Document Object Model (DOM) Level 2 Traversal and Range Specification

W3C

I~

DocumentObject Model (DOM) Level 2 Traversal and
RangeSpecification

Version 1.0

W3C Proposed Recommendatio27 September, 2000

This version:
[http://mvww.w3.org/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927
(|PostScripfilel, [PDFfile} plain text [ZIP file)

Latest version:

[http://www.w3.0rg/TR/DOM-Level-2-Traversal-Range

Previous version:

[http://wvww.w3.0rg/TR/2000/CR-DOM-Level-2-20000510

Editors:
Vidur Apparao Netscape Communications Cor poration
Mike ChampionArbortext and Software AG
Joe KesselmanBM
Jonathan Robidlexcel Research and Software AG
Peter SharpesoftQuad Software Inc.

[Copyright© 200qW3d® (MIT} [INRIA] [Keid), All Rights Reserved. W3fability} frademarkdocument

uséandsoftwarelicensingrulesapply.

Abstract

This specification defines the Document Object Model Level 2 Traversal and Range, a platform- and
language-neutral interface that allows programs and scripts to dynamically traverse and identify a range of
content in a document. The Document Object Model Level 2 Traversal and Range builds on the

Document Object Model Level 2 CojieOM Level 2Cord.

The DOM Level 2 Traversal and Range is made of two modules. The two modules contains specialized

interfaces dedicaced to traversing the document structure and identify a ramigeiment.

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510
http://www.w3.org/TR/DOM-Level-2-Traversal-Range
http://www.w3.org/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927/DOM2-Traversal-Range.zip
http://www.w3.org/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927/DOM2-Traversal-Range.txt
http://www.w3.org/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927/DOM2-Traversal-Range.pdf
http://www.w3.org/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927/DOM2-Traversal-Range.ps
http://www.w3.org/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927
http://www.w3.org/

Status of this document

Status of this document

This is a W3(Proposedkecommendatigfor review by W3C members and other interested parties. W3C
Advisory Committee Members are invited to send formal comments, visible only to the W3C Team, to
dom-review@wa3.orgintil October 252000.

Comments on this document are invited and are to be sent to the public maiinvgwistom@w3.org
An archive is available fttp:/lists.w3.org/Archives/Public/www-dom/

Publication as a Proposed Recommendation does not imply endorsement by the W3C membership. This is
still a draft document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite W3C Proposed Recommendations as other than "ypooktiass."

This document has been produced as part fMBE DOM Activity] The authors of this document are
the DOM WG members. Different modules of the Document Object Model have diféelitars.

A list of[current W3C Recommendations and other techdicalimentsan be found at
http://lwww.w3.0rg/TR.

Table of contents

|[Expanded Table dfontentp e
[CopyrightNotic¢ 5
[Chapter 1: Document Object Modelaversd!9
[Chapter 2: Document Object Mod¢énge 31
|Appendix A: IDL Definitong b5
|Appendix B: Java Languadgndind B9
[Appendix C: ECMA Script Languad&ndind 65
|Appendix D:Acknowledgements 11

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/Consortium/Process/Process-19991111/tr.html#RecsPR

Expanded Table of Contents

Expanded Table of Contents

|[Expanded Table dEontentp

|[CopyrightNoticq .
[W3C Document Copyrlqht Notlce amntensda
[W3C Software Copyright Notice argdcensé

|Chapter 1: Document Object ModBlaversal

Il 1.1. Nodelteratoﬂs
|1.1.2.NodeFilterg
[1.1.3.TreeWalker

[1.2. Formal InterfacB®efinition|

|[Chapter 2: Document Object Modehnge .

[2.1.Introduction .

[2.2. Def|n|t|ons ancNotatlori
|2 2 2 Selectlon and Partlﬁblectloh

[2.3. Creating a Range

[2.4. Changing a RangePsition

[2.5. Comparing Randgéoundary-Poin{s

[2.6. Deleting Content with Rangée

[2.7. ExtractingContenit

[2.8. CloningContent .

[2.9. InsertingContenit

[2.10. Surroundin@€ontenit

[2.11. MiscellaneouMembers . .

[2.12. Range modification under documafnttatlom
[2.12.1. Insertions
[2.12.2.Deletions.

[2.13. Formal Description of the Ranhmerfacd;

[Appendix A: IDL Definitiong
|A.1. Document Obiject ModéTraverselI
[A.2. Document Object Mod&®angée
[Appendix B: Java Languad&nding
|B.1. Document Object Moddlraversal
[B.2. Document Object Mod&ang¢
[Appendix C: ECMA Script Languadginding
|C.1. Document Object Mod@&lraversal
[C.2. Document Object Mod&angé¢
[Appendix D:Acknowledgements .

o v oW

© © ©

13
15
19
31
31
31
31
33
33
34
34
35
36
37
37
38
38
39
39
40
40
42

55
55
56
59
59
61
65
65
67
71

|D.1. ProductiorSystems .

Glossary .
Referencds .

[1. Normativereferenc

gs .

Expanded Table of Contents

71
73
75
75
77

Copyright Notice

Copyright Notice

Copyright © 2000World Wide Web Consortium] (Massachusetts Institute ofTechnology [Institut]
[National de Recherche en Informatique et eAutomatique] [Keio University). All Rights Reserved.

This document is published under fiM8C Document Copyright Notice alhttensg[p.5] . The bindings

within this document are published under[ii@C Software Copyright Notice andcens¢[p.6] . The

software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL binding, the pragma prefix can no longer be
'w3c.org’; in the case of the Java binding, the package names can no longer be in the 'org.w3c’ package.

W3C Document Copyright Notice andLicense

Note: This section is a copy of the W3C Document Notice and License and could be found at
|http://Iwww.w3.org/Consortium/Legal/copyright-documents-1999p405

Copyright © 1994-2000World Wide Web Consortiumj, (Massachusetts Institute ofTechnology
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights

Reserved.

http://iwww.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
[SoftwareNoticg By using and/or copying this document, or the W3C document from which this

statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following @éh.L copies of the document, or portions thereof, that you use:

1. Alink or URL to the original W3C document.

2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:
"Copyright © [$date-of-documen)/orld Wide WebConsortiumh (Massachusetts Institute |of
[Technology|institut National de Recherche en Informatique eAetomatiquélKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. Ifit exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of tRBTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

W3C Software Copyright Notice and License

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented ifGbpyrightFAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS 1S," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR

OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice andLicense

Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
|http://Iwww.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-200(0World Wide Web Consortium] (Massachusetts Institute ofTechnology,
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-softwarg)Vorld Wide WebConsortium (Massachusetts Institute |of
[Technolog)/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/."
3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

W3C Software Copyright Notice and License

recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

W3C Software Copyright Notice and License

1. Document Object Model Traversal

1. Document Object ModelTraversal

Editors
Mike Champion, Software AG
Joe Kesselman, IBM
Jonathan Robie, Softwakes

1.1.Overview

This chapter describes the optional DOM Lev@raversal feature. It§Tr eeVl kKer][p.24] ,

[Nodel t er at or][p.19] , andNodeFi I t er][p.21] interfaces provide easy-to-use, robust, selective
traversal of a document’s contents. A DOM application can udeathEeat ur e method of the

DOM npl enent at i on interface to determine whether this feature is supported or not. The feature
string for all the interfaces listed in this section is "Traversal" and the vers@®'ls

[Nodel t er at or s][p.19] andTr eeWal ker s][p.24] are two different ways of representing the nodes of

a document subtree and a position within the nodes they pregsoteld t er at or[[p.19] presents a

flattened view of the subtree as an ordered sequence of nodes, presented in document order. Because this
view is presented without respect to hierarchy, iterators have methods to move forward and backward, but
not to move up and down. Converselffr&eeVal ker][p.24] maintains the hierarchical relationships of

the subtree, allowing navigation of this hierarchy. In genérae\Wal ker s|are better for tasks in which

the structure of the document around selected nodes will be manipulateqNodelet er at or s|are

better for tasks that focus on the content of each selected node.

[Nodel t er at or s][p.19] andTr eeWal ker s][p.24] each present a view of a document subtree that may
not contain all nodes found in the subtree. In this specification, we refer to thid g ¢hleview to

distinguish it from theohysical view, which corresponds to the document subtree per se. When an iterator
or[Tr eeVl ker][p.24] is created, it may be associated wifRaaleFi I t er][p.21] , which examines

each node and determines whether it should appear in the logical view. In addition, flags may be used to
specify which node types should occur in the logigalv.

[Nodel t er at or s][p.19] andTr eeWal ker s][p.24] are dynamic - the logical view changes to reflect
changes made to the underlying document. However, they differ in how they respond to those changes.
[Nodel t er at or s][p.19] , which present the nodes sequentially, attempt to maintain their location

relative to a position in that sequence when the sequence’s contents [fnaeg8al ker s][p.24] ,

which present the nodes as a filtered tree, maintain their location relative to their current node and remain
attached to that node if it is moved to a new context. We will discuss these behaviors in greater detail
below.

1.1.1)Nodel t er at or s|

A|Nodel t er at or|[p.19] allows the members of a list of nodes to be returned sequentially. In the

current DOM interfaces, this list will always consist of the nodes of a subtree, presented in document

order. When an iterator is first created, callingigéxt Node() method returns the first node in the

logical view of the subtree; in most cases, this is the root of the subtree. Each successive call advances the
[Nodel t er at or]through the list, returning the next node available in the logical view. When no more

1.1.1. Nodelterators

nodes are visibleyext Node() returnsnul | .

[Nodel t er at or s][p.19] are created using tha eat eNodel t er at or method found in the

[Docunent Tr aver sal |[p.27] interface. When alodel t er at or|[p.19] is created, flags can be used

to determine which node types will be "visible" and which nodes will be "invisible" while traversing the
tree; these flags can be combined usingdReperator. Nodes that are "invisible" are skipped over by the
iterator as though they did not exist.

The following code creates an iterator, then calls a function to print the name eleraeint:
Nodel terator iter=
((Docunent Tr aver sal) docunent) . cr eat eNodel t er at or (
root, NodeFilter.SHOWN ELEMENT, null);

while (Node n = iter.nextNode())
printMe(n);

1.1.1.1.Moving Forward and Backward

[Nodel t er at or s][p.19] present nodes as an ordered list, and move forward and backward within this

list. The iterator’s position is always either between two nodes, before the first node, or after the last node.
When an iterator is first created, the position is set before the first item. The following diagram shows the
list view that an iterator might provide for a particular subtree, with the position indicated by an asterisk

1% .

*ABCDEFGHI

Each call tmext Node() returns the next node and advances the position. For instance, if we start with
the above position, the first call bext Node() returns "A" and advances tlierator:

[Al * BCDEFGH]I

The position of @odel t er at or|[p.19] can best be described with respect to the last node returned,

which we will call thereference node. When an iterator is created, the first node is the reference node, and
the iterator is positioned before the reference node. In these diagrams, we use square brackets to indicate
the referencaode.

A call topr evi ousNode() returns the previous node and moves the position backward. For instance, if
we start with théNodel t er at or |[p.19] between "A" and "B", it would return "A" and move to the
position showrbelow:

* [N BCDEFGHI

If next Node() is called at the end of a list, previ ousNode() is called at the beginning of a list, it
returnsnul | and does not change the position of the iterator. WiNadal t er at or|[p.19] is first
created, the reference node is the fisde:

* [Al BCDEFGHI

10

1.1.1. Nodelterators

1.1.1.2.Robustness

A[Nodel t er at or|[p.19] may be active while the data structure it navigates is being edited, so an
iterator must behave gracefully in the face of change. Additions and removals in the underlying data
structure do not invalidatgNodel t er at or} in fact, gNodel t er at or]is never invalidated unless its

det ach() method is invoked. To make this possible, the iterator uses the reference node to maintain its
position. The state of an iterator also depends on whether the iterator is positioned before or after the
referencenode.

If changes to the iterated list do not remove the reference node, they do not affect the state of the
[Nodel t er at or][p.19 . For instance, the iterator’s state is not affected by inserting new nodes in the
vicinity of the iterator or removing nodes other than the reference node. Suppose we start from the
following position:

ABCI[D * EF GHI

Now let's remove "E". The resulting stase

ABCI[D * FGHI

If a new node is inserted, tiNedel t er at or|[p.19] stays close to the reference node, so if a node is
inserted between "D" and "F", it will occur between the iterator and "F":

ABCI[D * XFGHI

Moving a node is equivalent to a removal followed by an insertion. If we move "I" to the position before
"X" the resultis:

ABCI[D *1 XFGH

If the reference node is removed from the list being iterated over, a different node is selected as the
reference node. If the reference node’s position is before that|§bted t er at or|[p.19] , which is

usually the case afteext Node() has been called, the nearest node before the iterator is chosen as the
new reference node. Suppose we remove the "D" node, starting from the folkbatang

ABCI[D * FGHI

The "C" node becomes the new reference node, since it is the nearest nofNettethieer at or][p.19
that is before théerator:

AB[CQ * FGHI

If the reference node is after {Nedel t er at or][p.19] , which is usually the case after
previ ousNode() has been called, the nearest node after the iterator is chosen as the new reference
node. Suppose we remove "E", starting from the follovsiade:

ABCD* [E] FGHI

11

1.1.1. Nodelterators

The "F" node becomes the new reference node, since it is the nearest nofi®ttethieer at or][p.19
that is after théterator:

ABCD* [F] GH I

As noted above, moving a node is equivalent to a removal followed by an insertion. Suppose we wish to
move the "D" node to the end of the list, starting from the followtate:

ABCI[D * FGHI C

The resulting state is &sllows:

AB[C *EFGHI D

One special case arises when the reference node is the last node in the list and the reference node is
removed. Suppose we remove node "C", starting from the follostaig:

AB* [C

According to the rules we have given, the new reference node should be the nearest node after the
[Nodel t er at or][p.19] , but there are no further nodes after "C". The same situation can arise when
previ ousNode() has just returned the first node in the list, which is then removed. Hence: If there is
no node in the original direction of the reference node, the nearest node in the opposite direction is
selected as the referenoede:

AlB] *

If the|Nodel t er at or|[p.19] is positioned within a block of nodes that is removed, the above rules
clearly indicate what is to be done. For instance, suppose "C"{psrtbd| [p.73] node of "D", "E", and
"F", and we remove "C", starting with the followistate:

ABCI[D *EFGHI D

The resulting state is &sllows:

A[B * GHI D

Finally, note that removing[dodel t er at or][p.19] 's r oot node from it§parent [p.73] does not alter
the list being iterated over, and thus does not change the itesitdes

1.1.1.3.Visibility of Nodes

The underlying data structure that is being iterated may contain nodes that are not part of the logical view,
and therefore will not be returned by [Redel t er at or][p.19] . If nodes that are to be excluded

because of the value of thlwat ToShow flag, next Node() returns the next visible node, skipping

over the excluded "invisible" nodes. [NadeFi I t er][p.21] is present, it is applied before returning a

node; if the filter does not accept the node, the process is repeated until a node is accepted by the filter and
is returned. If no visible nodes are encounteredyld is returned and the iterator is positioned at the end

of the list. In this case, the reference node is the last node in the list, whether or not it is visible. The same
approach is taken, in the opposite directionpioevi ousNode() .

