Net.Data Reference

<|II

Net.Data Reference

<|II

Note

Be sure to read the information in LAppendix C_Natices” an page 221 before using this information and the product it

supports.

Fourth Edition (June 1998)

© Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface

About Net.Data

About This Book . .
Who Should Read Th|s Book .
About Examples in This Book .
How to Read the Syntax Diagrams .

Chapter 1. Net.Data Macro Language Constructs
Net.Data Macro File Syntax .
Common Syntax Elements .
Variable Name.
Variable Reference .
Strings
Macro Language Constructs
Comment Block .
DEFINE Block or Statement
ENVVAR Statement.
EXEC Block or Statement
FUNCTION Block
Function Call (@)
HTML Block
IF Block .
INCLUDE Statement
INCLUDE_URL Statement
LIST Statement
MACRO_FUNCTION Block
MESSAGE Block.
REPORT Block
ROW Block .
TABLE Statement
WHILE Block .

Chapter 2. Variables

User-defined Variables.
Conditional Variables
Environment Variables.
Executable Variables
Hidden Variables .
List Variables .
Table Variables

Net.Data Table Processing Vanables
Nn . .
NLIST. .
NUM_COLUMNS
NUM_ROWS .
ROW_NUM.
TOTAL_ROWS
V_columnName .
VLIST .
Vn

Net.Data Report Vanables
ALIGN. .
DTW_DEFAULT _| REPORT .

© Copyright IBM Corp. 1997, 1998

Vii
Vii
Vii
viii
viii
viii

oO~NOOahrbS~DdpRpR

QOO AR BDBWWWWNNNERE
ANONNOOANOANOO MW

57
58
58
59
59
61
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

DTW_HTML_TABLE
RPT_MAX_ROWS .
START_ROW_NUM.

Net.Data Language Environment Varlables .

DATABASE .

DB_CASE .

DB2PLAN

DB2SSID . . .

DTW_APPLET . ALTTEXT

DTW_EDIT_CODES

DTW_MBMODE .

DTW_SAVE_TABLE_IN

DTW_SET TOTAL _ROWS .

LOCATION .

LOGIN

NULL _RPT | FIELD

PASSWORD

SHOWSQL .

SQL_STATE

TRANSACTION SCOPE
Net.Data Miscellaneous Variables

DTW_CURRENT_FILENAME . . .

DTW_CURRENT_LAST_MODIFIED.

DTW_DEFAULT MESSAGE

DTW_LOG_LEVEL .

DTW_MACRO_FILENAME . .

DTW_MACRO_LAST_MODIFIED

DTW_MP_PATH .

DTW_MP_VERSION

DTW_PRINT_HEADER

DTW_REMOVE_WS

RETURN_CODE.

Chapter 3. Net.Data Built-in Functions
Function Names . .
Input and Output Parameters .
Function Result Formatting .
Function Parameter Rules
General Functions
DTW_ADDQUOTE .
DTW_CACHE_PAGE .
DTW_DATE
DTW_EXIT. . . .
DTW_GETCOOKIE .
DTW_GETENV
DTW_GETINIDATA .
DTW_HTMLENCODE .
DTW_QHTMLENCODE
DTW_SENDMAIL .
DTW_SETCOOKIE .
DTW_SETENV
DTW_TIME.
DTW_URLESCSEQ.
Math Functions
DTW_ADD .
DTW_DIVIDE .

iV Net.Data Reference

76
77
78
81
82
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

. 100
. 101
. 102
. 103
. 104
. 105
. 106
. 107
. 108
. 109
. 110

111
111
111
. 112
. 112
. 112
. 114
. 116
. 119
. 120
. 121
. 123
. 124
. 125
. 127
. 128
. 132
. 135
. 136
. 137
. 139
. 140
. 141

DTW_DIVREM
DTW_FORMAT
DTW_INTDIV . .
DTW_MULTIPLY .
DTW_POWER.
DTW_SUBTRACT
String Functions .
DTW_ASSIGN.
DTW_CONCAT
DTW_DELSTR
DTW_INSERT.
DTW_LASTPOS .
DTW_LENGTH
DTW_LOWERCASE
DTW_POS .
DTW_REVERSE.
DTW_STRIP
DTW_SUBSTR
DTW_TRANSLATE .
DTW_UPPERCASE.
Word Functions .
DTW_DELWORD
DTW_SUBWORD
DTW_WORD .
DTW_WORDINDEX
DTW_WORDLENGTH.
DTW_WORDPOS
DTW_WORDS
Table Functions .
DTW_TB_COLS .
DTW_TB_DLIST .
DTW_TB_DUMPH .
DTW_TB_DUMPV .
DTW_TB_GETN .
DTW_TB GETV
DTW_TB_HTMLENCODE

DTW_TB_INPUT_CHECKBOX

DTW_TB_INPUT_RADIO.
DTW_TB_INPUT_TEXT .
DTW_TB_LIST
DTW_TB_ROWS.
DTW_TB_SELECT .
DTW_TB_TABLE.
DTW_TB_TEXTAREA .
Flat File Interface Functions.

Flat File Interface Delimiters.
Flat File Interface Functions.

DTWF_APPEND .
DTWF_CLOSE
DTWF_DELETE .
DTWF_INSERT .
DTWF_OPEN .
DTWF_READ .
DTWF_REMOVE.
DTWF_SEARCH .
DTWF_UPDATE .

. 142
. 143
. 146
. 147
. 148
. 149
. 150
. 151
. 152
. 153
. 154
. 156
. 157
. 158
. 159
. 160
. 161
. 162
. 163
. 165
. 166
. 167
. 168
. 169
. 170
171
. 172
. 173
. 174
. 175
. 176
. 178
. 179
. 180
. 181
. 182
. 183
. 184
. 185
. 187
. 188
. 189
. 190
. 192
. 193
. 193
. 193
. 195
. 197
. 198
. 200
. 202
. 203
. 205
. 206
. 208

Contents

\Y

Vi

Net.Data Reference

DTWF_WRITE

Web Registry Functions .
DTWR_ADDENTRY
DTWR_CLEARREG
DTWR_CREATEREG .
DTWR_DELENTRY.
DTWR_DELREG.
DTWR_LISTREG
DTWR_LISTSUB.
DTWR_RTVENTRY .
DTWR_UPDATEENTRY .

Appendix A. DB2 WWW Connection
EXEC_SQL. Co
HTML_INPUT .

HTML_REPORT .

SQL .

SQL_MESSAGE .

SQL_REPORT

SQL_CODE

Appendix B. Net.Data Operating System Reference

Appendix C. Notices
Trademarks.

Glossary

Index .

. 210
. 212
. 213
. 214
. 215
. 216
. 217
. 218
. 219
. 220
. 221

. 223
. 223
. 223
. 223
. 223
. 224
. 224
. 224

. 225

. 231
. 232

. 233

. 235

Preface

Thank you for selecting Net.Data Version 2, IBM’s development tools for creating
dynamic Web pages! With Net.Data you can rapidly develop Web pages with a
dynamic content by incorporating data from a variety of data sources and by using
the power of programming languages you already know.

Net.Data Version 2 provides significantly improved performance along with new
features that give you the power to build and deploy your Internet business
solutions.

About Net.Data

With IBM’s Net.Data product, you can create dynamic Web pages using data from
both relational and non-relational database management systems (DBMSSs),
including DB2, IMS, and ODBC-enabled databases, and using applications written
in programming languages such as Java, JavaScript, Perl, C, C++, and REXX.

You can think of Net.Data as a macro processor that executes as middleware on a
Web server. You can write Net.Data application programs, called macros, that
Net.Data interprets to create dynamic Web pages with customized content based
on input from the user, the current state of your databases, existing business logic,
and other factors that you design into your macro.

A request, in the form of a URL (uniform resource locator), flows from a browser,
such as Netscape or Internet Explorer, to a Web server that forwards the request to
Net.Data for execution. Net.Data locates and executes the macro, and builds a Web
page that it customizes based on functions that you write. These functions can:

* Encapsulate business logic within Perl scripts, C and C++ applications, or REXX
programs

* Access databases such as DB2

Net.Data supports industry-standard interfaces such as HyperText Transfer Protocol
(HTTP) and Common Gateway Interface (CGI). HTTP is used between the browser
and the Web server, and CGl is used between the Web server and Net.Data. This
lets you select your favorite browser or web server for use with Net.Data. Net.Data
also supports FastCGIl and the major Web server APIs on multiple operating
systems.

About This Book

This book explains the syntax and usage of Net.Data language constructs,
variables, and functions in general.

This book might refer to products or features that are announced, but not yet
available.

More information, sample Net.Data macros, demos, and the latest copy of this
book, is available from the following World Wide Web sites:

* http://www.software.ibm.com/data/net.data
* http://www.as400.ibm.com/netdata

© Copyright IBM Corp. 1997, 1998 Vii

Who Should Read This Book

People involved in planning and writing Net.Data applications can use the
information in this book to understand what language constructs, variable, and
functions Net.Data provides.

To understand the concepts discussed in this book, you should be familiar with Web
servers, simple SQL statements, and HTML (including using HTML forms), and the
information in Net.Data Administration and Programming Guide and Net.Data
Language Environment Reference.

About Examples in This Book

Examples used in this book are kept simple to illustrate specific concepts and do
not show every way Net.Data constructs can be used. Some examples are
fragments that do not work alone.

How to Read the Syntax Diagrams

viii

Net.Data Reference

The following rules apply to the syntax diagrams used in this book:

Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the »—
symbol and end with the — symbol.

Required items appear on the horizontal line (the main path).

v
A

»>—required_item

Optional items appear below the main path.

Y
A

»>—required_item

l—optz’onal_item—l
If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

|—optional_i tem—l
»>—required_item ><

If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

v
A

»>—required_i tem—[requ ired_choicel
required_choi ceZ—l

If choosing one of the items is optional, the entire stack appears below the main
path.

v
A

»>—required_item
i:optional_choice]:‘
optional_choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

|—defaul t_choice—|
»>—required_item <
i:optiona Z_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item——repeatable item ><

If the repeat arrow contains punctuation, you must separate repeated items with
the specified punctuation.

s

v
A

»—required_item——repeatable item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Keywords appear in uppercase (for example, FROM). In Net.Data, keywords can
be in any case. Terms that are not keywords appear in lowercase letters (for
example, column-name). They represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Preface IX

X Net.Data Reference

Chapter 1. Net.Data Macro Language Constructs

This chapter describes the Net.Data macro syntax and the language constructs
used in the Net.Data macro file. The language constructs consist of a keyword and
a statement or block in the Net.Data macro, specify different variable types, and
perform other special tasks such as including files.

This chapter describes:

Net.Data Macro File Syntax

A Net.Data macro is a plain text file consisting of a series of Net.Data macro
language constructs that:

» Specify the layout of Web pages
» Define variables and functions

» Call functions that are defined in the macro file or that Net.Data passes to
language environments for processing

* Format the processing output in HTML and return it to the Web browser
Each statement is composed of one or more language constructs, which in turn are

composed of keywords, special characters, strings, names, and variables. The
following diagram depicts the global structure of a syntactically valid Net.Data

macro. See EChapter 1 _Net Data Macra | anguage Caonstructs’ for detailed syntax

of each element in the global structure.

\
\

Y html block >

—comment block
—define statement
—define block
—function block
—macro if block
—macro_function block—
—include statement
—include_url statement—
message block

© Copyright IBM Corp. 1997, 1998 1

—comment block————— |—hth bZockJ
—define statement
—define block
—function block
—macro if block
—macro_function block—
—include statement
—include _url statement—
—message block

[The Net.Data macro contains two parts: the declaration part and the HTML part.
| You can use these parts multiple times and in any order.

» Declaration part contains the definitions of variables and functions in the macro
file.

* HTML part contains HTML blocks that contain HTML statements that specify the
layout of the Web page. This part includes the report section.

| m shows the declaration and HTML parts of the macro file.

Net.Data Macro File Structure

%{Comment %}

%Include...

%HTML(Input)

—HTML Part

%HTML(Output)

Figure 1. Macro File Structure

Variables and functions that are used in the declaration or HTML part must be
defined before being used by a variable reference or a function call.

[Eigure 2 on page 3 demonstrates the parts of a macro file. The declaration part
[contains the DEFINE and FUNCTION definition blocks. The HTML blocks act as
[input and output blocks.

2 Net.Data Reference

kkkkkkkhkkhkkhkhkkhkkhkk Define block ************************%}

{
DEFINE {
page_title="Net.Data macro Template"

9
%
9

%

N

kxkkkkkkxkkkkxkxkkxxx* Function Definition block ************************%}

{
FUNCTION(DTW_REXX) rexxl (IN input) returns(result)
{ %EXEC{ompsamp.cmd %}

9
%
9

%

N

%FUNCTION(DTW_REXX) today () RETURNS(result)
{

0
%}

result = date()

%{ B HTML Block: Input ************************%}
SHTML (INPUT) {

<html>

<head>

<title>$(page_title)<title>

</head><body>

<hl>Input Form</hl>

Today is @today()

<FORM METHOD="post" ACTION="output">

Type some data to pass to a REXX program:
<INPUT NAME="input_data" TYPE="text" SIZE="30">
<p>

<INPUT TYPE="submit" VALUE="Enter">

<hr>
<p>[Home page]
</body></htm1>

0,
%}

%{ khkkkkkkhkkkkhhkkkhhkrk HTML Block: Output ************************%}
%HTML (OUTPUT) {

<htm1>

<head>
<title>§(page_title)</title>
</head><body>

<h1>Qutput Page</hl>
<p>@rexx1(input_data)

<p><hr>

<p>[Home page |

Previous page]
</body></htm1>

0,
%}

Figure 2. The Macro File Template Format

The Net.Data macro language is a free-form language, giving you flexibility for
writing your macros. Unless specifically noted, extra white space characters are
ignored. Each of the Net.Data macro language constructs is described in the
following section, along with several other elements that are used to define the
constructs. The Net.Data macro language supports DB2 WWW Connection
language elements for backward compatibility. Although these language elements

are described in tAppendix A_DR2 WWW Connection” an page 223, it is

recommended that you use the Net.Data language constructs.

The examples show some of the ways you can use the language constructs,
variables, functions, and other elements in your macro files. You can download the
samples and demos from the Net.Data Web pages for more extensive examples:

Chapter 1. Net.Data Macro Language Constructs 3

 http://www.software.ibm.com/data/net.data
* http://www.as400.ibm.com/net.data

Common Syntax Elements

Variable Name

The following syntax elements are used frequently in the language construct
descriptions:

o FVariahle Referencel

‘ H ”
.

Purpose:

Identifies one or more names; each subsequent name is concatenated by a period
(.). Aname is an alphabetic or numeric string beginning with an alphabetic
character or underscore and containing any combination of alphabetic, numeric, or
underscore characters.

Strings in quotes ("), can contain any character except the new-line character. If
the string is in brackets, ({ %}), it can contain any character including the new-line
character.

Variable names must begin with a letter or underscore (_) and contain any
alphanumeric characters or underscore. All variable names are case sensitive

except N_columnName and V_columnName (See [Net Data Table Pracessing
Mauables_an_page_ﬁ:-i for more information about these two exceptions.).

Syntax:

—

»»—Y name ><

Variable Reference

4

Net.Data Reference

Purpose:

Returns the value of a previously defined variable and is specified with $ and (). For
example: if VAR ="abc’, $(VAR) returns the value 'abc’. Variable references are
evaluated during run time. When a variable is defined for an EXEC statement or
block, Net.Data runs the specified action when it reads the variable reference.

The variable that is referenced must be defined in the Net.Data macro before being
referenced. If the variable is not defined, an empty string is returned.

Syntax:

| Strings

»»>—$—(—variable_name—)

v
A

Any sequence of alphabetic and numeric characters and punctuation. If the string
appears within double quotes, the new-line character is not allowed. See the string
parameter description in each language construct for restrictions when used with
the language construct.

Two pairs of double quotes ("""") inside a string are treated as one pair of double
quotes (""). To specify that a string contains double quotes, use two pairs of double
quotes. For example, if you define a string value as:

%DEFINE result = " ""Hello world!"" "

The value of result is:
"Hello world!"

A string used as function argument or as term in a comparison expression can
contain pairs of double quotes.

An HTML statement is a string.

Macro Language Constructs

This section describes the language constructs used in the Net.Data macro file.

Each language construct description can contain the following information:

Purpose
Defines why you use the language construct in the Net.Data macro.

Syntax
Provides a diagram of the language construct’s logical structure.

Parameters
Defines all the elements in the syntax diagram and provides cross
references to other language constructs’ syntax and examples.

Context
Explains where in the Net.Data macro structure the language construct can
be used.

Restrictions
Defines which elements it can contain and specifies any usage restrictions.

Examples
Provides simple examples and explanations for using the keyword
statement or block within the Net.Data macro.

The following constructs are used in the macro; please refer to each constructs
description for syntax and examples.

Chapter 1. Net.Data Macro Language Constructs 5

6 Net.Data Reference

Comment Block

Purpose

Documents the functions of the Net.Data macro. Because the COMMENT block can
be used anywhere in the macro file, it is not documented in the other syntax
diagrams.

Syntax

»>—%{—text—%} ><

Values

text Any string on one or more lines. Net.Data ignores the contents of all
comments.

Context

Comments can be placed anywhere between Net.Data language constructs in a
Net.Data macro.

Restrictions
Any text or characters are allowed; however, comment blocks cannot be nested.
Examples

Example 1: A basic comment block

%{

This is a comment block. It can contain any number of lines

and contain any characters. Its contents are ignored by Net.Data.

0,
%}

Example 2: Comments in a FUNCTION block

%function(DTW_REXX) getAddress(IN name, %{ customer name %}
IN phone, %{ customer phone number %}
OUT address %{ customer address %}
)
{

[)
%}

Example 3: Comments in an HTML block
%htm1 (report) {

[

%{ run the query and save results in a table %}
@myQuery (resultTable)

%{ build a form to display a page of data %}
<form method="POST" action="report">

%{ send the table to a REXX function to send the data output %}
@displayRows (START _ROW_NUM, submit, resultTable, RPT_MAX ROWS)

[

%{ pass START_ROW_NUM as a hidden variable to the next invocation %}
<input name="START_ROW_NUM" type="hidden" value="§$(START_ROW_NUM)">

%{ build the next and previous buttons %}

Chapter 1. Net.Data Macro Language Constructs 7

8

Net.Data Reference

%if (submit == "both" || submit == "next_only")
<input name="submit" type="submit" value="next">
%endif

%if (submit == "both" || submit == "prev_only")
<input name="submit" type="submit" value="previous">
%endif

</form>

0,
%}

Example 4: Comments in a DEFINE block

%define {
START_ROW_NUM = "1" %{ starting row number for output table
RPT_MAX_ROWS = "25" %{ maximum number of rows in the table
resultTable = %table %{ table to hold query results

N O o°

—

N

}

DEFINE Block or Statement
Purpose

The DEFINE section defines variables hames in the declaration part of the macro
and can be either a statement or a block.

* Use statements to define one variable at a time
e Use blocks to define several variables

The variable definition can be on a single line, using double quotes (""), or can
span multiple lines, using brackets and a percent sign ({ %}). After the variable is
defined, you can reference it anywhere in the macro.

Syntax

»—%DEFINE~E! define entry i J
%}

v
A

Y _—define entry
L tement—)

include statement

define entry

f—-variable name—= Y 4 i
string

variable reference—
function call

string
variable reference—
function call
new_Tline
—exec Sstatement
—table statement
—envvar statement
conditional variable
:l abbreviated conditional variable |—

—list statement

conditional variable

Chapter 1. Net.Data Macro Language Constructs 9

10

| 2 o v " g

I—var‘iable name—I —string
—variable reference—
—function call

—string
—variable reference—
—function call

—string
—variable reference—
—function call

—string
—variable reference—
—function call

abbreviated conditional variable

|_? o " I
—string———
—variable reference—
—function call
{ v aﬂ}
—string
—variable reference—
—function call
Values
%DEFINE

A keyword that defines variables.
define entry:

variable name
One or more names, each additional name concatenated by a period (.).
See \Vari . for syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

Net.Data Reference

variable reference
Returns the value of a previously defined variable and is specified with $
and (). For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See

B\ariable Reference” on page 4 for syntax information.

function call
Invokes one or more previously defined FUNCTION or
MACRO_FUNCTION blocks, or a Net.Data built-in function with specified

arguments. See LEu.ncuan_CaJ.l_(.@.)_an_pa.ge_zzl for syntax and examples.

exec statement
The EXEC statement. The name of an external program that executes
when a variable is referenced or a function is called. See

Btatement” an page 14 for syntax and examples.

table statement
The TABLE statement. Defines a collection of related data containing an
array of identical records, or rows, and an array of column names

describing the fields in each row. See LTARLE Statement” on page 52 for

syntax and examples.

envvar statement
The ENVVAR statement. Refers to environment variables. See FENVVAR

Btatement” on page 13 for syntax and examples.

conditional variable
Sets the value of a variable based on the value of another variable or
string.

abbreviated conditional variable
Sets the value of a variable based on the value of another variable or
string. A shorter form of the conditional variable.

list statement
The LIST statement. Defines variables that are used to build a delimited list

of values. See [LIST Statement” on page 36 for syntax and examples.

include statement

The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See [INCI UDF Statement” on page 32 for syntax and examples.

Context

The

DEFINE block or statement must be in an IF block or outside all other blocks in

the declaration part of the Net.Data macro.

Restrictions
* Can contain the following elements:

Comment block
Conditional variables
LIST statement
TABLE statement
Variable references
INCLUDE statement
EXEC statement
Function calls
ENVVAR statement

Chapter 1. Net.Data Macro Language Constructs 11

12

Net.Data Reference

* The conditional variable cannot have a result of NULL. See Example 5 for more
information.

* You cannot use a variable in its own definition. For example, the following
variable definition is not allowed:

%DEFINE var = "The value is $(var)."
Examples

Example 1 : Simple variable definitions

%DEFINE varl
%DEFINE var?2

"orders"
"$(varl).html"

During run time, the variable reference $(var2) is evaluated as orders.html.

Example 2 : Quotes inside a string

%DEFINE hi = ||sa.y "ihelloh !
%DEFINE empty = ""

When displayed, the variable hi has the value say "hello”. The variable empty is
null.

Example 3: Definition of multiple variables

%DEFINE{ DATABASE = "testdb"
home = "http://www.software.ibm.com"
SHOWSQL = "YES"
PI = "3.14150"

N

}

Example 4 : Multiple-line definition of a variable

%DEFINE text = {This variable definition
spans two Tines
}

o

Example 5 : This example of a conditional variable demonstrates how the variable
var takes the resulting value inside the quotations marks (*”) if the resulting value
does not contain any NULL values. In the example below, neither $(V) nor MyFunc
can have a result of NULL.

%DEFINE var = ? "Hello! $(V)@MyFunc()"

0,
%}

ENVVAR Statement

Purpose

Defines a variable as an environment variable in the DEFINE block. When the
ENVVAR variable is referenced, Net.Data returns the current value of the
environment variable by the same name. Using this method to reference
environment variables is more efficient than using DTW GETENV. For more
information about DTW_GETENYV, see EFDT\W_GETENV” on page 123.

Syntax

»>—%ENVVAR ><

Context
The ENVVAR statement can be in the DEFINE block or statement.

Values

%ENVVAR
The keyword for defining a variable as an environment variable in a DEFINE
block. This variable gets the value of an environment variable anywhere in the
macro file.

Restrictions
The ENVVAR statement can contain no other elements.
Examples

Example 1: In this example, ENVVAR defines a variable, which when referenced,
returns the current value for the environment variable SERVER_SOFTWARE, the
name of the Web server.

%DEFINE SERVER_SOFTWARE = %ENVVAR
%HTML (REPORT) {
The server is $(SERVER_SOFTWARE).

0
%}

Chapter 1. Net.Data Macro Language Constructs 13

EXEC Block or Statement

14

Net.Data Reference

Purpose

Specifies an external program to execute when a variable is referenced or a
function is called.

When a variable is referenced or a function called, Net.Data first looks up the
directories specified in the EXEC_PATH variable in the Net.Data initialization file
and, when not found there, passes the name of the executable to the system shell.

Authorization Tip: Ensure that the Web server has access rights to any files
referenced by the EXEC statement or block. See the section on specifying Web
server access rights to Net.Data files in the configuration chapter of Net.Data
Administration and Programming Guide for more information.

The EXEC statement and block are used in two different contexts and have
different syntax, depending where they are used. Use the EXEC statement in the
DEFINE block, and use the EXEC block in the FUNCTION block.

Syntax

The EXEC statement syntax when used in the DEFINE block:

»>—%EXEC—"— ’ >

string——
variable reference—

function call

The EXEC block syntax when used in the FUNCTION block:

»>—%EXEC—{—Y—string %} ><
i:var‘iable reference—|
function call

Values

%EXEC
The keyword that specifies the name of an external program to be executed
when a variable is referenced or when a function is called. When Net.Data
encounters a variable reference that is defined in an EXEC statement, it
processes what the EXEC statement declares for the variable.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $ (VAR) returns the value 'abc'. See

Reference” on page 4 for syntax information.

function call

Invokes one or more previously defined FUNCTION or MACRO_FUNCTION

blocks, or a Net.Data built-in function with specified arguments. See [Eunctiod

Call (@)" on page 24 for syntax and examples.

Context

The EXEC block or statement can be found in these contexts:
 DEFINE block
 FUNCTION block

Restrictions

The EXEC block or statement can contain these elements:
* Comment block

* String

» Variable references

* Function call

Examples

Example 1: Executable file referenced by a variable
%DEFINE mycall = %EXEC "MYEXEC.EXE $(empno)"

%HTML (report) {
<P>Here is the report you requested:
<HR>$ (mycall)

%}

This example executes MYEXEC.EXE on every reference to the variable, mycall.

Example 2 : Executable file referenced by a function

%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN ¢, INOUT d){
%EXEC{ mypgm.cmd this is a test %}

[
%}

This example executes mypgm.cmd when the function my_rexx_pgm is called.

Chapter 1. Net.Data Macro Language Constructs

15

FUNCTION Block

16

Net.Data Reference

Purpose

Defines a subroutine that Net.Data invokes from the macro file. The executable
statements in a FUNCTION block can be inline statements directly interpreted by a
language environment, or they can be a call to an external program.

If you use the EXEC block within the FUNCTION block, it must be the only
executable statement in the FUNCTION block. Before passing the executable
statement to the language environment, Net.Data appends the file name of the
program in the EXEC block to a path name determined by the EXEC_PATH
configuration statement in the initialization file. The resulting string is passed to the
language environment to be executed.

The method that the language environment uses to process the EXEC block
depends on the particular language environment. Only the REXX, System, and Perl
Net.Data-provided language environments support the EXEC block.

Syntax
»—%FUNCTION—(—Zung_env—)—functz'on_name—| parm passing spec i >
>L‘ returns spec |—{—| function body i %} | ><

parm passing spec

—() |
F (1)

IN
v [name

Four
INOUT—

returns spec

| |
I—RETU RNS—(—name—)J

function body

Y _inline statement block

—exec block

\

(2)

report block
|—message blockJ

v

A,

—message block

(2)

L‘eport block

Notes:

1. The default parameter type of IN applies when no parameter type is specified at
the beginning of the parameter list. A parameter without a parameter type uses
the type most recently specified in the parameter list, or type IN if no type has
been specified. For example, in the parameter list (parml, INOUT parm2, parm3,
OUT parm4, parm5), parameters parml, parm3, and parm5 do not have
parameter types. The parameter parml has a type of IN because no initial
parameter type has been specified. The parameter parm3 has a type of INOUT
because it is the most recently specified parameter type. Similarly, the
parameter parm5 has a type of OUT because it is the most recently specified
type in the parameter list.

2. The repeated report block is only valid for database language environments
when processing stored procedures that return multiple result sets.

Values

%FUNCTION
The keyword that specifies a subroutine that Net.Data invokes from the macro
file.

lang_env
The language environment that processes the function body. See the Net.Data
Language Environment Reference for more information.

function_name
The name of the function being defined that can be an alphabetic or numeric
string that begins with an alphabetic character or underscore and contains any
combination of alphabetic, numeric, or underscore characters.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.
parm passing spec:
IN Specifies that Net.Data passes input data to the language environment. IN
is the default.

ouT
Specifies that the language environment returns output data to Net.Data.

INOUT
Specifies that Net.Data passes input data to the language environment and
the language environment returns output data to Net.Data.

returns spec:

Chapter 1. Net.Data Macro Language Constructs 17

18

Net.Data Reference

RETURNS
Declares the variable that contains the function value assigned by the
language environment, after the function completes.

function body:

inline statement block
Syntactically valid statements from the language environment specified in
the function definition, for example; REXX, SQL, or Perl. See Net.Data
Language Environment Reference for a description of the language
environment you are using. See the programming language’s programming
reference for syntax and usage. The string representing the inline statement
block can contain Net.Data variable references and function calls, which get
evaluated before execution of the inline statement block (program).
Restriction: The longest consecutive inline statement block string without
any Net.Data variable reference or function call is limited to the following
lengths:

* For OS/2 and NT: 64KB
* For AIX: 256KB

* For 0OS/390: 256KB

* For OS/400: 256KB

exec block
The EXEC block. The name of an external program that executes when a
variable is referenced or a function is called. See

Btatement” on page 14 for syntax and examples.

report block
The REPORT block. Formatting instructions for the output of a function call.
You can use header and footer information for the report. See

Block” on page 47 for syntax and examples.

message block
The MESSAGE block. A set of return codes, the associated messages, and
the actions Net.Data takes when a function call is returned. See

[IMESSAGE Black” on page 43 for syntax and examples.

Context

The FUNCTION block can be found in these contexts:

IF block
Outside of any block or statement in the declaration part of the Net.Data macro.

Restrictions

The FUNCTION block can contain these elements:

Comment block

EXEC block
MESSAGE block
REPORT block

Inline statement blocks

Only the REXX, System, and Perl Net.Data-provided language environments
support the EXEC statement.

Examples

The following examples are general and do not cover all language environments.
See Net.Data Language Environment Reference for more information about using
FUNCTION blocks with a specific language environment.

Example 1: A REXX substring function

%DEFINE Tstring = "longstring"
%FUNCTION(DTW_REXX) substring(IN x, y, z) RETURNS(s) {
s = substr("$(x)", $(y), $(2));

}
DEFINE a = {@substring(1string, "1", "4")%} %{ assigns "long" to a %}

N o°

When a is evaluated, the @substring function call is found and the substring
FUNCTION block is executed. Variables are substituted in the executable
statements in the FUNCTION block, then the text string s = substr("longstring",
1, 4) is passed to the REXX interpreter to execute. Because the RETURNS clause
is specified, the value of the @substring function call in the evaluation of a is
replaced with “long”, the value of s.

Example 2 : Invoking an external REXX program
* Net.Data macro:

%FUNCTION (DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, OUT d) {
%EXEC{ mypgm.cmd this is a test %}
%}
SHTML (INPUT) {
<P> Original variable values: $(w) $(x) $(z)
<P> @my_rexx_pgm(w, X, y, z)
<P> Modified variable values: $(w) $(x) $(z)
%}

Variables w and x correspond to the INOUT parameters a and b in the function.
Their values and the value of y, which corresponds to the IN parameter ¢, should
already be defined from HTML form input or from a DEFINE statement. Variables
a and b are assigned new values when parameters a and b return values. The
variable z is defined when the OUT parameter d returns a value.

* REXX program mypgm.cmd:

/* Sample REXX Program for Example 2 */
/* Test arguments =/

num_args = arg();

say 'There are’ num_args 'arguments’;

do i =1 to num_args;

say 'arg’ i 'is "arg(i)'"
end;
/* Set variables passed from Net.Data */
d=a |l b || c; /* concatenate a, b, and c¢ forming d */
a="; /* reset a to null string */
b="; /* reset b to null string */
return;

* Output from mypgm. cmd:

There are 1 arguments
arg 1 is "this is a test"

The EXEC statement tells the REXX language environment to tell the REXX
interpreter to execute the external REXX program mypgm.cmd. Because the REXX
language environment can directly share Net.Data variables with the REXX
program, it assigns the REXX variables a, b, and c the values of the Net.Data
variables w, x and y before executing mypgm.cmd. mypgm.cmd can directly use the
variables a, b, and ¢ in REXX statements. When the program ends, the REXX

Chapter 1. Net.Data Macro Language Constructs 19

variables a, b, and d are retrieved from the REXX program, and their values are
assigned to the Net.Data variables w, x, and z. Because the RETURNS clause is
not used in the definition of the my_rexx_pgm FUNCTION block, the value of the
@my_rexx_pgm function call is the null string, *", (if the return code is 0) or the value
of the REXX program return code (if the return code is nonzero).

Example 3: An SQL query and report

%FUNCTION(DTW_SQL) query 1(IN x, INy) {
SELECT customer.num, order.num, part.num, status
FROM customer, order, shippingpart
WHERE customer.num = '$(x)’
AND customer.ordernumber = order.num
AND order.num = '$(y)’
AND order.partnumber = part.num
%REPORT {
<P>Here is the status of your order:
<P>$ (NLIST)

%ROW{
$ (V1) $(v2) $(v3) $(v4)
%}

%}
%}
%DEFINE customer_name="IBM"
%DEFINE customer_order="12345"
%HTML (REPORT) {
@query_1(customer name, customer order)

0,
%}

The @query 1 function call substitutes IBM for $(x) and 12345 for $(y) in the SELECT
statement. Because the definition of the SQL function query_1 does not identify an
output table variable, the default table is used (see the TABLE variables block for
details). The NLIST and Vi variables referenced in the REPORT block are defined
by the default table definition. The report produced by the REPORT block is placed
in the output HTML where the query_1 function is invoked.

