the inheritance hierarchy
easier to understand than the "everything is a Node
" approach to
the DOM, we also support the full higher-level interfaces for those
who prefer a more object-oriented API.
In practice, this means that there is a certain amount of
redundancy in the API.
The Working Group considers the "inheritance" approach
the primary view of the API, and the full set of functionality on
Node
to be
"extra" functionality that users may employ, but that does not
eliminate the need for methods on other interfaces that an
object-oriented analysis would dictate. (Of course, when the O-O
analysis yields an attribute or method that is identical to one on
the Node
interface, we don't
specify a completely redundant one.) Thus, even though there is a
generic nodeName
attribute on the Node
interface,
there is still a tagName
attribute on the Element
interface; these
two attributes must contain the same value, but the it is
worthwhile to support both, given the different constituencies the
DOM API must
satisfy.
DOMString
typeTo ensure interoperability, the DOM specifies the following:
A DOMString
is a
sequence of 16-bit
units.
valuetype DOMString sequence<unsigned short>;
Applications must encode DOMString
using UTF-16
(defined in [Unicode] and Amendment 1 of [ISO/IEC
10646]).
The UTF-16 encoding was chosen because of its widespread
industry practice. Note that for both HTML and XML, the document
character set (and therefore the notation of numeric character
references) is based on UCS [ISO-10646]. A single numeric character
reference in a source document may therefore in some cases
correspond to two 16-bit units in a DOMString
(a high surrogate
and a low surrogate).
Note: Even though the DOM defines the name of the string
type to be DOMString
, bindings may use
different names. For example for Java, DOMString
is bound to the
String
type because it also uses UTF-16 as its
encoding.
Note: As of August 2000, the OMG IDL specification ([OMGIDL]) included
a wstring
type. However, that definition did not meet
the interoperability criteria of the DOM API since it relied on
negotiation to decide the width and encoding of a character.
DOMTimeStamp
typeTo ensure interoperability, the DOM specifies the following:
A DOMTimeStamp
represents a number of milliseconds.
typedef unsigned long long DOMTimeStamp;
Note: Even though the DOM uses the type DOMTimeStamp
, bindings
may use different types. For example for Java, DOMTimeStamp
is
bound to the long
type. In ECMAScript,
TimeStamp
is bound to the Date
type
because the range of the integer
type is too
small.
DOMKey
typeTo ensure interoperability, the DOM specifies the following:
A DOMKey
is a unique
key generated by the DOM implementation to uniquely identify DOM
nodes.
typedef Object DOMKey;
Note: Even though the DOM uses the type DOMKey
, bindings may use
different types. For example for Java, DOMKey
is bound to the
Object
type. In ECMAScript, DOMKey
is bound to the
Number
type.
The DOM has many interfaces that imply string matching. HTML
processors generally assume an uppercase (less often, lowercase)
normalization of names for such things as elements, while XML is
explicitly case sensitive. For the purposes of the DOM, string
matching is performed purely by binary comparison of the 16-bit units of
the DOMString
. In
addition, the DOM assumes that any case normalizations take place
in the processor, before the DOM structures are built.
Note: Besides case folding, there are additional normalizations that can be applied to text. The W3C I18N Working Group is in the process of defining exactly which normalizations are necessary, and where they should be applied. The W3C I18N Working Group expects to require early normalization, which means that data read into the DOM is assumed to already be normalized. The DOM and applications built on top of it in this case only have to assure that text remains normalized when being changed. For further details, please see [Charmod].
The DOM Level 2 (and higher) supports XML namespaces [Namespaces] by augmenting several interfaces of the DOM Level 1 Core to allow creating and manipulating elements and attributes associated to a namespace.
As far as the DOM is concerned, special attributes used for declaring XML namespaces are still exposed and can be manipulated just like any other attribute. However, nodes are permanently bound to namespace URIs as they get created. Consequently, moving a node within a document, using the DOM, in no case results in a change of its namespace prefix or namespace URI. Similarly, creating a node with a namespace prefix and namespace URI, or changing the namespace prefix of a node, does not result in any addition, removal, or modification of any special attributes for declaring the appropriate XML namespaces. Namespace validation is not enforced; the DOM application is responsible. In particular, since the mapping between prefixes and namespace URIs is not enforced, in general, the resulting document cannot be serialized naively. For example, applications may have to declare every namespace in use when serializing a document.
DOM Level 2 (and higher) doesn't perform any URI normalization
or canonicalization. The URIs given to the DOM are assumed to be
valid (e.g., characters such as whitespaces are properly escaped),
and no lexical checking is performed. Absolute URI references are
treated as strings and compared literally.
How relative namespace URI references are treated is undefined. To
ensure interoperability only absolute namespace URI references
(i.e., URI references beginning with a scheme name and a colon)
should be used. Note that because the DOM does no lexical checking,
the empty string will be treated as a real namespace URI in DOM
Level 2 methods. Applications must use the value null
as the namespaceURI parameter for methods if they wish to have no
namespace.
Note: In the DOM, all namespace declaration attributes are by definition bound to the namespace URI: "http://www.w3.org/2000/xmlns/". These are the attributes whose namespace prefix or qualified name is "xmlns". Although, at the time of writing, this is not part of the XML Namespaces specification [Namespaces], it is planned to be incorporated in a future revision.
In a document with no namespaces, the child list of an EntityReference
node is
always the same as that of the corresponding Entity
. This is not true
in a document where an entity contains unbound namespace prefixes.
In such a case, the descendants of the
corresponding EntityReference
nodes may
be bound to different namespace URIs,
depending on where the entity references are. Also, because, in the
DOM, nodes always remain bound to the same namespace URI, moving
such EntityReference
nodes can
lead to documents that cannot be serialized. This is also true when
the DOM Level 1 method createEntityReference
of the Document
interface is
used to create entity references that correspond to such entities,
since the descendants of the
returned EntityReference
are
unbound. The DOM Level 2 does not support any mechanism to resolve
namespace prefixes. For all of these reasons, use of such entities
and entity references should be avoided or used with extreme care.
A future Level of the DOM may include some additional support for
handling these.
The new methods, such as createElementNS
and
createAttributeNS
of the Document
interface, are
meant to be used by namespace aware applications. Simple
applications that do not use namespaces can use the DOM Level 1
methods, such as createElement
and
createAttribute
. Elements and attributes created in
this way do not have any namespace prefix, namespace URI, or local
name.
Note: DOM Level 1 methods are namespace ignorant.
Therefore, while it is safe to use these methods when not dealing
with namespaces, using them and the new ones at the same time
should be avoided. DOM Level 1 methods solely identify attribute
nodes by their nodeName
. On the contrary, the DOM
Level 2 methods related to namespaces, identify attribute nodes by
their namespaceURI
and localName
. Because
of this fundamental difference, mixing both sets of methods can
lead to unpredictable results. In particular, using
setAttributeNS
, an element may have two
attributes (or more) that have the same nodeName
, but
different namespaceURI
s. Calling
getAttribute
with that nodeName
could
then return any of those attributes. The result depends on the
implementation. Similarly, using setAttributeNode
, one
can set two attributes (or more) that have different
nodeNames
but the same prefix
and
namespaceURI
. In this case
getAttributeNodeNS
will return either attribute, in an
implementation dependent manner. The only guarantee in such cases
is that all methods that access a named item by its
nodeName
will access the same item, and all methods
which access a node by its URI and local name will access the same
node. For instance, setAttribute
and
setAttributeNS
affect the node that
getAttribute
and getAttributeNS
,
respectively, return.
As new XML vocabularies are developed, those defining the vocabularies are also beginning to define specialized APIs for manipulating XML instances of those vocabularies. This is usually done by extending the DOM to provide interfaces and methods that perform operations frequently needed their users. For example, the MathML [@@link] and SVG [@@link] specifications are developing DOM extensions to allow users to manipulate instances of these vocabularies using semantics appropriate to images and mathematics (respectively) as well as the generic DOM XML semantics. Instances of SVG or MathML are often embedded in XML documents conforming to a different schema such as XHTML.
While the XML Namespaces Recommendation provides a mechanism for integrating these documents at the syntax level, it has become clear that the DOM Level 2 Recommendation [@@link] is not rich enough to cover all the issues that have been encountered in having these different DOM implementations be used together in a single application. DOM Level 3 deals with the requirements brought about by embedding fragments written according to a specific markup language (the embedded component) in a document where the rest of the markup is not written according to that specific markup language (the host document). It does not deal with fragments embedded by reference or linking.
A DOM implementation supporting DOM Level 3 Core should be able to collaborate with subcomponents implementing specific DOMs to assemble a compound document that can be traversed and manipulated via DOM interfaces as if it were a seamless whole.
The normal typecast operation on an object should support the
interfaces expected by legacy code for a given document type.
