

DESCRIPTION

The ES1879 AudioDrive® solution is a mixed-signal single-chip solution that adds 16-bit stereo sound and FM music synthesis to notebook computers. It is compliant with the Microsoft[®] PC97 specification and WHQL audio requirements. The ES1879 includes an embedded microcontroller, an OPL3[™] superset ESFM[™] music synthesizer, 16-bit stereo wave CODEC, 16-bit stereo system DAC, 16-bit stereo music DAC, 16-bit stereo I2S DAC, optional ISA Plug and Play (PnP) support, hardware master volume control, DMA control logic with FIFO, ISA bus interface logic, general-purpose I/O, and digital dual game port. The ES1879 also incorporates three serial ports that allow interfacing with external DSP, wavetable, and MIDI (MPU-401 UART mode compatible). In addition, the ES1879 offers I²S Zoom Video interface and support for the optional ES978 Expansion Audio Mixer in docking stations.

A four-wire expansion analog bus and two-wire serial control bus connect the ES1879 with the ES978, allowing the ES1879 to engage the docking station's audio resources when docked.

The ES1879 *Audio*Drive[®] can record, compress, and play back voice, sound, and music with built-in mixer controls. Using two high-performance DMA channels, the ES1879 supports full-duplex operation for simultaneous record and playback. One channel supports bidirectional DMA data transfers and the other supports DMA playback.

The ES1879 *Audio*Drive[®] supports optional ISA Plug and Play with configuration for 4 logical devices: configuration device, audio plus ESFM[™] synthesis, game port, and MPU-401.

The integrated 3-D audio effects processor uses technology from *Spatializer*[®] Audio Laboratories, Inc. and expands the sound field emitted by two speakers to create a resonant 3-D sound environment.

The MPU-401 hardware is for interfacing with an external MIDI serial port. The ES1879 music DAC allows the use of an external wavetable (ES689/ES69x) connected to a wavetable serial port. I/O address, DMA and interrupt selection can be controlled through system software or Plug and Play.

A DSP serial interface in the ES1879 allows an external DSP to take over ADC or DAC resources.

The ES1879 supports telegaming architecture with headsets and includes data paths for host-based Acoustic Echo Cancellation processing.

The enhanced dual game port supports hardware timing interrupt generation that eliminates the need for CPU polling.

Advanced Power Management (APM) features include suspend and resume from disk.

The ES1879 is backward compatible and pin compatible with the ES1878.

The ES1879 *Audio*Drive[®] solution is available in an industrystandard 100-pin Small Quad Flat Pack (SQFP) package.

FEATURES

- Single, high-performance, mixed-signal, 16-bit stereo VLSI chip for digital audio
- High-quality, OPL3 superset ESFM™ music synthesizer
- Patented ESPCM® compression
- High performance DMA supports Demand Transfer or F-type
- Integrated 3-D audio effects processor from Spatializer®

Record and Playback Features

- Record, compress, and play back voice, sound, and music
- 16-bit stereo CODEC for digital audio
- 3 additional stereo DACs for system playback, music synthesis and I²S from PC card
- Programmable sample rate from 4 kHz to 48 kHz for record and playback
- 2- or 3-button hardware volume control for up, down, and mute
- Full-duplex stereo operation for simultaneous record and playback

Inputs/Outputs

- MIDI serial port compatible with MPU-401 UART mode
- Supports up to 7 general-purpose inputs and 7 generalpurpose outputs that can be slaved with corresponding pins of ES978 expansion audio mixer
- ESS high performance dual game port with hardware timing
- Optional full ISA Plug and Play support
- I²S Zoom Video port interface with a sample rate up to 48 kHz for MPEG audio
- Wavetable serial port interface to ES689/ES69x for direct access to the music DAC

TYPICAL APPLICATION

Interfaces to Expansion Audio Mixer (ES978)

- Simple hot-docking interface to ES978 expansion audio mixer
- Two-wire digital status and data communication between ES1879 and ES978 supports register mirroring with worst-case latency of approximately 140 μsec
- Has on-chip dual pairs of analog differential signals for audio I/O with ES978 expansion audio mixer

Mixer Features

- 6-channel stereo mixer inputs for line, auxiliary A (CD audio), auxiliary B, digital audio (wave files), music synthesizer, I²S Zoom Video plus a mono channel mixer input for microphone
- Programmable 6-bit logarithmic master volume control

Plug and Play (PnP) Features

- On-chip Plug and Play support for audio, joystick port, FM, and MPU-401
- Software address mapping, four DMA and five IRQ selections for motherboard implementation
- Internal configuration data for audio Plug and Play support
- Read/Write serial interface for Plug and Play resource EEPROM

Power

- Advanced Power Management supports suspend/ resume from disk
- Supports 3.3 or 5.0 V operation

Compatibility

- Supports PC games in Sound Blaster[™] and Sound Blaster[™] Pro modes
- Supports Microsoft Windows[™] Sound System[®]
- Meets PC97 and WHQL specifications.

Operating Systems

- Microsoft Windows®95
- Microsoft Windows[™] 3.1
- Microsoft Windows for Workgroups[™]
- Microsoft Windows NT[™] 3.51 & 4.0
- IBM[®] OS/2[®] Warp[™]

TYPICAL APPLICATION

CONTENTS

CONTENTS

DESCRIPTION	. 1
FEATURES	. 1
Record and Playback Features	. 1
Inputs/Outputs	. 1
Interfaces to Expansion Audio Mixer (ES978)	. 2
Mixer Features	. 2
Plug and Play (PnP) Features	. 2
Power	. 2
Compatibility	. 2
Operating Systems	. 2
TYPICAL APPLICATION	. 2
CONTENTS	. 3
FIGURES	. 4
TABLES	. 4
PINOUT	. 5
PIN DESCRIPTION	6
FUNCTIONAL DESCRIPTION	. 8
Digital Subsystems	. 0
Analog Subsystems	. Q
MIXER SCHEMATIC BLOCK DIAGRAM	10
	11
	12
	12
Programming Data Transfers	12
First Audio Channel "CODEC"	1/
	15
	15
	16
	10
	10
	10
	20
	20
	20
	21
	22
	25
	25
	25
	25
	26
Hardware Volume Controls	26
PC Speaker	27
Serial EEPROM Interface	27

ANALOG DESIGN CONSIDERATIONS	. 28
Reference Generator	. 28
Switch-Capacitor Filter	. 28
Audio Inputs and Outputs	. 28
CONFIGURATION	. 29
Using ISA PnP Mode	. 29
Non PnP Mode	. 29
Bypass Key	. 29
Accessing the ROM/EEPROM	. 30
PnP Configuration and Registers	. 30
Logical Device Registers	. 36
I/O PORTS	. 41
Port Descriptions	. 41
PROGRAMMING THE ES1879	. 47
Identifying the ES1879	. 47
Resetting the Audio Device via Software	. 47
Modes of Operation	. 47
Data Formats	. 48
Compatibility Mode Programming	. 50
Extended Mode Programming	. 52
Programming the ES1879 Mixer	. 59
REGISTERS	. 62
Types of Register Access	. 62
AUDIO MICROCONTROLLER COMMAND SUMMARY	. 84
POWER MANAGEMENT	. 87
Power Management Characteristics	. 87
BIOS Power Management	. 87
ELECTRICAL CHARACTERISTICS	. 89
Absolute Maximum Ratings	. 89
Thermal Characteristics	. 89
Operating Conditions	. 89
DC Electrical Characteristics	. 89
Power Management Characteristics	. 90
ES1879 TIMING DIAGRAMS	. 91
	. 95
MECHANICAL DIMENSIONS	. 96
APPENDIX A: ES1879 INTERNAL PNP RESOURCE ROM	_ 97
APPENDIX B: ES689/ES69X DIGITAL SERIAL INTERFAC	E 99
APPENDIX C: I ² S ZV INTERFACE REFERENCE	100
APPENDIX D: SCHEMATIC EXAMPLES	105
APPENDIX E: LAYOUT GUIDELINES	109
APPENDIX F: ES1879 BILL OF MATERIALS	110

FIGURES

Figure 1	ES1879 Pinout
Figure 2	ES1879 Functional Block Diagram
Figure 3	ES1879 Mixer Schematic Block Diagram10
Figure 4	ES1879 Typical Application11
Figure 5	Data Transfer Modes12
Figure 6	DRQ Latch
Figure 7	DSP Operating Modes
Figure 8	16-Bit Data, Positive Sync Pulse
Figure 9	I ² S Implementation in ES187920
Figure 10	Dual Joystick/MIDI Connector
Figure 11	MIDI Serial Interface Adapter
Figure 12	PC Speaker Volume Circuitry
Figure 13	Serial EEPROM – Typical Application
Figure 14	Reference Generator Pin Diagram
Figure 15	Switch-Capacitor Filter Pin Diagram
Figure 16	Configuration Register Outline
Figure 17	Command Transfer Timing
Figure 18	Reset Timing91
Figure 19	I/O Read Cycle91
Figure 20	I/O Write Cycle91

Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37	Compatibility Mode DMA Write Cycle Compatibility Mode DMA Read Cycle Serial Mode Receive Operation Serial Mode Transmit Operation Serial Input Timing for I ² S Interface I ² S Digital Input Format with 16 SCLK Periods . ES1879 Physical Dimensions MIDI Interface Data Format Example ZV Port Implementation Typical ZV Port Audio Implementation Audio Interface Timing I ² S Digital Input Format with 16 SCLK Periods . ES1879 Schematic PC Interface Amplifier Section Switch and Connector Section Analog Components on One Side of the PCB	. 92 . 92 . 93 . 93 . 94 . 94 . 94 . 96 . 99 100 101 102 103 105 106 107 108
Figure 37 Figure 38	Analog Components on One Side of the PCB Analog Components on Both Sides of the PCB.	108 109 109

TABLES

Table 1 ES1879 ISA Bus Interface
Table 2 ES1879 Interrupt Sources
Table 3 DSP Interface Pins 18
Table 4 Digital Audio Mixing Methods in Serial Mode19
Table 5 I2S Interface Pins
Table 6 Wavetable Interface Pins
Table 7 Digital Joystick Read Values
Table 8 ES978 Interface Pins
Table 9 Docked Modes for Analog Audio
Table 10 Download Period Data Configuration
Table 11 Upload Period Data Configuration
Table 12 Resource Assignment
Table 13 Logical Device Summary
Table 14 I/O Ports for Configuration, Audio, FM, MPU-401, and
Joystick Devices
Table 15 Comparison of Operation Modes
Table 16 Uncompressed DAC Transfer Modes
Table 17 Uncompressed ADC Transfer Modes 51
Table 18 Command Sequences for DMA Playback
Table 19 Command Sequences for DMA Record

Table 20	Sound Blaster Pro/Extended Access Registers 59
Table 21	Mixer Input Volume Registers 61
Table 22	SB Pro Read Volume Emulation 61
Table 23	SB Pro Write Volume Emulation 61
Table 24	Sound Blaster Pro-Compatible Register Summary 62
Table 25	ESS Mixer Register Summary 63
Table 26	Test Bus Assignments 78
Table 27	ESS Controller Registers Summary 79
Table 28	Command Summary 84
Table 29	Power Mode Description 87
Table 30	Digital Characteristics 89
Table 31	Analog Characteristics
(VDDA =	5.0 V ± 5%; TA = 25 °C) 89
Table 32	Current Consumption for Power Modes 90
Table 33	Common Clock Frequencies 100
Table 34	AC Parameters for Audio Signals 102
Table 35	ZV Port Interface Pin Assignments 104
Table 36	ES1879 Bill of Materials (BOM) 110

PINOUT

PINOUT

Figure 1 ES1879 Pinout

PIN DESCRIPTION

Name	Number	I/O	Description
GNDD	1, 24, 61, 78	Ι	Digital ground.
A[11:0]	13:2	Ι	ISA address bus.
AEN	14	Ι	ISA address valid when active-low, DMA when high.
VDDD	15, 74, 100	Ι	Digital power supply (3.0 - 5.5 V).
D[7:0]	23:16	I/O	ISA data bus. 24 mA drivers.
SW(A-D)	28:25	I	Joystick switch inputs. These pins have internal pull-ups to VDDD.
T(A-D)	32:29	I/O	Joystick timers. Use the digital power supply. These pins have internally weak pull-downs to GNDD (> 1M Ω).
AUXB_L	22	I	Aux B input, left. 50k Ω pull-up to CMR.
FDXI	33	I	Used with DSP interface as line-level mono input (25k Ω input impedance).
AUXB_R	0.4	I	Aux B input, right. 50k Ω pull-up to CMR.
FDXO	34	0	Used with DSP interface as line-level mono output, capable of driving a 5k Ω load.
AUXA_L, AUXA_R	35,36	I	Aux A (CD) inputs, left and right. 50k Ω pull-ups to CMR.
CMR	37	0	2.25 V reference buffer output.
MIC	38	I	Mic input to +26 dB internal preamp. 80k Ω pull-up to CMR.
GNDA	39, 55	I	Analog ground.
CAP3D	40	0	Bypass capacitor to GNDA for 3-D effect.
VDDA	41	Ι	Analog power supply, 4.75 - 5.25 V.
FOUT_L,	43:42	0	Filter outputs, left and right. These pins are normally AC coupled to CIN_L and CIN_R.
FOUT_R			The output resistance is about 5k Ω .
CIN_L, CIN_R	44, 45	I	Capacitive coupled inputs, left and right. The input resistance is about 50k Ω .
LINE_L, LINE_R	46, 47	I	Line inputs, left and right. 50k Ω pull-ups to CMR.
AOUT_L, AOUT_R	48, 49	0	Analog outputs, left and right, from master volume. These pins can drive a 5k Ω load.
PCSPKO	50	0	PC speaker analog output.
XA[3:0]	51, 52, 53, 54	I/O	Bidirectional differential transmitter/receivers. Expansion audio bus. These are analog sig- nals that are DC-coupled to the corresponding pins of the ES978.
GNDA	55	I	Analog ground.
XSD	56	I/O	Expansion serial bus data I/O. High-impedance when DOCKED = 0.
XSC	57	O/Hi Z	Expansion serial bus clock and frame sync. High-impedance when DOCKED = 0.
IPROM	58	Ι	Select between internal PnP ROM and external EEPROM for Plug and Play configuration. 1 = internal ROM, 0 = external EEPROM. ES1878 function PNPEN is replaced by bit 2 of PnP Vendor register 2Dh.
MSO	59	0	MIDI serial output.
MSI	60	I	MIDI serial input. MSI has an internal pull-up to VDDD.
DX	62	O/Hi Z	Serial data transmit. Active output when data is being transmitted serially from the ES1879; otherwise, high impedance. Tri-state output.
DR	63	I	Serial data receive. This pin has an internal pull-down to GNDD.
DCLK	64	I	Serial clock input. This pin has an internal pull-down to GNDD.
FS	65	I	Frame sync input. Software-programmable to be active-high or active-low. This pin has an internal pull-down to GNDD.
MCLK	66	I	Serial clock input from ES689/ES69x. This pin has an internal pull-down to GNDD.
MSD	67	Ι	Serial data input from ES689/ES69x. This pin has an internal pull-down to GNDD.
IIDATA	68	I	Serial data for I ² S interface. This pin has an internal pull-down to GNDD.
IISCLK	69	Ι	Serial shift clock for I ² S interface. This pin has an internal pull-down to GNDD. I ² S
IILR	70	I	Left/right signal for I ² S interface. This pin has an internal pull-down to GNDD.

PIN DESCRIPTION

Name	Number	I/O	Description
SECS	71	I	Serial EEPROM CS. This pin is an input during reset when IRPOM = 1. It is No-Connect
			when IRPOM = 0.
			IRPOM SECS ROM Type
			0 1 93LC66, 512×8, 9 address bits.
			1 x Internal mask ROM.
DOCKED	72		Status input that is active-high when the ES1879 is docked to the ES978. This pin has an internal pull-down to GNDD.
RESET	73	I	ISA active-high reset.
XI	75	I	14.31818 MHz clock input, or external crystal.
ХО	76	0	Output to external 14.31818 MHz crystal.
PCSPKI	77	I	PC speaker digital input. This pin has an internal pull-down.
GPI0	79	I	General-purpose input 0.
DRQD	80	O/Hi Z	ISA active-high DMA request.
GPI1	80	I	General-purpose input 1.
GPO[1:0]	82:81	0	General-purpose outputs.
GPO2		0	General-purpose outputs when SECS = 0.
SECLK	83	I	External serial EEPROM clock pin for PnP when SECS = 1.
DRQC		O/Hi Z	ISA active-high DMA request.
GPI2	84	I	General-purpose input 2.
DACKBC		I	ISA active-low DMA acknowledge.
GPI3	85	I	General-purpose input 3.
DRQB	86	O/Hi Z	ISA active-high DMA request.
DACKBB	87	I	ISA active-low DMA acknowledge.
DRQA	88	O/Hi Z	ISA active-high DMA request.
DACKBA	89	1	ISA active-low DMA acknowledge.
DACKBD			ISA active-low DMA acknowledge.
MUTE	90		Active-low mute input. This pin has an internal pull-up to VDDD.
GPI4			Optionally used as general-purpose input 4.
SEDI			Data input pin to external PnP serial EEPROM when SECS = 1.
VOLUP	91		Active-low volume-up input. This pin has an internal pull-up to VDDD.
GPI5			Optionally used as general-purpose input 5.
SEDO		0	Data output pin to external PnP serial EEPROM when SECS = 1.
VOLDN	92		Active-low volume-down input. This pin has an internal pull-up to VDDD.
GPI6	-		Optionally used as general-purpose input 6.
IRQE		O/Hi Z	ISA interrupt request. 16 mA driver.
GPO6	93	0	General-purpose output 6.
IRQD		O/Hi Z	ISA interrupt request, 16 mA driver.
GPO5	94	0	General-purpose output 5.
IRQC		O/Hi Z	ISA interrupt request, 16 mA driver.
GPO4	95	0	General-purpose output 4.
IROB		O/Hi Z	ISA interrupt request 16 mA driver
GPO3	96	0	General-purpose output 3.
IRQA	97	0/Hi 7	ISA interrupt request, 16 mA driver.
IORB	98	1	ISA active-low read stroke
IOW/B	90	0	ISA active-low write stroke
	33		

FUNCTIONAL DESCRIPTION

This section shows the overall structure of the ES1879 and discusses its major functional subunits.

The major subunits of the ES1879 are shown in Figure 2 and are briefly described in the following paragraphs.

Figure 2 ES1879 Functional Block Diagram

Digital Subsystems

- **RISC microcontroller** game-compatible audio functions are performed by an embedded microcontroller.
- · Oscillator circuitry to support an external crystal.
- **ROM and RAM** firmware ROM and data RAM to the embedded microcontroller.
- **FIFO** RAM for a 256-byte FIFO data buffer for use with the first audio channel and RAM for a 64-byte FIFO for use with the second audio channel.
- **ISA bus interface** provides interface to ISA bus address, data, and control signals.
- **Digital dual game port** ESS high-performance digital switches for two joysticks with hardware timing.

- ES978 digital interface allows support for ES978 Expansion Audio Mixer in the docking station. Two wires transmit and receive control signals and a thrid wire reports the docking status.
- I²S Zoom Video serial port supports sample rates up to 48 kHz for MPEG audio.
- MPU-401 serial port asynchronous serial port for MIDI devices such as a wavetable synthesizer or a music keyboard input.
- Wavetable serial port serial port connection from the output of an ES689 or ES69x that eliminates the need for an external DAC.
- **DSP serial port** interface for an optional external DSP for control of the CODEC.

FUNCTIONAL DESCRIPTION

- ESFM[™] music synthesizer high-quality OPL3 superset FM synthesizer.
- 3-D Processor Spatializer technology 3-D audio effects processor.
- Hardware volume control three pushbutton inputs with internal pull-up devices for up/down/mute can be used to adjust the master volume control.

The state of these pins is logically AND'd with the state of the corresponding pins of the ES978 when docked. A software-selectable option allows the mute input to be omitted. The mute input is defined as the state when both up and down inputs are low. By default, this feature is disabled.

The hardware volume inputs of the ES1879 can be used as general-purpose inputs (see bits 4 and 5 of Vendor-Defined Card-Level register 25h). They cannot be used as volume control inputs.

Analog Subsystems

- Stereo programmable record and playback mixers seven input stereo mixers. Each input has independent left and right 4-bit volume control.
 - Line In
 - Mic In
 - Aux A (CD)
 - Aux B (or FDXI)
 - Digital audio (wave files)
 - FM/ES689/ES69x music DAC
 - I²S serial port DAC
- **16-Bit stereo CODEC** for audio record and playback CODEC.
- **16-Bit stereo system DAC** for audio playback of the second audio channel.
- **16-Bit stereo music DAC** for ESFM[™] or external wavetable synthesizer.
- 16-Bit Stereo I²S DAC I²S Zoom Video for MPEG audio DAC.
- 1-Bit DAC for PC speaker digital input.

- Recording source and input volume control input source and volume control for record. The recording source can be selected from one of seven choices:
 - Mic
 - Line
 - Aux A (CD)
 - Record Mixer
 - Playback Mixer master volume inputs (outputs of the Spatializer processor, but before master volume is applied).
 - Playback Mixer AOUT_L/AOUT_R (after master volume has been applied).
 - Mic/master volume inputs mix. Left channel: Mic (not mixed with ES978 mic), Right channel: master volume inputs left and right.

In any of the first four cases, the selected recording source may be mixed with audio from the ES978 if the selected source is also enabled in the ES978 and the two chips are docked.

- Master volume and mute control the master volume is controlled by either Programmed I/O or volume control switch inputs. The master volume supports 6 bits per channel plus mute. When docked, the ES1879 first transmits the master volume information to the ES978 mixer before it can take effect.
- ES978 analog interface allows support for ES978 Expansion Audio Mixer in the docking station. The fourwire differential analog bus carries audio data between the ES978 and the ES1879. Audio data from the ES978 is input to the mixer of the ES1879. A switch determines whether audio data transmitted to the ES978 is taken before or after master volume is applied.
- **Reference generator** analog reference voltage generator.
- PC speaker volume control the PC speaker is supported with a 1-bit DAC with volume control. The analog output pin PCSPKO is intended to be externally mixed at the external amplifier. PC speaker audio is not transmitted to the ES978 through the expansion audio interface (XA[3:0]). The ES1879 is designed to play PC speaker audio through the speakers inherent to the portable unit.
- General-purpose I/O Seven general-purpose inputs and outputs which can be slaved with the corresponding pins of the ES978 Expansion Audio Mixer.
- Filter switched capacitor low-pass filter.
- **Preamp** 26 dB microphone preamplifier.

MIXER SCHEMATIC BLOCK DIAGRAM

MIXER SCHEMATIC BLOCK DIAGRAM

Figure 3 ES1879 Mixer Schematic Block Diagram

TYPICAL APPLICATION

TYPICAL APPLICATION

Figure 4 ES1879 Typical Application

ISA BUS INTERFACE

Table 1 shows the pins used to interface the ES1879 with the ISA bus.

Table 1 ES1879 ISA Bus Interface			
Pin	I/O	Description	
A[11:0]	I	ISA address bus.	
AEN	I	ISA address valid when active-low, DMA when high.	
D[7:0]	I/O	ISA data bus. 24 mA drivers.	
IOWB	0	ISA active-low write strobe.	
IORB	I	ISA active-low read strobe.	
IRQ(A-E)	O/Hi Z	ISA interrupt request. 16 mA driver.	
DACKB(A-D)	I	ISA active-low DMA acknowledge.	
DRQ(A-D)	O/Hi Z	ISA active-high DMA request.	
RESET	I	ISA active-high reset.	

DIGITAL AUDIO

The ES1879 incorporates two audio channels:

- Audio 1 The first audio channel. This channel is used for Sound Blaster Pro-compatible DMA, Extended mode DMA, and Programmed I/O. It can be used for either record or playback. This channel can be mapped to any of the three 8-bit ISA DMA channels: 0, 1, or 3.
- Audio 2 The second audio channel. This channel is used for audio playback in full-duplex mode. This channel can be mapped to any of the three 8-bit ISA DMA channels or the 16-bit channel.

The two DMA sources are mapped to the four DMA pin pairs through PnP registers. Also, the four DMA pin pairs are assigned ISA DMA channel numbers by Vendor-Defined Card-Level registers 23h and 24h.

In order for a DRQ output pin to be *driving* (as opposed to *high-impedance*), two things must occur:

- 1. The PnP register for the DMA of a given device must match the ISA DMA channel number of the pin.
- 2. The given device must be activated (that is, bit 0 of PnP register 30h must be high).

For detailed information, see "PnP Configuration and Registers".

Figure 5 Data Transfer Modes

Programming Data Transfers

Programming Data transfers can be quite complicated with the ES1879. Both Compatibility mode and Extended mode offer a variety of modes for conducting transfers. The commands to enable the different transfers varies depending on which audio channel is used and which mode (Compatibility or Extended) is used.

The biggest difference in available data transfer modes is between audio channel 1 and audio channel 2. This is illustrated in Figure 5. Audio 2 allows only for DMA mode. Audio 1 allows for Direct mode and DMA mode when using Compatibility mode. Audio 1 allows for Programmed I/O and DMA mode when using Extended mode.

Data Formats See "Data Formats" on page 48.

12

DIGITAL AUDIO

Data Transfers in Compatibility Mode

The first audio channel can be programmed using the standard Sound Blaster-compatible commands. These commands are written to the chip through port Audio_Base+Ch.

When programming the first audio channel for Compatibility mode transfers one of the following modes can be used:

- Direct Mode
- DMA Mode
 - Normal
 - Auto-Initialize

In addition, both Normal DMA mode and Auto-Initialize DMA mode can use a special High-Speed mode.

Direct Mode

In Direct mode, the timing for DMA transfers is handled by the application program. For example, the system timer can be reprogrammed to generate interrupts at the desired sample rate. At each system timer interrupt, the command 10h, 11h, 20h, or 21h is issued, followed by the sample. Polling of the write buffer available flag (Audio_Base+Ch [bit 7]) is required before writing the command and between the command and the data.

NOTE: The switched capacitor filter is initialized by reset for an intended sample rate of 8 kHz. In Direct mode, the application may try to adjust this filter appropriate to the actual sample rate. The easiest way to do this is to program the timer with command 40h just as if the application were using DMA mode.

DMA Mode

In DMA mode, the programmable timer in the ES1879 controls the rate at which samples are sent to the CODEC. The timer is programmed using command 40h, which also sets up the programmable filters inside the ES1879. The ES1879 firmware maintains an internal FIFO (32 levels for 16-bit transfers, 64 levels for 8-bit transfers) that is filled by DMA transfers and emptied by the timed transfers to the DAC.

Before a DMA transfer, the application first programs the DMA controller for the desired transfer size and address, then programs the ES1879 with the same size information. At the end of the transfer, the ES1879 generates an interrupt request, indicating that the current block transfer is complete. The FIFO gives the application program sufficient time to respond to the interrupt and initiate the next block transfer.

The ES1879 supports both Normal DMA mode and Auto-Initialize DMA mode.

Normal DMA Mode

In Normal mode DMA transfers, the DMA controller must be initialized and the ES1879 must be commanded for every block that is transferred.

Auto-Initialize DMA Mode

In Auto-Initialize mode, the DMA transfer is continuous, in a circular buffer, and the ES1879 generates an interrupt for the transition between buffer halves. In this mode, the DMA controller and ES1879 need to be set up only once.

High-Speed Mode

The ES1879 supports mono 8-bit DMA transfers at a rate of up to 44 kHz. Mono 16-bit transfers are supported up to a rate of 22 kHz.

There is a special High-Speed mode" that allows 8-bit sampling up to 44 kHz for ADC. This mode uses commands 98h (Auto-Initialization) and 99h (Normal). No automatic gain control (AGC) is performed. The input volume is controlled with command DDh.

Data Transfers in Extended Mode

The first audio channel is programmed using the controller registers internal to the ES1879. The commands written to the controller registers are written to the chip through port Audio_Base+Ch.

When programming the first audio channel for transfers, one of the following modes can be used:

- Programmed I/O
- DMA mode:
 - Normal (Single or Demand transfer)
 - Auto-Initialize (Single or Demand transfer)

In addition, both DMA Normal mode and DMA Auto-Initialize mode use Single transfer or Demand transfer mode.

Programmed I/O

For some applications, DMA mode is not suitable or available for data transfer, and it is not possible to take exclusive control of the system for DAC and ADC transfers. In these situations, use I/O block transfers within an interrupt handler. The REP OUTSB instruction of the 80x86 family transfers data from memory to an I/O port specified by the DX register. The REP INSB instruction is the complementary function. Use ES1879 port Audio_Base+Fh for block transfers.

I/O transfers to FIFO are nearly identical to the DMA process, except that an I/O access to port Audio_Base+Fh replaces the DMA cycle. For details about Programmed I/O, operation see "Extended Mode Programmed I/O Operation" on page 55.

DMA Mode

Extended mode DMA supports both Normal and Auto-Initialize mode. In addition, Normal mode and Auto-Initialize mode both support Single and Demand transfer modes.

Using Single transfer, one byte is transferred per DMA request. Demand transfer reduces the number of DMA requests necessary to make a transfer by allowing two or four bytes to be transferred per DMA request. Thus there are multiple DMA acknowledges for each DMA request.

For a description of DMA mode including Normal DMA mode and Auto-Initialize DMA mode see "DMA Mode" on page 13.

Extended Mode Audio 1 Controller Registers

The following registers control operation of the first audio channel in Extended mode:

Address	Name
A1h	Audio 1 Sample Rate Generator register
A2h	Audio 1 Filter Clock Divider register
A4h	Audio 1 Transfer Count Reload register – low byte
A5h	Audio 1 Transfer Count Reload register – high byte
B1h	Audio Interrupt Control register
B2h	Audio 1 DRQ Control register
B4h	Input Volume Control register
B5h	Audio 1 DAC Direct Access register – low byte
B6h	Audio 1 DAC Direct Access register – high byte
B7h	Audio 1 Control 1 register
B8h	Audio 1 Control 2 register
B9h	Audio 1 Transfer Type register

Data Transfers Using the Second Audio Channel

The second audio channel is programmed using mixer registers 70h through 7Ah. The commands written to the mixer registers are written to the chip through ports Audio_Base+4h and Audio_Base+5h.

DMA mode is used when programming the second audio channel for transfers:

DMA mode:

- Normal (Single or Demand transfer)
- Auto-Initialize (Single or Demand transfer)

In addition, both DMA Normal mode and DMA Auto-Initialize mode use Single transfer or Demand transfer modes.

DMA Mode

14

DMA under the second audio channel supports both Normal and Auto-Initialize modes. In addition, Normal mode and Auto-Initialize mode both support Single and Demand transfer modes. Using Single transfer, one byte is transferred per DMA request. Demand transfer reduces the number of DMA requests necessary to make a transfer by allowing two, four, or eight bytes to be transferred per DMA request. Thus there are multiple DMA acknowledges for each DMA request.

For a description of DMA mode including Normal DMA mode and Auto-Initialize DMA mode, see "DMA Mode" on page 13.

Audio 2 Related Mixer Registers

The following registers control DMA operations for the second audio channel:

Address	Name
70h	Audio 2 Sample Rate Generator register
72h	Audio 2 Filter Clock Divider register
74h	Audio 2 Transfer Count Reload register – low byte
76h	Audio 2 Transfer Count Reload register – high byte
78h	Audio 2 Control 1 register
7Ah	Audio 2 Control 2 register

First Audio Channel "CODEC"

The CODEC of the first audio channel is not a true stereo CODEC in that it cannot perform stereo DAC and ADC simultaneously. The first audio channel CODEC can be either a stereo DAC, a stereo ADC, or a mono CODEC. After reset, the CODEC is set up for DAC operations. Any ADC command causes a switch to the ADC "direction" and any subsequent DAC command switches the converter back to the DAC "direction."

The DAC output is filtered and input to the mixer. After reset, input to the mixer from the first audio channel DAC is muted. This is to prevent pops. The ES1879 maintains a status flag to determine if the input to the mixer from the first audio channel DAC is enabled or disabled. The command D8h returns the status of the flag (00h = disabled and FFh = enabled). Use command D1h to enable input to the mixer from the first audio channel DAC and command D3h to disable the input.

To play a new sound without resetting beforehand when the status of the analog circuits is not clear, mute the input to the mixer with command D3h, then set up DAC direction and level using the direct-to-DAC command:

10h + 80h

Wait 25 msec for the analog circuitry to settle before enabling the input to the mixer with command D1h.

DRQ LATCH FEATURE

A pop may be heard if the DAC level was left at a value other than mid-level (code 80h on an 8-bit scale) by the previous play operation. To prevent this, always finish a DAC transfer with a command to set the DAC level to midrange:

10h + 80h

DRQ LATCH FEATURE

The DRQ latch feature is enabled when bit 7 of Vendor-Defined Card-Level register 29h is high (see Figure 6).

If this feature is enabled, each of the four audio DRQs will be latched high until one of the following occurs:

- A DACK low pulse occurs while DRQ is low or if DRQ goes low due to a DACK pulse.
- A hardware reset occurs.
- 8-16 milliseconds elapse while DRQ is low.

FOURTH DRQ CHANNEL

The ES1879 supports an optional fourth DMA channel using pins DRQD and DACKBD. Connecting these pins to an ISA DMA channel is optional.