12

1.1.2. NodeFilters

In the following examples, we will use lowercase letters to represent nodes that are in the data structure,
but which are not in the logical view. For instance, consider the follokging

A[Bl *cdEFG
A call tonext Node() returns E and advances to the followpasition:

ABcd[E *FG

Nodes that are not visible may nevertheless be used as reference nodes if a reference node is removed.
Suppose node "E" is removed, started from the state given above. The resultiisg state

ABc [d] * FG
Suppose a hew node "X", which is visible, is inserted before "d". The resultingsstate
ABc X[d * FG

Note that a call tpr evi ousNode() now returns node X. It is important not to skip over invisible

nodes when the reference node is removed, because there are cases, like the one just given above, where
the wrong results will be returned. When "E" was removed, if the new reference node had been "B" rather
than "d", callingpr evi ousNode() would not returi’X".

1.1.2/NodeFi | t er s|

[NodeFi | t er s|[p.2]] allow the user to create objects that “filter out" nodes. Each filter contains a
user-written function that looks at a node and determines whether or not it should be presented as part of
the traversal’s logical view of the document. To ubedeFi | t er][p.21] , you create a

[Nodel t er at or][p.19] or aTr eeVal ker][p.24] that uses the filter. The traversal engine applies the

filter to each node, and if the filter does not accept the node, traversal skips over the node as though it
were not present in the documéibdeFi | t er s|need not know how to navigate the structure that

contains the nodes on which they operate.

Filters will be consulted when a traversal operation is performed, or Wkeded t er at or][p.19] ’s

reference node is removed from the subtree being iterated over and it must select a new one. However, the
exact timing of these filter calls may vary from one DOM implementation to another. For that reason,
[NodeFi | t er s|[p.21] should not attempt to maintain state based on the history of past invocations; the
resulting behavior may not Iportable.

Similarly,[Tr eeWal ker s|[p.24] andNodel t er at or s|[p.19] should behave as if they have no

memory of past filter results, and no anticipation of future results. If the condi

[p.2]] is examining have changed (e.g., an attribute which it tests has been added or removed) since the
last time the traversal logic examined this node, this change in visibility will be discovered only when the
next traversal operation is performed. For example: if the filtering for the current node changes from

FI LTER_SHOWto FI LTER_SKI P, a[Tr eeVal ker][p.24] will be able to navigate off that node in any
direction, but not back to it unless the filtering conditions change gdaaeFi | t er s|which change

during a traversal can be written, but their behavior may be confusing and they should be avoided when
possible.

13

1.1.2. NodeFilters

1.1.2.1.Using[NodeFi I t er s

A[NodeFi Tt er][p.21] contains one method namadcept Node() , which allows §Nodel t er at or]
[p.19 or[Tr eeVial ker][p.24] to pass &ode to a filter and ask whether it should be present in the
logical view. Theaccept Node() function returns one of three values to state hoviNdue should be
treated. Ifaccept Node() returnsFl LTER_ACCEPT, theNode will be present in the logical view; if it
returnskl LTER_SKI P, theNode will not be present in the logical view, but the children ofithde
may; if it returnsFl LTER_REJECT, neither théNode nor itddescendantd [p.73] will be present in the
logical view. Since iterators present nodes as an ordered list, without hieFRrtffER_REJECT and

FI LTER_SKI P are synonyms faiKodel t er at or s} skipping only the single currenbde.

Consider a filter that accepts the named anchors in an HTML document. In HTML, an HREF can refer to
any A element that has a NAME attribute. Here[ModeFi | t er|[p.21] in Java that looks at a node and
determines whether it is a nanezachor:

cl ass NanedAnchorFilter inplenents NodeFilter
{
short accept Node(Node n) {
i f (n.getNodeType()==Node. ELEMENT_NODE) {
El enent e = (El enment)n;
if (! e.getNodeNane().equal s("A"))
return FILTER SKI P;
if (e.getAttributeNode("NAME") !'= null)
return FILTER _ACCEPT,

}
}

return FILTER SKI P;
}

If the abovéNodeFi | t er][p.21] were to be used only wifkodel t er at or s][p.19] , it could have
usedFl LTER REJECT whereverl LTER_SKI P is used, and the behavior would not change. For

[Tr eeVl ker][p.24] , though,FI LTER_REJECT would reject the children of any element that is not a
named anchor, and since named anchors are always contained within other elements, this would have
meant that no named anchors would be folhd. TER_SKI P rejects the given node, but continues to
examine the children; therefore, the above filter will work with eitlido@el t er at or[[p.19] or a

Tr eeVal ker

To use this filter, the user would create an instance (¥iddeFi | t er |[p.21] and create a
[Nodel t er at or][p.19 usingit:

NamedAnchor Fil ter nyFilter = new NamedAnchorFilter();
Nodel terator iter=
((Docunent Traver sal) docunent) . cr eat eNodel t er at or (
node, NodeFilter. SHOWN ELEMENT, nyFilter);

Note that the use of tHf8HOW ELEMENT flag is not strictly necessary in this example, since our sample
[NodeFi It er][p.21] tests thenode Ty pe. However, some implementations of the Traversal interfaces
may be able to improwshat ToShow performance by taking advantage of knowledge of the document’s
structure, which makes the useSHMOW ELEMENT worthwhile. Conversely, while we could remove the
nodeType test from our filter, that would make it dependent upbat ToShowto distinguish between

14

1.1.2. NodeFilters

El ement s, Attr’s, andPr ocessi ngl nstructi ons.

1.1.2.2|NodeFi I t er s|and Exceptions

When writing dNodeFi T t er][p.21] , users should avoid writing code that can throw an exception.
However, because a DOM implementation can not prevent exceptions from being thrown, it is important
that the behavior of filters that throw an exception be well-defingit. eVl ker][p.24] or

[Nodel t er at or][p.19] does not catch or alter an exception thrown by a filter, but lets it propagate up to
the user’s code. The following functions may invoRdoaleFi I t er], and may therefore propagate an
exception if one is thrown by a filter:

1. |Nodel t er at or|[p.19] . next Node()

2. [Nodel t er at or|[p.19] . pr evi ousNode()
3. [[Teevél Ker][p.24] . f i r st Chi | d()

4. [TreeWal ker][p.24] . | ast Chi | d()

5. [TreeVal ker][p.24] . next Si bl i ng()

6. [TreeVaal ker][p.24] . pr evi ousSi bl i ng()
7. [Tr eeVMal ker][p.24] . next Node()

8. [TreeVl ker][p.24] . pr evi ousNode()

9. [TreeVal ker][p.24] . par ent Node()

1.1.2.3[NodeFi I t er sland DocumentMutation

Well-designeNodeFi | t er s|[p.21] should not have to modify the underlying structure of the

document. But a DOM implementation can not prevent a user from writing filter code that does alter the
document structure. Traversal does not provide any special processing to handle this case. For instance, if
a[NodeFi I t er][p.21] removes a node from a document, it can still accept the node, which means that

the node may be returned by [edel t er at or][p.19 or[Tr eeVal ker][p.24] even though it is no

longer in the subtree being traversed. In general, this may lead to inconsistent, confusing results, so we
encourage users to wriiddeFi | t er s|that make no changes to document structures. Instead, do your
editing in the loop controlled by the traverehiect.

1.1.2.4|NodeFi | t er sjlandwhat ToShowflags

[Nodel t er at or][p.19] andTr eeVal ker][p.24] apply theirvhat ToShow flags before applying

filters. If a node is skipped by the actiweat ToShowflags, gNodeFi I t er][p.21] will not be called to
evaluate that node. Please note that this behavior is similar to #lat BER_SKI P; children of that

node will be considered, and filters may be called to evaluate them. Also note that it will in fact be a
"skip" even if thgNodeFi | t er]would have preferred to reject the entire subtree; if this would cause a
problem in your application, consider settidgat ToShow to SHON ALL and performing the

nodeType test inside your filter.

15

1.1.3. TreeWalker

1.1.3]Tr eeVal ker|

The[Tr eeWal ker|[p.24] interface provides many of the same benefits abldite| t er at or|[p.19]
interface. The main difference between these two interfaces is tiiateled\al ker|presents a
tree-oriented view of the nodes in a subtree, rather than the iterator’s list-oriented view. In other words, an

iterator allows you to move forward or back, b[frae\Wal ker]allows you to also move to tfparent
[p.73] of a node, to one of its children, or teilEling[p.73] .

Using gTr eeVal ker|[p.24] is quite similar to navigation using the Node directly, and the navigation
methods for the two interfaces are analogous. For instance, here is a function that recursively walks over a
tree of nodes in document order, taking separate actions when first entering a node and after processing
any children:

processMe(Node n) {
nodeSt art Acti ons(n);
for (Node child=n.firstChild();
child !'= null;
chil d=child.nextSibling()) {
processMe(chil d);

nodeEndAct i ons(n);

}

Doing the same thing usindTa eeVl ker][p.24] is quite similar. There is one difference: since
navigation on thEr eeWal ker]changes the current position, the position at the end of the function has
changed. A read/write attribute namaar r ent Node allows the current node foffa eeVal ker]|to be
both queried and set. We will use this to ensure that the position[of @&/l ker] is restored when

this function iscompleted:

processMe(TreeVal ker tw) {
Node n = tw. get Current Node();
nodeStart Acti ons(tw);
for (Node child=tw. firstChild();
child!=nul|;
child=tw. nextSibling()) {
processMe(tw);

}

t w. set Current Node(n);
nodeEndAct i ons(tw);

}

The advantage of usindTa eeWal ker][p.24] instead of direcNode navigation is that the

[Tr eeVil ker]allows the user to choose an appropriate view of the tree. Flags may be used to show or
hideComment s or Pr ocessi ngl nstructi ons; entities may be expanded or shown as

Enti t yRef er ence nodes. In additioffodeFi | t er s|[p.21] may be used to present a custom view

of the tree. Suppose a program needs a view of a document that shows which tables occur in each chapter,
listed by chapter. In this view, only the chapter elements and the tables that they contain are seen. The first
step is to write an appropridiéer:

16

1.1.3. TreeWalker

cl ass Tabl esl nChapters inplenments NodeFilter {

short accept Node(Node n) {
i f (n.getNodeType()==Node. ELEMENT_NODE) {

i f (n.getNodeNane().equal s("CHAPTER"))
return FILTER_ACCEPT;

i f (n.getNodeNane().equal s("TABLE"))
return FILTER_ACCEPT;

i f (n.getNodeNane().equal s("SECT1")

n. get NodeNane() . equal s(" SECT2")
. get NodeNane() . equal s(" SECT3")
. get NodeNane() . equal s(" SECT4")
. get NodeNane() . equal s(" SECT5")
. get NodeNane() . equal s(" SECT6")
. get NodeNane() . equal s(" SECT7"))
n FILTER_SKI P;

-~ 3 3 3 35 5

I
I
I
I
I
I
et

r u

}

return FI LTER_REJECT;

}
}

This filter assumes that TABLE elements are contained directly in CHAPTER or SECTn elements. If
another kind of element is encountered, it and its children are rejected. If a SECTn element is encountered,
it is skipped, but its children are explored to see if they contain any TARirRents.

Now the program can create an instance oftbeFi | t er|[p.21] , create [p.24] that
uses it, and pass t to our ProcessMegunction:

Tabl esl nChapters tabl esl nChapters = new Tabl esl nChapters();
TreeVal ker tw =
((Docunent Tr aver sal) docunent) . cr eat eTr eeVl ker (
root, NodeFilter.SHOW ELEMENT, tabl eslnChapters);
processMe(tw);

(Again, we've chosen to both test thede Ty pe in the filter's logic and us8HOW ELENMENT, for the
reasons discussed in the eaffedel t er at or][p.19] example.)

Without making any changes to the ab&®cessMe() function, it now processes only the CHAPTER
and TABLE elements. The programmer can write other filters or set other flags to choose different sets of
nodes; if functions ugér eeVal ker][p.24] to navigate, they will support any view of the document

defined with {I reeWal ker |

Note that the structure offa eeVal ker][p.24] 's filtered view of a document may differ significantly
from that of the document itself. For examplfr&eWal ker] with only SHOW TEXT specified in its
what ToShow parameter would present all tiext nodes as if they wefgblingd[p.73] of each other
yet had nfparenf [p.73] .

17

1.1.3. TreeWalker

1.1.3.1.Robustness

As with[Nodel t er at or s|[p.19] , a[Tr eeWal ker|[p.24] may be active while the data structure it
navigates is being edited, and must behave gracefully in the face of change. Additions and removals in the

underlying data structure do not invalidajéraeWal ker | in fact, gTr eeVl ker |is neveiinvalidated.

But a[Tr eeV\al ker][p.24] 's response to these changes is quite different from thfilodal t er at or]
[p.19] . While|Nodel t er at or s|respond to editing by maintaining their position within the list that they

are iterating ove[Tr eeVl ker s|will instead remain attached to theinr r ent Node. All the

[Tr eeVl ker]s navigation methods operate in terms of the context of tine ent Node at the time
they are invoked, no matter what has happened to, or around, that node since the last time the
was accessed. This remains true even ittiver ent Node is moved out of its original
subtree.

As an example, consider the following documfeagment:

<subtree>
<t wRoot >
<curr ent Node/ >
<anot her Node/ >
</ t wRoot >
</ subtree>

Let's say we have create(lTaee\Wal ker|[p.24] whoser oot node is the <twRoot/> element and whose
cur r ent Node is the <currentNode/> element. For this illustration, we will assume that all the nodes
shown above are accepted by[TheeWal ker [s what ToShow and filtersettings.

If we user enoveChi | d() to remove the <currentNode/> element fronfpasent [p.73] , that element
remains th@r eeWAl ker][p.24] s cur r ent Node, even though it is no longer within theot node’s
subtree. We can still use ffie eeVI ker]to navigate through any children that the orphaned

cur r ent Node may have, but are no longer able to navigate outward frooutheent Node since

there is ndparent [p.73] available.

If we usei nsert Bef or e() orappendChi | d() to give the <currentNode/> a nfparent|[p.73] ,
thenTr eeVal ker][p.24] navigation will operate from theur r ent Node’s new location. For example,
if we inserted the <currentNode/> immediately after the <anotherNode/> elem¢hteibal ker[s
previ ousSi bl i ng() operation would move it back to the <anotherNode/>, and calling

par ent Node() would move it up to thetwRoot/>.

