GNU Libidn

GNU Libidn

This manual is last updated 15 December 2003 for version 0.3.5 of GNU Libidn.

Copyright © 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections including “Commercial Support”, with the Front-Cover Texts being “A GNU Manual,” and
with the Back-Cover Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License.”

(a) The FSF's Back-Cover Text is: “You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise funds for GNU development.”

Table of Contents

] 1 1 o o [SRS 1
P20 1 11 Yo [o 1o o P 2
2.1, GELlING STAMEM.c.e ittt b ettt bbbt e b et b e st b et b et bt bbb a e e b e b e e 2

A =T LU | =2 TS US U URPR 2

2R B ST U T o] oo =To B o F=u 0] f 41RO 3

A Lo g al a1 (ol T IS o] o Lo o AU 4

2.5. Downloading and INSEAIING ..o bbb e e 4

2.6. BUQ REPOIS.....ceteeeiee ettt et b ettt et s et s he e b e e b e e he e b e ehe e e e eheeaeesbesae et e nbeeanenneeas 5

W R o] o1 01U {1 o TP O TSRS SURURORI 5

G T =T 0= = 11 o TSRS 7
0 I T T= T [T PSSR PSP PETR PR 7

3.2, INIHANZALION. ... vttt r e e r e e r e nnene e 8

3230 VEISION CRECK ...ttt bbbttt e eb et 8

G = TN 1o [T o d g L=TE=T 10 (o= 8

3.5, AULOCONT EESES. ..ttt E et e e bRt p et nn e ner e 9
3.5.1. AUtOCONT tESE VIAKG-CONTIG oiiteeieciictieie ettt ettt st e et e eae e e saeesresreennesbe e 9

3.5.2. Standalone AULOCONT LESL......c.virirrrererirere e s 10

111V O Tox 1T LRSS 11
o I o 1= = Lo =T g 1T T Ta o T T4=Y o X o 11

4.2. Unicode Encoding TranSfOrMation............couriirriniiinee e s 11

ZZ0C T U T TTotoTo L3N \\ Lo g g F= 2= £ o) o 12

4.4, CharacCter SEt CONVEISION.......ciiiieeeeeerestestesteseesee e s testeseessesesessessessestesseseeeesessessessessensensesessessesses 13

5. SHINGPIEP FUNCHONS. ...ttt bbbt bbbt b et b et bbbt e e 15
5.1. Header fil&stringprep.n o et e e nne e 15

5.2. Defining A StriNgPrep Profile.......o e 15

LT C T o= (1] 1 ¢ O o [ST URTRRN 15

L o T g £] I =T TSRS U USSR 16

LR T 0o (I o o 1 o] 1SR PRSI 16

5.6. StriNGPrep Profile MACTOS.ooi ettt s b e b s e nae e 19

6. PUNYCOAE FUNCHIONS.....cuiititiieieeee ettt sttt ettt b b b se e e e e ae b e b e b e se e e e bt ebesbeseess e s e e e neeneebennas 21
L0 o 1= T [T a1 3 TU)Y oo o [0 o SRS 21

6.2. REIUIM COUES......ooiiieriierteerre ettt r et n et n e n s 21

RGN o ToToTe [@feTe L= = lo T o1 A 1] L= RS 21

6.4, COIE FUNCHIONS.......cotiiiierreicrteteree ettt r et r et r et r e n e 21

7. IDNA FUNCHONS ...ttt R e R bt n s s e nnan 24
% o (Y= 1o [T g 1o g T OO OSSOSO 24

7.2, REIUIN COUBSottt sttt ettt et s b e s be et e et e eae e besaeebesbeesbesbeebeansesbeensesbeeasebesbeenbeebeennesaesnnes 24