Typecasting techniques may not be adequate for selecting between
multiple DOM specializations of an object which were combined at
run time, because they may not all be part of the same object as
defined by the binding's object model. Conflicts are most obvious
with the Document
object, since it is shared as owner by the rest of the document. In
a homogeneous document, elements rely on the Document for
specialized services and construction of specialized nodes. In a
heterogeneous document, elements from different modules expect
different services and APIs from the same Document
object, since
there can only be one owner and root of the document hierarchy.
The interfaces within this section are considered fundamental, and must be fully implemented by all conforming implementations of the DOM, including all HTML DOM implementations [DOM Level 1], unless otherwise specified.
A DOM application may use the hasFeature(feature,
version)
method of the DOMImplementation
interface with parameter values "Core" and "3.0" (respectively) to
determine whether or not this module is supported by the
implementation. Any implementation that conforms to DOM Level 3 or
a DOM Level 3 module must conform to the Core module.
DOM operations only raise exceptions in "exceptional"
circumstances, i.e., when an operation is impossible to perform
(either for logical reasons, because data is lost, or because the
implementation has become unstable). In general, DOM methods return
specific error values in ordinary processing situations, such as
out-of-bound errors when using NodeList
.
Implementations should raise other exceptions under other
circumstances. For example, implementations should raise an
implementation-dependent exception if a null
argument
is passed.
Some languages and object systems do not support the concept of exceptions. For such systems, error conditions may be indicated using native error reporting mechanisms. For some bindings, for example, methods may return error codes similar to those listed in the corresponding method descriptions.
exception DOMException { unsigned short code; }; // ExceptionCode const unsigned short INDEX_SIZE_ERR = 1; const unsigned short DOMSTRING_SIZE_ERR = 2; const unsigned short HIERARCHY_REQUEST_ERR = 3; const unsigned short WRONG_DOCUMENT_ERR = 4; const unsigned short INVALID_CHARACTER_ERR = 5; const unsigned short NO_DATA_ALLOWED_ERR = 6; const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7; const unsigned short NOT_FOUND_ERR = 8; const unsigned short NOT_SUPPORTED_ERR = 9; const unsigned short INUSE_ATTRIBUTE_ERR = 10; // Introduced in DOM Level 2: const unsigned short INVALID_STATE_ERR = 11; // Introduced in DOM Level 2: const unsigned short SYNTAX_ERR = 12; // Introduced in DOM Level 2: const unsigned short INVALID_MODIFICATION_ERR = 13; // Introduced in DOM Level 2: const unsigned short NAMESPACE_ERR = 14; // Introduced in DOM Level 2: const unsigned short INVALID_ACCESS_ERR = 15;
An integer indicating the type of error generated.
Note: Other numeric codes are reserved for W3C for possible future use.
DOMSTRING_SIZE_ERR
HIERARCHY_REQUEST_ERR
INDEX_SIZE_ERR
INUSE_ATTRIBUTE_ERR
INVALID_ACCESS_ERR
,
introduced in DOM Level 2.INVALID_CHARACTER_ERR
INVALID_MODIFICATION_ERR
,
introduced in DOM Level 2.INVALID_STATE_ERR
,
introduced in DOM Level 2.NAMESPACE_ERR
, introduced in
DOM Level 2.NOT_FOUND_ERR
NOT_SUPPORTED_ERR
NO_DATA_ALLOWED_ERR
NO_MODIFICATION_ALLOWED_ERR
SYNTAX_ERR
, introduced in DOM Level 2.WRONG_DOCUMENT_ERR
The DOMImplementation
interface provides a number
of methods for performing operations that are independent of any
particular instance of the document object model.
interface DOMImplementation { boolean hasFeature(in DOMString feature, in DOMString version); // Introduced in DOM Level 2: DocumentType createDocumentType(in DOMString qualifiedName, in DOMString publicId, in DOMString systemId) raises(DOMException); // Introduced in DOM Level 2: Document createDocument(in DOMString namespaceURI, in DOMString qualifiedName, in DocumentType doctype) raises(DOMException); // Introduced in DOM Level 3: DOMImplementation getAs(in DOMString feature); };
createDocument
introduced in DOM Level 2namespaceURI
of type DOMString
qualifiedName
of type DOMString
doctype
of type DocumentType
null
.doctype
is not null
, its Node.ownerDocument
attribute is set to the document being created.
INVALID_CHARACTER_ERR: Raised if the specified qualified name contains an illegal character. NAMESPACE_ERR: Raised if the WRONG_DOCUMENT_ERR: Raised if NOT_SUPPORTED_ERR: May be raised by DOM implementations which do not support the "XML" feature, if they choose not to support this method. Note: Other features introduced in the future, by the DOM WG or in extensions defined by other groups, may also demand support for this method; please consult the definition of the feature to see if it requires this method. |
createDocumentType
introduced in DOM Level 2DocumentType
node. Entity
declarations and notations are not made available. Entity reference
expansions and default attribute additions do not occur. It is
expected that a future version of the DOM will provide a way for
populating a DocumentType
.
qualifiedName
of type DOMString
publicId
of type DOMString
systemId
of type DOMString
A new |
INVALID_CHARACTER_ERR: Raised if the specified qualified name contains an illegal character. NAMESPACE_ERR: Raised if the NOT_SUPPORTED_ERR: May be raised by DOM implementations which do
not support the Note: Other features introduced in the future, by the DOM WG or in extensions defined by other groups, may also demand support for this method; please consult the definition of the feature to see if it requires this method. |
getAs
introduced in DOM Level 3DOMImplementation
's specialized interface (see Mutiple XML Datatypes in a DOM
Document).
feature
of type DOMString
Returns an alternate |
hasFeature
feature
of type DOMString
version
of type DOMString
true
.
|
|
DocumentFragment
is a "lightweight" or "minimal" Document
object. It is
very common to want to be able to extract a portion of a document's
tree or to create a new fragment of a document. Imagine
implementing a user command like cut or rearranging a document by
moving fragments around. It is desirable to have an object which
can hold such fragments and it is quite natural to use a Node for
this purpose. While it is true that a Document
object could
fulfill this role, a Document
object can
potentially be a heavyweight object, depending on the underlying
implementation. What is really needed for this is a very
lightweight object. DocumentFragment
is such an
object.
Furthermore, various operations -- such as inserting nodes as
children of another Node
-- may take
DocumentFragment
objects as arguments; this results in
all the child nodes of the DocumentFragment
being
moved to the child list of this node.
The children of a DocumentFragment
node are zero or
more nodes representing the tops of any sub-trees defining the
structure of the document. DocumentFragment
nodes do
not need to be well-formed XML
documents (although they do need to follow the rules
imposed upon well-formed XML parsed entities, which can have
multiple top nodes). For example, a DocumentFragment
might have only one child and that child node could be a Text
node. Such a
structure model represents neither an HTML document nor a
well-formed XML document.
When a DocumentFragment
is inserted into a Document
(or indeed any
other Node
that
may take children) the children of the
DocumentFragment
and not the
DocumentFragment
itself are inserted into the Node
. This makes the
DocumentFragment
very useful when the user wishes to
create nodes that are siblings; the
DocumentFragment
acts as the parent of these nodes so
that the user can use the standard methods from the Node
interface, such as insertBefore
and
appendChild
.
interface DocumentFragment : Node { };
The Document
interface represents the entire HTML
or XML document. Conceptually, it is the root of the document
tree, and provides the primary access to the document's data.
Since elements, text nodes, comments, processing instructions,
etc. cannot exist outside the context of a Document
,
the Document
interface also contains the factory
methods needed to create these objects. The Node
objects created
have a ownerDocument
attribute which associates them
with the Document
within whose context they were
created.
interface Document : Node { readonly attribute DocumentType doctype; readonly attribute DOMImplementation implementation; readonly attribute Element documentElement; Element createElement(in DOMString tagName) raises(DOMException); DocumentFragment createDocumentFragment(); Text createTextNode(in DOMString data); Comment createComment(in DOMString data); CDATASection createCDATASection(in DOMString data) raises(DOMException); ProcessingInstruction createProcessingInstruction(in DOMString target, in DOMString data) raises(DOMException); Attr createAttribute(in DOMString name) raises(DOMException); EntityReference createEntityReference(in DOMString name) raises(DOMException); NodeList getElementsByTagName(in DOMString tagname); // Introduced in DOM Level 2: Node importNode(in Node importedNode, in boolean deep) raises(DOMException); // Introduced in DOM Level 2: Element createElementNS(in DOMString namespaceURI, in DOMString qualifiedName) raises(DOMException); // Introduced in DOM Level 2: Attr createAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName) raises(DOMException); // Introduced in DOM Level 2: NodeList getElementsByTagNameNS(in DOMString namespaceURI, in DOMString localName); // Introduced in DOM Level 2: Element getElementById(in DOMString elementId); // Introduced in DOM Level 3: attribute DOMString actualEncoding; // Introduced in DOM Level 3: attribute DOMString encoding; // Introduced in DOM Level 3: attribute boolean standalone; // Introduced in DOM Level 3: attribute boolean strictErrorChecking; // Introduced in DOM Level 3: attribute DOMString version; // Introduced in DOM Level 3: Node adoptNode(in Node source) raises(DOMException); // Introduced in DOM Level 3: void setBaseURI(in DOMString baseURI) raises(DOMException); };
actualEncoding
of type
DOMString
,
introduced in DOM Level 3null
otherwise.doctype
of type DocumentType
,
readonlyDocumentType
) associated
with this document. For HTML documents as well as XML documents
without a document type declaration this returns null
.