If DRQD and DACKBD are not connected to an ISA DMA channel, program bits 7:4 of PnP Vendor register 24h to be 2h (0010). In this case, pin 80 is available as GPI1 (general-purpose input 1) and pin 90 is available as either the active-low hardware volume control MUTE input or as GPI4 (general-purpose input 4).

If bits 7:4 of PnP Vendor register 24h are other than 2h, then pin 80 is assumed to be connected to an ISA DRQ pin and is not available as GPI1 (if GPI1 is read, it appears to be 1 all the time). Likewise, pin 90 is assumed to be connected to an ISA DACK pin and is not available to be used as a hardware volume MUTE input or GPI4. If a mute function is desired, program mixer register 64h so that the combination of both VOLUP and VOLDN pins low together acts as a mute command.

Normally, DRQA/DACKBA is connected to DMA channel 0, DRQB/DACKBB is connected to DMA channel 1, and DRQC/DACKBC is connected to DMA channel 3. This leaves one of the three 16-bit channels for DRQD/ DACKBD. Since the ES1879 only has 8 data lines, the Windows driver will arrange the data so that a 16-bit channel can be used for 8-bit data. For this reason, the DRQD/DACKBD channel should only be used for the second DAC playback channel and not the gamecompatible first channel.

The DRQ latch feature is enabled when bit 7 of Vendor-Defined Card-Level register 29h is high (see Figure 6).

INTERRUPTS

There are four interrupt sources in the ES1879:

Table 2 ES1879 Interrupt Sources

Interrupt Source	Description
Audio 1	This interrupt is used for the first audio channel (Sound Blaster-compatible DMA, Extended mode DMA, and Extended mode Programmed I/O), as well as SB-compatible (Sound Blaster-compatible) MIDI receive. This interrupt request is cleared by a hardware or software reset, or by an I/O read from Audio_Base+Eh. The interrupt request can be polled by reading from Audio_Base+Ch. This interrupt is assigned to an interrupt channel by PnP register 70h of LDN 1 (Logical Device Number 1).
Audio 2	Optional for the second DMA channel. The ES1879 can operate in full-duplex mode using two DMA channels. However, the second DMA channel must have the same sample rate as the first DMA channel. For this reason, it is not necessary to use a separate interrupt for the second DMA channel. This interrupt is masked by bit 6 of mixer register 7Ah. It can be polled and cleared by reading or writing bit 7 of the same register. This interrupt is assigned to an interrupt channel by PnP register 72h of LDN 1.
Hardware Volume	This interrupt occurs when one of the three hardware volume controls generates an event. Bit 1 of mixer reg- ister 64h is the mask bit for this interrupt. The interrupt request can be polled by reading bit 3 of the same register. The interrupt request is cleared by writing any value to register 66h. This interrupt is assigned to an interrupt channel by PnP register 28h. Typically this interrupt, if used, is shared with an audio interrupt.
MPU-401	This interrupt occurs when a MIDI byte is received. It will go low when a byte is read from the MIDI FIFO and go high again quickly if there are additional bytes in the FIFO. The interrupt status is the same as the Read Data Available status flag in the MPU-401 Status register. This interrupt is masked by bit 6 of mixer register 64h and is assigned to an interrupt channel in one of two ways: If the MPU-401 is part of the audio device, then PnP register 28h is used to assign the MPU-401 interrupt. If the MPU-401 is its own logical device, it can also be assigned to an interrupt via PnP register 70h of LDN 3. Both of these methods access the same physical register.

Interrupt Sources

Interrupt sources are mapped to any one of the five interrupt output pins via the PnP registers. A given pin can have zero, one, or more interrupts mapped to it. Each PnP pin is assigned to an ISA interrupt channel number by Vendor-Defined Card-Level PnP registers 20h, 21h, and 22h. These registers are automatically loaded from the 8byte header in the PnP configuration data.

If a given interrupt pin has one or more sources assigned to it, and one or more of those sources is activated (register 30h, bit 0), then the interrupt pin will be active; that is, it will always be driving high or low. Each interrupt also has one or more mask bits that are AND'd with the interrupt request.

Interrupt Status Register (ISR)

Port Config_Base+6h of the configuration device can be read to quickly find the current state of ES1879 interrupt sources. The following bits describe the state of the ES1879 interrupt sources:

- Bit 3 MPU-401 receive interrupt request AND'd with bit 6 of mixer register 64h
- Bit 2 Hardware volume interrupt request AND'd with bit 1 of mixer register 64h

- Bit 1 Audio 2 interrupt request AND'd with bit 6 of Mixer Extension register 7Ah
- Bit 0 Audio 1 interrupt request

Interrupt Mask Register (IMR)

Register 7h of the configuration device can be used to mask any of the four interrupt sources.

The mask bits can be used to force the interrupt source to be zero, but they do not put the interrupt pin in a highimpedance state. Each bit is AND'd with the corresponding interrupt source. This port is set to all ones on a hardware reset.

The Interrupt Status Register (ISR) is not affected by the state of the Interrupt Mask Register (IMR). That is, the ISR reflects the status of the interrupt request lines before being masked by the IMR.

The IMR is useful when interrupts are shared. For example, assume that audio 1, audio 2, hardware volume, and MPU-401 all share the same interrupt in Windows. When returning from Windows to DOS, the hardware volume, MPU-401, and Audio 2 interrupts can be masked by setting the appropriate bits to 0.

INTERRUPTS

A second use of the IMR is within an interrupt handler. The first thing the interrupt handler can do is mask all of the interrupt sources mapped to the interrupt handler. The ISR can then be polled to decide which sources to process. Just before exiting the interrupt handler, the IMR can be restored. If an unprocessed interrupt remains active, it generates an interrupt request because the interrupt pin was low during the masked period and then went high when the interrupt sources were unmasked. While the interrupts are masked, the individual interrupt sources can change state any number of times without generating a false interrupt request.

Interrupt Edge Generator

The interrupt logic has a feature that makes sharing of interrupts easier. If more than one interrupt source shares an interrupt request pin, the interrupt pin is normally the logical OR of the shared interrupt requests. However, if any one interrupt request goes from high to low, circuitry inside the ES1879 will hold the interrupt request pin low briefly to generate a clock edge if one of the other interrupt sources is also high.

Sharing Interrupts

Plug and Play does not support sharing of interrupts in its resource assignment decision making. If a device tries to share an interrupt with another device that has been assigned an interrupt by PnP, the first device cannot request an interrupt for itself.

A logical device that supports interrupts can be assigned to an interrupt after the PnP sequence is generated by the Windows driver. In this case, the logical device would typically be forced to share an interrupt with the first audio interrupt. For most cases, this is done simply by programming the appropriate PnP register (70h or 72h) for the selected device.

A special case is the hardware volume interrupt. This interrupt source can be assigned to an interrupt through Vendor-Defined Card-Level register 28h, bits 7:4.

A second special case is the MPU-401 interrupt. The MPU-401 device is either part of the audio device or its own logical device. If it is part of the audio device, the interrupt can be assigned by writing to Vendor-Defined Card-Level register 28h, bits 3:0. If the MPU-401 device is its own logical device, it is assigned an interrupt by either Vendor-Defined Card-Level register 28h or LDN 3 register 70h.

DSP Interface

The ES1879 contains a synchronous serial interface for connection to a DSP serial interface. The typical application for this interface is a speakerphone.

Table 3	DSP	Interface	Pins
---------	-----	-----------	------

Pin	Description
DCLK	Data clock input. The rate can vary, but a typical value is 2.048 MHz (8 kHz x 256). Input with pull-down.
DX	Data transmit. Active output when data is being transmitted serially from the ES1879; otherwise, high impedance. Tri-state output.
DR	Serial data input with pull-down.
FS	Frame sync input for transmit. Software-program- mable to be active-high or active-low. Input with pull-down.

DSP Operating Modes

There are two DSP data transfer modes for the ES1879. The state of a single switch internal to the ES1879 determines which mode is enabled. This switch can route the first audio channel to the second audio channel DAC. When the first audio channel is routed to the second audio channel DAC, Telegaming mode is enabled. Otherwise, the DSP is operating in its default mode.

Telegaming Mode

This mode is enabled when two conditions are present:

- The DSP serial port must be enabled (i.e., bit 7 of Mixer register 48h is high).
- Bit 0 of mixer register 48h is high. This bit enables Telegaming mode.

In earlier chips, when the DSP serial port is enabled, the Audio 1 CODEC is unavailable for use by the first audio channel. This means digital audio for Sound Blaster Procompatible games is muted. Sound Blaster can use only the first audio channel for digital audio. The Audio 1 CODEC is used by the DSP.

In Telegaming mode, the first audio channel can be switched over to the Audio 2 DAC. Internally, the first audio channel is routed to the second audio channel DAC and the second audio channel has no function. In addition, the second audio channel mixer volume control is slaved to the first audio channel mixer volume control.

Default Mode

The default mode operates just like telegaming mode except that data from the first audio channel cannot be heard. Data sent through the second audio channel can be mixed as in Telegaming mode.

No Acoustic Echo Cancellation

The DSP cannot perform acoustic echo cancellation in either mode. Because the audio from the host does not pass directly through the DSP, there is no way for the DSP to compensate for acoustic echo. Therefore, using a headset for either the microphone or speakers or both is recommended.

DSP Digital Audio Playback

There are two choices for mixing the DSP digital audio playback data with other audio sources. The audio data can be mixed in the ES1879's internal playback mixer or external to the ES1879.

Mixing Internal to the ES1879

The DSP digital audio playback can be mixed within the ES1879 playback mixer. To select this method, set the Output Signal Control bits of the Mixer register 44h for mixer output. To do this, program bits 6:4 of mixer register 44h to 1, 0, and 0, respectively. The volume of the DSP digital audio playback is controlled by the DAC Play Volume register 14h.

NOTE: In Telegaming mode, register 14h also controls the game-compatible first audio channel digital audio playback. If independent mixer volume control of the game-compatible and DSP digital audio data is necessary, use the second method.

Table 4 Digital Audio Mixing Methods in Serial Mode

Mixing External to the ES1879

The second method is to use the FDXO output pin and mix the DSP digital audio playback and the game-compatible digital audio playback in an external audio mixer. To select this method, set the Output Signal Control bits of Mixer register 44h for mixer output except DAC playback. To do this, program bits 6:4 of register 44h to 1, 0, and 1, respectively. In addition, set bit 1 of Mixer register 46h high to enable FDXO as an output when DSP serial mode is enabled.

The volume of the DSP digital audio playback is controlled within the DSP by scaling the data.

To mix DSP and digital audio	I digital Control bits of register 44h to		and the volume of the DSP digital audio playback is	In addition	
	Bit 6	Bit 5	Bit 4	controlled by	
internal to the ES1879	1	0	0	DAC Play Volume register 14h	N/A
external to the ES1879	1	0	1	scaling the data within the DSP	set bit 1 of register 46h high.

DSP Interface Serial Data Format

Figure 8 16-Bit Data, Positive Sync Pulse

I²S Serial Interface

Three input pins, IIDATA, IISCLK, and IILR, are used for a serial interface between an external device and a stereo DAC within the ES1879. IIDATA, IISCLK, and IILR can be left floating or connected to ground if the serial interface is not used.

A typical applications of the I²S serial interface is MPEG audio or CD audio.

Figure 9 I²S Implementation in ES1879

Table 5 I²S Interface Pins

Pin	Description
IIDATA	Serial data for I ² S interface. This pin has an inter- nal pull-down to GNDD.
IISCLK	Serial shift clock for I ² S interface. This pin has an internal pull-down to GNDD.
IILR	Left/Right signal for I ² S interface. This pin has an internal pull-down to GNDD.

I²S Serial Interface Software Enable

By hardware reset default, the I²S interface is disabled. Bit 6 of Vendor-Defined Card-Level register 29h enables the I²S interface when it is set high. This register is accessed through the configuration device. In addition, bit 6 of mixer register 71h enables the data bus connection to the I²S interface. Both these bits must be set in order to enable the interface.

I²S Serial Interface Format Select

The I²S serial interface supports two different formats: ES689/ES69x two-wire serial interface and I²S. When used in the ES689/ES69x format, IIDATA is the serial data and IISCLK is the bit clock. The IILR input is not used and can be left floating or connected to ground. Vendor-Defined Card-Level register 29h bits 5 and 4 select the format (this register is accessed through the configuration device). See Vendor-Defined Card-Level register 29h under "PnP Configuration and Registers" on page 30 for more detailed information.

I²S Serial Interface Timing

This section discusses the I²S serial interface signals. The signals when the port is configured for use with an ES689/ ES69x wavetable synthesizer are defined in the Wavetable Interface section.

Three signals (plus one optional) are used for I²S:

- IISCLK The shift clock. The maximum rate is 6.4 MHz. The minimum number of IISCLK periods per IILR period is 32. Any number greater than or equal to 32 is acceptable.
- IILR Sample synchronization signal. The maximum sample rate is 50 kHz.
- IIDATA Serial data.

Within the ES1879, IILR and IIDATA are sampled on the rising edge of IISCLK. See Figure 25 and Figure 26 for detailed I²S timing.

Wavetable Interface

The ES1879 contains a synchronous serial interface for connection to a wavetable music synthesizer.

Table o wavelable interface Fins	Table 6	Wavetable	Interface	Pins
----------------------------------	---------	-----------	-----------	------

Pin	Description
MCLK	Serial clock from external ES689/ES69x music synthesizer (2.75 MHz). Input with pull-down.
MSD	Serial data from external ES689/ES69x music synthesizer. When both MCLK and MSD are active, the stereo DACs normally used by the FM synthesizer are acquired for use by the external ES689/ES69x. The normal FM output is blocked. Input with pull-down.

MPU-401 Interface

The MPU-401 port can be used for interfacing with MIDI.

MIDI

The ES1879 has an MPU-401 MIDI interface with a 23byte receive FIFO and an 8-byte transmit FIFO. The output of the transmit FIFO is serialized out the MSO pin and also sent to the ES978 in the expansion unit, where it is serialized out the MSO pin of that chip.

MIDI data can be received from either the MSI pin of the ES1879 or from the MSI pin of the ES978 in the expansion unit. In the unlikely event that MIDI data is received from both sources simultaneously, the data might be corrupted. Data received by the ES978 is transmitted back to the ES1879 in the next upload frame and then placed in the MPU-401 receive FIFO.

Game/Joystick Interface

The ES1879 includes 8 pins for a dual joystick port. The digital game port address is decoded for timer pins TA, TB, TC, and TD, and for switch pins SWA, SWB, SWC, and SWD. The MIDI serial input and output also come from the game port connector in most applications.

Four of these eight pins, SW(A-D), are inputs for the switches of the joysticks. The remaining 4 pins, T(A-D), are "one-shot" timers that generate pulses of varying widths, where the width corresponds to the current resistance of one of the joystick potentiometers.

PC Joysticks

Normally, the host processor is responsible for measuring the width of the pulse. The ES1879 can also do this automatically. The host processor can read the measured widths directly rather than having to do the timing itself. This is referred to as a "digital joystick." Bit 1 of Vendor-Defined Card-Level register 29h determines whether the joystick port is a digital or analog joystick.

Digital Joysticks

For digital joysticks, the host processor first writes any value to the joystick port and then reads back seven separate values (shown in Table 7).

Table 7 Digital Joystick Read Values

	-
Read #1	Low byte timer A
Read #2	Low byte timer B
Read #3	Low byte timer C
Read #4	Low byte timer D
Read #5	Bits 3:0 – Upper nibble timer A Bits 7:4 – Upper nibble timer B
Read #6	Bits 3:0 – Upper nibble timer C Bits 7:4 – Upper nibble timer D
Read #7	Bit 0 – switch A Bit 1 – switch B Bit 2 – switch C Bit 3 – switch D

The timer values reported range from 0 to FFFh (0-4095). The timer clock is 895 kHz.

ES978 Joystick Interface

When docked, a software-programmable bit (bit 0 of Vendor-Defined Card-Level register 29h) causes the joystick connected to the ES978 to replace automatically the one connected to the ES1879f.

Joystick/MIDI External Interface Connector

The joystick portion of the ES1879 reference design is identical to that on a standard PC game control adapter or game port. The PC-compatible joystick can be connected to a 15-pin D-sub connector. It supports all standard PC-compatible joystick software.

If you need to support two joysticks, a joystick conversion cable is required. This cable uses a 15-pin D-sub male connector on one end and two 15-pin D-sub female connectors on the other end. All signals on this cable have direct pin-to-pin connection, except for pins 12 and 15. On the male connector, pins 12 and 15 should be left without connected to pin 8, and pin 12 is internally connected to pin 4. The dual joystick port and MIDI port take up only one slot in your PC, leaving room for other cards. The dual joystick/MIDI connector configuration is shown in Figure 10.

The MIDI serial interface adapter for the joystick/midi connector is shown in Figure 11.

Figure 10 Dual Joystick/MIDI Connector

Figure 11 MIDI Serial Interface Adapter

ES978 Interface

When docked, the ES1879 is in constant communication with the ES978 in the expansion unit. A half-duplex, bidirectional serial link keeps each chip updated on the status of the other. For example, the status of the mixer registers located in the ES1879 are transmitted down to the ES978. MIDI data received in the ES978 is transmitted up to the ES1879.

In addition to the digital control link, four analog wires connect the two chips directly. These four wires are configured as a pair of differential audio channels. The ES1879 uses these two audio channels in one of four ways: stereo playback (ES1879 transmits to the ES978), stereo record (the ES978 transmits to the ES1879), mono full-duplex (one mono channel in each direction), and stereo full-duplex (one stereo channel in each direction).

Pin	Description
XA[3:0]	Bidirectional differential transmitter/receivers. Expansion audio bus. These are analog signals that are DC-coupled to the corresponding pins of the ES978.
XSD	Expansion serial bus data I/O. High-impedance when DOCKED = 0.
XSC	Expansion serial bus clock and frame sync. High- impedance when DOCKED = 0.
DOCKED	Status input that is active-high when the ES1879 is docked to the ES978. This pin has an internal pull-down to GNDD.

This interface uses six wires: two analog ground wires and four analog signal wires (XA[3:0]). The four signal wires are used in one of five different modes. In each of these modes, the master always refers to the ES1879 and the slave always refers to the ES978.

- Mode 0 Stereo playback. Two differential pairs for left and right channels, transmitted from the master to the slave.
- Mode 1 Stereo record. Two differential pairs for left and right channels, transmitted from the slave to the master.
- Mode 2 Monophonic full-duplex. Two differential pairs. One pair is for monophonic playback from master to slave, the second pair is for monophonic recording from slave to master. The mono playback signal is input to both left and right host audio inputs of the playback mixer. The mono record signal is derived by averaging the left and right outputs of the record mixer.
- Mode 3 Stereo full-duplex. The four signals are not used differentially (This mode is not supported by the ES1878).
- Mode 4 Not docked (DOCKED=0). Like Mode 0, except the analog outputs follow AOUT_L and AOUT_R rather than the output of the mixer.

After a change of mode, the data is muted at the receiving end for a period of 25 milliseconds. It is the responsibility of the master not to have contention caused by both ends transmitting on the same signal wire.

Table 9 shows the mode configurations when the notebook unit is docked.

Mode	XA0	XA1	XA2	XA3
0	-Left Play	+Left Play	-Right Play	+Right Play
1	+Left Record	-Left Record	+Right Record	-Right Record
2	-Play	+Play	+Record	-Record
3	Left Record	Left Play	Right Record	Right Play

Table 9 Docked Modes for Analog Audio

Docking Status

The ES1879 is either in docked or undocked state. The state is determined by the DOCKED input, which is active-high when docked.

In the undocked state, the XSC and XSD pins are driven low. The XA[3:0] pins act as in mode 0 (differential outputs), except they follow the AOUT_L/AOUT_R outputs directly (i.e., after the master volume).

Playback Mode

The ES1879/ES978 design assumes that the active speakers move from the portable to the expansion unit when docked. Except when recording, expansion audio sources are mixed in the expansion unit within the ES978 and played through speakers in the expansion unit. In most cases, speakers within the portable unit are programmed to be automatically muted when docked.

An exception is PC speaker beeps, which are always heard in the portable, even when docked.

Each audio input can be programmed individually on how to respond to a docking situation in one of the three ways:

- As an analog input, such as mic, that remains in the portable (ES1879) when docked and is muted in the ES978.
- As an analog input, such as line-in, that is disabled in the ES1879 when docked and enabled in the ES978 when docked, i.e., it is muted in the mixers in the ES1879 and ES978.
- As an analog input that is enabled in both the ES1879 and ES978 mixers, and shares a common volume control. (Note: An exception to sharing a common volume control is allowed for the Mappable Volume register 5Dh; see below).

The playback master volume is controlled through software programming or by the up/down/mute switch inputs. The latter method, called hardware volume control, has active-low switch inputs in both the ES1879 and ES978.

Record Mode

In record mode, the expansion audio bus is turned around, and sound data is sent from the expansion unit ES978 chip to the ES1879 in the portable unit. The sound data from the expansion unit can be mixed inside the ES1879 with local sources before recording. Because portable unit sources (for example, FM) can be mixed into the recording, it is not possible to do a record monitor function through the expansion unit speakers (they are automatically muted in record mode). It is possible for the record monitor to use the speakers in the portable unit (see bit 5 of Vendor-Defined Card-Level register 2Bh.)

The default situation for most applications is to have all speakers muted during recording.

As in previous chips, one of four record sources can be selected: Mic, Line, Aux A, or Mixer. When docked, the ES1879 chip knows whether each resource is present in the portable, the docking station, or both, and acts accordingly.

Mono Full-Duplex Mode

In the ES1879, host-based software applications can use full-duplex mode through two 8-bit DMA channels. The restriction is that both record and playback are monophonic.

The record channel can record from any analog input of the ES1879, any analog input of the remote ES978, any mix of the same, or from the FDXI input to the ES1879 when using the DSP serial port.

Stereo Full-Duplex Mode

In the ES1879, host-based software applications can use stereo full-duplex mode through two 8-bit DMA channels.

The record channel can record from any analog input of the ES1879, any analog input of the remote ES978, or any mix of the same. It is possible to record from the FDXI input to the ES1879 when using the DSP serial port, but this data is monophonic.

No ES978 – Differential AOUT Mode

In some applications, there is no ES978 in the expansion unit. In this case, XA[3:0] are used as differential outputs that follow AOUT_L/AOUT_R and are intended to connect to a differential-input power amplifier in the expansion unit. This mode of operation is selected automatically whenever the DOCKED input is zero. When DOCKED is zero, XSC and XSD are high-impedance.

Power Management

Power management is controlled by bits 1:0 of Vendor-Defined Card-Level register 2Dh. In previous *Audio*Drive® chips, power management was controlled via I/O port

Audio_Base+7h. Only bit 5 (FM reset) and bit 7 (suspend request) of I/O port Audio_Base+7h are supported in the ES1879.

Expansion Audio Interface – Digital

Two wires are used to transmit serial data between the ES1879 and ES978. The first signal, XSC, acts as a frame sync and shift clock. The bit clock rate is 3.58 MHz.

A typical frame consists of:

- Sync period 24 clocks wide
- Download period 144 clocks wide
- Turnaround period 8 clocks wide
- Upload period 80 clocks wide

Total: 256 bit clocks/frame, which is equivalent to a 14 kHz frame rate.

The function of the upload and download periods is to continually update corresponding registers within each device. For example, pressing the VOLUP button in the expansion unit, transmits the pin state to the ES1879 where it is AND'd with the same pin of the ES1879. The ES1879 updates its copy of the master volume register. The ES978 receives the new value in the master volume register during the first download period of the next frame.

Sync Period

In the sync period, XSC is low for 12 bit clock periods, and then high for 12 bit clock periods.

Download Period

In the download period, data is transmitted serially from the ES1879 to the ES978 via the signal XSD. XSC is the bit shift clock. Data is shifted out of the ES1879 on the falling edge of XSC. Data is shifted into the ES978 on the rising edge of XSC.

The download period is 144 bits wide. Each bit takes 4 oscillator clocks (bit rate = 3.58 MHz). The last 8 bits are a checksum byte.

The upload period is 80 bits wide. The last 8 bits are a checksum byte.

Table 10 contains the data configuration for the download period.

Table 10 Download Period Data Configuration

Byte	Bits	Function
0	1:0	Mode of expansion analog interface
	4:2	Record source select
	5	Master output enable
	6 7	1: MIDI loopback test
	/	MIDI data)
1	15:8	MIDI transmit data (if bit 7 of byte 0 is high)
2	23:16	XGPO[7:0] data
3	31:24	Playback mixer – Host audio volume
4	39:32	Playback mixer – Line volume
5	47:40	Playback mixer – Mic volume
6	55:48	Playback mixer – Aux A (CD) volume
7	63:56	Playback mixer – Aux B volume
8	71:64	Playback mixer – I ² S/ES689 volume
9	79:72	Reserved
10	87:80	Record mixer – Line volume
11	95:88	Record mixer – Mic volume
12	103:96	Record mixer – Aux A (CD) volume
13	111:104	Record mixer – Aux B volume
14	119:112	Record mixer – I ² S/ES689 volume
15	126:120	Master volume left
	127	1: Mute left
16	134:128	Master volume right
	135	1: Mute right
17	143:136	CRC checksum

Turnaround Period

There are 8 bits between the end of the download period and the start of the upload period.

Upload Period

In the upload period, data is transmitted serially in the opposite direction, from the ES978 to the ES1879 via the same signal wire, XSD.

Table 11 contains the data configuration for the upload period.

Byte	Bits	Function
0	3:0	Joystick switch status
	4	VOLUP input status
	5	VOLDN input status
	6	MUTE input status
	7	1: MIDI receive data following
1	15:8	MIDI receive data if bit 7 of byte 0 is set.
2	23:16	XGPI input state
3	31:24	Low byte joystick timer A
4	39:32	Low byte joystick timer B
5	47:40	Low byte joystick timer C
6	55:48	Low byte joystick timer D
7	59:56	High nibble joystick timer A
	63:60	High nibble joystick timer B
8	67:64	High nibble joystick timer C
	71:68	High nibble joystick timer D
9	79:72	CRC checksum

Expansion Audio Interface – Analog

Mono FDXI and FDXO

FDXI is shared with AUXB_L and FDXO is shared with AUXB_R. The ES1879 supports the use of FDXI and FDXO as input to the ADC and output from the DAC when using the DSP serial port.

Mono FDXI/O mode is useful with an external modem that has integrated a CODEC for speakerphone applications.

Bits 1:0 of Mixer Extension register 46h enable FDXI as a mono input and FDXO as a mono output. When FDXI is a mono input to the mixer, its input impedance is cut in half to 25k ohms. When FDXO is an output, it has a 5k ohm output impedance. When FDXO is not an output, it is the AUXB_R input to the mixer and has a 50k ohm pull-up to CMR.

Contact an ESS Field Application Engineer for an application note on how to use the FDXI/FDXO feature.

General-Purpose I/O

Up to seven general-purpose inputs and seven generalpurpose outputs are available. Four of the GPO pins have another function (ISA interrupt request output) and may not be available for use as general-purpose outputs. All of the GPI pins have other functions (volume control, DRQC, DACKBC, DRQD, DACKBD) and may not be available for use as general-purpose inputs. For more information, see "GPI/O Registers". Each enabled GPI input can be read by the host processor at any time. Also, each GPI input can be programmed to remotely control a corresponding GPO output in the ES978, thereby saving interconnects between the portable and expansion units.

Each enabled GPO pin can be controlled either by a write by the host to an ES1879 register or remotely from a corresponding GPI pin of the ES978.

The worst-case latency between the ES978 and ES1879, due to the serial interconnection, is about 140 μ sec.

GPI/O Registers

The GPI/O registers are as follows:

Configuration_Device_Base+2h

Bits 6:0 of this register set the state of the GPO[6:0] pins that are enabled as outputs and are not mapped to the GPI pins of the ES978.

Configuration_Device_Base+3h

Bits 7:0 of this register set the state of the XGPO[7:0] pins of the ES978 that are not mapped to the GPI pins of the ES1879.

• Vendor-Defined Card-Level register 25h

This register controls whether any shared function pins are general-purpose inputs/outputs.

• Vendor-Defined Card-Level register 26h

Vendor-Defined Card-Level register 26h, which is the GPO Map register, selects whether a GPO pin is controlled by Configuration_Device_Base+2h or by the GPI pin of ES978.

• Vendor-Defined Card-Level register 27h

Vendor-Defined Card-Level register 27h, which is the GPI Map register, selects whether a GPI pin controls a XGPO pin in the ES978, or if the XGPO pin is controlled by Configuration_Device_Base+3h.

NOTE: Bits 1 and 0 of register Audio_Base+7h do not control GPO0 and GPO1 as in previous *Audio*Drive[®] chips. Also, the feature of previous audio controllers that causes GPO0 and GPO1 to change state automatically when the chip is powered down is not supported in the ES1879.

Spatializer 3-D Audio Effects Processor

The ES1879 incoporates an embedded Spatializer audio effects processor, positioned between the output of the playback mixer and the master volume controls. The Spatializer produces a wider perceived stereo effect. Given a mono input, the Spatializer processor has a mode that generates a stereo effect.

The amount of effect can be controlled by either directly programming mixer register 52h or by allowing the ES1879 to control the effect level automatically, based on the stereo content of the input signal. This latter feature is called auto-limiting. In auto-limiting, the ES1879 constantly adjusts the amount of effect based on the stereo content of the input signal. The host software can set a maximum effect level by programming register 52h. This gives the auto-limiting logic an upper bound.

Master Volume

The master volume is controlled through Programmed I/O or volume control switch inputs. The master volume supports 6 bits per channel plus mute. When docked, the ES1879 transmits the master volume information to the ES978 where it takes effect after the output of the ES978 mixer.

For support of legacy master volume control, any write to legacy mixer register 22h or 32h is translated automatically into writes to the master volume registers. Since mixer register 22h only has 3-bit resolution and mixer register 32h only 4-bit resolution, a translation circuit is included in the ES1879 that translates 3- or 4-bit volume values into the 6-bit volume plus mute that is used by the master volume registers. Reading a legacy master volume register (22h or 32h) also uses a translation circuit to convert 6-bit master volumes plus mute into 3- or 4-bit legacy master volume numbers. Support of legacy mixer registers can be defeated under software control.

See also "Programming the ES1879 Mixer" on page 59.

Hardware Volume Controls

VOLUP, VOLDN, and MUTE are three input pins with internal pull-up devices. The state of these pins is AND'd with the state of the corresponding pins of the ES978 when docked.

The VOLUP and VOLDN buttons produce a single-step change in volume when they are first pressed, and then, if held down, enter a fast-scrolling mode up or down. The single-step change can be either 1 volume unit (0.75 dB) or 3 volume units (2.25 dB) as determined by bit 5 of mixer register 64h. In fast-scrolling mode, the step change is always 1 volume unit.

The three inputs have debounce circuitry within the ES1879. Each input should be held low for 40 msec or more to be recognized as a valid button press. Each input should be held high for 40 msec or more between button presses. A software option allows the debounce time to be reduced from 40 msecs to 10 μ sec (bits 3:2 of mixer register 64h).

A software selectable option enables the mute input to be omitted (bits 3:2 of mixer register 64h). The mute input is defined as the state when both up and down inputs are low. By default, this feature is disabled.

The hardware volume inputs of the ES1879 can be used as general-purpose inputs (see bits 5:4 of Vendor-Defined Card-Level register 25h). In this case, they cannot be used as volume control inputs.

26

ES1879 DATA SHEET

PERIPHERAL INTERFACING

Split Mode

Normally, the hardware volume controls change the master volume registers directly and produce an interrupt at each change. Instead, the ES1879 can be programmed to use Split mode. In this case, the hardware volume counters (mixer registers 61h and 63h) are split from the master volume registers (mixer registers 60h and 62h). Pressing a hardware volume control button changes the hardware volume counter and produces an interrupt. The host software can read the hardware volume counters and update the master volume registers as needed.

PC Speaker

The PC speaker is supported by a 1-bit DAC with volume control. The analog output pin PCSPKO is intended to be externally mixed at the external amplifier, which means that the PC speaker audio is not transmitted to the ES978 through the expansion audio interface (XA[3:0]) but is always heard through the portable speakers.

PC Speaker Volume Control

When the PCSPKI signal is high, a resistive path to analog ground is enabled. The value of the resistor is selected from among 7 choices to control the amplitude of the output signal.

Figure 12 PC Speaker Volume Circuitry

With the external circuit shown in Figure 12, the amplitude of a square wave output on pin PCSPKO should be approximately VDDA/2 for maximum volume, i.e., the internal resistor is approximately 500 ohms (\pm 30%). The other levels are relative to this amplitude as follows:

off, -18dB, -15dB, -12dB, -9dB, -6dB, -3dB, +0dB

The purpose of the circuit, beyond volume control of the speaker, is to prevent digital noise from the PC speaker signal being mixed into the analog signal. This circuit provides a clean analog signal. The output can either be mixed with the AOUT_L and AOUT_R pins externally or used to drive a simple transistor amplifier to drive an 8 ohm speaker dedicated to producing beeps.

Serial EEPROM Interface

The ES1879 gets Plug and Play configuration data from an internal masked ROM or an external EEPROM device. The external EEPROM is accessed by the ES1879 when IPROM (pin 58) is low. When IPROM is low, the chip select pin SECS pulses high, enabling access to the external EEPROM. The external EEPROM device is 512 x 8-bit in size. When IPROM is high, the ES1879 reads its internal ROM for PnP configuration data.