Example 4 : A system call to execute a Perl script
* Net.Data macro:

%FUNCTION(DTW_SYSTEM) today() RETURNS(result) {
%exec{ perl "today.prl" %}

}
HTML(INPUT) {
@today()
%}
* Perl program today.prl:

$date = 'date’;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";

N

The System language environment interprets the executable statements in a
FUNCTION block by passing them to the operating system through the C language
system() function call. This method does not allow Net.Data variables to be directly
passed or retrieved to the executable statements, as the REXX language
environment does, so the System language environment passes and retrieves
variables as described here:

* Input parameters are passed as system environment variables through the
putenv() function and can be retrieved by the executing program. Different
languages reference the variables differently. A UNIX cshell script refers to

20 Net.Data Reference

environment variables by preceding the environment variable name with a '$’,
such as $x. A Perl language script refers to them by referencing the associative
array %ENV, such as ENV{'x’}. A DOS batch (.BAT) file refers to the variable
name enclosed in percent signs, such as %x%.

* Output parameters are passed back to the language environment by writing to a
pipe whose name is passed in the environment variable DTWPIPE, except on
the OS/400 platform, where output parameters are passed back to the language
environment as system environment variables. The data that is written to the
named pipe has the form name="value", just as with DEFINE statements. If a
variable name corresponding to an output parameter is written this way, the new
value replaces the current value. If a variable name is written that does not
correspond to an output parameter, it is ignored.

When the @today function call is encountered, Net.Data performs variable
substitution on the executable statements. In this example, there are no Net.Data
variables in the executable statements, so no variable substitution is performed.
The executable statements and parameters are passed to the System language
environment, which creates a named pipe and sets the environment variable
DTWPIPE to the name of the pipe.

Then the external program is called with the C system() function call. The external
program opens the pipe as write-only and writes the values of output parameters to
the pipe as if it were a standard stream file. The external program generates HTML
output by writing to STDOUT. In this example, the output of the system date
program is assigned to the variable result, which is the variable identified in the
RETURNS clause of the FUNCTION block. This value of the result variable
replaces the @today () function call in the HTML block.

Example 5 : Perl language environment

%FUNCTION(DTW_PERL) today() RETURNS(result) {
$date = 'date’;
chop $date;
open(DTW, "> $ENV{DTWPIPE}") || die "Could not open: $!";
print DTW "result = \"$date\"\n";
%}
SHTML (INPUT) {
@today()

0
%}

Compare this example with Example 4 to see how the EXEC block is used. In
Example 4, the System language environment does not understand how to interpret
Perl programs, but the language environment does know how to call external
programs. The EXEC block tells it to call a program called perl as an external
program. The actual Perl language statements are interpreted by the external Perl
program. Example 5 has no EXEC block, because the Perl language environment is
able to directly interpret Perl language statements.

Chapter 1. Net.Data Macro Language Constructs 21

Function Call (@)

22

Net.Data Reference

Purpose

Invokes a previously defined FUNCTION block, MACRO_FUNCTION block, or
built-in function with specified arguments. If the function is not a built-in function,
you must define it in the Net.Data macro before you specify a function call.

Syntax
»>—@function_name—() ><
Y —variable_name
"—string—"
variable reference—|
function call
Values

@function_name
The name of any existing function. An alphabetic or numeric string that begins
with an alphabetic character or underscore and contains any combination of
alphabetic, numeric, or underscore characters.

variable name
One or more names, each additional name concatenated by a period (.). See

[Variable Name” aon page 4 for syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $(VAR) returns the value 'abc'. See

Reference” an page 4 for syntax information.

function call
Invokes one or more previously defined FUNCTION or MACRO_FUNCTION
blocks, or a Net.Data built-in function with specified arguments.

Context

Function calls can be found in these contexts:
e HTML block

* REPORT block

+ ROW block

* DEFINE block

* |IF block

* MACRO_FUNCTION block

* MESSAGE block

* WHILE block

* Function call statement

» Qutside of any block in the declaration part of the Net.Data macro

Restrictions

* Function calls can contain these elements:
Comment block

Strings

Function calls

Variable References

» Function calls cannot contain any variable references and function calls defined
for OUT or INOUT parameters in a function definition.

Examples

Example 1: A call to the SQL function formQuery

%FUNCTION(DTW_SQL) formQuery () {
SELECT $(queryVal) from $(tableName)

%}

SHTML (input) {

<P>Which columns of $(tableName) do you want to see?
<FORM METHOD="POST" ACTION="report">

<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="NAME">Name
<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="MAIL">E-mail
<INPUT NAME="queryVal" TYPE="CHECKBOX" VALUE="FAX">FAX
<INPUT TYPE="SUBMIT" VALUE="Submit request">

0,
%}

%HTML (report) {
<P>Here are the columns you selected:
<HR>@formQuery ()

0,
%}

Example 2 : A call to a REXX function with input and output parameters

%FUNCTION(DTW_REXX) my_rexx_pgm(INOUT a, b, IN c, OUT d) {
%EXEC{ mypgm.cmd this is a test %}

%}

SHTML(INPUT) {

<P> Original variable values: $(w) $(x) $(z)

<P> @my_rexx_pgm(w, X, y, z)

<P> Modified variable values: $(w) $(x) $(z)

0,
%}

Example 3: A call to a REXX function, with input parameters, that uses variable
references and function calls

%FUNCTION(DTW_REXX) my_rexx_pgm(IN a, b, c, d, OUT e) {

N o°

}

HTML(INPUT) {

<p> @my_rexx_pgm($(myA), @getB(), @retrieveC(), $(myD), myE)
}

N

Chapter 1. Net.Data Macro Language Constructs 23

HTML Block

24

Net.Data Reference

Purpose

Contains any HTML tags or text to be processed by the client's Web browser or any
tool that understands HTML. The HTML block can also contain most Net.Data
macro language statements, which are evaluated and executed at run time.
Net.Data looks for Net.Data macro statements and executes them. Net.Data
assumes all other text is HTML and sends it to the Web browser.

Syntax

»>—%HTML— (—name—) —{— %} ><
—exec_sql statement
—variable reference
—if block
—function call
—HTML statement
—include statement
—include_url statement—
“while block

Values

%HTML

The keyword that specifies the block that contains HTML tags and text to be
displayed on the client’s browser.

name
An alphabetic or numeric string that begins with an alphabetic character or
underscore and contains any combination of alphabetic, numeric, or underscore
characters.

exec_sql statement
A DB2WWW Release 1 language element that is supported for compatibility.

See [Appendix A. DB2 WWW Connection” on page 223 or DB2 World Wide

Web Release 1 documentation.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See
! for syntax information.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can have a

single leading plus (+) or minus (-) sign. See LE Black” on page 26 for syntax

and examples.

function call
Invokes one or more previously defined FUNCTION or MACRO_FUNCTION
blocks, or a Net.Data built-in function with specified arguments. See
! for syntax and examples.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See LNCLUDE Statement” on page 32 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data Web macro where the statement is specified. The specified file can

exist on a local or remote server. See L "
for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwHIL E Black” on page 54 for syntax and examples.

Context

The HTML block can be found in these contexts:
* |IF block
» Qutside of any block in the declaration part of the Net.Data macro

Restrictions

The HTML block can contain these elements:
* Comment block

* EXEC_SQL statement

* IF block

* HTML statements

* INCLUDE statement

* INCLUDE_URL statement

* WHILE block

» Variable references

* Function calls

Examples

Example 1 : HTML block with include files for headings and footings

%HTML (examplel) {

%INCLUDE"header.html"

<P>You can put any HTML in an HTML block.
An SQL function call is made like this:

@xmp1()

%INCLUDE"footer.html"

0,
%}

Chapter 1. Net.Data Macro Language Constructs

25

IF Block

26

Net.Data Reference

Purpose

Performs conditional string processing. The IF block provides the ability to test one
or more conditions, and then to perform a block of statements based on the
outcome of the condition test. You can use the IF block in the declaration part of a
Net.Data macro, the HTML block, the MACRO_FUNCTION block, the REPORT
block, the WHILE block, and the ROW block, as well as nest it inside another IF
block.

String values in the condition list are treated as numeric for comparisons if they are
strings that represent integers and have no leading or trailing white space. They
can have a single leading plus (+) or minus (-) sign.

Restriction: Net.Data does not support numerical comparison of non-integer
numbers. For example, floating point numbers.

Nested IF blocks: The rules for IF block syntax are determined by the block’s
position in the macro file. If an IF block is nested within an IF block that is outside
of any other block in the declaration part, it can use any element that the outside
block can use. If an IF block is nested within another block that is in an IF block, it
takes on the syntax rules for the block it is inside.

In the following example, the nested IF block must follow the rules used when it is
inside an HTML block.

%IF block
%HTML block

%IF block
See the restrictions listed later in this section.
Syntax

>>—%IF—| condition list |-—-| statement_block |—| else_if spec '—%ENDIF—N

condition list

—((—condition list—)) }
condition list—&&—condition list—
condition list—||—condition list—
l—condition list

condition i
term i

statement_block

—term

(1)
—define block
(1)
—define statement
(2)

—exec_sql statement
(1)

—function block

—function call

(1)

—HTML block

(2)
—HTML statement

—if block
—include statement
—include_url statement

(1)
—macro_function block
(1)
—message block
(2)
—string
(2)

—variable reference

(2)

“while block

condition

term

variable reference
"—string—"
variable name
function call

Chapter 1. Net.Data Macro Language Constructs

27

28

Net.Data Reference

else_if spec

Y %ELIF—(—condition_ Zzst—)—| statement_block {
L. ! |
/ELSE—I statement_bTock i

Notes:

1.

This language construct is valid when the IF block is located outside of any
other block in the declaration part of the macro.

This language construct is valid when the IF block is located in an HTML block,
MACRO_FUNCTION block, REPORT block, or WHILE block.

Values
%IF

The keyword that specifies conditional string processing.

condition list

Compares the values of conditions and terms. Condition lists can be connected
using Boolean operators. A condition list can be nested inside another condition
list.

statement_block

The following valid Net.Data macro constructs. Please see diagram notes and
restrictions to determine the context in which the macro constructs are valid.

define statement
The DEFINE block or statement. Defines variables and sets configuration
variables. Variable names must begin with a letter or underscore () and
contain any alphanumeric characters or underscore. See LDEEINE Block o

Btatement” on page d for syntax and examples.

exec_sql statement
A DB2WWW Release 1 language element that is supported for

compatibility. See [Appendix A. DB2 WW\W Connection” on page 223 or

DB2 World Wide Web Release 1 documentation.

function block
A keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a FUNCTION block can
contain language statements that are directly interpreted by a language
environment, or they can indicate a call to an external program. See
i ” for syntax and examples.

function call
Invokes one or more previously defined FUNCTION or
MACRO_FUNCTION blocks or a Net.Data built-in function with specified
arguments. See L z for syntax and examples.

HTML block
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

HTML statement
Includes any alphabetic or numeric characters, and HTML tags to be
formatted for the client’'s browser.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can
have a single leading plus (+) or minus (-) sign.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See HINCLUDE Statement” on page 32 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data Web macro where the statement is specified. The specified file

can exist on a local or remote server. See LUINCLUDE _UR| Statement” od

for syntax and examples.

macro_function block
A keyword that specifies a subroutine that can be invoked from the
Net.Data macro. The executable statements in a MACRO_FUNCTION block
can contain Net.Data macro language source statements. See

IMACRQ _EUNCTION Rlock” on page 34 for syntax and examples.

message block
The MESSAGE block. A set of return codes, the associated messages, and
the actions Net.Data takes when a function call is returned. See

IMESSAGE Block” on page 43 for syntax and examples.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string is in the term of the condition list, it can contain any character except
the new-line character. If the string is in the executable block of code, it can
contain any character, including the new-line character.

variable reference
Returns the value of a previously defined variable and is specified with $
and (). For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See

[\ariable Reference” on page 4 for syntax information.

while block
The WHILE block. Performs looping with conditional string processing. See

IWHII F Block” on page 54 for syntax and examples

condition
A comparison between two terms using comparison operators. An IF condition
is treated as a numeric comparison if both of the following conditions are true:

* The condition operator is one of the following operators: <,<=,>>=== 1=

* Both terms are strings representing valid integers, where a valid integer is a
string of digits, optionally preceded by a plus (+) or minus (-) sign, and no
other white space.

If either condition is not true, a normal string comparison is performed.

term
A variable name, string, variable reference, or function call.

%ELIF
A keyword that starts the alternative processing path and can contain condition
lists and most Net.Data macro statements.

%ENDIF
A keyword that closes the %IF block.

Chapter 1. Net.Data Macro Language Constructs 29

%ELSE
A keyword that executes associated statements if all other condition lists are not
satisfied.

Context

The IF block can be found in these contexts:

» OQutside of any other block in the declaration part of a Net.Data macro
* HTML block

* IF block

* MACRO_FUNCTION block

* REPORT block

* ROW block

* WHILE block

Restrictions

The IF block can contain these elements when located outside of any other block in
the declaration part of the Net.Data macro:

* Comment block

* DEFINE block

* DEFINE statement

* FUNCTION block

* Function call

* HTML block

* |F block

* INCLUDE statement

* INCLUDE_URL statement
* MACRO_FUNCTION block
* MESSAGE block

* Variable reference

The IF block can contain these elements when located in the HTML block,
MACRO_FUNCTION block, REPORT block, ROW block, or WHILE block of the
Net.Data macro:

* Comment block

* EXEC_SQL statement

* Function calls

* |F block

* INCLUDE statement

* INCLUDE_URL statement
e HTML statement

* String

* Variable reference

* WHILE block

Examples

Example 1: An IF block in the declaration part of a Net.Data macro

30 Net.Data Reference

%DEFINE a = "1"
%DEFINE b = "2"

%IF ($(DTW_HTML_TABLE) == "YES")
%define OUT_FORMAT = "HTML"
%ELSE
%define OUT_FORMAT = "CHARACTER"
%ENDIF

%HTML (REPORT) {

0,
%}

Example 2 : An IF block inside an HTML block

%HTML (REPORT) {
@myFunctionCall()
%IF ($RETURN_CODE) == $(fa1"|ur‘e_r‘c))

<P> The function call failed with failure code $(RETURN_CODE).
%ELIF ($(RETURN_CODE) == $(warning rc))

<P> The function call succeeded with warning code $(RETURN_CODE).
%ELIF ($(RETURN_CODE) == $(success_rc))

<P>The function call was successful.
%ELSE

P>The function call returned with unknown return code $(RETURN_CODE).

ENDIF
}

N o°

Example 3: A numeric comparison

%IF (ROW_NUM < "100")

<p>The table is not full yet...
%ELIF (ROW_NUM == "100")

<p>The table is now full...
%ELSE

<p>The table has overflowed...
%ENDIF

A numeric comparison is done because the implicit table variable ROW_NUM
always returns an integer value, and the value that is being compared is also an
integer.

Example 4: Nested IF blocks

%IF (MONTH == "January")
%IF (DATE = "1")
HAPPY NEW YEAR!
%ELSE
Ho hum, just another day.
%ENDIF
%ENDIF

Chapter 1. Net.Data Macro Language Constructs

31

INCLUDE Statement

32

Net.Data Reference

Purpose

Reads and incorporates a file into the Net.Data macro in which the statement is
specified.

Net.Data searches the directories specified in the INCLUDE_PATH statement in the
initialization file to find the include file.

You can use include files the same way you can in most high-level languages. They
can insert common headings and footings, define common sets of variables, or
incorporate a common subroutine library of FUNCTION block definitions into a
Net.Data macro.

Net.Data executes an INCLUDE statement only once when processing the macro
and inserts the content of the included file at the location of the INCLUDE
statement in the macro file. Any variable references in the name of the included file
are resolved at the time the INCLUDE statement is first executed, not when the
content of the included file is to be executed.

When an INCLUDE statement is in a ROW or WHILE block, Net.Data does not
repeatedly execute the INCLUDE statement. Net.Data executes the INCLUDE
statement the first time it executes the ROW or WHILE block, incorporates the
content of the included file into the block, and then repeatedly executes the ROW or
WHILE block with the content of the included file.

Authorization Tip: Ensure that the Web server has access rights to any files
referenced by the INCLUDE statement. See the section on specifying Web server
access rights to Net.Data files in the configuration chapter of Net.Data
Administration and Programming Guide for more information.

Tip: If you want to include an HTML file from a local Web server, use the
INCLUDE_URL construct as shown in Example 3 for INCLUDE_URL. By using the
demonstrated syntax, you do not have to update the INCLUDE_PATH in the
Net.Data initialization file to specify directories that are already known to the Web
server.

Syntax

»»—%INCLUDE—"—Y——string " >«
l—var‘iable r'eference—l

Values

%INCLUDE

The keyword that indicates a file is to be read and incorporated into the
Net.Data macro.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

string

Any sequence of alphabetic and numeric characters and punctuation, except

the new-line character.

variable reference

Returns the value of a previously defined variable and is specified with $ and ().

For example: if VAR="abc', then $(VAR) returns the value 'abc'. See

Reference” on page 4l for syntax information.

Context

The INCLUDE statement can be found in these contexts:

* DEFINE block

* HTML block

* REPORT block

* ROW block

* IF block

* MESSAGE block

* MACRO_FUNCTION block

* WHILE block

» OQutside of any block in the declaration part of the Net.Data macro

Restrictions

The INCLUDE statement can contain these elements:
* Comment block

* Strings

» Variable references

Examples

Example 1: An INCLUDE statement in an HTML block
SHTML (start) {
%INCLUDE "header.hti"

0,
%}

Example 2 : An INCLUDE statement in a REPORT block

%REPORT {
%INCLUDE "report_header.txt"
%ROW {
%INCLUDE "row_include.txt"
}
I

N oF

NCLUDE "report_footer.txt"

0,
%}

Example 3: Variable references in an INCLUDE statement

%define Tibrary = "/qgsys.lib/mylib.1ib/"
%define filename = "macros.file/incfile.mbr"

%include "$(1ibrary)$(filename)"

Chapter 1. Net.Data Macro Language Constructs

33

INCLUDE_ URL Statement

34

Net.Data Reference

Purpose

Reads and incorporates another file into the Net.Data generated output in which the
statement is specified. The specified file can exist on a local or remote server.

Using the INCLUDE_URL statement, you can invoke one macro from another
macro without requiring the application user to select a Submit button.

Net.Data executes an INCLUDE_URL statement only once when processing the
macro and inserts the content of the included file at the location of the
INCLUDE_URL statement in the macro file. Any variable references in the name of
the included file are resolved at the time the INCLUDE_URL statement is first
executed, not when the content of the included file is to be executed.

When an INCLUDE_URL statement is in a ROW or WHILE block, Net.Data does
not repeatedly execute the INCLUDE_URL statement. Net.Data executes the
INCLUDE_URL statement the first time it executes the ROW or WHILE block,
incorporates the content of the included file into the block, and then repeatedly
executes the ROW or WHILE block with the content of the included file.

Syntax

»»—%INCLUDE_URL—"—" Lstring i " >
variable reference

Values

%INCLUDE_URL
The keyword that indicates that a file is to be read and incorporated into the
Net.Data macro from the local or a remote server.

string
Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $(VAR) returns the value 'abc'. See [\Mariabld
! for syntax information.

Context

INCLUDE_URL statements can be found in these contexts:

* HTML block

* REPORT block

* ROW block

* WHILE block

*+ MACRO_FUNCTION block

* OQutside any block in the declaration part of the Net.Data macro

Restrictions

INCLUDE_URL statements can contain these elements:
« Comment block

* Strings

» Variable references

The INCLUDE_URL file has the following file size limitations:
* 0OS/2 and Windows NT: 64 KB

+ AIX: 256 KB

* 0S/390: 256 KB

INCLUDE_URL is not supported in the OS/400 environment.
Examples

Example 1 : Including an HTML file from another server
%include_url "http://www.ibm.com/path/myfile.html"

Example 2 : Including an HTML file from a remote server by calling the server name
%include_url "myserver/path/myfile.html"

Where myserver is the server name.

Example 3: Including an HTML file from the local Web server
%include_url "/path/myfile.html"

Tip: By using this method, you do not have to update the INCLUDE_URL path in
the Net.Data configuration file to specify directories that are already known to the
Web server. If the string does not begin with a slash, Net.Data assumes the string
is a server name and attempts to retrieve the file from the server with the
corresponding name.

Example 4 : Including other Net.Data macros from a remote server

%REPORT{
<P>Current hot pick as of @DTW_rTIME():
%include_url "http://www.ibm.com/cgi-bin/db2www/hotpic.mac/report?custno=$(custno)"

In this example, the macro file hotpic.mac is called and custno is sent as a

variable. If the string begins with a slash, Net.Data retrieves the INCLUDE file from
the local Web server.

Chapter 1. Net.Data Macro Language Constructs 35

LIST Statement
Purpose
Builds a delimited list of values. You can use the LIST statement when you

construct SQL queries with multiple items like those found in some WHERE or
HAVING clauses.

Syntax
5L IST—"—Y " variable name ><
string
variable reference—
function call
Values
%LIST
The keyword that specifies that variables are to be used to build a delimited list
of values.
string

Any sequence of alphabetic and numeric characters and punctuation, except
the new-line character.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $(VAR) returns the value 'abc'. See

Reference” on page 4l for syntax information.

function call
Invokes one or more previously defined FUNCTION or MACRO_FUNCTION
blocks, or a Net.Data built-in function with specified arguments. See

Call (@)” on page 24 for syntax and examples.

variable name
One or more names, each additional name concatenated by a period (.). See

[\Variable Name” an page 4 for syntax information.

Context

The LIST statement can be found in these contexts:
* DEFINE statement

Restrictions

The LIST statement can contain these elements:
* Comment block

» Variable references

* Function calls

» Strings

36 Net.Data Reference

Examples

Example 1: A list of variables

%DEFINE{

DATABASE="custcity"

%LIST " OR " conditions

condl="condl="'Sao Paolo'"
cond2="cond2="'Seattle"'"

cond3="cond3="'Shanghai'"

whereClause=conditions ? "WHERE $(conditions)" :

0,
%}

Chapter 1. Net.Data Macro Language Constructs 37

MACRO_FUNCTION Block

38

Net.Data Reference

Purpose

Defines a subroutine that can be invoked from the Net.Data macro. The executable
statements in a MACRO_FUNCTION block must be Net.Data macro language
source statements.

Syntax
»—%MACRO_FUNCTION—function_name—| parm passing spec i >
>—{—| function body | %} ><

(3)

L
report block

parm passing spec

—() |

name
Four
INOUT—

function body

—exec_sql statement
—variable reference
—if block
—function call
—HTML statement
—include statement

(2)

—include_url statement
—while block

Notes:

1. The default parameter type of IN applies when no parameter type is specified at
the beginning of the parameter list. A parameter without a parameter type uses
the type most recently specified in the parameter list, or type IN if no type has
been specified. For example, in the parameter list (parml, INOUT parm2, parm3,
OUT parm4, parm5), parameters parml, parm3, and parm5 do not have
parameter types. The parameter parml has a type of IN because no initial
parameter type has been specified. The parameter parm3 has a type of INOUT
because it is the most recently specified parameter type. Similarly, the
parameter parm5 has a type of OUT because it is the most recently specified
type in the parameter list.

2. The INCLUDE_URL statement is not supported by OS/400.

3. The REPORT block is supported in the MACRO_FUNCTION block by O©S/400
only.

Values

%MACRO_FUNCTION
The keyword that specifies a subroutine that can be invoked from the Net.Data
macro. The executable statements in a MACRO_FUNCTION block must contain
language statements that Net.Data directly interprets.

function_name
The name of the function being defined. An alphabetic or numeric string that
begins with an alphabetic character or underscore and contains any
combination of alphabetic, numeric, or underscore characters.

parm passing spec:

IN Specifies that Net.Data passes input data to the language environment. IN
is the default.

ouT
Specifies that the language environment returns output data to Net.Data.

INOUT
Specifies that Net.Data passes input data to the language environment and
the language environment returns output data to Net.Data.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

function body:

exec_sql
A DB2WWW Release 1 language element that is supported for
compatibility. See [Appendix A_DR2 WW\W Connection” an page 223 or
DB2 World Wide Web Release 1 documentation.

variable reference
Returns the value of a previously defined variable and is specified with $
and (). For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See

[\Variable Reference” an page 4 for syntax information.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent
integers and have no leading or trailing white space. They might have one
leading plus (+) or minus (-) sign.

function call
Invokes one or more previously defined FUNCTION or
MACRO_FUNCTION blocks or a Net.Data built-in function with specified
arguments. See L - for syntax and examples.

HTML statement
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See EINCI LIDE Statement” an page 32 for syntax and examples.

Chapter 1. Net.Data Macro Language Constructs 39

40

Net.Data Reference

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data macro in which the statement is specified. The specified file can
exist on a local or remote server. See LINCLUDE URL Statement” on

for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwHILE Black” on page 54 for syntax and examples.

report block
The REPORT block. Formatting instructions for the output of a function call. You
can use header and footer information for the report. See LRERQRT Black” an
for syntax and examples.

Context

The MACRO_FUNCTION block can be found in these contexts:
* IF block
» Qutside of any block in the declaration part of the Net.Data macro

Restrictions
This construct is not available for the OS/390 operating system.

The MACRO_FUNCTION block can contain these elements:

* Comment block

* EXEC_SQL statement

* HTML statements

* |IF block

* INCLUDE statement

* INCLUDE_URL statement
Not supported for OS/400

* REPORT block
Support for OS/400 only

* WHILE block

* Variable references

* Function calls

Examples

Example 1: A macro function that specifies message handling

%MACRO_FUNCTION setMessage(IN rc, OUT message) {
%IF (rc == "0")
@dtw_assign(message, "Function call was successful.")

%ELIF (rc == "-1")

@dtw_assign(message, "Function failed, out of memory.")
%ELIF (rc == "-2")

@dtw_assign(message, "Function failed, invalid parameter.")
%ENDIF

0,
%}

Example 2: A macro function that specifies header information

%MACRO_FUNCTION setup(IN browserType) {
%{ call this function at the top of each HTML block in the macro %}
%INCLUDE "header_info.html"
@dtw_rdate()
%I1F (browserType == "IBM")
@setupIBM()
%ELIF (browserType == "MS")
@setupMS ()
%ELIF (browserType == "NS")
@setupNS()
%ELSE
@setupDefault()
%ENDIF

0
%}

Chapter 1. Net.Data Macro Language Constructs 41

MESSAGE Block
Purpose

Specifies messages to display and actions to take based on the return code from a
function.

Define the set of return codes, along with their corresponding messages and
actions in the MESSAGE block. When a function call completes, Net.Data
compares its return code with return codes defined in the MESSAGE block. If the
function’s return code matches one in the MESSAGE block, Net.Data displays the
message and evaluates the action to determine whether to continue processing or
exit the Net.Data macro.

A MESSAGE block can be global in scope, or local to a single FUNCTION block. If
the MESSAGE block is defined at the outermost macro layer, it is considered global
in scope. When multiple global MESSAGE blocks are defined, only the last block
processed is considered active. If the MESSAGE block is defined inside a
FUNCTION block, the block is local in scope to the FUNCTION block where it is
defined. See the MESSAGE block section in the Net.Data Administration and
Programming Guide for return code processing rules.

Syntax

»>—%MESSAGE—{ >

v

I_El return code spec :—| message text spec |—| action spec |—,

SQLSTATE

»—%—} ><

action spec

|
[|
L‘ action spec ’—/

return code spec

—-DEFAULT |

—+DEFAULT
— -DEFAULT
msg_code—

+.
1

—include statement—

42 Net.Data Reference

SQLSTATE

|—SQLSTATE—:—E;tate_id _|

Iphanumeric string

message text spec

—string

—variable reference—
—function call
—(new_line)

—string

action spec

EXIT——
I

—variable reference—
function call
—include statement

|
[
L CONTINUE-

include statementJ

Values
%MESSAGE

A keyword for the block that defines a set of return codes, the associated
messages, and the actions Net.Data takes when a function call is returned.

return code spec

A positive or negative integer. If the value of the Net.Data RETURN_CODE

variable matches the return code spec value, the remaining information in the

message statement is used to process the function call. You can also specify
messages for return codes not specifically entered in the MESSAGE block.

+DEFAULT

A keyword used to specify a default positive message code. Net.Data uses

the information in this message statement to process the function call if
RETURN_CODE is greater than zero (0) and an exact match is not

specified.
-DEFAULT

A keyword to specify a default negative message code. Net.Data uses the

information in this message statement to process the function call if

RETURN_CODE is less than zero (0) and an exact match is not specified.

Chapter 1. Net.Data Macro Language Constructs

43

44

DEFAULT
A keyword to specify the default message code. Net.Data uses the
information in this message statement to process the function call, if all of
the following conditions are met:

* If RETURN_CODE is greater or less than zero, but not zero
* If no exact match for the return code is specified

» If the +DEFAULT or -DEFAULT values are not specified for when
RETURN_CODE is greater or less than zero

msg_code
The message code that specifies errors and warnings that can occur during
processing. A string of numeric digits with values from 0 to 9.

SQLSTATE
A keyword that provides application programs with common codes for common
error conditions.The SQLSTATE values are based on the SQLSTATE
specification contained in the SQL standard and the coding scheme is the same
on all IBM implementations of SQL. Restriction: Not supported on the OS/400
platform.

state_id
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

alphanumeric string
An alphabetic or numeric string containing any combination of alphabetic or
numeric characters. It cannot contain punctuation.

message text spec
A string that is sent to the Web browser if the RETURN_CODE matches the
return_code value in the current message statement.

string
Any sequence of alphabetic and numeric characters and punctuation. If the
string appears within double quotes, the new-line character is not allowed.

variable reference
Returns the value of a previously defined variable and is specified with $
and (). For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See
‘\ari ” for syntax information.

function call
Invokes one or more previously defined FUNCTION or
MACRO_FUNCTION blocks, or a Net.Data built-in function with specified
arguments. See L i - for syntax and examples.

action spec
Determines what action Net.Data takes if the RETURN_CODE matches the
return_code value in the current message statement.

EXIT
A keyword that specifies to exit the macro immediately when the error or
warning corresponding to the specified message code occurs. This value is
the default.

CONTINUE
A keyword that specifies to continue processing when the error or warning
corresponding to the specified message code occurs.

Net.Data Reference

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. The INCLUDE statement can appear anywhere in the MESSAGE.

See LUNCLUDE Statement” on page 33 for syntax and examples.

Context

The MESSAGE block can be found in these contexts:

* FUNCTION block

* IF block

» Outside of all blocks or statements in the declaration part of the Net.Data macro

Restrictions

The MESSAGE block can contain these elements:
* Comment block

* Function calls

» Variable references

* HTML statements

* Strings

* INCLUDE statement

SQLSTATE is not supported on the OS/400 platform.
Examples

Example 1: A local MESSAGE block

%MESSAGE {

-601: {<H3>The table has already been created, please go back and enter your name.</H3>
<P>Return

%}

default: "<H3>Can't continue because of error $(RETURN_CODE)</H3>"

0,
%}

Example 2 : A global MESSAGE block

%{ global message block %}
%MESSAGE {

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
+default : {

This is a long message that spans more
than one Tine. You can use HTML tags, including

links and forms, in this message. %} : continue

0,
%}

%{ Tocal message block inside a FUNCTION block %}
%FUNCTION(DTW_REXX) my function() {

%EXEC { my_command.cmd %}

%MESSAGE {

-100 : "Return code -100 message" :oexit
100 : "Return code 100 message" : continue
-default : {

This is a long message that spans more
than one Tine. You can use HTML tags, including

links and forms, in this message. %} : exit

%}
Example 3 : A MESSAGE block containing INCLUDE statements.

Chapter 1. Net.Data Macro Language Constructs 45

46

Net.Data Reference

smessage {
%include "rcl1000.msg"
%include "rc2000.msg"
%include "defaults.msg"

0,
%}

REPORT Block

Purpose

Formats output from a function call. You can enter a table name parameter to
specify that the report is to use the data in the named table. Otherwise, the report is
generated with the first output table found in the function parameter list, or with the
default table data if no table name is in the list.

Syntax
»»—%REPORT {(— >
|—(—name—)J —string
—if block
—variable reference
—function call
—HTML statements————
—include statement
—include_url statement—
“while block
A 9
"T] . g
row block —string
—if block
—variable reference
—function call
—HTML statements————
—include statement
—include_url statement—
while block
Values
%REPORT

The keyword for specifying formatting instructions for the output of a function
call. You can use header and footer information for the report.

name
An alphabetic or numeric string beginning with an alphabetic character or
underscore and containing any combination of alphabetic, numeric, or
underscore characters.

string
Any sequence of alphabetic and numeric characters and punctuation.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent integers
and have no leading or trailing white space. They can have one leading plus (+)
or minus (-) sign. See L ” for syntax and examples.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().

Chapter 1. Net.Data Macro Language Constructs 47

48

Net.Data Reference

For example: if VAR="abc', then $(VAR) returns the value 'abc'. See [variabld

Reference” an page 4l for syntax information.

function call
Invokes one or more previously defined FUNCTION or MACRO_FUNCTION
blocks, or a Net.Data built-in function with specified arguments. See
z for syntax and examples. Restriction: The REPORT
block cannot include SQL function calls, except in the OS/400 environment.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data

macro. See KINCI UDE Statement” on page 33 for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the
Net.Data macro in which the statement is specified. The specified file can exist

on a local or remote server. See UNCILUDE LRI Statement” on page 34 for

syntax and examples.

row block
The ROW block. Displays HTML formatted data once for each row of data that

is returned from a function call. See ERQW Black” on page 50 for syntax and

examples.

while block
The WHILE block. Performs looping with conditional string processing. See

bwHIIL E Block” an page 54 for syntax and examples.