If we instead insert theur r ent Node into the <subtree/> element, like:

<subtree>
<curr ent Node/ >
<t wRoot >
<anot her Node/ >
</ t wRoot >
</ subtree>

18

1.2. Formal Interface Definition

we have moved theur r ent Node out from under thEr eeVl ker][p.24] 's r oot node. This does

not invalidate thBr eeWl ker} it may still be used to navigate relative to the r ent Node. Calling

its par ent Node() operation, for example, would move it to the <subtree/> element, even though that
too is outside the originaloot node. However, if tHgr eeVal ker]s navigation should take it back

into the originak oot node’s subtree -- for example, if rather than calfiag ent Node() we called

next Node(), moving théTr eeWal ker]to the <twRoot/> element -- theot node will "recapture”
the[Tr eeVMl ker], and prevent it from traversing bacit.

This becomes a bit more complicated when filters are in use. Relocationcafrthent Node -- or

explicit selection of a newur r ent Node, or changes in the conditions that[MedeFi I t er][p.21] is

basing its decisions on -- can result [ireeWal ker][p.24] having acur r ent Node which would not
otherwise be visible in the filtered (logical) view of the document. This node can be thought of as a
"transient member" of that view. When you askIneeWal ker]to navigate off this node the result will

be just as if it had been visible, but you may be unable to navigate back to it unless conditions change to
make it visibleagain.

In particular: If thecur r ent Node becomes part of a subtree that would otherwise have been Rejected

by the filter, that entire subtree may be added as transient members of the logical view. You will be able to
navigate within that subtree (subject to all the usual filtering) until you move upward past the Rejected
[ancestor][p.73] . The behavior is as if the Rejected node had only been Skipped (since we somehow
wound up inside its subtree) until we leave it; thereafter, standard filegupiges.

1.2.Formal Interface Definition
Interface Nodelterator (introduced irDOM Level 2)

I t er at or s are used to step through a set of nodes, e.g. the set of nhoddsdield st , the
document subtree governed by a particlade, the results of a query, or any other set of nodes.
The set of nodes to be iterated is determined by the implementationNafdbét er at or . DOM
Level 2 specifies a singlodel t er at or implementation for document-order traversal of a
document subtree. Instances of these iterators are created by[Baungent Tr aver sal |[p.27]
.createNodel terator().

IDL Definition

/! Introduced in DOM Level 2:
interface Nodelterator {

readonly attribute Node r oot ;

readonly attribute unsigned | ong what ToShow;

readonly attribute NodeFilter filter;

readonly attribute bool ean expandEnti t yRef er ences;
Node next Node()

rai ses(DOVExcepti on);
Node pr evi ousNode()

rai ses(DOVExcepti on);
voi d detach();

19

1.2. Formal Interface Definition

Attributes
expandEnt i t yRef er ences of typebool ean, readonly

The value of this flag determines whether the children of entity reference nodes are visible
to the iterator. If false, they and thidescendantd[p.73] will be rejected. Note that this
rejection takes precedence owtrat ToShow and the filter. Also note that this is
currently the only situation whelodel t er at or s may reject a complete subtree rather
than skipping individual nodes.
To produce a view of the document that has entity references expanded and does not
expose the entity reference node itself, useMiat ToShow flags to hide the entity
reference node and setpandEnt i t yRef er ences to true when creating the iterator.
To produce a view of the document that has entity reference nodes but no entity expansion,
use theshat ToShowflags to show the entity reference node and set
expandEnt i t yRef er ences tofalse.

filter of typgNodeFi It er][p.21], readonly
ThelNodeFi | t er|[p.21] used to screenodes.

r oot of typeNode, readonly
The root node of thBlodel t er at or , as specified when it waseated.

what ToShow of typeunsi gned | ong, readonly
This attribute determines which node types are presented via the iterator. The available set
of constants is defined in tiNodeFi I t er][p.21] interface. Nodes not accepted by
what ToShowwill be skipped, but their children may still be considered. Note that this
skip takes precedence over the filter, if any.

Methods
det ach
Detaches th&lodel t er at or from the set which it iterated over, releasing any
computational resources and placing the iterator in the INVALID state. ddteach has
been invoked, calls toext Node orpr evi ousNode will raise the exception
INVALID_STATE_ERR.

No Parameters
No Return Value
No Exceptions

next Node
Returns the next node in the set and advances the position of the iterator in the set. After a
Nodel t er at or is created, the first call tvext Node() returns the first node in the set.
Return Value

Node The nextNode in the set being iterated over,raul | if there are no more
members in thatet.

20

1.2. Formal Interface Definition

Exceptions

DOVExcepti on INVALID_STATE_ERR: Raised if this method is called after
thedet ach method wasnvoked.

No Parameters

pr evi ousNode
Returns the previous node in the set and moves the positionNddied t er at or
backwards in the set.
Return Value

Node The previoudNode in the set being iterated over,raul | if there are no
more members in that set.

Exceptions

DOVExcepti on INVALID_STATE_ERR: Raised if this method is called after
thedet ach method wasnvoked.

No Parameters

Interface NodeFilter (introduced irDOM Level 2)

Filters are objects that know how to "filter out" nodes [Woael t er at or][p.19] or

[Tr eeVal ker][p.24] is given aNodeFi | t er, it applies the filter before it returns the next node. If

the filter says to accept the node, the traversal logic returns it; otherwise, traversal looks for the next
node and pretends that the node that was rejected wmermt

The DOM does not provide any filtetdodeFi | t er is just an interface that users can implement to
provide their own filters.

NodeFi | t er s do not need to know how to traverse from node to node, nor do they need to know
anything about the data structure that is being traversed. This makes it very easy to write filters, since
the only thing they have to know how to do is evaluate a single node. One filter may be used with a
number of different kinds of traversals, encouraging code reuse.

IDL Definition

/'l Introduced in DOM Level 2:
interface NodeFilter {

/1 Constants returned by acceptNode

const short FI LTER_ACCEPT = 1;
const short FI LTER_REJECT = 2;
const short FI LTER_SKI P = 3;

/! Constants for what ToShow

21

1.2. Formal Interface Definition

const unsigned | ong SHOW ALL = OxFFFFFFFF;
const unsigned | ong SHOW ELEMENT = 0x00000001;
const unsigned | ong SHOW ATTRI BUTE = 0x00000002;
const unsigned | ong SHOW TEXT = 0x00000004;
const unsigned | ong SHOW CDATA_SECTI ON = 0x00000008;
const unsigned | ong SHOW _ENTI TY_REFERENCE = 0x00000010;
const unsigned | ong SHOW ENTI TY = 0x00000020;
const unsigned | ong SHOW PROCESSI NG_| NSTRUCTI ON = 0x00000040;
const unsigned | ong SHOW COMVENT = 0x00000080;
const unsigned | ong SHOW DOCUMENT = 0x00000100;
const unsigned | ong SHOW DOCUMENT _TYPE = 0x00000200;
const unsigned | ong SHOW DOCUMENT _ FRAGVENT = 0x00000400;
const unsigned | ong SHOW NOTATI ON = 0x00000800;
short accept Node(in Node n);

b
Definition group Constants returned by acceptNode

The following constants are returned by the acceptNade(fod:
Defined Constants
FI LTER_ACCEPT
Accept the node. Navigation methods definedNiodel t er at or|[p.19] or

[p.24] will return thisnode.

FI LTER_REJECT
Reject the node. Navigation methods defineqNmdel t er at or|[p.19] or
[Tr eeVAl ker][p.24] will not return this node. F@Ir eeVMl ker] the children of this
node will also be rejectefliodel t er at or s]treat this as a synonym for
FI LTER_SKI P.

FI LTER _SKI P
Skip this single node. Navigation methods defineiNmdel t er at or|[p.19] or

[Tr eeVAl ker][p.24] will not return this node. For bofiodel t er at or]and
[Tr eeVl ker] the children of this node will still be considered.

Definition group Constants for whatToShow

These are the available values forwhat ToShow parameter used [fr eeVal ker s|[p.24]
andNodel t er at or s][p.19] . They are the same as the set of possible typéfibe, and

their values are derived by using a bit position corresponding to the valoeleType for the
equivalent node type. If a bit ishat ToShow s set false, that will be taken as a request to skip
over this type of node; the behavior in that case is similar to tiatloFER_SKI P.

Note that if node types greater than 32 are ever introduced, they may not be individually testable
viawhat ToShow. If that need should arise, it can be handled by seleStiayyV ALL together
with an appropriat®odeFi | t er .
Defined Constants
SHOW ALL
Show allNodes.

22

1.2. Formal Interface Definition

SHOW ATTRI BUTE
ShowAt t r nodes. This is meaningful only when creating an iterator or tree-walker
with an attribute node as it®ot ; in this case, it means that the attribute node will
appear in the first position of the iteration or traversal. Since attributes are never
children of other nodes, they do not appear when traversing over the dotrgaent

SHOW CDATA SECTI ON
ShowCDATASect i on nodes.

SHOW COVIVENT
ShowComment nodes.

SHOW DOCUMENT
ShowDocunent nodes.

SHOW DOCUMENT _ FRAGVENT
ShowDocunent Fr agnent nodes.

SHOW DOCUMENT _TYPE
ShowDocunent Type nodes.

SHOW ELENMENT
ShowEl enent nodes.

SHOW ENTI TY
ShowEnt i t y nodes. This is meaningful only when creating an iterator or
tree-walker withan Enti t y node as its oot ; in this case, it means that the
Enti t y node will appear in the first position of the traversal. Since entities are not
part of the document tree, they do not appear when traversing over the doicament

SHOW ENTI TY_REFERENCE
ShowEnt i t yRef er ence nodes.

SHOW NOTATI ON
ShowNot at i on nodes. This is meaningful only when creating an iterator or
tree-walker with d&\ot at i on node as its oot ; in this case, it means that the
Not at i on node will appear in the first position of the traversal. Since notations are
not part of the document tree, they do not appear when traversing over the document
tree.

SHOW PROCESSI NG_| NSTRUCTI ON
ShowPr ocessi ngl nstructi on nodes.

SHOW TEXT
ShowText nodes.

23

1.2. Formal Interface Definition

Methods
accept Node
Test whether a specified node is visible in the logical viewIofee WAl ker][p.24] or
[Nodel t er at or][p.19] . This function will be called by the implementation of
[Tr eeVial ker]andNodel t er at or} it is not normally called directly from user code.
(Though you could do so if you wanted to use the same filter to guide your own application
logic.)
Parameters
n of typeNode
The node to check to see if it passes the filterodr

Return Value

short a constant to determine whether the node is accepted, rejected, or

skipped, as defindabové[p.22] .

No Exceptions
Interface TreeWalker (introduced irDOM Level 2)

Tr eeVl ker objects are used to navigate a document tree or subtree using the view of the
document defined by theivhat ToShowflags and filter (if any). Any function which performs
navigation using dar eeVal ker will automatically support any view defined byraeeWal ker .

Omitting nodes from the logical view of a subtree can result in a structure that is substantially
different from the same subtree in the complete, unfiltered document. Nodes [Bidiagg[p.73]

in theTr eeWal ker view may be children of different, widely separated nodes in the original view.
For instance, considefNodeFi I t er][p.21] that skips all nodes except for Text nodes and the root
node of a document. In the logical view that results, all text nodes \alblbegd [p.73] and appear

as direct children of the root node, no matter how deeply nested the structure of the original
document.

IDL Definition

/! Introduced in DOM Level 2:
interface TreeWal ker {

readonly attribute Node root;
readonly attribute unsigned | ong what ToShow;,
readonly attribute NodeFilter filter;
readonly attribute bool ean expandEnti t yRef er ences;
attribute Node current Node;
/1 rai ses(DOVEXxception) on setting
Node par ent Node() ;
Node firstChild();
Node I ast Chil d();
Node previ ousSi bling();
Node next Si bl i ng();
Node pr evi ousNode() ;
Node next Node() ;

24

1.2. Formal Interface Definition

Attributes
current Node of typeNode

The node at which ther eeWal ker is currentlypositioned.
Alterations to the DOM tree may cause the current node to no longer be accepted by the
Tr eeWal ker 's associated filtercur r ent Node may also be explicitly set to any node,
whether or not it is within the subtree specified byrtbet node or would be accepted by
the filter andwhat ToShow flags. Further traversal occurs relativeta r ent Node
even if it is not part of the current view, by applying the filters in the requested direction; if
no traversal is possibleur r ent Node is not changed.
Exceptions onsetting

DOVExcepti on NOT_SUPPORTED_ERR: Raised if an attempt is made to set
current Node tonul | .

expandEnt i t yRef er ences of typebool ean, readonly
The value of this flag determines whether the children of entity reference nodes are visible
to theTr eeVial ker . If false, they and thefdlescendantd [p.73] will be rejected. Note that
this rejection takes precedence owbat ToShow and the filter, if any.
To produce a view of the document that has entity references expanded and does not
expose the entity reference node itself, usemiet ToShow flags to hide the entity
reference node and stpandEnt i t yRef er ences to true when creating the
Tr eeWal ker . To produce a view of the document that has entity reference nodes but no
entity expansion, use tiat ToShow flags to show the entity reference node and set
expandEnt i t yRef er ences tofalse.

filter oftypeNodeFilter|[p.2]], readonly

The filter used to screarodes.

r oot of typeNode, readonly
Ther oot node of thelr eeVl ker , as specified when it waseated.

what ToShow of typeunsi gned | ong, readonly
This attribute determines which node types are presented via deMal ker . The
available set of constants is defined in[klogleFi I t er][p.21] interface. Nodes not
accepted bywhat ToShow will be skipped, but their children may still be considered. Note
that this skip takes precedence over the filter, if any.

Methods
firstChild
Moves theTr eeVl ker to the first visibldchild [p.73] of the current node, and returns
the new node. If the current node has no visible children, returnis, and retains the
current node.
Return Value

Node The new node, anul | if the current node has no visible children in the
Tr eeVl ker 's logical view.

25

1.2. Formal Interface Definition

No Parameters
No Exceptions

astChild

Moves theTr eeVal ker to the last visiblfehild [p.73] of the current node, and returns the
new node. If the current node has no visible children, returh$, and retains the current

node.
Return Value

Node The new node, anul | if the current node has no children in the
Tr eeVl ker s logical view.

No Parameters
No Exceptions

next Node

Moves theTr eeWal ker to the next visible node in document order relative to the current
node, and returns the new node. If the current node has no next node, or if the search for
nextNode attempts to step upward fromTheeWal ker 'sr oot node, returnsul | ,

and retains the current node.

Return Value

Node The new node, anul | if the current node has no next node in the
Tr eeVl ker ’s logical view.

No Parameters
No Exceptions

next Si bl i ng

Moves theTr eeVl ker to the nexgibling [p.73] of the current node, and returns the
new node. If the current node has no visible [giking [p.73] , returnsnul | , and retains
the current node.

Return Value

Node The new node, anul | if the current node has no nfslling [p.73] . in
theTr eeVl ker 's logical view.

No Parameters
No Exceptions

par ent Node

Moves to and returns the closest visfaheestor] [p.73] node of the current node. If the
search fopar ent Node attempts to step upward from theeeWal ker 's r oot node,

or if it fails to find a visibldancestor][p.73] node, this method retains the current position
and returnswul | .