The EEPROM interface is shared with the hardware volume controls. When the EEPROM interface is active, the volume controls are deactivated. See Figure 13.

The host processor can read or write the EEPROM, allowing the EEPROM to be reprogrammed or initially programmed during production testing.

EEPROM ROM FORMAT

'A5 '	Sync Byte				
IRQB IRQA	Mapping for IRQB/A				
IRQD IRQC	Mapping for IRQD/C				
IRQE	Mapping for IRQE				
DRQB DRQA	Mapping for DRQB/A				
DRQD DRQC	Mapping for DRQD/C				
PNP Reg 25h	Miscellaneous				
PNP Reg 26h Miscellaneous					

The rest of the data is as per the ISA PnP specification.

Figure 13 Serial EEPROM – Typical Application

See "Accessing the ROM/EEPROM" on page 30.

ANALOG DESIGN CONSIDERATIONS

This section describes design considerations related to inputs and outputs of analog signals and related pins on the chip.

Reference Generator

Reference generator pin CMR is connected through bypass capacitors to analog ground.

Figure 14 Reference Generator Pin Diagram

Switch-Capacitor Filter

The outputs of the FOUT_L and FOUT_R filters must be AC-coupled to the inputs CIN_L and CIN_R, respectively, which provides for DC blocking and an opportunity for low-pass filtering with capacitors to analog ground at these inputs.

Figure 15 Switch-Capacitor Filter Pin Diagram

Audio Inputs and Outputs

Analog inputs MIC, stereo LINE, stereo AUXA, and stereo AUXB are to be capacitively coupled to their respective input signals. All have pull-up resistors to CMR.

ES1879 analog outputs AOUT_L and AOUT_R are intended to be AC-coupled to an amplifier, volume control potentiometer, or line-level outputs.

CONFIGURATION

CONFIGURATION

The ES1879 supports the industry-standard ISA Plug and Play (PnP) specification, as well as a software configuration method that does not rely on PnP. Bit 2 of PnP vendor register 2Dh determines the configuration method. When bit 2 is high, the ISA PnP configuration mode is disabled. Bit 2 is low (ISA PnP) by default.

NOTE: The ES1878 supported PnP from an internal ROM and/or a bypass key. External EEPROM was not supported. An input pin PNPEN, when high, enabled both PnP and a bypass key written to I/O address 279h. When PNPEN was low, PnP was disabled and the bypass key was written to I/O address 388h. In the ES1879, the function of pin PNPEN is replaced by bit 2 of PnP vendor register 2Dh. The ES1879 also allows the bypass key to be written to either port 279h or port 388h.

Using ISA PnP Mode

There are several design implications of using ISA PnP:

- The PCI-ISA bridge for the ES1879 must be in subtractive decode mode. This mode is required because PnP can place the I/O addresses of the ES1879 devices in a very large number of locations.
- 2. All PnP devices within the system must share the same ISA bus and bridge.
- The internal resource ROM cannot be changed.
 I/O addresses, interrupts, and DMA channels must be supported as defined by the resource ROM. The joystick port must be supported.
- 4. All five IRQ lines must be connected to ISA interrupt request channels as follows:

IRQA	-IRQ9
IRQB	-IRQ5
IRQC	-IRQ7
IRQD	-IRQ10
IRQE	-IRQ11

5. All three DRQ/DACK pairs must be connected to ISA DMA signals as follows:

DRQA	DRQ0
DACKBA	-DACK0
DRQB	DRQ1
DACKBB	-DACK1
DRQC	DRQ3
DACKBC	-DACK3
DRQD	DRQ5, 6, or 7
DACKBD	-DACK5, 6, or 7

Non PnP Mode

Because of the above restrictions imposed by use of PnP, a separate configuration method is implemented in the ES1879. A special sequence of 34 bytes is written consecutively to I/O address 279h or 388h. This sequence is called the "bypass key" because it can be used to shortcircuit the PnP process and directly enable the configuration device of the ES1879. Once the configuration device is enabled, all the PnP registers of the ES1879 are accessible and can be programmed.

Using Non PnP mode is advisable when the ES1879 is designed into the motherboard. Send bypass key during the BIOS PnP configuration.

Bypass Key

If PnP is not supported by the system, it is possible to bypass PnP by issuing a special "bypass key" to the ES1879 to force the configuration device to be enabled at a specific I/O address. The ES1879 must be in the "waitfor-key" Plug and Play state. The special key is 32 bytes long, written to the PnP address register (279h or 388h). Follow the bypass key immediately with two I/O writes to the PnP address register to set the low and high bytes of the address register of the configuration device. The bypass key also activates the configuration device. The address of the configuration device must be in the range 100h-FF8h, aligned on a multiple of 8. An "alias" of the audio device address can be used. For example, use E20h for the configuration device if the audio device address is at 220h.

NOTE: Perform the entire sequence with interrupts disabled to minimize the chance that an interrupt corrupt the sequence.

66, a1, c2, f1, ea, e7, 71, aa
c7, 63, 33, 1b, d, 96, db, 6d
a4, 50, 28, 16, 9b, 4d, b6, c9
f4, 78, 3e, 8d, d6, fb, 7f, 3d
<config_address_low>, <config_address_high>

Accessing the ROM/EEPROM

The PnP ROM/EEPROM software interface is used to directly read the PnP ROM or EEPROM, as well as send commands and data to program an external EEPROM.

EEPROM Function	Action
Read EEPROM data register or read internal ROM, then increment one address.	Read PnP Vendor register 2Eh.
Write EEPROM data register, then increment one address.	Write PnP Vendor register 2Eh.
Write EEPROM command register.	Write PnP vendor register 2Fh.
Reset EEPROM/ROM address counter.	Read PnP vendor register 2Fh.

See "Serial EEPROM Interface" on page 27.

PnP Configuration and Registers

Figure 16 shows the configuration register set that is discussed in the following pages. As shown below, the Card-Level registers supported by the ES1879 are the Card-Control Card-Level registers at addresses 00h-07h, and the Vendor-Defined Card-Level registers at addresses 20h-2Fh. The Card-Control Card-Level register at address 07h is a pointer to the Logical Device registers supported by the ES1879 (one set of registers for each logical device on the "card"). In the ES1879, there are three logical devices: the configuration device, the audio+FM+MPU-401 device, and the joystick device.

Card-Level Registers

(one set per card)

Logical Device Registers

(one set per logical device on card)

Figure 16 Configuration Register Outline

Accessing the PnP Configuration Registers

The PnP configuration registers of the ES1879 can be accessed in two ways. First, the registers can be read or written as defined by the PnP specification. Second, the registers can be read or written using two I/O locations of the configuration device.

The first location of the configuration device is written with the PnP register number to be read or written. After programming the PnP register number, the register can be read or written by accessing the second location of the configuration device.

ES1879 DATA SHEET

CONFIGURATION

Example

Using Non PnP Method to Configure the ES1879:

- 1. Enable the configuration device at I/O address 800h by sending the bypass key with interrupts disabled.
- 2. Program Vendor-Defined Card-Level registers 20h-2Dh as follows: write Vendor-Defined Card-Level register number to I/O address 800h and data to I/O address 801h.
 - 1. 20h, 21h, 22h: assign ISA IRQ channels to pins. Unused pins are assigned to IRQ1.
 - 2. 23h, 24h: assign ISA DMA channels to pins. Unused pins are assigned DRQ2.
 - 3. 25h: set bit 7 low, other bits as needed to enable GPOs or GPIs.
 - 4. 26h: defines whether GPOs are under software or ES978 control.
 - 5. 27h: defines whether GPIs control ES978 GPOs.
 - 28h: leave all of the bits set to 00h until Windows starts up. The Windows driver will write this register to allow sharing MPU-401 and H/W volume interrupts.
 - 29h: bit 7 high is recommended. Set bits 6:4 based on I²S interface use. Bit 1 should be left low in the BIOS. Bit 0 is based on the system design.
 - 8. 2Ah: set this register to default value 0Eh.
 - 9. 2Bh: leave bits 7:5 set at 00h. Bits 4:0 settings are based on the system design.
 - 10. 2Ch: settings are based on the system design.
 - 11. 2Dh: leave this register value set at 03h (fully powered on).
- Configure and enable audio device. Set register 7h (LDN number) to 01h. Then program device registers 60h-65h, 70h, 74h, and 75h. Leave register 72h set at 00h (second interrupt not used). Finally, set register 30h to 01h in order to activate the audio device.
- (Optional) Configure and enable joystick device. Set register 7h (LDN number) to 02h. Then program registers 60h and 61h with base address. Set register 30h to 01h in order to activate the joystick device.

Configuring IRQ, DMA, and GPI/O Pins

IRQ (Registers 20h, 21h, 22h, 70h, 72h)

If only one IRQ channel (IRQA) is connected to the bus, program the Vendor-Defined Card-Level registers 20h, 21h, and 22h as follows:

register 20h = 10h + IRQA_channel_number "1" = IRQB is unused register 21h = 11h"1" = IRQC/D are unused register 22h = 01h"1" = IRQE is unused

The recommended IRQ lines are:

5	first choice
9, 5, 7, 10	second choice
3, 4, 5, 7, 9, 10, 11, 12, 15	third choice

The IRQ channel number must also be programmed into register 70h of LDN 1. When register 70h matches one of the channel numbers in registers 20h, 21h, or 22h, a connection is made. The second interrupt of the audio device is not used, so register 72h should be zero.

DRQ/DACK (Registers 23h, 24h, 74h, 75h)

If DRQA/DACKBA is set for the first audio channel DMA and DRQB/DACKBB is set for second audio channel DMA, program register 23h to be the first DMA channel number in bits 3:0 and the second DMA channel number in bits 7:4. Registers 74h and 75h of LDN 1 must also be programmed to match the DRQA and DRQB channel numbers.

Example:

First DMA channel is "1" and second DMA channel is "3".

register 23h = 31h register 24h = 02h "2" = DRQC/DACKBC are unused "0" = DRQD/DACKBD are unused register 74h, LDN 1 = 01h register 75h, LDN 1 = 03h

GPI/O (Vendor-Defined Card-Level Register 25h)

As long as DRQC/DACKBC and DRQD/DACKBD are not selected, these pins are usable as general-purpose inputs without further setup.

General-purpose inputs, GPI 4, 5, and 6 are the MUTE, VOLUP, and VOLDN inputs. They can be read at any time, but if the pins are not to act as hardware volume control, bits 4 and 5 of Vendor-Defined Card-Level register 25h must be set.

To use IRQ(B-E) as GPOs, the appropriate bits in Vendor-Defined Card-Level register 25h must be set.

ES1879 DATA SHEET

CONFIGURATION

Card-Control Card-Level Registers (00h – 07h)

This section describes the PnP Card registers of the ES1879.

Set RD	DAT	A Port				(00	h, R/W)
		Bits 9:2	of the P	nP RD_E	DATA port		
7	6	5	4	3	2	1	0

The PnP read port can be written only when the card is in Isolation mode. It is reset low by hardware reset. It can be read only from Configuration mode. Bits 1:0 of PnP read port are always one.

Serial Isolation

			C	Data			
7	6	5	4	3	2	1	0

Read-only in isolation state. Used to read the serial identifier during the card isolation process.

Config Control

eening eenine.						(•	,,
х	х	х	х	х	RESET_CSN	WFK	SWR
7	6	5	4	3	2	1	0

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:3	-	Don't care.
2	RESET_CSN	RESET_CSN command. 1 = Card's CSNs set to zero.
1	WFK	WAIT_FOR_KEY command. 1 = Enter wait-for-key state.
0	SWR	Software reset command. Does not work in wait-for-key state. 1 = Reset config registers to default.

Wake[CSN]				(03h, W)	
			C	Data			
7	6	5	4	3	2	1	0

If data written is 00h and it:

- matches the CSN: this card goes from Sleep mode to Isolation mode.
- does not match the CSN: this card goes from Configuration mode to Sleep mode.

If the data written is non zero, and it:

- matches the CSN: this card goes from Sleep mode to Configuration mode.
- does not match the CSN: this card goes from Isolation mode to Sleep mode.

Resource Data							04h, R)
			Resou	irce data			
7	6	5	4	3	2	1	0

Returns next byte of resource data, provided the status bit in register 05h has been polled before each byte read, indicating that data is ready. Only works in Configuration mode.

Status (05h, R) 0 Status 7 6 5 4 3 2 1 0

Bit Definitions:

(01h, R)

(02h W)

<u>Bits</u>	<u>Name</u>	Desc	ription	
		-		

- 7:1 Reserved. Always write 0.
 0 Status 1 = Ready to read resource data from register 04h. Only works in Configuration mode.
 - 0 = Resource data not available.

CSN						(06h	n, R/W)
		C	Card sele	ct numbe	r		
7	6	5	4	3	2	1	0

Read/Write card select number. Write only works in Isolation mode. Causes transition to Configuration mode. Read works only in Configuration mode.

LDN						(07h	n, R/W)
		Lo	gical dev	ice numb	er		
7	6	5	4	3	2	1	0

Read/Write logical device number. Only works in Configuration mode.

- LDN 1 Audio/FM device
- LDN 2 Joystick device
- LDN 3 MPU-401 device (only if bit 7 of Vendor register 25h is high)

CONFIGURATION

Vendor-Defined Card-Level Registers (20h – 2Fh)

This section describes the PnP Vendor registers of the ES1879.

IRQB,	IRQA					(2	20h, R)
	IR	QB			IRC	QA	
7	6	5	4	3	2	1	0

Defines IRQ number assigned to B and A pins. Loaded from configuration ROM header after PnP reset. Unused IRQ pins should be assigned IRQ #1.

IRQD,	IRQC					(2	21h, R)
	IR	QD			IRC	QC	
7	6	5	4	3	2	1	0

Defines IRQ number assigned to D and C pins. Loaded from configuration ROM header after PnP reset. Unused IRQ pins should be assigned IRQ1.

IRQE						(2	22h, R)
	()			IRC)E	
7	6	5	4	3	2	1	0

Bits 3:0 define IRQ number assigned to E pin. Loaded from configuration ROM header after PnP reset. If the IRQ pin is unused, it should be assigned IRQ1. Bits 7:4 are reserved. Always write 0.

DRQB	, DRQA	1				(2	23h, R)
	DR	QB			DRO	QA	
7	6	5	4	3	2	1	0

Defines DRQ number assigned to B and A pins. Loaded from configuration ROM header after PnP reset. Unused DRQ pins should be assigned DRQ2.

DRQD	DRQC	;				(24h, R)
	DR	QD			DRO	C	
7	6	5	4	3	2	1	0

Bits 3:0 define DRQ number assigned to C pins. Bits 7:4 define DRQ number assigned to D pins. If DRQD and DACKBD are not connected to an ISA DMA channel, then these pins should be assigned DRQ2. Loaded from Configuration ROM header after PnP reset.

Shared	Function	Assignment
--------	----------	------------

Shared Function Assignment							5h, R)
MPU-401 LDN 1/ LDN 3	x	VOLUP, VOLDN/ GPI5, GPI6	MUTE/ GPI4	IRQE/ GPO6	IRQD/ GPO5	IRQC/ GPO4	IRQB/ GPO3
7	6	5	4	З	2	1	0

Loaded from Configuration ROM header after PnP reset.

Bit Definitions:

<u>Bits</u>	Name	Description
7	MPU- 401 LDN 1/LDN 3	Determines whether MPU-401 is LDN 3 or part of LDN 1. 1 = MPU-401 is LDN 3. 0 = MPU-401 is part of LDN 1.
6	_	Don't care.
5	VOLUP, VOLDN/ GPI5, GPI6	Determines which functions pins 91 and 92 are used for. These pins are also SEDI and SEDO. 1 = Pins 91 and 92 are GPI5 and GPI6. 0 = Pins 91 and 92 are VOLUP and VOLDN.
4	MUTE/ GPI4	Determines which function pin 90 is used for. 1 = Pin 90 is GPI4. 0 = Pin 90 is MUTE.
3	IRQE/ GPO6	Determines which function pin 93 is used for. 1 = Pin 93 is GPO6. 0 = Pin 93 is IRQE.
2	IRQD/ GPO5	Determines which function pin 94 is used for. 1 = Pin 94 is GPO5. 0 = Pin 94 is IRQD.
1	IRQC/ GPO4	Determines which function pin 95 is used for. 1 = Pin 95 is GPO4. 0 = Pin 95 is IRQC.
0	IRQB/ GPO3	Determines which function pin 96 is used for. 1 = Pin 96 is GPO3. 0 = Pin 96 is IRQB.

GPO Map (26h, R)									
ſ	х	GPO6	GPO5	GPO4	GPO3	GPO2	GPO1	GPO0	
	7	6	5	4	3	2	1	0	

One bit for each GPO[6:0]. This register is reset to zero by hardware reset, but not by PnP reset.

Bit Definitions:

<u>Bits</u>	Name	Description
7	—	Don't care.
6:0	GPO[6:0]	1 = GPO pin controlled by corresponding GPI pin of the ES978.0 = GPO pins controlled by port Configuration_Device_Base+2h.

ES1879 DATA SHEET

CONFIGURATION

GPI M	ар
х	C
7	

(29	h, R/W)
-----	---------

GPI6	GPI5	GPI4	GPI3	GPI2	GPI1	GPI0	DRQ latch
6	5	4	3	2	1	0	enable

One bit for each GPI[6:0]. This register is reset to zero by hardware reset but not by PnP reset.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7	—	Don't care.

6:0 GPI[6:0] 1 = GPI pin controls corresponding GPO pin of the ES978.
0 = GPO pins of the ES978 controlled by port Configuration_Device_Base+3h, not by the GPI pins of the ES1879.

MPU-401 and Hardware Volume IRQ	(28h, R)
---------------------------------	----------

Hardw	are volur	me IRQ n	umber	MF	PU-401 IF	RQ numb	er
7	6	5	4	3	2	1	0

Bit Definitions:

Bits Name Description

7:4	Hardware volume IRQ num- ber	Hardware volume IRQ number. This number must be shared with audio 1 or audio 2.
6:0	MPU-401 IRQ num-	MPU-401 IRQ number. Alias address with register 70h of MPU-401 LDN 3.

ber

DRQ latch enable	I²S port enable	I ² S port function		MIDI loopback test enable	x	Digital joystick enable	ES978 joystick enable
7	6	5	4	3	2	1	0

This register is reset to 21h by hardware reset but not by PnP reset. The hardware reset default format is I²S.

Bit Definitions:

Miscellaneous Digital Control

<u>Bits</u>	<u>Name</u>	Description						
7	DRQ 1 = DRQ latch feature enabled. latch 0 = DRQ latch feature disabled (default). enable							
6	I ² S port enable	 1 = I²S port enabled. 0 = I²S port disabled (hardware reset default). 						
5:4	I ² S port function	Selects the function for the I²S port. bit 5 bit 4 0 0 ES689/ES69x. IIData is data. IISCLK is bit clock. IILR should connect low or float. 0 1 Reserved. 1 0 I?S port is x384 oversampling (hardware reset default). 1 1 1 1						
3	MIDI loopback test enable	1 = Enable ES978 MIDI loopback test. 0 = Disable ES978 MIDI loopback test.						
2	_	Don't care.						
1	Digital joystick enable	1 = Digital joystick. 0 = Analog joystick (default).						
0	ES978 joystick enable	1 = Use ES978 joystick when docked (default).0 = Use ES1879 joystick when docked.						

Special Volume	(2Ah, F	R)
----------------	---------	----

Volume	mixed in	to ES978	3 record	Volume r	nixed into	ES978	playback
7	6	5	4	3	2	1	0

This register is reset to 0Eh by hardware reset but not by PnP reset.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:4	Volume mixed into ES978 record	Volume of host audio mixed into ES978 record mixer (default = 0).
3:0	Volume mixed into ES978 playback	Volume of host audio mixed into ES978 play- back mixer (default = 0Eh).

CONFIGURATION

PRELIMINARY

(2Bh, R)

(2Ch, R)

Miscellaneous Analog Control

Exte rec volu	ernal ord ume	ES1879 master volume mute	ES978 I ² S volume tracking	ES1879 I ² S volume control	ES97 mix	8 map ker tar	pable get
7	6	5	4	3	2	1	0

The I²S DAC volume can track the volume of the FM DAC when its own Mixer Volume Control register 6Dh is not used. This is useful when the I²S interface is used for an external wavetable synthesizer. Bit 3 of Vendor-Defined Card-Level register 2Bh when set high enables tracking with FM volume.

This register is reset to 00h by hardware reset but not by PnP reset.

Bit Definitions:

- Bits Name Description
- 7:6 External Common volume of mix with external record record sources. volume <u>bit 7 bit 6 volume</u>

<u>bit 7</u>	<u>bit 6</u>	<u>volume</u>
0	0	0 dB (default)
0	1	-1.5 dB
1	0	-3 dB
1	1	-4.5 dB

5 ES1879 1 = ES1879 master volume mute disabled master when docked. volume 0 = ES1879 master volume mute enabled

mute when docked (default).

4 ES978 1 = ES978 I²S volume tracks FM Mixer register I²S 36h of ES1879.

volume 0 = ES978 l²S volume tracks l²S Mixer register tracking 68h of ES1879.

3	ES1879	1 = ES1879 I ² S volume controlled by FM Mixer
	l²S	register 36h.
	volume	0 = ES1879 I ² S volume controlled by I ² S Mixer

control register 68h. 0 = ES 1879 FS volume controlled by FS Mixer

2:0 ES978 Assigns ES978 target for Mappable Mixer regmappa- isters 5Dh (playback) and 5Fh (record). ble mixer <u>bit 2 bit 1 bit 0 ES978 target</u>

target	0	0	0	None (default).
	0	0	1	Mic.
	0	1	0	Line.
	0	1	1	Aux A.
	1	0	0	Aux B.
	1	0	1	I2S/ES689/ES69x interface.

1 1 0 Reserved.

1

1 1 Reserved.

Resource Assignment

AuxB control		AuxA control		Line control		Mic control	
7	6	5	4	3	2	1	0

Two bits per analog resource of the ES978 control treatment of analog resources in both the ES1879 and ES978 when docked.

This register is set to FFh by hardware reset, but not PnP reset.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description	
7:6	AuxB control		
5:4	AuxA control		Saa Tabla 12 balaw
3:2	Line control		See Table 12 below.
1:0	Mic control		

Table 12 Resource Assignment

Bit Values	ES1879	ES978
0 0	Mute	Mute
0 1	Mute	Enabled: track corresponding 1879 Mixer register
10	Enabled	Mute
11	Enabled	Enabled: track corresponding 1879 Mixer register

Power Management

(2Dh, R/W)

	>	¢		IPROM state flag	PnP disable	Po	ower
7	6	5	4	3	2	1	0

After hardware reset or PnP reset, this register is set to 03h. Suspend and Resume operation requires programming register Audio_Base+7h.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description						
7:4	-	Don'	t care.					
3	IPROM state flag	Read 1 = F 0 = F	Read-only. State of IPROM input pin. 1 = PnP data loaded from internal ROM. 0 = PnP data loaded from external EEPROM.					
2	PnP disable	1 = F to Pr 0 = F	 1 = PnP disable. The ES1879 will not respond to PnP commands. 0 = PnP enable. (Hardware reset default.) 					
1:0	Power	Thes bit 1 0 1	e bits bit 0 0 1 0	set the power state of the ES1879. power state Fully powered down. Oscillator enabled; everything else is powered down. Low-power mode: analog enabled, expansion interface enabled, MPU- 401 enabled, joystick enabled, I ² S interface enabled, PnP enabled. DSP and ES689/69x serial inter- faces are disabled, audio device and FM disabled.				
		1	1	Fully powered up.				

EEPROM Serial Interface Data Port							(2Eh, R/W)	
D	D	D	D	D	D	D	D	
7	6	5	4	3	2	1	0	

EEPROM serial interface data port.

EEPROM Serial Interface Command Port (2Fh, R/W)

7	6	5	4	3	2	1	0

EEPROM serial interface command port. Reading from this port resets the EEPROM serial interface address.

Logical Device Registers

Table 13 Logical Device Summary

LDN #		Device			
LDN 0 (ma	ndatory)	Configuration device			
30h	Activate; bit 0 is	activate bit.			
31h	I/O Range Check.				
60h	I/O base address, bits 11:8. If zero, this device is disabled. Eight locations.				
61h	I/O base address	s, bits 7:0.			
LDN 1 (mandatory)		Audio device			
30h	Activate; bit 0 is	activate bit.			
31h	I/O Range Check.				
60h	I/O base address of audio microcontroller; bits 11:8. If zero, this device is not accessible. Sixteen locations.				
61h	I/O base address of audio microcontroller, bits 7:0.				
62h	I/O base address of FM alias, bits 11:8. If zero, this device is not accessible. Four locations.				
63h	I/O base address of FM alias, bits 7:0.				
64h	I/O base address of MPU-401, bits 11:8. If zero, this device is not accessible. MPU-401 may also be accessible through LDN 3. Two locations.				
65h	I/O base address of MPU-401, bits 7:0.				
70h	Interrupt Request Level Select 0.				
71h	Interrupt Request Type Select 0 (returns 2).				
72h	Interrupt Request Level Select 1.				
73h	Interrupt Request Type Select 1 (returns 2).				
74h	DMA Channel Select 0 (default = 4).				
75h	DMA Channel Se	elect 1 (default = 4).			
LDN 2 (ma	ndatory)	Joystick device			
30h	Activate; bit 0 is	activate bit.			
31h	I/O Range Check.				
60h	I/O base address, bits 11:8. If zero, this device is disabled. One location.				
61h I/O base address		s, bits 7:0.			
LDN 3 (opt	ional)	MPU-401 device			
30h	Activate; bit 0 is	activate bit.			
31h	I/O Range Check.				
60h	I/O base address, bits 11:8. If zero, this device is disabled. Two locations.				
61h	I/O base address, bits 7:0.				
70h	Interrupt Request Level Select 0.				
71h	Interrupt Request Type Select 0 (returns 2).				
ES1879 DATA SHEET

CONFIGURATION

(31h, R)

LDN 0: Configuration Device

Activate

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:1	-	Reserved. Always write 0.
0	Activate	1 = Activate. 0 = Deactivate (default).

I/O Range Check							(31h, R)
		(C			Enable range check	Pattern select
7	6	5	4	3	2	1	0

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

Bit Definitions:

<u>Name</u>	Description
_	Reserved. Always write 0.
Enable range check	1 = Enable range check.0 = Disable.
Pattern select	1 = 55h. 0 = AAh.
	Name – Enable range check Pattern select

I/O De	coder () Base	SS		(60	h, R/W)	
	(C		A[11:8]			
7	6	5	4	3	2	1	0

This register is used to assign an I/O base address to I/O decoder 0 of the logical device. I/O base address, bits 11:8.

I/O De	coder	0 Base		(61	h, R/W)		
		A[7:3]				0	
7	6	5	4	3	2	1	0

I/O base address, bits 7:3.

LDN 1: Audio Device

This device actually supports three functions: audio, FM, and MPU-401. Audio requires sixteen I/O locations, one interrupt that is shared with MPU-401, and two DMA channels. FM requires four I/O locations. MPU-401 requires two I/O locations.

Activa	te				(3	0h, R/W)	
			0				Activate
7	6	5	4	3	2	1	0

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:1	-	Reserved. Always write 0.
0	Activate	1 = Activate.
		0 = Deactivate (default).

I/O Range Check

0						Enable range check	Pattern select
7	6	5	4	3	2	1	0

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:2	-	Reserved. Always write 0.
1	Enable range check	1 = Enable range check. 0 = Disable.
0	Pattern select	1 = 55h. 0 = AAh.

Audio Microcontroller I/O Base Address (60h, R/W)

	(C		A[11:8]			
7	6	5	4	3	2	1	0

I/O base address of audio microcontroller, bits 11:8. Sixteen locations.

Audio Microcontroller I/O Base Address (61h, R/W)

	A[7	7:4]		0			
7	6	5	4	3	2	1	0

I/O base address of audio microcontroller, bits 7:4.

R/W)

CONFIGURATION

(75h, R)

FM Alias I/O Base Address	(62h,
0	Δ[11·8]

0				A[1	1:8]		
7	6	5	4	3	2	1	0

I/O base address of FM alias, bits 11:8. Four locations.

FM Ali	as I/O	(63	h, R/W)				
		A[]	7:2]				0
7	6	5	4	3	2	1	0

I/O base address of FM alias, bits 7:2.

MPU-4	01 I/O	Base A	Address	5		(64	h, R/W)
	(0			A[1	1:8]	
7	6	5	4	3	2	1	0

I/O base address of MPU-401, bits 11:8. (MPU-401 may also be accessible through LDN 3.) Two locations.

MPU-4	01 I/O		(65	h, R/W)			
		A[7:2]				0
7	6	5	4	3	2	1	0

I/O base address of MPU-401, bits 7:2.

Interru	ipt Req	uest L		(70	h, R/W)		
	()			D	ata	
7	6	5	4	3	2	1	0

Interrupt request level select 0.

Bit Definitions:

<u>Bits</u> Name	Description
7:4 –	Reserved. Always write 0.
3:0 Data	Select which interrupt level used for Interrupt 0.

Interru	ipt Rec	uest T	ype Se	lect 0		((71h, R)
0	0	0	0	0	0	1	0
7	6	5	4	3	2	1	0

Interrupt request type select 0. Returns 2 (low-to-high transition).

Interru	ipt Req	luest L	evel Se	elect 1		(72	2h, R/W)
	(0			D	ata	
7	6	5	4	3	2	1	0

Interrupt request level select 1.

Bit Definitions:

38

<u>Bits</u> Name	Description
7:4 –	Reserved. Always write 0.
3:0 Data	Select which interrupt level used for Interrupt 1

Interrupt Request Type Select 1							(73h, R)
0	0	0	0	0	0	1	0
7	6	5	4	3	2	1	0

Interrupt request type select 1. Returns 2 (low-to-high transition).

DMA (Channe	I Selec		(74h, R)		
		0				Data	
7	6	5	4	3	2	1	0

Returns 4 (no DMA channel selected).

Bit Definitions:

Bits Name	Description
7:3 –	Reserved. Always write 0.
2:0 Data	Select which channel is in use for DMA 0.

DMA Channel Select 1

		0				Data	
7	6	5	4	3	2	1	0

Returns 4 (no DMA channel selected).

Bit Definitions:

<u>Bits</u> N	<u>lame</u>	Description
7:3 –		Reserved. Always write 0.
2:0 D	Data	Select which channel is in use for DMA 1.

CONFIGURATION

LDN 2: Joystick Device

Activate

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	<u>Description</u>
7:1	-	Reserved. Always write 0.
0	Activate	1 = Activate. 0 = Deactivate (default).

I/O Range Check							(31h, R)
		(C			Enable range check	Pattern select
7	6	5	4	3	2	1	0

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:2	-	Reserved. Always write 0.
1	Enable range check	1 = Enable range check. 0 = Disable.
0	Pattern select	1 = 55h. 0 = AAh.

I/O De	coder (0 Base	Addre	SS		(60	h, R/W)
	(0			A[′	11:8]	
7	6	5	4	3	2	1	0

I/O base address, bits 11:8. One location.

I/O De	coder ((61	h, R/W)				
7	6	5	4	3	2	1	0

I/O base address, bits 7:0.

LDN 3: MPU-401 Device

The MPU-401, as an independent device, is optional; normally MPU-401 is part of the AudioDrive® solution.

Activa	te					(3	0h, R/W)
			0				Activate
7	6	5	1	3	2	1	0

After reset or after a 1 is written to the reset bit in the card's configuration control bit, the default for this register is 0.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:1	-	Reserved. Always write 0.
0	Activate	1 = Activate.
		0 = Deactivate (default).

I/O Range Check

I/O F	Rang	e Cł	neck				(31h, R)
		(0			Enable range check	Pattern select
7	6	5	4	3	2	1	0

This register verifies that the I/O range assigned to a logical device does not conflict with the I/O range used by another device.

Bit Definitions:

<u>Bits</u>	Name	Description
7:2	-	Reserved. Always write 0.
1	Enable range check	1 = Enable range check. 0 = Disable.
0	Pattern select	1 = 55h. 0 = AAh.

I/O De	coder () Base	Addre	SS		(60	h, R/W)
	(0			A[1	1:8]	
7	6	5	4	З	2	1	0

I/O base address, bits 11:8. Two locations.

I/O De	coder (0 Base	Addre	SS		(61	h, R/W)
			A	[7:0]			
7	6	5	4	3	2	1	0

I/O base address, bits 7:0.

Interrupt Request Level Select 0 (70h, R/W)

	0 6 5 4				D	ata	
7	6	5	4	3	2	1	0

Interrupt request level select 0.

Bit Definitions:

<u>Bits</u> N	lame	<u>Description</u>
7:4	_	Reserved. Always write 0.

3:0 Data Select which interrupt level used for Interrupt 0.

Interru	ipt Red	quest T	ype Se	lect 0		(71h, R)
0	0	0	0	0	0	1	0
7	6	5	4	3	2	1	0

Interrupt request type select 0. Returns 2 (low-to-high transition).