Context

The REPORT block can be found in these contexts:
* FUNCTION statement or block

* MACRO_FUNCTION block

* SQL statement or block

Restrictions

The REPORT block can contain these elements:
* Comment block
* IF block
* INCLUDE statements
* INCLUDE_URL statements
* ROW blocks
* WHILE blocks
* Function calls
For OS/390 platform: SQL functions cannot be called from inside SQL functions.
* HTML statements
e Strings
» Variable references

Examples

Example 1: A two-column HTML table showing a list of names and locations

%REPORT{

<H2>Query Results</H2>

<P>Select a name for details.

<TABLE BORDER=1>

<TR><TD>Name</TD><TD>Location</TD>

%ROW{

<TR>

<TD>

$(V1)</TD>
<TD>$(V2)</TD>

%}
</TABLE>

%}
Selecting a name in the table calls the details HTML block of the name.mac

Net.Data macro and sends it the two values as part of the URL. In this example,
the values can be used in name.mac to look up additional details about the name.

Chapter 1. Net.Data Macro Language Constructs 49

ROW Block

50

Net.Data Reference

Purpose

Processes each table row returned from a function call. Net.Data processes the
statements within the ROW block once for each row.

Syntax

»>—%ROW—{— %} ><
—string
—if block
—variable reference
—function call
—HTML statements
—include statement
—include_url statement—
“while block

Values

%ROW

The keyword that specifies that HTML formatted data is to be displayed, once
for each row of data returned from a function call.

string
Any sequence of alphabetic and numeric characters and punctuation.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they are strings that
represent integers and have no leading or trailing white space. They can have a

single leading plus (+) or minus (-) sign. See LIE Black” on page 26 for syntax

and examples.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc', then $ (VAR) returns the value 'abc'. See

Reference” an page 4 for syntax information.

function call
Invokes one or more previously defined FUNCTION or MACRO FUNCTION
blocks, or built-in functions with specified arguments. See L i
W for syntax and examples. Restriction: ROW cannot include
function calls that are SQL function calls, except in the OS/400 environment.

HTML statements
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

include statement
The INCLUDE statement. Reads and incorporates a file into the Net.Data
macro. See L ’ for syntax and examples.

include_url statement
The INCLUDE_URL statement. Reads and incorporates another file into the

Net.Data macro in which the statement is specified. The specified file can exist

on a local or remote server. See [INCI UDE_URI Statement” on page 34 for

syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See
bwHILE Block” an page 54 for syntax and examples.

Context

The ROW block can be found in these contexts:
« REPORT block

Restrictions

The ROW block can contain these elements:
* Comment block
* |F blocks
* INCLUDE statements
* INCLUDE_URL statements
* WHILE blocks
* Function calls
For OS/390 platform: SQL functions cannot be called from inside SQL functions.
» Variable references
e HTML statements
» Strings

Examples

Example 1 : A two-column HTML table showing a list of names and locations

%REPORT {

<H2>Query Results</H2>

<P>Select a name for details.
<TABLE BORDER=1>
<TR><TD>Name</TD><TD>Location</TD>

SROW{

<TR>

<TD>

$(V1)</TD>
<TD>$(v2)</TD>

0,
%}

</TABLE>

0,
%}

Selecting a name in the table calls the details HTML block of the name.mac
Net.Data macro and sends it the two values as part of the URL. In this example,
the values can be used in name.mac to look up additional details about the name.

Chapter 1. Net.Data Macro Language Constructs 51

TABLE Statement

52

Net.Data Reference

Purpose

Defines a variable which is a collection of related data. It contains an array of
identical records, or rows, and an array of column names describing the fields in
each row. A table statement can only be in a DEFINE statement or block.

Syntax

»—%TABLE—' upper limit i ><

upper limit

I I
I—(number)J

_[ALL

Values

%TABLE
A keyword that specifies the definition of a collection of related data containing
an array of identical records, or rows, and an array of column names describing
the fields in each row.

upper limit
The number of rows that can be contained in the table.

number
A string of digits with values from 0 to 9. A value of 0 allows for unlimited
number of rows in the table.

ALL
A keyword that allows for an unlimited number of rows in the table.

Context

The TABLE statement can be found in these contexts:
 DEFINE statement

Restrictions

The TABLE statement can contain these elements:
¢ Comment block
¢ Numbers

Examples

Example 1: A Net.Data table with an upper limit of 30 rows
%DEFINE myTablel=%TABLE(30)

Example 2: A Net.Data table that uses the default of all rows
%DEFINE myTable2=%TABLE

Example 3: A Net.Data table that specifies all rows
%DEFINE myTable3=%TABLE (ALL)

Chapter 1. Net.Data Macro Language Constructs 53

WHILE Block

54 Net.Data Reference

Purpose

Provides a looping construct based on conditional string processing. You can use
the WHILE block in the HTML block, the REPORT block, the ROW block, the IF
block, and the MACRO_FUNCTION block. String values in the condition list are
treated as numeric for comparisons if they are strings that represent integers and
have no leading or trailing white space. They can have a single leading plus (+) or

minus (-) sign.

Syntax

»—"/MHILE—I condition 1ist |—{ A\

condition list

—exec_sql statement—
—function call
—HTML statement
—if block
—while block
—variable reference—

—string

—((—condition list—)

condition list—&&—condition list—
condition list—||—condition list—

I—condition list

condition i

term i

condition

term

—term

term

variable reference
"—string—"
variable name
function call

Values

%WHILE
The keyword that specifies loop processing.

condition list
Compares the values of conditions and terms. Condition lists can be connected
using Boolean operators. A condition list can be nested inside another condition
list.

condition
A comparison between two terms using comparison operators. An IF condition
is treated as a numeric comparison if both of the following conditions are true:
* The condition operator is one of the following operators: <,<=,>>=,==/I=
* Both terms are strings representing valid integers, where a valid integer is a
string of digits, optionally proceeded by a plus (+) or minus (-) sign, and no
other white space.

If either condition is not true, a normal string comparison is performed.

term
A variable name, string, variable reference, for function call.

exec_sql statement
A DB2WWW Release 1 language element that is supported for compatibility.

See Appendix A_DR2 WW\W Connection” an page 223 or DB2 World Wide

Web Release 1 documentation.

function call
Invokes one or more previously defined FUNCTION or MACRO FUNCTION
blocks, or built-in functions with specified arguments. See LEunction Call (@)1
for syntax and examples.

HTML statement
Includes any alphabetic or numeric characters, as well as HTML tags to be
formatted for the client’'s browser.

if block
The IF block. Performs conditional string processing. String values in the
condition list are treated as numeric for comparisons if they represent integers
and have no leading or trailing white space. They can have one leading plus (+)

or minus (-) sign. See EIE Black” on page 26 for syntax and examples.

while block
The WHILE block. Performs looping with conditional string processing. See

[WHII F Block” on page 54 for syntax and examples.

variable reference
Returns the value of a previously defined variable and is specified with $ and ().
For example: if VAR="abc"', then $(VAR) returns the value 'abc'. See
! for syntax information.

string
Any sequence of alphabetic and numeric characters and punctuation. A string in
the term of the condition list can contain any character except the new-line
character.

variable name
One or more names, each additional name concatenated by a period (.). See

DZa.r.La.blP_Ikla.mxn_an_pa.gM for syntax information.

Chapter 1. Net.Data Macro Language Constructs 55

Context

The WHILE block can be found in these contexts:
e HTML block

* REPORT block

* ROW block

* MACRO_FUNCTION block

* |IF block

e WHILE block

Restrictions

The WHILE block can contain these elements:
* Comment block

« EXEC_SQL statement

* |F block

* WHILE block

e Strings

* HTML statements

* Function calls

» Variable references

* INCLUDE statements

Examples

Example 1: A WHILE block that generates rows in a table
%DEFINE ToopCounter = "1"

SHTML (build_table) {
%WHILE (ToopCounter <= "100") {
%{ generate table tag and column headings %}
%IF (loopCounter == "1")
<TABLE BORDER>
<TR>
<TH>Item #
<TH>Description
</TR>
%ENDIF

%{ generate individual rows %}
<TR>

<TD>

<TD>$ (1oopCounter)
<TD>@getDescription(loopCounter)
</TR>

{ generate end table tag %}

IF (loopCounter == "100")
</TABLE>

%ENDIF

)
%
o

%

0

%{ increment loop counter %}
@dtw_add(loopCounter, "1", loopCounter)

N o
—

56 Net.Data Reference

Chapter 2. Variables

Net.Data provides two types of variables: user-defined variables and Net.Data

variables.

Variables that you define for your application. You can define the variables
that perform the following tasks:

Assign a variable value based on the value of another variable or string.

Use the ENVVAR language construct to reference environment variables.

‘ H ”

Use the EXEC language construct to invoke other programs from a
variable reference or function with executable variables.

Hide variable reference from HTML source.

oq H ”

Build a delimited string of values using the LIST language construct.

Pass an array of values to and from a function. Can be used for report
output.

Net.Data Variables

© Copyright IBM Corp. 1997, 1998

Variables that are for miscellaneous processing and file manipulation, table
processing, report formatting, and language environments.

Some variables have values that you can define or modify, others are
defined by Net.Data. The description for the variable specifies whether you
define a value or not. See the description of a variable to determine how
the value is defined.

The following variable types are provided by Net.Data:

Defined by Net.Data to let you process Net.Data tales. Use these
variables to access data from SQL queries and function calls. They are
only recognized inside a REPORT block, unless otherwise specified.

‘ H ”

Help you customize reports from a function. You must define these
variables before referencing them. You can define or reference report
variables in any Net.Data macro block.

Help you customize the way FUNCTION blocks are processed, using
language environments.

Defined by Net.Data to affect Net.Data processing, find out the status of
a function call, and obtain information about the result set of a database
query. Some miscellaneous variables are set by Net.Data and cannot be
changed.

57

The output for many Net.Data variables varies depending on the operating
system on which it runs.

Constants can be up to 256KB in a Net.Data macro. Thus, you cannot initialize a
variable or set a default value whose length is greater than 256 KB in a macro file.

In this chapter, operating system support for each variable is specified. The
following list defines operating system abbreviations:

HP-UX Hewlett Packard UNIX operating system
SCO Santa Cruz UNIX operating system

SUN Sun Solaris UNIX operating system

Win NT Microsoft's Windows NT operating system

User-defined Variables

This section describes the user-defined variables. You define these variables within
the macro file.

Conditional Variables

58

Net.Data Reference

AIX HP-UX 0S/2 0S/390 0S/400 SCO SUN Win NT

X X X X X X X X

The value of a conditional variable is conditionally set based on the value of
another variable or string. This is also called a ternary operation.

The syntax of conditional variable is:
test ? trueValue : falseValue

Where:
test Is a condition to test.

trueValue
Is the value to use if the test is true.

falseValue
Is the value to use if the test is false.

Example 1: A conditional variable defined with two possible values
varA = varB ? "value_1" : "value_2"

If varB exists, varA=value_1, otherwise varA=value_ 2.

Example 2 : A conditional variable defined with a variable reference
varname = ? "§(value_1)"

In this case, varname is null if value 1 is null, otherwise varname is set to value 1.

Example 3: A conditional variable used with a LIST statement and WHERE clause

%DEFINE{

%list " AND " where_list

where_Tist ? "custid = $(cust_inp)"

where_Tist ? "product_name LIKE '$(prod_inp)%""
where_clause ? "WHERE $(where Tist)"

0,
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT * FROM prodtable $(where_clause)

0,
%}

Conditional and LIST variables are most effective when used together. The above
example shows how to set up a WHERE clause in the DEFINE block. The variables
cust_inp and prod_inp are HTML input variables passed from the Web browser,
usually from an HTML form. The variable where_list is a LIST variable made of two
conditional statements, each statement containing a variable from the Web browser.

If the Web browser returns values for both variables cust _inp and prod_inp, for
example, IBM and 755C, the where_clause is:

WHERE custid = IBM AND product_name LIKE '755C%'

If either variable cust_inp or prod_inp is null or not defined, the WHERE clause
changes to omit the null value. For example, if prod_inp is null, the WHERE clause
is:

WHERE custid = IBM

If both values are null or undefined, the variable where_clause is null and no
WHERE clause appears in SQL queries containing $(where_clause).

Environment Variables

AIX HP-UX 0S/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X

Environment variables let you use the Net.Data ENVVAR language construct to
reference environment variables that exist in the process under which Net.Data is
running.

Example 1: A variable is assigned the value of an environment variable
%define SERVER_NAME=%ENVVAR

The server is $(SERVER_NAME)

The environment variable SERVER_NAME has the value of the current server
name, which, in this example, is www.software.ibm.com.

The server is www.software.ibm.com

See LENVVAR Statement” on page 13 for more information about the ENVVAR

statement.

Executable Variables

AIX

HP-UX

0S/2

0S/390

0S/400

SCO

SUN

Win NT

X

X

X

Chapter 2. Variables 59

60

Net.Data Reference

Executable variables allow you to invoke other programs from a variable reference
using the executable variable feature. An executable variable is defined in a
Net.Data macro using the EXEC language element. For more information about the

EXEC language element, see EEXEC Block or Statement” on page 14.

When Net.Data encounters an executable variable in a macro file, it looks for the
referenced executable program using the following method:

1. It searches the EXEC_PATH in the Net.Data initialization file. See the
configuration chapter in Net.Data Administration and Programming Guide for
more information about EXEC_PATH.

2. If Net.Data does not locate the program, it searches the directories defined by
the system PATH environment variable. If it locates the executable program,
Net.Data runs the program.

Example 1: An executable variable definition
%DEFINE runit=%exec "testProg"

The variable runit is defined to execute the executable program testProg; runit
becomes an executable variable.

Net.Data runs the executable program when it encounters a executable variable
reference in a Net.Data macro. For example, the program testProg is executed
when a executable variable reference is made to the variable runit in a Net.Data
macro.

A simple method is to reference an executable variable from another variable
definition. Example 2 demonstrates this method. The variable date is defined as an
executable variable and dateRpt is then defined as a variable reference, that
contains the executable variable.

Example 2: An executable variable as a variable reference

%DEFINE date=%exec "date"
%DEFINE dateRpt="Today is $(date)"

When Net.Data resolves the variable reference $(dateRpt), Net.Data searches for
the executable date, runs the program, and returns:

Today is Tue 11-07-1995

An executable variable is never set to the value of the output of the executable
program it calls. Using the previous example, the value of date is null. If you use it
in a DTW_ASSIGN function call to assign its value to another variable, the value of
the new variable after the assignment is null also. The only purpose of an
executable variable is to invoke the program it defines.

You can also pass parameters to the program to be executed by specifying them
with the program name on the variable definition.

Example 3: Executable variables with parameters
%DEFINE mph=%exec "calcMPH $(distance) $(time)"

The values of distance and time are passed to the program calcMPH.

Hidden Variables

AIX

HP-UX

0Ss/2

0S/390

0S/400

SCO

SUN

Win NT

X

X

X

X

X

X

X

X

List Variables

With hidden variables, you can reference variables while hiding the actual variable
value in your HTML source. To use hidden variables:

1. Define a variable for each string you want to hide.

2. In the HTML block where the variables are referenced, use double dollar signs
instead of a single dollar sign to reference the variables. For example, $$(X)
instead of $(X).

Example 1 : Hidden variables in a HTML form
SHTML(INPUT) {

<FORM ...>

<pP>Select fields to view:

<SELECT NAME="Field">

<OPTION VALUE="$$(name)"> Name

<OPTION VALUE="$$(addr)"> Address

</FORM>

0,
%}

%DEFINE{
name="customer.name"
addr="customer.address"

0
%}

%FUNCTION(DTW_SQL) mySelect() {
SELECT $(Field) FROM customer

0,
%}

When the HTML form is displayed on a Web browser, $$(name) and $$ (addr)are
replaced with $ (name) and $(addr) respectively, so the actual table and column
names never appear on the HTML form and no one can tell that the true variable
names are hidden. When the customer submits the form, the HTML(REPORT)
block is called. When @mySelect() calls the FUNCTION block, $(Field) is
substituted in the SQL statement with customer.name or customer.addr in the SQL

query.

AIX HP-UX 0Ss/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X

You can use list variables to build a delimited string of values. They are particularly
useful in helping you construct an SQL query with multiple items like those found in
some WHERE or HAVING clauses.

The blanks are significant. Usually you want to have a blank space on both sides of
the value. Most queries use Boolean or mathematical operators (for example, AND,
OR, and >). See Lt ! for syntax and more information.

Chapter 2. Variables 61

Table Variables

62

Net.Data Reference

Example 1: Use of conditional, hidden, and list variables

SHTML (INPUT) {

<FORM METHOD="POST" ACTION="/cgi-bin/db2www/example2.max/report">
Select one or more cities:

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(condl)">Sao Paulo

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond2)">Seattle

<INPUT TYPE="checkbox" NAME="conditions" VALUE="$$(cond3)">Shanghai

<INPUT TYPE="submit" VALUE="Submit Query">

</FORM>

0,
%}

%DEFINE{

DATABASE="custcity"

%LIST " OR " conditions

condl="condl="'Sao Paolo"'"
cond2="cond2="'Seattle"'"
cond3="cond3="'Shanghai'"

whereClause= ? "WHERE $(conditions)" : ""

0,
%}

%FUNCTION(DTW_SQL) mySelect(){
SELECT name, city FROM citylist
$(whereClause)

0,
%}

%HTML (REPORT) {
GmySelect()
%}

If no boxes are checked in the HTML form, conditions is null, so whereClause is also
null in the query. Otherwise, whereClause has the selected values separated by the
Boolean operator OR. For example, if all three cities are selected, the SQL query is:

SELECT name, city FROM citylist
WHERE condl='Sao Paolo' OR cond2='Seattle' OR cond3='Shanghai'

Example 2 : Value separators

%DEFINE %LIST " | " VLIST
%REPORT{

%ROMW{

$ (ROW_NUM) : $(VLIST)
%}

0,
%}

The table processing variable VLIST uses two quotes and an OR bar, " | ", as a
value separator in this example. The string of values are separated by the value in
quotes.

AIX HP-UX 0Ss/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X

Table variables contain an array of values and the associated column names. Each
element in the array is a row. Use table variables to pass groups of values to a
function. You can refer to the individual elements of a table (the rows) in a REPORT
block of a function. Table variables are often used for output from an SQL function
and input to a report, but you can also pass them as IN, OUT, or INOUT
parameters to any non-SQL function. Tables can only be passed to SQL functions
as OUT parameters. See L " for syntax and more
information.

Example 1: A SQL result set that is passed to a REXX program

%DEFINE{

DATABASE = "iddata"
MyTable = %TABLE (ALL)
DTW_DEFAULT_REPORT = "NO"

0,
%}

%FUNCTION(DTW_SQL) Query(OUT table) {
select * from survey

[
%}

%FUNCTION(DTW_REXX) showTable(INOUT table) {
Say 'Number of Rows: 'table ROWS
Say 'Number of Columns: 'table_COLS
do j=1 to table_COLS
Say "Here are all of the values for column " table_N.j ":"
do i =1 to tabTe_ROWS
Say ""i": " table_V.i.j
end
end

0,
%}

%HTML (report) {
<HTML>

<PRE>
@Query(MyTable)

<p>
@showTable(MyTable)
</PRE>

</HTML>

0,
%}

The HTML REPORT block calls an SQL query, saves the result in a table variable
and then passes the variable to a REXX function.

Net.Data Table Processing Variables

Net.Data defines these variables for use in the REPORT and ROW blocks, unless
noted otherwise. Use these variables to reference values that your queries return.

Restriction: Do not define values for these variables in the DEFINE section.

« BLIST” on page 71

Chapter 2. Variables 63

Nn

64

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The column name returned by a function call or query for column n. Nn is valid in
REPORT and ROW blocks.

Net.Data assigns the variable for each column in the table; use the variable in a
variable reference, specifying the number of the column you want to reference.

Examples

Example 1 : A variable reference for a column name

The name of column 2 is $(N2).

Example 2 : Saves the value of a column name for use outside a REPORT block
using DTW_ASSIGN

%define coll=""

%function (DTW_SQL) myfunc() {
select * from atable
%report {

@dtw_assign(coll, N1)
srow{ %}

0
%}

N

}

%htm1 (report) {
@myfunc()
The column name for the first column is $(coll)

0,
%}

This example shows how you can use this variable outside the REPORT block by

using DTW_ASSIGN. For more information, see IDTW_ASSIGN” on page 151.

Example 3 : Nn within an HTML table to define column names

%REPORT{

<H2>Product directory</H2>

<TABLE BORDER=1 CELLPADDING=3>

<TR><TD>$ (N1)</TD><TD>$ (N2)</TD><TD>$ (N5)</TD>
%ROW{
<TR><TD>$(V1)</TD><TD>$(V2)</TD><TD>$ (V3)</TD>
%}

</TABLE>

}

N

NLIST

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Contains a list of all the column names from the result of a function call or query.
The default separator is a space.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

Example 1 : A list of column names with ALIGN
%DEFINE ALIGN="YES"

%FUNCTION (DTW_SQL) myfunc() {

select * from MyTable

%report {

Your query was on these columns: $(NLIST).
Srow {

-
}
}

AN O O° -

The list of column names uses a space between column names with ALIGN set to
YES.

Example 2 : A %LIST variable to change the separator to " | ”
%DEFINE %LIST " | " NLIST

%FUNCTION (DTW_SQL) myfunc() {

select * from MyTable

%report {

Your query was on these columns: $(NLIST).
Srow {

}
}
}

N O A°

Chapter 2. Variables 65

NUM_COLUMNS

66

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The number of table columns that Net.Data is processing in the report block; the
columns are returned by a function call or query.

This variable is a predefined variable and its value cannot be modified. Use the

variable as a variable reference.
Examples

Example 1: NUM_COLUMNS used as a variable reference with NLIST

%REPORT{
Your query result has $(NUM_COLUMNS) columns: $(NLIST).

-

AN .

| NUM_ROWS
|
0

AIX HP-UX 0Ss/2 0S/390 | 0OS/400 SCO SUN Win NT
X

Purpose

The number of rows in the table that Net.Data is processing in the REPORT block.
The number of rows is affected by the value of the upper limit parameter defined for
the Net.Data table holding the data. For example, if upper limit is set to 30, but the
SELECT statement returns 1000 rows, the value of NUM_ROWS is 30. Additionally,
if upper limitis set to 30 and the SELECT statement returns 20 rows, NUM_ROWS
equals 20. See L ! for more information about the
TABLE statement and the upper limit parameter.

NUM_ROWS is not affected by the value of START_ROW_NUM as long as
START_ROW_NUM is not passed to the language environment. For example, if
START_ROW_NUM is set to 5 (specifying that the table displayed on the Web page
should be populated starting with row 5) and the SELECT statement returns 25
rows, NUM_ROWS is set to 25, not 21. The first four rows are discarded from the
table, but are included in the value of NUM_ROWS. However, if
START_ROW_NUM is passed to the language environment, then NUM_ROWS wiill
only contain the number of rows starting at the row specified by
START_ROW_NUM. In the example above, NUM_ROWS will be set to 21.

NUM_ROWS is valid in REPORT and ROW blocks.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

Example 1: Displays the number of names being processed in the REPORT block
%DEFINE DTW_SET TOTAL_ROWS="YES"

%REPORT {

<H2>E-mail directory</H2>

<yL>

%ROW {

Name: $(V2)

Location: $(V3)

%}

Names displayed: $(NUM_ROWS)

Names found: $(TOTAL_ROWS)

0,
%}

Chapter 2. Variables 67

ROW_NUM

68

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

A table variable whose value Net.Data increments each time a row is processed in
a Net.Data table. The variable acts as a counter and its value is the number of the
current row being processed.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

RPT_MAX_ROWS can affect the value of ROW_NUM. For example, if 100 rows
are in a table, and you have set RPT_MAX_ROWS to 20, the final value of
ROW_NUM is 20, because row 20 was the last row processed.

ROW_NUM is valid only within a ROW block.
Examples

Example 1 : Populates a column in the HTML output by using ROW_NUM to label
each row in the table

%REPORT{

<TABLE BORDER=1>

<TR><TD> Row Number </TD> <TD> Customer </TD>
%ROW{

<TR><TD> $(ROW_NUM) </TD> <TD> $(V_Custname) </TD>
%}
</TABLE>

0,
%}

The REPORT block produces a table like the one shown below.

Row Number Customer

1 Jane Smith

2 Jon Chiu

3 Frank Nguyen
4 Mary Nichols

TOTAL_ROWS

AIX HP-UX 0s/2 0S/390 | 0S/400 Sco SUN win NT
X X X X X X X
Purpose

The total number of rows a query returns, no matter what the value of upper_limit
for the TABLE language construct. For example, if RPT_MAX_ROWS is set to
display a maximum of 20 rows, but the query returns 100 rows, this variable is set
to 100 after ROW processing.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Operating system differences:

* On the OS/400 operating system, this variable can be referenced anywhere in a
REPORT or ROW block.

* On the 0S/2, Windows NT, and UNIX operating systems, this variable can be
reference in the REPORT footer, only.

Required: You must set DTW SET TOTAL ROWS to YES to use this variable.
See IDTW_SET_TQTAL_ROWS” an page 91| for more information.

Examples

Example 1: Displays the total number of names found
%DEFINE DTW_SET TOTAL_ROWS="YES"

%REPORT{

<H2>E-mail directory</H2>

SROW{

Name: $(V2)

Location: $(V3)

%}

Names displayed: $(NUM_ROWS)

Names found: $(TOTAL_ROWS)

0,
%}

Chapter 2. Variables 69

V_columnName

70

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The value for the specified column name for the current row. The variable is not set
for undefined column names. A query containing two column names with the same
name gives unpredictable results. Consider using an AS clause in your SQL to
rename duplicate column names. V_columnName is only valid in the ROW block.

Specify the value of this variable by using it as a variable reference, substituting in
the actual name of the column.

Values
V_columnName

Table 1. V_columnName Values

Values Description
columnName The column name in current row of the database table.
Examples

Example 1: Using V_columnName as a variable reference
You have selected $(V_destcity).

VLIST

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

A list of all the field values for the current row being processed in a ROW block.
VLIST is only valid in a ROW block. The default separator is a space.

This variable is a predefined variable and its value cannot be modified. Use the

variable as a variable reference.
Examples

Example 1 : Using list tags to display query results
%DEFINE ALIGN="YES"

%REPORT{

Here are the results of your query:
<QL>

%ROW{

$(VLIST)

%}

</0L>

0,
%}

Example 2: Using a list variable to change the separator to <P>
%DEFINE %LIST "<P>" VLIST

%REPORT{

Here are the results of your query:
%ROW {

<HR>$ (VLIST)

%}

0,
%}

Chapter 2. Variables 71

Vn

72

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

A field value for each row returned by a function call or SQL query for fields 1

through n. Vn is recognized only in a ROW block.

Net.Data assigns the variable for each field the table; use the variable in a variable
reference, specifying the number of the field you want to reference. To use this
variable outside the block, assign the value of Vn to a previously defined global

variable or an OUT or INOUT function parameter variable.
Examples

Example 1: Report displaying an HTML table

%REPORT{

<H2>E-mail directory</H2>

<TABLE BORDER=1 CELLPADDING=3>
<TR><TD>Name</TD><TD>E-mail address</TD><TD>Location</TD>
%ROW{

<TR><TD>$(V1)</TD>

<TD>$(v2)</TD>
<TD>$(V3)</TD>

%}

</TABLE>

Found $(NUM_ROWS) models matching your description.

0,
%}

The second column shows the e-mail address. You can send the person a message

by clicking on the link.

Net.Data Report Variables

These variables help you customize your reports. You must define these variables
before using them.

Chapter 2. Variables 73

ALIGN

74

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Controls leading and trailing spaces used with the table processing variables NLIST
and VLIST. When set to YES, ALIGN provides padding to align table processing
variables for display. If you want to embed query results in HTML links or form
actions, use the default value of NO to prevent Net.Data from surrounding report
variables with leading and trailing spaces.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
ALIGN="YES"|"NO"

Table 2. ALIGN Values

Values Description

YES Net.Data adds leading and trailing spaces to report variables
with spaces to align them for display.

NO Net.Data does not add leading or trailing spaces. NO is the
default.

Examples

Example 1: Using the ALIGN variable to separate each column by a space

%DEFINE ALIGN="YES"
<P>Your query was on these columns: $(NLIST)

DTW_DEFAULT_REPORT

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Determines whether Net.Data generates a default report for functions that have no
REPORT block. When this variable is set to YES, Net.Data generates the default
report. When set to NO, Net.Data suppresses default report generation.
Suppressing the default report is useful, for example, if you receive the results of a
function call in a table variable and want to pass the results to a different function to
process.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_DEFAULT_REPORT="YES"|"NO"

Table 3. DTW_DEFAULT_REPORT Values

Values Description

YES Net.Data generates the default report for functions without
REPORT blocks and displays the results at the browser. YES is
the default.

NO Net.Data discards the default report for functions without
REPORT blocks.

Examples

Example 1 : Overriding the default report generated by Net.Data
%DEFINE DTW_DEFAULT_REPORT="NO"

Chapter 2. Variables 75

DTW_HTML_TABLE

76

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Displays results in an HTML table instead of displaying the table in a text-type
format (that is, using the TABLE tags rather than the PRE tags).

The generated TABLE tag includes a border and cell-padding specification:
<TABLE BORDER CELLPADDING=2>

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_HTML_TABLE="YES"|"NO"

Table 4. DTW_HTML_TABLE Values

Values Description

YES Displays table data using HTML table tags.

NO Displays table data in a text format, using PRE tags. NO is the
default.

Examples

Example 1: Displays results from an SQL function with HTML tags
%DEFINE DTW_HTML TABLE="YES"

%FUNCTION(DTW_SQL) {

SELECT NAME, ADDRESS FROM $(qTable)

0,
%}

RPT_MAX_ROWS

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies the number of rows that are displayed in a table generated by a function
REPORT block.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

0S/400, Windows NT, OS/2, and UNIX users: To use this variable, ensure that
this variable is included as an IN variable in the ENVIRONMENT statement for the
database language environments you are using, in the initialization file. See the
configuration chapter of Net.Data Administration and Programming Guide to learn
more about the database language environment statement.

Values
RPT_MAX_ROWS="ALL"|"0"|"number"

Table 5. RPT_MAX_ROWS Values

Values Description

ALL Indicates that there is no limit on the number of rows to be
displayed in a table generated by a function call. All rows will be
displayed.

0 Specifies that all rows in the table will be displayed. This value

is the same as specifying ALL.

number A positive integer indicating the maximum number of rows to be
displayed in a table generated by a function call.

If the FUNCTION block contains a REPORT and ROW block,
this number specifies the number of times the ROW block is
executed.

Examples

Example 1 : Defines RPT_MAX_ROWS in a DEFINE statement
%DEFINE RPT_MAX_ROWS="20"

The above method limits the number of rows any function returns to 20 rows.
Example 2 : Uses HTML input to define the variable with an HTML form
Maximum rows to return (0 for no limit):

<INPUT TYPE="text" NAME="RPT_MAX_ROWS" SIZE=3>

The lines in the above example can be placed in a FORM tag to let the application
users set the number of rows they want returned from a query.

Chapter 2. Variables 77

Net.Data Reference

START_ROW_NUM

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Specifies the row number to begin displaying the results of a Net.Data table in a
report. Use this variable together with RPT_MAX_ROWS to break queries with
large result sets into smaller tables and use a Next button to navigate through the
result table.

Restriction: For performance reasons, Net.Data passes START _ROW_NUM to
database language environments so that the language environment does not return
the entire result set to Net.Data. To pass the variable automatically, include it as an
IN variable in the database language environment ENVIRONMENT statement in the
initialization file. If this variable is omitted from the ENVIRONMENT statement, the
starting row number to be retrieved is assumed to be the first row in the result set.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
START_ROW_NUM="number"

Table 6. START _ROW_NUM Values

Values Description

number A positive integer indicating the row number with which to begin
displaying a report.

If START_ROW_NUM is specified in a database language
environment’s environment statement in the initialization file, this
number specifies the row number of the result set processed by
the database language environment.

If START_ROW_NUM is not passed to the language
environment, this number specifies the row number of the
Net.Data table used to display a report.