26

1.2. Formal Interface Definition

Return Value

Node The neviparent][p.73] node, omul | if the current node has no parent in
theTr eeVl ker ’s logical view.

No Parameters
No Exceptions

pr evi ousNode
Moves thelr eeWal ker to the previous visible node in document order relative to the
current node, and returns the new node. If the current node has no previous node, or if the
search fopr evi ousNode attempts to step upward from theeeWal ker’s r oot
node, returnsiul | , and retains the current node.
Return Value

Node The new node, anul | if the current node has no previous node in the
Tr eeVl ker 's logical view.

No Parameters
No Exceptions

previ ousSi bl i ng
Moves theTr eeVl ker to the previousibling [p.73] of the current node, and returns the
new node. If the current node has no visible pre\ghlang [p.73] , returnsnul | , and
retains the current node.
Return Value

Node The new node, anul | if the current node has no previdaisiing [p.73] .
in theTr eeVMl ker s logical view.

No Parameters
No Exceptions

Interface DocumentTraversal (introduced irDOM Level 2)

Document Tr aver sal contains methods that create iterators and tree-walkers to traverse a node
and its children in document order (depth first, pre-order traversal, which is equivalent to the order in
which the start tags occur in the text representation of the document). In DOMs which support the
Traversal featureocunent Tr aver sal will be implemented by the same objects that implement
the Document interface.

IDL Definition

/1 Introduced in DOM Level 2:
i nterface Docunent Traversal {
Nodel t er at or createNodel terator (i n Node root,
in unsigned | ong what ToShow,
in NodeFilter filter,

27

1.2. Formal Interface Definition

i n bool ean entityReferenceExpansi on)
rai ses(DOVException);
Tr eeVal ker creat eTreeWal ker (i n Node root,

i n unsigned | ong what ToShow,

in NodeFilter filter,

i n bool ean entityReferenceExpansion)
rai ses(DOVException);

3

Methods
creat eNodel t er at or

Create a neflodel t er at or|[p.19] over the subtree rooted at the specifiede.

Parameters

r oot of typeNode
The node which will be iterated together with its children. The iterator is initially
positioned just before this node. TiWeat ToShow flags and the filter, if any, are not
considered when setting this position. The root must naubé .

what ToShow of typeunsi gned | ong
This flag specifies which node types may appear in the logical view of the tree

presented by the iterator. See the descriptigvpaieFi | t er|[p.21] for the set of
possibleSHOW values.

These flags can be combined usiig)

filter oftypeNodeFilter|[p.2]]
The|NodeFi | t er[to be used with th[§r eeVl ker|[p.24] , ornul | to indicate no

filter.

enti t yRef er enceExpansi on of typebool ean
The value of this flag determines whether entity reference nodes@aaded.

Return Value

[Nodel t er at or|[p.19 The newly createflodel t er at or]
Exceptions
DOVExcept i on NOT_SUPPORTED_ERR: Raised if the specifiembt is
nul | .

creat eTreeWal ker

Create a nefir eeV\l ker][p.24] over the subtree rooted at the specifiede.

Parameters

r oot of typeNode
The node which will serve as theot for thelTr eeVl ker][p.24] . The
what ToShowflags and thfNodeFi I t er][p.21] are not considered when setting
this value; any node type will be accepted ag thet . Thecur r ent Node of the
is initialized to this node, whether or not it is visible. Fluet

28

1.2. Formal Interface Definition

functions as a stopping point for traversal methods that look upward in the document
structure, such gsar ent Node and nextNode. Theoot must not beaul | .

what ToShow of typeunsi gned | ong
This flag specifies which node types may appear in the logical view of the tree

presented by the tree-walker. See the descriptipiodéFi | t er|[p.2]] for the set
of possible SHOW values.

These flags can be combined usig
filter oftypeNodeFilter|[p.2]]
The|NodeFi | t er|to be used with th[gr eeVl ker|[p.24] , ornul | to indicate no

filter.

enti t yRef erenceExpansi on of typebool ean

If this flag is false, the contents Bht i t yRef er ence nodes are not presented in
the logicalview.

Return Value
[p.24] The newly createdr eeVl ker|

Exceptions

DOVExcepti on NOT_SUPPORTED_ERR: Raised if the specifiaxbt is
nul | .

29

1.2. Formal Interface Definition

30

2. Document Object Model Range

2. Document Object ModelRange

Editors
Vidur Apparao, Netscape Communications
Peter Sharpe, SoftQuad Softwéne.

2.1.Introduction

A Range identifies a range of content in a Document, DocumentFragment or Attr. It is contiguous in the
sense that it can be characterized as selecting all of the content between a pair of boundary-points.

Note: In a text editor or a word processor, a user can make a selection by pressing down the mouse at one
point in a document, moving the mouse to another point, and releasing the mouse. The resulting selection
is contiguous and consists of the content between the two points.

The term 'selecting’ does not mean that every Range corresponds to a selection made by a GUI user;
however, such a selection can be returned to a DOM user as a Range.

Note: In bidirectional writing (Arabic, Hebrew), a range may correspond to a logical selection that is not
necessarily contiguous when displayed. A visually contiguous selection, also used in some cases, may not
correspond to a single logical selection, and may therefore have to be represented by more than one range.

The Range interface provides methods for accessing and manipulating the document tree at a higher level
than similar methods in the Node interface. The expectation is that each of the methods provided by the
Range interface for the insertion, deletion and copying of content can be directly mapped to a series of
Node editing operations enabled by DOM Core. In this sense, the Range operations can be viewed as
convenience methods that also enable the implementation to optimize common editing patterns.

This chapter describes the Range interface, including methods for creating and moving a Range and
methods for manipulating content with Ranges. The feature string for the interfaces listed in this section is
"Range" and the version is "2.0".

2.2.Definitions and Notation

2.2.1.Position

This chapter refers to two different representations of a document: the text or source form that includes the
document markup and the tree representation similar to the one described in the introduction section of the
DOM Level 2 CordDOM Level 2Cord.

A Range consists of twiaoundary-points corresponding to the start and the end of the Raxge.
boundary-point’s position in a Document or DocumentFragment tree can be characterized by a node and
an offset.The node is called thentainer of the boundary-point and of its positidrhe container and its
ancestors are thancestor containers of the boundary-point and of its positidme offset within the node

is called theoffset of the boundary-point and its position. If the container is an Attr, Document,
DocumentFragment, Element or EntityReference node, the offset is betvewltifs.73] nodes. If the

31

2.2.1. Position

container is a CharacterData, Comment or Processinglnstruction node, the offset is befi&bit the
[unitd [p.73] of the UTF-16 encoded string containeditoy

Thelboundary-pointg [p.31] of a Range must have a comnantestor container|[p.31] which is either a
Document, DocumentFragment or Attr node. That is, the content of a Range must be entirely within the
subtree rooted by a single Document, DocumentFragment or Attr Nodecommorancestor container|

[p.31] is known as theoot container of the RangeThe tree rooted by tHr@ot container][p.32] is known

as the Range’sontext tree.

Thelcontainer] [p.31] of anfooundary-point [p.31] of a Range must be an Element, Comment,

Processinglnstruction, EntityReference, CDATASection, Document, DocumentFragment, Attr, or Text

node. None of thiancestor container][p.31] s of thgboundary-poini| [p.31] of a Range can be a
DocumentType, Entity or Notatiamde.

In terms of the text representation of a documenibdbadary-pointd[p.31] of a Range can only be on

token boundaries. That is, fheundary-point|[p.31] of the text range cannot be in the middle of a start- or
end-tag of an element or within the name of an entity or character reference. A Range locates a contiguous
portion of the content of the structuredel.

The relationship between locations in a text representation of the document and in the Node tree interface
of the DOM is illustrated in the followindiagram:

g2 [
I =3 e3 !
. e o)
{BDDY}{Hl}Tlf:le{fH1:=-<P:=—E;$h X¥Z </ Pra/BODT>
= ed
=1 el
EODY
|
| |
Hi | F
| g2 | e2
“"Tiktle" "Plah xyz.i"
53 571 ed e3
=1 el
5 e

Range

Mode |Offzet| Node |[Offset
s1—e1| Textd 2 Text2 2

52=—g2 | BODY 1 2
E3—el| P 1] P 1
Sd—ed | Text2 0 9

RangeExample

32

2.2.2. Selection and Partial Selection

In this diagram, four different Ranges are illustrated.[dduadary-pointd [p.31] of each Range are
labelled withs# (the start of the Range) as# (the end of the Range), where # is the number of the
Range. For Range 2, the start is in the BODY element and is immediately after the H1 element and
immediately before the P element, so its position is between the H1 and P children of BOPNs&ihe
[p.31] of ajboundary-point [p.31] whosecontainer] [p.31] is not a CharacterData node is O if it is before
the first child, 1 if between the first and second child, and so on. So, for the start of the Range 2, the
[container][p.31] is BODY and thépffsef][p.31] is 1. Theoffsef] [p.31] of aboundary-point|[p.31] whose
[container][p.31] is a CharacterData node is obtained similarly but [p.73] positions

instead. For example, tfpeundary-poinf [p.31] labelled s1 of the Range 1 has a Text node (the one
containing "Title") as itfgontainer] [p.31] and arjoffse [p.31] of 2 since it is between the second and third

[L6-bit unif [p.73) .

Notice that thfpoundary-poinf [p.31] s of Ranges 3 and 4 correspond to the same location in the text
representation. An important feature of the Range is fhadirsdary-point [p.31] of a Range can
unambiguously represent every position within the docutneat

Thelcontainer] [p.31] s andoffset|[p.31] s of thdboundary-poinf [p.31] s can be obtained through the

following read-only Range attributes:

readonly attribute Node start Cont ai ner;
readonly attribute long startOffset;
readonly attribute Node endCont ai ner;
readonly attribute | ong endOfset;

If thelboundary-point [p.31] s of a Range have the saouetainer][p.31] s andoffse [p.31] s, the Range is

said to be &ollapsed Range. (This is often referred to as an insertion point in cageei.)

2.2.2.Selection and PartialSelection

A node o [p.73] unit is said to beelected by a Range if it is between the

[p.3]] s of the Range, that is, if the position immediately before the node or 16-bit unit is before the end of
the Range and the position immediately after the node or 16-bit unit is after the start of the range. For
example, in terms of a text representation of the document, an element weglietted [p.33] by a

Range if its corresponding start-tag was located after the start of the Range and its end-tag was located
before the end of the Range. In the examples in the above diagram, the Beladd p.33] the P node

and the Range[&ectd[p.33] the text node containing the text "Blayez."

A node is said to bpartially selected by a Range if it is gancestor container|[p.31] of exactly one
[boundary-point|[p.31] of the Range. For example, consider Range 1 in the above diagram. The element
H1 is[partially selected [p.33] by that Range since the start of the Range is within one dfilten.

2.2.3.Notation

Many of the examples in this chapter are illustrated using a text representation of a document. The
[p.31] s of a Range are indicated by displaying the characters (be they markup or data
characters) between the tfvoundary-point[p.31] s in bold, as in

33

2.3. Creating a Range

<FOO>ABC<BAR>DEF</ BAR></ FOO>

When botfboundary-poin [p.31] s are at the same position, they are indicated with a bold(tsets
in

<FOO>A" BC<BAR>DEF</ BAR></ FOO>

2.3.Creating a Range

A Range is created by calling theeat eRange() method on thfPocunent Range][p.53] interface.
This interface can be obtained from the object implementinBdabe@nent interface using
binding-specific casting methods.

i nterface Docunment Range {
Range creat eRange();
}

The initial state of the Range returned from this method is such that botfairitary-poing [p.31] s are
positioned at the beginning of the corresponding Document, before any content. In other words, the

[container] [p.31] of eacHboundary-point] [p.31] is the Document node and the offset within that no@e is

Like some objects created using methods in the Document interface (such as Nodes and
DocumentFragments), Ranges created via a particular document instance can select only content
associated with that Document, or with DocumentFragments and Attrs for which that Document is the
owner Docunent . Such Ranges, then, can not be used with other Documsésntces.

2.4.Changing a Range’sPosition
A Range’s position can be specified by settindcthreainer] [p.31] andoffse [p.31] of each

boundary-point with theet St art andset End methods.

void setStart(in Node parent, in |ong offset)
rai ses(RangeExcepti on);
voi d setEnd(in Node parent, in long offset)
rai ses(RangeExcepti on);

If one boundary-point of a Range is set to haweoicontainer] [p.32] other than the current one for the
Range, the RangeleslTapsed [p.33] to the new position. This enforces the restriction that both

boundary-points of a Range must have the $amtecontainer][p.32] .

The start position of a Range is guaranteed to never be after the end position. To enforce this restriction, if
the start is set to be at a position after the end, the Rgogéassed [p.33] to that position. Similarly, if
the end is set to be at a position before the start, the Rgoakpsed [p.33] to that position.

It is also possible to set a Range’s position relative to nodes in the tree:

34

2.5. Comparing Range Boundary-Points

voi d setStartBefore(in Node node);
rai ses(RangeExcepti on);
void setStartAfter(in Node node);
rai ses(RangeExcepti on);
voi d set EndBef ore(i n Node node);
rai ses(RangeExcepti on);
voi d set EndAfter (in Node node);
rai ses(RangeExcepti on);

Thelparent|[p.73] of the node becomes tientainer] [p.31] of thelboundary-point [p.31] and the Range is

subject to the same restrictions as given above in the descripset 8t art () andset End() .

A Range can Heollapsed [p.33] to either boundary-point:

voi d col | apse(in bool ean toStart);
PassingrRUE as the parameteoSt ar t will [collapsd [p.33] the Range to its staALSE to itsend.

Testing whether a Rangddsllapsed [p.33] can be done by examining tbel | apsed attribute:

readonly attribute bool ean col | apsed;

The following methods can be used to make a Range select the contents of a node or the node itself.

voi d sel ect Node(i n Node n);
voi d sel ect NodeContents(in Node n);

The following examples demonstrate the operation of the mefeddsct Node and
sel ect NodeCont ent s:

Bef or e:
N<BAR><FOO>A<MOO>B</ MOO>C</ FOO></ BAR>
After Range. sel ect NodeCont ent s(FOO) :
<BAR><FOO>A<MOO>B</ MOO>C</ FOO></ BAR>
(I'n this case, FOO is the parent of both boundary-points)
After Range. sel ect Node(FOO):

<BAR><FOO>A<MOO>B</ MOO>C</ FOO></ BAR>

2.5.Comparing RangeBoundary-Points

It is possible to compare two Ranges by comparing their boundary-points:

short conpar eBoundar yPoi nts(i n ConpareHow how, in Range sourceRange) rai ses(RangeException);

whereConpar eHow is one of four valuesSTART _TO _START, START_TO END, END TO END and

END TO START. The return value is -1, 0 or 1 depending on whether the corresponding boundary-point
of the Range is before, equal to, or after the corresponding boundary-peinirafeRange. An

exception is thrown if the two Ranges have diffef@ot container][p.32] s.