I/O PORTS

I/O PORTS

Table '	14	I/O Ports	for Configura	tion Audio	FM MPU	-401 and.	lovstick Devices
Table	14		i or connyure	uon, Auuo	, 1 101, 1011 O	- 4 01, and c	Devices

Port	Read/Write	Function
Configuration Device		
Base+0h	Read/write	Configuration Register Address.
Base+1h	Read/write	Configuration Register Data.
Base+2h	Read/write	ES1879 GPO State register.
Base+3h	Read/write	ES978 GPO State register.
Base+4h	Read-only	ES1879 GPI Status register.
Base+5h	Read-only	ES978 GPI Status register.
Base+6h	Read-only	Interrupt Status register.
Base+7h	Read/write	Interrupt Mask register.
Audio Device		
Base+0h - Base+3h	Read/write	20-voice FM synthesizer. Address and data registers.
Base+4h	Read/write	Mixer Address register (port for address of mixer controller registers).
Base+5h	Read/write	Mixer Data register (port for data to/from mixer controller registers).
Base+6h	Read/write	Audio reset and status flags.
Base+7h	Read/write	Power Management register. Suspend request and FM reset.
Base+8h - Base+9h	Read/write	11-voice FM synthesizer. Address and data registers.
Base+Ah	Read-only	Input data from read buffer for command/data I/O. Poll bit 7 of port Audio_Base+Eh to test whether the read buffer contents are valid.
Base+Ch	Read/write	Output data to write buffer for command/data I/O. Read embedded microcontroller status.
Base+Eh	Read-only	Data available flag from embedded microcontroller.
Base+Fh	Read/write	Address for I/O access to FIFO in Extended mode.
FM Device		·
Base+0h - Base+3h	Read/write	20-voice FM synthesizer. Address and data registers.
MPU-401 Device		
Base+0h - Base+1h	Read/write	MPU-401 port (x=0,1, 2, or 3) if enabled.
Joystick Device		
Base+0h	Read/write	Joystick.

Port Descriptions

This section describes the I/O ports in detail.

Configuration Device

Logical device 0 is the configuration device. It has eight I/ O Configuration Device ports assigned to it. Two of these ports are used to access a set of Plug and Play registers that define I/O resources and activation controls for audio, FM, MPU-401, and joystick devices.

Configuration Register Address (Config_Base+0h, R/W)

A7	A6	A5	A4	A3	A2	A1	A0
7	6	5	4	3	2	1	0

Sets the PnP configuration address.

Configuration Register Data (Config_Base+1h, R/W)

-		-		•	-	_	
D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

Sets the PnP configuration data.

	ES1879	GPO S	tate Reg	gister	(Config_Base+2h, R/W)			
	х	GPO6	GPO5	GPO4	GPO3	GPO2	GPO1	GPO0
ĺ	7	6	5	4	3	2	1	0

Sets the state of the ES1879 GPO pins that are not mapped to GPI pins of the ES978.

(Config Base+3h, R/W)

ES978 GPO State Register

		0		•	<u> </u>		
х	GPO6	GPO5	GPO4	GPO3	GPO2	GPO1	GPO0
7	6	5	4	3	2	1	0

Sets the state of the ES978 GPO pins that are not mapped to GPI pins of the ES1879.

ES1879	9 GPI S	status F	Registe	r (Config_	_Base+	-4h, R)
х	GPI6	GPI5	GPI4	GPI3	GPI2	GPI1	GPI0
7	6	5	4	3	2	1	0

ES1879 general-purpose input status (read-only).

ES978	GPI St	atus Re	egister	(Config_Base GPI3 GPI2 GPI1		_Base+	+5h, R)	
х	GPI6	GPI5	GPI4	GPI3	GPI2	GPI1	GPI0	
7	6	5	4	3	2	1	0	

ES978 general-purpose input status (read-only).

Interrupt Status Register				(0	onfig_	Base+	6h, R)	
	Docked status	PnPOK status	PnP	state	MPU-401	H/W volume	Audio 2	Audio 1
	7	6	5	4	3	2	1	0

Read this register to find out which ES1879 interrupt sources are active.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7	Docked status	Current docking state (status; not an interrupt request).
6	PnPOK status	PnPOK status bit.
5:4	PnP state	Shows the PnP state.bit 5bit 4PnP state001sleep101configure
3	MPU-401	MPU-401. MPU-401 receive interrupt request AND'd with bit 6 of mixer register 64h.
2	H/W vol	Hardware volume. Hardware volume interrupt request AND'd with bit 1 of mixer register 64h.
1	Audio 2	Audio 2. Audio 2 interrupt request AND'd with bit 6 of mixer register 7Ah.
0	Audio 1	Audio 1. Audio 1 interrupt request.

Interrupt Mask Register	(Config_Base+7h, R/W)
-------------------------	-----------------------

Х			MPU-401	H/W vol	Audio 2	Audio 1	
7	6	5	4	3	2	1	0

The mask bits of this register can be used to force the interrupt source to be zero without putting the interrupt pin in a high-impedance state. Each bit is AND'd with the corresponding interrupt source. Set to all ones by hardware reset.

Bits 3:0 are set high by hardware reset.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	<u>Description</u>
7:4	_	Don't care.
3	MPU-401	MPU-401 interrupt mask bit.
2	H/W vol	Hardware volume interrupt mask bit.
1	Audio 2	Audio 2 interrupt mask bit.
0	Audio 1	Audio 1 interrupt mask bit.

42

I/O PORTS

PRELIMINARY

Audio Device

Mixer Address Register				(Audio_Base+4h, R/W)				
>	<	A6	A5	A4	A3	A2	A1	0
7	7	6	5	4	3	2	1	0

The ES1879 provides a means to read back the Mixer Address register. Reading back this register is useful for a "hot-key" application that needs to change the mixer while preserving the address register.

- - -_ _ • •

Mixei	r Data F	Register	r	(Audio_Base+5h, R/W)				
D7	D6	D5	D4	D3	D2	D1	D0	
7	6	5	4	3	2	1	0	

Reset	and	Status	Flags
-------	-----	--------	-------

```
(Audio_Base+6h, W)
```

-

			0			FIFO reset	SW reset
7	6	5	4	3	2	1	0

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:2	-	Reserved. Always write 0.
1	FIFO	1 = Hold ES1879 FIFO in reset.
	reset	0 = Release ES1879 FIFO from reset. Bit 1 has no function for Compatibility mode.
0	SW	1 = Hold ES1879 in reset.

0 = Release ES1879 from reset.reset

Reset and Status Flags

(Audio Base+6h, R)

Act flag 2	Act flag 1	Act flag 0	Serial act flag	Digital power status	MIDI mode	FIFO reset	SW reset
7	6	5	4	3	2	1	0

Bits 7:4 of port Audio Base+6h can be used to monitor I/O activity to the ES1879.

Bits 7:5 are set high after any read from port Audio_Base+6h. Then specific I/O activity can set these bits low. When port Audio_Base+6h is read at a later time, these bits will indicate whether I/O activity has occurred between the reads from Audio Base+6h.

In addition, bit 4 can be used to indicate if the DSP or ES689/ES69x serial interface is in use. Bit 4 is set high if bit 7 or bit 5 of mixer register 48h is high (software serial enable or serial reset). It is also set high if the ES689/ ES69x serial interface is active, which is a combination of bit 4 of mixer register 48h set high and MCLK (ES689/ ES69x serial bit clock) being high periodically.

Bit Definitions:

Bits Name **Description**

- Act flag 2 Set low by I/O reads/writes to MPU-401, Joy-7 stick, Configuration devices, as well as PnP I/ O activity (the last includes almost any I/O write to 279h or A79h if IRPOM = 1).
- Act flag1 Set low by I/O reads/writes to audio ports 6 Audio_Base+4h and Audio_Base+5h (mixer ports).
- 5 Act flag 0 Set low by I/O writes to audio and FM ports excepting Audio Base+4h, Audio Base+5h, and Audio Base+7h. Set low by I/O reads from audio and FM ports excepting Audio Base+4h. Audio_Base+5h, Audio_Base+6h, and Audio_Base+7h. Also set low by DMA accesses to ES1879.
- 1 = Serial activity flag. High if DSP serial mode 4 Serial is enabled (SE input pin is high or bit 7 of Mixer act flag Extension register 48h is high) or if an external ES689/ES69x is using MCLK/MSD to drive the FM DACs.
- 1 = ES1879 digital audio is powered-up. 3 Digital power 0 = ES1879 digital audio is currently powered status down (power mode 0, 1, and 2).
- MIDI 1 = The ES1879 is processing a MIDI com-2 mand 30h, 31h, 34h, or 35h. In this mode, the mode ES1879 is monitoring serial input. Poweringdown may cause a loss of data. The ES1879 does not automatically wake up on serial input on the MSI pin.
- FIFO FIFO Reset bit. 1 reset
- SW reset Software Reset bit. 0

Power Manage	ment Register	(Audio	Base+7h.	. R/W)

Suspend request	0	FM synth reset			0		
7	6	5	4	3	2	1	0

Reading or writing port Audio_Base+7h does not automatically wake up the ES1879.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7	Suspend request	Pulse high, then low to request suspend.
6	-	Reserved. Always write 0.
5	FM synth reset	1 = Hold FM synthesizer in reset.0 = Release FM synthesizer from reset.
4:0	-	Reserved. Always write 0.

Read	Data R	egister	•		(Audio	_Base+	-Ah, R)
D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

Reads data from embedded audio microcontroller. Poll bit 7 of port Audio_Base+Eh to test whether the register contents are valid.

Write	Data R	egister	•	((Audio_	Base+	Ch, W)
D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

Writes data to embedded audio microcontroller. Sets bit 7 of port Audio_Base+Ch high (write buffer not available) until data is processed by the ES1879.

Read	Data R	egister			(Audio	_Base+	-Ch, R)		
D7	D6	D5	D4	D3	D2	D1	D0		
7	6	5	4	3	2	1	0		
Bit De	efinitions	6:							
<u>Bits</u>	<u>Name</u>	Descr	<u>iption</u>						
7	Busy flag	g 1 = w 0 = w	1 = write buffer not available or ES1879 busy.0 = write buffer available or ES1879 not busy.						
6		1 = Da 0 = Da This fi Audio	ata avail ata not a lag is res _Base+/	able in re vailable set by a Ah.	ead buffe in read b read fron	er. ouffer. n port			
5		1 = Ex loade	ktended d).	mode Fl	FO Full	(256 byte	es		
Λ		1 – Ev	handad	mode Fl		ty (0 byt	<u></u>		

4	1 = Extended mode FIFO Empty (0 bytes loaded).
3	1 = FIFO Half Empty, Extended mode flag.
2	1 = ES1879 microcontroller generated an inter-

DMA complete).
1 = Interrupt request generated by FIFO Half
Empty flag change. Used by Programmed I/O

```
interface to FIFO in Extended mode.
1 = Interrupt request generated by DMA
```

counter overflow in Extended mode.

Read	Buffer	er Status Register			(Audio	_Base+	-Eh, R)
D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

A read from port Audio_Base+Eh will reset any interrupt request.

Bit Definitions:

1

0

Bits Name Description

7	1 = Data available in read buffer.
	0 = Data not available in read buffer.
	This flag is reset by a read from port
	Audio_Base+Ah.

Programmed I/O Access to FIFO Register (Audio_Base+Fh, R/W)

D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

This port can be used to replace Extended mode DMA with Programmed I/O.

ES1879 DATA SHEET

I/O PORTS

FM Device

The FM synthesizer operates in two different modes: Emulation mode and Native mode. In Emulation mode, the FM synthesizer is fully compatible with the OPL3 FM synthesizer. In Native mode, the FM synthesizer has increased capabilities and performance for more realistic music. The following register descriptions are for Emulation mode only.

FM Sta	tus				(FM_	Base	⊦0h, R)
IRQ	FT1	FT2	0	0	0	0	0
7	6	5	4	3	2	1	0

Reading this register returns the overflow flags for timers 1 and 2 and the "interrupt request" from these timers (this is not a real interrupt request but is supported as a status flag for backward compatibility with the OPL3 FM synthesizer).

FM Lov	v Bank	Addres		(FM_	Base+	0h, W)	
A7	A6	A5	A4	A3	A2	A1	A0
7	6	5	4	3	2	1	0

Low bank register address.

NOTE: Any write to this register will also put the FM synthesizer in Emulation mode if it is currently in Native mode.

FM D	ata Write	(FM_	Base+	1h, W)			
D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

FM register write. The data written to FM_Base+1h is written to the current address FM register. Note that register writes must follow the timing requirements of the OPL3 FM synthesizer.

FM Hig	h Bank	Addre		(FM_	Base+	2h, W)	
A7	A6	A5	A4	A3	A2	A1	A0
7	6	5	4	3	2	1	0

High bank register address.

FM Data Write

FM Data Write					(FM_	Base+	3h, W)
D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

FM register write. Writing to this register in Emulation mode is the same as writing to register FM_Base+1h.

MPU-401 Device

MPU-4	01 Data	1		(N	IPU_B	ase+0h	n, R/W)
D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

This register is used to read data from the MPU-401 receive FIFO or a command acknowledge byte (0FEh). This register is also used to write data to the MPU-401 transmit FIFO.

MPU-4	01 Con	nmand			(MPU_	Base+	1h, W)
D7	D6	D5	D4	D3	D2	D1	D0
7	6	5	4	3	2	1	0

The MPU-401 device accepts only two commands:

- FFh Reset/return to Smart mode. This command generates an acknowledge byte if received when already in Smart mode.
- Go to UART mode. This command generates 3Fh an acknowledge byte if received while in Smart mode. It is ignored if the device is already in UART mode.

MPU-401 Status (MPU Base+1h, R) -RR -TR х 7 6 5 4 3 2 1 0

Bit Definitions	:
Bits Name	Description
7 -RR	0 = read data available in the receive FIFO, or pending acknowledge byte to be read (0FEh).
6 -TR	0 = there is room in the transmit FIFO to accept another byte.

5:0 -Don't care.

Joystick Device

The joystick device uses only a single I/O port. The device can function in one of two modes: Analog mode or Digital mode. The use of this I/O port is different depending on the mode. This section describes Analog mode. Digital mode is described in the MPU-401/Joystick Interface section.

Joystic	k_Bas	e+0h					(W)
х	х	х	х	х	х	х	х
7	6	5	4	3	2	1	0

Any value written to the Joystick_Base+0h port will restart the timing sequence. This should be done before reading the timer status flags.

Joystic	k_Bas	e+0h					(R)	
SWD	SWC	SWB	SWA	TD	тс	ТВ	TA	
7	6	5	4	3	2	1	0	

SW(A-D) return the current state of the joystick switch inputs. T(A-D) return the current state of the four one-shot timers connected to the X and Y resistors of the dual joysticks.

46

PROGRAMMING THE ES1879

Identifying the ES1879

The ES1879 can be identified by reading Mixer Extension register 40h successfully.

Mixer Extension register 40h returns the following 8-bit values on four successive reads:

18h, 79h, A[11:8], A[7:0]

where 18h and 79h are data reads indicating the part number (1879) and A[11:0] is the base address of the configuration device. Writing to the Mixer Address register (Audio_Base+4h) resets the sequence so that the next read of 40h returns 18h.

Resetting the Audio Device via Software

The ES1879 audio embedded microcontroller can be reset in one of two ways: hardware reset or software reset. The hardware reset signal comes from the ISA bus. Software reset is controlled by bit 0 of port Audio_Base+6h.

To reset the ES1879 audio microcontroller by software:

- 1. Write a 1 to port Audio_Base+6h.
- 2. Delay a short period, for example, by reading back Audio_Base+6h for 10 msecs.
- 3. Write a 0 to port Audio_Base+6h.
- In a loop that lasts at least 1 msec, poll port Audio_Base+Eh bit 7=1 for read data available.

If bit 7=1, then read the byte from port Audio_Base+Ah. Exit the loop if the content is 0AAh; otherwise, continue polling.

Both hardware reset and software reset will:

- Disable Extended mode.
- Reset the timer divider and filter registers for 8 kHz sampling.
- Stop any DMA in progress.
- Clear any active interrupt request.
- Disable voice input of mixer (see the D1h/ D3h commands).
- Reset Compatibility mode and Extended mode DMA counters to 2048 bytes.
- Set analog direction to be DAC, with the DAC value set to mid-level.
- Set input volume for 8-bit recording with AGC (Automatic Gain Control) to maximum.
- Set input volume for 16-bit recording to mid-range.

In addition to performing actions on the above list, a hardware reset will reset all Mixer registers to default values.

Modes of Operation

The ES1879 can operate the first audio channel in one of two modes: Compatibility mode or Extended mode.

In both modes, a set of mixer and controller registers enables application software to control the analog mixer, record source, and output volume. Programming the ES1879 Enhanced Mixer is described later in this document. See "Programming the ES1879 Mixer" on page 59.

Compatibility Mode Description

The first mode, Compatibility mode, is compatible with the Sound Blaster Pro. This is the default mode after reset. In this mode, the ES1879 microcontroller is an intermediary in all functions between the ISA bus and the CODEC. The ES1879 microcontroller performs limited FIFO functions using 64 bytes of internal memory.

Extended Mode Description

The ES1879 also supports an Extended mode of operation. In this case, a 256-byte FIFO is used as an intermediary between the ISA bus and the ADC and DAC Control registers, and various Extended mode controller registers are used for control. The ES1879 microcontroller is mostly idle in this mode. DMA control is handled by dedicated logic. Programming for Extended mode operation requires accessing various control registers with ES1879 commands. Some of these commands are also useful for Compatibility mode, such as those that configure DMA and IRQ channels.

Table 15 Comparison of Operation Modes

	Compatibility Mode (Sound Blaster Pro)	Extended Mode
Sound Blaster Pro-compatible	Yes	No
FIFO size	64 bytes (firmware managed)	256 bytes (hardware managed)
Mono 8-bit ADC, DAC	Yes, to 44 kHz	Yes, to 44 kHz
Mono 16-bit ADC, DAC	Yes, to 22 kHz	Yes, to 44 kHz
Stereo 8-bit DAC	Yes, to 22 kHz	Yes, to 44 kHz
Stereo 8-bit ADC	Yes, to 22 kHz	Yes, to 44 kHz
Stereo 16-bit DAC	Yes, to 11 kHz	Yes, to 44 kHz
Stereo 16-bit ADC	No	Yes, to 44 kHz
Signed/Unsigned Control	No	Yes
Automatic Gain Control during recording	Firmware controlled, to 22 kHz, mono only	No
Programmed I/O block transfer for ADC and DAC	No	Yes
FIFO status flags	No	Yes
Auto reload DMA	Yes	Yes
Time base for programmable timer	1 MHz or 1.5 MHz	800 kHz or 400 kHz
ADC and DAC jitter	± 2 microseconds	None

Mixing Modes Not Recommended

Avoid mixing Extended mode commands with Compatibility mode commands. The Audio 1 DAC Enable/ Disable commands D1h and D3h are safe to use when using Extended mode to process ADC or DAC. However, other Compatibility mode commands can cause problems. The Extended mode commands may be used to set up the DMA or IRQ channels before entering Compatibility mode.

Data Formats

This section briefly describes the different audio data formats used by the ES1879.

Compressed Data Formats

The ES1879 supports two types of compressed sound DAC operations: ESPCM[®], which uses a variety of proprietary compression techniques developed by ESS Technology, and ADPCM, which is supported by many other sound cards but is of a lower quality.

Both ADPCM and **ESPCM**[®] are only transferred using DMA transfer. The first block of a multiple-block transfer uses a different command than subsequent blocks. The first byte of the first block is called the reference byte.

Use Compatibility mode when transferring compressed data.

Sound Blaster Pro-Compatible Data Formats

There are four formats available from combining the following two options:

- 8-bit or 16-bit
- Mono or stereo

The 8-bit samples are unsigned, ranging from 0h to 0FFh, with the DC levels around 80h.

16-bit samples are unsigned, ranging from 0000h to 0FFFFh, with the DC levels around 8000h.

Stereo DMA Transfers in Compatibility Mode

Stereo DMA transfers are only available using DMA rather than Direct mode commands.

To perform a stereo DMA transfer, first set bit 1 of mixer register 0Eh high. Then set the timer divider to twice the per-channel sample rate.

The maximum stereo transfer rate for 8-bit data is 22 kHz per channel, so for this case, program the timer divider as if it were for 44 kHz mono. The maximum stereo transfer rate for 16-bit data is 11 kHz per channel. Stereo ADC transfers for 16-bit data are not allowed in Compatibility mode.

For 8-bit data, the ES1879 expects the first byte transferred to be for the right channel, and subsequent bytes to alternate left, right, etc.

For 16-bit data, the ES1879 expects DMA transfers to be a multiple of 4, with repeating groups in the order:

- 1. Left low byte
- 2. Left high byte
- 3. Right low byte
- 4. Right high byte

ES1879 Data Formats (Extended Mode and Audio 2)

There are eight formats available from the combination of the following three options:

- Mono or stereo
- 8-bit or 16-bit
- Signed or unsigned

For stereo data, the data stream always alternates channels in successive samples: first left, then right. For 16-bit data, the low byte always precedes the high byte.

Sending Commands During DMA Operations

It is useful to understand the detailed operation of sending a command during DMA.

The ES1879 uses the Audio 1 FIFO for DMA transfers to and from the CODEC. When the FIFO is full (in the case of DAC) or empty (in the case of ADC), DMA requests are temporarily suspended and the Busy flag (bit 7 of port Audio_Base+Ch) is cleared. This opens a window of opportunity to send a command to the ES1879. Commands such as D1h and D3h, which control the Audio 1 DAC mixer input enable/disable status, and command D0h, which suspends or pauses DMA, are acceptable to send during this window.

The ES1879 chip sets the Busy flag when the command window is no longer open. Application software must send a command within 13 microseconds after the Busy flag goes high or the command will be confused with DMA data. Sending a command within the command window is easy if polling is done with interrupts disabled.

As an example of sending a command during DMA, consider the case where the application wants to send command D0h in the middle of a DMA transfer. The application disables interrupts and polls the Busy flag. Because of the FIFO and the rules used for determining the command window, it is possible for the current DMA transfer to complete while waiting for the Busy flag to clear. In this event, the D0h command has no function, and a pending interrupt request from the DMA completion is generated.

The interrupt request can be cleared by reading port Audio_Base+Eh before enabling interrupts or by having a way of signaling the interrupt handler that DMA is inactive so that it does not try to start a new DMA transfer.

Figure 17 shows timing considerations for sending a command.

Figure 17 Command Transfer Timing

Compatibility Mode Programming

This section describes Compatibility mode programming.

Compatibility Mode DAC Operation

1. Reset

Write 1h to port Audio_Base+6h.

To play a new sound without resetting the ES1879 beforehand when the status of the analog circuits is not clear, mute the input to the mixer with command D3h to prevent pops.

2. Enable stereo mode (optional).

Set bit 1 of mixer register 0Eh high. Use only DMA mode. Clear bit 1 of mixer register 0Eh after the DAC transfer.

3. Set sample rate and filter clock.

Use commands 40h or 41h to set the sample rate and filter clock divider. To set the filter clock to be independent from the sample rate, use command 42h in addition to 40h or 41h.

For stereo transfers, set the timer divider to twice the per-channel sample rate. The maximum stereo transfer rate for 8-bit data is 22 kHz per channel; so for this case, program the first timer divider as if you were transferring data at 44 kHz mono. The maximum stereo transfer rate for 16-bit data is 11 kHz per channel.

- 4. Set the block size. Only use this command (48h) with High-Speed DMA transfer modes (commands 90h and 91h).
- 5. Configure the system interrupt controller and system DMA controller.
- 6. Start DMA.

Start the DMA transfer by sending the command for the desired transfer type and data length. The uncompressed modes are shown in Table 16. See Table 28 for a description of the commands in addition to the commands for DMA transfers of compressed data.

DAC DMA Transfer Mode	Data Length	Command
Direct	8-bit	10h
	16-bit	11h
DMA mode Normal	8-bit	14h
	16-bit	15h
High-Speed	8-bit	91h
DMA mode Auto-Initialize	8-bit	1Ch
	16-bit	1Dh
High-Speed	8-bit	90h

 Table 16 Uncompressed DAC Transfer Modes

- 7. Delay approximately 100 milliseconds to allow the analog circuits to settle, then enable the Audio 1 DAC input to mixer with command D1h.
- 8. During DMA.

For Auto-Initialize mode, it is not necessary to send any commands to the ES1879 at interrupt time, except to read Audio_Base+Eh to clear the interrupt request.

For Normal mode, initialize the system DMA controller with the address and count of the next block size if it changes. Use command 48h. To start the next transfer, use command D4h.

To stop DMA after the current auto-initialize block is finished, use command D0h.

Commands such as D1h and D3h, which control the Audio 1 DAC mixer input enable/disable status, and command D0h, which suspends DMA, are acceptable to send during DMA transfers. These commands can only be sent during certain windows of opportunity. See "Stereo DMA Transfers in Compatibility Mode" on page 48.

- After DMA is finished, restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio_Base+Ch to be sure that data transfer is completed. Delay 25 milliseconds to let the filter outputs settle to DC levels, then disable the Audio 1 DAC input to the mixer with command D3h.
- 10. Issue another software reset to the ES1879 to initialize the appropriate registers.

ES1879 DATA SHEET

Compatibility Mode ADC Operation

ES1879 analog circuitry is switched from the DAC direction to the ADC direction by the first direct or DMA mode ADC command (2xh). Discard the first 25 to 100 milliseconds of samples because pops might occur in the data due to the change from the DAC to ADC direction. In the ADC direction, the digital audio input to the mixer is automatically muted.

1. Reset

Write 1h to port Audio_Base+6h.

To play a new sound without resetting the ES1879 beforehand when the status of the analog circuits is not clear, mute the input to the mixer with command D3h to prevent pops.

2. Select the input source using register 0Ch

Sound Blaster Pro has three recording sources: microphone, line, and auxiliary A (CD). Microphone input is the default source after any reset.

The ES1879 has seven recording sources. Use mixer register 1Ch to choose additional sources.

3. Program the input volume.

The selected source passes through an input volume stage that can be programmed with 16 levels of gain from 0 to +22.5 dB in steps of 1.5 dB. In 8-bit recordings (other than High-Speed mode), the volume stage is controlled by the ES1879 firmware for the purposes of automatic gain control (AGC). In 16-bit recordings as well as High-Speed mode 8-bit recordings, the input volume stage is controllable from application software. Use command DDh to change the input volume level from 0 to 15. The reset default is mid-range, 8.

4. Enable stereo mode (optional).

Set bit 1 of mixer register 0Eh high. Use only DMA mode. Clear bit 1 of mixer register 0Eh after the ADC transfer.

5. Set sample rate and filter clock.

Use commands 40h or 41h to set the sample rate and filter clock divider. If you want to set the filter clock to be independent from the sample rate, use command 42h in addition to 40h or 41h.

For stereo transfers, set the timer divider to twice the per-channel sample rate. The maximum stereo transfer rate for 8-bit data is 22 kHz per channel; so for this case, program the first timer divider as if you were transferring data at 44 kHz mono. The maximum stereo transfer rate for 16-bit data is 11 kHz per channel.

- Set the block size. Only use this command (48h) with High-Speed DMA transfer modes (commands 98h and 99h).
- 7. Configure the system interrupt controller and system DMA controller.
- 8. Start DMA.

Start the DMA transfer by sending the command for the desired transfer type and data length. The uncompressed modes are shown in Table 17. See Table 28 for a description of the commands in addition to the commands for DMA transfers of compressed data.

ADC DMA Transfer Mode	Data Length	Command
Direct	8-bit	20h
	16-bit	21h
DMA mode Normal	8-bit	24h
	16-bit	25h
High-Speed	8-bit	99h
DMA mode Auto-Initialize	8-bit	2Ch
	16-bit	2Dh
High-Speed	8-bit	98h

Table 17 Uncompressed ADC Transfer Modes

- 9. Delay approximately 100 msec to allow the analog circuits to settle, then enable the Audio 1 DAC input to mixer with command D1h.
- 10. During DMA.

For Auto-Initialize mode, it is not necessary to send any commands to the ES1879 at interrupt time, except to read Audio_Base+Eh to clear the interrupt request.

For Normal mode, initialize the system DMA controller with the address and count of the next block size if it changes. Use command 48h. To start the next transfer, use command D4h.

To stop DMA after the current auto-initialize block is finished, use command D0h.

Commands such as D0h, which suspends DMA, are acceptable to send during DMA transfers. These commands can only be sent during certain windows of opportunity. See "Writing Commands to ES1879 Controller Registers" on page 52.

- 11. After DMA is finished, restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio_Base+Ch to be sure that data transfer is completed.
- 12. Issue another software reset to the ES1879 to initialize the appropriate registers.

The maximum sample rate for Direct mode ADC is 22 kHz.

The maximum sample rate for DMA ADC for both 8-bit and 16-bit is 22 kHz, using commands 24h, 25h, 2Ch, or 2Dh.

There is a special High-Speed mode for ADC that allows 8-bit sampling up to 44 kHz. This mode uses commands 98h (auto-initialize) and 99h (normal). No AGC is performed as the input volume is controlled with command DDh.

Extended Mode Programming

This section describes Extended mode programming.

Commanding ES1879 Controller Registers

Controller registers are written to and read from using commands sent to ports Audio_Base+Ch and Audio_Base+Ah.

Commands of the format Axh, Bxh, and Cxh, where x is a numeric value, are used for Extended mode programming of the first audio channel.

Commands of the format Ax and Bx are used to access the ES1879 controller registers. For convenience, the registers are named after the commands used to access them. For example "register A4h," the Audio 1 Transfer Count Reload (low-byte) register, is written to by "command A4h."

Enabling Extended Mode Commands

After any reset and before using any Extended mode commands, first send command C6h to enable Extended mode commands.

ES1879 Command/Data Handshaking Protocol

This section describes how to write commands to and read data from the ES1879 controller registers.

Writing Commands to ES1879 Controller Registers

Commands written to the ES1879 enter a write buffer. Before writing the command, make sure the buffer is not busy.

Bit 7 of port Audio_Base+Ch is the ES1879 Busy flag. It is set when the write buffer is full or when the ES1879 is otherwise busy (for example, during initialization after reset or during Compatibility mode DMA requests).

To write a command or data byte to the ES1879 microcontroller:

- 1. Poll bit 7 of port Audio_Base+Ch until it is clear.
- 2. Write the command/data byte to port Audio_Base+Ch.

The following is an example of writing to ES1879 controller registers. To set up the Audio 1 Transfer Count Reload register to F800h, send the following command/data bytes:

```
A4h, 00h; register A4h = 00h
```

A5h, F8h; register A5h = F8h

NOTE: The port Audio_Base+Ch write buffer is shared with Compatibility mode DMA write operations. When DMA is active, the Busy flag is cleared during windows of time when a command can be received. Normally, the only commands that should be sent during DMA operations are Dxh commands such as DMA pause/continue and Audio 1 DAC enable/disable. In this situation, it is recommended to disable interrupts between the time that the Busy bit is polled and the command is written. Also, minimize the time between these instructions. See "Sending Commands During DMA Operations" on page 49 for more information.

Reading the Read Data Buffer of the ES1879

Command C0h is used to read the ES1879 controller registers used for Extended mode. Send command C0h followed by the register number, Axh or Bxh. For example, to read register A4h, send the following command bytes:

COh, A4h

Then poll the Read-Data-Buffer-Status bit, bit 7 of port Audio_Base+Eh, before reading the register contents of port Audio_Base+Ah.

The Read-Data-Buffer-Status flag can be polled by reading bit 7 of port Audio_Base+Eh. When a byte is available, the bit is set high.

NOTE: Any read of port Audio_Base+Eh also clears any active interrupt request from the ES1879. An alternate way of polling the Read-Data-Buffer-Status bit is through bit 6 of port Audio_Base+Ch, which is the same flag. The Read-Data-Buffer-Status flag is cleared automatically by reading the byte from port Audio_Base+Ah.

52

Extended Mode Audio 1 DAC Operation

Follow the steps below to program the first audio channel for Extended mode DAC operation.

1. Reset:

Write 3h to port Audio_Base+6h, instead of 1h as in Compatibility mode. Bit 1 high specifically clears the FIFO. The remainder of the software reset is identical to Compatibility mode. Reset disables the Audio 1 DAC input to the mixer. This is intended to mask any pops created during the setup of the DMA transfer.

- 2. After the reset, send command C6h to enable Extended mode commands.
- 3. Program direction and type: registers B8h, A8h, and B9h:

Register B8h: Set bit 2 low for Normal DMA mode, high for Auto-Initialize DMA mode. Leave bit 3 low for the CODEC to run in the DAC direction.

Register A8h: Read this register to preserve the bits and then modify only bits 1 and 0:

- Bits 1:0 10: Mono
 - 01: Stereo

Set register B9h:

- Bits 1:0 00: Single transfer DMA.
 - 01: Demand transfer DMA: 2 bytes per DMA request.
 - 10: Demand transfer DMA: 4 bytes per DMA request.
- Clocks and counters: registers A1h, A2h, A4h and A5h: Register A1h: Audio 1 Sample Rate Generator. Register A2h: Audio 1 Filter Clock Divider. Registers A4h/A5h: Audio 1 Transfer Count Reload register, low/high byte, two's complement.
- 5. Initialize and configure DACs: registers B6h and B7h: See Table 18.

Register B6h: Write 80h for signed data and 00h for unsigned data. This also initializes the CODEC for DAC transfer.

Register B7h: Programs the FIFO (16-bit/8-bit, signed/ unsigned, stereo/mono). The first command sent to register B7h prevents pops.