Examples

Example 1: Scrolling with HTML form Next and Previous buttons
%define {

DTW_HTML TABLE = "YES"
START_ROW_NUM = "

RPT_MAX_ROWS = "10"
totalSize =

includeNext = "YES"
includePrev = "YES"
includelast = "YES"
includeFirst = "YES"

N

}

%function(DTW_SQL) myQuery () {
select * from NETDATADEV.CUSTOMER
1

%function(DTW_SQL) count (OUT size){
select count(*) from NETDATADEV.CUSTOMER
%report{

o

0,
%}

Srow{
@DTW_ASSIGN(size,V1)

0,
%}

o°

}

%html (report) {

%{ get the total number of records if we haven't already %}
%if (totalSize == "")

@count(totalSize)
%endif

%{ set START_ROW_NUM based on the button user clicked %}
%if (totalSize <= RPT_MAX_ROWS)
%{ there's only one page of data %}
@DTW_ASSIGN(START_ROW_NUM, "1")
@DTW_ASSIGN(includeFirst, "NO")
@DTW_ASSIGN(includelast, "NO")
@DTW_ASSIGN(includeNext, "NO")
@DTW_ASSIGN(includePrev, "NO")

%elif (submit == "First Page" || submit == "")
%{ first time through or user selected "First Page" button %}
@DTW_ASSIGN(START_ROW_NUM, "1")

@DTW_ASSIGN(includePrev, "NO")
@DTW_ASSIGN(includeFirst, "NO")
%elif (submit == "Last Page")
%{ user selected "Last Page" button %}
@DTW_SUBTRACT (totalSize, RPT_MAX_ROWS, START ROW_NUM)
@DTW_ADD(START _ROW_NUM, "1",” START_ROW_NUM)
@DTW_ASSIGN(includelast, "NO")
@DTW_ASSIGN(includeNext, "NO")
%e1if (submit == "Next")
%{ user selected "Next" button %}
@DTW_ADD(START _ROW_NUM, RPT_MAX_ROWS, START_ROW_NUM)
%if (eDTW_rADD(START ROW_NUM, RPT MAX ROWS) > totalSize)
@DTW_ASSIGN(includeNext,"NO")
@DTW_ASSIGN(includelast, "NO")
%endif

%elif (submit == "Previous")

%{ user selected "Previous" button %}

@DTW_SUBTRACT (START _ROW_NUM, RPT MAX_ROWS, START_ROW_NUM)

%if (START_ROW_NUM <= "1")
@DTW_ASSIGN(START_ROW_NUM,"1")
@DTW_ASSIGN(includePrev,"NO")
@DTW_ASSIGN(includeFirst,"NO")

%endif

%endif

%{ run the query to get the data %}
@myQuery ()

%{ output the correct buttons at the bottom of the report %}
<center>

<form method="POST" action="report">

<input name="START_ROW_NUM" type="hidden" value="$(START_ROW_NUM)">
<input name="totalSize" type="hidden" value="$(totalSize)">

%if (includeFirst == "YES")

<input name="submit" type="submit" value="First Page">

%endif

%if (includePrev == "YES")

<input name="submit" type="submit" value="Previous">

%endif

%if (includeNext == "YES")

<input name="submit" type="submit" value="Next'">

%endif

%if (includelLast == "YES")

<input name="submit" type="submit" value="Last Page">

Chapter 2. Variables

79

%endif
</form>
</center>

N

}

80 Net.Data Reference

Net.Data Language Environment Variables

Use these variables with functions to help you customize the way FUNCTION
blocks are processed by language environments. You might need to define these
variables before referencing them.

Chapter 2. Variables

81

DATABASE

82

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Specifies the database or ODBC data source to access when calling a database
function. This variable can be changed multiple times within a macro to access
multiple databases or ODBC data sources.

0OS/400 operating system: This variable is optional. Net.Data, by default, specifies
DATABASE="*LOCAL"; the DTW_SQL language environment uses the local
relational database directory entry.

Windows NT, OS/2, and UNIX operating systems: Define this variable before
calling any database function, except when using the DTW_ORA (Oracle) language
environment. Additionally, you must use Live Connection when accessing multiple
databases from the same HTML block and through the same language
environment.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DATABASE="dbname"

Table 7. DATABASE Values

Values Description
dbname The name of the database Net.Data connects to.
Examples

Example 1 : Specifies to connect to the CELDIAL database for any SQL operations
%DEFINE DATABASE="CELDIAL"

%FUNCTION (DTW_SQL) getRpt() {
SELECT * FROM customer

0,
%}

%HTML (report) {
%INCLUDE "rpthead.htm"
@getRpt()

%INCLUDE "rptfoot.htm"

%}
The database CELDIAL is accessed when the function getRpt is called.

Example 2: Overrides previous DATABASE definitions with DTW_ASSIGN
%DEFINE DATABASE="DB2C1"

%HTML (monthRpt) {
@DTW_ASSIGN(DATABASE, "DB2D1")
%INCLUDE "rpthead.htm"
@getRpt()

%INCLUDE "rptfoot.htm"

0,
%}

The HTML block queries the database DB2D1, regardless of what the previous
value for DATABASE was.

Chapter 2. Variables 83

DB_CASE

84

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies which case to use for SQL commands and converts all characters to
either upper or lower case. If this variable is not defined, the default action is to not
convert the SQL command characters.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DB_CASE="UPPER" | "LOWER"

Table 8. DB_CASE Values

Values Description

UPPER Converts all SQL command characters to upper case.
LOWER Converts all SQL command characters to lower case.
Examples

Example 1 : Specifies upper case for all SQL commands
%DEFINE DB_CASE="UPPER"

DB2PLAN

AIX HP-UX 0Ss/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Allocates a plan for a connection to a local DB2 subsystem. The variable specifies
the name of a plan for the Net.Data SQL language environment at the local DB2
subsystem that Net.Data will access.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Requirement: This variable must be specified in the Net.Data initialization file on
the DTW_SQL ENVIRONMENT statement and optionally in the macro file. An error
occurs if the macro attempts to execute an SQL function when this variable is not
specified within the Net.Data for OS/390 initialization file or within a macro and not
in the initialization file.

Values
DB2PLAN="plan_name"

Table 9. DB2PLAN Values

Values Description

plan_name The name of the DB2 plan. The name can be eight characters
or less.

Examples

Example 1 : Specifies the plan in the DEFINE statement
%DEFINE DB2PLAN="DTWGAV21"

Chapter 2. Variables 85

DB2SSID

86

Net.Data Reference

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Establishes a connection to a local DB2 subsystem. The variable specifies the
subsystem ID of the local DB2 subsystem that Net.Data will access. Only one local
database connection is allowed for each macro.

Requirement: This variable must be specified in the Net.Data initialization file and
optionally in the macro file. An error occurs if the macro attempts to execute an
SQL function when this variable is not specified within the Net.Data for OS/390
initialization file and also not defined within a macro.

Values
DB2PLAN="subsytem_id"

Table 10. DB2SSID Values

Values Description

subsystem_id The name of the DB2 subsytem. The name can be eight
characters or less.

Examples

Example 1 : Specifies a subsystem ID in the DEFINE statement
%DEFINE DB2SSID="DBNC"

DTW_APPLET_ALTTEXT

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Displays HTML tags and text to browsers that do not recognize the APPLET tag
and is used with the the Applet language environment.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values

DTW_APPLET ALTTEXT="HTML_text_and_tags"

Table 11. DTW_APPLET_ALTTEXT Values

Values

Description

HTML_text_and_tags

HTML tags and text for browsers that do not recognize the
APPLET tag.

Examples

Example 1: Alternate text that indicates a Web browser restriction
%DEFINE DTW_APPLET_ALTTEXT="<P>Sorry, your browser is not java-enabled."

Chapter 2. Variables

87

| DTW_EDIT_CODES

88

Net.Data Reference

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Converts NUMERIC, DECIMAL, INTEGER and SMALLINT data types that are
returned as a result of an SQL operation for the DTW_SQL language environment.
The variable DTW_EDIT_CODES is a string of characters that correspond to the
resulting columns of the table that DTW_SQL LE will build; for example, the fifth
character in DTW_EDIT_CODES will be applied to the fifth column of the result set
if that column is one of the supported types. This single character can be any of the
supported system supplied edit codes that are defined in Data Description
Specification Reference.

For example, a DECIMAL(6,0) field would normally be displayed as the character
string '112698'. By specifying an edit code of 'Y’ for that column in the variable
DTW_EDIT_CODES, 'Y’ is displayed as a character string that represents the date
of '11/26/98'.

Tip: Applying a user-supplied edit code to a column that results in a character string
with non-numeric characters (such as commas or currency symbols) can cause
syntax errors if the character string is sent back to the server for subsequent
processing within a Net.Data macro. For example, the non-numeric column value
might be used for numeric comparisons in subsequent DTW_SQL functions calls,
causing syntax errors.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_EDIT CODES="edit_code"

Table 12. DTW_EDIT_CODES Values

Values Description

edit_code Specifies a string of characters that correspond to the resulting
columns of the table that the SQL language environment builds.

Examples

Example 1:
@DTW_ASSIGN(DTW_EDIT_CODES "JJLJJ###xwwxY")

| DTW_MBMODE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Provides multiple-byte character set (MBCS) support for string and word functions
used by the Default language environment. You can set this variable in the Net.Data
initialization file, but you can use it in the macro file to set or override the current
setting.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

0S/400 users: Net.Data for OS/400 automatically enables functions for MBCS
support and does not need this variable. Net.Data for OS/400 ignores this variable
in macro files that are migrated to the OS/400 operating system.

Values
DTW_MBMODE="YES" | "NO"

Table 13. DTW_MBMODE Values

Values Description

YES Specifies MBCS support for string and word functions.

NO Specifies that string and word functions do not have MBCS
support. NO is the default.

Examples
<DTW_MBMODE="YES"

Chapter 2. Variables 89

DTW_SAVE_TABLE_IN

90

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Identifies a table variable that the SQL language environment uses to store table
data from a query. This table can then be used later, for example, in a REXX
program that analyzes table data.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values

DTW_SAVE_TABLE_IN="table_name_var"

Table 14. DTW_SAVE_TABLE_IN Values

Values

Description

table_name_var

The name of a table for the SQL language environment to store
table data from a query.

Examples

Example 1: A previously-defined table variable used in a REXX call

%DEFINE theTable = %TABLE(2)
%DEFINE DTW_SAVE_TABLE_IN = "theTable"

%FUNCTION(DTW_SQL) doQuery() {
SELECT MODNO, COST, DESCRIP FROM EQPTABLE

WHERE TYPE='MONITOR'

0,
%}

%FUNCTION(DTW_REXX) analyze table(myTable) {

%EXEC{ anzTbl.cmd %}

N

}

%HTML (doTable) {
@doQuery ()
@analyze table(theTable)

%}

A REXX FUNCTION block calls the REXX program anzTb1.cmd, which uses the
table variable theTable to analyze data in the table. The variable theTable was
returned from a previous SQL function call.

DTW_SET TOTAL ROWS

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Specifies to a database language environment that the total number of rows in the
result set for a query should be assigned to TOTAL_ROWS.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

To pass this variable automatically, include it as an IN variable in the database
language environment statement in the Net.Data initialization file. See the
configuration chapter of Net.Data Administration and Programming Guide to learn
more about the database language environment statement.

Values
DTW_SET_TOTAL_ROWS="YES"|"NO"

Table 15. DTW_SET_TOTAL_ROWS Values

Values Description

YES Assigns the value of the total number of rows to the
TOTAL_ROWS variable. Important: You must set this value if
you want to reference the variable TOTAL_ROWS to determine
the number of rows returned from a query.

NO Net.Data does not set the TOTAL_ROWS variable and
TOTAL_ROWS cannot be referenced in a macro file. NO is the
default.

Performance tip: Setting DTW_SET_TOTAL_ROWS to YES affects performance
because to determine the total rows, the database language environment requires
that all rows be retrieved.

Examples

Example 1: Defines DTW_SET_TOTAL_ROWS for using TOTAL_ROWS
%DEFINE DTW_SET_TOTAL_ROWS="YES"

%FUNCTION (DTW_SQL) myfunc() {
select * from MyTable
%report {

%row
%

<P>$(NUM_ROWS) returned. Your query is Timited to $(TOTAL_ROWS) rows.

%}
%)

Chapter 2. Variables 91

LOCATION

92

Net.Data Reference

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Establishes a connection to a remote database server. The variable specifies the
name by which the remote server is known to the local DB2 subsystem. The value
of LOCATION must be defined in the SYSIBM.SYSLOCATIONS table of the
Communications Database (CDB). If this variable is not defined within a macro, any
SQL requests made by the macro are executed at the local DB2 subsystem.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
LOCATION="remote_dbase_name"

Table 16. LOCATION Values

Values Description

remote_dbase _name The name of a valid remote database server that is defined in
the SYSIBM.SYSLOCATIONS table of the CDB. The name can
be eight characters or less.

Examples

Example 1: Defines the remote database location in the DEFINE statement
%DEFINE LOCATION="QMFDJOO"

LOGIN

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Provides access to protected data by passing a user ID to the database language
environment. Use this variable with PASSWORD to incorporate the security
algorithms of DB2.

Security tip: While you can code this value in the Net.Data macro, it is preferable
to have the application user enter user IDs in an HTML form. Additionally, using the
default value of the Web server ID provides a level of access that might not meet
your security needs.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
LOGIN="database_user_id"
Table 17. LOGIN Values

Values Description

database_user_id A valid database user ID. The default is to use the user ID that
started the Web server.

Examples

Example 1 : Restricting access to the user ID, DB2USER
%DEFINE LOGIN="DB2USER"

Example 2 : Using an HTML form input line
USERID: <INPUT TYPE="text" NAME="LOGIN" SIZE=6>

This example shows a line you can include as part of an HTML form for application
users to enter their user IDs.

Chapter 2. Variables 93

| NULL_RPT_FIELD

. AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT
[| X

Purpose

[Specifies a string the user can provide to the DTW_SQL language environment to
[represent NULL values that are returned in an SQL result set.

[Specify the value of this variable using a DEFINE statement or with the
| @DTW_ASSIGN() function.

| Values
| NULL_RPT_FIELD="null_char"

Table 18. NULL_RPT_FIELD Values

null_char Specifies a character to represent NULL values that are

I
| Values Description
I
[returned in an SQL result set. The default is an empty string.

| Examples

| Example 1: Specifies a string representing NULL values in the SQL language
[environment

[%DEFINE NULL_RPT_FIELD = "++++"

94 Net.Data Reference

PASSWORD

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Provides access to protected data by passing a password to the database language
environment. Use this variable with LOGIN to incorporate the security algorithms of
DB2.

Security tip: While you can code this value in the Net.Data macro, it is preferable
to have application users enter passwords in an HTML form.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
PASSWORD="password"
Table 19. PASSWORD Values

Values Description

password Specifies a valid password to provide automatic access to the
database language environment.

Examples

Example 1 : Restricting access to application users with the password NETDATA
%DEFINE PASSWORD="NETDATA"

Example 2: HTML form input line
PASSWORD: <INPUT TYPE="password" NAME="PASSWORD" SIZE=8>

This example shows a line you can include as part of an HTML form for application
users to input their own passwords.

Chapter 2. Variables 95

SHOWSQL

96

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Hides or displays the SQL of the query used on the Web browser. Displaying the
SQL during testing is especially helpful when you are debugging your Net.Data
macros.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
SHOWSQL="YES" | "NO"

Table 20. SHOW _SQL Values

Values Description

YES Displays the SQL of the query sent to the database.

NO Hides the SQL of the query sent to the database. NO is the
default.

Examples

Example 1: Displays all SQL queries
%DEFINE SHOWSQL="YES"

Example 2 : Specifying whether to display SQL using HTML form input

SHOWSQL: <INPUT TYPE="radio" NAME="SHOWSQL" VALUE="YES"> Yes
<INPUT TYPE="radio" NAME="SHOWSQL" VALUE="" CHECKED> No

| SQL_STATE
|
0

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Accesses or displays the SQL state value returned from the database.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

Example 1: Displays the SQL state in the REPORT block

%FUNCTION (DTW_SQL) vall() {
select * from customer
%REPORT {

%ROW {

N
= .

SQLSTATE=$(SQL_STATE)

N
=

Chapter 2. Variables

97

TRANSACTION_SCOPE

98

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies the transaction scope for SQL commands, determining whether Net.Data
issues a COMMIT after each SQL command or after all SQL commands in an
HTML block complete successfully. When you specify that all SQL commands must
complete successfully before a commit, an unsuccessful SQL command causes all
previously executed SQL to the same database in that block to be rolled back.

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Consistency considerations: ~ On operating systems other than OS/400 and
0S/390, updates to the database receiving unsuccessful responses might be rolled
back while the updates to the other databases accessed in the same HTML block
might be committed when all of the following conditions are true:

* TRANSACTION_SCOPE = "MULTIPLE" is specified

* Multiple databases are accessed in one HTML block (which is possible when
using Live Connection)

* An unsuccessful response is returned from an SQL request

If you access multiple databases from Net.Data using IBM’s DataJoiner, you can
achieve multiple database update coordination and consistency when updating from
Net.Data.

On OS/400 and OS/390, TRANSACTION_SCOPE = "MULTIPLE" causes all IBM database
updates issued from a single HTML block to be committed or rolled back together.

On operating systems other than 0S/400, the REXX, Perl, and Java language
environments run in their own separate operating system processes. Thus, any
database updates you issue from these language environments are committed or
rolled back separately from database updates issued from a Net.Data macro file,
regardless of the Net.Data TRANSACTION_SCOPE value.

Values
TRANSACTION_SCOPE="SINGLE"|"MULTIPLE"

Table 21. TRANSACTION_SCOPE Values

Values Description

SINGLE Net.Data issues a COMMIT after each SQL command in an
HTML block successfully completes.

MULTIPLE Specifies the Net.Data issues a COMMIT only after all SQL
commands in an HTML block complete successfully. MULTIPLE
is the default.

Examples

Example 1: Specifies to issue a COMMIT after each transaction
%DEFINE TRANSACTION_SCOPE="SINGLE"

Net.Data Miscellaneous Variables

These variables are Net.Data-defined variables that you can use to affect Net.Data
processing, find out the status of a function call, and obtain information about the
result set of a database query, as well as determine information about file locations
and dates. You might find these variables useful in functions you write or use them
when testing your Net.Data macros.

L] ¢ ”

Chapter 2. Variables 99

DTW_CURRENT_FILENAME

100

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The name and extension of the current input file. The input file is either a Net.Data

macro or a file specified in an INCLUDE statement.

This variable is a predefined variable and its value cannot be modified. Use the

variable as a variable reference.

Examples

<P>This file is <I>$(DTW_CURRENT_FILENAME)</I>,
and was updated on $(DTW_CURRENT_LAST_MODIFIED).

DTW_CURRENT_LAST_MODIFIED

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The date and time the current file was last modified. The current file can be a
Net.Data macro file or a file specified in an INCLUDE statement. The output format
is determined by the system on which Net.Data runs.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

<P>This file is <I>$(DTW_CURRENT_FILENAME)</I>,
and was updated on $(DTW_CURRENT LAST MODIFIED).

Chapter 2. Variables 101

| DTW_DEFAULT_MESSAGE

102

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Net.Data Reference

Purpose

Contains the message text returned from a call to a built-in function or to language
environment when an error occurs.

You can use the DTW_DEFAULT_MESSAGE variable in any part of the Net.Data
macro file.

This variable is a predefined variable, it is not recommended to modify its value.
Use the variable as a variable reference.

Examples

Example 1: A message stating whether the function completed successfully

@functionl()

%IF ("$(RETURN_CODE)" == "0")

The function completed successfully.
%ELSE

The function failed with the return code $(RETURN_CODE). The error message
returned is "$(DTW_DEFAULT MESSAGE)".
%ENDIF

Example 2: The default text for when a function returns a non-zero return code

SMESSAGE {

default: "<h2>Net.Data received return code: $(RETURN CODE).
Error message is $(DTW_DEFAULT MESSAGE)</h2>" : continue
}

N

The user sees the default error message, if a function returns a return code other
than 0.

| DTW_LOG_LEVEL

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X
Purpose

The level of messages that Net.Data writes to the log file.

You can specify the value of this variable using a DEFINE statement or with the

@DTW_ASSIGN() function.

Requirement: Define DTW_LOG_DIR in the Net.Data initialization file to initiate

logging; otherwise Net.Data does not log messages when you specify the
DTW_LOG_LEVEL variable in the macro file.

Values

DTW_LOG_LEVEL="OFF | ERROR | WARNING"

Table 22. DTW_LOG_LEVEL Values

Values Description

OFF Net.Data does not log errors. OFF is the default.
ERROR Net.Data logs error messages.

WARNING Net.Data logs warnings, as well as error messages.
Examples

%DEFINE DTW_LOG_LEVEL="ERROR"

Chapter 2. Variables

103

DTW_MACRO_FILENAME

104

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The name and extension of the current Net.Data macro file.

This variable is a predefined variable and its value cannot be modified. Use the

variable as a variable reference.

Examples

<P>This Net.Data macro is <I>$(DTW_MACRO_FILENAME)</I>,

and was updated on $(DTW_MACRO_LAST_MODIFIED).

DTW_MACRO_LAST MODIFIED

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The date and time the Net.Data macro was last modified. The output format
depends on the system on which Net.Data runs.

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples

<P>This Net.Data macro is <I>$(DTW_MACRO_FILENAME)</I>,
and was updated on $(DTW_MACRO_LAST_MODIFIED).

Chapter 2. Variables 105

DTW_MP_PATH

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The path and name of the Net.Data executable file. Depending on your system, the
output looks like the following sample path and name:

/usr/1pp/internet/server_root/cgi-bin/db2www

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples
The Net.Data executable file is $(DTW_MP_PATH).

106 Net.Data Reference

DTW_MP_VERSION

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The version and release number of Net.Data running on the server. The output is in
the following format:

Net.Data Version 2.1

This variable is a predefined variable and its value cannot be modified. Use the
variable as a variable reference.

Examples
This Web application uses $(DTW_MP_VERSION).

Chapter 2. Variables 107

DTW_PRINT_HEADER

108

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Specifies text for the file header.

You must have this variable set before Net.Data processes any text sent to the Web
browser, because Net.Data reads this variable once before displaying text and does
not look at it again. Any changes to the DTW_PRINT_HEADER variable are ignored
after Net.Data has sent text to the browser.

0S/390 users: If you are using DTW_PRINT_HEADER to generate your own
headers (DTW_PRINT_HEADER="NO"), you must set DTW_REMOVE_WS="NO".

Specify the value of this variable using a DEFINE statement or with the
@DTW_ASSIGN() function.

Values
DTW_PRINT_HEADER="YES"|"NO"

Table 23. DTW_PRINT_HEADER Values

Values Description

YES Net.Data prints out the text Content-type: text/html for the
HTTP header. YES is the default.

NO Net.Data does not print out an HTTP header. You can generate
custom HTTP header information.

Examples

One of the most common uses of this variable is to enable Net.Data macros to
send cookies. To set a cookie, the DTW_PRINT_HEADER variable must be set to
NO, and the first three lines must be the Content-type header, the Set-Cookie
statement, and a blank line.

Example 1: Enabling Net.Data to send a cookie
%DEFINE DTW_PRINT_HEADER="NO"

%HTML (cookiel) {
Content-type: text/html
Set-Cookie: UsrId=56, expires=Friday, 12-Dec-99, 12:00:00 GMT; path=/

<p>
Any text

[

%}

| DTW_REMOVE_WS

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Reduces the size of a dynamically generated Web page by compressing extra

space caused by tabulators, white space, and new-line characters.

Specify the value of this variable in the DEFINE block.

Using <PRE></PRE> tags: Defining this variable to YES affects the amount and
type of white space that is printed. If the variable is set to YES, portions of HTML
pages that use <PRE></PRE> tags might not displays as intended.

0S/390 users:

1. If you are using DTW_PRINT_HEADER to generate your own headers
(DTW_PRINT_HEADER="NO"), you must set DTW_REMOVE_WS="NO".

2. Set this variable in the Net.Data initialization file to specify a value for all of your
macros. You can override the value by defining it in the macro file. If

DTW_REMOVE_WS is not defined in the macro file, it uses the value in the

initialization file.

Values
DTW_REMOVE_WS="YES"|"NO"

Table 24. DTW_REMOVE_WS Values

Values Description

YES Net.Data compresses a sequence of two or more white spaces
to one new-line character, generating shorter HTML result
pages.

NO Net.Data does not compress white spaces. NO is the default.

Examples

Example 1: Compressing white space

DTW_REMOVE_WS="YES"

Chapter 2. Variables

109

RETURN_CODE

110

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

The return code returned by a call to a built-in function or a call to a language
environment. Net.Data uses this value to process MESSAGE blocks. You can use
this variable to determine whether a function call succeeded or failed. A value of
zero indicates successful completion of a function call.

You can reference the RETURN_CODE variable in any part of the Net.Data macro
file.

This value is predefined; it is not recommended to modify the value. Use it as a
variable reference.

Examples

Example 1 : A message stating whether the function completed successfully

@functionl()

%IF ("$(RETURN_CODE)" == "Q")

The function completed successfully.

%ELSE

The function failed with the return code $(RETURN CODE).
%ENDIF

Example 2 : A default message when a return code is not 0

SMESSAGE {
default: "<h2>Net.Data received return code: $(RETURN_CODE)</h2>" : continue

0,
%}

If a function returns a return code other than 0, the default message is displayed.

Chapter 3. Net.Data Built-in Functions

Net.Data provides a wide variety of functions that you can use without creating your
own FUNCTION blocks. Net.Data built-in functions are divided into the following
categories:

* General-purpose functions help you develop Web pages with Net.Data and do

not fit in the other categories. See General Functions” on page 112.
 Math functions perform mathematical operations. See tMath Functions” on

« String-manipulation functions modify strings and characters. See [String

* Word-manipulation functions modify words or sets of words. See bward

* Table-manipulation functlons help you generate forms and reports from your
table data. See L 2

» Flat-file interface functions perform file input and output. See [Elat Fild

* Web-registry functions perform operations on a Web registry. See Fwed

In the descriptions that follow, function parameters are described as being of type
[string, integer, float, and table. All Net.Data variables are of type string, but the
terms integer and float are used to denote a string that represents an integer or
[float value, respectively.

I ,
| Function Names

[Net.Data built-in functions begin with DTW_, which is a reserved prefix. User-defined
[functions should not use this prefix.

[Built-in functions names are not case sensitive.

Input and Output Parameters

Functions can have parameter passing specifications that determine whether
Net.Data uses the parameter for input, output, or both input and output. These
parameter passing specifications are specified by the following keywords, :

IN Specifies that the parameter passes input data to the language environment
from Net.Data.

OUT Specifies that the parameter returns output data from the language
environment to Net.Data.

INOUT
Specifies that the parameter passes input data to the language environment
and returns output data from the language environment to Net.Data.

© Copyright IBM Corp. 1997, 1998 111

Function Result Formatting

Many functions have one or more of the following forms:

* Functions beginning with DTW_r, DTWF_r, and DTWR_r return their results to
the function call, so they do not have an output parameter. This example shows
the server time:

Current local time is @DTW_rTIME().

* Functions beginning with DTW_m perform the function on multiple parameters.
Each parameter behaves as both an input parameter and an output parameter.
The function is performed on the parameter and the results are returned in the
parameter. This example converts the three input parameters to all capital letters
for a consistent look in the display:

@DTW_mUPPERCASE (model, style, shipNo)
Shipment $(shipNo) contains $(quantity) of model $(model) $(style).

* Other functions beginning with DTW_, DTWF_, and DTWR__ return their results in
an output parameter. You must specify the output parameter. This example
shows the server time:

@DTW_TIME (nowTime)
Current local time is $(nowTime).

Function Parameter Rules

Place function parameters in the correct order. You can specify all input parameters
before the last input parameter can be specified, or specify a null (*") to accept the
default. For example, you can call DTW_TB_INPUT_TEXT as in the following
example:

@DTW_TB_INPUT TEXT(myTable, "1", "2", "", "", "32")

In the above example the fourth and fifth parameters use default values. Include
them as nulls to indicate that “32” is the value for MAXLENGTH in the generated
HTML. The final parameter is not specified, so the default value is used. If you
choose to accept the default value for MAXLENGTH and the two previous
parameters, omit them, as shown below:

@DTW_TB_INPUT TEXT(myTable, "1", "2")

You must specify intermediate null values in the parameter lists for input parameters
when subsequent non-null input parameters exist. You do not need to specify
intermediate null input parameters before specifying your final output parameter.

General Functions

112

Net.Data Reference

General functions help you develop Web pages with Net.Data and do not fit in the
other categories. The following functions are general-purpose functions:

‘ ”

Chapter 3. Net.Data Built-in Functions

113

DTW_ADDQUOTE

114

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Replaces single quotes in an input string with two single quotes. The replacement is
needed so that SQL statements can be processed correctly when a string contains
a single quote.

Consider using this function for all SQL INPUT statements. For example, if you
enter O’'Brien as a last name, as in the following example, the single quote might
give you an error:

INSERT INTO USER1.CUSTABLE (LNAME, FNAME)
VALUES ('O'Brien', 'Patrick')

Using the DTW_ADDQUOTE function changes the SQL statement and prevents the
error:

INSERT INTO USER1.CUSTABLE (LNAME, FNAME)
VALUES ('0''Brien', 'Patrick')

Format
@DTW_ADDQUOTE(stringln, stringOut)
@DTW_rADDQUOTE(stringIn)
@DTW_mADDQUOTE(stringMult, stringMult2, ..., stringMultn)

Values

Table 25. DTW_ADDQUOTE Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.
DTW_mADDQUOTE can have multiple
input strings.

string stringOut ouT A variable that contains the modified form
of stringin.

string stringMult INOUT |+ On input: A variable that contains a

string.

» On output: A variable containing the
input string with each single quote (')
character replaced by two single-quote
characters.

Examples

Example 1: Adds an extra single quote on the OUT parameter
@DTW_ADDQUOTE(stringl,string2)

* Input: stringl="John's Web page"

* Returns: string2="John''s Web page"

Example 2: Adds an extra single quote on the returned value of the function call
@DTW_rADDQUOTE("The title of the article is 'Once upon a time'")
* Returns: "The title of the article is ''Once upon a time'"'"

Example 3: Adds extra single quotation marks on each of the INOUT parameters of
the function call

@DTW_mADDQUOTE(stringl,string2)
e Input: stringl="Joe's bag", string2=""'to be or not to be

* Returns: stringl="Joe''s bag", string2=""''to be or not to be

Example 4: Inserts extra single quotation marks into data being inserted in a DB2
table

%FUNCTION(DTW_SQL) insertName () {
INSERT INTO USER1.CUSTABLE (LNAME,FNAME)
VALUES ('@DTW_rADDQUOTE(Tastname)', '@DTW_rADDQUOTE(firstname)')

%}
* Input: Tastname="0'Brien", firstname="Patrick"
e Returns: "0''Brien", "Patrick"

Chapter 3. Net.Data Built-in Functions 115

| DTW_CACHE_PAGE

116

Net.Data Reference

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT

X

Purpose

Begins caching all HTML output following the function’s position in the macro file.
When invoked, this function attempts to retrieve the specified page from the cache
and to send it to the Web browser as if it were the output page generated from the
macro. If the page is found and it has not expired, Net.Data stops processing the
macro, exits from the macro file, and sends the cached page to the Web browser.

If the requested page is not in the cache or the existing cached page is older than
the value of age, Net.Data generates a new output page. When the macro
successfully completes, Net.Data sends the new page to the browser and caches
the page.

Determining the location of the DTW_CACHE_PAGE function in the macro file:

* For most caching applications, specify DTW_CACHE_PAGE at the top of the
macro to cache all HTML output. This techniqgue makes it easier to maintain the
macro file when new report blocks are added. For example, when the function is
in the middle of the macro, it might not be noticed when a HTML report section is
added earlier in the macro. Net.Data would not cache the new report output.
Additionally, this method improves performance as Net.Data stops all further
processing when it determines that the page is cached.

» For advanced caching applications, you can place the function in the HTML
output sections when you need to make the decision to cache at a specific point
during processing, rather than at the beginning of the macro file. For example,
you might need to make the caching decision based on how many rows are
returned from a query or function call.

Format
@DTW_CACHE_PAGE(cacheid, url, age, status)

Values

Table 26. DTW_CACHE_PAGE Parameters

Parameter Use Description

cache_id IN A string variable identifying the cache where the page

will be placed.

cached_page_ID IN A string variable containing an identifier used to locate
the cached page in a subsequent
DTW_CACHE_PAGE cache request. The string can be
a URL.

age IN A string variable containing a length of time in
seconds. This parameter determines whether a page
has expired. If the page is older than age, the page is
not sent to the browser.

If age is specified as -1, and the page exists in the
cache, Net.Data sends it to the Web browser
regardless of its age directly from the cache. Net.Data
does not replace the page in the cache.

Table 26. DTW_CACHE_PAGE Parameters (continued)

Parameter Use Description

status ouT A string variable indicating the state of the cached
page. Possible values are in lowercase:

» ok: The output page will be cached when the macro
execution terminates.

* new: The page is not in the cache.
* renew: The page is in the cache, but has expired.

* no_cache: The cache identifier specified does not
exist. It must be defined in the cache configuration
files. Your macro can continue executing without
page caching.

» inactive: The cache you specified has been marked
inactive. Your macro can continue executing without
page caching.

* busy: Your macro has issued the
DTW_CACHE_PAGE built-in function before in this
execution. Your macro can continue executing.

« error: An error occurred while trying to communicate
with the cache.