35

2.6. Deleting Content with a Range

The result of comparing two boundary-points (or positions) is specified below. An informal but not
always correct specification is that an boundary-point is before, equal to, or after another if it corresponds
to a location in a text representation before, equal to, or after the other’s correspacating.

Let A and B be two boundary-points or positions. Then one of the following holddiefoig B, A is
equal to B, or A isafter B. Which one holds is specified in the following by examining frases:

In the first case the boundary-points have the gamt@iner][p.31] . A is before B if its[offsef] [p.31] is
less than thieffsef] [p.31] of B, A isequal to B if its[offsef] [p.31] is equal to thfpffsef [p.31] of B, and A is
after B if its[offsef] [p.31] is greater than tHeffsef] [p.31] of B.

In the second case a child node C ofdbtainer][p.31] of A is arfancestor container][p.31] of B. In this
case, A isefore B if the[offset| [p.31] of A is less than or equal to the index of the child node C and A is
after B otherwise.

In the third case a child node C of [taatainer] [p.31] of B is arfancestor container][p.31] of A. In this
case, A idoefore B if the index of the child node C is less than[dffse] [p.31] of B and A isafter B
otherwise.

In the fourth case, none of three other cases hold: the containers of A argldBragg[p.73] or
[descendantd [p.73] of sibling nodes. In this case, Absfore B if the[container] [p.31] of A is before the
[container][p.31] of B in a pre-order traversal of the Randesitext tred [p.32] and A isafter B otherwise.

Note that because the same location in a text representation of the document can correspond to two
different positions in the DOM tree, it is possible for two boundary-points to not compare equal even
though they would be equal in the text representation. For this reason, the informal definition above can
sometimes bancorrect.

2.6.Deleting Content with aRange

One can delete the contents selected by a Range with:

voi d del eteContents();

del et eCont ent s() deletes all nodes and characters selected by the Range. All other nodes and
characters remain in tfoentext tred[p.32] of the Range. Some examples of this deletion operation are:

(1) <FOO>AB<MOO>CD</ MOO>CD</ FOO> -->
<FOC>A"CD</ FOO>

(2) <FOO>A<MOO>BC</ MOO>DE</ FOO> - - >
<FOO>A<MOO>B</ MOO>AE</ FOO>

(3) <FOO>XY<BAR>ZW&/ BAR>Q</ FOO> -->
<FOO>X"<BAR>W./ BAR>Q</ FOO>

(4) <FOO><BAR1>AB</ BAR1><BAR2/ ><BAR3>CD</ BAR3></ FOO>
--> <FOO><BAR1>A</ BAR1>"<BAR3>D</ BAR3>

36

2.7. Extracting Content

After del et eCont ent s() is invoked on a Range, the RangedBapsed [p.33] . If no node was

[partially selected [p.33] by the Range, then it[®ITapsed [p.33] to its original start point, as in example

(1). If a node wajpartially selected [p.33] by the Range and was jJancestor_container|[p.31] of the start

of the Range and rfamcestor] [p.73] of the node satisfies these two conditions, then the Range is collapsed
to the position immediately after the node, as in examples (2) and (4). If a ndpar tnaby selected

[p.33] by the Range and was [ancestor container|[p.31] of the end of the Range and no ancestor of the
node satisfies these two conditions, then the Range is collapsed to the position immediately before the
node, as in examples (3) and (4).

Note that if deletion of a Range leaves adjacent Text nodes, they are not automatically merged, and empty
Text nodes are not automatically removed. Two Text nodes should be joined only if each is the container
of one of the boundary-points of a Range whose contents are deleted. To merge adjacent Text nodes, or
remove empty text nodes, ther mal i ze() method on thé&ode interface should be used.

2.7.Extracting Content

If the contents of a Range need to be extracted rather than deleted, the following method may be used:

Docunent Fragnent extract Contents();

Theext ract Cont ent s() method removes nodes from the Ranettext tred[p.32] similarly to the
del et eCont ent s() method. In addition, it places the deleted contents in a new

Docunent Fr agrent . The following examples illustrate the contents of the returned
DocumentFragment:

(1) <FOO>AB<MOO>CD</ MOO>CD</ FOO> -->
B<MOO>CD</ MOO>

(2) <FOO>A<MOO>BC</ MOO>DE</ FOO> -->
<MOC>C<MOC>D

(3) <FOO>XY<BAR>ZW&/ BAR>Q</ FOO> -->
Y<BAR>Z</ BAR>

(4)
<FOO><BAR1>AB</ BAR1><BAR2/ ><BAR3>CD</ BAR3></ FOO> - ->
<BAR1>B</ BAR1><BAR2/ ><BAR3>C</ BAR3>

It is important to note that nodes that|paetially selected [p.33] by the Range are cloned. Since part of
such a node’s contents must remain in the Rafupe ed[p.32] and part of the contents must be
moved to the new DocumentFragment, a clone dpéneally selected [p.33] node is included in the new
DocumentFragment. Note that cloning does not take plafgeltated [p.33] elements; these nodes are
moved to the neocumentFragment.

37

2.8. Cloning Content

2.8.Cloning Content

The contents of a Range may be duplicated using the following method:

Docunent Fragment cl oneContents();

This method returnsBocunent Fr agnent that is similar to the one returned by the method

extract Cont ent s() . However, in this case, the original nodes and character data in the Range are
not removed from the Rangdgentext tred [p.32] . Instead, all of the nodes and text content within the
returnedDocunent Fr agnent arecloned.

2.9.Inserting Content

A node may be inserted into a Range using the following method:

voi d insertNode(in Node n) raises(RangeException);

Thei nsert Node() method inserts the specified node into the Rangpeitext treq[p.32] . The node is
inserted at the stdiooundary-point|[p.31] of the Range, without modifyinig

If the start boundary point of the Range is ifext node, the nsert Node operation splits th&ext
node at the boundary point. If the node to be inserted is dlsgtanode, the resulting adjacergxt
nodes are not normalized automatically; this operation is left tapibkcation.

The Node passed into this method can Be@unent Fr agnent . In that case, the contents of the

Document Fr agnment are inserted at the stfipaundary-point|[p.31] of the Range, but the
Docunent Fr agnent itself is not. Note that if the Node represents the root of a sub-tree, the entire

sub-tree isnserted.

The same rules that apply to theser t Bef or e() method on the Node interface apply here.
Specifically, the Node passed in, if it already has a parent, will be removed from its epastitign.

2.10.Surrounding Content

The insertion of a single node to subsume the content selected by a Range can be performed with:

voi d surroundContents(in Node newParent);

Thesur roundCont ent s() method causes all of the content selected by the Range to be rooted by the
specified node. The nodes may not be Attr, Entity, DocumentType, Notation, Document, or
DocumentFragment nodes. Callisgr r oundCont ent s() with the Element node FOO in the

following examples yields:

Bef or e:
<BAR>AB<MOO>C</ MOO>DE</ BAR>

After surroundContents(FQO) :

<BAR>A<FOO>B<MOO>C</ MOO>D</ FOO>E</ BAR>

38

2.11. Miscellaneous Members

Another way of describing the effect of this method on the Rajogetext treq[p.32] is to decompose it
in terms of other operations:

1. Remove the contents selected by the Range with a aalittbact Cont ent s() .

2. Insert the nodeewPar ent where the Range is collapsed (after the extraction) with
i nsert Node().

3. Insert the entire contents of the extracted DocumentFragmemdntéar ent . Specifically, invoke
theappendChi | d() onnewPar ent passing in the DocumentFragment returned as a result of the
call toextract Cont ent s()

4. SelectnewPar ent and all of its contents withel ect Node() .

Thesur r oundCont ent s() method raises an exception if the Rgpasially selectd[p.33] a
non-Text node. An example of a Range for wtdch r oundCont ent s() raises an exception is:

<FOO>AB<BAR>CD</ BAR>E</ FOO>

If the nodenewPar ent has any children, those children are removed before its insertion. Also, if the
nodenewPar ent already has a parent, it is removed from the original pareht's dNodes list.

2.11.MiscellaneousMembers
One can clone a Range:
Range cl oneRange();

This creates a new Range which selects exactly the same content as that selected by the Range on which
the methoat| oneRange was invoked. No content is affected by thperation.

Because the boundary-points of a Range do not necessarily have tifgstamer][p.31] s, use:

readonly attribute Node comopnAncest or Cont ai ner;

to get thdancestor container] [p.31] of both boundary-points that is furthest down from the Rafigety
[p-32

One can get a copy of all the character data selected or partially selected by a Range with:

DOVBtring toString();

This does nothing more than simply concatenate all the character data selected by the Range. This
includes character data in bdthxt andCDATASect i on nodes.

2.12.Range modification under documenimutation

As a document is modified, the Ranges within the document need to be updated. For example, if one
boundary-point of a Range is within a node and that node is removed from the document, then the Range
would be invalid unless it is fixed up in some way. This section describes how Ranges are modified under
document mutations so that they remazafid.

39

2.12.1. Insertions

There are two general principles which apply to Ranges under document mutation: The first is that all
Ranges in a document will remain valid after any mutation operation and the second is that, as much as
possible, all Ranges will select the same portion of the document after any mopatiation.

Any mutation of the document tree which affect Ranges can be considered to be a combination of basic
deletion and insertion operations. In fact, it can be convenient to think of those operations as being
accomplished using thael et eCont ent s() andi nsert Node() Range methods and, in the case of
Text mutations, thepl i t Text () andnor mal i ze() methods.

2.12.1.Insertions

An insertion occurs at a single point, the insertion point, in the document. For any Range in the document
tree, consider each boundary-point. The only case in which the boundary-point will be changed after the
insertion is when the boundary-point and the insertion point have thdceatai@er| [p.31] and theoffsef

[p.31] of the insertion point is strictly less than fbfésef [p.31] of the Range’s boundary-point. In that

case thfpffsef][p.31] of the Range’s boundary-point will be increased so that it is between the same nodes
or characters as it was before thgertion.

Note that when content is inserted at a boundary-point, it is ambiguous as to where the boundary-point
should be repositioned if its relative position is to be maintained. There are two possibilities: at the start or
at the end of the newly inserted content. We have chosen that in this case n [p.31] nor

[offsetl [p.31] of the boundary-point is changed. As a result, the boundary-point will be positioned at the
start of the newly insertezbntent.

Examples:

Suppose the Range selects the following:

<P>Abcd efgh XY bl ah ijkl</P>

Consider the insertion of the teéXhserted text" at the following positions:
1. Before the "X :

<P>Abcd efgh inserted textXY blah ijkl</P>

2. After the 'X:

<P>Abcd efgh Xinserted textY blah ijkl</P>

3. After the 'Y :

<P>Abcd efgh XYinserted text blah ijkl</P>

4. After the "h’ in "Y blah":

<P>Abcd efgh XY bl ahinserted text ijkl</P>

40

2.12.2. Deletions

2.12.2.Deletions

Any deletion from the document tree can be considered as a sequdetebtCont ent s()

operations applied to a minimal set of disjoint Ranges. To specify how a Range is maodified under
deletions we need only consider what happens to a Range under asingleeCont ent s() operation

of another Range. And, in fact, we need only consider what happens to a single boundary-point of the
Range since both boundary-points are modified using the aigodthm.

If a boundary-point of the original Range is within the content being deleted, then after the deletion it will
be at the same position as the resulting boundary-point of thecthiapsed [p.33]) Range used to delete
thecontents.

If a boundary-point is after the content being deleted then it is not affected by the deletion unless its
[container] [p.31] is also thdecontainer][p.31] of one of the boundary-points of the Range being deleted. If

there is such a comm(montainer][p.31] , then the index of the boundary-point is modified so that the
boundary-point maintains its position relative to the content déahiiner|[p.31] .

If a boundary-point is before the content being deleted then it is not affected by the debdtion at
Examples:

In these examples, the Range on widelh et eCont ent s() is invoked is indicated by the underline.

Example 1.

Before:

<P>Abcd ef gh The Range ij kl </ P>
After:

<P>Abcd Range ij kl </ P>

Example 2.

Before:

<p>Abcd efgh The Range ijkl </p>

After:
<p>Abcd "kl </ p>
Example 3.

Before:

<P>ABCD ef gh The Range ij Kkl </ P>

41

2.13. Formal Description of the Range Interface

After:

<P>ABCD <EMrange</ EM> i j kI </ P>

In this example, the container of the start boundary-point after the deletion is the Text node holding the
string"ange”.

Example 4.

Before:

<P>Abcd ef gh The Range ij kl </ P>
After:

<P>Abcd he Range ij Kkl </ P>
Example 5.

Before:

<P>Abcd <EMref gh The Range ij </ EM>KkI </ P>

After:

<P>Abcd "kl </ P>

2.13.Formal Description of the Rangednterface
To summarize, the complete, formal description ofRArge][p.42] interface is given below:

Interface Range (introduced irDOM Level 2)
IDL Definition

/1 Introduced in DOM Level 2:
i nterface Range {
readonly attribute Node st art Cont ai ner;
/1 rai ses(DOVException) on retrieval

readonly attribute |ong start O fset;
/1 rai ses(DOVException) on retrieval

readonly attribute Node endCont ai ner;
/1 rai ses(DOVException) on retrieval

readonly attribute |ong endO f set ;
/1 rai ses(DOVException) on retrieval

readonly attribute bool ean col | apsed,;
/1 rai ses(DOVException) on retrieval

readonly attribute Node comonAncest or Cont ai ner;
/1 rai ses(DOVException) on retrieval

42

2.13. Formal Description of the Range Interface

voi d setStart(in Node refNode,
in long offset)
rai ses(RangeExcepti on,
DOVExcepti on);
voi d set End(i n Node ref Node,
in long offset)
rai ses(RangeExcepti on,
DOVExcepti on);
voi d set StartBefore(in Node refNode)
rai ses(RangeExcepti on,
DOVExcepti on);
voi d setStart After(in Node refNode)
rai ses(RangeExcepti on,
DOVExcepti on);
voi d set EndBef or e(i n Node ref Node)
rai ses(RangeExcepti on,
DOVExcepti on);
voi d set EndAfter (i n Node ref Node)
rai ses(RangeExcepti on,
DOVException);

voi d col I apse(in bool ean toStart)
rai ses(DOVException);
voi d sel ect Node(in Node ref Node)

rai ses(RangeExcepti on,
DOVExcepti on);
voi d sel ect NodeCont ent s(i n Node ref Node)
rai ses(RangeExcepti on,
DOVExcepti on);

/1 Conpar eHow

const unsigned short START_TO_START = 0;
const unsigned short START_TO_END = 1;
const unsigned short END_TO_END = 2;
const unsigned short END_TO_START = 3;
short conpar eBoundar yPoi nt s(i n unsi gned short how,

i n Range sourceRange)
rai ses(DOVExcepti on);
voi d del et eCont ent s()
rai ses(DOVExcepti on);
Docunent Fr agrment extract Cont ent s()
rai ses(DOVExcepti on);
Documnent Fr agrment cl oneContent s()
rai ses(DOVExcepti on);
voi d i nsert Node(i n Node newNode)
rai ses(DOVExcepti on,
RangeException);
voi d surroundContents(i n Node newPar ent)
rai ses(DOVExcepti on,
RangeException);
Range cl oneRange()
rai ses(DOVExcepti on);
DOVSt ri ng toString()

43

2.13. Formal Description of the Range Interface

rai ses(DOVException);
voi d det ach()
rai ses(DOVException);
3

Definition group CompareHow

Passed as a parameter todb@par eBoundar yPoi nt s method.
Defined Constants
END_TO_END
Compare end boundary-point®dur ceRange to end boundary-point of Range on
which conpar eBoundar yPoi nt s isinvoked.