The DOM Level 2 does not support editing the Document Type
Declaration. docType
cannot be altered in any way,
including through the use of methods inherited from the Node
interface, such as
insertNode
or removeNode
.documentElement
of type Element
, readonlyencoding
of type DOMString
, introduced in DOM Level 3null
when
unspecified.implementation
of type DOMImplementation
,
readonlyDOMImplementation
object
that handles this document. A DOM application may use objects from
multiple implementations.standalone
of type
boolean
, introduced in DOM Level
3strictErrorChecking
of
type boolean
, introduced in DOM
Level 3false
, the implementation is free to
not test every possible error case normally defined on DOM
operations, and not raise any DOMException
. In case of
error, the behavior is undefined. This attribute is
true
by defaults.version
of type DOMString
, introduced in DOM Level 3null
when
unspecified.adoptNode
introduced in DOM Level 3ownerDocument
of a
node, its children, as well as the attached attribute nodes if
there are any. If the node has a parent it is first removed from
its parent child list. This effectively allows moving a subtree
from one document to another. The following list describes the
specifics for each type of node.
ownerElement
attribute is set to
null
and the specified
flag is set to
true
on the adopted Attr
. The descendants of
the source Attr
are recursively
adopted.Document
nodes cannot be adopted.DocumentType
nodes cannot be adopted.Attr
nodes. Default
attributes are discarded, though if the document being adopted into
defines default attributes for this element name, those are
assigned. The descendants of the source element are recursively
adopted.Entity
nodes
cannot be adopted.EntityReference
node
itself is adopted, the descendants are discarded, since the source
and destination documents might have defined the entity
differently. If the document being imported into provides a
definition for this entity name, its value is assigned.Notation
nodes
cannot be adopted.source
of type Node
The adopted node, or |
NOT_SUPPORTED_ERR: Raised if the source node is of type
NO_MODIFICATION_ALLOWED_ERR: Raised when the source node is readonly. |
createAttribute
Attr
of the given name.
Note that the Attr
instance can then be
set on an Element
using the setAttributeNode
method.createAttributeNS
method.
name
of type DOMString
INVALID_CHARACTER_ERR: Raised if the specified name contains an illegal character. |
createAttributeNS
introduced in DOM Level 2namespaceURI
of type DOMString
qualifiedName
of type DOMString
A new
|
INVALID_CHARACTER_ERR: Raised if the specified qualified name contains an illegal character, per the XML 1.0 specification [XML]. NAMESPACE_ERR: Raised if the NOT_SUPPORTED_ERR: Always thrown if the current document does
not support the |
createCDATASection
CDATASection
node whose
value is the specified string.
data
of type DOMString
CDATASection
contents.
The new |
NOT_SUPPORTED_ERR: Raised if this document is an HTML document. |
createComment
createDocumentFragment
DocumentFragment
object.
A new |
createElement
Element
interface, so
attributes can be specified directly on the returned object.Attr
nodes
representing them are automatically created and attached to the
element.createElementNS
method.
tagName
of type DOMString
tagName
parameter may be
provided in any case, but it must be mapped to the canonical
uppercase form by the DOM implementation.
INVALID_CHARACTER_ERR: Raised if the specified name contains an illegal character. |
createElementNS
introduced in DOM Level 2namespaceURI
of type DOMString
qualifiedName
of type DOMString
A new
|
INVALID_CHARACTER_ERR: Raised if the specified qualified name contains an illegal character, per the XML 1.0 specification [XML]. NAMESPACE_ERR: Raised if the NOT_SUPPORTED_ERR: Always thrown if the current document does
not support the |
createEntityReference
EntityReference
object. In
addition, if the referenced entity is known, the child list of the
EntityReference
node is
made the same as that of the corresponding Entity
node.
Note: If any descendant of the Entity
node has an unbound
namespace
prefix, the corresponding descendant of the created EntityReference
node
is also unbound; (its namespaceURI
is
null
). The DOM Level 2 does not support any mechanism
to resolve namespace prefixes.
name
of type DOMString
The new |
INVALID_CHARACTER_ERR: Raised if the specified name contains an illegal character. NOT_SUPPORTED_ERR: Raised if this document is an HTML document. |
createProcessingInstruction
ProcessingInstruction
node given the specified name and data strings.
The new |
INVALID_CHARACTER_ERR: Raised if the specified target contains an illegal character. NOT_SUPPORTED_ERR: Raised if this document is an HTML document. |
createTextNode
getElementById
introduced in DOM Level 2Element
whose
ID
is given by elementId
. If no such
element exists, returns null
. Behavior is not defined
if more than one element has this ID
.
Note: The DOM implementation must have information that
says which attributes are of type ID. Attributes with the name "ID"
are not of type ID unless so defined. Implementations that do not
know whether attributes are of type ID or not are expected to
return null
.
elementId
of type DOMString
id
value for an element.
The matching element. |
getElementsByTagName
getElementsByTagNameNS
introduced in DOM Level 2NodeList
of all the Elements
with a
given local name
and namespace URI in the order in which they are encountered in a
preorder traversal of the Document
tree.
namespaceURI
of type DOMString
localName
of type DOMString
importNode
introduced in
DOM Level 2parentNode
is null
). The source node is not altered or removed
from the original document; this method creates a new copy of the
source node.nodeName
and nodeType
, plus the
attributes related to namespaces (prefix
,
localName
, and namespaceURI
). As in the
cloneNode
operation on a Node
, the source node is
not altered.nodeType
, attempting to mirror the behavior expected
if a fragment of XML or HTML source was copied from one document to
another, recognizing that the two documents may have different DTDs
in the XML case. The following list describes the specifics for
each type of node.
ownerElement
attribute is set to
null
and the specified
flag is set to
true
on the generated Attr
. The descendants of the
source Attr
are recursively
imported and the resulting nodes reassembled to form the
corresponding subtree.deep
parameter has no effect on Attr
nodes; they always
carry their children with them when imported.deep
option was set to true
,
the descendants
of the source element are recursively imported and the resulting
nodes reassembled to form the corresponding subtree. Otherwise,
this simply generates an empty DocumentFragment
.Document
nodes cannot be imported.DocumentType
nodes cannot be imported.Attr
nodes are attached
to the generated Element
. Default
attributes are not copied, though if the document being
imported into defines default attributes for this element name,
those are assigned. If the importNode
deep
parameter was set to true
, the descendants of the
source element are recursively imported and the resulting nodes
reassembled to form the corresponding subtree.Entity
nodes
can be imported, however in the current release of the DOM the DocumentType
is
readonly. Ability to add these imported nodes to a DocumentType
will be
considered for addition to a future release of the DOM.publicId
, systemId
, and
notationName
attributes are copied. If a
deep
import is requested, the descendants of the the
source Entity
are
recursively imported and the resulting nodes reassembled to form
the corresponding subtree.EntityReference
itself is
copied, even if a deep
import is requested, since the
source and destination documents might have defined the entity
differently. If the document being imported into provides a
definition for this entity name, its value is assigned.Notation
nodes
can be imported, however in the current release of the DOM the DocumentType
is
readonly. Ability to add these imported nodes to a DocumentType
will be
considered for addition to a future release of the DOM.publicId
and systemId
attributes are copied.deep
parameter has no effect on Notation
nodes since they
never have any children.target
and
data
values from those of the source node.CharacterData
copy their
data
and length
attributes from those of
the source node.importedNode
of type Node
deep
of type
boolean
true
, recursively import the subtree under the
specified node; if false
, import only the node itself,
as explained above. This has no effect on Attr
, EntityReference
, and Notation
nodes.
The imported node that belongs to this
|
NOT_SUPPORTED_ERR: Raised if the type of node being imported is not supported. |
setBaseURI
introduced in DOM Level 3baseURI
attribute from the
Node
interface.href
attribute of the base
will also be changed if any.
baseURI
of type DOMString
SYNTAX_ERR: Raised if |
The Node
interface is the primary datatype for the
entire Document Object Model. It represents a single node in the
document tree. While all objects implementing the Node
interface expose methods for dealing with children, not all objects
implementing the Node
interface may have children. For
example, Text
nodes may not have children, and adding children to such nodes
results in a DOMException
being
raised.
The attributes nodeName
, nodeValue
and
attributes
are included as a mechanism to get at node
information without casting down to the specific derived interface.