Examples

Example 1: Places the DTW_CACHE_PAGE function at the beginning of the macro
file to capture all HTML output

%IF (customer_status == "Classic")

@DTW_CACHE_PAGE ("mymacro.mac", "http://www.mypage.org", "-1", status)
%ENDIF

% DEFINE { ...%}

%HTML (OUTPUT) {
<title>This is the page title
</head>
<body>
<center>
This is the Main Heading
<p>It is $(time). Have a nice day!
</body>
</html>

0,
%}

Example 2: Places the function in the HTML block because the decision to cache
depends on the expected size of the HTML output

%DEFINE { ...%)

%FUNCTION(DTW_SQL) count_rows () {
select count(*) from customer
%REPORT{
SROW{
@DTW_ASSIGN(ALL_ROWS, V1)
}

}
}

N S° °

%FUNCTION(DTW_SQL) all_customers(){

Chapter 3. Net.Data Built-in Functions 117

Net.Data Reference

select * from customer

N

}

SHTML (OUTPUT) {

<html>

<head>

<title>This is the customer Tist
</head>

<body>

@count_rows()

%IF ($(ALL_ROWS) > "100")
@DTW_CACHE_PAGE ("mymacro.mac", "http://www.mypage.org", "-1", status)
%ENDIF

@all_customers()

</body>
</html>

0,
%}

In this example, the page is cached or retrieved based on the expected size of the
HTML output. HTML output pages are considered cache-worthy only when the
database table contains more than 100 rows. Net.Data always sends the text in the
OUTPUT block, This is the customer Tist, to the browser after executing the
macro; the text is never cached. The lines following the function call,
@count_rows (), are cached or retrieved when the conditions of the IF block are
satisfied. Together, both parts form a complete Net.Data output page.

Example 3: Dynamically retrieves the cache ID and the cached page ID

%HTML (OUTPUT) {
%IF (customer == "Joe Smith")

@DTW_CACHE_PAGE (@DTW_rGETENV ("DTW_MACRO_FILENAME"), @DTW_rGETENV("URL"),"-1", status)

%ENDIF

<html>

<head>

<title>This is the page title</title>
</head>

<body>

<center>

<h3>This is the Main Heading</h3>
<p>It is @DTW_rDATE(). Have a nice day!
</body>

</html>

}

N

DTW_DATE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the current system date in the specified format.

Format
@DTW_DATE(format, stringOut)

@DTW_DATE(stringOut)
@DTW_rDATE(format)
@DTW_rDATE()

Values
Table 27. DTW_DATE Parameters
Data Type Parameter Use Description
string format IN A variable or literal string specifying the
data format. Valid formats include:
D - Day of the year (001-366)
E - European date format (dd/mm/yy)
N - Normal date format (dd mon yyyy)
O - Ordered date format (yy/mm/dd)
S - Standard date format (yyyymmdd)
U - USA date format (mm/dd/yy)
The default is N.
string stringOut ouT A variable that contains the date in the
specified format.
Examples

Example 1: Normal date format
@DTW_DATE(results)
* Returns: results = "25 Apr 1997"

Example 2: European date format
@DTW_DATE("E", results)
* Returns: results="25/04/97"

Example 3: US date format
%HTML (report) {

<P>This report created on @DTW_rDATE("U").

e Returns: 04/25/97

Chapter 3. Net.Data Built-in Functions 119

| DTW_EXIT

120

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X
Purpose

Specifies to leave the macro immediately. Net.Data ensures that the page the

macro created so far will be sent to the browser.

Performance tip: Use DTW_EXIT to stop the processing of a macro file when
output has been generated in order to save the time Net.Data has to process the

entire file.

Format
@DTW_EXIT()

Examples

Example 1: Exiting a macro
%HTML (cache_example) {

<htm1>

<head>

<title>This is the page title</title>
</head>

<body>

<center>

<h3>This is the Main Heading</h3>

%IF (customer == "Joe Smith")
@DTW_EXIT()

%ENDIF

</body>
</html>

0,
%}

| DTW_GETCOOKIE

i AIX HP-UX | 0S/2 [0S/390 | 0s/400 | Ssco SUN [win NT
] X X X X X X
| Purpose

[Specifies the name of a cookie to be read and returns the value of the cookie.

| To retrieve a cookie, it must have been defined with the DTW_SETCOOKIE()
[function. See IlDTW_SETCQOQKIE” an page 132 to learn how to define a cookie.

| Tip: Define and retrieve a cookie in two separate HTTP requests. Because a cookie
[is visible only after it has been sent to the client, if a macro tries to get a cookie that
| was defined in the same HTTP request, you might receive unexpected results.

| Format
[@DTW_GETCOOKIE(IN cookie_name, OUT cookie_value)

[@DTW_rGETCOOKIE(IN cookie_name)

| Values

| Table 28. DTW_GETCOOKIE Parameters

| Data Type Parameter Use Description

| string cookie_name IN A variable or literal string that specifies the
[name of the cookie.

| string cookie_value ouT A variable containing the value of the

[cookie retrieved by the function, such as

[user state information.

| Examples

[Example 1: Retrieves cookies that contain user ID and password information

[@DTW_GETCOOKIE("mycookie_name_for_userID", userID)
[@DTW_GETCOOKIE ("mycookie_name_for_password", password)

[Example 2: Determines if a cookie for a user exists before gathering user
[information

%HTML (welcome) {
<html>
<body>
<hl>Net.Data Club</hl>
@DTW_GETCOOKIE("NDC_name", name)
%IF ($(RETURN_CODE) == "8000") %{ The cookie is not found. %}
<form method="post" action="remember">
<p>Welcome to the club. Please enter your name.

<input name="name">
<input type="submit" value="submit">

</form>
%ELSE
<p>Hi, $(name). Welcome back.
%ENDIF
</body>
</html>

0
%}

[The HTML welcome section checks whether the cookie NDC_name exists. If the
[cookie exists, the browser displays a personalized greeting. If the cookie does not

Chapter 3. Net.Data Built-in Functions 121

122

Net.Data Reference

exist, the browser prompts for the user's name, and posts it to the HTML remember
section, which sets the user’'s name into the cookie NDC_name as shown below:

%HTML (remember) {

<html1>

<body>

<H1>Net.Data Club</H1>

@DTW_SETCOOKIE("NDC name", name, "expires=Wednesday, 01-Dec-2010 00:00:00;path=/")
<p>Thank you.

<p>Come back

</body>

</html>

0
%}

Return Codes

If the cookie is not found, return code 8000 is returned. The cookie might not be
found for the following reasons:

The cookie has never been set.
The cookie has expired.

The cookie does not have an expiration date and is therefore not persistent; the
Web browser that received the cookie exited or was killed.

The cookie was set with a secure option, and the current HTTP request was sent
over an insecure channels.

The Web browser did not accept the cookie or it did not execute JavaScript
programs at the time when the set cookie request was submitted.

The cookie has been deleted by the Web browser. This can happen when the
number of cookies exceeds the limitations of the browser. The limitations are
described in Netscape’s specification and at the time of publication are:

— 300 total cookies

— 4 kilobytes per cookie, where the name and the value combine to form the 4
kilobyte limit.

— 20 cookies per server or domain. (Note that completely specified hosts and
domains are treated as separate entities and have a 20 cookie limitation for
each, not combined)

Servers should not expect clients to be able to exceed these limits. When the
300 cookie limit or the 20 cookie per server limit is exceeded, clients should
delete the least recently used cookie. When a cookie larger than 4 kilobytes is
encountered the cookie should be trimmed to fit, but the name should remain
intact as long as it is less than 4 kilobytes.

See Netscape’s specification for the latest information in “Persistent Client State
HTTP Cookies,” which is available at:

http://search.netscape.com/newsref/std/cookie_spec.html

DTW_GETENV

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the value of the specified environment variable. You can also use ENVVAR
to reference the values of environment variables. For more information, see

Format
@DTW_GETENV(envVarName, envVarValue)

@DTW_rGETENV(envVarName)

Values

Table 29. DTW_GETENYV Parameters

Data Type Parameter Use Description

string envVarName IN A variable or literal string.

string envVvarValue ouT The value of the environment variable
specified in envVarName. A null string is
returned if the value is not found.

Examples

Example 1: Returns the value for the PATH statement on the OUT parameter
@DTW_GETENV (myEnvVarName, myEnvVarValue)

e Input: myEnvVarName = "PATH"

* Returns: myEnvVarValue = "/usr/path"

Example 2: Returns the value for the PATH statement
@DTW_rGETENV (myPath)

* Input: myPath = "PATH"

* Returns: "/usr/path"

Example 3: Returns the value for the name of the server
The server is @DTW_rGETENV("SERVER NAME").
* Returns: "www.software.ibm.com"

Chapter 3. Net.Data Built-in Functions 123

DTW_GETINIDATA

124

AIX HP-UX 0s/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X
Purpose
Returns the value of the specified configuration variable. If a value is not found, a
null string is returned.
Restriction: For non-OS/400 operating systems, configuration path variables

(MACRO_PATH, EXEC_PATH, and INCLUDE_PATH), as well as ENVIRONMENT
statements, cannot be retrieved with this call. On the OS/400 operating system, this
restriction applies only to ENVIRONMENT statements.

Format

@DTW_GETINIDATA(iniVarName, iniVarValue)
@DTW_rGETINIDATA(iniVarName)

Values
Table 30. DTW_GETINIDATA Parameters
Data Type Parameter Use Description
string inivarName IN A variable or literal string.
string iniVarValue ouT The value of the configuration variable
specified in iniVarName.
Examples

Example 1 : Returns the Net.Data path variable value
@DTW_GETINIDATA(myEnvVarName, myEnvVarValue)

* Input: myEnvVarName = "FFI_PATH"
* Returns: myEnvVarValue = "D:\FFI"

Net.Data Reference

DTW_HTMLENCODE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Encodes characters using standard HTML decimal escape codes for many, but not
all, characters. You can use this function to encode data that you do not want the
Web browser to interpret as HTML. For example, by using the appropriate escape
character, you can display less-than (<) and greater-than (>) signs, which are
usually reserved for HTML tags.

In a second example, the following string in HTML only shows one space between
each number:

12 3
Use DTW_HTMLENCODE to ensure that the right number of spaces are shown.

ffable 31 shows the characters that are encoded by the DTW_HTMLENCODE
function.

Table 31. HTML Decimal Escape Characters

Character Name Code
SPACE Space
" Double quote "
Number sign
% Percent %,
& Ampersand &
[Left bracket (
] Right bracket)
+ Plus +
\ Slash &HAT;
Colon :
; Semicolon ;
< Less than <
= Equals =:
> Greater than >:
? Question mark ?:
@ At sign @
/ Backslash \
Carat ^,;
{ Left brace {
| Straight line |
} Right brace }
i Tilde ~

Chapter 3. Net.Data Built-in Functions 125

126

Format
@DTW_HTMLENCODE(stringIn, stringOut)

@DTW_rHTMLENCODE(stringIn)

Values

Table 32. DTW_HTMLENCODE Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

string stringOut ouT A variable containing the modified input
string in which certain characters have
been replaced by the encoded HTML
escape characters.

Examples

Example 1: Encodes the space character
@DTW_HTMLENCODE (stringl,string2)

* Input: stringl = "Jim's dog"

* Returns: string2 = "Jim's dog"

Example 2 : Encodes spaces, the less-than sign, and the equal sign
@DTW_rHTMLENCODE ("X <= 10")
* Returns: "X 8#60;=8#32;10"

Net.Data Reference

DTW_QHTMLENCODE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Performs the same function as @DTW_HTMLENCODE but also encodes the
single-quote character (') to '. The HTML decimal escape characters that
DTW_QHTMLENCODE uses are shown in

Format
@DTW_QHTMLENCODE(stringIn, stringOut)

@DTW_rQHTMLENCODE(stringIn)

Values

Table 33. DTW_QHTMLENCODE Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

string stringOut ouT A variable that contains the modified form
of stringln in which certain characters are
replaced by the encoded HTML escape
characters.

Examples

Example 1 : Encodes an apostrophe and a space
@DTW_QHTMLENCODE (stringl,string2)

* Input: stringl = "Jim's dog"

e Returns: string2 = "Jim's dog"

Example 2 : Encodes apostrophes, spaces, and an ampersand
@DTW_rQHTMLENCODE("John's & Jane's")
* Returns: "John's 8#38; Jane's"

Chapter 3. Net.Data Built-in Functions 127

DTW_SENDMAIL

AIX HP-UX 0s/2 0S/390 | 0S/400 Sco SUN win NT
X X X X X X
Purpose

Dynamically builds and transmits electronic mail (e-mail) messages.

This function works with an optional configuration variable, DTW_SMTP_SERVER,
which specifies the SMTP server to use for transmitting e-mail messages. The value
of this parameter can either be a host name or an IP address. When this variable is
not defined, Net.Data uses the local host as the SMTP server. See the configuration
chapter in the Net.Data Administration and Programming Guide to learn more about
these variables.

National Language Issues: Standard Simple Mail Transfer Protocol (SMTP)
servers accept only 7-bit data, such as U.S. ASCII characters. If your message has
8-bit characters, it is recommended that you specify an Extended Simple Mail
Transfer Protocol (ESMTP) server; ESMTP servers accept 8-bit characters.
Net.Data does not encode your 8-bit data into 7-bit data. If you do not have access
to an ESMTP server, remove all 8-bit characters from the e-mail message.

Troubleshooting: The following list describes conditions under which Net.Data
does not send an e-mail message:

* The specified SMTP server cannot be reached.

* The specified SMTP server does not support the Extended Simple Mail Transfer

Protocol (ESMTP), but the specified e-mail message contains non-U.S. ASCII
characters.

Format
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy, IN ReplyTo, IN Organization)
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy, IN ReplyTo
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy, IN BlindCarbonCopy
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject, IN
CarbonCopy
@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message, IN Subject

@DTW_SENDMAIL(IN Sender, IN Recipient, IN Message

Values

Table 34. DTW_SENDMAIL Parameters

Data Type Parameter Use Description

string sender IN A variable or literal string that specifies the

author's address. This parameter is
required. Valid formats are:

¢ Name <user@domain>
* <user@domain>

e user@domain

128 Net.Data Reference

Table 34. DTW_SENDMAIL Parameters (continued)

Data Type Parameter Use Description

string recipient IN A variable or literal string that specifies the
e-mail addresses to which this message
will be sent. This value can contain multiple
recipients, separated by a comma (,). This
parameter is required. Valid recipient
formats are:

* Name <user@domain>
e <user@domain>
* user@domain

string message IN A variable or literal string that contains the
text of the e-mail message. This parameter
is required.

string subject IN A variable or literal string that contains the

text of subject line.

string CarbonCopy IN A variable or literal string that contains the
e-mail addresses, or names and e-mail
addresses of additional recipients. This
value can contain multiple additional
recipients separated by a comma (,). See
the Recipient parameter for valid recipient
formats.

string BlindCarbonCopy | IN A variable or literal string that contains the
e-mail addresses, or names and e-mail
addresses of additional recipients, but the
recipients do not appear in the e-mail
header. This value can contain multiple
additional recipients separated by a comma
(,). See the Recipient parameter for valid

recipient formats.

string ReplyTo IN A variable or literal string that contains the
e-mail address to which replies to this
message should be sent. Valid ReplyTo
formats are:

* Name <user@domain>
* <user@domain>
e user@domain

string Organization IN A variable or literal string that contains the
organization name of the sender.

Examples

Example 1: Function call that builds and sends a simple e-mail message

@DTW_SENDMAIL ("<andreb@ibm.com>", "<juliew@ibm.com>", "There is a meeting at 9:30.",
"Status meeting"

The DTW_SENDMAIL function sends an e-mail message with the following
information:

Date: Mon, 3 Apr 1998 09:54:33 PST
To: <juliew@ibm.com>
From: <andreb@ibm.com>

Chapter 3. Net.Data Built-in Functions 129

130

Net.Data Reference

Subject: Status meeting

There is a meeting at 9:30.

The information for Date is constructed by using the system date and time functions
and is formatted in a SMTP-specific data format.

Example 2: Function call that builds and sends an e-mail message with multiple
recipients, carbon copy and blind carbon copy recipients, and the company name

@DTW_SENDMAIL("Michael Pauser <michael@ibm.com>", "Andre Beck <abeck@ibm.com>, Julie Wood <juliew@i

The DTW_SENDMAIL function sends an e-mail message with the following
information:

Date: Mon, 3 Apr 1998 09:54:33 PST

To: Andre Beck <abeck@ibm.com>, Julie Wood <juliew@ibm.com>, Debby Nakamura <debbyn@ibm.com>
CC: Dave Hernandez <davehern@ibm.com>

BCC: Anita Chiu <anitac@ibm.com>

From: Michael Pauser <michael@ibm.com>

ReplyTo: meeting@ibm.com

Organzation: IBM

Subject: Status meeting

There is a meeting at 9:30.

Example 3: Macro that builds and sends e-mail through a Web form interface

ZHTML (start) {

<html>

<body>

<hl>Net.Data E-Mail Example</h1l>

<form method="post" action="sendemail">
<p>To:
<input name="recipient"><p>
Subject:
<input name="subject"><p>
Message:
<textarea name=message rows=20 cols=40>
</textarea><p>

<input type="submit" value="Send E-mail">

</form>

</body>

</html>

0
%}

%HTML (sendemail) {

<html>

<body>

<h1>Net.Data E-Mail Example</hl>

ODTW_SENDMAIL("Net.Data E-mail Service <netdata@us.ibm.com>", recipient, message, subject)
<p>E-mail has been sent out.

</body>

</html>

0,
%}

This macro sends e-mail through a Web form interface. The HTML start section
displays a form into which the recipient’'s e-mail address, a subject, and a message
can be typed. When the user clicks on the Send E-mail button, the message is
sent out to the recipients specified in the HTML(sendemail) section. This section
calls DTW_SENDMAIL and uses the parameters obtained from the Web form to
determine the content of the e-mail message, as well as the sender and recipients.
Once the e-mail messages have been sent, a confirmation notice is displayed.

Example 4: A macro that uses an SQL query to determine the list of recipients

%Function(DTW_SQL) mailing_1ist(IN message) {
SELECT EMAIL_ADDRESS FROM CUSTOMERS WHERE ZIPCODE='CA'
%REPORT {
Sending out product information to all customers who Tive in California...<P>
%ROW {
@DTW_SENDMAIL("John Doe Corp. <John.Doe@doe.com>", V1, message, "New Product Release")
E-mail sent out to customer $(V1).

N

}

0,
%}

o

}

This macro sends out an automated e-mail message to a specified group of
customers determined by the results of a SQL query from the customer database.
The SQL query also retrieves the e-mail addresses of the customers. The e-malil
contents are determined by the value of message and can be static or dynamic (for
example, you could use another SQL query to dynamically specify the version
number of the product or the prices of various offerings).

Chapter 3. Net.Data Built-in Functions 131

| DTW_SETCOOKIE

i AIX HP-UX | 0S/2 [0S/390 | 0S/400 | SCO SUN [winNT
] X X X X X X
| Purpose

[Defines a cookie name, value, and options, such as expiration date and security
[requirement.

[To retrieve a cookie, use the DTW_GETCOOKIE() function. See
| [DTW_GETCOQQKIE” on page 121 to learn how to define a cookie.

When the secure requirement is not specified, the cookie can be sent over
unsecured channels. The secure option does not require that the browser encrypt
the cookie, nor does it ensure that the page containing the DTW_SETCOOKIE
statement is transmitted over SSL.

Tips:

» Define and retrieve a cookie in two separate HTTP requests. Because a cookie
is visible only after it has been sent to the client, if a macro tries to get a cookie
that was defined in the same HTTP request, you might receive unexpected
results.

» For simplicity, avoid using semicolons, commas, and spaces as a part of a
cookie. When they are required, use the Net.Data function DTW_rURLESCSEQ
to process the string that contains the special characters before passing it to
DTW_SETCOOKIE. For example,

@DTW_SETCOOKIE("my cookie_name", @DTW_rURLESCSEQ("my cookie value"))

Restriction:

 If the client Web browser does not support Java Script, the browser does not set
the cookie.

* Because DTW_SETCOOKIE generates Java Script code, do not call
DTW_SETCOOKIE inside a <SCRIPT> or <NOSCRIPT> HTML element.

[Format
| @DTW_SETCOOKIE(IN cookie_name, IN cookie_value, IN advanced_options)
| @DTW_SETCOOKIE(IN cookie_name, IN cookie_value)

| Values

| Table 35. DTW_SETCOOKIE Parameters

| Data Type Parameter Use Description

| string cookie_name IN A variable or literal string that specifies the name of the

| cookie

I| string cookie_value IN A variable or literal string the specifies the value of the
cookie.

132 Net.Data Reference

Table 35. DTW_SETCOOKIE Parameters (continued)

Data Type Parameter Use Description

secure

string advanced_options |IN A string that contains optional attributes, separated by
semicolons, that are used to define the cookie. These
attributes are:

expires = date

Specifies a date string that defines the valid
lifetime of the cookie. After the date expires,
the cookie is not longer stored or retrieved.
Syntax:

weekday, DD-month-YYYY HH:MM:SS GMT

Where:

weekday
Specifies the full name of the weekday.

DD
Specifies the numerical date of the month.

month
Specifies the three-character abbreviation
of the month.

YYYY
Specifies the four-character number of the
year.

HH:MM:SS
Specifies the timestamp with hours,
minutes, and seconds.

domain = domain_name

Specifies the domain attributes of the cookie,
for use in domain attribute matching.

path = path

Specifies the subset of URLs in a domain for
which the cookie is valid.

Specifies that the cookie is transmitted only
over secured channels to HTTPS servers.

Examples

Example 1: Defines cookies that contain user ID
Secure advanced option

and password information with the

@DTW_SETCOOKIE("mycookie_name_for_userID", "Userl")
@DTW_SETCOOKIE("mycookie_name_for_password", "sd3dT", "secure"

Example 2: Defines cookies that contain the expiration date advanced option
@DTW_SETCOOKIE("mycookie_name_for_userID", "Userl", "expires=Wednesday,

01-Dec-2010 00:00:00")

@DTW_SETCOOKIE("mycookie_name_for_password", "sd3dT", "expires=Wednesday,

01-Dec-2010 00:00:00; secure")

Example 3: Determines if a cookie for a user exists before gathering user

information

SHTML (welcome) {
<html>
<body>

Chapter 3. Net.Data Built-in Functions 133

134

Net.Data Reference

<hl>Net.Data Club</hl>

@DTW_GETCOOKIE("NDC_name", name)

%IF ($(RETURN_CODE) == "8000") %{ The cookie is not found. %}
<form method="post" action="remember">

<p>Welcome to the club. Please enter your name.

<input name="name">

<input type="submit" value="submit">

</form>

%ELSE

<p>Hi, $(name). Welcome back.

%ENDIF

</body>

</htm1>

0
%}

The HTML(welcome) section checks whether the cookie NDC_name exists. If the
cookie exists, the browser displays a personalized greeting. If the cookie does not
exist, the browser prompts for the user's name, and posts it to the
HTML(remember) section. This section records the user's name into the cookie
NDC_name as shown below:

%HTML (remember) {
<html>
<body>
<H1>Net.Data Club>
@DTW_SETCOOKIE("NDC name", name, "expires=Wednesday, 01-Dec-2010 00:00:00;path=/")
<p>Thank you.
<p>Come back
</body>
</html>

0,
%}

DTW_SETENV

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Assigns an environment variable with a specified value and returns the previous
value. A null string is returned if no previous value is found.

Format
@DTW_SETENV(envVarName, envVarValue, prevValue)

@DTW_rSETENV(envVarName, envVarValue)

Values

Table 36. DTW_SETENV Parameters

Data Type Parameter Use Description

string envVarName IN A variable or literal string representing the
environment variable.

string envVvarValue ouT A variable or literal string with the value to
which the environment variable is assigned.

string prevValue ouT A variable that contains the previous value
of the environment variable.

Examples

Example 1 : Returns the value for the previous path
@DTW_SETENV("PATH", "myPath", prevValue)

e Input: myPath = "myPath"

e Returns: prevValue = "myPreviousPath"

Example 2 : Returns the value for the previous path and assigns the value for PATH
value

@DTW_rSETENV("PATH", "myPath")

* Input: myPath = "myPath"

* Returns: "myPreviousPath", PATH = "myPath"

Chapter 3. Net.Data Built-in Functions 135

DTW_TIME

136

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the current system time in the specified format.

Format
@DTW_TIME(stringIn, stringOut)
@DTW_TIME(stringOut)
@DTW_rTIME(stringln)
@DTW_rTIME()

Values
Table 37. DTW_TIME Parameters
Data Type Parameter Use Description
string stringln IN A variable or literal string specifying the
time format. Valid formats are:
C - Civil time (hh:mmAM/PM using a
12-hour clock)
L - Local time (hh:mm:ss)
N - Normal time (hh:mm:ss using a
24-hour clock); default
H - Number of hours since midnight
M - Number of minutes since midnight
S - Number of seconds since midnight
string stringOut ouT A variable that contains the time in the
specified format.
Examples

Example 1: Twenty-four hour clock format
@DTW_TIME(results)

* Returns: results = "10:30:53"

Example 2 : Civil time format
@DTW_TIME("C", results)
* Returns: results = "10:30AM"

Example 3: Returns the number of minutes since midnight with the function call

@DTW_Y‘TIME("M")
¢ Returns: "630"

Example 4 : Returns the default time and data formats with the function call

%REPORT{

<P>This report was created at @DTW_rTIME(), @DTW_rDATE().

0,
%}

* Returns: This report was created 15:04:39, 01 May 1997.

DTW_URLESCSEQ

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Replaces characters that are not allowed in a URL with their escape values, also
known as URL-encoded values. You must use this function to pass any of the

characters listed in

Table 38. Characters Not Allowed in URLs

to another macro file or HTML block.

Character Name Code
SPACE Space %20
" Double quote %22
Number sign %23
% Percent %25
& Ampersand %26

Plus %2B
\ Backslash %2F

Colon %3A
; Semicolon %3B
< Less than %3C
= Equals %3D
> Greater than %3E
? Question mark %3F
@ At sign %40
[Left bracket %5B
/ Slash %5C
] Right bracket %5D
’ Carat %5E
{ Left brace %7B
| Straight line %7C
} Right brace %7D
i Tilde %7E
Format

@DTW_URLESCSEQ(stringIn, stringOut)
@DTW_rURLESCSEQ(stringIn)

Values

Table 39. DTW_URLESCSEQ Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

Chapter 3. Net.Data Built-in Functions 137

138

Table 39. DTW_URLESCSEQ Parameters (continued)

Data Type Parameter Use Description

string stringOut ouT A variable containing the input string with
characters that are not allowed in URLs
that are replaced with their hexadecimal
escape values.

Examples

Example 1: Replaces the spaces and an ampersand in stringl with their URL
escape codes and assigns the result to string2

@DTW_URLESCSEQ(stringl,string2)
* Input: stringl = "Guys & Dolls"
e Returns: string2 = "Guys%20%26%20Do11s"

Example 2: Converts spaces and an ampersand to URL-encoded format
@DTW_rURLESCSEQ("Guys & Dolls")
* Returns: "Guys%20%26%20Do11s"

Example 3: Uses DTW_rURLESCSEQ in a ROW block, and converts spaces and
the at sign to URL-encoded format

%ROMW(
<P>

$(V1)

%}
* Input: V1="Patrick O’Brien”, V2="obrien@ibm.com”
* Returns:
<P>
Patrick 0'Brien
When the application user clicks on the name, the name and e-mail address are
sent to the input block of the Net.Data macro fullrpt.mac with the encoded values
as variables name and email.

Net.Data Reference

Math Functions

These functions let you do mathematical calculations.

Performance tip for UNIX, Windows NT, and OS/2: You can optimize the
performance of mathematical functions with the DTW_OPTIMIZE_MATH
configuration value by setting it to YES in the Net.Data initialization file or the macro
file.

* When set to YES, Net.Data uses C mathematical formatting and the functions
run faster; however the output format is different than without this variable.
Trailing zeros after a decimal point are not displayed.

* When DTW_OPTIMIZE_MATH is set to NO, Net.Data uses REXX mathematical
formatting. Functions run slower, but provide output formats that are consistent
with the output generated by previous versions of Net.Data. The default value is
NO.

See the configuration variables section of the Net.Data Administration and
Programming Guide to learn how to configure this variable.

NLS considerations for math functions: Net.Data displays decimal points in
numerical values based on regional settings specified at the Web server under
which Net.Data is running. For example, if the decimal point is specified as a
comma (,) at the Web server, Net.Data uses the comma to format decimal data.
Net.Data uses the following settings to determine which character is used to specify
a decimal point:

For OS/390, Windows NT, OS/2, and UNIX operating systems:
The LOCALE setting at the Web server
For the OS/400 operating system:

* V4R2 or subsequent releases: specified by the user profile under which
the process is running.

* V4R1 or previous releases: retrieved from the QDECFMT system value.

The following functions are available for mathematical calculations:

Chapter 3. Net.Data Built-in Functions 139

DTW_ADD

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Adds the values of two parameters.

Format

@DTW_ADD(numberl, number2, precision, result)
@DTW_rADD(numberl1, number2, precision)

Values

Table 40. DTW_ADD Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the sum of
numberl and number2.

Examples

Example 1:

@DTW_ADD(NUM1, NUM2, "2", result)

* Input: NUM1 = "105", NUM2 = "3"

¢ Returns: result = "1.1E+2"

Example 2:

@DTW_rADD("12", NUM2, "5")
e Input: NUM2 = "7.00"
* Returns: "19.00"

140 Net.Data Reference

DTW_DIVIDE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Divides the value of the first parameter by the value of the second parameter.

Format
@DTW_DIVIDE(numberl, number2, precision, result)

@DTW_rDIVIDE(numberl, number2, precision)

Values

Table 41. DTW_DIVIDE Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the result of
numberl divided by number2.

Examples

Example 1:

@DTW_DIVIDE("8.0", NUM2, result)
* Input: NUM2 = "2"
* Returns: result = "4"

Example 2:
@DTW_rDIVIDE("1", NUM2, "5")
e Input: "1", NUM2 = "3"

* Returns: "0.33333"

Example 3:
@DTW_rDIVIDE(NUM1, "2", "5")
* Input: NUM1 = "5"

* Returns: "2.5"

Chapter 3. Net.Data Built-in Functions 141

DTW_DIVREM

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Divides the first parameter by the second parameter and returns the remainder. The
sign of the remainder, if nonzero, is the same as that of the first parameter.

Format
@DTW_DIVREM(numberl, number2, precision, result)

@DTW_rDIVREM(numberl, number2, precision)

Values

Table 42. DTW_DIVREM Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the remainder of
numberl divided by number2.

Examples

Example 1:

@DTW_DIVREM(NUM1, NUM2, result)
e Input: NUM1 = "2.1", NUM2 = "3"
¢ Returns: result = "2.1"

Example 2:
@DTW_rDIVREM("10", NUM2)
* Input: NUM2 = "0.3"
* Returns: "0.1"

Example 3:
@DTW_rDIVREM("3.6", "1.3")
* Returns: "1.0"

Example 4:
@DTW_rDIVREM("-10", "3")
* Returns: "-1"

142 Net.Data Reference

DTW_FORMAT

AIX HP-UX 0s/2 0S/390 | 0S/400 Sco SUN win NT
X X X X X X X X
Purpose

Customizes the formatting for a number. If only the number parameter is specified,
the result is formatted just as if @DTW_rADD(number,“0”) was performed. If any
other options are specified then the number is formatted according to the following
rules:

* The before and after parameters describe how many characters are used for the
integer and decimal parts of the result parameter, respectively. If you omit either
or both of these parameters, the number of characters used for that part is as
many as is needed.

» If the before parameter is not large enough to contain the integer part of the
number (plus the sign for a negative number), an error results. If the before
parameter is larger than needed for that part, the number parameter value is
padded on the left with blanks. If the after parameter is not the same size as the
decimal part of the number parameter, the number is rounded (or extended with
zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

* In addition, the expp and expt parameters control the exponent part of the result.
The expp parameter sets the number of places for the exponent part; the default
is to use as many as is needed (which may be zero). The expt parameter sets
the trigger point for use of exponential notation. The default is the default value
of the precision parameter.

» If expp is 0, no exponent is supplied and the number is expressed in simple form
with added zeros as necessary. If expp is not large enough to contain the
exponent, an error results.

» If the number of places needed for the integer or decimal part exceeds expt or
twice expt, respectively, use the exponential notation. If expt is 0, exponential
notation is always used unless the exponent is 0. (If expp is 0, this overrides a 0
value of expt.) If the exponent is 0 when a nonzero expp is specified, then
expp+2 blanks are supplied for the exponent part of the result. If the exponent is
0 and expp is not specified, the simple form is used.

Format
@DTW_FORMAT(number, before, after, expp, expt, precision, result)

@DTW_rFORMAT (number, before, after, expp, expt, precision)

Values

Table 43. DTW_FORMAT Parameters

Data Type Parameter Use Description

float number IN A variable or literal string representing a
number.

integer before IN A variable or literal string representing a
positive whole number. This is an optional
parameter. You must enter a null string (")
to have additional parameters.

integer after IN A variable or literal string representing a
positive whole number. This is an optional
parameter. You must enter a null string (")
to specify additional parameters.

Chapter 3. Net.Data Built-in Functions 143

144

Table 43. DTW_FORMAT Parameters (continued)

Data Type Parameter Use Description

integer expp IN A variable or literal string representing a
positive whole number. You must specify a
null string (") to specify additional
parameters.

integer expt IN A variable or literal string representing a
positive whole number. You must enter a
null string (") to specify additional
parameters.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the number with
the specified rounding and formatting.