END _TO_START
Compare end boundary-point®dur ceRange to start boundary-point of Range on
which conpar eBoundar yPoi nt s isinvoked.

START_TO END
Compare start boundary-point®bur ceRange to end boundary-point of Range on
which conpar eBoundar yPoi nt s isinvoked.

START_TO _START
Compare start boundary-point®dur ceRange to start boundary-point of Range on
which conpar eBoundar yPoi nt s isinvoked.

Attributes
col | apsed of typebool ean, readonly
TRUE if the Range is collapsed
Exceptions onretrieval

DOVExcepti on INVALID_STATE_ERR: Raised iflet ach() has already
been invoked on thigbject.

comonAncest or Cont ai ner of typeNode, readonly
Theldeepest [p.73] commorfancestor container] [p.31] of the Range’s two boundary-points.
Exceptions onretrieval

DOVExcepti on INVALID_STATE_ERR: Raised itlet ach() has already
been invoked on thigbject.

endCont ai ner of typeNode, readonly
Node within which the Range ends
Exceptions onretrieval

DOVEXxcept i on INVALID _STATE_ERR: Raised iflet ach() has already
been invoked on thisbject.

44

2.13. Formal Description of the Range Interface

endO f set of typel ong, readonly
Offset within the ending node of the Range.
Exceptions onretrieval

DOVExcept i on INVALID_STATE_ERR: Raised itlet ach() has already
been invoked on thigbject.

st art Cont ai ner of typeNode, readonly
Node within which the Range begins
Exceptions onretrieval

DOVEXxcept i on INVALID_STATE_ERR: Raised iflet ach() has already
been invoked on thisbject.

start O f set of typel ong, readonly
Offset within the starting node of the Range.
Exceptions onretrieval

DOVExcept i on INVALID_STATE_ERR: Raised itlet ach() has already
been invoked on thigbject.

Methods
cl oneContents
Duplicates the contents of a Range
Return Value

Docunent Fr agment A DocumentFragment that contains content equivalent
to thisRange.

Exceptions

DOVExcepti on HIERARCHY_REQUEST_ERR: Raised if a DocumentType
node would be extracted into the nBwcumentFragment.

INVALID_STATE_ERR: Raised itlet ach() has already
been invoked on thigbject.
No Parameters

cl oneRange
Produces a new Range whose boundary-points are equal to the boundary-points of the

Range.
Return Value

45

2.13. Formal Description of the Range Interface

[Range][p.42] The duplicated Range.
Exceptions
DOVExcept i on INVALID_STATE_ERR: Raised itlet ach() has already

been invoked on thigbject.

No Parameters

col | apse

Collapse a Range onto one of its boundary-points
Parameters

toSt art of typebool ean
If TRUE, collapses the Range onto its start; if FALSE, collapses it orgadts

Exceptions

DOVExcept i on INVALID_STATE_ERR: Raised itlet ach() has already
been invoked on thigbject.

No Return Value

conpar eBoundar yPoi nt s

Compare the boundary-points of two Rangesdoe@iment.
Parameters

how of typeunsi gned short

sour ceRange of typdRange][p.42]

Return Value

short -1, 0 or 1 depending on whether the corresponding boundary-point of the

Range is before, equal to, or after the corresponding boundary-point of
sour ceRange.

Exceptions

DOVEXxcept i on WRONG_DOCUMENT_ERR: Raised if the two Ranges are
not in the same Document DocumentFragment.

INVALID_STATE_ERR: Raised itlet ach() has already
been invoked on thigbject.

46

2.13. Formal Description of the Range Interface

del et eContent s
Removes the contents of a Range from the containing document or document fragment
without returning a reference to the removed content.

Exceptions

DOVExcept i on NO_MODIFICATION_ALLOWED_ERR: Raised if any
portion of the content of the Range is read-only or any of the
nodes that contain any of the content of the Range are
read-only.

INVALID_STATE_ERR: Raised iflet ach() has already
been invoked on thisbject.

No Parameters
No Return Value

det ach
Called to indicate that the Range is no longer in use and that the implementation may
relinquish any resources associated with this Range. Subsequent calls to any methods or
attribute getters on this Range will result iD@VEXcept i on being thrown with an error
code ofl NVALI D_STATE_ERR
Exceptions

DOVExcept i on INVALID_STATE_ERR: Raised itlet ach() has already
been invoked on thigbject.

No Parameters
No Return Value

extract Contents
Moves the contents of a Range from the containing document or document fragment to a
new DocumentFragment.
Return Value

Docunent Fr agnment A DocumentFragment containing the extracted contents.

Exceptions

47

2.13. Formal Description of the Range Interface

DOVExcepti on NO_MODIFICATION_ALLOWED_ERR: Raised if any
portion of the content of the Range is read-only or any of the
nodes which contain any of the content of the Range are
read-only.

HIERARCHY_REQUEST_ERR: Raised if a DocumentType
node would be extracted into the nBawcumentFragment.

INVALID_STATE_ERR: Raised itlet ach() has already
been invoked on thigbject.

No Parameters

i nsert Node
Inserts a node into the Document or DocumentFragment at the start of the Range. If the
container is a Text node, this will be split at the start of the Range. Adjacent Text nodes
will not be automatically merged. If the node to be inserted is a DocumentFragment node,
the children will be inserted rather than the DocumentFragmentitsetfe
Parameters
newNode of typeNode

The node to insert at the start of fR@nge

Exceptions

DOVExcept i on NO_MODIFICATION_ALLOWED_ ERR: Raised if an
[ancestor container|[p.31] of the start of the Range is
read-only.

WRONG_DOCUMENT_ERR: Raised ifewNode and
thecontainer] [p.31] of the start of the Range were not
created from the sanumcument.

HIERARCHY_REQUEST_ERR: Raised if tftentainer|
[p.31] of the start of the Range is of a type that does not
allow children of the type aiewNode or if newNode is

an ancestor of tHeontainer][p.31] .

INVALID_STATE_ERR: Raised iflet ach() has
already been invoked on thobject.

|RangeExcepti on| INVALID_NODE_TYPE_ERR: Raised ifiewNode is an
[p.54] Attr, Entity, Notation, or Documemtode.

No Return Value

48

2.13. Formal Description of the Range Interface

sel ect Node
Select a node and its contents
Parameters
r ef Node of typeNode
The node tselect.

Exceptions
|RangeExcepti on| INVALID_NODE_TYPE_ERR: Raised if an ancestor of
[p.54] r ef Node is an Entity, Notation or DocumentType node
or if r ef Node is a Document, DocumentFragment, Attr,
Entity, or Notatiomode.
DOVExcept i on INVALID_STATE_ERR: Raised itlet ach() has

already been invoked on trobject.

No Return Value

sel ect NodeCont ent s
Select the contents within a node
Parameters
r ef Node of typeNode
Node to seledrom

Exceptions
[RangeExcepti on| INVALID NODE_TYPE_ERR: Raised if ef Node or
[p.54] an ancestor afef Node is an Entity, Notation or
DocumentTypeanode.
DOVExcept i on INVALID_STATE_ERR: Raised ilet ach() has

already been invoked on thagject.

No Return Value

set End
Sets the attributes describing the end Biage.
Parameters
r ef Node of typeNode
Ther ef Node value. This parameter must be different froui | .

of f set of typel ong
TheendOf f set value.

Exceptions

49

2.13. Formal Description of the Range Interface

[RangeExcepti on|
[p.54]

DOVEXxcept i on

No Return Value

set EndAft er

INVALID_NODE_TYPE_ERR: Raised if ef Node or
an ancestor afef Node is an Entity, Notation, or
DocumentTypeaiode.

INDEX_SIZE ERR: Raised ibf f set is negative or
greater than the number of child unitg ief Node. Child
units argl6-bit unitd[p.73] if r ef Node is a
CharacterData, Comment or Processinginstruction node.
Child units are Nodes in all otheases.

INVALID_STATE_ERR: Raised iflet ach() has
already been invoked on thegject.

Sets the end of a Range to be after a node

Parameters
r ef Node of typeNode

Range ends afteref Node.

Exceptions

[RangeExcept i on|
[p.54]

DOVExcepti on

No Return Value

set EndBef or e

INVALID_NODE_TYPE_ERR: Raised if the root
container of ef Nodeis not an Attr, Document or
DocumentFragment node orrief Node is a Document,
DocumentFragment, Attr, Entity, or Notationde.

INVALID_STATE_ERR: Raised iflet ach() has
already been invoked on thobject.

Sets the end position to be before a node.

Parameters
r ef Node of typeNode

Range ends beforeef Node

Exceptions

50

2.13. Formal Description of the Range Interface

[RangeExcepti on|
[p.54]

DOVEXxcept i on

No Return Value

set Start

INVALID_NODE_TYPE_ERR: Raised if the root
container of ef Nodeis not an Attr, Document, or
DocumentFragment node orrieéf Nodeis a Document,
DocumentFragment, Attr, Entity, or Notationde.

INVALID_STATE_ERR: Raised iflet ach() has
already been invoked on trobject.

Sets the attributes describing the start of the Range.

Parameters
r ef Node of typeNode

Ther ef Node value. This parameter must be different froui | .

of f set of typel ong

Thestart O f set value.

Exceptions

[RangeExcept i on|
[p.54]

DOVExcepti on

No Return Value

setStart After

INVALID_NODE_TYPE_ERR: Raised if ef Node or
an ancestor afef Node is an Entity, Notation, or
DocumentTypeaode.

INDEX_SIZE_ERR: Raised i6f f set is negative or
greater than the number of child units ief Node. Child
units argl6-bit unitd[p.73] if r ef Node is a
CharacterData, Comment or ProcessingInstruction node.
Child units are Nodes in all otheases.

INVALID_STATE_ERR: Raised iflet ach() has
already been invoked on thodject.

Sets the start position to be aftarae

Parameters
r ef Node of typeNode

Range starts afteref Node

Exceptions

51

2.13. Formal Description of the Range Interface

[RangeExcepti on| INVALID_NODE_TYPE_ERR: Raised if the root

[p.54] container of ef Nodeis not an Attr, Document, or
DocumentFragment node orrieéf Nodeis a Document,
DocumentFragment, Attr, Entity, or Notationde.

DOVEXxcept i on INVALID_STATE_ERR: Raised iflet ach() has
already been invoked on trobject.

No Return Value

set StartBefore
Sets the start position to be befonecale
Parameters
r ef Node of typeNode
Range starts before=f Node

Exceptions
[RangeExcept i on| INVALID_NODE_TYPE_ERR: Raised if the root
[p.54] container of ef Nodeis not an Attr, Document, or
DocumentFragment node orief Nodeis a Document,
DocumentFragment, Attr, Entity, or Notationde.
DOVExcepti on INVALID_STATE_ERR: Raised iflet ach() has

already been invoked on trobject.

No Return Value

surroundCont ent s
Reparents the contents of the Range to the given node and inserts the node at the position
of the start of the Range.
Parameters
newPar ent of typeNode
The node to surround the contewigh.

Exceptions

52

2.13. Formal Description of the Range Interface

DOVExcepti on NO_MODIFICATION_ALLOWED_ ERR: Raised if an
[ancestor container|[p.31] of either boundary-point of the
Range igead-only.

WRONG_DOCUMENT_ERR: Raised ifewPar ent
and thdcontainer][p.31] of the start of the Range were not
created from the sanu®cument.

HIERARCHY_REQUEST_ERR: Raised if tftentainer|
[p.31] of the start of the Range is of a type that does not
allow children of the type afiewPar ent or if

newPar ent is an ancestor of tf@ntainer] [p.31] or if

node would end up with a child node of a type not
allowed by the type afiode.

INVALID_STATE_ERR: Raised ilet ach() has
already been invoked on thobject.

[RangeExcepti on| BAD_BOUNDARYPOINTS_ERR: Raised if the Range
[p.54] [partially selectq[p.33] a non-texinode.

INVALID_NODE_TYPE_ERR: Raised ifiode is an
Attr, Entity, DocumentType, Notation, Document, or
DocumentFragmentode.

No Return Value

toString
Returns the contents of a Range as a string. This string contains only the data characters,
not any markup.
Return Value

DOVt ri ng The contents of thRange.
Exceptions
DOVExcept i on INVALID_STATE_ERR: Raised itlet ach() has already

been invoked on thigbject.

No Parameters

Interface DocumentRange (introduced irDOM Level 2)
IDL Definition

53

2.13. Formal Description of the Range Interface

/1 Introduced in DOM Level 2:

i nterface Docunent Range {

Range creat eRange() ;
3

Methods
cr eat eRange
This interface can be obtained from the object implementinBdb@nent interface
using binding-specific casting methods.
Return Value

Range The initial state of the Range returned from this method is such that
[p.42] both of its boundary-points are positioned at the beginning of the
corresponding Document, before any content. The Range returned can
only be used to select content associated with this Document, or with
DocumentFragments and Attrs for which this Document is the
owner Docunent .

No Parameters
No Exceptions

Exception RangeException introduced irDOM Level 2

Range operations may throfRangeExcept i on|[p.54] as specified in their method descriptions.
IDL Definition

/1 Introduced in DOM Level 2:
exception RangeException {
unsi gned short code;
s
/1 RangeExcepti onCode
const unsigned short BAD_BCUNDARYPO NTS_ERR
const unsigned short | NVALI D_NODE_TYPE_ERR

=

Definition group RangeExceptionCode

An integer indicating the type of errgenerated.
Defined Constants
BAD_BOUNDARYPO NTS_ERR
If the boundary-points of a Range do not meet spe@tjairements.

| NVALI D_NODE_TYPE_ERR

If the[container] [p.31] of an boundary-point of a Range is being set to either a node of
an invalid type or a node with an ancestor of an inugje.

54

Appendix A: IDL Definitions

Appendix A: IDL Definitions

This appendix contains the complete OMG I[@MGIDL] for the Level 2 Document Object Model
Traversal and Range definitions. The definitions are dividedTirdeersdlp.55] , andRangé{p.56] .