Mono	Stereo	8-bits	16-bits	Unsigned	Signed	Sequence
Х		Х		Х		Reg B6h = 80h Reg B7h = 51h Reg B7h = D0h
Х		Х			Х	Reg B6h = 00h Reg B7h = 71h Reg B7h = F0h
Х			Х	Х		Reg B6h = 80h Reg B7h = 51h Reg B7h = D4h
Х			Х		Х	Reg B6h = 00h Reg B7h = 71h Reg B7h = F4h
	Х	Х		Х		Reg B6h = 80h Reg B7h = 51h Reg B7h = 98h
	Х	Х			Х	Reg B6h = 00h Reg B7h = 71h Reg B7h = B8h
	Х		Х	Х		Reg B6h = 80h Reg B7h = 51h Reg B7h = 9Ch
	Х		Х		Х	Reg B6h = 00h Reg B7h = 71h Reg B7h = BCh

 Set DMA control registers B1h and B2h: Register B1h: Interrupt Configuration register. Make sure bit 6 is high. Clear bits 7 and 5.

Register B2h: DRQ Configuration register. Make sure bit 6 is high. Clear bits 7 and 5.

- 7. Configure system interrupt controller and DMA controller.
- 8. To start DMA:

Set bit 0 of register B8h high while preserving all other bits.

- 9. Delay approximately 100 milliseconds to allow analog circuits to settle, then enable the Audio 1 DAC input to mixer with command D1h.
- 10. During DMA:

For Auto-Initialize mode DMA transfers, read Audio_Base+Eh to clear the interrupt request. Do not send any other commands to the ES1879 at interrupt time.

For Normal mode, initialize the system DMA controller with the address and count of the next block to transfer. Update the ES1879 Transfer Count registers if the count is changed. To start the next transfer, clear bit 0 of register B8h, then set it high again.

To stop a DMA transaction in progress, clear bit 0 of register B8h. To stop a DMA transaction after the current auto-initialize block is finished, clear bit 2 of register B8h, wait for the interrupt, and then clear bit 0 of register B8h.

11. After DMA is finished:

Restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio_Base+Ch to be sure data transfer is completed. A delay of 25 milliseconds is required to let the filter outputs settle to DC levels, then disable the first DMA DAC input to the mixer with command D3h.

12. To conclude:

Issue another software reset to the ES1879 to initialize the appropriate registers.

Extended Mode Audio 1 ADC Operation

Follow the steps below to program the first audio channel for Extended mode ADC operation:

NOTE: In Extended mode, there is no Automatic Gain Control (AGC) performed while recording. If AGC is necessary, use 16-bit recordings and perform AGC in system software.

1. Reset:

54

Write 3h to port Audio_Base+6h instead of 1h as in Compatibility mode. Bit 1 high specifically clears the FIFO. The remainder of the software reset is identical to Compatibility mode. Reset disables the Audio 1 DAC input to the mixer. This is intended to mask any pops created during the setup of the DMA transfer.

- 2. Send command C6h to enable Extended mode commands.
- 3. Select the input source:

The ES1879 has seven recording sources. Select the source using the mixer control register 1Ch.

4. Program input volume register B4h.

5. Program direction and type: registers B8h, A8h, and B9h:

Register B8h: Set bit 3 high to program the CODEC for the ADC direction. Set bit 2 low for Normal DMA mode, high for Auto-Initialize DMA mode.

At this point, the direction of the analog circuits is ADC rather than DAC. Unless the recording monitor is enabled, there will be no output from AOUT_L or AOUT_R until the direction is restored to DAC.

Register A8h: Read this register first to preserve the bits and modify only bits 3, 1, and 0:

Bits 1:0	10: Mono
	01: Stereo
Bit 3	0: Disable Record Monitor for now.

Register B9h:

Bits 1:0 00: Single transfer DMA.

01: Demand transfer: 2 bytes per DMA request.

10: Demand Transfer: 4 bytes per DMA request.

6. Clocks and counters: registers A1h, A2h, A4h, and A5h:

Register A1h: Audio 1 Sample Rate Generator. Set bit 7 high for sample rates greater than 22 kHz.

Register A2h: Audio 1 Filter Clock Divider.

Registers A4h/A5h: Audio 1 Transfer Count Reload register (low/high byte, two's complement).

7. Enable Record Monitor if desired:

Register A8h bit 3 = 1: Enable Record Monitor (optional).

 Initialize and configure ADC: register B7h. See Table 19.

Register B7h: programs the FIFO (16-bit/8-bit, signed/ unsigned, stereo/mono). The first command sent to register B7h initializes the DAC and prevents pops.

Mono	Stereo	8-bits	16-bits	Unsigned	Signed	Sequence
Х		Х		Х		Reg B7h = 51h Reg B7h = D0h
Х		Х			Х	Reg B7h = 71h Reg B7h = F0h
Х			Х	Х		Reg B7h = 51h Reg B7h = D4h
Х			Х		Х	Reg B7h = 71h Reg B7h = F4h
	Х	Х		Х		Reg B7h = 51h Reg B7h = 98h
	Х	Х			Х	Reg B7h = 71h Reg B7h = B8h
	Х		Х	Х		Reg B7h = 51h Reg B7h = 9Ch
	Х		Х		Х	Reg B7h = 71h Reg B7h = BCh

Table 19 Command Sequences for DMA Record

9. Set DMA control registers B1h and B2h:

Register B1h: Interrupt Configuration register. Verify that bit 6 is high. Clear bits 7 and 5.

Register B2h: DRQ Configuration register. Verify that bit 6 is high. Clear bits 7 and 5.

- 10. Configure system interrupt controller and DMA controller.
- 11. To start DMA:

Set bit 0 of register B8h high. Leave other bits unchanged.

- 12. Delay approximately 100 milliseconds to allow analog circuits to settle.
- 13. During DMA:

For Auto-Initialize mode DMA transfers, do not send any commands to the ES1879 at interrupt time, except for reading Audio_Base+Eh to clear the interrupt request.

For Normal mode, initialize the system DMA controller with the address and count of the next block to transfer. Update the ES1879 Transfer Count registers if the count is changed. To start the next transfer, clear bit 0 of register B8h, then set it high again.

To stop a DMA transaction in progress, clear bit 0 of register B8h. To stop a DMA transaction after the current auto-initialize block is finished, clear bit 2 of register B8h, wait for the interrupt, and then clear bit 0 of register B8h.

14. After DMA is finished:

Restore the system interrupt controller and DMA controller to their idle state.

15. To conclude:

Issue another software reset to the ES1879 to initialize the appropriate registers. This returns the ES1879 to the DAC direction and turns off the record monitor.

Extended Mode Programmed I/O Operation

The REP OUTSB instruction of the 80x86 family transfers data from memory to an I/O port specified by the DX register. The REP INSB instruction is the complementary function. Use ES1879 port Audio_Base+Fh for block transfers.

I/O transfers to FIFO are nearly identical to the DMA process, except that an I/O access to port Audio_Base+Fh replaces the DMA cycle. Some differences are described here.

To program in this mode, it is useful to understand how the FIFO Half-Empty flag generates an interrupt request. An interrupt request is generated on the rising edge of the FIFO Half-Empty flag. This flag can be polled by reading port Audio_Base+Ch. The meaning of this flag depends on the direction of the transfer:

DAC FIFOHE flag is set high if 0-127 bytes in FIFO

ADC FIFOHE flag is set high if 128-256 bytes in FIFO

Therefore, for DAC operations, an interrupt request is generated when the number of bytes in the FIFO changes from >= 128 to < 128. This indicates to the system processor that 128 bytes can be safely transferred without over filling the FIFO. Before the first interrupt can be generated, the FIFO needs to be primed, or filled, with more than 128 bytes. Keep in mind that data may be taken out of the FIFO while it is being filled by the system processor. If that is the case, there may never be >= 128 bytes in the FIFO unless somewhat more than 128 bytes is transferred. Polling the ES1879 FIFOHE flag to be sure it goes low in the interrupt handler (or when priming the FIFO) and perhaps sending a second block of 128 bytes is a solution to this problem.

For ADC, the interrupt request is generated when the number of bytes in the FIFO changes from < 128 to >= 128, indicating that the system processor can safely read 128 bytes from the FIFO. Before the first interrupt can be generated, the FIFO should be emptied (or mostly so) by reading from Audio_Base+Fh and polling the FIFOHE flag. It is not safe to use FIFO reset bit 1 of port Audio_Base+6h indiscriminately to clear the FIFO, because it may get ADC data out of sync.

As in DMA mode, bit 0 of register B8h enables transfers between the system and the FIFO inside the ES1879.

NOTE: The ES1879 is designed for I/O block transfer up to an ISA bus speed of 8.33 MHz.

Programmed I/O DAC Operation

Programmed I/O DAC operation is done just as explained under "Extended Mode Audio 1 DAC Operation" on page 53 with the following exceptions:

- In step 3, programming register B9h is unnecessary.
- In step 6, leave bits 7:5 of register B2h low. Set bit 5 of register B1h high to enable an interrupt on FIFO half-empty transitions. Keep bit 6 of register B1h low.
- In step 8, in addition to setting bit 0 of register B8h high, send the REP OUTSB command.

Programmed I/O ADC Operation

Programmed I/O ADC operation is done just as explained under "Extended Mode Audio 1 ADC Operation" on page 54 with the following exceptions:

- In step 5, programming register B9h is unnecessary.
- In step 9, leave bits 7:5 of register B2h low. Set bit 5 of register B1h high to enable an interrupt on FIFO half-empty transitions. Keep bit 6 of register B1h low.
- In step 11, in addition to setting bit 0 of register B8h high, send the REP OUTSB command.

Second Audio Channel DAC Operation

Follow the steps below to program the second audio channel for DAC operation.

1. Reset:

Write 3h to port Audio_Base+6h, instead of 1h as in Compatibility mode. Bit 1 high specifically clears the FIFO. The remainder of the software reset is identical to Compatibility mode. On reset, the playback mixer volume for the second audio channel is set to zero, register 7Ch. This masks any pops that might occur during the setup process.

2. Send command C6h to enable Extended mode commands.

3. Program transfer type: register 78h:

Register 78h: Set bit 4 low for Normal DMA mode, high for Auto-Initialize DMA mode.

- Bits 7:6 00: Single transfer DMA.
 - 01: Demand transfer DMA: 2 bytes per DMA request.
 - 10: Demand transfer DMA: 4 bytes per DMA request.
 - 11: Demand transfer DMA: 8 bytes per DMA request.
- 4. Clocks and counters: registers 70h, 72h, 74h, and 76h:

Register 70h: Audio 2 Sample Rate Generator. Register 72h: Audio 2 Filter Clock Divider. Registers 74h/76h: Audio 2 Transfer Count Reload register (low/high byte, two's complement).

NOTE: Registers 70h and 72h are slaved to registers A1h and A2h unless Asynchronous mode is enabled (set bit 1 of register 71h).

- 5. Initialize and configure DAC: register 7Ah:
 - Register 7Ah:

Bit 2: Set high for signed, low for unsigned.

Bit 1: Set high for stereo data, low for mono.

Bit 0: Set high for 16-bit samples, low for 8-bit.

 Set DMA and IRQ control registers B2h and 7Ah: Register B2h: DRQ Configuration register. Verify that bit 6 is high. Clear bits 7 and 5.

Register 7Ah: Audio 2 Control 2 register. Bit 6 enables the audio 2 interrupt request.

- 7. Configure system interrupt controller and DMA controller.
- 8. To start DMA:

Set bits 1:0 of register 78h high.

- 9. Delay approximately 100 milliseconds to allow analog circuits to settle, then set the Audio 2 DAC playback volume, register 7Ch.
- 10. During DMA:

For Auto-Initialize mode DMA transfers, read Audio_Base+Eh to clear the interrupt request. Do not send any other commands to the ES1879 at interrupt time.

For Normal mode, initialize the system DMA controller with the address and count of the next block to transfer. Update the ES1879 Transfer Count registers if the count is changed. To start the next transfer, clear bits 1:0 of register 78h, then set the bits high again.

To stop a DMA transaction in progress, clear bit 0 of register B8h. To stop a DMA transaction after the current auto-initialize block is finished, clear bit 4 of register 78h, wait for the interrupt, and then clear bits 1:0 of register 78h.

11. After DMA is finished:

Restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio_Base+Ch to be sure data transfer is completed. A delay of 25 milliseconds is required to let the filter outputs settle to DC levels, then disable the Audio 2 DAC input to the mixer.

12. To conclude:

Issue another software reset to the ES1879 to initialize the appropriate registers.

Full-Duplex DMA Mode (No DSP Serial Port)

The ES1879 supports stereo full-duplex DMA. In fullduplex (FD) mode, a second audio channel has been added to the ES1879. The second audio channel is programmed through mixer registers.

Program the first audio channel as in "Extended Mode Audio 1 ADC Operation" on page 54. Mixer registers A1h and A2h can define the sample rate and filter frequency for both record and playback. In other words, the record and playback are at the same sample rate (synchronous). The rate for playback can be set independently when bit 1 of mixer register 71h is set high. This is Asynchronous mode. Set the sample rate and filter frequency with mixer registers 70h and 72h. When bit 1 of mixer register 71h is low, the default state, the converters are in Synchronous mode.

Program the second audio channel second. Mixer registers 74h and 76h are set to the two's complement DMA transfer count. The second audio channel supports both Auto-Initialize DMA and Normal DMA modes. The playback buffer in system memory does not have to be the same size as the record buffer. When the DMA transfer count rolls over to zero, it can generate an interrupt that is independent of the interrupt generated by the first audio channel.

If the record and playback buffers are the same size, then a single interrupt can be used. Program the DMA Transfer Count Reload registers (A4h, A5h, 74h, and 76h) with the same value for both channels. Enable the second audio channel before enabling the record channel. For example, assume there are two half-buffers in a circular buffer. When the record channel completes filling the first half, it generates an interrupt. To ensure that the playback channel is not accessing the first half at the time of the interrupt, start the playback channel first. It has a 32-word FIFO that fills quickly through DMA. The recommended method is as follows:

Program both DMA controllers for Auto-Initialize DMA within separate circular buffers of the same size, N.

To exit full-duplex mode, clear bits 0 and 1 of mixer register 78h.

1. Reset:

Write 3h to port Audio_Base+6h, instead of 1h as in Compatibility mode. Bit 1 high specifically clears the FIFO. The remainder of the software reset is identical to Compatibility mode. Reset disables the Audio 1 DAC input to the mixer. This masks any pops created during the setup of the DMA transfer.

- 2. After the reset, send command C6h to enable Extended mode commands.
- 3. Program direction and type: registers B8h, A8h, and B9h:

Register B8h: Set bit 2 high for Auto-Initialize DMA mode. Leave bit 3 low to program the CODEC for the DAC direction.

Register A8h: Read this register first to preserve the bits and modify only bits 3, 1, and 0:

Bits 1:0	10: Mono
	01: Stereo
Bit 3	0: Disable Record Monitor for now.

Register B9h:

Bits 1:0	00: Single transfer DMA.
	01: Demand transfer DMA: 2 bytes per DMA request.
	10: Demand transfer DMA:

4 bytes per DMA request.

4. Clocks and counters: registers A1h, A2h, A4h, and A5h:

Register A1h: Audio 1 Sample Rate Generator. Register A2h: Audio 1 Filter Clock Divider. Registers A4h/A5h: Audio 1 Transfer Count Reload register (low/high byte, two's complement).

5. Initialize and configure DAC: registers B6h and B7h:

Register B6h: Write 80h for signed data and 00h for unsigned data. This also initializes the CODEC for DAC transfer.

Register B7h: Set the data format for 16-bit mono. See Table 18, "Command Sequences for DMA Playback" on page 53.

- Program transfer type: register 78h: Register 78h: Set bit 4 high for Auto-Initialize DMA mode.
 - Bits 7:6 00: Single transfer DMA.
 - 01: Demand transfer DMA: 2 bytes per DMA request.
 - 10: Demand transfer DMA: 4 bytes per DMA request.
 - 11: Demand transfer DMA: 8 bytes per DMA request.
- 7. Clocks and counters: registers 70h, 72h, 74h, and 76h:

Set the sample rate the same as in A1h. Set the Transfer Count Reload to 64 bytes.

Register 70h: Audio 2 Sample Rate Generator. Register 72h: Audio 2 Filter Clock Divider. Registers 74h/76h: Audio 2 Transfer Count Reload register (low/high byte, two's complement).

NOTE: Registers 70h and 72h are slaved to registers A1h and A2h unless Asynchronous mode is enabled (set bit 1 of register 71h).

8. Initialize and configure DAC: register 7Ah:

Register 7Ah:

Bit 2: Set high for signed, low for unsigned.

Bit 1: Set high for stereo data, low for mono.

Bit 0: Set high for 16-bit samples, low for 8-bit.

9. Set DMA and IRQ control registers B1h, B2h and 7Ah:

Register B1h: Interrupt Configuration register. Make sure bit 6 is high. Clear bits 7 and 5.

Register B2h: DRQ Configuration register. Verify that bit 6 is high. Clear bits 7 and 5.

Register 7Ah: Audio 2 Control 2 register. Bit 6 enables the audio 2 interrupt request.

- 10. Configure system interrupt controller and DMA controller.
- 11. Set bit 0 of register 78h. Since the playback FIFO is presumably empty, the value zero is transferred to the playback DAC at each sample clock. A click or pop may be heard when full-duplex is enabled. To prevent this, use command D1h to enable the Audio 1 DAC input to the mixer after an approximate delay of 25 milliseconds.
- 12. Enable playback DMA by setting bit 1 of register 78h. After 64 bytes are transferred, bit 7 of 7Ah should go high. Poll this bit with a suitable time-out of 10 milliseconds.

- 13. After bit 7 of register 7Ah goes high, enable recording by setting bit 7 of register B7h and bit 0 of register B8h.
- 14. As usual, discard the first 50 to 100 milliseconds of recorded data until analog circuits have settled. Set the audio 2 playback volume, register 7Ch.

15. During DMA:

For Auto-Initialize mode DMA transfers, read Audio_Base+Eh to clear the interrupt request. Do not send any other commands to the ES1879 at interrupt time.

For Normal mode, initialize the system DMA controller with the address and count of the next block to transfer. Update the ES1879 Transfer Count registers if the count is changed. To start the next transfer in the playback channel (Audio 2), clear bits 1:0 of register 78h, then set the bits high again. To start the next transfer in the record channel (Audio 1), clear bit 0 of register B8h, then set it high again

To stop a DMA transaction in progress, clear bit 0 of register B8h. To stop a DMA transaction in the playback channel (Audio 2) after the current autoinitialize block is finished, clear bit 4 of register 78h, wait for the interrupt, and then clear bits 1:0 of register 78h. To stop a DMA transaction in the record channel (Audio 1) after the current auto-initialize block is finished, clear bit 2 of register B8h, wait for the interrupt, and then clear bit 0 of register B8h.

16. After DMA is finished:

Restore the system interrupt controller and DMA controller to their idle state. Monitor the FIFO Empty status flag in port Audio_Base+Ch to be sure data transfer is completed. A delay of 25 milliseconds is required to let the filter outputs settle to DC levels, then disable the Audio 2 DAC input to the mixer.

17.To conclude:

Issue another software reset to the ES1879 to initialize the appropriate registers.

Programming the ES1879 Mixer

The ES1879 has a set of mixer registers that are backward compatible with the Sound Blaster Pro. However, some of the registers have an "extended" or "alternate" way of accessing the registers to provide for greater functionality.

Commanding the ES1879 Mixer Registers

There are two I/O addresses used by the mixer: Audio_Base+4h is the address port; Audio_Base+5h is the data port. In the Sound Blaster Pro, Audio_Base+4h is write only, while Audio_Base+5h is read/write.

Writing Data to the ES1879 Mixer Registers

To set a mixer register, write its address to Audio_Base+4h, then write the data to Audio_Base+5h.

Reading Data from the ES1879 Mixer Registers

To read a mixer register, write its address to Audio_Base+4h, then read the data from Audio_Base+5.

Resetting the Mixer Registers

The Mixer registers are not affected by software reset. To reset the registers to initial conditions, write any value to mixer register 00h:

- 1. Write 00h to Audio_Base+4h (select mixer register 00h).
- 2. Write 00h to Audio_Base+5h (write 00h to the selected mixer register).

Extended Access to SB Pro Mixer Volume Controls

The Sound Blaster Pro mixer volume controls are mostly 3 bits per channel. Bits 0 and 4 are always high when read. The ES1879 offers an alternative way to write each Mixer register. Use the "Extended Access" registers for volume control of 4 bits/channel. If the Sound Blaster Procompatible interface is used, bits 0 and 4 are cleared by a write and forced high on all reads. See Table 20 for a list of Sound Blaster Pro registers and the extended access counterparts.

Register	Function	Extended Access Register for 4 Bits/Channel
04h	DAC Volume	14h
22h	Master Volume	32h
26h	FM Volume	36h
28h	CD (Aux) Volume	38h
2Eh	Line Volume	3Eh

Table 20 Sound Blaster Pro/Extended Access Registers

For example, if you write 00h to Sound Blaster Pro register 04h, you will read back 11h because bits 0 and 4 are "stuck high" on reads. Inside the register, these bits are "stuck low," so that writing 00h is the same as writing 11h.

If you write or read using address 14h instead of 04h, you have direct access to all 8 bits of this Mixer register.

Extended Access to Mic Mix Volume

If Sound Blaster Compatibility mode register address 0Ah is used to control Mic Mix Volume, only bits 2 and 1 are significant. Bit 0 is stuck high on reads and stuck low on writes. Furthermore, this is a mono control, which prevents panning.

For extended access, use register address 1Ah instead. Register 1Ah offers 4 bits/channel for pan control of the mono microphone input to the mixer.

Access to this register via address 0Ah is mapped as follows:

Write to 0Ah	D2=0, D1=0	Mic Mix Volume = 00h	
	D2=0, D1=1	Mic Mix Volume = 55h	
	D2=1, D1=0	Mic Mix Volume = AAh	
	D2=1, D1=1	Mic Mix Volume = FFh	
Read from	D2 = Mic Mix Volume register bit 3		
0Ah	D1 = Mic Mix Volume register bit 2		
	D0 = 1		
	Others are undefined.		

Extended Access to ADC Source Select

In Sound Blaster Compatibility mode in the Sound Blaster Pro mixer, there are three choices for recording source, set by bits 2 and 1 of Mixer register 0Ch. Note that bit 0 is set to 0 upon any write to 0Ch and set to 1 upon any read from 0Ch:

D2	D1	Source Selected
0	0	Microphone (default)
0	1	CD (Aux) input
1	0	Microphone
1	1	Line input

For extended access, use register address 1Ch to select recording from the mixer as follows:

D2	D1	D0	Source Selected
0	0	0	Microphone (default)
0	0	1	Left channel: microphone (not mixed with ES978 mic). Right channel: master volume inputs ^a (left and right).
0	1	0	CD (Aux) input
0	1	1	Left channel: AOUTL Right channel: AOUTR
1	0	0	Microphone
1	0	1	Record mixer
1	1	0	Line input
1	1	1	Master volume inputs. ^a

a. The master volume inputs are the outputs of the Spatializer processor, before master volume is applied.

NOTE: Unless specifically stated, any of the above sources may have audio from the ES978 mixed in.

In addition to mixer registers 0Ch and 1Ch, the ES1879 has a separate mixer register for selecting the record source during DSP serial mode.

Record and Playback Mixer

The ES1879 has stereo mixers for record and playback. Each stereo mixer has eight input sources, each with independent 4-bit left and right volume controls, plus an input source from the ES978. For each 4-bit volume control, level 0 is mute and level 15 is maximum volume. The ES1879 mixers use a dual-slope method for selecting volume. Each increase of one step in volume from settings 1 to 8 results in a +3 dB increase. Each increase of one step in volume from settings 8 to 15 results in a +1.5 dB increase.

Volu	ume in decibels (dB)
	Mic	

Extended Access Mixer Volume Values

4-bit Value	Audio 1ª, Audio 2 ^₅	Mic, Music DAC, I²S°	AuxA, AuxB, Line		
15	0	+ 12.0	+ 4.5		
14	- 1.5	+ 10.5	+ 3.0		
13	- 3.0	+ 9.0	+ 1.5		
12	- 4.5	+ 7.5	0		
11	- 6.0	+ 6.0	- 1.5		
10	- 7.5	+ 4.5	- 3.0		
9	- 9.0	+ 3.0	- 4.5		
8	- 10.5	+ 1.5	- 6.0		
7	- 13.5	- 1.5	- 9.0		
6	- 16.5	- 4.5	- 12.0		
5	- 19.5	- 7.5	- 15.0		
4	- 22.5	- 10.5	- 18.0		
3	- 25.5	- 13.5	- 21.0		
2	- 28.5	- 16.5	- 24.0		
1	- 31.5	- 19.5	- 27.0		
0	mute	mute	mute		

a.Audio 1 DAC mixer input is gated by Sound Blaster "Speaker On" control. This control bit is toggled by the D1 (on) and D3 (off) Sound Blaster commands.

- b.In Telegaming mode (enabled by bit 0 of mixer register 48h when in serial mode), the audio 2 DAC mixer input volume is slaved to the audio 1 DAC mixer input volume.
- c. Alternatively, the I²S DAC volume can be set by the volume of the FM DAC at register 36h. This is useful when the I²S interface is used for an external wavetable synthesizer. Bit 3 of Vendor-Defined Card-Level register 2Bh when set high will enable tracking with FM volume.

æ1515)

Table 21 Mixer Input Volume Registers

Mixer Input	Playback Volume Register	Record Volume Register
Audio 1	14h	-
Audio 2	7Ch	69h
Microphone	1Ah	68h
Music DAC (FM/ 689/69x)	36h	6Bh
AuxA (CD)	38h	6Ah
AuxB	3Ah	6Ch
Line	3Eh	6Eh
l²S	6Dh	6Fh

Sound Blaster Pro Master Volume Emulation

Using Sound Blaster Pro emulation for master volume means that the 6-bit volume counters can be written via the Sound Blaster Pro Mixer register 22h (or 32h). Sound Blaster Pro emulation is enabled by default, and can be disabled by setting bit 0 of Mixer register 64h.

The master volume registers 60h and 62h can always be read, regardless of whether Sound Blaster Pro volume emulation is enabled, using the Sound Blaster Pro mixer register 22h (or 32h). The following 6-bit to 4-bit translation table is used:

 Table 22
 SB Pro Read Volume Emulation

Mute	Master Volume	Value Read at 32h	Value Read at 22h
1	ХХ	0	1
0	0-24	1	1
0	25-30	2	3
0	31-34	3	3
0	35-38	4	5
0	39-42	5	5
0	43-46	6	7
0	47-50	7	7
0	51-54	8	9
0	55	9	9
0	56-57	10	11
0	58	11	11
0	59-60	12	13
0	61	13	13
0	62	14	15
0	63	15	15

If Sound Blaster Pro volume emulation is enabled, then a mixer reset will cause both left and right channels to set to their power-on default, namely 54 (or 36h).

If Sound Blaster Pro volume emulation is enabled, then a write to mixer register 22h (or 32h) will cause both the left and right master volume registers to be changed as follows:

Table 23 SB Pro Write Volume Emulation

Value written to 22h or 32h	Mute	6-bit Volume
0	1	24
1	0	24
2	0	30
3	0	34
4	0	38
5	0	42
6	0	46
7	0	50
8	0	54
9	0	55
10	0	56
11	0	58
12	0	59
13	0	61
14	0	62
15	0	63

REGISTERS

Types of Register Access

There are two types of audio registers in the ES1879:

Mixer registers

These registers are accessed via I/O ports Audio_Base+4h and Audio_Base+5h. Audio_Base+4h is written with the register address. Then the register can be read/written via Audio_Base+5h. These registers control many functions other than the mixer.

• Controller registers

These registers are used to control Extended mode DMA playback and record through the first audio channel. Controller registers are accessed via an extension to the Sound Blaster common interface. This interface uses I/O ports Audio_Base+Ah, Audio_Base+Ch, and Audio_Base+Eh to transfer read data, write data/commands, and status, respectively.

Mixer Registers

There are two types of mixer registers. Sound Blaster Pro-compatible mixer registers, as the name suggests are fully compatible with the Sound Blaster Pro. ESS mixer registers are specific to ESS Technology, Inc.'s ES1879 *AudioDrive®* chips, though many registers are shared throughout the *AudioDrive®* family of chips.

Sound Blaster Pro-Compatible Mixer Registers

This section provides a summary of Sound Blaster Pro-compatible mixer registers in the ES1879 and some comments on the characteristics of these registers.

						,			
Reg	D7	D6	D5	D4	D3	D2	D1	D0	Remark
00h				Write: re	set mixer				Mixer reset
04h	DAC play volume left x DAC pla				play volum	e right	х	DAC playback volume	
0Ah	х	х	х	х	х	Mic mix	Mic mix volume x		Mic mix volume
0Ch	х	х	F1ª	х	F0ª	ADC S	ADC Source		See note for F0, F1.
0Eh	х	х	F2ª	х	х	х	Stereo	х	See note for F2.
22h	Ma	Master volume left		х	Mas	ter volume	right	х	Master volume
26h	F	FM volume left			FN	FM volume right			Music DAC volume
28h	CD (A	CD (AuxA) volume left			x CD (AuxA) volume right			х	CD (AuxA) volume
2Eh	Lii	Line volume left		х	Lin	e volume r	ight	х	Line volume

Table 24 Sound Blaster Pro-Compatible Register Summary

a. Sound Blaster filter control bits F2, F1, and F0 have no function in the ES1879 and are ignored.

Filter Control Bits

The Sound Blaster Pro mixer has three bits that control input and output filters. They are labeled as F0, F1, and F2 in Table 24 and Table 25. They have no function in the ES1879 and their values are ignored.

Mixer Stereo Control Bit

Bit 1 of register 0Eh is the Mixer Stereo Control bit. It is normally zero. Set this bit high to enable Sound Blaster Pro-compatible stereo DAC functions. Program the DAC sample rate to be twice the sample rate of each channel. For example, for 22 kHz stereo, program the "sample rate" to be 44 kHz using command 40h. This bit enables stereo only for DMA transfer to the DAC in Compatibility mode. It should not be used in Extended mode.

Clear this bit after completing the stereo DMA transfer, because this bit is unaffected by software reset (only mixer reset).

See also "Stereo DMA Transfers in Compatibility Mode" on page 48.

REGISTERS

ESS Mixer Registers

This section provides a summary of the ESS mixer registers followed by a detailed description of each register.

Table 25 ESS Mixer Register Summary

Reg	D7	D6	D5	D4	D3	D2	D1	D0	Remark
00h				Write: re	set mixer				Reset mixer
14h		Audio 1 playb	ack volume left			Audio 1 playba	ick volume right		Audio 1 playback volume
1Ah		Mic mix v	olume left			Mic mix vo	olume right		Mic mix volume
1Ch	Х	Х	F1 ^a	х	F0ª		Record source		Record source select
1Eh	х	х	F2ª	х	х	х	Stereo	х	Stereo flag
32h		Master v	olume left			Master vo	olume right		Master volume
36h		Music DAC	volume left			Music DAC	volume right		Music DAC volume
38h		CD (AuxA)	volume left			CD (AuxA)	volume right		CD (AuxA) volume
3Ah		AuxB vo	lume left			AuxB vol	ume right		AuxB volume
3Ch						Р	C speaker volum	ne	PC speaker volume
3Eh		Line vo	lume left			Line volu	ume right		Line volume
40h			ES	51879 identification	on value (read-or	nly)			ES1879 identification value
42h	Input override		Record source			Record	volume		Serial mode input control
44h	Output over- ride		Output signal			Output	volume		Serial mode output control
46h	Analog con- trol override	Music mixer test	Left ADC	Right ADC	Mono enable	х	FDXO enable	FDXI enable	Serial mode miscellaneous analog control
48h	Serial enable	Data format	Serial reset	ES689/ ES69x inter- face enable	Active low sync	DSP test mode	0	Telegaming mode enable	Serial mode miscellaneous control
4Ah	0		Test register						
4Ch	Filter override		0			2's compleme	ent filter divider		Serial mode filter divider control
4Eh	Transm	it source	ce Transmit Transmit length mode			e target	Receive length	Receive mode	Serial mode format/source/target con- trol
50h			0		Spatializer enable	Reset release	Mono mode enable	Automatic effect limiter enable	Spatializer enable and mode control
52h		0			Spatializer	r level/limit	Spatializer level/limit		
54h	1	0	0	0	1	1	1	1	Spatializer auto-limit scale factor 1
56h	1	0	0	1	0	1	0	1	Spatializer auto-limit scale factor 2
58h		Auto-limit ir	ncrease rate			Auto-limit de	ecrease rate		Spatializer auto-limit mode rate
5Ah		Auto-limit low-le	evel effect boost		Threshold enable	Auto	-limit energy thre	shold	Spatializer auto-limit threshold and offset
5Ch	Left/Right state flag	Signal processor test mode	ADC test mode	Accelerated timing enable	Auto-limittest mode	THD flag	DOWN flag	UP flag	Spatializer test control
5Dh	ES	5978 mappable p	layback volume	left	ES	978 mappable pl	ayback volume r	ight	ES978 mappable playback volume
5Eh				Test	data				Spatializer test data
5Fh	E	S978 mappable	record volume le	eft	ES	S978 mappable i	record volume rig	ght	ES978 mappable playback volume
60h	0	Mute			Left mast	er volume			Left master volume counter
61h	0	Mute			Left volum	ne counter			Left hardware volume counter
62h	0	Mute			Right mas	ter volume			Right master volume counter
63h	0	Mute			Right volur	ne counter			Right hardware volume counter
64h	Split mode enable	MPU-401 IRQ mask	Volume count	HWV IRQ flag	HWV operation	ation mode	HWV inter- rupt mask	SB Pro mas- ter volume disable	Master volume control

Table 25 ESS Mixer Register Summary (Continued)

Reg	D7	D6	D5	D4	D3	D2	D1	D0	Remark
65h				0				Opamp calibration	Opamp calibration control
66h			Write:	Reset hardware	volume interrupt	request			Hardware volume interrupt request
67h	E	S978 mix volum	e	0	ES978 mix into playback	ES978 record mixer track- ing mode select	Interface n	node select	ES978 interface mode control
68h		Mic mix v	olume left			Mic mix vo	olume right		Mic record volume
69h		Audio 2 v	olume left			Audio 2 vo	olume right		Audio 2 record volume
6Ah		CD (AuxA)	volume left			CD (AuxA)	volume right		CD (AuxA) record volume
6Bh	Music DAC volume left Music DAC volume right							Music DAC record volume	
6Ch		AuxB vo	lume left			AuxB vol	ume right		AuxB record volume
6Dh		I ² S volu	ume left		I ² S volume right				I ² S volume
6Eh		Line vol	ume left			Line volu	ume right		Line record volume
6Fh		I ² S volu	ume left			I ² S volu	me right		I ² S record volume
70h	Clock source			Sa	mple rate genera	ator			Audio 2 sample rate generator
71h	0	I ² S enable	Controller register A1h mode select	Audio 2 over- sampling enable	Audio 2 SCF bypass enable	Audio 1 SCF bypass enable	Asynchro- nous mode enable	FM mix enable	Audio 2 mode
72h				Filter clo	ck divider				Audio 2 filter clock divider
74h			2's	complement tran	sfer count – low	byte			Audio 2 transfer count reload
76h			2's (complement trans	sfer count – high	byte			
78h	DMA trar	nsfer type	0	Auto-Initial- ize enable		0	Enable trans- fer into FIFO	Enable trans- fer to DAC	Audio 2 control 1
7Ah	IRQ latch	IRQ mask		0		FIFO signed mode	FIFO stereo mode	FIFO 16-bit mode	Audio 2 control 2
7Ch		Audio 2 v	olume left			Audio 2 vo	olume right		Audio 2 playback volume
7Dh		(0		Mic preamp enable FDXO source select en			FDXI mix enable	Audio 2 configuration
7Eh	ADC test enable	Test bus	s enable	MIDI loop- back test	FM test enable	DSP loop- back test	2nd DMA test enable	0	Test register

a. Sound Blaster filter control bits F2, F1, and F0 have no function in the ES1879 and are ignored.