In cases where there is no obvious mapping of these attributes for
a specific nodeType
(e.g., nodeValue
for
an Element
or
attributes
for a Comment
), this returns
null
. Note that the specialized interfaces may contain
additional and more convenient mechanisms to get and set the
relevant information.
interface Node { // NodeType const unsigned short ELEMENT_NODE = 1; const unsigned short ATTRIBUTE_NODE = 2; const unsigned short TEXT_NODE = 3; const unsigned short CDATA_SECTION_NODE = 4; const unsigned short ENTITY_REFERENCE_NODE = 5; const unsigned short ENTITY_NODE = 6; const unsigned short PROCESSING_INSTRUCTION_NODE = 7; const unsigned short COMMENT_NODE = 8; const unsigned short DOCUMENT_NODE = 9; const unsigned short DOCUMENT_TYPE_NODE = 10; const unsigned short DOCUMENT_FRAGMENT_NODE = 11; const unsigned short NOTATION_NODE = 12; readonly attribute DOMString nodeName; attribute DOMString nodeValue; // raises(DOMException) on setting // raises(DOMException) on retrieval readonly attribute unsigned short nodeType; readonly attribute Node parentNode; readonly attribute NodeList childNodes; readonly attribute Node firstChild; readonly attribute Node lastChild; readonly attribute Node previousSibling; readonly attribute Node nextSibling; readonly attribute NamedNodeMap attributes; // Modified in DOM Level 2: readonly attribute Document ownerDocument; Node insertBefore(in Node newChild, in Node refChild) raises(DOMException); Node replaceChild(in Node newChild, in Node oldChild) raises(DOMException); Node removeChild(in Node oldChild) raises(DOMException); Node appendChild(in Node newChild) raises(DOMException); boolean hasChildNodes(); Node cloneNode(in boolean deep); // Modified in DOM Level 2: void normalize(); // Introduced in DOM Level 2: boolean isSupported(in DOMString feature, in DOMString version); // Introduced in DOM Level 2: readonly attribute DOMString namespaceURI; // Introduced in DOM Level 2: attribute DOMString prefix; // raises(DOMException) on setting // Introduced in DOM Level 2: readonly attribute DOMString localName; // Introduced in DOM Level 2: boolean hasAttributes(); // Introduced in DOM Level 3: readonly attribute DOMString baseURI; enum DocumentOrder { DOCUMENT_ORDER_PRECEDING, DOCUMENT_ORDER_FOLLOWING, DOCUMENT_ORDER_SAME, DOCUMENT_ORDER_UNORDERED }; // Introduced in DOM Level 3: DocumentOrder compareDocumentOrder(in Node other) raises(DOMException); enum TreePosition { TREE_POSITION_PRECEDING, TREE_POSITION_FOLLOWING, TREE_POSITION_ANCESTOR, TREE_POSITION_DESCENDANT, TREE_POSITION_SAME, TREE_POSITION_UNORDERED }; // Introduced in DOM Level 3: TreePosition compareTreePosition(in Node other) raises(DOMException); // Introduced in DOM Level 3: attribute DOMString textContent; // Introduced in DOM Level 3: boolean isSameNode(in Node other); // Introduced in DOM Level 3: DOMString lookupNamespacePrefix(in DOMString namespaceURI); // Introduced in DOM Level 3: DOMString lookupNamespaceURI(in DOMString prefix); // Introduced in DOM Level 3: void normalizeNS(); // Introduced in DOM Level 3: readonly attribute DOMKey key; // Introduced in DOM Level 3: boolean equalsNode(in Node arg, in boolean deep); // Introduced in DOM Level 3: Node getAs(in DOMString feature); };
An integer indicating which type of node this is.
Note: Numeric codes up to 200 are reserved to W3C for possible future use.
ATTRIBUTE_NODE
Attr
.CDATA_SECTION_NODE
CDATASection
.COMMENT_NODE
Comment
.DOCUMENT_FRAGMENT_NODE
DocumentFragment
.DOCUMENT_NODE
Document
.DOCUMENT_TYPE_NODE
DocumentType
.ELEMENT_NODE
Element
.ENTITY_NODE
Entity
.ENTITY_REFERENCE_NODE
EntityReference
.NOTATION_NODE
Notation
.PROCESSING_INSTRUCTION_NODE
ProcessingInstruction
.TEXT_NODE
Text
node.The values of nodeName
, nodeValue
, and
attributes
vary according to the node type as
follows:
Interface | nodeName | nodeValue | attributes |
---|---|---|---|
Attr | name of attribute | value of attribute | null |
CDATASection |
"#cdata-section" |
content of the CDATA Section | null |
Comment |
"#comment" |
content of the comment | null |
Document |
"#document" |
null | null |
DocumentFragment |
"#document-fragment" |
null | null |
DocumentType | document type name | null | null |
Element | tag name | null | NamedNodeMap |
Entity | entity name | null | null |
EntityReference | name of entity referenced | null | null |
Notation | notation name | null | null |
ProcessingInstruction | target | entire content excluding the target | null |
Text | "#text" |
content of the text node | null |
A type to hold the document order of a node relative to another node.
An enumeration of the different orders the node can be in.
Enumerator Values |
DOCUMENT_ORDER_PRECEDING |
The node preceds the reference node in document order. |
DOCUMENT_ORDER_FOLLOWING |
The node follows the reference node in document order. |
DOCUMENT_ORDER_SAME |
The two nodes have the same document order. |
DOCUMENT_ORDER_UNORDERED |
The two nodes are unordered, they do not have any common ancestor. |
A type to hold the relative tree position of a node with respect to another node.
An enumeration of the different orders the node can be in.
Enumerator Values |
TREE_POSITION_PRECEDING |
The node preceds the reference node. |
TREE_POSITION_FOLLOWING |
The node follows the reference node. |
TREE_POSITION_ANCESTOR |
The node is an ancestor of the reference node. |
TREE_POSITION_DESCENDANT |
The node is a descendant of the reference node. |
TREE_POSITION_SAME |
The two nodes have the same position. |
TREE_POSITION_UNORDERED |
The two nodes are unordered, they do not have any common ancestor. |
attributes
of type NamedNodeMap
,
readonlyNamedNodeMap
containing
the attributes of this node (if it is an Element
) or
null
otherwise.baseURI
of type DOMString
, readonly,
introduced in DOM Level 3childNodes
of type NodeList
, readonlyNodeList
that contains all children of this node. If there are no children,
this is a NodeList
containing no
nodes.firstChild
of type Node
, readonlynull
.key
of type DOMKey
, readonly, introduced in
DOM Level 3lastChild
of type Node
, readonlynull
.localName
of type DOMString
, readonly,
introduced in DOM Level 2ELEMENT_NODE
and
ATTRIBUTE_NODE
and nodes created with a DOM Level 1
method, such as createElement
from the Document
interface, this is
always null
.namespaceURI
of type DOMString
, readonly,
introduced in DOM Level 2null
if it is
unspecified.ELEMENT_NODE
and
ATTRIBUTE_NODE
and nodes created with a DOM Level 1
method, such as createElement
from the Document
interface, this is
always null
.
Note: Per the Namespaces in XML Specification [Namespaces] an attribute does not inherit its namespace from the element it is attached to. If an attribute is not explicitly given a namespace, it simply has no namespace.
nextSibling
of type Node
, readonlynull
.nodeName
of type DOMString
, readonlynodeType
of type unsigned
short
, readonlynodeValue
of type DOMString
null
, setting it has
no effect.
NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly. |
DOMSTRING_SIZE_ERR: Raised when it would return more characters
than fit in a |
ownerDocument
of type Document
, readonly,
modified in DOM Level 2Document
object associated with this node. This is also the Document
object used to create new nodes. When this node is a Document
or a
DocumentType
which is not used with any Document
yet, this is
null
.parentNode
of type Node
, readonlyAttr
, Document
, DocumentFragment
, Entity
, and Notation
may have a
parent. However, if a node has just been created and not yet added
to the tree, or if it has been removed from the tree, this is
null
.prefix
of type DOMString
, introduced in DOM Level 2null
if it is
unspecified.nodeName
attribute, which holds the qualified name, as
well as the tagName
and name
attributes
of the Element
and Attr
interfaces, when applicable.namespaceURI
and localName
do not
change.ELEMENT_NODE
and
ATTRIBUTE_NODE
and nodes created with a DOM Level 1
method, such as createElement
from the Document
interface, this is
always null
.
INVALID_CHARACTER_ERR: Raised if the specified prefix contains an illegal character, per the XML 1.0 specification [XML]. NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. NAMESPACE_ERR: Raised if the specified |
previousSibling
of type Node
, readonlynull
.textContent
of type DOMString
, introduced in DOM Level 3Text
node containing the
string this attribute is set to. On getting, no serialization is
performed, the returned string does not contain any markup.