The IDL files are also available as:

http://www.w3.0rg/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927/idl.zip

A.1: Document Object ModelTraversal

traversal.idl:

/1 File:

#i fndef _TRAVERSAL | DL_
#define TRAVERSAL | DL_

#i ncl ude "domidl"'

traversal .idl

#pragma prefix "dom w3c. org"

nmodul e traversa

{

typedef dom : Node Node

interface NodeFilter;

11

I
11

I ntroduced in DOM Level 2:
interface Nodelterator {

readonl y
readonl y
readonl y
readonl y
Node

Node

voi d

attri bute Node root ;
attribute unsigned | ong what ToShow,
attribute NodeFilter filter;
attribute bool ean expandEnt it yRef erences
next Node()
rai ses(dom : DOVExcepti on);
previ ousNode()
rai ses(dom : DOVExcepti on);
detach();

I ntroduced in DOM Level 2:
interface NodeFilter {

/1 Constants returned by accept Node

const short
const short
const short

/1l Constants for what ToShow

const unsigned | ong
const unsigned | ong
const unsigned | ong

FI LTER_ACCEPT = 1;
FI LTER_REJECT = 2;
FI LTER _SKI P = 3;
SHOW ALL =
SHOW ELEMENT =
SHOW ATTRI BUTE =

55

OXFFFFFFFF;
0x00000001;
0x00000002;

A.2: Document Object Model Range

const unsigned | ong SHOW TEXT = 0x00000004;
const unsigned | ong SHOW CDATA_SECTI ON = 0x00000008;
const unsigned | ong SHOW ENTI TY_REFERENCE = 0x00000010;
const unsigned | ong SHOW ENTI TY = 0x00000020;
const unsigned | ong SHOW PROCESSI NG_| NSTRUCTI ON = 0x00000040;
const unsigned | ong SHOW COMVENT = 0x00000080;
const unsigned | ong SHOW DOCUMENT = 0x00000100;
const unsigned | ong SHOW DOCUMENT_TYPE = 0x00000200;
const unsigned | ong SHOW DOCUMENT _FRAGVENT = 0x00000400;
const unsigned | ong SHOW NOTATI ON = 0x00000800;
short accept Node(in Node n);

I

/1 Introduced in DOM Level 2:
interface TreeWal ker {

readonly attribute Node root;

readonly attribute unsigned |ong what ToShow;

readonly attribute NodeFilter filter;

readonly attribute bool ean expandEnt it yRef erences;
attri bute Node cur r ent Node;

/1 raises(dom : DOVException) on setting

Node par ent Node() ;

Node firstChild();
Node last Child();

Node previ ousSi bl ing();
Node next Si bl i ng();
Node previ ousNode() ;
Node next Node() ;

I

/1 Introduced in DOM Level 2:
i nterface Docunment Traversal {
Nodel t er at or createNodelterator (i n Node root,
i n unsigned | ong what ToShow,
in NodeFilter filter,
i n bool ean entityReferenceExpansi on)
rai ses(dom : DOVExcepti on);
Tr eeVl ker creat eTreeVl ker (i n Node root,
i n unsigned | ong what ToShow,
in NodeFilter filter,
in bool ean entityReferenceExpansi on)
rai ses(dom : DOVExcepti on);
3
3

#endif // _TRAVERSAL |DL_

A.2: Document Object ModelRange

56

ranges.idt

/1 File: ranges.idl

#i fndef _RANGES | DL_
#define _RANGES |DL_

#i ncl ude "domidl"

#pragma prefix
nmodul e ranges

{

typedef dom:
typedef dom:
typedef dom:

ranges.idl:

"dom w3c. or g"

Node Node;
Docunment Fr agnment Docunent Fragnment ;
DOVSt ri ng DOVSt ri ng;

// Introduced in DOM Level 2:
excepti on RangeException {
short code;

unsi gned

b

/1 RangeExcepti onCode

const unsi gned short
const unsi gned short

BAD_BOUNDARYPO NTS_ERR
| NVALI D_NODE_TYPE_ERR

[EnY

// Introduced in DOM Level 2:
i nterface Range {
readonly attribute Node st art Cont ai ner;

readonl y

readonl y

readonl y

readonl y

readonl y

voi d

voi d

voi d

attribute

attribute

attribute

attribute

attribute

/1 rai ses(dom : DOVExcepti on)

| ong start O f set;
/1 rai ses(dom : DOVExcepti on)

Node endCont ai ner;
/1 rai ses(dom : DOVExcepti on)

| ong endOf f set ;
/1 rai ses(dom : DOVExcepti on)

bool ean col | apsed,;
/1 rai ses(dom : DOVExcepti on)

Node commonAncest or Cont ai ner;
/1 rai ses(dom : DOVExcepti on)

setStart(in Node refNode,
in long of fset)
rai ses(RangeExcepti on,
dom : DOVEXcepti on);
set End(i n Node ref Node,
in long of fset)
rai ses(RangeExcepti on,
dom : DOVEXcepti on);
set StartBefore(in Node refNode)
rai ses(RangeExcepti on,

57

on

on

on

on

on

on

retrieval

retrieval

retrieval

retrieval

retrieval

retrieval

ranges.idl:

dom : DOVEXcepti on);
voi d setStart After(in Node refNode)
rai ses(RangeExcepti on,
dom : DOVEXcepti on);
voi d set EndBef ore(i n Node ref Node)
rai ses(RangeExcepti on,
dom : DOVEXxcepti on);
voi d set EndAfter (i n Node ref Node)
rai ses(RangeExcepti on,
dom : DOVEXcepti on);

voi d col |l apse(in bool ean toStart)
rai ses(dom : DOVExcepti on);
voi d sel ect Node(in Node refNode)

rai ses(RangeExcepti on,
dom : DOVEXxcepti on);
voi d sel ect NodeCont ent s(i n Node ref Node)
rai ses(RangeExcepti on,
dom : DOVEXcepti on);

/1 Conpar eHow

const unsigned short START_TO_START = 0;
const unsigned short START_TO_END = 1;
const unsigned short END_TO_END = 2;
const unsi gned short END_TO_START = 3;
short conpar eBoundar yPoi nt s(i n unsi gned short how,

i n Range sourceRange)
rai ses(dom : DOVExcepti on);
voi d del et eCont ent s()
rai ses(dom : DOVExcepti on);
Docunent Fr agnent extract Content s()
rai ses(dom : DOVExcepti on);
Docunent Fr agnent cl oneCont ent s()
rai ses(dom : DOVExcepti on);
voi d i nsert Node(i n Node newNode)
rai ses(dom : DOVExcept i on,
RangeExcepti on);
voi d surroundCont ents(i n Node newPar ent)
rai ses(dom : DOVExcepti on,
RangeExcepti on);

Range cl oneRange()

rai ses(dom : DOVExcepti on);
DOVSt ri ng toString()

rai ses(dom : DOVExcepti on);
voi d det ach()

rai ses(dom : DOVExcepti on);
3

/1 Introduced in DOM Level 2:

i nterface Docunment Range {

Range creat eRange();
3
3

#endif // _RANGES | DL_

58

Appendix B: Java Language Binding

Appendix B: Java LanguageBinding

This appendix contains the complete Jfavd bindings for the Level 2 Document Object Model
Traversal and Range. The definitions are divided[fméwersdlp.59 , andRang#{p.61] .

The Java files are also available as
http://www.w3.0rg/TR/2000/PR-DOM-Level-2-Traversal-Range-20000927/java-binding.zip

B.1: Document Object ModelTraversal

org/w3c/dom/traversal/Nodelterator.java:

package org.w3c.domtraversal;

i mport org.w3c. dom Node;
i mport org.w3c.dom DOVExcepti on;

public interface Nodelterator {
publ i c Node get Root ();

public int getWatToShow);
public NodeFilter getFilter();
publ i c bool ean get ExpandEntityReferences();

publ i ¢ Node next Node()
t hrows DOMVExcepti on;

publ i ¢ Node previ ousNode()
t hrows DOVExcepti on;

public void detach();

}

org/w3c/dom/traversal/NodeFilter.java:

package org.w3c.dom traversal;
i mport org.w3c. dom Node;

public interface NodeFilter {
/1 Constants returned by accept Node

public static final short FILTER ACCEPT =1;

public static final short FILTER REJECT = 2;

public static final short FILTER SKIP = 3;

/! Constants for what ToShow

public static final int SHOWALL = OxFFFFFFFF;
public static final int SHOW ELEMENT = 0x00000001;
public static final int SHOWATTRI BUTE = 0x00000002;
public static final int SHOW TEXT = 0x00000004;

59

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i

OO0 000000O0

org/w3c/dom/traversal/TreeWalker.java:

static final int SHOW CDATA_SECTI ON =
static final int SHOWENTI TY_REFERENCE =
static final int SHOWENTITY =
static final int SHOW PROCESSI NG | NSTRUCTI ON
static final int SHOW COMMENT =
static final int SHOW DOCUMENT =
static final int SHOW DOCUMENT_TYPE =
static final int SHOW DOCUMENT_FRAGVENT =
static final int SHOW NOTATI ON =

short accept Node(Node n);

org/w3c/dom/traversal/TreeWalker.java:

package org.w3c.domtraversal;

i mport org.w3c. dom Node;
i mport org.w3c.dom DOVExcepti on;

public interface TreeWal ker {
publ i c Node get Root ();

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i

Cc

i nt get What ToShow() ;

NodeFilter getFilter();

bool ean get ExpandEntityReferences();

Node get Current Node();

voi d set Current Node(Node current Node)
t hrows DOVEXxcepti on;

Node par ent Node();

Node firstChild();

Node | ast Child();

Node previ ousSi bling();

Node next Si bling();

Node previ ousNode();

Node next Node();

60

0x00000008;
0x00000010;
0x00000020;
= 0x00000040;
0x00000080;
0x00000100;
0x00000200;
0x00000400;
0x00000800;

B.2: Document Object Model Range

org/w3c/dom/traversal/DocumentTraversal.java:

package org.w3c.domtraversal;

i mport org.w3c. dom Node;
i mport org.w3c. dom DOVExcepti on;

public interface Docunent Traversal {
publ i c Nodelterator createNodelterator(Node root,
i nt what ToShow,
NodeFilter filter,
bool ean entityRef er enceExpansi on)
t hrows DOVExcepti on;

public TreeWal ker createTreeWal ker (Node root,
i nt what ToShow,
NodeFilter filter,
bool ean entityRef er enceExpansi on)
t hrows DOVExcepti on;

B.2: Document Object ModelRange

org/w3c/dom/ranges/RangeException.java:

package org.w3c.dom ranges;

public class RangeException extends Runti nmeException {
publ i ¢ RangeException(short code, String nessage) {
super (message) ;
thi s. code = code;

public short code;

/1 RangeExcepti onCode

public static final short BAD _BOUNDARYPO NTS_ERR
public static final short |NVALI D NODE TYPE_ERR

=

org/w3c/dom/ranges/Range.java:

package org.w3c.dom ranges;

i mport org.w3c. dom Node;
i mport org.w3c. dom Docunent Fragnent ;
i mport org.w3c.dom DOVExcepti on;

public interface Range {
publ i ¢ Node get Start Container()
t hr ows DOVExcepti on;

public int getStartOffset()
t hr ows DOVExcepti on;

61

org/w3c/dom/ranges/Range.java:

publ i c Node get EndCont ai ner ()
t hrows DOVExcepti on;

public int getEndOfset()
t hrows DOVExcepti on;

publ i c bool ean get Col | apsed()
t hrows DOMVExcepti on;

publ i c Node get ConmonAncest or Cont ai ner ()
t hrows DOVExcepti on;

public void setStart(Node ref Node,
int offset)
t hrows RangeExcepti on, DOVExcepti on;

public void set End(Node ref Node,
int offset)
t hrows RangeExcepti on, DOVExcepti on;

public void setStartBefore(Node ref Node)
t hrows RangeExcepti on, DOVExcepti on;

public void setStartAfter(Node refNode)
t hrows RangeException, DOVExcepti on;

public void set EndBef or e(Node ref Node)
t hrows RangeExcepti on, DOVExcepti on;

public void set EndAfter(Node ref Node)
t hrows RangeException, DOVExcepti on;

public void coll apse(bool ean toStart)
t hrows DOVExcepti on;

public void sel ect Node(Node ref Node)
t hrows RangeExcepti on, DOVExcepti on;

public void sel ect NodeCont ent s(Node ref Node)
t hrows RangeExcepti on, DOVExcepti on;

/1 Conpar eHow

public static final short START_TO START = 0;
public static final short START_TO END = 1;
public static final short END TO END = 2;
public static final short END TO START = 3;

public short conpareBoundaryPoi nts(short how,
Range sourceRange)
t hrows DOVExcepti on;

public void del eteContents()
t hrows DOMVExcepti on;

publ i ¢ Docunent Fragment extract Contents()
t hrows DOVExcepti on;

62

org/w3c/dom/ranges/DocumentRange.java:

publ i ¢ Docunent Fragnment cl oneContents()
t hrows DOVExcepti on;

public void insertNode(Node newNode)
t hrows DOVException, RangeExcepti on;

public void surroundContents(Node newParent)
t hrows DOVException, RangeExcepti on;

publi ¢ Range cl oneRange()
t hrows DOVExcepti on;

public String toString()
t hrows DOVExcepti on;

public void detach()
t hrows DOVExcepti on;

org/w3c/dom/ranges/DocumentRange.java:

package org.w3c.dom ranges;

public interface Document Range {
publ i ¢ Range creat eRange();

63

org/w3c/dom/ranges/DocumentRange.java:

64

Appendix C: ECMA Script Language Binding

Appendix C: ECMA Script Language Binding

This appendix contains the complete ECMA SdgEMAScrip{ binding for the Level 2 Document
Object Model Traversal and Range definitions. The definitions are divid@naversgd[p.65] , and
[Rang#p.67] .

Note: Exceptions handling is only supported by ECMAScript implementation compliant with the
Standard ECMA-262 3rd. EditiaffECMAScrip{).