48 T o] o1 o I -V 1= S 25

A (=157 1 o TSSOSO 25

48T o] 1= 38 LU] od 1T 1= 25

7.6. SIMPIified TOASCI INEITACE.......ccoreiiririirie bbb 27

7.7. Simplified TOUNICOTE INTEITACE.coiiieieriire bbb 27

8. EXBIMPIES ..ottt bbb f bR R R bR £ R R e bbbt bt bR eene e 30
8.1 EXAIMPIE L.ttt ettt b e e b e bt bRt R R R e R e b e bRt e b et e e 30

8.2, EXAIMPIE 2.ttt bbb bbbt R R R R e R bt bbbt n e 31

8.3 EXAIMPIE 3.ttt bbb bbb R R R R e R e b e bbbt p e 35

8.4, EXAIMPIE 4.ttt bbb R R R R R bbbt bt p e 37

9. INVOKING TN ...ttt b bbbt b bt £ bt bt e bt b et b et b et e bttt e b e 39

LS TR U A= 0 T USSP 39
LS B2 B 1= Tox 1 o [0 OSSOSO U TSPV STTSO 39
LS RS R @ o] 1 o] o = OO OSSOSO U ST RSV STTSU 39
9.4, ENVIronNmMent VariabI@s..........oo et e e 40
LS TR e o] o] Lo ST UUTSRSTRRN 40
L0, EMECS APttt bttt h et he e e b e e R e e b e R e e ae e Rt eRe e eReeR£eaEeebeeRe e Rt eReeeesheenenrenrean 42
10.1. PUNYCOAE EMACS APttt sttt b e 42
10.2. IDNA EMACS APl ettt s et s et s s b e e s e et a e s enensenensenn 42
T o] T V] =T Lo =T 0 =T g PSS 44
LOT0] o= o 10 1 0T =t 45
T aTo (o] aT=TaTo I =T g Tz 1] (= [To 1= SO 46
F N 0] o) o T I A L= 1N o] r= SR 47
AL PrEAMDIE. ..ot b et bbb e b e b e b 47
A.2. How to Apply These Terms to Your NeW LiDrari€S......ccocvceeveeeresenieseseeseeeseseseeseeseese e seenees 53
B. COPYING ThiS MANUANcoeuiiiiirietireteee ettt bbbttt b et et ne s 55
B.1. GNU Free DOCUMENAtION LICENSE.....cc.ceeieeeeiese ettt sttt e e sreneas 55
B.2. How to use this License for yOUr dOCUMENLS.........ccooiirriririiirieerieerie e 60

Chapter 1. GNU Libidn

This manual is last updated 15 December 2003 for version 0.3.5 of GNU Libidn.
Copyright © 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections including “Commercial Support”, with the Front-Cover Texts being “A GNU Manual,” and
with the Back-Cover Texts as in (a) below. A copy of the license is included in the section entitled “GNU Free
Documentation License.”

(a) The FSF's Back-Cover Text is: “You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise funds for GNU development.”

Chapter 2. Introduction

GNU Libidn is an implementation of the Stringprep, Punycode and IDNA specifications defined by the IETF
Internationalized Domain Names (IDN) working group, used for internationalized domain names. The package
is available under the GNU Lesser General Public License.

The library contains a generic Stringprep implementation that does Unicode 3.2 NFKC normalization, mapping
and prohibitation of characters, and bidirectional character handling. Profiles for iSCSI, Kerberos 5, Nameprep,
SASL and XMPP are included. Punycode and ASCII Compatible Encoding (ACE) via IDNA are supported.

The Stringprep API consists of two main functions, one for converting data from the system’s native
representation into UTF-8, and one function to perform the Stringprep processing. Adding a new Stringprep
profile for your application within the APl is straightforward. The Punycode API consists of one encoding
function and one decoding function. The IDNA API consists of the TOASCII and ToUnicode functions, as well
as an high-level interface for converting entire domain names to and from the ACE encoded form.

The library is used by, e.g., GNU SASL and Shishi to process user names and passwords. Libidn can be built
into GNU Libc to enable a new system-wide getaddrinfo flag for IDN processing.