Register Detailed Descriptions

Reset Mixer

A write to this register resets the mixer registers to their default values.

Audio	o 1 Play	back V	olume			(141	n, R/W)
A	udio 1 pla	iy volume	eleft	Au	dio 1 play	volume i	right
7	6	5	4	3	2	1	0

This register controls the playback volume of the first audio channel. On reset, this register assumes the value of 88h.

Mic I	Mix Volu	ıme				(1AI	h, R/W)
	Mic mix y	volume le	eft	Ν	Aic mix vo	olume rigl	nt
7	6	5	4	3	2	1	0

This register controls the playback volume of the Mic input. On reset, this register assumes the value of 00h.

64

REGISTERS

(1Ch, W)

PRELIMINARY

Record Source Select

х	х	F1	х	F0	Re	cord Sou	rce
7	6	5	4	3	2	1	0

On reset, this register assumes the value of 00h.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	<u>Desc</u>	ription							
7:6	-	No fu	nction							
5	F1	Soun functi	d Blas on in t	ter Pro	o filter control bit. Has no 1879 and is ignored.					
4	-	No fu	nction							
3	F0	Soun functi	Sound Blaster Pro filter control bit. Has no function in the ES1879 and is ignored.							
2:0	2:0 Record For extended access, use register address Source 1Ch to select recording from the mixer as fol- lows:									
		<u>bit 2</u>	bit 1	bit 0	record source selected					
		0	0	0	Microphone (default).					
		0	0	1	Left channel: mic (not mixed					
					with ES978 mic).					
					Right channel: master					
					volume inputs ^a (left + right).					
		0	1	0	CD (AuxA) input.					
		0	1	1	Left channel: AOUTL					
					Right channel: AOUTR.					
		1	0	0	Microphone.					
		1	0	1	Record mixer.					
		1	1	0	Line input.					
		1	1	1	Master volume inputs. ^a					

a. The master volume inputs are the outputs of the Spatializer processor, before master volume is applied.

On reset, this register assumes the value of 00h.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:6	_	No function.
5	F2	Sound Blaster Pro filter control bit. Has no function in the ES1879 and is ignored.
4:2	_	No function.
1	Stereo Flag	 1 = Enable Sound Blaster Pro-compatible stereo DAC functions. 0 = Disable Sound Blaster Pro-compatible stereo.
		reo DAC functions.
0	_	No function.

Mast	er Volu	me		(32h) Master volume right			h, R/W)
	Master v	olume le	ft		Master vo	lume righ	nt
7	6	5	4	3	2	1	0

On reset, this register assumes the value of 88h.

This register provides backward-compatible access to master volume. New applications can also use registers 60h and 62h, which have more resolution.

Music DAC Volume

(36h, R/W)

							-	
	Music DAC	usic DAC volume left		DAC volume left Music DAC volume right				ight
7	6	5	4	3	2	1	0	

This register controls the playback volume of the music DAC. On reset, this register assumes the value of 88h.

CD (/	AuxA) V	'olume				(38	h, R/W)
	CD (AuxA) volume	left	CI) (AuxA)	volume ri	ght
7	6	5	4	3	2	1	0

This register controls the playback volume of the CD audio input. On reset, this register assumes the value of 00h.

AuxB	Volum	e				(3Ał	n, R/W)
	AuxB v	olume lef	t		AuxB vol	ume right	
7	6	5	4	3	2	1	0

This register controls the playback volume of the auxiliary line input. On reset, this register assumes the value of 00h.

PC Speaker Volume

((3Ch,	R/W)
•	,	

					PC s	peaker vo	olume
7	6	5	4	3	2	1	0

This register controls the PC speaker volume. Bits 2:0 select the attenuation level in steps of -3 dB. The maximum setting of 08h corresponds to 0 dB attenuation. On reset, this register assumes the value of 04h.

Line	Volume	•				(3Eł	n, R/W)
	Line vo	olume left			Line volu	ume right	
7	6	5	4	3	2	1	0

This registers controls the playback volume of the line input. On reset, this register assumes the value of 00h.

ES1879 Identification Value (40h, R)							
		ES18	79 identi	fication v	alue		
7	6	5	4	3	2	1	0

To identify the ES1879, mixer register 40h returns the following values on four successive reads:

18h, 79h, A[11:8], A[7:0]

where 18h and 79h are data reads indicating the part number (1879) and A[11:0] is the base address of the configuration device.

Serial Interface Registers

This section describes registers related to the DSP and ES689/ES69x serial interface.

Serial Mode Input Control

(12)	h	БΛ	۸ /\
(42)	n. I	κ/\	/V)

Input override	Re	Record source			Record	volume	
7	6	5	4	3	2	1	0

This register can be used to gain independent control of the record source and record volume, while in serial mode. When in serial mode, mixer registers 0Ch/1Ch and controller register B4h can still be used to control record source and record volume if desired. Mixer register 42h enables the ES1879 to have two different values set for record source and record volume dependent on whether the ES1879 is in serial mode or not. This register only takes control of record source and volume while the ES1879 is in serial mode and bit 7 is high.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Desc	ription					
7	Input override	1 = Ir mal v when 0 = Ir uncha	 1 = Input source and input volume replace normal values as programmed by the application when the ES1879 is in serial mode. 0 = Input source and input volume are unchanged during serial mode. 					
6:4	Record source	Record source selects the record source dur ing serial mode if bit 7 is high. The values below override the normal mixer settings (reg ister 0Ch or 1Ch):						
		<u>bit 6</u>	<u>bit 5</u>	<u>bit 4</u>	record source selected			
		0	0	0	Microphone (default).			
		0	0	1	CD (AuxA) input.			
		0	1	0	Microphone.			
		1	0	0	Left channel: mic (not mixed with ES978 mic). Right channel: master vol- ume inputs (left + right).			
		1	0	1	Left channel: AOUTL Right channel: AOUTR.			
		1	1	0	Record mixer.			
		1	1	1	Record source discon- nected from filters (muted). Record source is unchanged in serial mode.			
3:0	Record volume	If bit overr	7 is hiq ides th	gh duri ne reco	ing serial mode, this value ord volume settings set via			

3 controller register B4h. For microphone source, the record gain is from 0 to +22 dB in steps of 1.5 dB. For other sources, the record gain is from -6 to +16.5 dB in steps of 1.5 dB.

REGISTERS

PRELIMINARY

Serial Mode Output Control

(44h, R/W)

Output override	Οι	Output signal			Output	volume	
7	6	5	4	3	2	1	0

Bits Definitions:

- Bits Name Description
- 7 Output 1 = Output volume during serial mode is from override this register rather than from the Mixer Master Volume register. Output signal control is always in force during serial mode regardless of the state of this bit. 0 = Output volume is unchanged during serial mode. Controls the signal routed to speaker outputs 6:4 Output signal AOUT_L and AOUT_R: bit 6 bit 5 bit 4 signal 0 0 0 Mute. 0 0 1 No change from normal operation.
 - 0 1 0 Audio 1 only - playback mixer bypassed (overrides record monitor and record mute features). 0 No change from normal 1 1 operation. 0 Playback mixer with audio 1 0 1 DAC set to 0 dB attenuation (overrides record monitor and record mute features). 1 0 1 Playback mixer output with audio 1 DAC playback muted (overrides record monitor and record mute

features). 1 1 0 Reserved. 1 1 1 Reserved.

3:0 Output Replaces normal master volume setting if bit 7 volume is high during serial mode. 0 is mute. 15 is maximum (0 dB).

Serial Mode Miscellaneous Analog Control (46h, R/W)

Analog control override	Music mixer test	Left ADC	Right ADC	Mono enable	х	FDXO enable	FDXI enable
7	6	5	4	3	2	1	0

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Description
7	Analog control override	1 = Bits 6:0 take effect during serial mode.0 = Bits 6:0 do not take effect during serial mode.
6	Music mixer test	Test feature. 1 = Music DAC mixer inputs replaced with AUXBL/AUXBR inputs. 0 = Music DAC mixer inputs normal.
5	Left ADC	1 = Left channel combined ADC and DAC is in ADC mode.0 = Left channel combined ADC and DAC is in DAC mode.
4	Right ADC	1 = Right channel combined ADC and DAC is in ADC mode.0 = Right channel combined ADC and DAC is in DAC mode.
3	Mono enable	This bit should be set appropriately for the application as follows: 1 = Mono record, mono playback, or mono full- duplex. 0 = Stereo record or stereo playback.
2	-	Don't care.
1	FDXO enable	 1 = Enables AUXBR as an output. The output source is determined by mixer register 7Dh bits [2:1]. AUXBL replaces AUXBR as an input to the record and playback mixers. 0 = AUXBR is an input to the record and playback mixers.
0	FDXI enable	1 = Enables FDXI input connection from left channel filter input and thus to the input of the left channel ADC. 0 = FDXI input has 50K pull-up to CMR. The left channel filter input and ADC comes from the input volume stage as usual.

Serial Mode Miscellaneous Control

Serial enable	Data format	Serial reset	ES689/ ES69x interface enable	Active low sync	DSP test mode	0	Telegaming mode enable
7	6	5	4	3	2	1	0

Bits Definitions:

Bits Name Description 7 Serial 1 = Enable DSP serial port. This signal is synchronized with DCLK input rising edge. If enable DCLK is not running, enabling Serial enable has no effect. 0 = Disable DSP serial port. Data 1 = Data format is 2's complement (signed). 6 format 0 = Data format is unsigned (offset binary). 5 Serial 1 = Reset Serial register left/right toggle flags. 0 = Release reset. reset 1 = Enable ES689/ES69x serial interface to 4 ES689/ ES69x use the music DAC. MCLK must also go high interface at least once every 20 µsecs or the DAC will revert to FM. The mixer volume for the music enable DAC is controller by mixer register 36h. 0 = Disable ES689/ES69x serial interface. Active 1 = Active-low frame sync pulse. 3 low sync 0 = Active-high frame sync pulse. 2 DSP test 1 = Test mode: FS and DCLK become outputs. mode DCLK is 1.5876 MHz. FS is an active-high frame sync at a rate determined by mixer register 4Ah. 0 = Disable DSP test mode. 1 Reserved. Always write 0. Telegam- 1 = Enables telegaming mode. In serial mode, 0 ing mode connect first channel DMA (otherwise known as game-compatible DMA) to the system DAC. enable This allows game-compatible audio to be heard when in serial mode. The system DAC gets its filter clock and volume control from the

> first channel. 0 = In serial mode, the first channel DMA is not played. The second channel is connected to the system DAC.

(48h, R/W)	FS Rate Control
------------	-----------------

(4Ah, R/W)

0		2's complement filter divider							
7	6	5	4	3	2	1	0		

This register is used in a test mode enabled by bit 2 of mixer register 48h.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	<u>Description</u>
7	_	Reserved. Always write 0.
6:0	2's com- plement filter	These bits are a 2's complete value that divides DCLK. DC put of 1.5876 MHz. FS is an

2's complement These bits are a 2's complement (signed) value that divides DCLK. DCLK is a clock output of 1.5876 MHz. FS is an active-high frame sync output at a rate determined by bits 6:0 of this register. For example, if this register is programmed

with the value 5Ch (-36 decimal), then the frame rate is 44.1 KHz.

(4Ch, R/W)

Serial Mode Filter Divider Control

Filter override		0		2's c	2's complement filter divider			
7	6	5	4	3	2	1	0	

This register controls the filter clock rate during serial mode.

Bits Definitions:

Bits Name Description

7 Filter 1 = During serial mode, the filter clock is generoverride ated by dividing down the serial clock.

> 0 = During serial mode, the filter clock is generated as follows:

Generally, the filter roll-off should be positioned at 80% - 90% of the Sample_Rate/2 frequency. The ratio of the roll-off frequency to the filter clock frequency is 1:82. In other words, first determine the desired roll-off frequency by taking 80% of the Sample_Rate divided by 2, then multiply by 82 to find the desired Filter Clock frequency. Use the formula below to determine the closest divider:

Filter_Clock_Frequency = 7.16 MHz / (256-Filter_Divider_Register)

- 6:4 Reserved. Always write 0.
- 3:0 2's com- These bits are a 2's complement (signed)
 - plement value that divides the serial clock. The ratio of filter the filter -3 dB frequency to the filter clock is divider about 1:41.

Examples:

- 02h (-14) External Serial Clock 2.048 MHz / 14 / 41 = 3568 Hz for 8000 Hz sample rate.
- 0Eh (-2) Internal Serial Clock 1.591 MHz / 2 / 41 = 19.4 kHz for 44,100 Hz sample rate. Note that the sample rate divider is an integer multiple of the filter divider for 44,100, which gives maximum performance of DACs and ADCs.

Serial Mode Format/Source/Target Control (4Eh, R/W)

Tra so	FransmitTransmitTransmitsourcelengthmode		Receive	target	Receive length	Receive mode	
7	6	5	4	3	2	1	0

The ES1879 serial port can interface with an external DSP in several formats and various applications. The format choices include 8- or 16-bit and mono or stereo. Note that signed vs. unsigned is controlled by bit 6 of mixer register 48h. The receive and transmit channels can have different formats, though this is not common.

For receive, there are two choices for the target of the data:

- First channel DMA FIFO
- First channel DAC

For the transmit, there are two choices for the source of the data:

- First channel DMA FIFO
- First channel ADC

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Desc	<u>ription</u>					
7:6	Transmit	Trans	smit reg	ister source:				
	source	<u>bit 7</u>	<u>bit 6</u>	source				
		0	0	None: Transmit register held at				
		0	1	zero. Audio 1 FIFO (audio 1 in mono or stereo playback direction).				
		1	0	Audio 1 ADC (left channel ADC if mono).				
		1	1	Reserved.				
5	Transmit length	1 = T 0 = T	1 = Transmit length is 16 bits, unsigned. 0 = Transmit length is 8 bits, unsigned.					
4	Transmit mode	1 = T chan cedin 0 = T	ransmit nels alte g right o ransmit	mode is stereo. Left and right ernate, with left channel data pre- channel data. mode is mono.				
3:2	Receive	Rece	ive regi	ster target:				
	target	<u>bit 3</u>	<u>bit 2</u>	target				
		0	0	None: Receive register held at zero.				
		0	1	Audio 1 FIFO (audio 1 in mono or stereo record direction)				
		1	0	Audio 1 DAC (right channel DAC				
		1	1	Reserved.				

- 1 Receive 1 = Receive length is 16 bits, unsigned.
 - length 0 =Receive length is 8 bits, unsigned.
- 0 Receive 1 = Receive mode is stereo. Left and right mode channels alternate, with left channel data preceding right channel data. 0 = Receive mode is mono.

REGISTERS

Spatializer Audio Processor Registers

This section describes registers related to the Spatializer 3-D audio processor.

Spatializer Enable and Mode Control (50h, R/W)

0	0	0	0	Spatializer enable	Reset	Mono mode	Auto-limit
7	6	5	4	3	2	1	0

Reset to zero by hardware reset.

Bit Definitions:

<u>Name</u>	Description
0	Reserved. Always write 0.
Spatial- izer enable	1 = Enable Spatializer effect.0 = Disable Spatializer effect (effect unit bypassed).
Reset	1 = Release from reset. 0 = Reset Spatializer.
Mono mode	1 = Mono-in, stereo-out mode.0 = Stereo-in, stereo-out mode.
Auto-limit	1 = Enable automatic effect limiter.0 = Disable automatic effect limiter.
	Name 0 Spatial- izer enable Reset Mono mode Auto-limit

Spatia	lizer Le	evel/Lim	it			(52	h, R/W)
0	0			Spatialize	er level/lim	it	
7	6	5	1	2	2	1	0

Reset to zero by hardware reset.

Bit Definitions:

<u>Bits</u> Name	Description
------------------	--------------------

7:6 0 Reserved. Always write 0.

5:0 Spatializer 0 is minimum effect; 3Fh is maximum effect. If level/ the auto-limit function is enabled (mixer regislimit ter 50h bit 0), then this register specifies the maximum effect level (actual effect determined by automatic level setting mechanism). If the auto-limit function is disabled, then this register sets the current effect level.

Spatia	lizer A	uto-Lir	nit Sca	le Fact	or 1	(54h	n, R/W)
1	0	0	0	1	1	1	1
7	6	5	4	3	2	1	0

This register, along with mixer register 56h, is used to set scale factors used by the automatic limit mechanism. Program this register to 8Fh (143 decimal) as shown. Recommended values are subject to change in the future.

Reset to zero by hardware reset.

Spatializer Auto-Limit Scale Factor 2	(56h, R/W)
---------------------------------------	------------

1	0	0	1	0	1	0	1
7	6	5	4	3	2	1	0

This register, along with mixer register 54h, is used to set scale factors used by the automatic limit mechanism. Program this register to 95h (149 decimal) as shown. Recommended values are subject to change in the future.

Reset to zero by hardware reset.

Spatia	lizer A	uto-Lir	nit Mo	de Rate	•	(58	h, R/W)
Au	ito-limit in	crease r	ate	Au	ıto-limit de	crease r	ate
7	6	5	4	3	2	1	0

The recommended value for this register is 94h:

Max_Decrease_Rate = 276 Hz Max_Increase_Rate = 2480 Hz

Reset to zero by hardware reset.

Bit Definitions:

Bits Name Description

7:4	Auto- limit increase rate	Specifies the rate at which gain can be increased, relative to the decrease rate: Max_Increase_Rate = Max_Decrease_Rate/(N+1); N is bits 7:4 of this register.
3:0	Auto- limit decrease rate	Specifies the rate at which gain can be decreased: Max_Decrease_Rate = 1378 Hz / (N+1) N is bits 3:0 of this register.

Spatializer Auto-Limit Threshold and Offset(5Ah,R/W)

Auto-lim	Auto-limit low-level effect boost		Threshold enable	Auto-limi	t energy	threshold	
7	6	5	4	3	2	1	0

Reset to zero by hardware reset.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:4	Auto-limit low-level effect boost	Increases Spatialization effect for low-level signals.
3	Threshold enable	1 = Enable auto-limit energy threshold requirement.0 = Disable auto-limit energy threshold requirement.
2:0	Auto-limit energy threshold	1 = Enable minimum energy level setting of input signal to make auto-limit decisions.0 = Disable minimum energy level setting of input signal.

REGISTERS

£1515)

Spatializer Test Control

(5Ch, R/W)

Left/Right state flag	Signal processor test mode	ADC test mode	Accelerated timing enable	Auto-Limit test mode	THD flag	Down flag	Up flag
7	6	5	4	3	2	1	0

In ADC or signal processor test mode, four reads or writes are needed to access all four bytes. The sequence is controlled by an internal 2-bit counter. This counter is incremented after every I/O read or write to mixer register 5Eh. The counter is reset by an I/O read from mixer register 5Ch.

Reset to zero by hardware reset.

Bit Definitions:

Bits Name Description

- 7 Left/ Read-only. Left/right state flag. This flag indi-Right cates which channel the test data is being samstate flag pled from.
- 6 Signal processor test mode. This mode enables the input to the signal processing logic to be written from the host for test purposes. Poll bit 7 of this register to synchronize. When it goes high, write to register 5Eh four times successively to write left low, left high, right low, right high.
- 5 ADC test Poll bit 7 of this register to synchronize, then read register 5Eh four times successively to read left low, left high, right low, right high.
- 4 Acceler- 1 = Accelerated timing. ated timing enable
- 3 Auto-limit 1 = Auto-limit test mode. test

mode

- 2 THD flag THD flag in auto-limit test mode.
- 1 Down Down flag in auto-limit test mode. flag
- 0 Up flag Up flag in auto-limit test mode.

ES978 Mappable Volume Registers 5Dh and 5Fh

This section describes registers related to the ES978 mappable volume registers. These registers are accessed via I/O addresses Audio_Base+4h and Audio_Base+5h.

ES9	78 Map	pable	Playba	ack V	olume		(5Dł	n, R/W)
ES	978 mappa	ble playba	ack volum	e left	ES978 ma	appable pla	iyback vo	lume right
7	f	3	5	4	3	2	1	0

The mappable volume registers can be assigned to any single ES978 mixer source. Usually the mixer registers in the ES978 are slaved to the corresponding register in the ES1879. Assigning a ES978 mixer register to this register enables the ES978 mixer source volume to be controlled independently of the corresponding ES1879 mixer register. Bits 2:0 of PnP register 2Bh assigns the mappable volume register to a mixer input of the ES978.

Spatiali	zer Tes	t Data				(5Eł	n, R/W)
D	D	D	D	D	D	D	D
7	6	5	4	3	2	1	0

Except in ADC test mode, this register returns the current 8-bit gain setting. In ADC test mode, it is used to read back the ADC values. In signal processor test mode, it is used to write test pattern data.

In ADC test mode or signal processor test mode, four reads or writes are needed to access all four bytes in series. The sequence is controlled by an internal 2-bit counter. This counter is incremented after every I/O read or write to mixer register 5Eh. The counter is reset by an I/O read from mixer register 5Ch.

ES978	Mappab	le Rec	lume		(5F	h, R/W)	
ES978	mappable r	ecord volu	me left	ES978 r	mappable i	record vol	ume right
7	e	F	4	2	2	1	0

The mappable volume registers can be assigned to any single ES978 mixer source. Usually the mixer registers in the ES978 are slaved to the corresponding register in the ES1879. Assigning an ES978 mixer register to this register enables the ES978 mixer source volume to be controlled independently of the corresponding ES1879 mixer register. Bits 2:0 of PnP register 2Bh assigns the mappable volume register to a mixer input of the ES978.

Extended Mode Master Volume Control Registers

4

This section describes registers related to the master volume control in Extended mode. These registers are accessed via I/O addresses Audio_Base+4h and Audio_Base+5h.

Left I	Master V	(60h, R/W)	
0	Mute	Left master volume	

3

2

1

0

This register determines the master volume level for the left channel.

When in Sound Blaster Pro Compatibility mode, writes to registers 22h or 32h are translated into writes to 60h and 62h. See "Sound Blaster Pro Master Volume Emulation" on page 61. Writes to this register when in Compatibility mode run the risk of being overwritten.

On hardware reset, this register is set to 36h.

Bits Definitions:

7

6

5

<u>Bits</u>	<u>Name</u>	Description
7	-	Reserved. Always write 0.
6	Mute	1 = Enable left channel mute.0 = Disable left channel mute.
5:0	Left master volume	Bits 5:0 select the attenuation level in steps of -1.5 dB. The maximum setting of 3Fh corresponds to 0 dB attenuation.

Left H	lardwa	re Volume Counter	(61h, R/W)
-			

0	Mute	Left volume counter					
7	6	5	4	3	2	1	0

Normally, the hardware volume controls change the master volume registers 60h and 62h directly, producing an interrupt at each change. In Split mode, the hardware volume counters are split from the master volume counters. Pressing a hardware volume control button changes the hardware volume counters and produces an interrupt. The host software can read the counters and update the master volume registers as needed. Split mode is enabled by bit 7 of mixer register 64h. If bit 7 is low, this register is combined with register 60h and cannot be independently read or written.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Description
7	-	Reserved. Always write 0.
6	Mute	1 = Enable left channel mute.0 = Disable left channel mute.
5:0	Left volume counter	Bits 5:0 select the attenuation level in steps of -1.5 dB. The maximum setting of 3Fh corresponds to 0 dB attenuation.

Right Master	Volume and Mute
---------------------	-----------------

(62h, R/W)

(63h, R/W)

0	Mute	Right master volume					
7	6	5	4	3	2	1	0

This register determines the master volume level for the right channel.

When in Sound Blaster Pro Compatibility mode, writes to registers 22h or 32h are translated into writes to 60h and 62h. See "Sound Blaster Pro Master Volume Emulation" on page 61. Writes to this register when in Compatibility mode run the risk of being overwritten.

On hardware reset, this register is set to 36h.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Description
7	-	Reserved. Always write 0.
6	Mute	1 = Enable right channel mute.0 = Disable right channel mute.
5:0	Right master volume	Bits 5:0 select the attenuation level in steps of -1.5 dB. The maximum setting of 3Fh corresponds to 0 dB attenuation.

Right Hardware Volume Counter

0	Mute	Right volume counter					
7	6	5	4	3	2	1	0

Normally, the hardware volume controls change the master volume registers 60h and 62h directly, producing an interrupt at each change. In Split mode, the hardware volume counters are split from the master volume counters. Pressing a hardware volume control button changes the hardware volume counters and produces an interrupt. The host software can read the counters and update the master volume registers as needed. Split mode is enabled by bit 7 of mixer register 64h. If bit 7 is low, this register is combined with register 62h and cannot be independently read or written.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Description
7	-	Reserved. Always write 0.
6	Mute	1 = Enable right channel mute.0 = Disable right channel mute.
5:0	Right volume counter	Bits 5:0 select the attenuation level in steps of -1.5 dB. The maximum setting of 3Fh corresponds to 0 dB attenuation.
(64h, R/W)

REGISTERS

Master Volume Control

Split mode enable	MPU-401 IRQ mask	Volume count	HWV IRQ flag	HWV tion	opera- mode	HWV interrupt mask	SB Pro master volume disable
7	6	5	4	3	2	1	0

Bits Definitions:

Bits Name Description

- Split 1 = Enable Split mode for hardware volume 7 control. This mode splits hardware volume mode enable counters (61h and 63h) from the master volume control registers (60h and 62h). The host software is responsible for reading the counter register and updating the master volume registers. 0 = Disable Split mode. Hardware volume and master volume registers are slaved together. Registers 61h and 63h cannot be independently accessed. MPU-401 This bit is AND'd with the MPU-401 interrupt 6 IRQ mask request. If this bit is low, the MPU-401 interrupt request stays low. This bit is cleared by hardware reset. 1 = Count up and down by 3 for each push of 5 Volume UP or DOWN button. count 0 = Count up and down by 1 for each push of UP or DOWN button. This bit is cleared by hardware reset. 4 HWV IRQ Read-only interrupt request from hardware flag volume event. 3:2 HWV Selects hardware volume operation operation mode: mode bit 3 bit 2 mode 0 0 Normal 3-wire mode (hardware reset default). 0 1 2-wire mode: UP and DOWN inputs low together act as a
 - inputs low together act as a MUTE input low. 1 0 2-wire enabled, debounce
 - reduced (40 msec to 10 µsecs), auto-increment/-decrement disabled. 1 Hardware volume control dis-
 - Hardware volume control disabled.
- 1 HWV interrupt mask interrupt request before being OR'd with the audio 1 interrupt request. If this bit is low, the hardware volume interrupt request does not get OR'd with the audio 1 interrupt request. This bit is cleared by hardware reset. When high, enables the hardware volume control to be shared with the audio interrupt.

Bits Name Description

0 SB Pro master volume volume to the hardware master volume counters, disable Mixer registers 60h and 62h. If high, the SB Pro Master Volume registers are, in effect, read-only. This bit is cleared by hardware reset.

Opamp Calibration Control

		(****,****)					
0							Opamp calibration
7	6	5	4	3	2	1	0

In the analog circuitry of the ES1879, operational amplifiers that require calibration go through a calibration procedure that takes about 200 msec to perform. During this period, the analog outputs of the chip (AOUT_L, AOUT_R, and FDXO) are muted.

The calibration procedure occurs automatically after hardware reset and can be started at any time thereafter by writing 01h to mixer register 65h.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:1	-	Reserved. Always write 0.
0	Opamp calibra- tion	Read: 1 = Opamp calibration in progress. Opamp cal- ibration occurs if a one is written to this bit after a hardware reset. Calibration can take up to 200 msec, during which the analog outputs (AOUTL/AOUTR and FDXO) of the ES1879 are muted. Write: 1 = Start opamp calibration. 0 = Stop opamp calibration immediately. This is not recommended.

Hardware Volume Interrupt Request Reset (66h, W)

Write: Reset hardware volume interrupt request									
7	6	5	4	3	2	1	0		

Any write to this register resets the hardware volume interrupt request. This register is write-only.

(65h. R/W)

PRELIMINARY

(68h, R/W)

ES978 Interface Mode Control

(67h, R/W)

ES V	ES978 mix volume		0	ES978 audio mix into play- back enable	ES978 record mixer tracking mode select	Interfac se	ce mode lect
7	6	5	4	3	2	1	0

In the ES1878, the mode of the interface to the ES978 (playback vs record, mono vs full-duplex) was determined by the state of the CODEC inside the ES1878 automatically. In the ES1879, the mode of the interface is determined by mixer register 67h.

Bit 2, the ES978 record mixer tracking mode select bit, determines which mixer (playback or record) in the ES1879 is tracked (mirrored) by the ES978 record mixer. It is useful to have the ES978 record mixer track the ES1879 playback mixer in two situaions. First, if there are no speakers in the docking station (ES978), the ES978 record mixer is used to collect audio sources from the docking station and sent to the ES1879 playback mixer. Second, Spatializer 3-D effects can be added to docking station audio sources by means of this mode. If bit 2 is set high, bits 2:0 of mixer register 1Ch must be set to 101.

This register is set to E3h by hardware reset.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Desc	ription						
7:5	ES978 mix vol- ume	Selec ES97 when	ct mix '8 into bit 3 d	volume of audio received from playback mixer of the ES1879 of this register is set high.					
4	_	Rese	rved. /	Always write 0.					
3	ES978 audio mix into playback enable	1 = E into p 0 = N of the	 Enable audio received from ES978 to mix nto playback mixer of ES1879. No audio is mixed into the playback mixer f the ES1879 from the ES978. 						
2	ES978 record mixer tracking mode select.	1 = R mixer muter 0 = R in ES	1 = Record mixer in ES978 tracks playback mixer in ES1879. ES978 playback mixer is muted except for ES1879 audio. 0 = Record mixer in ES978 tracks record mixer in ES1879 (default).						
1:0	Interface mode select	Selec <u>bit 1</u> 0 0	ts the <u>bit 0</u> 0 1	ES978–ES1879 interface mode. mode Differential stereo playback to ES978. Differential stereo record from ES978.					
		1	0	Ινιοπο τιμι-αμρίεχ					

1 1 Stereo full-duplex (default).

Mic Record Volume

6

5

	Mic record	d volume l	eft	М	ic record	volume rig	ght
7	6	5	4	3	2	1	0

This registers controls the record volume for the Mic input. Set low by hardware reset but not by mixer reset.

Audio	o 2 Rec	ord Vol	ume			(69l	h, R/W)
Au	dio 2 reco	ord volum	e left	Audi	io 2 recor	d volume	right
7	6	5	4	3	2	1	0

This register controls the record volume for the second audio channel. Set low by hardware reset but not by mixer reset.

CD (AuxA) Record Volume	(6Ah, R/W)
CD record volume left	CD record volume right

3

This register controls the record volume for the CD input. Set low by hardware reset but not by mixer reset.