Similarly, on setting, no parsing is performed either, the input
string is taken as pure textual content.Node type | Content |
---|---|
ELEMENT_NODE, ENTITY_NODE, ENTITY_REFERENCE_NODE, DOCUMENT_NODE, DOCUMENT_FRAGMENT_NODE | concatenation of the
textContent attribute value of every child node,
excluding COMMENT_NODE and PROCESSING_INSTRUCTION_NODE nodes |
ATTRIBUTE_NODE, TEXT_NODE, CDATA_SECTION_NODE, COMMENT_NODE, PROCESSING_INSTRUCTION_NODE |
nodeValue |
DOCUMENT_TYPE_NODE, NOTATION_NODE | empty string |
appendChild
newChild
to the end
of the list of children of this node. If the newChild
is already in the tree, it is first removed.
newChild
of type Node
DocumentFragment
object,
the entire contents of the document fragment are moved into the
child list of this node
The node added. |
HIERARCHY_REQUEST_ERR: Raised if this node is of a type that
does not allow children of the type of the WRONG_DOCUMENT_ERR: Raised if NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly or if the previous parent of the node being inserted is readonly. |
cloneNode
parentNode
is null
.).Element
copies all
attributes and their values, including those generated by the XML
processor to represent defaulted attributes, but this method does
not copy any text it contains unless it is a deep clone, since the
text is contained in a child Text
node. Cloning an
Attribute
directly, as opposed to be cloned as part of
an Element
cloning
operation, returns a specified attribute (specified
is
true
). Cloning any other type of node simply returns a
copy of this node.EntityReference
clone are
readonly. In
addition, clones of unspecified Attr
nodes are specified.
And, cloning Document
, DocumentType
, Entity
, and Notation
nodes is
implementation dependent.
deep
of type
boolean
true
, recursively clone the subtree under the
specified node; if false
, clone only the node itself
(and its attributes, if it is an Element
).
The duplicate node. |
compareDocumentOrder
introduced in DOM Level 3other
of type Node
Returns how the given node compares with this node in document order. |
WRONG_DOCUMENT_ERR: Raised if the given node does not belong to the same document as this node. |
compareTreePosition
introduced in DOM Level 3other
of type Node
Returns how the given node is positioned relatively to this node. |
WRONG_DOCUMENT_ERR: Raised if the given node does not belong to the same document as this node. |
equalsNode
introduced in DOM Level 3Node.isSameNode
. All
objects that are the same will also be equal, though the reverse
may not be true.
|
If the nodes, and possibly subtrees are equal, |
getAs
introduced in DOM
Level 3Node
's specialized interface (see Mutiple XML Datatypes in a DOM
Document).
feature
of type DOMString
Returns an alternate |
hasAttributes
introduced in DOM Level 2
|
|
hasChildNodes
|
|
insertBefore
newChild
before
the existing child node refChild
. If
refChild
is null
, insert
newChild
at the end of the list of children.newChild
is a DocumentFragment
object,
all of its children are inserted, in the same order, before
refChild
. If the newChild
is already in
the tree, it is first removed.
The node being inserted. |
HIERARCHY_REQUEST_ERR: Raised if this node is of a type that
does not allow children of the type of the WRONG_DOCUMENT_ERR: Raised if NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly or if the parent of the node being inserted is readonly. NOT_FOUND_ERR: Raised if |
isSameNode
introduced in DOM Level 3other
of type Node
|
Returns |
isSupported
introduced
in DOM Level 2feature
of type DOMString
hasFeature
on DOMImplementation
.version
of type DOMString
true
.
|
Returns |
lookupNamespacePrefix
introduced in DOM Level 3namespaceURI
of type DOMString
Returns the associated namespace prefix or |
lookupNamespaceURI
introduced in DOM Level 3// Note that lookupNamespacePrefix is virtual identical to this // method; just reverse which fields are being tested/returned. DOMString Element.lookupNamespaceURI(in DOMString prefix) { if this Element has a namespace and its prefix is the one we're looking for return this Element's namespace else if this element has an explicit namespace declaration Attr (with namespace=="http://www.w3.org/2000/xmlns/" and either the prefix "xmlns:" or the nodeName "xmlns") for the specified prefix return that Attr's value. else if this Element has an ancestor Element (you may have to skip EntityReferences to get to it) return parent.lookupNamespaceURI(prefix) else return unknown (null) }
prefix
of type DOMString
Returns the associated namespace URI or |
normalize
modified in DOM Level 2Text
nodes in the full
depth of the sub-tree underneath this Node
, including
attribute nodes, into a "normal" form where only structure (e.g.,
elements, comments, processing instructions, CDATA sections, and
entity references) separates Text
nodes, i.e., there
are neither adjacent Text
nodes nor empty Text
nodes. This can be used to ensure that the DOM view of a document
is the same as if it were saved and re-loaded, and is useful when
operations (such as XPointer [XPointer] lookups) that depend on a
particular document tree structure are to be used.
Note: In cases where the document contains CDATASections
, the
normalize operation alone may not be sufficient, since XPointers do
not differentiate between Text
nodes and CDATASection
nodes.
normalizeNS
introduced in DOM Level 3void Element.normalizeNamespaces() { Determine namespaces inherited from myElement's ancestors, using the same search as Element3.lookupNamespacePrefix() and Element3.lookupNamespaceURI() // This will probably require an upward search when the // operation is initially invoked by the user, but thereafter can be // information carried downward as we recurse to deeper Elements. //////// EXAMINE AND POLISH THE ELEMENT //////// If myElement has a namespace URI { // Should be possible to combine this test into the lookup/definition // stages, to reduce rechecking of URIs already examined: If the NSURI is not syntactically valid { Report error // ISSUE: Continue processing as if it were valid? Stop processing? // (If we're using the AS/LS error mechanism, we could let the user's // error handler decide this... but we need to decide what severity // to assign it.) } If myElement's prefix/namespace pair (or default namespace, if no prefix) are not already within the scope of a binding (local declaration, then inherited) { Create a local namespace declaration attr for this namespace, with myElement's current prefix (or a default namespace, if no prefix). If there's a conflicting local declaration already present, change its value to use this namespace. // NOTE that this may break other nodes within this Element's // subtree, if they're already using this prefix. // They will be repaired when we reach them. } } // end namespaced Element else if Element has no namespace but has a colon in its name { // ISSUE: WHAT DO WE DO WITH THESE LEVEL 1 ELEMENTS? // // Option 1: Ignore them. Undesirable since our goal is to // produce a document that is namespace-well-formed. // // Option 2: Replace them with level 2 nodes and bind their // prefixes using the existing namespace contexts. That means // significant alteration of document structure (a problem if // anyone has references to or event listeners on this Element). // [Joe doesn't like it.] // // Option 3: Report them as a namespace normalization error // and _then_ ignore them. "Anyone who cares about namespace // support really shouldn't be using Level 1 nodes, and can go // fix it themselves." // // Option 4: Like option 3, but report an error only if we are not // within the scope of an existing declaration of the prefix. (We // can't check what it should be declared as, but we can check that // it is declared as something.) } // end level-1-with-colon Else // Element has no namespace URI and no pseudo-prefix { If the Default Namespace in scope at this point is "no namespace" { // we're fine as we stand } else { Create a local xmlns="" declaration. If there's a conflicting local default-namespace declaration already present, change its value to use this namespace. // NOTE that this may break other nodes within this Element's // subtree, if they're already using the default namespaces. // They will be repaired when we reach them. } } //////// EXAMINE AND POLISH THE ATTRS //////// For all Attrs of myElement { If Attr has a namespace URI { If the NSURI is not syntactically valid { Report error. (See above discussion.) } If Attr has no prefix, or has a prefix that conflicts with a binding already active in this scope { If myElement is in the scope (inherited or local) of a NON-DEFAULT binding for this namespace { If multiple prefix bindings are available, pick the one most locally defined; if there's a tie, pick one arbitrarily. // ISSUE: Do we want to be that explicit? Change the Attr to use that prefix. } else { Create a local namespace declaration attr for this namespace, with an arbitrarily selected prefix not already used in our current namespace scope. Change the Attr to use this prefix. // NOTE that this may break other nodes within this Element's // subtree, if they're already using this prefix. // They will be repaired when we reach them. // ISSUE: Do we want to explicitly say which "arbitrary" // prefixes will be assigned? (DOMImplied17: or something // of that sort...) Or is this best left to the implementation, // since it's officially Not Significant? } } // end prefix-doesn't-match else if namespace is "http://www.w3.org/2000/xmlns/", but attribute does not have the prefix "xmlns:" or the nodeName "xmlns" { // Yes, this can arise in the DOM. We only check for the opposite // case, assigning the wrong URI to an attribute whose name says // it should be a namespace declaration... not the reverse. // // While all Namespace Declarations belong to a // reserved NSURI, it is apparently _not_ true that all attributes // having that NSURI are to be considered Namespace Declarations. // According to the namespace spec, only "xmlns" and names having // the xmlns: prefix should be interpreted as declarations. So: if there is a NON-DEFAULT binding for this namespace in scope with a prefix other than "xmlns" { Change the Attr to use that prefix. If multiple choices are available, pick one arbitrarily. // ISSUE: Should we favor the "most locally defined" prefix? // Or leave that up to the implementation?) } else { Create a local namespace declaration attr for this namespace, with an arbitrarily selected prefix not already used in our current namespace scope. Change the Attr to use this prefix. } } // end non-namespace-decl with namespace-decl URI } // end namespaced Attr Else if attr has no namespace but has colon in its name { // ISSUE: WHAT DO WE DO WITH THESE LEVEL 1 ATTRS? // See above discussion of Level 1 Elements } // end level-1-attr-with-colon Else // attr has no namespace URI and no prefix { // we're fine as we stand, since attrs don't use default } } // end for-all-Attrs //////// RECURSE OR TREE-WALK TO NORMALIZE THE DESCENDENT ELEMENTS // ISSUE: Will we ever want to fix only one element? If so, // we may want a parameter saying deep/shallow, as // on cloneNode/importNode. For all element descendents of myElement { descendentElement.normalizeNamespaces() } } // end Element3.normalizeNamespaces
removeChild
oldChild
from the list of children, and returns it.
oldChild
of type Node
The node removed. |
NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. NOT_FOUND_ERR: Raised if |
replaceChild
oldChild
with newChild
in the list of children, and returns the
oldChild
node.newChild
is a DocumentFragment
object,
oldChild
is replaced by all of the DocumentFragment
children, which are inserted in the same order. If the
newChild
is already in the tree, it is first removed.