Libidn is developed for the GNU/Linux system, but runs on over 20 Unix platforms (including Solaris, IRIX,
AIX, and Tru64) and Windows. Libidn is written in C and (parts of) the APl is accessible from C, C++, Emacs
Lisp, Python and Java.

2.1. Getting Started

This manual documents the library programming interface. All functions and data types provided by the library
are explained.

The reader is assumed to possess basic familiarity with internationalization concepts and network programming
in C or C++.

This manual can be used in several ways. If read from the beginning to the end, it gives a good introduction into
the library and how it can be used in an application. Forward references are included where necessary. Later on,
the manual can be used as a reference manual to get just the information needed about any particular interface of
the library. Experienced programmers might want to start looking at the examples at the end of the manual
(Chapter §, and then only read up those parts of the interface which are unclear.

2.2. Features

This library might have a couple of advantages over other libraries doing a similar job.

Chapter 2. Introduction

It's Free Software

Anybody can use, modify, and redistribute it under the terms of the GNU Lesser General Public License.

It's thread-safe

No global state is kept in the library.

It's portable

It should work on all Unix like operating systems, including Windows.

2.3. Supported Platforms

Libidn has at some point in time been tested on the following platforms.

1. Debian GNU/Linux 3.0 (Woody) GCC 2.95.4 and GNU Make. This is the main development platform.
alphaev67-unknown-linux-gnu , alphaev6-unknown-linux-gnu , arm-unknown-linux-gnu ,
armv4l-unknown-linux-gnu , hppa-unknown-linux-gnu , hppa64-unknown-linux-gnu ,
i686-pc-linux-gnu , ia64-unknown-linux-gnu , mM68Kk-unknown-linux-gnu ,
mips-unknown-linux-gnu , mipsel-unknown-linux-gnu , powerpc-unknown-linux-gnu ,
s$390-ibm-linux-gnu , sparc-unknown-linux-gnu , sparc64-unknown-linux-gnu

2. Debian GNU/Linux 2.1 GCC 2.95.1 and GNU Makemv4l-unknown-linux-gnu

3. Tru64 UNIX Tru64 UNIX C compiler and Tru64 Makelphaev67-dec-osf5.1
alphaev68-dec-o0sf5.1

4. SUSE Linux 7.1 GCC 2.96 and GNU Mak#phaev6-unknown-linux-gnu ,
alphaev67-unknown-linux-gnu

5. SUSE Linux 7.2a GCC 3.0 and GNU Mak&64-unknown-linux-gnu
6. SUSE Linux GCC 3.2.2 and GNU Makes6_64-unknown-linux-gnu (AMDG64 Opteron “Melody”).

7.RedHat Linux 7.2 GCC 2.96 and GNU Mak#phaev6-unknown-linux-gnu ,
alphaev67-unknown-linux-gnu , ia64-unknown-linux-gnu

8. RedHat Linux 8.0 GCC 3.2 and GNU Makiég6-pc-linux-gnu
9. RedHat Advanced Server 2.1 GCC 2.96 and GNU M#&s&-pc-linux-gnu
10. Slackware Linux 8.0.01 GCC 2.95.3 and GNU Maié86-pc-linux-gnu
11.Mandrake Linux 9.0 GCC 3.2 and GNU Makes6-pc-linux-gnu
12.IRIX 6.5 MIPS C compiler, IRIX Makemips-sgi-irix6.5
13.AlIX 4.3.2 IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0
14. Microsoft Windows 2000 (Cygwin) GCC 3.2, GNU malkes6-pc-cygwin
15.HP-UX 11 HP-UX C compiler and HP Mak&64-hp-hpux11.22 , hppa2.0w-hp-hpux11.11
16.SUN Solaris 2.8 Sun WorkShop Compiler C 6.0 and SUN Makerc-sun-solaris2.8
17.SUN Solaris 2.9 Sun Forte Developer 7 C compiler and GNU Msggac-sun-solaris2.9