4

Music DAC	Record Volume	(6Bh, R/W)

2

Music DAC record volume left				Music DAC record volume right				
7	6	5	4	3	2	1	0	

This register controls the record volume for the music DAC (FM or wavetable). Set low by hardware reset but not by mixer reset.

AuxB	Recor	d Volur	ne	(6Ch, R			
A	uxB recor	d volume	left	Au	xB record	volume r	ight
7	6	5	4	3	2	1	0

This register controls the record volume for the auxiliary line input. Set low by hardware reset but not by mixer reset.

² S Vo	olume					(6Dł	n, R/W)
	I ² S vol	lume left			I ² S volu	me right	
7	6	5	4	3	2	1	0

This register controls the playback volume for the l²S input. Set low by hardware reset but not by mixer reset.

Line Record Volume

(6Eh,	R/W)
-------	------

	Line record	d volume	left	Lir	ne record	volume ri	ight
7	6	5	4	3	2	1	0

This register controls the record volume for the line input. Set low by hardware reset but not by mixer reset. REGISTERS

PRELIMINARY

I²S Record Volume

(6Fh, R/W)

	I ² S record volume left			I ² S record volume right				
7	6	5	4	3	2	1	0	

This register controls the record volume for the l²S input. Set low by hardware reset but not by mixer reset.

Audio 2 Mixer Registers

6

5

This section describes registers related to the second audio channel. These registers are accessed via I/O addresses Audio_Base+4h and Audio_Base+5h.

Audio	2 Sample Rate Generator	(70h, R/W)
Clock	Sample rate divider	
source	Sample fate under	

3

2

1

0

This register should be programmed for the sample rate for all DAC operations in extended mode.

The sample rate is determined by the two's complement divider in bits 6:0.

Sample_Rate = Clock_Source / (256 - Sample_Rate_Divider)

This register is reset to zero by hardware reset.

4

Bits Definitions:

divider

7

<u>Bits</u>	<u>Name</u>	Description
7	Clock source	1 = 768 kHz (used to generate 48 kHz, 32 kHz 16 kHz, 8 kHz, etc.). 0 = 793.8 kHz (used to generate 44.1 kHz, 22.05 kHz, etc.).
6:0	Sample rate	Signed sample rate divider of master clock. For example:

<u>value</u>	sample rate
A0h	8000
F0h	48000
6Eh	44100

Audio 1 and Audio 2 Mode

(71h, R/W)

0	l²S enable	Controller register A1h mode select	Audio 2 oversam- pling enable	Audio 2 SCF bypass enable	Audio 1 SCF bypass enable	Asynchro- nous mode enable	FM mix enable
7	6	5	4	3	2	1	0

This register controls a variety of modes for the first and second audio channels.

This register is reset to zero by hardware reset.

Bits Definitions:

Bits Name Description

- 7 Reserved. Always write 0.
- 6 I^2S 1 = Enable I^2S source input.
 - enable 0 = Disable I²S source input.
- 5 Controller register A1h accurate sample rates that are divisors of 48 mode kHz..
 - select 0 = Controller register A1h behaves as described under that register's description.
- 4 Audio 2 1 = enable 4x oversampling mode for the oversam- Audio 2 DAC. This mode bypasses the switch pling capacitor filter.
 - enable 0 = Disable oversampling for the Audio 2 DAC.
- 3 Audio 2 1 = Enable bypass of the switch capacitor filter SCF for the Audio 2 DAC. This filter is bypassed bypass automatically when bit 4 of this register is set enable high.

0 = Disable bypass of the switch capacitor filter for the Audio 2 DAC.

- Audio 1 1 = Enable bypass of the switch capacitor filter
 SCF for the Audio 1 CODEC.
 bypass 0 = Disable bypass of the switch capacitor filter
 for the Audio 1 CODEC.
- Asyn- 1 = The sample rate for Audio 2 may be asynchronous chronous to Audio 1.
 mode 0 = the Audio 2 sample rate is slaved to the enable sample rate for Audio 1.
- 0 FM mix 1 = Audio 2 is slaved to the FM synthesizer sample rate and digitally mixed with the FM synthesizer output. 0 = Audio 2 is not slaved to the FM synthesizer.

ES1879 DATA SHEET

REGISTERS

Audio 2 Filter Clock Divider

(72h, R/W)

			Filter clo	Filter clock divider									
7	6	5	4	3	2	1	0						

This register controls the low-pass frequency of the switch-capacitor filters inside the ES1879. Generally, the filter roll-off should be positioned at 80% - 90% of the Sample_Rate/2 frequency. The ratio of the roll-off frequency to the filter clock frequency is 1:82. In other words, first determine the desired roll-off frequency by taking 80% of the Sample_Rate divided by 2, then multiply by 82 to find the desired Filter Clock frequency. Use the formula below to determine the closest divider:

Filter_Clock_Frequency = 7.16 MHz / (256-Filter_Divider_Register)

Audic	o 2 Trai	nsfer C	ount Re	eload		(74	h, R/W)			
	2's complement transfer count – low byte									
7	6	5	4	3	2	1	0			

NOTE: When suspend/resume bit is set, reading this register returns the current counter contents.

Audio	o 2 Trar	nsfer C	ount Re	eload		(76h h byte	n, R/W)
	2	's comple	ement trai	nsfer cour	nt – high k	oyte	
7	6	5	4	3	2	1	0

NOTE: When suspend/resume bit is set, reading this register returns the current counter contents.

Audio 2 Control 1

(78h, R/W)

DI trar ty	MA nsfer pe	0	Auto-Initialize enable	0	0	Enable transfer into FIFO	Enable transfer to DAC
7	6	5	4	3	2	1	0

This register is reset to zero by hardware or software reset via bit 0 of port Audio_Base+6h.

Bits Definitions:

<u>Bits</u> <u>Name</u>		Description						
7:6	DMA transfer	Selects single or demand transfer for the second audio channel:	е					
	type	bit 7 bit 6 transfer type bytes/DMA reque 0 0 single 1	<u>est</u>					
		0 1 demand 2						
		1 0 demand 4						
		1 1 demand 8						
5	_	Reserved. Always write 0.						
4	Auto-Ini- tialize 1 = Auto-Initialize mode. After the transfer counter rolls over to 0, it is automatically enable reloaded and DMA continues. The second channel interrupt flag is set high. 0 = Normal mode. After the transfer counter rolls over to 0, it is reloaded but DMA stops. Bit 1 of this register is cleared. The second chan- nel interrupt flag is set high.							
3:2	_	Reserved. Always write 0.						
1	Enable transfer into FIFO	 1 = Enable DMA transfer into Audio 2 FIFO (a words deep). 0 = Disable DMA transfer into FIFO. This causes the DMA counter to be reloaded from the reload register. This bit is cleared automatically at the completion of a non auto-initialize transfer. 	32 n le-					
0	 Enable 1 = Enable transfer from FIFO to Audio 2 D/ transfer (or in special cases from the FIFO to either t to DAC DSP serial port or to be mixed with the FM s thesizer output). 0 = Disable transfer from FIFO to DAC. DAC receives code 0 and FIFO is flushed. 							

ES1879 DATA SHEET

REGISTERS

PRELIMINARY

Audi	Audio 2 Control 2			(7Ah, R/W) Audio 2 Cont					Conf	figuration			(7D			
IRQ latch	IRQ mask		0		FIFO signed mode	FIFO stereo mode	FIFO 16-bit mode			0		Mic prear enab	c np ole	FDXO sou	irce select	F
7	6	5	4	3	2	1	0	7	6	5	4	3		2	1	
This I	register is	reset t	o zero b	y harc	lware o	r softwar	e reset.	This	regis	ter is	reset	to 08h	ו by	hardware	e reset.	
Bits [Definitions	5:						Bits	Defin	itions	s:					
<u>Bits</u>	<u>Name</u>	Descri	iption					<u>Bits</u>	Nam	ne	Desc	ription				
7	IRQ latch	Audio	2 Interru	pt Req	uest Lat	ch. This l	atch is	7:4		_	Rese	erved. A	Alwa	ys write 0.		
		set hig or whe cleare	gh when en a 1 is d by writi	the DN written ing a 0	IA count to this b to this b	er rolls ov it. The la it or by ha	ver to 0 tch is ardware	3	Mic prea enal	amp ble	1 = E 0 = N	nable - /licroph	+26 one	dB microp preamp is	hone prea 0 dB.	m
-		or soft	ware res	set.				2:1	FDX	Ó	Sele	cts the	FDX	O source:		
6	IRQ	This b	It IS AND	d with	bit / to	produce t	he		sour	ce	<u>bit 2</u>	<u>bit 1</u>	<u>S0</u>	urce		
F .0	mask	Decem		priequ					sele	ct	0	0	N	lute (CMR)). 	~
5:3 2	– FIFO signed	1 = Au 0 = Au	idio 2 FIF idio 2 FIF	ays wh =O 2's =O uns	complen igned (o	nent mod ffset 8000	e. D).				0	0	C C S A	hannel pla tage). udio 2 DA	yback, afte	er an
	mode										·	Ū	р	ut.	o, ngin on	an
1	FIFO stereo mode	1 = Au 0 = Mo	ono data	-O ster	eo mode	9.					1	1	M le	ono mix of evel stage	left and ri outputs. F	gh D>
0	FIFO 16-bit	1 = Au 0 = Au	ıdio 2 FIF ıdio 2 FIF	=O 16-l =O 8-bi	bit mode it mode.	·.							s le	elect (0Ch/ evel (B4h)	/1Ch) and registers.	re
	mode							0	FDX	(I mix	1 = F	DXI is	mixe	ed with AO	UTL and <i>i</i>	AC

R/W)

0

Audi	o 2 Play	back V	olume			(7C)	h
	Audio 2	2 volume left 5	ft		Audio 2 vo	olume rig	ht
7	6	5	4	3	2	1	

This register controls the playback volume for the second audio channel. This register is reset to zero by hardware reset.

h, R/W)

		0		Mic preamp enable	FDXO so	urce select	FDXI mix enable
7	7 6 5 4		3	2	1	0	

4	-	Rese	Reserved. Always write 0.							
}	Mic preamp enable	1 = E 0 = N	nable + licropho	-26 dB microphone preamp gain. one preamp is 0 dB.						
1	FDXO	DXO Selects the FDXO source:								
	source	<u>bit 2</u>	<u>bit 1</u>	source						
	select	0	0	Mute (CMR).						
		0	1	CINR pin (audio 1 DAC, right						
				channel playback, after filter						
				stage).						
		1	0	Audio 2 DAC, right channel out-						
				put.						
		1	1	Mono mix of left and right record						
				level stage outputs. FDXO is						
				controlled by record source						
				select (0Ch/1Ch) and record						
				level (B4h) registers.						
)	FDXI mix	1 = F	DXI is r	mixed with AOUTL and AOUTR						
	enable	after	the play	back mixer, Spatializer audio pro-						

cessor, and master volume stages. Mix is unity gain (no gain).

0 = FDXI is not mixed with AOUTL and AOUTR.

(7Eh, R/W)

	-						
ADC test	Test	bus	MIDI loop-	FM test	DSP loop-	2nd DMA	0
enable	enable		back test	enable	back test	test enable	0
7	6	5	4	3	2	1	0

This register is a test register.

Bits Definitions:

<u>Bits</u>	<u>Name</u>	Description
7	ADC test enable	1 = ADC logic test mode: GPI replaces left ADC comparator input and Spatializer ADC comparator input; inverted GPI replaces right ADC comparator input.
6:5	Test bus enable	When either of these bits is high, signals between the digital and analog parts of the chip are available via an e-bit output bus con- sisting of: TST[7:0] = {DRQB, IRQE, IRQD, IRQC, IRQB, GPO2, GPO1, GPO0} The data on the bus is selected by a 4-bit select code: SEL[3:0] = {SWD, SWC, SWB, SWA} See Table 26 below.
4	MIDI loopback test	 1 = MSO is internally connected to MSI, loop- ing back the MIDI transmitted from either the MPU-401 port or the Sound Blaster-compatible method. 0 = Disable MIDI loopback test.
3	FM test enable	1 = The four normal FM registers can only be accessed via Audio_Base+0h to Audio_Base+3h. Four FM test registers are accessed via 388h to 38Bh.
2	DSP loopback test	 1 = DSP loopback test mode enabled. Internally, data that would normally be transmitted out DX is looped back to replace data normally received by DR. The ES689/69x serial interface data has a 32-bit shift register. The shift out data from the last stage appears on the DX pin.
		3. The 125 Hz clock used by hardware volume control and the DRQ latch circuits is sped up by a factor of four.
		0 = DSP loopback test mode disabled.
1	2nd DMA test enable	1 = Enable second DMA test mode. Reading mixer register 74h returns data from the audio 2 FIFO and acts as a sample rate strobe to the FIFO in place of the normal sample rate gener- ator. Q = Dicable second DMA test mode
		0 = Disable second DMA test mode.

0 – Reserved. Always write zero.

Table 26 Test Bus Assignments

	Test Dus Assignments	
SEL[3:0]	TST[7:0] in Test Mode 1	TST[7:0] in Test Mode 2
0	DAC/ADC1 data left [7:0]	DAC2 data left [7:0]
1	DAC/ADC1 data left [15:8]	DAC2 data left [15:8]
2	DAC/ADC1 data right [7:0]	DAC2 data right [7:0]
3	DAC/ADC1 data right [15:8]	DAC2 data right [15:8]
4	Music DAC data left [7:0]	Spatializer ADC data [7:0]
5	Music DAC data left [15:8]	Spatializer ADC data [15:8]
6	Music DAC data right [7:0]	7:4 XSEL[3:0] 3:2 XMIX[1:0] 1 IETPG 0 IHOLD
7	Music DAC data right [15:8]	SPGAIN [7:0]
8	7 MOEN 6 EN26DB 5:4 SRCSEL[1:0] 3 PDN 2 CCK 1 FILTCLK2 0 FILTCLK1	7 ENSPZR 6 SPCLK 5 SPMONO 4 SPEVIN 3 - 2 SPETPG 1 SPADCLK 0 SPLR
9	7 CAL 6:5 MOSEL[1:0] 4 ADCMODE1 3 ADCMODE0 2 MONOE 1 SCFBYP2 0 SCFBYP1	FBC[7:0]
10	7 ADCLK 6 EVIN1R 5 HOLD1R 4 ETPG1R 3 EVIN1L 2 HOLD1L 1 ETPG1L 0 MISEL	FBC[15:8]
11	7:6 FSELR[1:0] 5:4 FSELL[1:0] 3 HOLD2 2 ETPG2 1 FMHOLD 0 FMETPG	FBC[23:16]
12	7:4 IVOLR[3:0] 3:0 IVOLL[3:0]	I ² S data left[7:0]
13	7 OVOLR[8] 6 OVOLL[8] 5:4 MIXSEL[1:0] 3:2 OSELR[1:0] 1:0 OSELL[1:0]	I ² S data left[15:8]
14	OVOLL[7:0]	I ² S data right[7:0]
15	OVOLR[7:0]	I ² S data right[15:8]

REGISTERS

Controller Registers

This is a summary and description of the controller registers. These registers are written to and read from using commands of the format Axh or Bxh. To enable access to these registers, send the command C6h.

 Table 27 ESS Controller Registers Summary

Reg	D7	D6	D5	D4	D3	D2	D1	D0	Description
A1h	Clock source			Sample rate	divider			-	S/W reset, unknown
A2h			Filter c	lock divider					S/W reset, setup for 8 kHz sampling
A4h			Lo	ow byte					Audio 1 transfer counter reload
A5h			Hi	gh byte					Audio 1 transfer counter reload
A8h	0	0	0	1	Enable record monitor	0	Mono/ se	/stereo lect	Analog control
B1h	Game-com- patible IRQ	Enable IRQ ovf Ext mode DMA cntr	Enable IRQ for FIFO1 HE status edge	x		Audio 1 in	terrupt		Legacy audio interrupt control
B2h	Game-com- patible DRQ	Enable DRQ for Ext mode DMA	Enable DRQ game-compatible DMA	x		Audio 1		Audio DRQ control	
B4h		Left Channe	el Record Level		Ri	ght Channel F	Record Lev	vel	Record Level
B5h			Lo	ow byte					DAC direct access holding
B6h			Hi	gh byte					DAC direct access holding
B7h	Enable FIFO to/from CODEC	Reserved. Set opposite polarity of bit 3	Data type select	1	Stereo/ Mono mode select	16-bit/8-bit mode select	0	Gener- ate load signal	Audio 1 control 1
B8h	0	0	0	0	CODEC mode	DMA mode	DMA read/ write	Trans- fer enable	Audio 1 control 2
B9h	0	0	0	0	0	0	Transf	er type	Audio 1 transfer type
BAh	0 Disable time delay on analog wake-up			Sign		Adjust magnitude			Left channel ADC offset adjust
BBh		0		Sign		Adjust ma	gnitude		Right channel ADC offset adjust

Controller Register Descriptions

	Audio 1 Sar	nple F	Rate G	(A1h, R/W)				
Clock source Sample rate divider								
	7	6	5	4	3	2	1	0

This register should be programmed for the sample rate for all DAC operations in Extended mode.

The clock source for the sample rate generator is 397.7 kHz if bit 7 is 0 and 795.5 kHz if bit 7 is 1.

The sample rate is determined by the two's complement divider in bits 7:0:

Sample_Rate = 397.7 kHz / (128-x) if bit 7 = 0. = 795.5 kHz / (256-x) if bit 7 = 1.

where x = value in bits 6:0 of register A1h.

Bit Definitions:

<u>Bits</u> 7

<u>Name</u>	Description
Clock	1 = clock source is 795.5 kHz for sample
source	rates higher than 22 kHz.
	0 = clock source is 397.7 kHz for sample
	rates lower than or equal to 22 kHz.
Sampla	Signed sample rate divider

6:0 Sample Signed sample rate divider. rate divider

(A2h, R/W)

REGISTERS

/AOL D/M/

Audio 1 Filter Clock Divider

						•	
			Filter cloo	ck divider			
7	6	5	4	3	2	1	0

This register controls the low-pass frequency of the switch-capacitor filters inside the ES1879. Generally, the filter roll-off should be positioned at 80%-90% of the Sample Rate/2 frequency. The ratio of the roll-off frequency to the filter clock frequency is 1:82. In other words, first determine the desired roll-off frequency by taking 80% of the Sample Rate divided by 2, then multiply by 82 to find the desired filter clock frequency. Use the formula below to determine the closest divider:

Filter_Clock_Frequency = 7.16 MHz / (256-Filter_Divider_Register)

Audio 1	(A4	h, R/W)						
	DMA transfer count reload – low byte							
7	6	5	4	3	2	1	0	

On reset, this register assumes the value of 00h.

Audio	(A5	h, R/W)								
	DMA transfer count reload – high byte									
7	6	5	4	3	2	1	0			

On reset, this register assumes the value of F8h.

The FIFO control logic of the ES1879 has a 16-bit counter for controlling transfers to and from the FIFO. These registers are the reload value for that counter, which is the value that gets copied into the counter after each overflow (plus at the beginning of the initial DMA transfer). The counter is incremented after each byte is successfully transferred by DMA. Since the counter counts up towards FFFFh and then overflows, the reload value is in two's complement form.

For Auto-Initialize mode DMA, the counter is used to generate interrupt requests to the system processor. In this mode, the ES1879 allows continuous DMA. In a typical application, the counter is programmed to be onehalf of the DMA buffer maintained by the system processor. In this application, an interrupt is generated whenever DMA switches from one half of the circular buffer to the other.

For Normal mode DMA, DMA requests are halted at the time that the counter overflows, until a new DMA transfer is commanded by the system processor. An interrupt request is generated to the system processor if bit 6 of register B1h is set high.

Analog Control (A8h, R/W)										
0	0	0	1	Record monitor enable	0	Stereo se	o/mono lect			
7	6	5	4	3	2	1	0			

When programming the FIFO for DMA playback, modify only bits 1:0. When programming the FIFO for DMA record, modify only bits 3, 1, and 0. Read this register first to preserve the remaining bits.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:5	_	Reserved. Always write 0.
4	_	Reserved. Always write 1.
3	Record monitor enable	1 = Enable record monitor.0 = Disable record monitor.
2	_	Reserved. Always write 0.
1:0	Stereo/ mono select	Select operation mode of first DMA converters. <u>bit 1 bit 0 Mode</u> 0 0 Reserved. 0 1 Stereo.

Stereo. 1 0

Mono. 1 Reserved. 1

ES1879 DATA SHEET

PRELIMINARY

(B1h, R/W)

Legacy Audio Interrupt Control

Game-Enable IRQ for Enable IRQ ovf Ext compatible FIFO1 HE status х Audio 1 interrupt mode DMA cntr IRQ edge 7 6 5 4 3 2 1 0

Bit Definitions:

Bits Name Description

- 7 Game-com- Reserved for Compatibility mode. Leave zero patible IRQ for Extended mode.
- 6 Enable Set high to receive interrupts for each over-IRQ ovf Ext flow of the ES1879 DMA counter in Extended mode DMA mode. cntr

5	Enable IRQ for FIFO1 HE status edge	Set high to receive interrupts for FIFO Half- Empty transitions when doing block I/O to/from the FIFO in Extended mode.
	status edge	

4 – No function. The audio device activate bit serves the purpose of enabling the interrupt pin (PnP register 30h for LDN 1).

3:0 Audio 1 Read-only. Decode the selected interrupt number for the first audio interrupt as follows:

<u>bit 3</u>	<u>bit 2</u>	bit 1	<u>bit 0</u>	<u>Audio 1 Interrupt</u>
0	0	0	0	2, 9, all others
0	1	0	1	5
1	0	1	0	7
1	1	1	1	10

DRQ Control

(B2h, R/W)

Game-	Enable DRQ for	Enable DRQ	v	Audio 1 DRO			
DRQ	DRQ DMA DMA				uaio	IDR	Q
7	6	5	4	3	2	1	0

Bit Definitions:

Bits	Name	Desc	ription						
7	Game compatible DRQ	Rese for Ex	Reserved for Compatibility mode. Leave zero for Extended mode.						
6	Enable DRQ for Extended mode DMA	1 = E fo 0 = E E	 1 = Enable DRQ outputs and DACKB inputs for DMA transfers in Extended mode. 0 = Enable block I/O to/from the FIFO in Extended mode. 						
5	Enable DRQ game compatible DMA	Rese for E>	Reserved for Compatibility mode. Leave zero for Extended mode.						
4	-	No fu (there set hi The p parts	No function. The DRQ lines always drive (there is no enable). If neither bit 5 nor bit 6 is set high, the first audio DRQ is always low. The pull-down feature of DRQ pins in previous parts was discontinued in the ES1879						
3:0	Audio 1 DRQ	Read-only. The selected DMA channel number for the first audio DMA channel areber for the first audio DMA channel aredecoded to set these bits as follows: $bit 3$ $bit 2$ $bit 1$ $bit 0$ Audio 1 DRQ01010110111130000011							

ES1879 DATA SHEET

REGISTERS

(B7h. R/W)

Record	Level

(B4h, R/W)

Left	Righ	nt channe	l record	level			
7	6	5	4	3	2	1	0

Register B4h allows for independent left and right record levels. Each channel has 16 levels (excluding mute). The amount of gain or attenuation for each level is different for microphone than for all other sources. The record levels are listed in the following table.

Record Level	Gain for Mic	Gain for Other Sources
0	+0 dB	-6.0 dB
1	+1.5 dB	-4.5 dB
2	+3.0 dB	-3.0 dB
3	+4.5 dB	-1.5 dB
4	+6.0 dB	0 dB
5	+7.5 dB	+1.5 dB
6	+9.0 dB	+3.0 dB
7	+10.5 dB	+4.5 dB
8	+12.0 dB	+6.0 dB
9	+13.5 dB	+7.5 dB
10	+15.0 dB	+9.0 dB
11	+16.5 dB	+10.5 dB
12	+18.0 dB	+12.0 dB
13	+19.5 dB	+13.5 dB
14	+21.0 dB	+15.0 dB
15	+22.5 dB	+16.5 dB

DAC Direct Access Holding

(B5h, R/W)

		DAC direct access	s holding	– low k	oyte		
7	6	5	4	3	2	1	0

Low byte of DAC direct access holding register. Because the bus between the ISA bus and the FIFO is only 8 bits wide, the ES1879 needs a location for storage of 16-bit data. Registers B5h and B6h serve this function.

DAC	DAC Direct Access Holding								
		DAC direct access	holding	– high l	byte				
7	2	1	0						

High byte of DAC direct access holding register. Because the bus between the ISA bus and the FIFO is only 8 bits wide, the ES1879 needs a location for storage of 16-bit data. Registers B5h and B6h serve this function.

								•
Enable FIFO to/from CODEC	Set oppo- site bit 3	FIFO signed mode	1	FIFO stereo mode	FIFO 16-bit mode	0	Generate load signa	; al
7	6	5	4	3	2	1	0	

Bit Definitions:

Audio 1 Control 1

<u>Bits</u>	<u>Name</u>	Description
7	Enable FIFO to/ from CODEC	 1 = Enable first DMA FIFO connection to DAC or ADC. This allows transfers to/from the FIFO and the analog circuitry. 0 = Disable first DMA FIFO connection to DAC or ADC.
6	Set opposite bit 3	Reserved function. This bit must be set to the opposite polarity of bit 3: high for mono and low for stereo.
5	FIFO signed mode	1 = First DMA FIFO 2's complement mode (signed data).0 = First DMA FIFO unsigned (offset 8000).
4	-	Reserved. Always write 1.
3	FIFO stereo mode	 1 = First DMA FIFO stereo mode. 0 = First DMA FIFO mono mode. Bit 6 must be set at the opposite polarity of this bit: high for mono, low for stereo.
2	FIFO 16-bit mode	1 = First DMA FIFO 16-bit mode. 0 = First DMA FIFO 8-bit mode.
1	-	Reserved. Always write 0.
0	Generate load signal	Write 1. Generates a load signal that copies DAC Direct Access Holding register to DAC on the next sample rate clock edge (sample rate is determined by Extended mode regis- ter A1h). This bit is cleared after the holding register is copied to the DAC.

Audi	(B8h, R/W)						
0	0	0	0	CODEC mode	DMA mode	DMA read enable	DMA transfer enable
7	6	5	4	3	2	1	0

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:4	_	Reserved. Always write 0.
3	CODEC mode	1 = first DMA converters in ADC mode.0 = first DMA converters in DAC mode.
2	DMA mode	1 = Auto-Initialize DMA mode. 0 = Normal DMA mode.
1	DMA read enable	1 = first DMA is read (e.g., for ADC operation).0 = first DMA is write (e.g., for DAC operation).
0	DMA transfer enable	First DMA active-low reset. When low, first DMA is allowed to proceed.

REGISTERS

PRELIMINARY

(B9h, R/W)

(BAh, R/W)

Audio 1 Transfer Type

0						DMA transfe	er type select
7	6	5	4	3	2	1	0

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Desc	riptior	<u>1</u>			
7:2	-	Rese	rved.	Always write	0.		
1:0	DMA	Selec	ts the	e DMA transfe	er type for the first		
	transfer	DMA:	DMA:				
	type select	<u>bit 1 k</u>	<u>oit 0</u> 1	ransfer Type	Bytes/DMA Request		
		0	0	Single	-		
		0	1	Demand	2		
		1	0	Demand	4		
		1	1	Reserved	_		

Left Channel ADC Offset Adjust

			-					
	0	Disable time delay on analog wake up	Sign	A	djust m	agnitud	de	
7	6	5	4	3	2	1	0	

This register is reset to zero by hardware reset and is unaffected by software reset.

Bit Definitions:

<u>Bits</u>	<u>Name</u>	Description
7:6	-	Reserved. Always write 0.
5	Disable time delay on analog wake up	Normally, the AOUT_L and AOUT_R pins are muted for 100 msec \pm 20 msec after hardware reset or after the analog sub- systems wake from power-down. Set high to disable delay. This bit is cleared by hardware reset.
4:0	Sign/Adjust magnitude	See the explanation for bits 4:0 following register BBh.

Right Channel ADC Offset Adjust (BBh, R/W								
	0		Sign		Adjust m	agnitude		
7	6	5	1	3	2	1	0	

This register is reset to zero by hardware reset and is unaffected by software reset.

Bit Definitions:

<u>Bits</u> Name	<u>Description</u>
7:5 0	Reserved. Always write 0.

4:0 Sign/Adjust See the following explanation for bits 4:0.

magnitude

Bits 4 (sign) and 3:0 (adjust magnitude) of the ADC Offset Adjust register cause a constant value to be added to the ADC converter output, as shown in the following:

Code	Offset	Code	Offset
00h	0	10h	-64
01h	+64	11h	-128
02h	+128	12h	-192
03h	+192	13h	-256
04h	+256	14h	-320
05h	+320	15h	-384
06h	+384	16h	-448
07h	+448	17h	-512
08h	+512	18h	-576
09h	+576	19h	-640
0Ah	+640	1Ah	-704
0Bh	+704	1Bh	-768
0Ch	+768	1Ch	-832
0Dh	+832	1Dh	-896
0Eh	+896	1Eh	-960
0Fh	+960	1Fh	-1024

Formula:

bit 4 = 0: offset = 64 * bits[3:0] bit 4 = 1: offset = -64 * (bits[3:0] +1)

To calculate the offset adjust code, first measure the ADC offset for both right and left channels before adjustment by following these steps:

- 1. Program Extended mode registers BAh and BBh bits 4:0 to be zero (no digital offset).
- 2. Select a zero-amplitude (or low amplitude) recording source.
- 3. Set the recording volume to minimum by setting Extended mode register B4h to zero.
- Make a stereo 16-bit two's complement recording at 11 kHz sample rate of 2048 stereo samples (2048 stereo samples = 4096 words = 8192 bytes, which is about 190 msec).
- 5. Use the last 1024 stereo samples to calculate a long-term average for both left and right channels.
- 6. With this average DC offset, calculate the best digital offset to bring the sum closest to zero, using the codes and offsets listed in the table above.

AUDIO MICROCONTROLLER COMMAND SUMMARY

AUDIO MICROCONTROLLER COMMAND SUMMARY

Table 28 Command Summary

Command	Data Byte(s) Write/Read	Function		
10h	1 write	Direct write 8-bit DAC. Data is 8-bit unsigned format.		
11h	2 writes	Direct write 16-bit DAC. Data is 16-bit unsigned format, first low byte then high byte.		
14h	2 writes	Start Normal mode DMA for 8-bit DAC transfer. Data is transfer count-1, least byte first. Stereo DAC transfer if Stereo flag is set in Mixer register 0Eh. Maximum sample rate is 44 kHz mono, 22 kHz stereo.		
15h	2 writes	Start Normal mode DMA for 16-bit DAC transfer. Data is transfer count-1, least byte first. Stereo DAC transfer if Stereo flag is set in Mixer register 0Eh. Maximum sample rate is 22 kHz mono, 11 kHz stereo.		
1Ch		Start Auto-Initialize mode DMA for 8-bit DAC transfer. Block size must be previously set by com- mand 48h. Stereo DAC transfer if Stereo flag is set in Mixer register 0Eh. Maximum sample rate is 44 kHz mono, 22 kHz stereo.		
1Dh		Start Auto-Initialize mode DMA for 16-bit DAC transfer. Block size must be previously set by com- mand 48h. Stereo DAC transfer if Stereo flag is set in Mixer register 0Eh. Maximum sample rate is 22 kHz mono, 11 kHz stereo.		
20h	1 read	Direct mode 8-bit ADC. Data is 8-bit unsigned. Firmware-controlled input volume for AGC.		
21h	2 read	Direct mode 16-bit ADC, returns least byte first. Data is 16-bit unsigned format. Input volume con- trolled via command DDh.		
24h	2 writes	Start Normal mode DMA for 8-bit ADC transfer. Data is transfer count-1, least byte first. Firmware- controlled input volume for AGC. Maximum sample rate is 22 kHz: use command 99h for higher rates up to 44 kHz.		
25h	2 writes	Start Normal mode DMA for 16-bit ADC transfer. Data is transfer count-1, least byte first. Input volume controlled via command DDh. Maximum sample rate is 22 kHz.		
2Ch		Start Auto-Initialize mode DMA for 8-bit ADC transfer. Block size must be previously set by com- mand 48h. Firmware-controlled input volume for AGC. Maximum sample rate is 22 kHz: use com- mand 98h for higher rates up to 44 kHz.		
2Dh		Start Auto-Initialize mode DMA for 16-bit ADC transfer. Block size must be previously set by com- mand 48h. Input volume is controlled via command DDh. Maximum sample rate is 22 kHz.		
30h/31h		MIDI input mode. Detects MIDI serial input data and transfers to Data register, setting Data-Available flag in register Audio_Base+Eh. Command 31h will also generate an interrupt request for each byte received. Exit MIDI input mode by executing a write to port Audio_Base+Ch. The data written is ignored. A software reset will also exit this mode.		
34h/35h		MIDI UART mode. Acts like commands 30h and 31h, except that any data written to Audio_Base+Ch will be transmitted as MIDI serial output data. The only way to exit this mode is a software reset.		
38h	1 write	MIDI output. Transmit one byte.		
40h	1 write	Set time constant, X, for timer used for DMA mode DAC/ADC transfers: rate = 1 MHz / (256-X). X must be less than or equal to 233. For stereo DAC, program sample rate for twice the per-channel rate.		
41h	1 write	Alternate set time constant, X: rate = 1.5 MHz / (256-X). This command provides more accurate tim- ing for certain rates such as 22,050. X must be less than or equal to 222. For stereo DAC, program sample rate for twice the per-channel rate.		
42h	1 write	Set filter clock independently of timer rate. (Note that the filter clock is automatically set by com- mands 40h/41h.) Filter clock rate = $7.16E6 / (256-X)$. The relationship between the low-pass filter -3 dB point and the filter clock rate is approximately 1:82.		
48h	2 writes	Set block size to -1 for High-Speed mode and Auto-Initialize mode transfer, least byte first.		