The node replaced. |
HIERARCHY_REQUEST_ERR: Raised if this node is of a type that
does not allow children of the type of the WRONG_DOCUMENT_ERR: Raised if NO_MODIFICATION_ALLOWED_ERR: Raised if this node or the parent of the new node is readonly. NOT_FOUND_ERR: Raised if |
The NodeList
interface provides the abstraction of
an ordered collection of nodes, without defining or constraining
how this collection is implemented. NodeList
objects
in the DOM are live.
The items in the NodeList
are accessible via an
integral index, starting from 0.
interface NodeList { Node item(in unsigned long index); readonly attribute unsigned long length; };
length
of type unsigned
long
, readonlylength-1
inclusive.item
index
th item in the
collection. If index
is greater than or equal to the
number of nodes in the list, this returns null
.
index
of type
unsigned long
The node at the |
Objects implementing the NamedNodeMap
interface are
used to represent collections of nodes that can be accessed by
name. Note that NamedNodeMap
does not inherit from NodeList
;
NamedNodeMaps
are not maintained in any particular
order. Objects contained in an object implementing
NamedNodeMap
may also be accessed by an ordinal index,
but this is simply to allow convenient enumeration of the contents
of a NamedNodeMap
, and does not imply that the DOM
specifies an order to these Nodes.
NamedNodeMap
objects in the DOM are live.
interface NamedNodeMap { Node getNamedItem(in DOMString name); Node setNamedItem(in Node arg) raises(DOMException); Node removeNamedItem(in DOMString name) raises(DOMException); Node item(in unsigned long index); readonly attribute unsigned long length; // Introduced in DOM Level 2: Node getNamedItemNS(in DOMString namespaceURI, in DOMString localName); // Introduced in DOM Level 2: Node setNamedItemNS(in Node arg) raises(DOMException); // Introduced in DOM Level 2: Node removeNamedItemNS(in DOMString namespaceURI, in DOMString localName) raises(DOMException); };
length
of type unsigned long
,
readonly0
to length-1
inclusive.getNamedItem
getNamedItemNS
introduced in DOM Level 2namespaceURI
of type DOMString
localName
of type DOMString
item
index
th item in the
map. If index
is greater than or equal to the number
of nodes in this map, this returns null
.
index
of type
unsigned long
The node at the |
removeNamedItem
name
of type DOMString
nodeName
of the node to remove.
The node removed from this map if a node with such a name exists. |
NOT_FOUND_ERR: Raised if there is no node named
NO_MODIFICATION_ALLOWED_ERR: Raised if this map is readonly. |
removeNamedItemNS
introduced in
DOM Level 2Node
interface. If so,
an attribute immediately appears containing the default value as
well as the corresponding namespace URI, local name, and prefix
when applicable.namespaceURI
of type DOMString
localName
of type DOMString
The node removed from this map if a node with such a local name and namespace URI exists. |
NOT_FOUND_ERR: Raised if there is no node with the specified
NO_MODIFICATION_ALLOWED_ERR: Raised if this map is readonly. |
setNamedItem
nodeName
attribute. If a node with that name is already present in this map,
it is replaced by the new one.nodeName
attribute is used to derive the name
which the node must be stored under, multiple nodes of certain
types (those that have a "special" string value) cannot be stored
as the names would clash. This is seen as preferable to allowing
nodes to be aliased.
arg
of type Node
nodeName
attribute.
WRONG_DOCUMENT_ERR: Raised if NO_MODIFICATION_ALLOWED_ERR: Raised if this map is readonly. INUSE_ATTRIBUTE_ERR: Raised if HIERARCHY_REQUEST_ERR: Raised if an attempt is made to add a node doesn't belong in this NamedNodeMap. Examples would include trying to insert something other than an Attr node into an Element's map of attributes, or a non-Entity node into the DocumentType's map of Entities. |
setNamedItemNS
introduced in DOM Level 2namespaceURI
and localName
. If a node with that namespace URI and
that local name is already present in this map, it is replaced by
the new one.
arg
of type Node
namespaceURI
and
localName
attributes.
WRONG_DOCUMENT_ERR: Raised if NO_MODIFICATION_ALLOWED_ERR: Raised if this map is readonly. INUSE_ATTRIBUTE_ERR: Raised if HIERARCHY_REQUEST_ERR: Raised if an attempt is made to add a node doesn't belong in this NamedNodeMap. Examples would include trying to insert something other than an Attr node into an Element's map of attributes, or a non-Entity node into the DocumentType's map of Entities. NOT_SUPPORTED_ERR: Always thrown if the current document does
not support the |
The CharacterData
interface extends Node with a set
of attributes and methods for accessing character data in the DOM.
For clarity this set is defined here rather than on each object
that uses these attributes and methods. No DOM objects correspond
directly to CharacterData
, though Text
and others do
inherit the interface from it. All offsets
in this
interface start from 0
.
As explained in the DOMString
interface, text
strings in the DOM are represented in UTF-16, i.e. as a sequence of
16-bit units. In the following, the term 16-bit units is used
whenever necessary to indicate that indexing on CharacterData is
done in 16-bit units.
interface CharacterData : Node { attribute DOMString data; // raises(DOMException) on setting // raises(DOMException) on retrieval readonly attribute unsigned long length; DOMString substringData(in unsigned long offset, in unsigned long count) raises(DOMException); void appendData(in DOMString arg) raises(DOMException); void insertData(in unsigned long offset, in DOMString arg) raises(DOMException); void deleteData(in unsigned long offset, in unsigned long count) raises(DOMException); void replaceData(in unsigned long offset, in unsigned long count, in DOMString arg) raises(DOMException); };
data
of type DOMString
CharacterData
node.
However, implementation limits may mean that the entirety of a
node's data may not fit into a single DOMString
. In such cases,
the user may call substringData
to retrieve the data
in appropriately sized pieces.
NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly. |
DOMSTRING_SIZE_ERR: Raised when it would return more characters
than fit in a |
length
of type unsigned long
,
readonlydata
and the
substringData
method below. This may have the value
zero, i.e., CharacterData
nodes may be empty.appendData
data
provides access
to the concatenation of data
and the DOMString
specified.
NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. |
deleteData
data
and length
reflect the change.
offset
of type
unsigned long
count
of type
unsigned long
offset
and count
exceeds
length
then all 16-bit units from offset
to the end of the data are deleted.
INDEX_SIZE_ERR: Raised if the specified NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. |
insertData
INDEX_SIZE_ERR: Raised if the specified NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. |
replaceData
offset
of type
unsigned long
count
of type
unsigned long
offset
and count
exceeds
length
, then all 16-bit units to the end of the data
are replaced; (i.e., the effect is the same as a
remove
method call with the same range, followed by an
append
method invocation).arg
of type DOMString
DOMString
with which the
range must be replaced.
INDEX_SIZE_ERR: Raised if the specified NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. |
substringData
offset
of type
unsigned long
count
of type
unsigned long
The specified substring. If the sum of |
INDEX_SIZE_ERR: Raised if the specified DOMSTRING_SIZE_ERR: Raised if the specified range of text does
not fit into a |
The Attr
interface represents an attribute in an Element
object.
Typically the allowable values for the attribute are defined in a
document type definition.
Attr
objects inherit the Node
interface, but
since they are not actually child nodes of the element they
describe, the DOM does not consider them part of the document tree.
Thus, the Node
attributes
parentNode
, previousSibling
, and
nextSibling
have a null
value for
Attr
objects. The DOM takes the view that attributes
are properties of elements rather than having a separate identity
from the elements they are associated with; this should make it
more efficient to implement such features as default attributes
associated with all elements of a given type. Furthermore,
Attr
nodes may not be immediate children of a DocumentFragment
. However,
they can be associated with Element
nodes contained
within a DocumentFragment
. In
short, users and implementors of the DOM need to be aware that
Attr
nodes have some things in common with other
objects inheriting the Node
interface, but they
also are quite distinct.