18.NetBSD 1.6 GCC 2.95.3 and GNU Mak#&pha-unknown-netbsd1.6 ,
i386-unknown-netbsdelf1.6

19.0penBSD 3.1 and 3.2 GCC 2.95.3 and GNU Madgha-unknown-openbsd3.1 ,
i386-unknown-openbsd3.1

Chapter 2. Introduction
20.FreeBSD 4.7 and 4.8 GCC 2.95.4 and GNU Madpha-unknown-freebsd4.7 ,
alpha-unknown-freebsd4.8 , 1386-unknown-freebsd4.7 , i386-unknown-freebsd4.8
21.MacOS X 10.2 Server Edition GCC 3.1 and GNU Magewerpc-apple-darwin6.5

If you use Libidn on, or port Libidn to, a new platform please report it to the author.

2.4. Commercial Support

Commercial support is available for users of GNU Libidn. The kind of support that can be purchased may
include:

« Implement new features. Such as country code specific profiling to support a restricted subset of Unicode.

- Port Libidn to new platforms. This could include porting Libidn to an embedded platforms that may need
memory or size optimization.

« Integrating IDN support in your existing project.

« System design of components related to IDN.

If you are interested, please write to:

Simon Josefsson Datakonsult
Drottningholmsv. 70

112 42 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provide support related to GNU Libidn and would like to be mentioned here, contact the author
(Section 2.6.

2.5. Downloading and Installing

The package can be downloaded from several places, inclhting/josefsson.org/libidn/releasesrhe latest
version is stored in a file, e.dibidn-0.3.5.tar.gz where the0.3.5 indicate the highest version number.

The package is then extracted, configured and built like many other packages that use Autoconf. For detailed
information on configuring and building it, refer to ti¢STALL file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the package. You will need a few
basic tools, such ah, make andcc.

$ wget -q http://josefsson.org/libidn/releases/libidn-0.3.5.tar.gz
$ tar xfz libidn-0.3.5.tar.gz
$ cd libidn-0.3.5/

Chapter 2. Introduction
$./configure
$ make

$ make install

After that Libidn should be properly installed and ready for use.

2.6. Bug Reports

If you think you have found a bug in Libidn, please investigate it and report it.

- Please make sure that the bug is really in Libidn, and preferably also check that it hasn't already been fixed in
the latest version.

+ You have to send us a test case that makes it possible for us to reproduce the bug.

« You also have to explain what is wrong; if you get a crash, or if the results printed are not good and in that
case, in what way. Make sure that the bug report includes all information you would need to fix this kind of
bug for someone else.

Please make an effort to produce a self-contained report, with something definite that can be tested or debugged.
Vague queries or piecemeal messages are difficult to act on and don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of the software; if the bug
report is poor, we won't do anything about it (apart from asking you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language needs to be improved,
please also send a note.

Send your bug report to:

bug-libidn@gnu.org

2.7. Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding support for a new
feature — you should submit it as a bug rep&eg¢tion 2.8. There are some things that you can do to increase the
chances for it to be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the copyright of your work to the
Free Software Foundation. This is to protect the freedom of the project. If you have not already signed papers,
we will send you the necessary information when you submit your contribution.

Chapter 2. Introduction

For contributions that doesn't consist of actual programming code, the only guidelines are common sense. Use it.

For code contributions, a number of style guides will help you:

Coding Style. Follow the GNU Standards document ().

If you normally code using another coding standard, there is no problem, but you shoirddeause to
reformat the code () before submitting your work.

Use the unified diff formadiiff -u

Return errors. No reason whatsoever should abort the execution of the library. Even memory allocation errors,
e.g. when malloc return NULL, should work although result in an error code.

Design with thread safety in mind. Don't use global variables and the like.

Avoid using the C math library. It causes problems for embedded implementations, and in most situations it is
very easy to avoid using it.

Document your functions. Use comments before each function headers, that, if properly formatted, are
extracted into GTK-DOC web pages. Don't forget to update the Texinfo manual as well.

Supply a ChangelLog and NEWS entries, where appropriate.