Examples

Example 1:

@DTW_FORMAT (NUM, BEFORE, result)

e Input: NUM = "3", BEFORE = "4"
¢ Returns: result= " 3"

Example 2 :

@DTW_FORMAT("1.73", "4", "0", result)
* Returns: result =" 2"

Example 3:

@DTW_FORMAT("1.73", "4", "3", result)
* Returns: result = " 1.730"
Example 4:

@DTW_FORMAT(" - 12.73", "",
* Returns: result = "-12.7300"

Example 5:

"4") result)

@DTW_FORMAT("12345.73", "", "", "2", "2", result)
* Returns: result = "1.234573E+04"

Example 6 :

@DTW_FORMAT("1.234573", "", "3", "", "0", result)

¢ Returns: result = "1.235"

Example 7:
@DTW_rFORMAT(" - 12.73")
* Returns: " - 12.73"
Example 8:

@DTW_rFORMAT("0.000")

* Returns: "0"

Example 9:

Net.Data Reference

@DTW_rFORMAT("12345.73", "",6 "n u3n "e")
* Returns: "12345.73"

Example 10:
@DTW_rFORMAT("1234567e5", "", "3", "0")
* Returns: "123456700000.000"

Example 11:
@DTW_rFORMAT("12345.73", "", "3", "", "@")
* Returns: "1.235E+4"

Chapter 3. Net.Data Built-in Functions

145

DTW_INTDIV

AIX HP-UX 0s/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X
Purpose
Divides the first parameter by the second parameter and returns the integer part of
the result.
Format

@DTW_INTDIV(numberl, number2, precision, result)
@DTW_rINTDIV(numberl, number2, precision)

Values

Table 44. DTW_INTDIV Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a

positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains integer part of
numberl divided by number2.

Examples

Example 1:

@DTW_INTDIV(NUM1, NUMZ2, result)

* Input: NUML = "10", NUM2 = "3"
* Returns: result = "3"

Example 2 :
@DTW_rINTDIV("2", NUM2)
* Input: NUM2 = "3"

* Returns: "0"

146 Net.Data Reference

DTW_MULTIPLY

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Multiplies two parameters and returns the result.

Format
@DTW_MULTIPLY (numberl, number2, precision, result)

@DTW_rMULTIPLY (numberl, number2, precision)

Values

Table 45. DTW_MULTIPLY Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a

positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the product of
numberl and number2.

Examples

Example 1:

@DTW_MULTIPLY(NUML, NUM2, result)
* Input; NUM1 = "4", NUM2 = "5"
e Returns: result = "20"

Example 2:
@DTW_rMULTIPLY("0.9", NUM2)
e Input: NUM2 = "0.8"

* Returns: "0.72"

Chapter 3. Net.Data Built-in Functions 147

DTW_POWER

148

AIX HP-UX 0s/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X
Purpose
Raises the first parameter to the power of the second parameter and returns the
result.
Format

@DTW_POWER(numberl, number2, precision, result)
@DTW_rPOWER(numberl, number2, precision)

Values

Table 46. DTW_POWER Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the result of
numberl raised to the power of number2.

Examples

Example 1:

@DTW_POWER(NUM1, NUM2, result)
e Input: NUM1 = "2", NUM2 = "-3"
* Returns: result = "0.125"

Example 2:

@DTW_rPOWER("1.7", NUM2, precision)

* Input: NUM2 = "8", precision = "5"
* Returns: "69.758"

Net.Data Reference

DTW_SUBTRACT

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Subtracts the value of the second parameter from the value of the first parameter
and returns the result.

Format
@DTW_SUBTRACT(numberl, number2, precision, result)
@DTW_rSUBTRACT (numberl, number2, precision)

Values

Table 47. DTW_SUBTRACT Parameters

Data Type Parameter Use Description

float numberl IN A variable or literal string representing a
number.

float number2 IN A variable or literal string representing a
number.

integer precision IN A variable or literal string representing a
positive whole number that specifies the
precision of the result. The default is 9.

float result ouT A variable that contains the difference of
numberl and number2.

Examples

Example 1:

@DTW_SUBTRACT(NUM1, NUM2, comp)
%IF(comp > "0")

<P>$(NUM1) 1is larger than $(NUM2).
%ENDIF

e Input: NUM2 = "2.07"
* Returns: "-0.77"

This example shows a way to compare numeric values, which are strings in
Net.Data.

Example 2:

@DTW_SUBTRACT(NUM1, NUM2, result)

e Input: NUM1 = "1.3, NUM2 = "1.07"
* Returns: result = "0.23"

Example 3:
@DTW_rSUBTRACT("1.3", NUM2)
* Input: NUM2 = "2.07"

* Returns: "-0.77"

Chapter 3. Net.Data Built-in Functions 149

String Functions

150

Net.Data Reference

The following functions are the set of standard string functions that Net.Data
supports:

MBCS support for 0S/390, OS/2, Windows NT, and UNIX: You can specify
multiple-byte character set (MBCS) support for word and string functions with the
DTW_MBMODE configuration value. Specify this value in the Net.Data initialization
file; the default is no support. You can override the value in the initialization file by
setting the DTW_MBMODE variable in a Net.Data macro file. See the configuration
variable section in Net.Data Administration and Programming Guide and

[DTW_MBMODE” an page 89 for more information.

MBCS support for 0S/400: DBCS support is provided automatically and does not
require this variable.

DTW_ASSIGN

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Assigns the value of an input variable to an output variable. Because $(Vn), where
nis a number, is not recognized outside the ROW block, you can use this function
to assign the value to a different variable if you want to reference the value outside

the ROW block.

You can also use this function to change a variable in a macro. For example, you

can change DATABASE for an HTML block. (See FDATABASE” on page 83 for an

example.)

Format
@DTW_ASSIGN(stringOut, stringin)

Values

Table 48. DTW_ASSIGN Parameters

Data Type Parameter Use Description

string stringOut ouT A variable that contains the literal string
identical to stringin.

string stringln IN A variable or literal string.

Examples

Example 1:

@DTW_ASSIGN(RC, "0")
e Sets RC to "0".

Example 2 :
@DTW_ASSIGN(stringl, string2)
» Sets string1 to the value of string2.

Chapter 3. Net.Data Built-in Functions 151

DTW_CONCAT

152

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Concatenates two strings.

Format
@DTW_CONCAT(stringIn1, stringIn2, stringOut)
@DTW_rCONCAT(stringInl, stringln2)

Values

Table 49. DTW_CONCAT Parameters

Data Type Parameter Use Description

string stringin1 IN A variable or literal string.

string stringln2 IN A variable or literal string.

string stringOut ouT A variable that contains the string
'stringInlstringIn2', where stringl is
concatenated with string2.

Examples

Example 1:

@DTW_CONCAT("This", " is a test.", result)
* Returns: result = "This is a test."

Example 2:

@DTW_CONCAT(stringl, "1-2-3", result)
* Input: stringl = "Testing "

* Returns: result = "Testing 1-2-3"

Example 3:
@DTW_rCONCAT("This", " is a test.")
* Returns: "This is a test."

Net.Data Reference

DTW_DELSTR

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Deletes a substring of the specified string from the nth character for length
characters.

Format
@DTW_DELSTR(stringIn, n, length, stringOut)
@DTW_DELSTR(stringln, n, stringOut)
@DTW_rDELSTR(stringIn, n, length)
@DTW_rDELSTR(stringIn, n)

Values

Table 50. DTW_DELSTR Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

integer n IN The position of the character at which the
substring to delete begins. If nis greater
than the length of stringln, stringOut is set
to the value of stringin.

integer length ouT The length of the substring to delete. The
default is to delete all characters to the end
of stringin.

string stringOut ouT A variable that contains the modified form
of stringin.

Examples

Example 1:

@DTW_DELSTR("abcde", "3", "2", result)
* Returns: result = "abe"

Example 2:
@DTW_rDELSTR("abcde", "4", "1")
* Returns: "abce"

Chapter 3. Net.Data Built-in Functions 153

DTW_INSERT

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Inserts a string into another string starting after the nth character.

Format
@DTW_INSERT(stringlnl, stringIn2, n, length, pad, stringOut)
@DTW_INSERT(stringlnl, stringIn2, n, length, stringOut)
@DTW_INSERT(stringInl, stringIn2, n, stringOut)
@DTW_INSERT(stringInl, stringIn2, stringOut)
@DTW_rINSERT(stringInl, stringin2, n, length, pad)
@DTW_rINSERT(stringInl, stringIn2, n, length)
@DTW_rINSERT(stringInl, stringln2, n)
@DTW_rINSERT((stringInl, stringin2)

Values

Table 51. DTW_INSERT Parameters

Data Type Parameter Use Description

string stringin1 IN A variable or literal string to be inserted into
stringln2.

string stringln2 IN A variable or literal string.

integer n IN The character position in stringIn2 after

which stringinl is inserted. If nis greater
than the length of stringin2, it is padded
with the padding character, pad, until it has
enough characters. The default is to insert
at the beginning of stringln2.

integer length IN The number of characters of stringini to
insert. The string is padded with the
padding character, pad, if this parameter is
greater than the length of stringini. The
default is the length of stringini.

integer pad IN The padding character, as described for n
and length. The default pad character is a
blank.

string stringOut ouT A variable that contains string/in2 modified

by inserting part or all of stringini.

Examples

Example 1:
@DTW_INSERT("123", "abc", result)
* Returns: result = "123abc"

Example 2 :
@DTW_INSERT("123", "abc", "5", result)
e Returns: result = "abc 123"

154 Net.Data Reference

Example 3:
@DTW_INSERT("123", "abc", "5", "6", result)
* Returns: result = "abc 123 "

Example 4 :
@DTW_INSERT("123", "abc", "5", "6", "/", result)
« Returns: result = "abc//123///"

Example 5:
@DTW_Y‘INSERT("].Z:;", "abC", ||5||’ "6", ||+||)
* Returns: "abc++123+++"

Chapter 3. Net.Data Built-in Functions 155

DTW_LASTPOS

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the position of the last occurrence of a string in another string, starting from
the nth character and working backwards (right to left).

Format
@DTW_LASTPOS(stringlnl, stringIln2, n, position)
@DTW_LASTPOS(stringInl, stringIn2, position)
@DTW_rLASTPOS(stringInl, stringln2, n)
@DTW_rLASTPOS(stringInl, stringln2)

Values

Table 52. DTW_LASTPOS Parameters

Data Type Parameter Use Description

string stringin1 IN A variable or literal string searched for in
stringIn2.

string stringln2 IN A variable or literal string.

integer n IN The character position in string/n2 to begin
searching for stringin1. The default is to
start searching at the last character and
scan backwards (from right to left).

integer position ouT The position of the last occurrence of
stringlnl in stringln2. If no occurrence is
found, O is returned.

Examples

Example 1:

@DTW_LASTPOS(" ", "abc def ghi", result)
¢ Returns: result = "8"

Example 2:
@DTW_LASTPOS(" ", "abc def ghi", "10", result)
* Returns: result = "8"

Example 3:
@DTW_rLASTPOS(" ", "abc def ghi", "7")
* Returns: "4"

156 Net.Data Reference

DTW_LENGTH

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT
X X X X X X X X

Purpose

Returns the length of a string.

Format
@DTW_LENGTH(stringln, length)
@DTW_rLENGTH(stringIn)

Values

Table 53. DTW_LENGTH Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

integer length ouT A symbol containing the number of

characters in stringin.
Examples
Example 1:

@DTW_LENGTH("abcdefgh", result)
* Returns: result = "8"

Example 2 :
@DTW_rLENGTH("")
* Returns: "0"

Chapter 3. Net.Data Built-in Functions

157

DTW_LOWERCASE

158

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns a string in all lowercase.

Format

@DTW_LOWERCASE(stringIn, stringOut)

@DTW_rLOWERCASE(stringIn)

@DTW_mLOWERCASE(stringMult1, stringMult2, ..., stringMultn)

Values
Table 54. DTW_LOWERCASE Parameters
Data Type Parameter Use Description
string stringln IN A variable or literal string with characters of
any case.
string stringOut ouT A variable that contains stringln with all
characters in lowercase.
string stringMult INOUT |+ On input: A variable that contains a
string.
» On output: A variable that contains the
input string converted to lowercase.
Examples
Example 1:

@DTW_LOWERCASE("This", stringOut)
* Returns: stringQut = "this"

Example 2 :
@DTW_rLOWERCASE(stringl)

* Input: stringl = "Hello"
* Returns: "hello"

Example 3:

@DTW_mLOWERCASE(stringl, string2, string3)

* Input: stringl = "THIS", string2 = "IS", string3 = "LOWERCASE"

* Returns: stringl = "this", string2 =

Net.Data Reference

"is", string3 = "lowercase"

DTW_POS

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the position of the first occurrence of a string in another string, using a
forward search pattern.

Format
@DTW_POS(stringInl, stringIn2, n, nOut)
@DTW_POS(stringInl, stringln2, nOut)
@DTW_rPOS(stringInl, stringin2, n)
@DTW_rPOS(stringInl, stringln2)

Values

Table 55. DTW_POS Parameters

Data Type Parameter Use Description

string stringin1 IN A variable or literal string to search for.
string stringIn2 IN A variable or literal string to search.
integer n IN The character position in stringin2 to begin

searching. The default value is to start
searching at the first character of string/n2.

integer nOut ouT A variable that contains the position of the
first occurrence of stringinl in stringln2. If
no occurrence is found, 0 is returned.

Examples

Example 1:
@DTW_POS("day", "Saturday", result)
* Returns: result = "6"

Example 2 :
@DTW_POS("a", "Saturday", "3", result)
* Returns: result = "7"

Example 3:
@DTW_rPOS(" ", "abc def ghi", "5")
* Returns: "8"

Chapter 3. Net.Data Built-in Functions 159

DTW_REVERSE

160

AIX HP-UX 0s/2 0S/390 | 0OS/400 SCO SUN Win NT
X X X X X X X X
Purpose
Reverses the input string.
Format
@DTW_REVERSE(stringIn, stringOut)
@DTW_rREVERSE(stringIn)
Values
Table 56. DTW_REVERSE Parameters
Data Type Parameter Use Description
string stringln IN A variable or literal string to reverse.
string stringOut ouT A variable that contains the reversed form
of stringin.
Examples
Example 1:
@DTW_REVERSE("This is it.", result)
* Returns: result = ".ti si sihT"
Example 2 :

@DTW_rREVERSE(stringl)

e Input: stringl = "reversed"

* Returns: "desrever"

Net.Data Reference

DTW_STRIP

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Removes leading blanks, trailing blanks, or both from the input string.

Format

@DTW_STRIP(stringln, option, stringOut)

@DTW_STRIP(stringln, stringOut)
@DTW_rSTRIP(stringln, option)
@DTW_rSTRIP(stringln)

Values
Table 57. DTW_STRIP Parameters
Data Type Parameter Use Description
string stringln IN A variable or literal string.
string option IN Specifies which blanks to remove from
stringln. The default is B.
B or b - remove both leading and
trailing blanks
L or | - remove leading blanks only
T or t - remove trailing blanks only
string stringOut ouT A variable that contains string/n with blanks
removed as specified by option.
Examples
Example 1:

@DTW_STRIP(" day ", result)
e Returns: result = "day"

Example 2:

@DTW_STRIP(" day ", "T", result)
* Returns: result = " day"
Example 3:

@DTW_rSTRIP(" a day ", "L")
* Returns: "a day "

Chapter 3. Net.Data Built-in Functions

161

DTW_SUBSTR

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns a substring of the input string, with optional pad characters.

Format

@DTW_SUBSTR(stringln, n, length, pad, stringOut)
@DTW_SUBSTR(stringln, n, length, stringOut)
@DTW_SUBSTR(stringln, n, stringOut)
@DTW_rSUBSTR(stringln, n, length, pad)
@DTW_rSUBSTR(stringln, n, length)
@DTW_rSUBSTR(stringIn, n)

162

Values

Table 58. DTW_SUBSTR Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string to be searched.

integer n IN The first character position of the substring.
The default is to start at the beginning of
stringln

integer length IN The number of characters of the substring.
The default is the rest of the string.

string pad IN The padding character used if n is greater
than the length of stringin or if length is
longer than stringin. The default is a blank.

string stringOut ouT A variable that contains a substring of
stringln.

Examples

Example 1:

@DTW_SUBSTR("abc", "2", result)

* Returns: result = "bc"

Example 2 :

@DTW_SUBSTR("abc", "2", "4", result)
* Returns: result = "bc "

Example 3:

@DTW_SUBSTR("abc", "2", "4", ".",

¢ Returns: result = "bc.."

Example 4:

result)

@DTW_rSUBSTR("abc", "2", "6", ".")
* Returns: "bc...."

Net.Data Reference

DTW_TRANSLATE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Translates characters in the input string using input and output translation tables,
tablel and tableO. If no tablel, tableO, and the default character are in the
parameter list, the stringln parameter is translated to uppercase. If tablel and tableO
are in the list, each character in the input string is searched for in tablel and

translated to the corresponding character in

tableO. If a character in tablel has no

corresponding character in tableO, the default character is used instead.

Format

@DTW_TRANSLATE(stringIn, tableO, tablel, default, stringOut)
@DTW_TRANSLATE(stringln, tableO, tablel, stringOut)
@DTW_TRANSLATE(stringIn, tableO, stringOut)

@DTW_TRANSLATE(stringIn, stringOut)

@DTW_rTRANSLATE(stringln, tableO, tablel, default)
@DTW_rTRANSLATE(stringln, tableO, tablel)

@DTW_rTRANSLATE(stringln, tableO)
@DTW_rTRANSLATE(stringIn)

Values

Table 59. DTW_TRANSLATE Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

string tableO IN A variable or literal string used as a
translation table. Use null (") to specify
tablel or default, otherwise this parameter
is optional.

string tablel IN A variable or literal string searched for in
stringln. Use null ("") to specify default,
otherwise this parameter is optional.

string default IN The default character to use. The default is
a blank.

string stringOut ouT A variable that contains the translated
result of stringin.

Examples

Example 1:

@DTW_TRANSLATE("abbC", result)
* Returns: result = "ABBC"

Example 2 :
@DTW_TRANSLATE("abbc", "R", "bc", result)
* Returns: result = "aRR "

Example 3:
@DTW_rTRANSLATE("abcdef", "12", "abcd", ".")

Chapter 3. Net.Data Built-in Functions 163

e Returns: "12..ef"

Example 4:
@DTW_rTRANSLATE("abbc", ", "", ")
* Returns: "abbc"

164 Net.Data Reference

DTW_UPPERCASE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns a string in uppercase.

Format
@DTW_UPPERCASE(stringIn, stringOut)

@DTW_rUPPERCASE(stringln)
@DTW_mUPPERCASE(stringMult1, stringMult2, ..., stringMultn)

Values
Table 60. DTW_UPPERCASE Parameters
Data Type Parameter Use Description
string stringln IN A variable or literal string with characters of
any case.
string stringOut ouT A variable that contains string/n with all
characters in uppercase.
string stringMult INOUT |+ On input: A variable that contains a
string.
» On output: A variable that contains the
input string converted to uppercase.
Examples
Example 1:

@DTW_UPPERCASE("Test", result)
* Returns: result = "TEST"

Example 2 :
@DTW_rUPPERCASE(stringl)

* Input: stringl = "Web pages"
* Returns: "WEB PAGES"

Example 3:

@DTW_mUPPERCASE(stringl, string2, string3)

e Input: stringl = "This", string2 = "is", string3 = "uppercase"

* Returns: stringl = "THIS", string2 = "IS", string3 = "UPPERCASE"

Chapter 3. Net.Data Built-in Functions 165

Word Functions

166

Net.Data Reference

These functions supplement the string functions by modifying words or sets of
words. Net.Data interprets a word as a space-delimited string, or a string with
spaces on both sides. Here are some examples:

String value Number of words
one two three 3
one , two , three 5
Part 2: Internet Sales Grow 5

MBCS support for OS/390, OS/2, Windows NT, and UNIX: You can specify
multiple-byte character set (MBCS) support for word and string functions with the
DTW_MBMODE configuration value. Specify this value in the Net.Data initialization
file; the default is no support. You can override the value in the initialization file by
setting the DTW_MBMODE variable in a Net.Data macro file. See the configuration
variable section in Net.Data Administration and Programming Guide and

(DTW _MBMODE” on page 89 for more information.

MBCS support for 0S/400: DBCS support is provided automatically and does not
require this variable.

The following functions are word functions that Net.Data supports:

DTW_DELWORD

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns a substring of the input string. Words are deleted from word n for the
number of words specified by length.

Format
@DTW_DELWORD(stringIn, n, length, stringOut)
@DTW_DELWORD(stringIn, n, stringOut)
@DTW_rDELWORD(stringIn, n, length)
@DTW_rDELWORD(stringln, n)

Values
Table 61. DTW_DELWORD Parameters
Data Type Parameter Use Description
string stringln IN A variable or literal string.
integer n IN The word position of the first word to be
deleted.
integer length IN The number of words to delete. The default

is to delete all words from n to the end of
stringln. Optional parameter.

string stringOut ouT A variable that contains the modified form
of stringin.

Examples

Example 1:
@DTW_DELWORD("Now is the time", "5", result)
* Returns: result = "Now is the time"

Example 2 :
@DTW_DELWORD("Now is the time", "2", result)
* Returns: result = "Now"

Example 3:
@DTW_DELWORD("Now is the time", "2", "2", result)
* Returns: result = "Now time"

Example 4 :
@DTW_rDELWORD("Now is the time.", "3")
* Returns: "Now is"

Chapter 3. Net.Data Built-in Functions 167

DTW_SUBWORD

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns a substring of the input string. The substring begins at word n and
continues for the number of words specified by length.

Format
@DTW_SUBWORD(stringIn, n, length, stringOut)
@DTW_SUBWORD(stringIn, n, stringOut)
@DTW_rSUBWORD(stringln, n, length)
@DTW_rSUBWORD(stringIn, n)

Values

Table 62. DTW_SUBWORD Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

integer n IN The word position of the first word of the
substring. A null is returned if this value is
greater than the number of words in
stringin.

integer length IN The number of words in the substring. If
this value is greater than the number of
words from n to the end of stringin, all
words to the end of stringin are returned.
The default is to return all words from n to
the end of stringin.

string stringOut ouT A variable that contains a substring of
stringln specified by n and length.

Examples

Example 1:

@DTW_SUBWORD("Now is the time", "5", result)
* Returns: result = ""

Example 2:
@DTW_SUBWORD("Now is the time", "2", result)
* Returns: result = "is the time"

Example 3:
@DTW_SUBWORD(Now is the time", "2", "2", result)
* Returns: result = "is the"

Example 4:
@DTW_rSUBWORD("Now is the time", "3")
* Returns: "the time"

168 Net.Data Reference

DTW_WORD

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns a single word from a specified position of the input string.

Format
@DTW_WORD(stringIn, n, stringOut)
@DTW_rWORD(stringln, n)

Values

Table 63. DTW_WORD Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

integer n IN The word position of the word to return. If
this value is greater than the number of
words in stringln, a null is returned.

string stringOut ouT A variable that contains the word at word
position n.

Examples

Example 1:

@DTW_WORD("Now is the time", "3", result)
e Returns: result = "the”

Example 2 :
@DTW_WORD("Now is the time", "5", result)
* Returns: result = ""

Example 3:
@DTW_rWORD("Now is the time", "4")
* Returns: "time"

Chapter 3. Net.Data Built-in Functions 169

DTW_WORDINDEX

AIX HP-UX 0s/2 0S/390 0S/400 SCO SUN Win NT
X X X X X X X X
Purpose
Returns the character position of the first character in the nth word of the input
string.
Format

@DTW_WORDINDEX(stringln, n, stringOut)
@DTW_rWORDINDEX(stringIn, n)

Values

Table 64. DTW_WORDINDEX Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

integer n IN The word position of the word to index. If

this value is greater than the number of
words in the input string, O is returned.

string stringOut ouT A variable that contains the character
position of the nth word of stringin.

Examples

Example 1:
@DTW_WORDINDEX("Now is the time", "3", result)
* Returns: result = "8"

Example 2 :
@DTW_WORDINDEX("Now is the time", "6", result)
* Returns: result = "0"

Example 3:
@DTW_rWORDINDEX("Now is the time", "2")
* Returns: "5"

170 Net.Data Reference

DTW_WORDLENGTH

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the length of the nth word of the input string.

Format
@DTW_WORDLENGTH(stringln, n, stringOut)

@DTW_rWORDLENGTH(stringIn, n)

Values

Table 65. DTW_WORDLENGTH Parameters

Data Type Parameter Use Description

string stringln IN A variable or literal string.

integer n IN The word position of the word whose length

you want to know. If this value is greater
than the number of words in the input
string, O is returned.

string stringOut ouT A variable that contains the length of the
nth word in stringln.

Examples

Example 1:

@DTW_WORDLENGTH("Now is the time", "1", result)
* Returns: result = "3"

Example 2 :
@DTW_rWORDLENGTH("Now is the time", "6")
* Returns: "0"

Chapter 3. Net.Data Built-in Functions 171

DTW_WORDPOS

172

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the word number of the first occurrence of one string within another.
Multiple blanks are treated as single blanks for comparison. The comparison is case
sensitive.

Format
@DTW_WORDPOS(stringInl, stringIn2, n, stringOut)
@DTW_WORDPOS(stringInl, stringln2, stringOut)
@DTW_rWORDPOS(stringInl, stringin2, n)
@DTW_rWORDPOS(stringInl, stringln2)

Values

Table 66. DTW_WORDPQOS Parameters

Data Type Parameter Use Description

string stringin1 IN A variable or literal string.

string stringIn2 IN A variable or literal string to search.

integer n IN The word position in string/n2 to begin
searching. If this value is larger than the
number of words in stringln2, O is returned.
The default is to search from the beginning
of stringln2.

string stringOut ouT The word position of stringinl in stringIn2.

Examples

Example 1:

@DTW_WORDPOS("the", "Now is the time", result)
* Returns: result = "3"

Example 2 :
@DTW_WORDPOS("The", "Now is the time", result)
* Returns: result = "0"

Example 3:
@DTW_WORDPOS("The", "Now is the time", "5", result)
¢ Returns: result = "0"

Example 4:
@DTW_WORDPOS("is the", "Now is the time", result)
* Returns: result = "2"

Example 5:
@DTW_rWORDPOS("be", "To be or not to be", "3")
* Returns: "6"

Net.Data Reference

DTW_WORDS

AIX HP-UX 0S/2 0S/390 | 0OS/400 SCO SUN Win NT
X X X X X X X X
Purpose
Returns the number of words in a string.
Format
@DTW_WORDS(stringln, stringOut)
@DTW_rWORDS(stringln)
Values
Table 67. DTW_WORDS Parameters
Data Type Parameter Use Description
string stringln IN A variable or literal string.
string stringOut ouT A variable that contains the number of
words in stringin.
Examples
Example 1:
@DTW_WORDS ("Now is the time", result)
* Returns:
result = "4"
Example 2:

@DTW_rWORDS(" ")
* Returns: "0"

Chapter 3. Net.Data Built-in Functions

173

Table Functions

These functions simplify working with Net.Data tables and are more efficient than
writing your own functions using REXX, C, or Perl.

174 Net.Data Reference

| DTW_TB_COLS

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Returns the current number of columns in a table.

Format
@DTW_TB_COLS(table, cols)
@DTW_TB_rCOLS(table)

Values

Table 68. DTW_TB_COLS Parameters

Data Type Parameter Use Description

table table IN The macro table variable for which the
number of columns are returned.

integer cols ouT A variable that contains the number of
columns in table.

Examples

Example 1: Retrieves the number of columns and assigns the value to cols

%DEFINE myTable = %TABLE
%DEFINE cols = ""

@Fi11Table()

@DTW_TB_COLS(myTable, cols)

Example 2 : Retrieves and displays the value for the current number of columns in

the table
%DEFINE myTable = %TABLE

OFi11Table()

<P>My table contains @DTW_TB rCOLS(myTable) columns.

Chapter 3. Net.Data Built-in Functions

175

DTW_TB_DLIST

176

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns an HTML definition list from a macro table.

Format
@DTW_TB_DLIST(table, term, def, termstyle, defstyle, link, link_u, image,
image_u)

Values

Table 69. DTW_TB_DLIST Parameters

Data Type Parameter Use Description

table table IN A symbol specifying the macro table
variable to display as an HTML definition
list.

integer term IN The column number in table that contains
term name values (the text to go after the
<DT> tag). The default is to use the first
column.

integer def IN The column number in table containing
term definition values (the text to go after
the <DD> tag). The default is to use the
second column.

string termstyle IN A variable or literal string that contains a list
of HTML elements for the term name
values. The default is to use no style tags.

string defstyle IN A variable or literal string containing a list of
HTML elements for the term definition
values. The default is to use no style tags.

string link IN Specifies for which HTML elements an
HTML link is generated. Valid values are
DT and DD. The default is not to generate
HTML links.

integer link_u IN The column number in table that contains
the URLs for the HTML references. The
default is not to generate HTML links.

string image IN Specifies for which HTML elements an
inline image is generated. Valid values are
DT and DD. The default is not to generate
inline images (DT).

integer image_u IN The column number in table that contains
the URLSs for the inline images. The default
is not to generate inline images.

Examples

Example 1: Creates a definition list producing the HTML shown below, depending
on the table data

@DTW—TB_DLIST(Mytab‘I e, ||3|| s ||4|| s |lb .ill s llstrongll s IIDDII s ||2|| s |IDT|| s Illll)

Results:

<pL>

<DT>

<i>imageltext</i>
:RD;REF="http://www.mycompany.com/]inkl.htm1">11nk1text

:?;E SRC="http://www.mycompany.com/images/image2.gif" ALT=""><i>image2text</i>
:RD;REF="http://www.mycompany.com/]1nk2.htm1">11nk2text

z?;z SRC="http://www.mycompany.com/images/image3.gif" ALT=""><i>image3text</i>
:RD;REF="http://www.mycompany.com/]1nk3.htm1">11nk3text

:?;E SRC="http://www.mycompany.com/images/image4.gif" ALT=""><i>imagedtext</i>
:RD;REF="http://www.mycompany.com/]1nk4.htm1">11nk4text

s

Chapter 3. Net.Data Built-in Functions 177

DTW_TB_DUMPH

178

AIX HP-UX 0S/2

0S/390

0S/400 SCO SUN Win NT

X

X

X X X X

Purpose

Returns the contents of a macro table variable. Each row of the table is displayed
on a different line. The entire table is enclosed in <PRE></PRE> tags.

Format
@DTW_TB_DUMPH(table)
Values
Table 70. DTW_TB_DUMPH Parameters
Data Type Parameter Use Description
table table IN A symbol specifying the macro table
variable to display.
Examples
Example 1:

@DTW_TB_DUMPH (Mytable)

The HTML generated by this example looks like this:

<PRE>

Name

Jack Smith
Helen Williams
Alex Jones
Tom Baker
</PRE>

Net.Data Reference

Department
Internet Technologies
Database
Manufacturing
Procurement

Position

Software Engineer
Development Manager
Industrial Engineer
Sales Rep

DTW_TB_DUMPV

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Returns the contents of a macro table variable. Each table value is on a different
line. The entire table is enclosed in <PRE></PRE> tags.

Format

@DTW_TB_DUMPV(table)

Values

Table 71. DTW_TB_DUMPV Parameters

Data Type Parameter Use Description

table table IN A symbol specifying the macro table
variable to display.

Examples

Example 1:

@DTW_TB_DUMPV (Mytable)

The HTML generated for this example looks like this:

<PRE>
http://www.
http://www.
imageltext
linkltext
http://www.
http://www.
image2text
lTink2text
http://www.
http://www.
image3text
link3text
http://www.
http://www.
imagedtext
link4text
</PRE>

mycompany.com/images/imagel.gif

mycompany.com/Tinkl.html

mycompany.com/images/image2.gif

mycompany.com/1ink2.html

mycompany.com/images/image3.gif

mycompany .com/1ink3.html

mycompany .com/images/image4.gif

mycompany.com/Tink4.html

Chapter 3. Net.Data Built-in Functions

179

| DTW_TB_GETN

i AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
1 X X X X X X X
| Purpose

[Retrieves the column heading for the column number specified in col.

You must set the number of columns in the table before calling DTW_TB_GETN().
You can set the number of columns with the DTW_TB_SETCOLS() or
DTW_TB_INSERTCOL() functions, or by passing the table to a language
environment to be set.

Format
@DTW_TB_GETN(table, name, col)
@DTW_TB_rGETN(table, col)

| Values

| Table 72. DTW_TB_GETN Parameters

| Data Type Parameter Use Description

| table table IN The macro table variable from which a

| column name is returned.

| table table ouT A variable that contains the name of the

[column specified in col.

| integer cols IN The column number of the column whose
[name is to be returned.

| Examples

Example 1 : Retrieves the column name of column 4

%DEFINE myTable = %TABLE
%DEFINE name = ""

@Fil1Table()

@DTW_TB_GETN(myTable, name, "4")

Example 2 : Retrieves the column name of the last column in the table
%DEFINE myTable = %TABLE

@Fi11Table()

<P>The column name of the last column is @DTW_TB_rGETN(myTable, @DTW_TB rCOLS(myTable))

180 Net.Data Reference

| DTW_TB_GETV

AIX HP-UX 0Ss/2 0S/390 0S/400 SCO SUN

Win NT

X X X X

Purpose

Retrieves the table value for the row and column numbers specified in row and col.

You must set the number of columns in the table before calling DTW_TB_GETV().

You can set the number of columns with the DTW_TB_SETCOLS() or
DTW_TB_INSERTCOL() functions, or by passing the table to a language

environment to be set.

Format
@DTW_TB_GETV(table, value, row, col)
@DTW_TB_rGETV(table, row, col)

Values

Table 73. DTW_TB_GETV Parameters

Data Type Parameter Use Description

table table IN The macro table variable for which a table
value is returned.

integer value ouT A variable that contains the value at the
row and column specified in row and col.

integer row IN The row number of the value to be
returned.

integer col IN The column number of the value to be
returned.