The attribute's effective value is determined as follows: if
this attribute has been explicitly assigned any value, that value
is the attribute's effective value; otherwise, if there is a
declaration for this attribute, and that declaration includes a
default value, then that default value is the attribute's effective
value; otherwise, the attribute does not exist on this element in
the structure model until it has been explicitly added. Note that
the nodeValue
attribute on the Attr
instance can also be used to retrieve the string version of the
attribute's value(s).
In XML, where the value of an attribute can contain entity
references, the child nodes of the Attr
node may be
either Text
or
EntityReference
nodes (when these are in use; see the description of EntityReference
for
discussion). Because the DOM Core is not aware of attribute types,
it treats all attribute values as simple strings, even if the DTD
or schema declares them as having tokenized types.
interface Attr : Node { readonly attribute DOMString name; readonly attribute boolean specified; attribute DOMString value; // raises(DOMException) on setting // Introduced in DOM Level 2: readonly attribute Element ownerElement; };
name
of type DOMString
, readonlyownerElement
of type Element
, readonly,
introduced in DOM Level 2Element
node this attribute is attached to or null
if this
attribute is not in use.specified
of type boolean
,
readonlytrue
; otherwise, it is
false
. Note that the implementation is in charge of
this attribute, not the user. If the user changes the value of the
attribute (even if it ends up having the same value as the default
value) then the specified
flag is automatically
flipped to true
. To re-specify the attribute as the
default value from the DTD, the user must delete the attribute. The
implementation will then make a new attribute available with
specified
set to false
and the default
value (if one exists).specified
is true
, and the value is the
assigned value.specified
is
false
, and the value is the default value in the
DTD.ownerElement
attribute is null
(i.e. because it was just created or was set to null
by the various removal and cloning operations)
specified
is true
.value
of type DOMString
getAttribute
on the
Element
interface.Text
node with the
unparsed contents of the string. I.e. any characters that an XML
processor would recognize as markup are instead treated as literal
text. See also the method setAttribute
on the Element
interface.
NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly. |
The Element
interface represents an element in an HTML or XML
document. Elements may have attributes associated with them; since
the Element
interface inherits from Node
, the generic Node
interface attribute attributes
may be used to retrieve
the set of all attributes for an element. There are methods on the
Element
interface to retrieve either an Attr
object by name or an
attribute value by name. In XML, where an attribute value may
contain entity references, an Attr
object should be
retrieved to examine the possibly fairly complex sub-tree
representing the attribute value. On the other hand, in HTML, where
all attributes have simple string values, methods to directly
access an attribute value can safely be used as a convenience.
Note: In DOM Level 2, the method normalize
is inherited from the Node
interface where it
was moved.
interface Element : Node { readonly attribute DOMString tagName; DOMString getAttribute(in DOMString name); void setAttribute(in DOMString name, in DOMString value) raises(DOMException); void removeAttribute(in DOMString name) raises(DOMException); Attr getAttributeNode(in DOMString name); Attr setAttributeNode(in Attr newAttr) raises(DOMException); Attr removeAttributeNode(in Attr oldAttr) raises(DOMException); NodeList getElementsByTagName(in DOMString name); // Introduced in DOM Level 2: DOMString getAttributeNS(in DOMString namespaceURI, in DOMString localName); // Introduced in DOM Level 2: void setAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName, in DOMString value) raises(DOMException); // Introduced in DOM Level 2: void removeAttributeNS(in DOMString namespaceURI, in DOMString localName) raises(DOMException); // Introduced in DOM Level 2: Attr getAttributeNodeNS(in DOMString namespaceURI, in DOMString localName); // Introduced in DOM Level 2: Attr setAttributeNodeNS(in Attr newAttr) raises(DOMException); // Introduced in DOM Level 2: NodeList getElementsByTagNameNS(in DOMString namespaceURI, in DOMString localName); // Introduced in DOM Level 2: boolean hasAttribute(in DOMString name); // Introduced in DOM Level 2: boolean hasAttributeNS(in DOMString namespaceURI, in DOMString localName); };
tagName
of type DOMString
, readonly<elementExample id="demo"> ... </elementExample> ,
tagName
has the value "elementExample"
.
Note that this is case-preserving in XML, as are all of the
operations of the DOM. The HTML DOM returns the
tagName
of an HTML element in the canonical uppercase
form, regardless of the case in the source HTML document.getAttribute
getAttributeNS
introduced in DOM Level 2namespaceURI
of type DOMString
localName
of type DOMString
getAttributeNode
getAttributeNodeNS
method.
name
of type DOMString
nodeName
) of the attribute to
retrieve.getAttributeNodeNS
introduced in DOM Level 2Attr
node by local name
and namespace URI.namespaceURI
of type DOMString
localName
of type DOMString
getElementsByTagName
NodeList
of all descendant
Elements
with a given tag name, in the order in which
they are encountered in a preorder traversal of this
Element
tree.
name
of type DOMString
A list of matching |
getElementsByTagNameNS
introduced in DOM Level 2NodeList
of all the descendant
Elements
with a given local name and namespace URI in
the order in which they are encountered in a preorder traversal of
this Element
tree.namespaceURI
of type DOMString
localName
of type DOMString
hasAttribute
introduced in DOM Level 2true
when an attribute
with a given name is specified on this element or has a default
value, false
otherwise.
name
of type DOMString
|
|
hasAttributeNS
introduced in DOM Level 2true
when an attribute
with a given local name and namespace URI is specified on this
element or has a default value, false
otherwise.namespaceURI
of type DOMString
localName
of type DOMString
|
|
removeAttribute
removeAttributeNS
method.
name
of type DOMString
NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. |
removeAttributeNS
introduced in DOM Level 2namespaceURI
of type DOMString
localName
of type DOMString
NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. |
removeAttributeNode
Attr
has
a default value it is immediately replaced. The replacing attribute
has the same namespace URI and local name, as well as the original
prefix, when applicable.
NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. NOT_FOUND_ERR: Raised if |
setAttribute
Attr
node plus any Text
and EntityReference
nodes,
build the appropriate subtree, and use
setAttributeNode
to assign it as the value of an
attribute.setAttributeNS
method.
INVALID_CHARACTER_ERR: Raised if the specified name contains an illegal character. NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. |
setAttributeNS
introduced in DOM Level 2qualifiedName
, and its value is changed to be the
value
parameter. This value is a simple string; it is
not parsed as it is being set. So any markup (such as syntax to be
recognized as an entity reference) is treated as literal text, and
needs to be appropriately escaped by the implementation when it is
written out. In order to assign an attribute value that contains
entity references, the user must create an Attr
node plus any Text
and EntityReference
nodes,
build the appropriate subtree, and use
setAttributeNodeNS
or setAttributeNode
to
assign it as the value of an attribute.
namespaceURI
of type DOMString
qualifiedName
of type DOMString
value
of type DOMString
INVALID_CHARACTER_ERR: Raised if the specified qualified name contains an illegal character, per the XML 1.0 specification [XML]. NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. NAMESPACE_ERR: Raised if the NOT_SUPPORTED_ERR: Always thrown if the current document does
not support the |
setAttributeNode
nodeName
) is already present in the
element, it is replaced by the new one.setAttributeNodeNS
method.
WRONG_DOCUMENT_ERR: Raised if NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. INUSE_ATTRIBUTE_ERR: Raised if |
setAttributeNodeNS
introduced in DOM Level 2
If the |
WRONG_DOCUMENT_ERR: Raised if NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. INUSE_ATTRIBUTE_ERR: Raised if NOT_SUPPORTED_ERR: Always thrown if the current document does
not support the |
The Text
interface inherits from CharacterData
and
represents the textual content (termed character
data in XML) of an Element
or Attr
. If there is no
markup inside an element's content, the text is contained in a
single object implementing the Text
interface that is
the only child of the element. If there is markup, it is parsed
into the information
items (elements, comments, etc.) and Text
nodes that form the list of children of the element.
When a document is first made available via the DOM, there is
only one Text
node for each block of text. Users may
create adjacent Text
nodes that represent the contents
of a given element without any intervening markup, but should be
aware that there is no way to represent the separations between
these nodes in XML or HTML, so they will not (in general) persist
between DOM editing sessions. The normalize()
method
on Node
merges
any such adjacent Text
objects into a single node for
each block of text.
interface Text : CharacterData { Text splitText(in unsigned long offset) raises(DOMException); // Introduced in DOM Level 3: readonly attribute boolean isWhitespaceInElementContent; // Introduced in DOM Level 3: readonly attribute DOMString wholeText; // Introduced in DOM Level 3: Text replaceWholeText(in DOMString content) raises(DOMException); };
isWhitespaceInElementContent
of type boolean
, readonly, introduced in DOM Level 3Note: An implementation can only return true
if, one way or another, it has access to the relevant information
(e.g., the DTD or schema).
wholeText
of type DOMString
, readonly,
introduced in DOM Level 3Text
nodes logically-adjacent
to this node.
replaceWholeText
introduced in
DOM Level 3Text
nodes
logically-adjacent to this node.
content
of type DOMString
Text
node.