Chapter 3. Preparation

To use ‘Libidn’, you have to perform some changes to your sources and the build system. The necessary changes
are small and explained in the following sections. At the end of this chapter, it is described how the library is
initialized, and how the requirements of the library are verified.

A faster way to find out how to adapt your application for use with ‘Libidn’ may be to look at the examples at the
end of this manualGhapter §.

3.1. Header

The library contains a few independent parts, and each part export the interfaces (data types and functions) in a
header file. You must include the appropriate header files in all programs using the library, either directly or
through some other header file, like this:

#include <stringprep.h >

The header files and the functions they define are categorized as follows:

stringprep.h

The low-level stringprep API entry point. For IDN applications, this is usually invoked via IDNA. Some
applications, specifically non-IDN ones, may want to prepare strings directly though, and should include
this header file.

The name space of the stringprep part of Libidstigigprep* for function namesStringprep* for
data types an8TRINGPREP_*for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

punycode.h

The entry point to Punycode encoding and decoding functions. Normally punycode is used via the idna.h
interface, but some application may want to perform raw punycode operations.

The name space of the punycode part of Libidpusycode_* for function namesPunycode* for data
types andPUNYCODE_for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

idna.h

The entry point to the IDNA functions. This is the normal entry point for applications that need IDN
functionality.

Chapter 3. Preparation

The name space of the IDNA part of Libidnigma_* for function namesidna* for data types and
IDNA_* for other symbols. In addition the same name prefixes with one prepended underscore are reserved
for internal use and should never be used by an application.

3.2. Initialization

Libidn is stateless and does not need any initialization.

3.3. Version Check

It is often desirable to check that the version of ‘Libidn’ used is indeed one which fits all requirements. Even
with binary compatibility new features may have been introduced but due to problem with the dynamic linker an
old version is actually used. So you may want to check that the version is okay right after program startup.

const char *stringprep_check_version (const char *req_version) reqg_version :Required version
number, or NULL.

Check that the the version of the library is at minimum the requested one and return the version string; return
NULL if the condition is not satisfied. If a NULL is passed to this function, no check is done, but the version
string is simply returned.

SeeSTRINGPREP_VERSIONor a suitablaeq_version string.

Return valueMersion string of run-time library, or NULL if the run-time library does not meet the required
version number.

The normal way to use the function is to put something similar to the following first in madir:

if (Istringprep_check_version (STRINGPREP_VERSION))
{

printf ("stringprep_check_version() failed:\n"
"Header file incompatible with shared library.\n");
exit(1);
}

3.4. Building the source

If you want to compile a source file including e.g. the ‘idna.h’ header file, you must make sure that the compiler
can find it in the directory hierarchy. This is accomplished by adding the path to the directory in which the

Chapter 3. Preparation

header file is located to the compilers include file search path (via tiogtion).

However, the path to the include file is determined at the time the source is configured. To solve this problem,
‘Libidn’ uses the external packagég-configthat knows the path to the include file and other configuration
options. The options that need to be added to the compiler invocation at compile time are output by the
--cflags option topkg-config libidn. The following example shows how it can be used at the command line:

gce -¢ foo.c ‘pkg-config libidn --cflags’

Adding the output opkg-config libidn --cflags to the compilers command line will ensure that the
compiler can find e.g. the idna.h header file.

A similar problem occurs when linking the program with the library. Again, the compiler has to find the library
files. For this to work, the path to the library files has to be added to the library search path (uiaapigon).

For this, the option-libs to pkg-config libidn can be used. For convenience, this option also outputs all other
options that are required to link the program with the ‘libidn’ libarary. The example shows how tiodink

with the ‘libidn’ library to a progranfoo.

gcc -0 foo foo.o ‘pkg-config libidn --libs*

Of course you can also combine both examples to a single command by specifying both oppikgpstmfig:

gce -0 foo foo.c ‘pkg-config libidn --cflags --libs'

3.5. Autoconf tests

If you work on a project that uses Autoconf () to help find installed libraries, the suggestions in the previous
section are not the entire story. There are a few methods to detect and incorporate Libidn into your Autoconf
based package.