AUDIO MICROCONTROLLER COMMAND SUMMARY

Table 28 Command Summary (Continued)

Command	Data Byte(s) Write/Read	Function
64h	2 writes	Start ESPCM [®] 4.3-bit (low compression) format DMA transfer to DAC. Data is transfer count-1, least byte first.
65h	2 writes	Same as command 64h, except with Reference Byte flag.
66h	2 writes	Start ESPCM [®] 3.4-bit (medium compression) format DMA transfer to DAC. Data is transfer count-1, least byte first.
67h	2 writes	Same as command 66h, except with Reference Byte flag.
6Ah	2 writes	Start ESPCM [®] 2.5-bit (high compression) format DMA transfer to DAC. Data is transfer count-1, least byte first.
6Bh	2 writes	Same as command 6Ah, except with Reference Byte flag.
6Eh	2 writes	Start ESPCM [®] 4.3-bit (low compression) format ADC, compression, and DMA transfer. Data is trans- fer count-1, least byte first.
6Fh	2 writes	Same as command 6Eh, except with Reference Byte flag.
74h	2 writes	Start ADPCM 4-bit format DMA transfer to DAC. Data is transfer count-1, least byte first.
75h	2 writes	Same as command 74h, except with Reference Byte flag.
76h	2 writes	Start ADPCM 2.6-bit format DMA transfer to DAC. Data is transfer count-1, least byte first.
77h	2 writes	Same as command 76h, except with Reference Byte flag.
7Ah	2 writes	Start ADPCM 2-bit format DMA transfer to DAC. Data is transfer count-1, least byte first.
7Bh	2 writes	Same as command 7Ah, except with Reference Byte flag.
80h	2 writes	Generate silence period. Data is number of samples-1.
90h		Start Auto-Initialize, DMA 8-bit transfer to DAC. Transfer count must be previously set by command 48h.
91h		Start DMA 8-bit transfer to DAC. Transfer count must be previously set by command 48h.
98h		Start High-Speed mode, Auto-Initialize, DMA 8-bit transfer from ADC. Transfer count must be previously set by command 48h. There is no AGC. Input volume is controlled with command DDh. Maximum sample rate is 44 kHz.
99h		Start High-Speed mode, DMA 8-bit transfer from ADC. Transfer count must be previously set by command 48h. There is no AGC. Input volume is controlled with command DDh. Maximum sample rate is 44 kHz.
Axh, Bxh, Cxh		(where $x = 00h$ to 0Fh) ES1879 Extension commands. Many of the Extension commands are used to access the ES1879's controller registers. For information on these registers, see the register descriptions.
C0h		Enable reads of ES1879 registers used for Extended Mode: Axh, Bxh.
C1h		Resume after suspend.
C6h		Enable ES1879 Extension commands Axh, Bxh. Must be issued after every reset.
C7h		Disable ES1879 Extension commands Axh, Bxh.
D0h		Pause DMA. Internal FIFO operations will continue until the FIFO is empty (DAC transfer) or full (ADC transfer). It is not necessary to use this command to stop DMA if the transfer is completed normally and the end-of-DMA interrupt is generated.
D1h		Enable voice DAC input to mixer.
D3h		Disable voice DAC input to mixer.
D4h		Continue DMA after command D0h.
D8h	1 read	Return voice DAC enable status: 0 = disabled FFh = enabled

AUDIO MICROCONTROLLER COMMAND SUMMARY

Table 28 Command Summary (Continued)

Command	Data Byte(s) Write/Read	Function
DCh	1 read	Return current input gain, 0-15 (valid during 16-bit ADC and 8-bit "High-Speed mode" ADC).
DDh	1 write	Write current input gain, 0-15 (valid during 16-bit ADC and 8-bit "High-Speed mode" ADC).
E1h	2 reads	Return version number high (3), followed by version number low (1). This indicates Sound Blaster Pro compatibility.

POWER MANAGEMENT

POWER MANAGEMENT

Power management in the ES1879 is controlled by PnP Configuration register 2Dh. In previous *Audio*Drive[®] chips, power management was controlled by I/O port Audio_Base+7h. Only bit 5 (FM reset) and bit 7 (suspend request) of I/O port Audio_Base+7h are supported in the ES1879.

GPO, XSD, and XSC are not affected during power-down. XA[3:0] are high-impedance during power-down Modes 0 and 1.

Power Management Characteristics

The ES1879 has four power modes. The mode is determined by bits 1 and 0 of Vendor-Defined Card-Level register 2Dh.

In any mode, the configuration device can always be read and written.

Mode Transitions

The mode can be changed at any time with only one restriction: if a crystal is connected to XI/XO, and the chip is in mode 0, then the chip must be placed in mode 1 for a period of 25 milliseconds or more to allow the oscillator to settle, before changing to mode 2 or mode 3.

Table 29) Power	. Mode	Descri	ntion
		mouc	DCSCII	μισπ

Mode	Description	Notes
0	Full power-down. Crystal oscillator dis- abled. AOUT_L/R held at approximately CMR by high value resistors.	All inputs static at VDDD or GND.
1	Crystal oscillator enabled. Analog pow- ered down.	All inputs other than XI are static.
2	Analog powered up. ES978 interface up. Joystick, MPU-401 up. I ² S up. Audio, FM, ES689/ES690 interface, and DSP serial interface down.	Digital standby.
3	Full power on. This is the state after hardware reset.	Normal operating conditions.

BIOS Power Management

There are at least three types of BIOS power management:

 Suspend-to-Disk. Here the context of the ES1879 is uploaded to disk, then power is removed from the ES1879. Later, power is applied to the ES1879 along with a hardware reset, and the context of the chip is downloaded.

- Idle power-down. The microcontroller is stopped or slowed. Application software is not running. The ES1879 is put in full power-down mode by BIOS. The power supply is still connected to the chip. Later, the BIOS returns the ES1879 to full power up.
- 3. Power reduction. If the system can generate an System Management Interrupt (SMI) upon I/O access to the audio and FM addresses, then the BIOS can implement a power reduction technique: the BIOS periodically polls the activity flags of the ES1879 in order to determine if the chip is in use. If not in use for some period, it can power down the chip and enable the SMI. The first application to access the audio or FM address space will trigger the SMI, which causes the BIOS to power up the ES1879, and deactivate the SMI.

BIOS power management is well suited to a DOS environment. It must also work with the ES1879 Windows driver which implements power management as well.

Suspend-to-Disk / Resume-from-Disk

Suspend-to-Disk is the name given to the procedure where the entire context of the ES1879 is uploaded to be saved on disk. After saving the context, power can be removed entirely from the ES1879. When power is reapplied (and a hardware reset is given), the ES1879 state must be restored from the saved context.

The suspend procedure consists of the following tasks:

- 1. Upload PnP configuration information.
- 2. Upload FM registers.
- 3. Upload mixer registers.
- 4. Upload MPU-401 state.
- 5. Upload audio state (using suspend request: bit 7 of port "Audio_Base+7h").

An example DOS assembly language program is available demonstrating suspend-to-disk, followed by resume-fromdisk, from a TSR that hooks the system timer interrupt. This program demonstrates how a DOS application such as a game can be suspended in the middle of audio playback.

DMA and Interrupts During Suspend-to-Disk

The ES1879 cannot properly suspend and resume during audio playback unless the DMA and interrupt controller are also properly suspended. Alternatively, the DMA and interrupt controllers should not have power removed. In the latter case, it is important that all DRQ and IRQ lines are held low. All bus lines should be low if power is removed from a device connected to the bus that has its power supply removed. Also, during and after reset, the

ES1879 DRQ and IRQ lines are high-impedance. If a DRQ or IRQ line floats high, it can produce a false DMA cycle or interrupt.

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Rating	Symbol	Value
Analog supply voltage range	VDDA	-0.3 to 7.0 V
Digital supply voltage range	VDDD	-0.3 to 7.0 V
Input voltage	VIN	-0.3 to 7.0 V
Operating temperature range	TA	0 to 70 °C
Storage temperature range	TSTG	-50 to 125 °C

Thermal Characteristics

The ES1879 is designed to operate at case temperatures of less than 78 $^\circ\text{C}.$

WARNING: Stressing the device beyond the Absolute Maximum Ratings may cause permanent damage. These are stress ratings only. Operation beyond the Operating Conditions is not recommended, and extended exposure beyond the Operating Conditions may affect device reliability.

Operating Conditions

Digital supply voltage 3.0 V to 5.50 V

Analog supply voltage 4.75 V to 5.25 V

DC Electrical Characteristics

Table 30	Digital Characteristics				
Symbol	Parameter	Min	Тур	Max	Unit (conditions
VIH1	Input high voltage: all inputs except XI	2.0 V			VDDD = min
VIH2	Input high voltage: XI	3.0 V			VDDD = min
VIL	Input low voltage		0.8 V		VDDD = max
VOL1	Output low voltage: all outputs except D[7:0], IRQ(A-E), DRQ(A-C), XSC, XSD		0.4 V		IOL = 4 mA, VDDD = min
VOH1	Output high voltage: all outputs except D[7:0], IRQ(A-E), DRQ(A-C), XSC, XSD	2.4 V			IOH = -3 mA, VDDD = max
VOL2	Output low voltage: D[7:0], IRQ(A-E), DRQ(A-D), XSC, XSD		0.4 V		IOL = 16 mA, VDDD = min
VOH2	Output high voltage: D[7:0], IRQ(A-E), DRQ(A-D), XSC, XSD	2.4 V			IOH = -12 mA, VDDD = max
VOL3	Output low voltage		0.4 V		IOL = 0.8 mA

Table 31 Analog Characteristics

 $(VDDA = 5.0 V \pm 5\%; TA = 25 °C)$

Pins	Parameter	Min	Тур	Max	Units
CMR	Reference voltage		2.25		volts
LINE_L, LINE_R, AUXA_L, AUXA_R, AUXB_L, AUXB_R, MIC	Input impedance	30k	70k	100k	Ω
CIN_L, CIN_R		35k	50k	65k	Ω
FDXI		30k	70k	100k	Ω
FOUT_L, FOUT_R	Output impedance	3.5k	5k	6.5k	Ω
AOUT_L, AOUT_R max load for full-scale output range		10k	10k		Ω
FDXO]		5k	6.5k	Ω

ELECTRICAL CHARACTERISTICS

Table 31 Analog Characteristics

 $(VDDA = 5.0 V \pm 5\%; TA = 25 °C)$ (Continued)

Pins	Parameter	Min	Тур	Max	Units
MIC	Input voltage range	10		125	mVp-p
LINE_L, LINE_R, AUXA_L, AUXA_R, AUXB_L, AUXB_R		0.5		VDDA - 1.0	volts
FDXI				3.5	Vp-р
AOUT_L, AOUT_R full-scale output range	Output voltage range	0.5		VDDA - 1.0	volts
FDXO			2.0		Vp-р
MIC	Mic preamp gain		26		decibels

Power Management Characteristics

 Table 32
 Current Consumption for Power Modes

Mode	Typical IDDD at 3.3V	Typical IDDD at 5.0V	Typical IDDA at 5.0V
0	10 μA	10 μA	10 μA
1	1 mA	3 mA	10 μA
2	2 mA	5 mA	70 mA
3	20 mA	30 mA	70 mA

ES1879 TIMING DIAGRAMS

ES1879 TIMING DIAGRAMS

Figure 21 Compatibility Mode DMA Write Cycle¹

¹ In Compatibility mode DMA, the DMA request is reset by the acknowledge signal going low. In Extended mode DMA, the DMA request is reset when the acknowledge signal is low AND the correct command signal is low – either IORB (for DMA read from I/O device) or IOWB (for DMA write to I/O device). For Extended mode DMA, the time t₁₀ is relative to the later of the falling edge of the acknowledge signal or the command signal.

ES1879 TIMING DIAGRAMS

Figure 24 Serial Mode Transmit Operation

Figure 25 Serial Input Timing for I²S Interface

Figure 26 I²S Digital Input Format with 16 SCLK Periods

TIMING CHARACTERISTICS

TIMING CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
t ₁	Reset pulse width	300			ns
t ₂	IORB, IOWB pulse width	100			ns
t ₃	IORB, IOWB address setup time	10			ns
t ₄	Read data access time			70	ns
t ₅	Read data hold time			10	ns
t ₆	Write data setup time	5			ns
t ₇	Write data hold time	10			ns
t ₈	DMA request to AEN high	0			ns
t ₉	DMA request to DMA ACK low	10			ns
t ₁₀	DMA ACK to request release ^a			30	ns
t ₁₁	DMA ACK high to AEN low	0			ns
t ₁₂	DMA ACK to IOWB, IORB low	0			ns
t ₁₃	IOWB, IORB to DMA ACK release	20			ns
t ₁₄	Crystal frequency, XI/XO		14.318		MHz
t ₁₅	FS, DS setup time to DCLK falling edge	15			ns
t ₁₆	FS, DR hold time from DCLK falling edge	10			ns
t ₁₇	DX delay time from DCLK rising edge			20	ns
t ₁₈	DX hold time from DCLK rising edge	10			ns
t ₁₉	FS pulse width	60	500		ns
t ₂₀	DCLK clock frequency		2.048		MHz
t ₂₁	IISCLK delay	2			ns
t ₂₂	IISCLK setup	32			ns
t ₂₃	Bit clock low	22			ns
t ₂₄	Bit clock high	22			ns
t ₂₅	Data setup time	32			ns
t ₂₆	Data hold time	2			ns

a. In Compatibility mode DMA, the DMA request is reset by the acknowledge signal going low. In Extended mode DMA, the DMA request
is reset when the acknowledge signal is low AND the correct command signal is low – either IORB (for DMA read from I/O device) or
IOWB (for DMA write to I/O device). For Extended mode DMA, the time t₁₀ is relative to the later of the falling edge of the acknowledge
signal or the command signal.

MECHANICAL DIMENSIONS

Figure 27 ES1879 Physical Dimensions

Symbol	Decorintion	Millimeters			
Symbol	Description	Min	Nom	Max	
D	Lead-to-lead, X-axis	15.75	16.00	16.25	
D1	Package's outside, X-axis	13.90	14.00	14.10	
E	Lead-to-lead, Y-axis	15.75	16.00	16.25	
E1	Package's outside, Y-axis	13.90	14.00	14.10	
A1	Board standoff	0.05	0.10	0.15	
A2	Package thickness	1.35	1.40	1.45	
b	Lead width	0.17	0.22	0.27	
е	Lead pitch		0.50		
e1	Lead gap				
L	Foot length	0.45	0.60	0.75	
L1	Lead length				
	Foot angle				
	Coplanarity			0.102	
	Leads in X-axis		25		
	Leads in Y-axis		25		
	Total leads		100		
	Package type		SQFP		

APPENDIX A: ES1879 INTERNAL PNP RESOURCE ROM

APPENDIX A: ES1879 INTERNAL PNP RESOURCE ROM

; system00.DAT ; PnP Resource ROM for ES1879 : LDN0 Control Interface ; LDN1 Audio/FM/MPU-401 LDN2 Joystick ***** Start of ESS Proprietary Header (8 bytes) 0A5H ; PNP OK byte 059H ; IRQA = 9 IRQB = 5 0A7H ; IRQC = 7 IRQD = 10 00BH ; IRQE = 11 no more IRQF on ES1879 010H ; DRQA = 0 DRQB = 1 023H ; DRQC = 3 DRQD = 2 (not used) 000H ; MPU-401 part of audio, DRQ latching off 000H ; reserved ****** Start of PNP Resource Header ****** ; "ESS1879" product id for ES1879 016H, 073H, 018H, 079H OFFH, OFFH, OFFH, OFFH ; serial number FFFFFFF (not supported) 02FH ; header checksum 00AH, 010H, 010H ; PNP 1.0, ESS version 1.0 082H, 023H, 000H, "ESS ES1879 Plug and Play AudioDrive" ; LOGICAL DEVICE 0 -- Configuration Ports 8 bytes at any I/O address that is a multiple of 8 015H, 016H, 073H, 000H, 009H, 000H : ESS0009 047H, 001H, 000H, 008H, 0F8H, 00FH, 008H, 008H ; 800H-FF8H 8 bytes ; LOGICAL DEVICE 1 -- Audio Controller w/FM and MPU-401 015H, 016H, 073H, 018H, 079H, 000H : ESS1879 ; Basic configuration 0000 031H, 000H 02AH, 002H, 008H ; DMA 0: DRQ 1 02AH, 009H, 008H ; DMA 1: DRQ 0 3 022H, 020H, 000H ; INT 0: IRQ 5 047H, 001H, 020H, 002H, 020H, 002H, 000H, 010H ; 220 16 bytes 047H, 001H, 088H, 003H, 088H, 003H, 000H, 004H ; 388 4 bytes 047H, 001H, 030H, 003H, 030H, 003H, 000H, 002H ; 330 2 bytes ; Basic configuration 0001 031H, 001H

APPENDIX A: ES1879 INTERNAL PNP RESOURCE ROM

02AH, 002H, 008H 02AH, 009H, 008H 022H, 0A0H, 006H 047H, 001H, 020H, 002H, 040H, 002H, 020H, 010H 047H, 001H, 088H, 003H, 088H, 003H, 020H, 004H 047H, 001H, 000H, 003H, 030H, 003H, 030H, 002H	; DMA 0: DRQ 1 ; DMA 1: DRQ 0 3 ; INT 0: IRQ 5 7 9 10 ; 220 240 16 bytes ; 388 4 bytes ; 300 or 330 2 bytes ; Basic configuration 0002
031H, 001H 02AH, 00BH, 008H 02AH, 00BH, 008H 022H, 0A0H, 00EH 047H, 001H, 020H, 002H, 080H, 002H, 020H, 010H 047H, 001H, 088H, 003H, 088H, 003H, 002H, 004H 047H, 001H, 000H, 003H, 030H, 003H, 030H, 002H	; DMA 0: DRQ 0 1 3 ; DMA 1: DRQ 0 1 3 ; INT 0: IRQ 5 7 9 10 11 ; 220 240 260 280 16 bytes ; 388 4 bytes ; 300 or 330 2 bytes ; Basic configuration 0003
031H, 001H 02AH, 00BH, 008H 02AH, 00BH, 008H 022H, 0A0H, 00EH 047H, 001H, 020H, 002H, 080H, 002H, 020H, 010H 047H, 001H, 088H, 003H, 088H, 003H, 002H, 002H 047H, 001H, 000H, 008H, 0FEH, 00FH, 002H, 002H	; DMA 0: DRQ 0 1 3 ; DMA 1: DRQ 0 1 3 ; INT 0: IRQ 5 7 9 10 11 ; 220 240 260 280 16 bytes ; 388 4 bytes ; 800/801-FFE/FFF 2 bytes ; Basic configuration 0004
031H, 002H 02AH, 00BH, 008H 02AH, 00BH, 008H 022H, 0A0H, 00EH 047H, 001H, 020H, 002H, 080H, 002H, 020H, 010H 047H, 001H, 000H, 008H, 0FCH, 00FH, 004H, 004H 047H, 001H, 000H, 008H, 0FEH, 00FH, 002H, 002H 038H	; DMA 0: DRQ 0 1 3 ; DMA 1: DRQ 0 1 3 ; INT 0: IRQ 5 7 9 10 11 ; 220 240 260 280 16 bytes ; 800/804-FFC/FFF 4 bytes ; 800/801-FFE/FFF 2 bytes ; end configurations
; ; LOGICAL DEVICE 2 Joystick ; Only choice is one address at 201.	
· · · · · · · · · · · · · · · · · · ·	
015H, 016H, 073H, 000H, 001H, 000H 031H, 000H 047H, 001H, 001H, 002H, 001H, 002H, 000H, 001H 031H, 001H 047H, 001H, 000H, 002H, 00FH, 002H, 001H, 001H 038H 01CH 041H 0D0H 0B0H 02FH	; ESS0001 ; Basic configuration 0000 ; 201 1 byte ; Windows 95 Joystick driver will only allow 200-20F!!! ; Basic configuration 0001 ; 200/200-20F/20F 1 byte ; end dependent functions ; Compatible ID: PNPB02F
079H, 0BFH	; end tag + checksum

PRELIMINARY

APPENDIX B: ES689/ES69X DIGITAL SERIAL INTERFACE

APPENDIX B: ES689/ES69X DIGITAL SERIAL INTERFACE

In order for the ES689/ES69x to acquire the FM DAC, bit 4 of mixer register 48h inside the ES1879 must be set high. When bit 4 is set high, activity on the MCLK signal causes the FM DAC to be connected to the ES689/ES69x. If MCLK stays low for more than a few sample periods, the ES1879 reconnects the FM DAC to the FM synthesizer.

After reset, the ES689/ES69x transmits samples continuously. In this mode, bit 4 of mixer register 48h must be set or cleared to assign the current owner of the FM

DAC. The ES689/ES69x can be programmed to enter Activity-Detect mode using system exclusive command 4. In this mode, the ES689/ES69x blocks the serial port output (i.e., sets MSD and MCLK low) if no MIDI input is detected on the MSI pin for a period of 5 seconds. It will resume output of data on the serial port as soon as a MIDI input is detected on the MSI pin. This is the recommended mode of operation.

Figure 28 MIDI Interface Data Format

Bit Clock Rate (MCLK): 2.75 MHz

Sample Rate: 42,968.75 Hz

MCLK Clocks per Sample: 33 clocks (+ 31 missing clocks)

MSD Format: 16 bits, unsigned (offset 8000h), MSB first

MSD changes after rising edge of MCLK. Hold time relative to MCLK rising edge is 0-25 nanoseconds.

APPENDIX C: I²S ZV INTERFACE REFERENCE

APPENDIX C: I²S ZV INTERFACE REFERENCE

(Excerpted from "PCMCIA Document Number 0135 – Release 010 1/15/96")

Overview

The following diagram shows the system-level concept of the ZV port. The diagram demonstrates how TV in a window could be achieved in a portable computer with a low-cost PC card. An MPEG or teleconferencing card could also be plugged into the PC Card slot.

Figure 29 Example ZV Port Implementation

The Audio Interface

The ZV Port compliant PC card sends audio data to the host computer using Pulse Code Modulation (PCM). The audio data is transferred using the serial I²S format. The audio circuitry in the host system is primarily a PCM DAC.

The PCM audio DAC is a complete stereo digital-toanalog system including digital-interpolation, delta-sigma digital-to-analog conversion, digital de-emphasis, and analog filtering. Only the normal power supply decoupling components and one resistor and capacitor per channel for analog signal reconstruction are required.

The DAC accepts data at standard audio frequencies including 48 kHz, 44.1 kHz, 32 kHz, and 22 kHz. Audio data is input via the serial data input pin, SDATA. The Left/ Right Clock (LRCLK) defines the channel and delineation

of data. There Serial Clock (SCLK) clocks the audio data into the input data buffer. The master clock (MCLK) is used to operate the digital interpolation filter and the deltasigma modulator.

Table 33	Common	Clock	Freq	juencies
----------	--------	-------	------	----------

	MCLK (MHz)		
LRCLK (KHz)	256x	384x	
22	5.632	8.448	
32	8.192	12.2880	
44.1	11.2896	16.9344	
48	12.2880	18.4320	

APPENDIX C: I²S ZV INTERFACE REFERENCE

Figure 30 Typical ZV Port Audio Implementation

APPENDIX C: I²S ZV INTERFACE REFERENCE

Audio Interface Timing

Figure 31 Audio Interface Timing

Table 34	AC Parameters	for Audio	Signals
----------	----------------------	-----------	---------

Symbol	Parameter	Min	
t _{slrd}	LRCLK delay	2ns	
t _{slrs}	LRCLK setup	32ns	
t _{SCLKI}	bit clock low	22ns	
t _{SCLKh}	bit clock high	22ns	
t _{sdlrs}	data setup	32ns	
t _{sdh}	data hold	2ns	

LRCLK

This signal determines which audio channel (left/right) is currently being input on the audio serial data input line. LRCLK is low to indicate the left channel and high to indicate the right channel. Typical frequency values for this signal are 48 kHz, 44.1 kHz, 32 kHz, and 22 kHz.

SCLK

This signal is the serial digital audio PCM clock.

SDATA

This signal is the digital PCM signal that carries the audio information. Digital audio data is transferred using the I²S format.

MCLK

102

This signal is the master clock for the digital audio. MCLK is asynchronous to LRCLK, SDATA, and SCLK.

MCLK must be either 256 times or 384 times the desired Input Word Rate (IWR). IWR is the frequency at which words for each channel are input to the DAC and is equal to the LRCLK frequency. The following table illustrates several standard audio word rates and the required SCLK and MCLK frequencies. Typically, most devices operate with 384 x Fs master clock.

The ZV Port audio DAC should support an MCLK frequency of $384 \times Fs$. This results in the frequencies shown below.

LRCLK (kHz) Sample Frequency	SCLK (MHz) 32 x Fs	MCLK (MHz) 384 x Fs	
22	0.704	8.448	
32	1.0240	12.2880	
44.1	1.4112	16.9344	
48	1.5360	18.4320	

ES1879 DATA SHEET

PRELIMINARY

APPENDIX C: I²S ZV INTERFACE REFERENCE

I²S Format

The I²S format is shown in Figure 32 below. The digital audio data is left channel-MSB justified to the high-to-low going edge of the LRCLK plus one SCLK delay.

APPENDIX C: I2S ZV INTERFACE REFERENCE

ZV Port Pin Assignments

Table 35 shows the function of various PC card signals when the ZV Port custom interface mode is set in the PC Card Host Adapter. PC card signals not mentioned in the table below, remain unchanged from the 16-bit PC card I/O and Memory interface.

Table 35 ZV Port Interface Pin Assignments

PC Card Pin Number	I/O and Memory Interface Signal Name	I/O and Memory I/Oª	ZV Port Interface Signal Name	ZV Port I/Oª	Comments
8	A10	I	HREF	0	Horizontal Sync to ZV Port
10	A11	I	VSYNC	0	Vertical Sync to ZV Port
11	A9	I	Y0	0	Video Data to ZV Port YUV:4:2:2 format
12	A8	I	Y2	0	Video Data to ZV Port YUV:4:2:2 format
13	A13	I	Y4	0	Video Data to ZV Port YUV:4:2:2 format
14	A14	I	Y6	0	Video Data to ZV Port YUV:4:2:2 format
19	A16	I	UV2	0	Video Data to ZV Port YUV:4:2:2 format
20	A15	I	UV4	0	Video Data to ZV Port YUV:4:2:2 format
21	A12	I	UV6	0	Video Data to ZV Port YUV:4:2:2 format
22	A7	I	SCLK	0	Audio SCLK PCM Signal
23	A6	I	MCLK	0	Audio MCLK PCM Signal
24:25	A[5:4]	I	RESERVED	RFU	Put in three state by Host Adapter No connection in PC Card
26:29	A[3:0]	I	ADDRESS[3:0]	I	Used for accessing PC Card
33	IOIS16#	0	PCLK	0	Pixel Clock to ZV Port
46	A17	I	Y1	0	Video Data to ZV Port YUV:4:2:2 format
47	A18	I	Y3	0	Video Data to ZV Port YUV:4:2:2 format
48	A19	I	Y5	0	Video Data to ZV Port YUV:4:2:2 format
49	A20	I	Y7	0	Video Data to ZV Port YUV:4:2:2 format
50	A21	I	UV0	0	Video Data to ZV Port YUV:4:2:2 format
53	A22	I	UV1	0	Video Data to ZV Port YUV:4:2:2 format
54	A23	I	UV3	0	Video Data to ZV Port YUV:4:2:2 format
55	A24	I	UV5	0	Video Data to ZV Port YUV:4:2:2 format
56	A25	I	UV7	0	Video Data to ZV Port YUV:4:2:2 format
60	INPACK#	0	LRCLK	0	Audio LRCLK PCM Signal
62	SPKR#	0	SDATA	0	Audio PCM Data Signal

a. "I" indicates signal is input to PC card, "O" indicates signal is output from PC card.

APPENDIX D: SCHEMATIC EXAMPLES

APPENDIX D: SCHEMATIC EXAMPLES

APPENDIX D: SCHEMATIC EXAMPLES

Figure 34 PC Interface

APPENDIX D: SCHEMATIC EXAMPLES

Figure 35 Amplifier Section

Figure 36 Switch and Connector Section

APPENDIX E: LAYOUT GUIDELINES

APPENDIX E: LAYOUT GUIDELINES

PCB Layout

Notebook, Motherboard, Pen-based, and PDA portable computers have the following similarity in PCB layout design:

- 6. Multi-layer (usually 4 to 8 layer).
- 7. Double-sided SMT.
- 8. CPU, corelogic (chip set), system memory, VGA controller, and video memory reside in the same PCB.

This is a very noisy environment for adding an audio circuit. The following are the guidelines for PCB layout for ESS *Audio*Drive[®] chip application.

Component Placement

The audio circuit-related components must be grouped in the same area. The audio I/O jack and connector are considered audio-related components as well. There are two possible placements for these audio components:

- A grouped on one side of the PCB.
- B separated on both sides of the PCB.

In Case B, audio component grouping will take less space.

Analog Ground Plane

Audio circuits require two layers of analog ground planes for use as shielding for all analog traces.

In component placement case A (Figure 37), the first layer of analog ground plane is on the analog component side, the second analog ground plane is on the inner layer, and the analog traces are embedded between these two planes.

In component placement case B (Figure 38), the analog ground planes are on both sides of the PCB, with the analog traces shielded in the middle.

Special Notes

The analog traces should be places as short as possible.

The MIC-IN circuit is the most sensitive of the audio circuits, and requires proper and complete shielding.

APPENDIX F: ES1879 BILL OF MATERIALS

APPENDIX F: ES1879 BILL OF MATERIALS

Table 36 ES1879 Bill of Materials (BOM)

Item	Quantity	Reference	Part
1	2	C1, C2	22 pF
2	15	C3, C4, C5, C6, C7, C8, C12, C14, C40, C41, C44, C45, C50, C53, C55	0.1 μF
3	10	C9, C10, C11, C15, C17, C18, C19, C21, C47, C48	0.22 μF
4	2	C13, C43	47 μF
5	1	C16	0.047 μF
6	10	C20, C26, C27, C28, C29, C30, C31, C32, C38, C39	0.01 μF
7	7	C22, C23, C36, C37, C51, C52, C54	10 μF
8	2	C24, C25	0.001 μF
9	1	C33	150 pF
10	2	C34, C35	470 μF
11	1	C42	100 μF
12	1	C56	0.01 μF
13	1	C57	0.1 μF
14	3	D1, D2, D3	1N4148
15	1	J1	2X1 HEADER
16	1	J2	MITSUMI
17	4	J3, J4, J9, J10	3.5mm STEREO JACK
18	1	J5	13x2 HEADER
19	1	J6	4X2 HEADER I2S_INTF_CONN
20	1	J7	HEADER 10X2
21	1	J8	4X2 HEADER DSP_INTF_CONN
22	2	L1, L2	FERRITE BEAD
23	1	P1	CONNECTOR DB15
24	1	Q1	NPN
25	1	R37	470 ohm
26	7	R1, R18, R19, R21, R22, R33, R41	10K
27	2	R2, R3	7.5K
28	10	R4, R5, R6, R7, R8, R9, R10, R11, R12, R13	2.2K
29	4	R14, R15, R16, R17	1M
30	1	R36, R42	0 ohm
31	2	R23, R40	33K
32	4	R24, R25, R26, R27	820K
33	2	R28, R29	2.7 ohm
34	3	R30, R31, R32	100K
35	2	R34, R35	1K
36	2	R38, R39	220K
37	3	S1, S2, S3	SW PUSHBUTTON
38	1	U1	ES1879
39	1	U2	74LS138

ES1879 DATA SHEET

PRELIMINARY

APPENDIX F: ES1879 BILL OF MATERIALS

Table 36 ES1879 Bill of Materials (BOM)

Item	Quantity	Reference	Part
40	1	U3	78L05
41	1	U5	93LC66
42	1	U7	LM1877
43	1	Y1	14.318 MHz
44	1	JP1 (H = Internal ROM) (L = External EEPROM)	0 ohm Resistor

APPENDIX F: ES1879 BILL OF MATERIALS

ESS Technology, Inc. 48401 Fremont Blvd. Fremont, CA 94538 Tel: 510-492-1088 Fax: 510-492-1098 No part of this publication may be reproduced, stored in a retrieval system, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of ESS Technology, Inc.

ESS Technology, Inc. makes no representations or warranties regarding the content of this document.

All specifications are subject to change without prior notice.

ESS Technology, Inc. assumes no responsibility for any errors contained herein.

(P) U.S. Patent 4,214,125 and others, other patents pending.

 $\textit{AudioDrive}^{\texttt{o}}$ and $\textit{ESPCM}^{\texttt{o}}$ are registered trademarks of ESS Technology, Inc.

ESFM[™] is a trademark of ESS Technology, Inc.

All other trademarks are owned by their respective holders and are used for identification purposes only.