The |
NO_MODIFICATION_ALLOWED_ERR: Raised if one of the
|
splitText
offset
, keeping both in the tree as siblings. After being
split, this node will contain all the content up to the
offset
point. A new node of the same type, which
contains all the content at and after the offset
point, is returned. If the original node had a parent node, the new
node is inserted as the next sibling of the original
node. When the offset
is equal to the length of this
node, the new node has no data.
offset
of type
unsigned long
0
.
The new node, of the same type as this node. |
INDEX_SIZE_ERR: Raised if the specified offset is negative or
greater than the number of 16-bit units in NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly. |
This interface inherits from CharacterData
and
represents the content of a comment, i.e., all the characters
between the starting '<!--
' and ending
'-->
'. Note that this is the definition of a
comment in XML, and, in practice, HTML, although some HTML tools
may implement the full SGML comment structure.
interface Comment : CharacterData { };
The interfaces defined here form part of the DOM Core specification, but objects that expose these interfaces will never be encountered in a DOM implementation that deals only with HTML.
The interfaces found within this section are not mandatory. A
DOM application may use the hasFeature(feature,
version)
method of the DOMImplementation
interface with parameter values "XML" and "3.0" (respectively) to
determine whether or not this module is supported by the
implementation. In order to fully support this module, an
implementation must also support the "Core" feature defined in Fundamental Interfaces. Please
refer to additional information about Conformance
CDATA sections are used to escape blocks of text containing characters that would otherwise be regarded as markup. The only delimiter that is recognized in a CDATA section is the "]]>" string that ends the CDATA section. CDATA sections cannot be nested. Their primary purpose is for including material such as XML fragments, without needing to escape all the delimiters.
The DOMString
attribute of the Text
node holds the text
that is contained by the CDATA section. Note that this may
contain characters that need to be escaped outside of CDATA
sections and that, depending on the character encoding ("charset")
chosen for serialization, it may be impossible to write out some
characters as part of a CDATA section.
The CDATASection
interface inherits from the CharacterData
interface through the Text
interface. Adjacent
CDATASection
nodes are not merged by use of the
normalize
method of the Node
interface.
Note: Because no markup is recognized within a
CDATASection
, character numeric references cannot be
used as an escape mechanism when serializing. Therefore, action
needs to be taken when serializing a CDATASection
with
a character encoding where some of the contained characters cannot
be represented. Failure to do so would not produce well-formed
XML.
One potential solution in the serialization process is to end the
CDATA section before the character, output the character using a
character reference or entity reference, and open a new CDATA
section for any further characters in the text node. Note, however,
that some code conversion libraries at the time of writing do not
return an error or exception when a character is missing from the
encoding, making the task of ensuring that data is not corrupted on
serialization more difficult.
interface CDATASection : Text { };
Each Document
has a doctype
attribute whose value is either
null
or a DocumentType
object. The
DocumentType
interface in the DOM Core provides an
interface to the list of entities that are defined for the
document, and little else because the effect of namespaces and the
various XML schema efforts on DTD representation are not clearly
understood as of this writing.
The DOM Level 2 doesn't support editing
DocumentType
nodes.
interface DocumentType : Node { readonly attribute DOMString name; readonly attribute NamedNodeMap entities; readonly attribute NamedNodeMap notations; // Introduced in DOM Level 2: readonly attribute DOMString publicId; // Introduced in DOM Level 2: readonly attribute DOMString systemId; // Introduced in DOM Level 2: readonly attribute DOMString internalSubset; };
entities
of type NamedNodeMap
,
readonlyNamedNodeMap
containing
the general entities, both external and internal, declared in the
DTD. Parameter entities are not contained. Duplicates are
discarded. For example in:
<!DOCTYPE ex SYSTEM "ex.dtd" [ <!ENTITY foo "foo"> <!ENTITY bar "bar"> <!ENTITY bar "bar2"> <!ENTITY % baz "baz"> ]> <ex/>
foo
and the first
declaration of bar
but not the second declaration of
bar
or baz
. Every node in this map also
implements the Entity
interface.entities
cannot be altered in any way.internalSubset
of type
DOMString
, readonly,
introduced in DOM Level 2null
if there
is none. This is does not contain the delimiting square brackets.
Note: The actual content returned depends on how much information is available to the implementation. This may vary depending on various parameters, including the XML processor used to build the document.
name
of type DOMString
, readonlyDOCTYPE
keyword.notations
of type NamedNodeMap
,
readonlyNamedNodeMap
containing
the notations declared in the DTD. Duplicates are discarded. Every
node in this map also implements the Notation
interface.notations
cannot be altered in any way.publicId
of type DOMString
, readonly,
introduced in DOM Level 2systemId
of type DOMString
, readonly,
introduced in DOM Level 2This interface represents a notation declared in the DTD. A
notation either declares, by name, the format of an unparsed entity
(see section
4.7 of the XML 1.0 specification [XML]), or is used for formal declaration
of processing instruction targets (see section
2.6 of the XML 1.0 specification [XML]). The nodeName
attribute inherited from Node
is set to the
declared name of the notation.
The DOM Level 1 does not support editing Notation
nodes; they are therefore readonly.
A Notation
node does not have any parent.
interface Notation : Node { readonly attribute DOMString publicId; readonly attribute DOMString systemId; };
This interface represents an entity, either parsed or unparsed,
in an XML document. Note that this models the entity itself
not the entity declaration. Entity
declaration modeling has been left for a later Level of the DOM
specification.
The nodeName
attribute that is inherited from Node
contains the
name of the entity.
An XML processor may choose to completely expand entities before
the structure model is passed to the DOM; in this case there will
be no EntityReference
nodes in
the document tree.
XML does not mandate that a non-validating XML processor read
and process entity declarations made in the external subset or
declared in external parameter entities. This means that parsed
entities declared in the external subset need not be expanded by
some classes of applications, and that the replacement value of the
entity may not be available. When the replacement value is
available, the corresponding Entity
node's child list
represents the structure of that replacement text. Otherwise, the
child list is empty.
The DOM Level 2 does not support editing Entity
nodes; if a user wants to make changes to the contents of an
Entity
, every related EntityReference
node has
to be replaced in the structure model by a clone of the
Entity
's contents, and then the desired changes must
be made to each of those clones instead. Entity
nodes
and all their descendants are readonly.
An Entity
node does not have any parent.
Note: If the entity contains an unbound namespace prefix,
the namespaceURI
of the corresponding node in the
Entity
node subtree is null
. The same is
true for EntityReference
nodes that
refer to this entity, when they are created using the
createEntityReference
method of the Document
interface. The DOM
Level 2 does not support any mechanism to resolve namespace
prefixes.
interface Entity : Node { readonly attribute DOMString publicId; readonly attribute DOMString systemId; readonly attribute DOMString notationName; // Introduced in DOM Level 3: attribute DOMString actualEncoding; // Introduced in DOM Level 3: attribute DOMString encoding; // Introduced in DOM Level 3: attribute DOMString version; };
actualEncoding
of type DOMString
, introduced
in DOM Level 3null
otherwise.encoding
of type DOMString
, introduced in DOM Level 3null
otherwise.notationName
of type DOMString
, readonlynull
.publicId
of type DOMString
, readonlynull
.systemId
of type DOMString
, readonlynull
.version
of type DOMString
, introduced in DOM Level 3null
otherwise.EntityReference
objects may be inserted into the
structure model when an entity reference is in the source document,
or when the user wishes to insert an entity reference. Note that
character references and references to predefined entities are
considered to be expanded by the HTML or XML processor so that
characters are represented by their Unicode equivalent rather than
by an entity reference. Moreover, the XML processor may completely
expand references to entities while building the structure model,
instead of providing EntityReference
objects. If it
does provide such objects, then for a given
EntityReference
node, it may be that there is no Entity
node
representing the referenced entity. If such an Entity
exists, then
the subtree of the EntityReference
node is in general
a copy of the Entity
node subtree.
However, this may not be true when an entity contains an unbound namespace
prefix. In such a case, because the namespace prefix
resolution depends on where the entity reference is, the descendants of the
EntityReference
node may be bound to different namespace
URIs.
As for Entity
nodes, EntityReference
nodes and all their descendants are readonly.
interface EntityReference : Node { };
The ProcessingInstruction
interface represents a
"processing instruction", used in XML as a way to keep
processor-specific information in the text of the document.
interface ProcessingInstruction : Node { readonly attribute DOMString target; attribute DOMString data; // raises(DOMException) on setting };
data
of type DOMString
?>
.
NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly. |
target
of type DOMString
, readonly