3.5.1. Autoconf test viapkg-config

If your audience is a typical GNU/Linux desktop, you can often assume they hapkgeenfig tool
installed, in which you can use its Autoconf M4 macro to find and set up your package for use with Shishi. The
following illustrate this scenario.

Chapter 3. Preparation

AC_ARG_ENABLE(idn,
AC_HELP_STRING([--disable-idn],

[Don’t use Libidn]),
libidn=$enableval)

if test "$libidn" != "no" ; then
PKG_CHECK_MODULES(LIBIDN, libidn >= 0.0.0,
[libidn=yes],
[libidn=no])
if test "$libidn" = "yes" ; then
libidn=no
AC_MSG_WARN([Libidn not found])
else
libidn=yes

AC_DEFINE(USE_LIBIDN, 1, [Define to 1 if you want Libidn.])
fi

fi

AC_MSG_CHECKING([if Libidn should be used])
AC_MSG_RESULT ($libidn)

3.5.2. Standalone Autoconf test

The following illustrate a standalone autconf test, that work regardless of if your project Libtool () or not. It is
the most portable solution, and is recommended.

AC_CHECK_HEADER(idna.h,

AC_CHECK_LIB(idn, stringprep_check_version,

[libidn=yes AC_SUBST(SHISHI_LIBS, -lidn)],

libidn=no),

kerberos5=no)

AC_ARG_ENABLE(idn, AC_HELP_STRING([--disable-idn], [Don't use Libidn]),
libidn=$enableval)

if test "$libidn" != "no" ; then
AC_DEFINE(USE_LIBIDN, 1, [Define to 1 if you want Libidn.])
else

AC_MSG_WARN([Libidn not found])

fi

AC_MSG_CHECKING([if Libidn should be used])
AC_MSG_RESULT ($libidn)

10

Chapter 4. Utility Functions

The rest of this library makes extensive use of Unicode characters. In order to interface this library with the
outside world, your application may need to make various Unicode transformations.

4.1. Header filestringprep.h

To use the functions explained in this chapter, you need to include therifiigorep.h using:

#include <stringprep.h >

4.2. Unicode Encoding Transformation

uint32_tstringprep_utf8_to_unichar (const char *p) p: a pointer to Unicode character encoded as UTF-8

Converts a sequence of bytes encoded as UTF-8 to a Unicode charactboel not point to a valid UTF-8
encoded character, results are undefined.

Return valuethe resulting character.
int stringprep_unichar_to_utf8 (uint32_tc, char *outbuf) c:al1S010646 character code

outbuf : output buffer, must have at least 6 bytes of spacRULL, the length will be computed and returned
and nothing will be written toutbuf .

Converts a single character to UTF-8.
Return valuenumber of bytes written.
uint32_tstringprep_utf8_to_unichar (const char) p: a pointer to Unicode character encoded as UTF-8

Converts a sequence of bytes encoded as UTF-8 to a Unicode charactiwel not point to a valid UTF-8
encoded character, results are undefined.

Return valuethe resulting character.

char *stringprep_ucs4_to_utf8 (const uint32_t *str , ssize_{len , size_t *items_read , size t*
items_written) str : a UCS-4 encoded string

11

Chapter 4. Utility Functions

len : the maximum length oftr to use. Iflen < 0, then the string is terminated with a O character.
items_read :location to store number of characters read readi|ic L.

items_written - location to store number of bytes writtenlULL The value here stored does not include
the trailing O byte.

Convert a string from a 32-bit fixed width representation as UCS-4. to UTF-8. The result will be terminated with
a 0 byte.