Examples

Example 1: Retrieves the table value at row 6, column 3

%DEFINE myTable = %TABLE
%DEFINE value = ""

@FiT1Table()

@DTW_TB_GETV(myTable, value, "6", "3")

Example 2 : Retrieves the table value at row 1, column 1
%DEFINE myTable = %TABLE

OFi11Table()

<P>The table value of row 1, column 1 is @DTW_TB_rGETV(myTable, "1", "1").

Chapter 3. Net.Data Built-in Functions 181

DTW_TB_HTMLENCODE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns the input macro table with these HTML characters encoded:

Name Character Code
Ampersand & &
Double quote " "
Greater than > >
Less than < <
Format

@DTW_TB_HTMLENCODE(table, collist)

Values

Table 74. DTW_TB_HTMLENCODE Parameters

Data Type Parameter Use Description

table table INOUT | The macro table variable to modify.

string collist IN The column numbers in table to encode.
The default is to encode all columns.

Examples

Example 1:
@DTW_TB_HTMLENCODE (Mytable, "3 4")

The special characters in columns 3 and 4 of the specified table are replaced with
their encoded forms.

182 Net.Data Reference

DTW_TB_INPUT_CHECKBOX

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns one or more HTML check box input tags from a macro table variable.

Format
@DTW_TB_INPUT_CHECKBOX(table, prompt, namecol, valuecol, rows,
checkedrows)

Values

Table 75. DTW_TB_INPUT_CHECKBOX Parameters

Data Type Parameter Use Description

table table IN The macro table variable to display as
check box input tags.

string prompt IN The column number in table or a string
containing the text to display next to the
check box. This parameter is required but
can have a null ("") value. When prompt is
null, the value used is the value defined for
namecol.

string namecol IN The column number in table or a string
containing the input field names.

string valuecol IN The column number in table or a string
containing the input field values. The
default is 1.

integer rows IN The list of rows in table from which to
generate the input fields. The default is to
use all rows.

integer checkedrows IN The list of rows specifying which rows of
table to check. The default is not to check
fields.

Examples

Example 1: Generates HTML for three check box input tags
@DTW_TB_INPUT_CHECKBOX(Mytable,"3","4","","2 3 4","1 3 4")

Results:

<INPUT TYPE="CHECKBOX" NAME="Tink2text" VALUE="1">image2text

<INPUT TYPE="CHECKBOX" NAME="Tink3text" VALUE="1" CHECKED>image3text

<INPUT TYPE="CHECKBOX" NAME="Tink4text" VALUE="1" CHECKED>image4text

Chapter 3. Net.Data Built-in Functions 183

DTW_TB_INPUT_RADIO

184

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns one or more HTML radio button input tags from a macro table variable.

Format

@DTW_TB_INPUT_RADIO(table, prompt, namecol, valuecol, rows,
checkedrows)

Values

Table 76. DTW_TB_INPUT_RADIO Parameters

Data Type Parameter Use Description

table table IN The macro table variable to display as
radio button input tags.

string prompt IN The column number in table or a string
containing the text to display next to the
radio button. Required parameter, but can
contain a null (") value. When prompt is
null, uses the value of valuecol.

string namecol IN The column number in table or a string
containing the input field names.

string valuecol IN The column number in table or a string
containing the input field values.

string rows IN The list of rows in table from which to
generate the input fields. The default is to
use all rows.

integer checkedrows IN A row number in table to display the
corresponding radio button as checked.
Only one value is allowed.

Examples

Example 1: Generates HTML for three radio button input tags
@DTW_TB_INPUT _RADIO(Mytable,"3","Radio4","4","2 3 4","4")

Results:

<INPUT TYPE="RADIO" NAME="Radio4" VALUE="Tink2text">image2text

<INPUT TYPE="RADIO" NAME="Radio4" VALUE="1ink3text">image3text

<INPUT TYPE="RADIO" NAME="Radio4" VALUE="Tink4text" CHECKED>image4text

Net.Data Reference

DTW_TB_INPUT_TEXT

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns HTML <INPUT> tags for specified rows in a Net.Data table. For example,
Net.Data can generate HTML <INPUT> tags with the VALUE, SIZE, and
MAXLENGTH attributes:

<INPUT TYPE="TEXT" NAME="someName" VALUE="someValue" SIZE="20" MAXLENGTH="40">

Format
@DTW_TB_INPUT_TEXT(table, prompt, namecol, valuecol, size, maxlen, rows)

Values
Table 77. DTW_TB_INPUT_TEXT Parameters

Data Type Parameter Use Description

table table IN The macro table variable to display as text
input tags.

string prompt IN The column number in table or a string
containing the text to display next to the
input field. If prompt is null, no text is
displayed.

string namecol IN The column number in table or a string
containing the input field names.

string valuecol IN The column number in table or a string
containing the default input field values,
which is specified for the VALUE attribute
on the INPUT tag. The default is to not
generate the VALUE attribute value.

integer size IN The number of characters of the input field,
which is specified for the SIZE attribute on
the INPUT tag. The default is the length of
the longest default input value, or 10 if no
default input exists.

integer maxlen IN The maximum length of an input string,
which is specified for the MAXLENTH
attribute of the INPUT tag. The default is
not to generate the MAXLENGTH attribute
value.

integer rows IN The list of rows in table from which to
generate the input fields. The default is to
use all rows.

Examples

Example 1: Returns three HTML <INPUT> tags
@DTW_TB_INPUT_TEXT(Mytable,"3","3","4" "35", "40","1 2 3")

Results:

<P>imageltext
<INPUT TYPE="TEXT" NAME="imageltext" VALUE="Tinkltext" SIZE="35" MAXLENGTH="40">
<P>image2text

Chapter 3. Net.Data Built-in Functions 185

<INPUT TYPE="TEXT" NAME="image2text" VALUE="Tink2text" SIZE="35" MAXLENGTH="40">
<P>image3text
<INPUT TYPE="TEXT" NAME="image3text" VALUE="Tink3text" SIZE="35" MAXLENGTH="40">

186 Net.Data Reference

DTW_TB_LIST

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns an HTML list.

Format

@DTW_TB_LIST(table, listtype, listitem, itemstyle, link_u, image_u)

Values
Table 78. DTW_TB_LIST Parameters
Data Type Parameter Use Description
table table IN A symbol specifying the macro table
variable to display as an HTML list.
string listtype IN The type of list to generate. Acceptable
values include:
DIR
MENU
oL
UL
integer listitem IN The column number in table containing the
list values (the text to go after the
tag). The default is to use the first column.
string itemstyle IN A variable or literal string containing a list of
HTML elements for the term name values.
The default is to use no style tags.
integer link_u IN The column number in table that contains
the URLs for the HTML links. If this value is
not specified, no HTML links are generated.
integer image_u IN The column number in table that contains
the URLSs for the inline images. If this value
is not specified, no inline images are
generated.
Examples

Example 1: Generates HTML tags for an ordered list
@DTW_TB_LIST(Mytable,"OL","4","TT U","2","1")

Results:

<TT><U>
<QL>

Tinkltext

Tink2text

1ink3text

1ink4txt

</0L>
</U></TT>

Chapter 3. Net.Data Built-in Functions 187

| DTW_TB_ROWS

188

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X
Purpose

Returns the current number of rows in a table.

Format

@DTW_TB_ROWS(table, rows)

@DTW_TB_rROWS(table)

Values

Table 79. DTW_TB_ROWS Parameters

Data Type Parameter Use Description

table table IN The macro table variable for which the
current number of rows is returned.

integer rows ouT A variable that contains the current number
of rows in table.

Examples

Example 1: Retrieves the current number of rows in the table and assigns the

value to rows

%DEFINE myTable =
%DEFINE rows = ""

@Fi11Table()

%TABLE

@DTW_TB_ROWS (myTable, rows)

Example 2 : Retrieves and displays the value for the current number of rows

%DEFINE myTable =

OFi11Table()

%TABLE

<P>The table value of row 1, column 1 is @DTW_TB_rROWS(myTable, "1", "1").

Net.Data Reference

DTW_TB_SELECT

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns an HTML SELECT menu.

Format

@DTW_TB_SELECT(table, name, optioncol, size, multiple, rows, selectrows)

Values

Table 80. DTW_TB_SELECT Parameters

Data Type Parameter Use Description

table table IN The macro table variable to display as a
SELECT field.

string name IN The value of the NAME attribute of the
SELECT field.

integer optioncol IN The column number in table with values to
use in the OPTION tags of the SELECT
field. The default is to use the first column.

integer size IN The number of rows in table to use for
OPTION tags in the SELECT field. The
default is to use all the rows.

string multiple IN Specifies whether multiple selections are
allowed. The default is N, which does not
allow multiple selections.

string selectedrows IN The row numbers from table to use in the
SELECT field. The default is to use all the
rows.

string rows IN The list of rows from table whose OPTION
tags are checked. To specify more than one
row, you must have the multiple parameter
set to Y. The default is to select the first
item.

Examples

Generates an HTML SELECT menu with multiple selections
@DTW_TB SELECT(Mytable,"URL6","3","","y","1 2 4","1 4")

Results:

<SELECT NAME="URL6" SIZE="3" MULTIPLE>
<OPTION SELECTED>imageltext
<OPTION>image2text

<OPTION SELECTED>imagedtext

</SELECT>

Chapter 3. Net.Data Built-in Functions 189

DTW_TB_TABLE

190

Net.Data Reference

AIX HP-UX 0S/2

0S/390

0S/400 SCO SUN Win NT

X

X

X X X X

Purpose

Returns an HTML table from a macro table variable.

Format
@DTW_TB_TABLE(table, options, collist, cellstyle, link_u, image_u, url_text,
url_style)

Values

Table 81. DTW_TB_TABLE Parameters

Data Type Parameter Use Description

table table IN A macro table variable to display as an
HTML table.

string options IN The table attributes inside the TABLE tag.
The default is to use no attributes. Valid
values include:
+ BORDER
* CELLSPACING
 WIDTH

string collist IN The column numbers in table to use in the
HTML table. The default is to use all the
columns.

string cellstyle IN A list of HTML style elements, such as B
and |, to go around text in each TD tag.
The default is not to use style tags.

integer link_u IN The column number in table containing
URLSs used to create HTML links. You must
specify the column in collist also. The
default is not to generate HTML links.

integer image_u IN The column number in table containing
URLSs used to create inline images. You
must specify the column in collist also. The
default is not to generate image tags.

integer url_text IN The column number in table containing text
to display for HTML links or inline images.
The default is to use the URL itself.

string url_style IN A list of HTML style elements for the text
specified in url_text. The default is not to
generate style tags.

Examples

Example 1: Generates HTML tags for a table with a border and using B (bold) and

| (italics) tags

@DTW_TB_TABLE(Mytable,"BORDER","4 2 1","i","2","1","4","b")

Results:

<TABLE BORDER>

<TR>

<TH>TITLE

<TH>LINKURL

<TH>IMAGEURL

<TR>

<TD><i>linkltext</i>

<TD>Tinkltext

<TD>1inkltext
<TR>

<TD><i>link2text</i>

<TD>1ink2text

<TD>Tink2text
<TR>

<TD><i>link3text</i>

<TD>1ink3text

<TD>1ink3text
</TABLE>

Chapter 3. Net.Data Built-in Functions 191

DTW_TB_TEXTAREA

192

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns HTML TEXTAREA tags from a macro table variable.

Format
@DTW_TB_TEXTAREA(table, name, numrows, numcols, valuecol, rows)

Values

Table 82. DTW_TB_TEXTAREA Parameters

Data Type Parameter Use Description

table table IN A macro table variable to show as a
TEXTAREA tag.

string name IN The name of the text area.

integer numrows IN The height of the text area, specified in
rows. The default is the number of rows in
table.

integer numcols IN The width of the text area, specified in

columns. The default is the length of the
longest row in table.

integer valuecol IN The column number in table whose values
are shown in the text area. The default is
the first column.

string rows IN A list of rows in table used to generate the
TEXTAREA tag. The default is to use all
rows.

Examples

Example 1: Generates HTML TEXTAREA tags and specifies which rows to include
@DTW_TB_TEXTAREA(Mytable,"textarea5","3","70","4","1 3 4")

Results:

<TEXTAREA NAME="textarea5" ROWS="3" COLS="70">
Tinkltext
Tink3text
Tink4text
<TEXTAREA>

Net.Data Reference

Flat File Interface Functions

The flat file interface (FFI) enables you to open, read, and manipulate data from flat
file sources (text files), as well as store data in flat files.

Flat File Interface Delimiters

In order to improve performance, you can keep the Net.Data tabular output from a
series of SQL requests in a flat file. You can retrieve the flat file in subsequent
requests, instead of re-issuing the SQL requests.

Net.Data flat files can be created from Net.Data tables and Net.Data tables can be
built from flat files. In order to make the transformations between the tables and flat
files, you must define the mapping between columns in a table and records in a flat
file. Delimiters provide a method for defining how portions of records in a flat file
can be separated and mapped to columns in a table, and how columns in a table
can be mapped to records in a flat file.

There are two types of delimiters:

New-line character (ASCITEXT)
Use this transformation when your table is made up of one column.
Net.Data maps each record in the corresponding flat file onto a single row
in the table. In this case, the regular new-line character which separates
records in the flat file is the only delimiter used.

New-line character and delimiter string (DELIMITED)
Use this transformation when your table is made up of multiple columns.
When Net.Data creates a flat file record from a row in a table, it places the
delimiter string as a separator between the items. When Net.Data rebuilds a
table from a flat file, it uses the delimiter string to determine how much of
each row to place in a column of the table. In this case, the regular
new-line character separates the records in the flat file that correspond to
rows in the table, and the delimiter string separates the items within a
single record.

You can use the DTWF_SEARCH function to retrieve certain records held in a flat
file that was built from a Net.Data table. Specify a string in DTWF_SEARCH to
return all the records that contain the string in the flat file as rows in a Net.Data
table.

Flat File Interface Functions

Chapter 3. Net.Data Built-in Functions 193

194

Net.Data Reference

DTWF_APPEND

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Writes the contents of a table variable to the end of a file.

Format

@DTWF_APPEND(filename, transform, delimiter, table, retry, rows)

Values

Table 83. DTWF_APPEND Parameters

Data Type Parameter Use Description

string filename INOUT | The name of the file to which the variable’s
contents are being added. On successful
completion of the call, this parameter
returns the fully qualified file name.

string transform IN The format of the file:

» ASCIITEXT - writes the table to the file
with a new-line character between
column values and ignores the delimiter
parameter.

« DELIMITED - writes the table to the file
with the delimiter specified in the
delimiter parameter.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.

Ignored if transform is ASCIITEXT.

table table IN The table variable from which the records
are read.

integer retry IN The number of times to retry if the file
cannot be appended to immediately. The
default is not to retry.

integer rows IN The maximum number of rows from table
to append. The default is to append all the
rows. Specifying 0 appends all rows.

Examples

Example 1:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE

%}

@DTWF_APPEND(myFile, "DELIMITED", " ;", myTable)

Example 2:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE

0,
%}

@DTWF_APPEND(myFile, "ASCIITEXT", " ;", myTable)

Chapter 3. Net.Data Built-in Functions 195

Example 3:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE

%}

@DTWF_APPEND(myFile, "ASCIITEXT", " ;", myTable, "0", "10")

196 Net.Data Reference

DTWF_CLOSE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Closes a file opened by DTWF_OPEN.

Format
@DTWF_CLOSE(filename, retry)

Values

Table 84. DTWF_CLOSE Parameters

Data Type Parameter Use Description

string filename INOUT | The name of the file to close. On
successful completion of the call, this
parameter returns the fully qualified file
name.

integer retry IN The number of times to retry if the file
cannot be closed immediately. The default
is not to retry.

Examples

Example 1:

@DTWF_CLOSE(myFile, "5")

Chapter 3. Net.Data Built-in Functions 197

DTWF_DELETE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Deletes records from a file. (Does not delete empty files.)

Format
@DTWF_DELETE(filename, transform, delimiter, retry, rows, startrow)

Values

Table 85. DTW_DELETE Parameters

Data Type Parameter Use Description

string filename INOUT | The name of the file whose records are to
be deleted. On successful completion of
the call, this parameter returns the fully
qualified file name.

string transform IN The format of the file:

» ASCIITEXT - writes the table to the file
with a new-line character between
column values and ignores the delimiter
parameter.

» DELIMITED - writes the table to the file
with the delimiter specified in the
delimiter parameter.

string delimiter IN A character string to indicate the ends of

values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

integer retry IN The number of times to retry if the records
cannot be deleted immediately. The default
is not to retry.

integer rows IN The maximum number of rows to delete.
The default is to delete all the rows.
Specifying 0 deletes all rows.

integer startrow INOUT | The row number from which to begin
deleting. A value of 1 means to begin
deleting at the first row. If this value is
greater than the number of rows in the file,
the value is changed to the last record and
returned as an error. The default is to start
at 1.

Examples

Example 1:

%DEFINE {
myFile = "c:/private/myfile
myTable = %TABLE
myWait = "5000"
myRows = "2"

0,
%}

@DTWF_DELETE(myFile, "Delimited", "|", myWait, myRows)

Example 2:

198 Net.Data Reference

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE
myStart = "1"
myRows = "2"
%}

@DTWF_DELETE(myFile, "Asciitext", "|", "0", myRows, myStart)

Chapter 3. Net.Data Built-in Functions 199

DTWF_INSERT

200

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Inserts records into a file.

Format
@DTWF_INSERT (filename, transform, delimiter, table, retry, rows, startrow)

Values

Table 86. DTWF_INSERT Parameters

Data Type Parameter Use Description

string filename INOUT | The name of the file to which records are

inserted. On successful completion of the
call, this parameter returns the fully
qualified file name.

string transform IN The format of the file:

e ASCIITEXT - writes the table to the file
with a new-line character between
column values and ignores the delimiter
parameter.

» DELIMITED - writes the table to the file
with the delimiter specified in the
delimiter parameter.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

table table IN The table variable from which records are
inserted into the file.

integer retry IN The number of times to retry if the file
cannot be written to immediately. The
default is not to retry.

integer rows IN The maximum number of rows to insert
from table. The default is to insert all the
rows. A value of O inserts all the rows.

integer startrow INOUT | The row number from which to begin
inserting. Specifying 1 means to begin
inserting at the first row. If this value is
greater than the number of rows in the file,
the value is changed to the last record and
returned as an error. The default is to start
at 1.

Examples

Example 1:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "3000"

%}

@DTWF_INSERT(myFile, "Delimited", "|", myTable, myWait)

Example 2:

%DEFINE {
myFile = "c:/private/myfile
myTable = %TABLE
myStart = "1"
myRows = "2"

0,
%}

@DTWF_INSERT(myFile, "Asciitext", "|", myTable, "0", myRows, myStart)

Chapter 3. Net.Data Built-in Functions 201

DTWF_OPEN

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Explicitly opens a file. DTWF_OPEN keeps the file open, otherwise, the file is
closed after each flat file operation.

Performance tip: Use DTWF_OPEN to reduce the number of times a file is open.

The file is left open until it is closed using DTWF_CLOSE or macro processing
ends.

Format
@DTWF_OPEN(filename, mode, retry)

Values

Table 87. DTWF_OPEN Parameters

Data Type Parameter Use Description

string filename INOUT | The name of the file to open. On
successful completion of the call, this
parameter returns the fully qualified file
name.

string mode IN The type of access requested:

* r - opens an existing file for reading.

* w - creates a file for writing. (Destroys
existing file of same name, if it exists.)

* a - opens a file for appending. Net.Data
creates the file if it is not found.

* r+ - opens an existing file for reading
and writing.

* w+ - creates a file for reading and
writing. (Destroys existing file of same
name, if it exists.)

* a+ - opens a file in append mode for
reading or appending. Net.Data creates
the file if it is not found.

integer retry IN The number of times to retry if the file
cannot be opened immediately. The default
is not to retry.
Examples
Example 1:
%DEFINE {
myFile = "c:/private/myfile"
myMode = "r+"

0,
%}

@DTWF_OPEN(myFile, myMode, "1000")

202 Net.Data Reference

DTWF_READ

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Reads records from a file into a table variable.

Format
@DTWF_READ(filename, transform, delimiter, table, retry, rows, startrow,
columns)
Values
Table 88. DTWF_READ Parameters
Data Type Parameter Use Description
string filename INOUT | The name of the file whose records are
read into a table variable. On successful
completion of the call, this parameter
returns the fully qualified file name.
string transform IN The format of the file:

* ASCIITEXT - writes the table to the file
with a new-line character between
column values and ignores the delimiter
parameter.

* DELIMITED - writes the table to the file
with the delimiter specified in the
delimiter parameter.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.

Ignored if transform is ASCIITEXT.

table table ouT The table variable into which the file
records are read.

integer retry IN The number of times to retry if the file
cannot be read immediately. The default is
not to retry.

integer rows INOUT | The maximum number of file records to
read into table. The default is to read all the
records, or until the table is full. A value of

0 means to read until the end of the file.

The number of rows in the resulting table is

returned.

integer startrow IN The record in the file from which to start
reading. The default is to start reading at
the first record.

integer columns ouT Returns the number of columns in the
table.

Examples

Example 1:

%DEFINE {

myFile = "c:/private/myfile"
%TABLE

myTable =

Chapter 3. Net.Data Built-in Functions 203

204

Net.Data Reference

myWait = "1000"

0,
%}

@DTWF_READ(myFile, "DELIMITED", ";", myTable, myWait)

Example 2:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "0"
myRows = "0Q"
myStartrow = "1"
myColumns = ""
%}
@DTWF_READ(myFile, "DELIMITED", ";", myTable, myWait, myRows,
myStartrow, myColumns)

Example 3:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE
%}
@DTWF_READ(myFile, "ASCIITEXT", ";", myTable, myColumns)
@DTW_TB TABLE(myTable,"BORDER","")

DTWF_REMOVE

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Deletes an entire file.

Format
@DTWF_REMOVE(filename, retry)

Values
Table 89. DTW_REMOVE Parameters
Data Type Parameter Use Description
string filename INOUT | The name of the file to delete. On
successful completion of the call, this
parameter returns the fully qualified file
name.
integer retry IN The number of times to retry if the file
cannot be deleted immediately. The default
is not to retry.
Examples
Example 1:

%DEFINE myFile = "c:/private/myfile"
@DTWF_REMOVE (myFile)

Example 2 :

%DEFINE {
myFile = "c:/private/myfile"
myWait = "2000"

%}

@DTWF_REMOVE (myFile, myWait)

Chapter 3. Net.Data Built-in Functions 205

DTWF_SEARCH

206

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Returns result of a string search to a table variable.

Format

@DTWF_SEARCH(filename, transform, delimiter, table, searchFor, retry, rows,

startrow)

Values

Table 90. DTWF_SEARCH Parameters

Data Type

Parameter

Use

Description

string

filename

INOUT

The name of the file to search. On
successful completion of the call, this
parameter returns the fully qualified file
name.

string

transform

The format of the file:

* ASCIITEXT - writes the table to the file
with a new-line character between
column values and ignores the delimiter
parameter.

* DELIMITED - writes the table to the file

with the delimiter specified in the
delimiter parameter.

string

delimiter

A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

table

table

ouT

The table variable into which the search
results are placed. Three columns are
returned if transform is DELIMITED:

e The row in which the match was found.

e The column in which the match was
found.

* The matching column from the file.

string

searchFor

The string of characters to search for.

integer

retry

The number of times to retry if the file
cannot be searched immediately. The
default is not to retry.

integer

rows

INOUT

The maximum number of rows to read into
table. The default is to read all the rows or
until table is full. Specifying 0 reads to the
end of the file. The number of rows in the
resulting table is returned by this
parameter.

integer

startrow

The record in the file to start searching
from. The default is 1, which begins the

search at the first record.

Examples

Example 1:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE
myWait = "1000"
mySearch = "0123456789%abcdef"

@DTWF_SEARCH(myFile, "DELIMITED", ";",
myTable, mySearch, myWait)

Example 2 :

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE
mySearch = "answer:"
myWait = "0"
myRows = "0"
myStartrow = "1"

@DTWF_SEARCH(myFile, "DELIMITED",

mySearch, myWait, myRows, myStartrow)

Chapter 3. Net.Data Built-in Functions

207

DTWF_UPDATE

208

Net.Data Reference

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Updates records of a file from a table variable.

Format

@DTWF_UPDATE(filename, transform, delimiter, table, retry, rows, startrow)

Values

Table 91. DTWF_UPDATE Parameters

Data Type

Parameter

Use

Description

string

filename

INOUT

The name of the file whose records are
updated from a table variable. On
successful completion of the call, this
parameter returns the fully qualified file
name.

string

transform

The format of the file:

* ASCIITEXT - writes the table to the file
with a new-line character between
column values and ignores the delimiter
parameter.

* DELIMITED - writes the table to the file

with the delimiter specified in the
delimiter parameter.

string

delimiter

A character string to indicate the ends of
values. This parameter is case sensitive.
Ignored if transform is ASCIITEXT.

table

table

The table variable from which the file
records are updated.

integer

retry

The number of times to retry if the file
cannot be written to immediately. The
default is not to retry.

integer

rows

The maximum number of records to be
updated from table. The default is to update
all the records. A value of 0 means to
update all rows in the file.

integer

Startrow

INOUT

The first file record to update. The default is
1, which means to start updating at the
beginning of the file. If the value is greater
than the number of records in a file, the
value is changed to indicate the number of
the last record in the file and an error is
returned.

Examples

Example 1:

%DEFINE {

myFile = "c:/private/myfile
myTable

%TABLE

myWait = "1500"

myRows = "2"

0,
%}

@DTWF_UPDATE(myFile, "Delimited", "|", myTable, myWait, myRows)

Example 2:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE
myStart = "1"
myRows = "2"
%}

@DTWF_UPDATE (myFile, "Asciitext", "|", myTable, "0", myRows, myStart)

Chapter 3. Net.Data Built-in Functions 209

DTWF_WRITE

210

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X X
Purpose

Writes the contents of a table variable to a file.

Format

@DTWF_WRITE(filename, transform, delimiter, table, retry, rows, startrow)

Values

Table 92. DTWF_WRITE Parameters

Data Type Parameter Use Description

string filename INOUT | The name of the file the records of the
table variable are written to. On successful
completion of the call, this parameter
returns the fully qualified file name.

string transform IN The format of the file:

e ASCIITEXT - writes the table to the file
with a new-line character between
column values and ignores the delimiter
parameter.

* DELIMITED - writes the table to the file
with the delimiter specified in the
delimiter parameter.

string delimiter IN A character string to indicate the ends of
values. This parameter is case sensitive.

Ignored if transform is ASCIITEXT.

table table IN The table variable used to export rows to
the file.
integer retry IN The number of times to retry if the file
cannot be written to immediately. The
default is to not retry.
integer rows IN The maximum number of file records to
write. The default is to write the entire
table. A value of 0 means to write all
records to the end of the file.
integer startrow INOUT | The record number to start writing to in the
file. The default is 1, which means to start
at the first record. If a value beyond the
end of the file is specified, the last row of
the file is returned with an error.
Examples
Example 1:
%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE

Net.Data Reference

0,
%}

@DTWF_WRITE(myFile, "DELIMITED",

Example 2:

3", myTable)

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE

%}

@DTWF_WRITE(myFile, "ASCIITEXT", ";", myTable, "5000")

Example 3:

%DEFINE {
myFile = "c:/private/myfile"
myTable = %TABLE

0,
%}

@DTWF_WRITE(myFile, "ASCIITEXT", ";", myTable, "5000", "10", "50")

Chapter 3. Net.Data Built-in Functions

211

Web Registry Functions

A Web registry is a file with a key maintained by Net.Data to allow you to add,
retrieve, and delete entries easily. You can create multiple Net.Data Web registries
on a single system. Each registry has a hame and can contain multiple entries.
Net.Data provides functions to maintain registries and the entries they contain.

Restriction: Do not use asterisks (*) for the registry, registryVariable, and

registryData parameters when using OS/2.

212 Net.Data Reference

DTWR_ADDENTRY

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Adds an entry to a Web registry.

Format
@DTWR_ADDENTRY(registry, registryVariable, registryData, index)

Values

Table 93. DTWR_ADDENTRY Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to which the entry
is added.

string registryVariable | IN The value of the registryVariable string
portion of the registry entry to add.

string registryData IN The value of the registryData string portion
of the registry entry to add.

string index IN The value of the index portion of the
registryVariable string in an indexed entry
to add. This parameter is optional. If
specified, an indexed entry is added to the
specified registry.

Examples

Example 1:

@DTWR_ADDENTRY ("Myregistry", "Jones", "http://Advantis. com/ Jones/webproj")

Example 2:

@DTWR_ADDENTRY ("URLLIST", "SMITH", "http://www.software.ibm.com/",
"WORK_URL,")

Chapter 3. Net.Data Built-in Functions 213

DTWR_CLEARREG

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Clears entries from a Web registry.

Format
@DTWR_CLEARREG(registry)

Values

Table 94. DTWR_CLEARREG Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to clear.
Examples

Example 1:

@DTWR_CLEARREG("Myregistry")

214 Net.Data Reference

DTWR_CREATEREG

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Creates a new Web registry.

Re
Format
@DTWR_CREATEREG(registry, security)
Values
Table 95. DTWR_CREATEREG Parameters
Data Type Parameter Use Description
string registry IN The name of the registry to create.

Restriction: Do not use special characters
such as the asterisk (*) and the backslash
(\) in Web registry names.

string security IN The type of security with which to create
registry. On UNIX operating systems, the
default security is the same as the directory
where the registry is created. Specify
security for the three security groups: user,
group, and public. R gives read permission,
W gives write permission, and X give
execute permission. For example, to give
all three groups full authority, specify *RWX,
*RWX, *RWX for this parameter. .

Examples

Example 1:
@DTWR_CREATEREG("myRegistry")

Example 2 :
@DTWR_CREATEREG("URLLIST", "=*RWX, *RWX, *R")

Chapter 3. Net.Data Built-in Functions 215

DTWR_DELENTRY

216

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Deletes an entry from a Web registry.

Format

@DTWR_DELENTRY! (registry, registryVariable, index)

Values

Table 96. DTWR_DELENTRY Parameters

Data Type Parameter Use Description

string registry IN The name of the registry from which the
entry is removed.

string registryVariable | IN The value of the registryVariable string
portion of the entry to remove.

string index IN The value of the index portion of the
registryVariable string in an indexed entry.
This is an optional parameter. If specified,
the indexed entry is removed from the
registry.

Examples

Example 1:

@DTWR_DELENTRY ("Myregistry", "Jones")

Example 2:

@DTWR_DELENTRY ("URLLIST", "SMITH", "WORK_URL")

Net.Data Reference

DTWR_DELREG

AIX

HP-UX 0Ss/2

0S/390

0S/400 SCO

SUN

Win NT

X

X X

Purpose

Deletes a Web registry

Format

@DTWR_DELREG(registry)

Values

Table 97. DTWR_DELREG Parameters

Data Type

Parameter

Use

Description

string

registry

IN

The name of the registry to delete.

Examples

Example 1:
@DTWR_DELREG("Myregistry")

Chapter 3. Net.Data Built-in Functions

217

DTWR_LISTREG

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Lists an entire Web registry. DTWR_LISTREG returns information about the registry
entries in an OUT table variable passed by the user. The table variable is defined in
the user macro before being passed as a parameter to the FUNCTION block for the
LISTREG registry operation.

If the user defined the table variable using the ALL option for the maximum number
of rows for the table, this operation lists all available registry entries in the table,
one for each table row. On the other hand if the user specified a value X for the
maximum number of table rows, then if there are more then X entries in the
specified registry only the first X entries are listed and an error code is sent back to
indicate that only a partial listing could be done because not enough table rows
were available to list additional entries. All registry entries are listed if the value X
exceeds the number of available entries in the specified registry.

There are always 2 columns in the table. The Column headers for the table are set
to "REGISTRY_VARIABLE"” and "REGISTRY_DATA” by the Web Registry language
environment.

Format
@DTWR_LISTREG(registry, registryTable)

Values

Table 98. DTWR_LISTREG Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to list.

string registryTable ouT The name of the table variable in which the
registry entries are placed.

Examples

Example 1:

%DEFINE RegistryTable = %TABLE(ALL)

@DTWR_LISTREG("URLLIST", RegistryTable)

218 Net.Data Reference

DTWR_LISTSUB

AIX HP-UX 0Ss/2 0S/390 | 0OS/400 SCO SUN Win NT

Purpose

Lists immediate subkey entries in a Web registry. DTWR_LISTSUB returns
information about the registry entries in an OUT table parameter passed by the
user. The table variable is defined in the macro before being passed as a
parameter to the LISTSUB registry operation.

If the user has defined the table variable using the ALL option for the maximum
number of rows for the table, this operation lists all available registry entries in the
table, one for each table row. On the other hand, if the user specified a value X for
the maximum number of table rows then if there are more then X entries in the
specified registry only the first X entries are listed and an error code is sent back to
indicate that only a partial listing could be done because not enough table rows are
available to list additional entries. All registry entries are listed if the value X
exceeds the number of available entries in the specified registry. The number of
columns in the table is always one.

The column header for the table is set to "REGISTRY_SUBKEY".

This function is only valid on operating system that are compatible Windows 95
System Registries.

Format
@DTWR_LISTSUB(registry, registryTable)

Values

Table 99. DTWR_LISTSUB Parameters

Data Type Parameter Use Description

string registry IN The name of the registry to list.

string registryTable ouT The name of the table variable in which the
registry entries are placed.

