:: NEWTON semantic presentation
theorem Th1: :: NEWTON:1
canceled;
theorem Th2: :: NEWTON:2
canceled;
theorem Th3: :: NEWTON:3
theorem Th4: :: NEWTON:4
canceled;
theorem Th5: :: NEWTON:5
theorem Th6: :: NEWTON:6
theorem Th7: :: NEWTON:7
:: deftheorem Def1 defines |^ NEWTON:def 1 :
theorem Th8: :: NEWTON:8
canceled;
theorem Th9: :: NEWTON:9
theorem Th10: :: NEWTON:10
theorem Th11: :: NEWTON:11
theorem Th12: :: NEWTON:12
theorem Th13: :: NEWTON:13
theorem Th14: :: NEWTON:14
theorem Th15: :: NEWTON:15
for
s being
Nat holds 1
|^ s = 1
theorem Th16: :: NEWTON:16
for
s being
Nat st
s >= 1 holds
0
|^ s = 0
:: deftheorem Def2 defines ! NEWTON:def 2 :
theorem Th17: :: NEWTON:17
canceled;
theorem Th18: :: NEWTON:18
theorem Th19: :: NEWTON:19
theorem Th20: :: NEWTON:20
theorem Th21: :: NEWTON:21
for
s being
Nat holds
(s + 1) ! = (s ! ) * (s + 1)
theorem Th22: :: NEWTON:22
theorem Th23: :: NEWTON:23
for
s being
Nat holds
s ! > 0
theorem Th24: :: NEWTON:24
canceled;
theorem Th25: :: NEWTON:25
for
s,
t being
Nat holds
(s ! ) * (t ! ) <> 0
:: deftheorem Def3 defines choose NEWTON:def 3 :
theorem Th26: :: NEWTON:26
canceled;
theorem Th27: :: NEWTON:27
theorem Th28: :: NEWTON:28
canceled;
theorem Th29: :: NEWTON:29
theorem Th30: :: NEWTON:30
theorem Th31: :: NEWTON:31
theorem Th32: :: NEWTON:32
theorem Th33: :: NEWTON:33
theorem Th34: :: NEWTON:34
theorem Th35: :: NEWTON:35
theorem Th36: :: NEWTON:36
definition
let a be
real number ,
b be
real number ;
let n be
natural number ;
func c1,
c2 In_Power c3 -> FinSequence of
REAL means :
Def4:
:: NEWTON:def 4
(
len it = n + 1 & ( for
i,
l,
m being
natural number st
i in dom it &
m = i - 1 &
l = n - m holds
it . i = ((n choose m) * (a |^ l)) * (b |^ m) ) );
existence
ex b1 being FinSequence of REAL st
( len b1 = n + 1 & ( for i, l, m being natural number st i in dom b1 & m = i - 1 & l = n - m holds
b1 . i = ((n choose m) * (a |^ l)) * (b |^ m) ) )
uniqueness
for b1, b2 being FinSequence of REAL st len b1 = n + 1 & ( for i, l, m being natural number st i in dom b1 & m = i - 1 & l = n - m holds
b1 . i = ((n choose m) * (a |^ l)) * (b |^ m) ) & len b2 = n + 1 & ( for i, l, m being natural number st i in dom b2 & m = i - 1 & l = n - m holds
b2 . i = ((n choose m) * (a |^ l)) * (b |^ m) ) holds
b1 = b2
end;
:: deftheorem Def4 defines In_Power NEWTON:def 4 :
theorem Th37: :: NEWTON:37
canceled;
theorem Th38: :: NEWTON:38
theorem Th39: :: NEWTON:39
theorem Th40: :: NEWTON:40
theorem Th41: :: NEWTON:41
:: deftheorem Def5 defines Newton_Coeff NEWTON:def 5 :
theorem Th42: :: NEWTON:42
canceled;
theorem Th43: :: NEWTON:43
theorem Th44: :: NEWTON:44
theorem Th45: :: NEWTON:45
theorem Th46: :: NEWTON:46
theorem Th47: :: NEWTON:47
theorem Th48: :: NEWTON:48
theorem Th49: :: NEWTON:49
theorem Th50: :: NEWTON:50
theorem Th51: :: NEWTON:51
theorem Th52: :: NEWTON:52
theorem Th53: :: NEWTON:53
theorem Th54: :: NEWTON:54
theorem Th55: :: NEWTON:55
theorem Th56: :: NEWTON:56
theorem Th57: :: NEWTON:57
theorem Th58: :: NEWTON:58
theorem Th59: :: NEWTON:59
theorem Th60: :: NEWTON:60
theorem Th61: :: NEWTON:61
theorem Th62: :: NEWTON:62
theorem Th63: :: NEWTON:63
theorem Th64: :: NEWTON:64
theorem Th65: :: NEWTON:65
theorem Th66: :: NEWTON:66
theorem Th67: :: NEWTON:67
theorem Th68: :: NEWTON:68
theorem Th69: :: NEWTON:69
theorem Th70: :: NEWTON:70
theorem Th71: :: NEWTON:71
theorem Th72: :: NEWTON:72
canceled;
theorem Th73: :: NEWTON:73
theorem Th74: :: NEWTON:74
theorem Th75: :: NEWTON:75
theorem Th76: :: NEWTON:76
theorem Th77: :: NEWTON:77
theorem Th78: :: NEWTON:78
theorem Th79: :: NEWTON:79
theorem Th80: :: NEWTON:80
theorem Th81: :: NEWTON:81
:: deftheorem Def6 defines SetPrimes NEWTON:def 6 :
:: deftheorem Def7 defines SetPrimenumber NEWTON:def 7 :
theorem Th82: :: NEWTON:82
theorem Th83: :: NEWTON:83
theorem Th84: :: NEWTON:84
theorem Th85: :: NEWTON:85
theorem Th86: :: NEWTON:86
theorem Th87: :: NEWTON:87
theorem Th88: :: NEWTON:88
theorem Th89: :: NEWTON:89
theorem Th90: :: NEWTON:90
theorem Th91: :: NEWTON:91
theorem Th92: :: NEWTON:92
theorem Th93: :: NEWTON:93
theorem Th94: :: NEWTON:94
theorem Th95: :: NEWTON:95
Lemma195:
for n being Element of NAT holds SetPrimenumber n = { k where k is Element of NAT : ( k < n & k is prime ) }
:: deftheorem Def8 defines primenumber NEWTON:def 8 :
theorem Th96: :: NEWTON:96
theorem Th97: :: NEWTON:97
Lemma201:
for n being Element of NAT st n is prime holds
n > 0
by INT_2:def 5;
theorem Th98: :: NEWTON:98
theorem Th99: :: NEWTON:99
theorem Th100: :: NEWTON:100
theorem Th101: :: NEWTON:101
theorem Th102: :: NEWTON:102
theorem Th103: :: NEWTON:103