C.1: Document Object ModelTraversal

ObjectNodelterator
TheNodelterator object has the following properties:
root
This read-only property is of typéode
whatToShow
This read-only property is of typet.
filter
This read-only property is of typ¢odeFilter.
expandEntityReferences
This read-only property is of tygmolean
TheNodelterator object has the following methods:
nextNode()
This method returnsidode
This method can raiseROMEXxception.
previousNode()
This method returnsidode
This method can raiseROMEXxception.
detach()
This method has no retuvalue.
ClassNodeFilter
TheNodeFilter class has the following constants:
NodeFilter.FILTER_ACCEPT
This constant is of typshort and its value i4.
NodeFilter.FILTER_REJECT
This constant is of typshort and its value i2.
NodeFilter.FILTER_SKIP
This constant is of typshort and its value i8.
NodeFilter. SHOW_ALL
This constant is of typlt and its value iOxFFFFFFFF.
NodeFilter. SHOW_ELEMENT
This constant is of typat and its value i®x00000001
NodeFilter. SHOW_ATTRIBUTE
This constant is of typt and its value i®x00000002

65

C.1: Document Object Model Traversal

NodeFilter. SHOW_TEXT
This constant is of typat and its value i©x00000004
NodeFilter. SHOW_CDATA_SECTION
This constant is of typat and its value i©x00000008
NodeFilter. SHOW_ENTITY_REFERENCE
This constant is of typat and its value i©x00000010
NodeFilter. SHOW_ENTITY
This constant is of typat and its value i©x00000020
NodeFilter. SHOW_PROCESSING_INSTRUCTION
This constant is of typat and its value i©x00000040
NodeFilter. SHOW_COMMENT
This constant is of typet and its value i©x00000080
NodeFilter. SHOW_DOCUMENT
This constant is of typat and its value i©x00000100
NodeFilter. SHOW_DOCUMENT_TYPE
This constant is of typet and its value i©x00000200
NodeFilter. SHOW_DOCUMENT_FRAGMENT
This constant is of typat and its value i©x00000400
NodeFilter. SHOW_NOTATION
This constant is of typet and its value i©x00000800
ObjectNodeFilter
This is an ECMAScript function reference. This method retusieoa. The parameter is of type
Node
ObjectTreeWalker
TheTreeWalker object has the following properties:
root
This read-only property is of typéode
whatToShow
This read-only property is of typet.
filter
This read-only property is of type¢odeFilter.
expandEntityReferences
This read-only property is of tygmolean
currentNode
This property is of typ&lode and can raise BROMException onsetting.
TheTreeWalker object has the following methods:
parentNode()
This method returnsidode.
firstChild()
This method returnsidode.
lastChild()
This method returnsidode.
previousSibling()
This method returnsidode.
nextSibling()
This method returnsidode.

66

C.2: Document Object Model Range

previousNode()
This method returnsidode.

nextNode()
This method returnsidode.

ObjectDocumentTraversal
TheDocumentTraversalobject has the following methods:

createNodelterator(root, whatToShow, filter, entityReferenceExpansion)
This method returnsidodelterator.
Theroot parameter is of typode
ThewhatToShow parameter is of typiat.
Thefilter parameter is of typHodeFilter.
TheentityReferenceExpansiorparameter is of typleoolean
This method can raiseROMEXxception.

createTreeWalker(root, whatToShow, filter, entityReferenceExpansion)
This method returns BreeWalker.
Theroot parameter is of typode
ThewhatToShow parameter is of typiat.
Thefilter parameter is of typHodeFilter.
TheentityReferenceExpansiorparameter is of typleoolean
This method can raiseROMEXxception.

C.2: Document Object ModelRange

ClassRange
TheRangeclass has the following constants:
Range.START_TO_START
This constant is of typghort and its value i§.
Range.START_TO_END
This constant is of typghort and its value i4.
Range.END_TO_END
This constant is of typghort and its value i&.
Range.END_TO_START
This constant is of typghort and its value i8.
ObjectRange
TheRangeobject has the following properties:
startContainer
This read-only property is of typ¢ode and can raise ROMEXxception on retrieval.
startOffset
This read-only property is of typeng and can raise ROMEXxception on retrieval.
endContainer
This read-only property is of typ¢ode and can raise ROMEXxception on retrieval.
endOffset
This read-only property is of typeng and can raise ROMEXxception on retrieval.
collapsed
This read-only property is of tygmoleanand can raise ROMEXxception on retrieval.

67

C.2: Document Object Model Range

commonAncestorContainer

This read-only property is of typ¢ode and can raise ROMException onretrieval.

TheRangeobject has the following methods:

setStart(refNode,offset)

This method has no return value.

TherefNode parameter is of typHode

Theoffset parameter is of typeng.

This method can raiseRangeExceptionor aDOMEXxception.
setEnd(refNode,offset)

This method has no return value.

TherefNode parameter is of typHode

Theoffset parameter is of typeng.

This method can raiseRangeExceptionor aDOMEXxception.
setStartBefore(refNode)

This method has no return value.

TherefNode parameter is of typHode

This method can raiseRangeExceptionor aDOMEXxception.
setStartAfter(refNode)

This method has no return value.

TherefNode parameter is of typHode

This method can raiseRangeExceptionor aDOMEXxception.
setEndBefore(refNode)

This method has no return value.

TherefNode parameter is of typHode

This method can raiseRangeExceptionor aDOMEXxception.
setEndAfter(refNode)

This method has no return value.

TherefNode parameter is of typHode

This method can raiseRangeExceptionor aDOMEXxception.
collapse(toStart)

This method has no return value.

ThetoStart parameter is of typeoolean

This method can raiseROMEXxception.
selectNode(refNode)

This method has no return value.

TherefNode parameter is of typHode

This method can raiseRangeExceptionor aDOMEXxception.
selectNodeContents(refNode)

This method has no return value.

TherefNode parameter is of typHode

This method can raiseRangeExceptionor aDOMEXxception.
compareBoundaryPoints(how sourceRange)

This method returns ghort.

Thehow parameter is of typghort.

ThesourceRangeparameter is of typRange

This method can raiseROMEXxception.

68

C.2: Document Object Model Range

deleteContents()
This method has no return value.
This method can raiseROMEXxception.
extractContents()
This method returns RocumentFragment
This method can raiseROMEXxception.
cloneContents()
This method returns 2ocumentFragment
This method can raiseROMEXxception.
insertNode(newNode)
This method has no return value.
ThenewNodeparameter is of typdode
This method can raiseOMEXxception or aRangeException
surroundContents(newParent)
This method has no return value.
ThenewParentparameter is of typsode
This method can raiseEOMEXxception or aRangeException
cloneRange()
This method returns Range
This method can raiseROMEXxception.
toString()
This method returns @tring.
This method can raiseROMEXxception.
detach()
This method has no return value.
This method can raiseROMEXxception.
ObjectDocumentRange
The DocumentRangeobject has the following methods:
createRange()
This method returnsRange
ClassRangeException
The RangeExceptionclass has the following constants:
RangeException.BAD_BOUNDARYPOINTS_ERR
This constant is of typshort and its value i4.
RangeException.INVALID_NODE_TYPE_ERR
This constant is of typshort and its value i2.
ExceptionRangeException
The RangeExceptionobject has the following properties:
code
This property is of typensignedshort.

69

C.2: Document Object Model Range

70

Appendix D: Acknowledgements

Appendix D: Acknowledgements

Many people contributed to this specification, including members of the DOM Working Group and the
DOM Interest Group. We especially thank tbkowing:

Lauren Wood (SoftQuad Software Inchair), Andrew Watson (Object Management Group), Andy
Heninger (IBM), Arnaud Le Hors (W3C and IBM), Ben Chang (Oracle), Bill Smith (Sun), Bill Shea
(Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David Brownell
(Sun), David Singer (IBM), Don Park (invited), Eric Vasilik (Microsoft), Gavin Nicol (INSO), lan Jacobs
(W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell), Joe Kesselman (IBM), Joe
Lapp (webMethods), Joe Marini (Macromedia), Johnny Stenback (Netscape), Jonathan Marsh
(Microsoft), Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad
Software Inc.), Laurence Cable (Sun), Mark Davis (IBM), Mark Scardina (Oracle), Martin Durst (W3C),
Mick Goulish (Software AG), Mike Champion (Arbortext and Software AG), Miles Sabin (Cromwell
Media), Patti Lutsky (Arbortext), Paul Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil
Karlton (Netscape), Philippe Le Hégaret (W3Z3C team contact), Ramesh Lekshmynarayanan (Merrill
Lynch), Ray Whitmer (iMall, Excite@Home and Netscape), Rich Rollman (Microsoft), Rick Gessner
(Netscape), Scott Isaacs (Microsoft), Sharon Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited),
Tom Pixley (Netscape), Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections.

D.1: Production Systems

This specification was written in XML. The HTML, OMG IDL, Java and ECMA Script bindings were all
producedautomatically.

Thanks to Joe English, authorafs} which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained theeripts.

For DOM Level 2, we usd¥erces$as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote¥aeaprogrampwhich are the DOMpplication.

Thanks also to Jan Karrman, authahthi2p$ which we use in creating the PostScript version of the
specification.

71

http://www.tdb.uu.se/~jan/html2ps.html
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://xml.apache.org/xerces-j
http://www.flightlab.com/cost

D.1: Production Systems

72

Glossary

Glossary

Editors
Arnaud Le Hors, W3C and IBM
Lauren Wood, SoftQuad Software Inc.
Robert S. Sutor, IBM Research (for DOM Letgl

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions forinfionmation.

16-bit unit
The base unit of BOVSt r i ng. This indicates that indexing orD@VSt r i ng occurs in units of 16
bits. This must not be misunderstood to mean til&INSt r i ng can store arbitrary 16-bit units. A
DOMSt ri ng is a character string encoded in UTF-16; this means that the restrictions of UTF-16 as
well as the other relevant restrictions on character strings must be maintained. A single character, for
example in the form of a numeric character reference, may correspond to one or twonlis:bit
For more information, sdiJnicodd and[ISO/IEC 10644.

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

child
A child is an immediateescendant node of anode.

deepest
Thedeepest element is that element which is furthest from the root or document element in a tree
model of thedocument.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "above
means "toward theoot."

parent
A parent is an immediat@ncestor node of anode.

sibling
Two nodes araiblings if and only if they have the sarparent node.

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokeniziggpe.

73

Glossary

74

References

References

For the latest version of any W3C specification please consult the[l8GfTechnicaReportkavailable
at http://www.w3.0rg/TR.

F.1: Normative references

DOM Level 2Core
W3C (World Wide Web Consortiurfiocument Object Model Level 2 CoBpecificatiof
September 2000. Available at http://www.w3.0rg/TR/2000/PR-DOM-Level-2-Core-20000927
ECMAScript
ECMA (European Computer Manufacturers Associaff@MAScript Languag&pecificatioh
Available at http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM
ISO/IEC 10646
ISO (International Organization for Standardization). ISO/IEC 10646-1:2000 (E). Information
technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic
Multilingual Plane. [Geneva]: International Organization for Standardization.
Java
Sun Microsystems Infthe Java Languagdgpecificatioh James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls
OMGIDL
OMG (Object Managemertiroup) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org/
Unicode
The Unicode Consortiurfi-he Unicode Standard, VersiBtD] February 2000. Available at
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html.

75

http://www.unicode.org/unicode/standard/versions/Unicode3.0.html
http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/2000/PR-DOM-Level-2-Core-20000927
http://www.w3.org/TR

F.1: Normative references

76

Index

31,33 51,49, 73

acceptNode

Index

[ncestdn 7, 26, 36, 73

[BAD BOUNDARYPOINTS ERR [before/after/equab
[child 25, 26, 31, 73 cloneContents

lcompareBoundaryPoints

|createNodelteratpr

currentNodp

[deepeds4, 73
[detach20, 47

IDOM Level 2Core31, 75

[collapset4, 33, 34, 36, 40
[containg31, 31, 33, 34, 34, 35,

39, 40, 40, 48,52, 54

createRange

deleteContents
DocumentRangde

lancestocontaing31, 31, 32, 33, 35, 36,
39, 44, 48,52

[boundary-poin81, 31, 33, 33, 33, 33, 34,
34,38

cloneRange

lcommonAncestorContairjer

[contextired32, 35, 36, 37, 37, 38, 38
create TreeWalkpr

[descendatt3, 20, 25, 35, 73

IDocumentTraversgl

[END TO STAR]J
lexpandEntityReferenged, 25

[FILTER_REJEC]

[SONEC1064673, 75

ECMAScrIp END TO END
[endContaingr endOffset

extractContenfs

20, 25 [FILTER ACCEP]

FILTER SKIH irstChild

[[NVALID NODE TYPE ERR

lastChilg

7

Index

[nextiNod§20, 26

[Nodetteratdr

[offsel31, 31, 33, 34, 35,40

[parent10, 15, 17, 26, 34, 73 [partially selectelB3, 33, 36, 37, 38, 52
[previousNode1, 27

RangeExceptidn Fooi20, 25

[Footcontaingi32, 32, 34, 35, 39

[selectelB3, 33,37 [selectNodeContents

SetEndATter

etStatt etStartAftdr etStartBefole

[SHOW ATTRIBUTH [SHOW _CDATA SECTION

[SHOW _COMMENT [SHOW _DOCUMENY [SHOW _DOCUMENT_FRAGMEN]
[ISHOW DOCUMENT TYPE ISHOW _ELEMENT

[SHOW ENTITY REFERENCE [SHOW NOTATION [SHOW PROCESSING INSTRUCTION
[siblind 15, 24, 27, 26, 35, 73 [START_TO_END

[START TO START [startContaingr [startOffsdt

surroundContents

TreeWalkelr

[Unicodd73, 75

hatToShow20, 25

78

	Document Object Model †DOM‡ Level 2 Traversal and Range Specification
	Version 1.0
	W3C Proposed Recommendation 27 September, 2000
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Document Object Model Traversal
	1.1. Overview
	1.1.1. NodeIterators
	1.1.1.1. Moving Forward and Backward
	1.1.1.2. Robustness
	1.1.1.3. Visibility of Nodes

	1.1.2. NodeFilters
	1.1.2.1. Using NodeFilters
	1.1.2.2. NodeFilters and Exceptions
	1.1.2.3. NodeFilters and Document Mutation
	1.1.2.4. NodeFilters and whatToShow flags

	1.1.3. TreeWalker
	1.1.3.1. Robustness

	1.2. Formal Interface Definition

	2. Document Object Model Range
	2.1. Introduction
	2.2. Definitions and Notation
	2.2.1. Position
	2.2.2. Selection and Partial Selection
	2.2.3. Notation

	2.3. Creating a Range
	2.4. Changing a Range's Position
	2.5. Comparing Range Boundary-Points
	2.6. Deleting Content with a Range
	2.7. Extracting Content
	2.8. Cloning Content
	2.9. Inserting Content
	2.10. Surrounding Content
	2.11. Miscellaneous Members
	2.12. Range modification under document mutation
	2.12.1. Insertions
	2.12.2. Deletions

	2.13. Formal Description of the Range Interface

	Appendix A: IDL Definitions
	A.1: Document Object Model Traversal
	traversal.idl:

	A.2: Document Object Model Range
	ranges.idl:

	Appendix B: Java Language Binding
	B.1: Document Object Model Traversal
	org/w3c/dom/traversal/NodeIterator.java:
	org/w3c/dom/traversal/NodeFilter.java:
	org/w3c/dom/traversal/TreeWalker.java:
	org/w3c/dom/traversal/DocumentTraversal.java:

	B.2: Document Object Model Range
	org/w3c/dom/ranges/RangeException.java:
	org/w3c/dom/ranges/Range.java:
	org/w3c/dom/ranges/DocumentRange.java:

	Appendix C: ECMA Script Language Binding
	C.1: Document Object Model Traversal
	C.2: Document Object Model Range

	Appendix D: Acknowledgements
	D.1: Production Systems

	Glossary
	References
	F.1: Normative references

	Index