Examples

Example 1:

%DEFINE RegistryTable = %TABLE(ALL)

@DTWR_LISTSUB("URLLIST", RegistryTable)

Chapter 3. Net.Data Built-in Functions 219

DTWR_RTVENTRY

220

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Retrieves the registryData string from a Web registry entry.

Format

@DTWR_RTVENTRY ((registry, registryVariable, registryData, index)
@DTWR_rRTVENTRY (registry, registryVariable, index)

Values

Table 100. DTWR_RTVENTRY Parameters

Data Type Parameter Use Description

string registry IN The name of the registry with entries to
retrieve.

string registryVariable |IN The value of the registryVariable string
portion of the registry entry whose
registryData string is retrieved.

string registryData ouT Returns the value of the registryData string
portion of the registry entry that matches
the registryVariable.

string index IN The value of the index portion of the
registryVariable string in an indexed entry
whose registryData string is returned. This
is an optional parameter. If specified, the
registryData string of the indexed entry is
returned.

Examples

Example 1:

%DEFINE RegistryData = ""

@DTWR_RTVENTRY ("Myregistry", "Jones", RegistryData)

Example 2 :

@DTWR_RTVENTRY ("URLLIST", "SMITH", RegistryData, "WORK_URL")

Example 3:
@DTWR_rRTVENTRY ("Myregistry", "Jones")

Example 4 :

@DTWR_rRTVENTRY ("URLLIST", "SMITH", "WORK_URL")

Net.Data Reference

DTWR_UPDATEENTRY

AIX HP-UX | OS/2 | 0S/390 | 0S/400 | SCO SUN | Win NT
X X X X X X X
Purpose

Replaces the existing registryData string value for the specified registry entry with
the new value specified by the caller. The registerVariable string cannot be
changed.

Format
@DTWR_UPDATEENTRY (registry, registryVariable, newData, index)

Values

Table 101. DTWR_UPDATEENTRY Parameters

Data Type Parameter Use Description

string registry IN The name of the registry with the entry to
update.

string registryVariable |IN The value of the registryVariable string
portion of the registry entry to update.

string newData IN The new value for the registryData string
portion of the registry entry to update.

string index IN The value of the index portion of the
registryVariable string in an indexed entry
to update. This is an optional parameter. If
specified, the indexed entry is updated.

Examples

Example 1:

@DTWR_UPDATEENTRY ("Myregistry", "Jones", "http://advantis.com/ Jones/personal")

Example 2 :
@DTWR_UPDATEENTRY ("URLLIST", "SMITH", "http://www.software.ibm.com/personal", "WORK URL")

Chapter 3. Net.Data Built-in Functions 221

222 Net.Data Reference

Appendix A. DB2 WWW Connection

If you have DB2 WWW Connection, you can run your existing applications with

Net.Data. We recommend updating your applications to take advantage of Net.Data
Version 2 features.

The DB2 WWW language constructs are:

EXEC_SQL
This language construct calls an SQL block. We recommend calling SQL
statements as functions instead. See EEUNCTION Block” on page 16 for more
information.

HTML_INPUT

This language construct is the same as an HTML block named INPUT. See faTi]

Block” an page 24| for more information.

HTML_REPORT

This language construct is the same as an HTML block named REPORT. See

[HTMI Rlock” on page 24 for more information.

SOL

This language construct is equivalent to a function called with
FUNCTION(DTW_SQL) in Net.Data.

It can contain SQL_REPORT and SQL_MESSAGE statements, which are also from
DB2 WWW Connection. DB2 WWW Connection does not support named %SQL
blocks.

Examples:

Example 1: A DB2 WWW Connection macro

© Copyright IBM Corp. 1997, 1998 223

%SQL{

UPDATE $(dbtb1) SET URL='$(URL)' WHERE ID=$(ID)

%SQL_MESSAGE{

100: "The selected URL no Tonger exists in the table." : continue
%}

0,
%}

%HTML_INPUT{
<HTML>

%EXEC_SQL
</HTML>

0,
%}

%HTML_REPORT{
<HTML>

</HTML>

0,
%}

Example 1: An equivalent Net.Data macro

%FUNCTION(DTW_SQL) URLquery () {
UPDATE $(dbtbT) SET URL='$(URL)' WHERE ID=$(ID)

%MESSAGE {
100: "The selected URL no longer exists in the table." : continue

0,
%}
0,
%}

%SHTML (INPUT) {
<HTML>
@URLquery
</HTML>

0,
%}

%HTML (REPORT) {
<HTML>
</HTML>

0,
%}

SQL_MESSAGE

This language construct is equivalent to the Net.Data MESSAGE statement. See

[IMESSAGE Black” an page 42 for an example.

SQL_REPORT

ThIS language construct is equivalent to the Net.Data REPORT statement. See
2 for an example.

SQL_CODE

224 Net.Data Reference

This language construct is from DB2 WWW connection and supported by Net.Data

for compatibility. It is equivalent to LRETURN_CQODE” an page 110.

Appendix B. Net.Data Operating System Reference

Not all Net.Data features are supported on each operating system. This section
shows which features are supported for your operating system. An X indicates the

feature is supported.

Some of the features listed here were not yet available at general availability.

Table 102. Net.Data Language Environments

Language Environment

AIX

HP

0S/2

DS/390

DS/400

SCO

SUN

Vin NT

Default

X

X

X

x

Flat File Interface

X

X

IMS Web

Java Applets

X
X
X

Java Applications

ODBC

Oracle

Perl

REXX

SQL

Sybase

System

XIX| XXX [X[|X[X]|X|[X|X]|X

Web Registry

x

X

XIX|X|X|X|X|X|X|X|X|X|X

Table 103. Net.Data Stored Procedure Data Types

Data Type

AIX

HP

0s/2

0S/390

0S/400

[92]
Q
o]

0
C
z

Win NT

BIGINT

BLOB

CHAR

CLOB

DATE

DBCLOB

DECIMAL

DOUBLE

DOUBLEPRECISION

FLOAT

INTEGER

GRAPHIC

XX | X[X]|X|X

LONGVARCHAR

LONGVARGRAPHIC

SMALLINT

TIME

TIMESTAMP

VARCHAR

X IX|X|IX|X|X[|X|X[X|X[|X|X[X|X|[X]|X|X]|X

XIX|X|X|X|X|X|X|X|X|X|X|X|X|X]|X]|X]|X

X IX|X|X|X|X[|X|X|X|X|X|X[X]|X]|X]|X

XIX|X|X|X|X|X|X|X]|X]|X]|X

XIX|X|X|X|X|X|X|X|X|X|X|X|X|X|X]|X]|X

XIX|X|IX|X|X[|X|X[X|X[X|X[X|X|[X]|X|X]|X

X IX|X|IX|[X|X[|X|X[X|X[|X|X[X|X|[X]|X|X]|X

© Copyright IBM Corp. 1997, 1998

225

Table 103. Net.Data Stored Procedure Data Types (continued)

Data Type AIX HP 0s/2 0S/390 | 0S/400 SCO SUN Win NT
VARGRAPHIC X X X X X X X X
Table 104. Net.Data Configuration Variables

Configuration Variable AIX HP 0Ss/2 DS/390 (S/400 |[SCO SUN Vin NT
CACHE_MACHINE X X
CACHE_PORT X X
DefaultDBCp X

DB2INSTANCE X X X X X X
DB2MSGS X

DB2PLAN X

DB2SSID X

DSNAOINI X

DTW_CM_PORT X X X X X X
DTW_INST_DIR X X X X X X
DTW_LOG_DIR X X X X X X
DTW_MBMODE X X X X X X X
DTW_OPTIMIZE_MATH X X X X X X
DTW_REMOVE_WS X

DTW_SMTP_SERVER X X X X X X
DTW_SQL_ISOLATION X

DTW_SQL_NAMING_MODE X
DTWR_CLOSE_REGISTRIES X

LOGIN X X X X X X X
PASSWORD X X X X X X X
Table 105. Net.Data Variables

Variable AIX HP 0S/2 | 0S/390 |0S/400 | SCO SUN [Win NT
ALIGN X X X X X X X X
DATABASE X X X X X X X
DB_CASE X X X X X X X X
DB2PLAN X

DB2SSID X

DTW_APPLET_ALTTEXT X X X X X X X
DTW_CURRENT_FILENAME X X X X X X X X
DTW_CURRENT_LAST_MODIFIED X X X X X X X X
DTW_DEFAULT_MESSAGE X

DTW_DEFAULT_REPORT X X X X X X X X
DTW_EDIT_CODES X

DTW_HTML_TABLE X X X X X X X X
DTW_LOG_LEVEL X X X X X X
DTW_MACRO_FILENAME X X X X X X X X

226 Net.Data Reference

Table 105. Net.Data Variables (continued)

Variable

AIX

T
o

0Ss/2

0S/390

0S/400

0
)
O

w0
C
P

Win NT

DTW_MACRO_LAST_MODIFIED

X

X

DTW_MBMODE

DTW_MP_PATH

DTW_MP_VERSION

DTW_PRINT_HEADER

DTW_REMOVE_WS

DTW_SAVE_TABLE_IN

X | X | X|X|X

DTW_SET_TOTAL_ROWS

XX [X|X|X|X]|X|X

XX | X|X|X|X]| X|X

XX | X|X|X|X]| X

X | X[X | X]|X|X

XXX | X|X|X]|X|X

XXX | X|X|X]|X|X

XX [X|X|X|X]|X|X

LOCATION

LOGIN

x

X

X

X

x

x

Nn

x

x

x

NLIST

NULL_RPT_FIELD

NUM_COLUMNS

NUM_ROWS

PASSWORD

RETURN_CODE

ROW_NUM

RPT_MAX_ROWS

SHOWSQL

SQL_CODE

SQL_STATE

X[X | X[X|X|X

START_ROW_NUM

TOTAL_ROWS

TRANSACTION_SCOPE

V_columnName

VLIST

Vn

XIX|X|IX|X|X|X[|X|X[|X|X|X]|X

XIX|X[X|X| X|X|[X|X|X|X|X]|X

XIX|X|IX|X|X|X[|X|X[X]|X|X]|X

X | X | X | X

NXIX XXX X|X[X|X[X[|X[X|X[X|X|X|X|X]|X

XIX|X|[X|X|X|X|X|X|X|X|X]|X

XIX|X|IX|X|X|X|X|X[|X|X|X]|X

XIX|X|X|X|X|X|X|X[|X]|X|X]|X

Table 106. Net.Data Functions

Function

AIX

HP

0Ss/2

0S/390

0S/400

SCO

SUN

Win NT

DTW_ADD

X

X

x

DTW_ADDQUOTE

x

X

X

x

X

DTW_ASSIGN

X

X

x

DTW_CACHE_PAGE

DTW_CONCAT

DTW_DATE

DTW_DELSTR

DTW_DELWORD

DTW_DIVIDE

XX | X|X|X|X|X]|X|X

X | X | X|X|X

X | X | X|X|X

X | X | X|X|X

X | X | X|X|X

X | X | X[X]|X

X | X | X|X]|X

XX | X[X]|X|X]|X|X

Appendix B. Net.Data Operating System Reference 227

Table 106. Net.Data Functions (continued)

Function

AIX

I
e

0S/2

0S/390

0S/400

SCO

SUN

Win NT

DTW_DIVREM

x

X

X

X

DTW_EXIT

DTW_FORMAT

DTW_GETCOOKIE

DTW_GETENV

DTW_GETINIDATA

DTW_HTMLENCODE

DTW_INSERT

DTW_INTDIV

DTW_LASTPOS

DTW_LENGTH

DTW_LOWERCASE

DTW_MULTIPLY

DTW_POS

DTW_POWER

DTW_QHTMLENCODE

DTW_REVERSE

X IX|X X[X|X|X|X|X|X|X]|X]|X

XX XX X[X|X[X|X[X]|X]|X]|X

DTW_SENDMAIL

DTW_SETCOOKIE

DTW_SETENV

DTW_STRIP

DTW_SUBSTR

DTW_SUBTRACT

DTW_SUBWORD

XX | X|X]|X

DTW_TB_COLS

DTW_TB_DLIST

x

DTW_TB_DUMPH

x

DTW_TB_DUMPV

x

DTW_TB_GETN

DTW_TB_GETV

DTW_TB_HTMLENCODE

DTW_TB_INPUT_CHECKBOX

DTW_TB_INPUT_RADIO

DTW_TB_INPUT_TEXT

DTW_TB_LIST

X | X[X|X|X

DTW_TB_ROWS

DTW_TB_SELECT

DTW_TB_TABLE

DTW_TB_TEXTAREA

DTW_TIME

NXIX|IX|IX|X|IX|X|X|X|X[X|XIX|IXIX|X[X|X[X]|X[X|X|IX[|X|X[|X|X[|X|X[X|X|X|X[|X|X[|X|X|X]X]|X

XIX|X[IX|X[X|X[X|X[X[|X|X|X|X[|X|X[|X]|X|X

NXIX|XIX|X|IX|X|X|X|XIX|IXIX|IXPX|XIX|XIX]|X|IX|X|IX|X|X|X|X[X|X[X|X]IX[|X[X]|X[X]|X|X]|X

X | X | X | X

XIX|X|X|X[X|X[X|X[X[|X|X[|X|X|X|X|X|X|X]|X]|X

NXUIX|X|IX|X|IX| XXX XPX|IXPX|XPX XXX X|X|IX|X|X|X|XIX|XIX| XX XX XX X|X]|X]|X

NXUIX|XIX|X|IX|X|X|X|X[IX|XIX|XIX|XIX|XIX]|X|IX|X|IX[X|X[|X|X|X|X[X|X[IX|X[X|X[X]|X|[X]X]|X

X IX|XIX| XXX X[X|X[X[XIX|X[X|X[X|X[X]|X[X[|X[X[|X|X[|X|X[|X|X[X|X[|X[|X[|X|X|[X]|X|X]|X

228 Net.Data Reference

Table 106. Net.Data Functions (continued)

Function

AIX

I
o

0S/2

0S/390

0S/400

0
@]
@]

SUN

Win NT

DTW_TRANSLATE

x

X

x

DTW_UPPERCASE

DTW_URLESCSEQ

DTW_WORD

DTW_WORDINDEX

DTW_WORDLENGTH

DTW_WORDPOS

DTW_WORDS

DTWF_APPEND

DTWF_CLOSE

DTWF_DELETE

DTWF_INSERT

DTWF_OPEN

DTWF_READ

DTWF_REMOVE

DTWF_SEARCH

DTWF_UPDATE

DTWF_WRITE

XIX[X|IX]IX|X[|[X|X|X|X|X|X[X]|X[|X]|X|X

DTWR_ADDENTRY

DTWR_CLEARREG

DTWR_CREATEREG

DTWR_DELENTRY

DTWR_DELREG

DTWR_LISTREG

X IX XXX X[X|X[X]|X|X|X[X|X[X|X|[X|X|X|X]|X]|X

DTWR_LISTSUB

DTWR_RTVENTRY

X

DTWR_UPDATEENTRY

NXIX|X|IX|X|X[X|X[X|X[X[|X[X[|X[X]|X|[X|X|X|X|X|X|X|X|X|X]|X

XIEX|X[X|X[X|X[X[|X[X[|X[X[|X[X[|X|X|X|X|X|X|X|X|X]|X]|X]|X]|X

XIX XXX XX X|X|X[X|XIX|XIX|XX|X[X]|X|[X]|X|X]|X]|X

XIEX|X[X|X[X[|X[X[|X[X[|X[X[|X[X[|X|X|X|X|X|X|X|X|X|X|X]|X]|X

NXIX|X|IX|X|X|X|X[X|XIX|X[X|X[X]|X[X|X|X[|X|X|X|X[|X|X[|X]|X

NXIX|X|IX|X|X|X|X[X|X[X[|X[X[|X[X|X|[X|X|X|X|X|X]|X|X]|X]|X

Table 107. Net.Data Interfaces

Interface Type

AIX

HP

0s/2

0S/390

0S/400

SCO

SUN

Win NT

FastCGl

CaGl

Java Beans

Internet Connection API (ICAPI)

Internet Server API (ISAPI)

Live Connection

Lotus Domino Go Web Server
(GWAPI)

X | X | X | X]| X|X

Netscape API (NSAPI)

x

Servlets

Appendix B. Net.Data Operating System Reference 229

Table 108. Net.Data Tools

Tool AIX HP 0s/2 0S/390 | 0S/400 SCO SUN Win NT
Administration Tool X X X
NetObjects Fusion Plug-ins X
Wizards X X X X X X

230 Net.Data Reference

Appendix C. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
that has been exchanged, should contact:

IBM Corporation

555 Bailey Avenue, W92/H3

P.O. Box 49023

San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1997, 1998 231

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Trademarks

232

Net.Data Reference

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AlIX Lotus
DataJoiner MVS
DB2 Net.Data
Domino 0Ss/2
IBM 0S/390
IMS 0S/400

The following terms are trademarks of other companies as follows:
Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT®, and the Windows 95 logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Glossary

API. Application programming interface.

applet. A Java program included in an HTML page.
Applets work with Java-enabled browsers, such as
Netscape, and are loaded when the HTML page is
loaded.

application programming interface (API). A
functional interface supplied by the operating system or
by a separately orderable licensed program that allows
an application program written in a high-level language
to use specific data or functions of the operating system
or licensed program. Net.Data supports the following
proprietary Web server APIs for improved performance
over CGI processes: ICAPI, GWAPI, ISAPI, and NSAPI.

BLOB. Binary large object.

cache. A type of memory that contains recently
accessed data, designed to speed up subsequent
access to the same data. The cache is often used to
hold a local copy of frequently-used data that is
accessible over a network.

caching. The processes of storing frequently-used
results from a request to the Web server locally for
quick retrieval, until it is time to refresh the information.

Cache Manager. The program that manages a cache
for one machine. It can manage multiple caches.

CGIl. Common Gateway Interface.

cliette. A long-running process that serves requests
from the Web server. The Connection Manager
schedules cliette processes to serve these requests.

CLOB. Character large object.

Common Gateway Interface. A standardized way for
a Web server to pass control to an application program
and receive data back.

Connection Manager. An executable file, dtwcm, in
Net.Data that is needed to support Live Connection.

cookie. A packet of information sent by an HTTP
server to a Web browser and then sent back by the
browser each time it accesses that server. Cookies can
contain any arbitrary information the server chooses and
are used to maintain state between otherwise stateless
HTTP transactions. Free Online Dictionary of Computing

database. A collection of tables, or a collection of table
spaces and index spaces.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and access to the data
stored within it.

© Copyright IBM Corp. 1997, 1998

data type. An attribute of columns and literals.
DBMS. Database management system.

firewall. A computer with software that guards an
internal network from unauthorized external access.

flat file interface. A set of Net.Data built-in functions
that let you read and write data from plain-text files.

HTML. Hypertext markup language.
HTTP. Hypertext transfer protocol.

hypertext markup language.
write Web documents.

A tag language used to

hypertext transfer protocol. The communication
protocol used between a Web server and browser.
ICAPI. Internet Connection API.
ICS. Internet Connection Server.
ICSS. Internet Connection Secure Server.

Internet.
network.

An international public TCP/IP computer

Internet Connection Server. IBM’s unsecure Web

server.
Internet Connection Secure Server. IBM’s secure
Web server.

Intranet. A TCP/IP network inside a company firewall.

ISAPI. Microsoft's Internet Server API.

Java. An operating system-independent
object-oriented programming language especially useful
for Internet applications.

language environment. A module that provides
access from a Net.Data macro to an external data
source such as DB2 or a programming language such
as Perl. Some language environments are supplied with
Net.Data such as REXX, Perl, and Oracle. You can also
create your own language environments.

Live Connection. A Net.Data configuration that works
with the Connection Manager and Web server API. Live
Connection enables database connections to be reused.

LOB. Large object.

middleware. Software that mediates between an
application program and a network. It manages the
interaction between disparate applications across the
heterogeneous computing operating systems. Free
Online Dictionary of Computing

233

NSAPI. Netscape API.

null. A special value that indicates the absence of
information.

path. A search route used to locate files.
Perl. An interpreted programming language.

port. A 16-bit number used to communicate between
TCP/IP and a higher-level protocol or application.

TCP/IP. Transmission Control Protocol / Internet
Protocol.

Transmission Control Protocol / Internet Protocol.

A set of communication protocols that support
peer-to-peer connectivity functions for both local and
wide-area networks.

URL. Uniform resource locator.

uniform resource locator. An address that names a
HTTP server and optionally a directory and file name,

for example:
http://www.software.ibm.com/data/net.data/index.html.

Web server. A computer running http server software,
such as Internet Connection.

234 Net.Data Reference

Index
A

ALIGN 74
alternate text, Web browsers 87
APPLET tag, alternate text 87

B

built-in functions 111

C

calling

external programs 14

functions 22
case, specifying for SQL commands 84
COMMENT block

description 7

syntax 7
conditional string processing 26, 54
conditional variables

description 58

example 61

with LIST statements 58

with variable references 58

connecting to a database, DATABASE variable 82

connecting to DB2 subsystem
DB2 plan 85
location 92
subsystem ID 86

cookies
DTW_PRINT_HEADER 108
sending 108

D

DATABASE 82

database consistency, transaction scope 98

date variables 99
DB_CASE 84

DB2 WWW Connection, language constructs 223

DB2PLAN 85
DB2SSID 86
declaration part, macro file 2
DEFINE block

description 9

syntax 9
DEFINE statement

description 9

syntax 9
delimited string of values 61
DTW_ADD 139
DTW_ADDQUOTE 114
DTW_APPLET_ALTTEXT 87
DTW_ASSIGN 64, 150, 151
DTW_CACHE_PAGE 116
DTW_CONCAT 152
DTW_CURRENT_FILENAME 100
DTW_CURRENT_LAST_MODIFIED 101

© Copyright IBM Corp. 1997, 1998

DTW_DATE 119
DTW_DEFAULT MESSAGE 102
DTW_DEFAULT_REPORT 75
DTW_DELSTR 153
DTW_DELWORD 166

DTW _DIVIDE 141
DTW_DIVREM 142
DTW_EDIT_CODES 88
DTW_FORMAT 143
DTW_GETCOOKIE 121
DTW_GETENV 123
DTW_GETINIDATA 124
DTW_HTML_TABLE 76
DTW_HTMLENCODE 125
DTW_INSERT 154
DTW_INTDIV 146
DTW_LASTPOS 156
DTW_LENGTH 157
DTW_LOG_LEVEL 103
DTW_LOWERCASE 158
DTW_MACRO_FILENAME 104

DTW_MACRO_LAST MODIFIED 105

DTW_MBMODE 89
DTW_MP_PATH 106
DTW_MP_VERSION 107
DTW_MULTIPLY 147
DTW_POS 159
DTW_POWER 148
DTW_PRINT_HEADER 108
DTW_QHTMLENCODE 127
DTW_REMOVE_WS 109
DTW_REVERSE 160
DTW_SAVE_TABLE_IN 90
DTW_SENDMAIL 128
DTW_SET_TOTAL_ROWS 91
DTW_SETCOOKIE 132
DTW_SETENV 135
DTW_STRIP 161
DTW_SUBSTR 162
DTW_SUBTRACT 149
DTW_SUBWORD 168
DTW_TB_COLS 175
DTW_TB_DLIST 176
DTW_TB_DUMPH 178
DTW_TB_DUMPV 179
DTW_TB_GETN 180
DTW_TB_GETV 181
DTW_TB_HTMLENCODE 182
DTW_TB_INPUT_CHECKBOX 183
DTW_TB_INPUT_RADIO 184
DTW_TB_INPUT_TEXT 185
DTW_TB_LIST 187
DTW_TB_ROWS 188
DTW_TB_SELECT 189
DTW_TB_TABLE 190
DTW_TB_TEXTAREA 192
DTW_TIME 136
DTW_TRANSLATE 163

235

DTW_UPPERCASE 165
DTW_URLESCSEQ 137
DTW_WORD 169
DTW_WORDINDEX 170
DTW_WORDLENGTH 171
DTW_WORDPOS 172
DTW_WORDS 173
DTWF_APPEND 194
DTWF_CLOSE 197
DTWF_DELETE 198
DTWF_INSERT 200
DTWF_OPEN 202
DTWF_READ 203
DTWF_REMOVE 205
DTWF_SEARCH 206
DTWF_UPDATE 208
DTWF_WRITE 210
DTWR_ADDENTRY 212
DTWR_CLEARREG 214
DTWR_CREATEREG 215
DTWR_DELENTRY 216
DTWR_DELREG 217
DTWR_LISTREG 218
DTWR_LISTSUB 219
DTWR_RTVENTRY 220
DTWR_UPDATEENTRY 221

E

environment variables
description 59
ENVVAR statement 13
example 59
ENVVAR statement 59
description 13
syntax 13
error handling 42
EXEC block
description 14
syntax 14
EXEC_PATH 14
EXEC_SQL 223
EXEC statement 59
description 14
syntax 14
executable variables
as a variable reference 60
description 59
example 60
with parameters 60

F

FFI functions
DTWF_APPEND 195
DTWF_CLOSE 197
DTWF_DELETE 198
DTWF_INSERT 200
DTWF_OPEN 202
DTWF_READ 203
DTWF_REMOVE 205
DTWF_SEARCH 206

236 Net.Data Reference

FFI functions (continued)
DTWF_UPDATE 208
DTWF_WRITE 210

file location variables 99

footers 32

FUNCTION block
description 16
syntax 16

function calls
description 22
formatting output 47
processing table rows 50
syntax 22

functions
description 111
flat file interface (FFI) 193
general 112
math 139
naming conventions 111
passing groups of values 62
string 150
table 174
Web registry 212
word 166

G

general functions 112
DTW_ADDQUOTE 114
DTW_CACHE_PAGE 116
DTW_DATE 119
DTW_EXIT 120
DTW_GETCOOKIE 121
DTW_GETENV 123
DTW_GETINIDATA 124
DTW_HTMLENCODE 125
DTW_QHTMLENCODE 127
DTW_SENDMAIL 128
DTW_SETCOOKIE 132
DTW_SETENV 135
DTW_TIME 136
DTW_URLESCSEQ 137

glossary 232

H

headers 32
hidden variables
description 61
example, in an HTML form 61
steps 61
hiding variable names 61
HTML
displaying table results in 76
form, entering passwords 95
form, entering user IDs 93
hiding variable names 61
HTML block
description 24
syntax 24
HTML_INPUT block 223
HTML part, macro file 2

HTML_REPORT block 223

IF block
description 26
syntax 26
IN keyword 17, 39, 111
include files 32
INCLUDE_PATH 32
INCLUDE statement
description 32
syntax 32
INCLUDE_URL statement
description 34
syntax 34
INOUT keyword 17, 39, 111

L

language constructs
COMMENT block 7
common syntax elements 4
DB2 WWW Connection 223
DEFINE block or statement 9
ENVVAR statement 13
EXEC block or statement 14
FUNCTION block 16
function calls 22
HTML block 24
IF block 26
INCLUDE statement 32
INCLUDE_URL statement 34
LIST statement 36
macro file

description 5
syntax 1

MACRO_FUNCTION block 38
MESSAGE block 42
REPORT block 47
ROW block 50
strings 5
TABLE statement 52
variable name 4
variable reference 4
WHILE block 54

language environment variables
DATABASE 82
DB _CASE 84
DB2PLAN 85
DB2SSID 86
description 81
DTW_APPLET_ALTTEXT 87
DTW_EDIT_CODES 88
DTW_MBMODE 89
DTW_SAVE_TABLE_IN 90
DTW_SET_TOTAL_ROWS 91
LOCATION 92
LOGIN 93
NULL_RPT_FIELD 94
PASSWORD 95
SHOWSQL 96

language environment variables (continued)
SQL_STATE 97
TRANSACTION_SCOPE 98
line length limits, macro files 3
LIST statement
description 36
syntax 36
list variables
description 61
example 61
value separators 62
listing delimited strings 61
local DB2 subsystem, ID 86
LOCATION 92
location, connecting to DB2 subsystem 92
LOGIN 93
looping 54
lower case, specifying 84

M

macro files
common syntax elements 4
declaration part 2
format 2
global syntax 1
HTML part 2
language constructs 1
line length limits 3
sample 2
stop processing 120
MACRO_FUNCTION block
description 38
syntax 38
math functions
DTW_ADD 140
DTW_DIVIDE 141
DTW_DIVREM 142
DTW_FORMAT 143
DTW_INTDIV 146
DTW_MULTIPLY 147
DTW_POWER 148
DTW_SUBTRACT 149
MBCS support for functions
string functions 150
word functions 166
MESSAGE block
description 42
syntax 42
messages, default text 102
miscellaneous variables
description 99
DTW_CURRENT_FILENAME 100
DTW_CURRENT_LAST_MODIFIED 101
DTW_DEFAULT_MESSAGE 102
DTW_MACRO_LAST_MODIFIED 105
DTW_MP_PATH 106
DTW_MP_VERSION 107
DTW_PRINT_HEADER 108
DTW_REMOVE_WS 109
RETURN_CODE 110

Index

237

N ROW block (continued)

Nn 64
mnt DSL: tabl NLIST 65
ea :”-11 . §§ NUM_COLUMNS 66
uS,;ZL”ﬁ’mit 52 NUM_ROWS 67
Next button, RPT_MAX_ROWS 78 ROW_NUM 68
NLIST 65 - - syntax 50
Notices 231 TOTAL_ROWS 69

V_columnName 70

vn 71,72
ROW_NUM 68
RPT_MAX_ROWS 77

NULL_RPT_FIELD 94
NUM_COLUMNS 66

NUM_ROWS 67

numeric comparison of strings 26, 54

S
O scrolling, with Next and Previous buttons 78
operating system reference 224 security
OUT keyword 17, 39, 111 login ID 93
passwords 95
P SHOWSQL 96
SQL
parameters, passing 20 commands, specifying case 84
passing groups of values 62 hiding or displaying 96
passing parameters, System language environment 20 SQL block 223
PASSWORD 95 SQL_CODE 224
performance, DTW_EXIT 120 SQL_MESSAGE block 224
plan, connecting to DB2 subsystem 85 SQL_REPORT block 224
platform support reference 224 SQL_STATE 97
Previous button, RPT_MAX_ROWS 78 SQL state, displaying 97
START_ROW_NUM 78
R string functions
DTW_ASSIGN 151
remote DB2 subsystem, location 92 DTW CONCAT 152
REPORT block DTW_DELSTR 153
ALIGN 74 DTW_INSERT 154
description 47 DTW_LASTPOS 156
DTW_DEFAULT_REPORT 75 DTW_LENGTH 157
DTW_HTML_TABLE 76 DTW_LOWERCASE 158
Nn 64 DTW_POS 159
NLIST 65 DTW_REVERSE 160
NUM_COLUMNS 66 DTW_STRIP 161
NUM_ROWS 67 DTW_SUBSTR 162
RPT_MAX_ROWS 77 DTW_TRANSLATE 163
START_ROW_NUM 78 DTW_UPPERCASE 165
syntax 47 MBCS support 150
table variables 62 strings
TOTAL_ROWS 69 conditional processing 26, 54
report variables description 5
ALIGN 74 numeric comparisons 26, 54
description 73 of values, delimited 61
DTW_DEFAULT_REPORT 75 subsytem ID, connecting to DB2 subsystem 86
DTW_HTML_TABLE 76 supported features table 224
RPT_MAX_ROWS 77 System language environment, passing parameters 20
START_ROW_NUM 78
reports
formatting 47 T
overriding Net.Data default 75 table functions
restricting database access 93, 95 DTW_TB_COLS 175
RETURN_CODE 110 DTW_TB_DLIST 176
RETURNS keyword 18 DTW_TB_DUMPH 178
ROW block DTW_TB_DUMPV 179
description 50 DTW_TB_GETN 180

238 Net.Data Reference

table functions (continued)
DTW_TB_GETV 181
DTW_TB_HTMLENCODE 182
DTW_TB_INPUT_CHECKBOX 183
DTW_TB_INPUT_RADIO 184
DTW_TB_INPUT_TEXT 185
DTW_TB_LIST 187
DTW_TB_ROWS 188
DTW_TB_SELECT 189
DTW_TB_TABLE 190
DTW_TB_TEXTAREA 192
table processing variables
description 63
Nn 64
NLIST 65
NUM_COLUMNS 66
NUM_ROWS 67
ROW_NUM 68
specifying for SQL language environment 90
TOTAL_ROWS 69
V_columnName 70
Vn 72
VLIST 71
TABLE statement 62
description 52
syntax 52
table variables
description 62
example 62
tables
Net.Data, specifying number of rows 77
results in HTML 76
TOTAL_ROWS 69
TRANSACTION_SCOPE 98

U

upper case, specifying 84
upper limit 52

V

V_columnName 70
variable name 4
variable reference 4
variables
conditional 58
environment 59
executable 59
hidden 61
language environment 81
list 61
miscellaneous 99
Net.Data, overview 57
report 73
table 62, 63
VLIST 71
Vn 72

W

Web registry functions 212
DTWR_ADDENTRY 213

Web registry functions (continued)

DTWR_CLEARREG 214
DTWR_CREATEREG 215
DTWR_DELENTRY 216
DTWR_DELREG 217
DTWR_LISTREG 218
DTWR_LISTSUB 219
DTWR_RTVENTRY 220
DTWR_UPDATEENTRY 221

WHILE block 54

description 54
syntax 54

word functions

DTW_DELWORD 167
DTW_SUBWORD 168
DTW_WORD 169
DTW_WORDINDEX 170
DTW_WORDLENGTH 171
DTW_WORDPOS 172
DTW_WORDS 173
MBCS support 166

Index

239

240 Net.Data Reference

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