Return valuea pointer to a newly allocated UTF-8 string. This value must be freedfreitl) . If an error
occursNULLwill be returned ana@rror ~ set.

uint32_t *stringprep_utf8_to_ucs4 (const char *str , ssize_ten , size_t *items_written)str :a
UTF-8 encoded string

len : the maximum length oftr to use. Iflen < 0, then the string is nul-terminated.
items_written : location to store the number of characters in the resuldic L

Convert a string from UTF-8 to a 32-bit fixed width representation as UCS-4, assuming valid UTF-8 input. This
function does no error checking on the input.

Return valuea pointer to a newly allocated UCS-4 string. This value must be freedfwit()

4.3. Unicode Normalization

uint32_t *stringprep_ucs4_nfkc_normalize (uint32_t *str , ssize_1len) str : a Unicode string.

len :length ofstr array, or -1 ifstr is nul-terminated.

Converts UCS4 string into UTF-8 and rustsingprep_utf8_nfkc_normalize()

Return valuea newly allocated Unicode string, that is the NFKC normalized formtrof.

char *stringprep_utf8_nfkc_normalize (const char *str , ssize_ien) str : a UTF-8 encoded string.
len :length ofstr , in bytes, or -1 ifstr is nul-terminated.

Converts a string into canonical form, standardizing such issues as whether a character with an accent is
represented as a base character and combining accent or as a single precomposed character.

12

Chapter 4. Utility Functions

The normalization mode is NFKC (ALL COMPOSE). It standardizes differences that do not affect the text
content, such as the above-mentioned accent representation. It standardizes the "compatibility” characters in
Unicode, such as SUPERSCRIPT THREE to the standard forms (in this case DIGIT THREE). Formatting
information may be lost but for most text operations such characters should be considered the same. It returns a
result with composed forms rather than a maximally decomposed form.

Return valuea newly allocated string, that is the NFKC normalized fornstof .

4.4. Character Set Conversion

const char *stringprep_locale_charset (void) Find out system locale charset.

Note that this function return what it believe the SYSTEM is using as a locale, not what locale the program is
currently in (modified, e.g., by a setlocale(LC_CTYPE, "ISO-8859-1")). The reason is that data read from
argv(], stdin etc comes from the system, and is more likely to be encoded using the system locale than the
program locale.

You can set the environment variable CHARSET to override the value returned. Note that this function caches
the result, so you will have to modify CHARSET before calling (even indirectly) any stringprep functions, e.g.,
by setting it when invoking the application.

Return valueReturn the character set used by the system locale. It will never return NULL, but use "ASCII" as
a fallback.

char *stringprep_convert (const char *str , const char to_codeset , const char from_codeset)
str : input zero-terminated string.

to_codeset : name of destination character set.

from_codeset : name of origin character set, as usedsby.

Convert the string from one character set to another using the systenvg function.

Return valueReturns newly allocated zero-terminated string whicétris transcoded into to_codeset.
char *stringprep_locale_to_utf8 (const char *str) str : input zero terminated string.
Convert string encoded in the locale’s character set into UTF-8 by ssingprep_convert()

Return valueReturns newly allocated zero-terminated string whicktris transcoded into UTF-8.

char *stringprep_utf8_to_locale (const char *str) str : input zero terminated string.

13

Chapter 4. Utility Functions

Convert string encoded in UTF-8 into the locale’s character set by ssingprep_convert()

Return valueReturns newly allocated zero-terminated string whicdtiis transcoded into the locale’s character
set.

14

Chapter 5. Stringprep Functions

Stringprep describes a framework for preparing Unicode text strings in order to increase the likelihood that string
input and string comparison work in ways that make sense for typical users throughout the world. The stringprep
protocol is useful for protocol identifier values, company and personal names, internationalized domain names,
and other text strings.

5.1. Header filestringprep.h

To use the functions explained in this chapter, you need to include therifiigorep.h using:

#include <stringprep.h >

5.2. Defining A Stringprep Profile

Further types and structures are defined for applications that want to specify their own stringprep profile. As
these are fairly obscure, and by necessity tied to the implementation, we do not document them here. Look into
thestringprep.h header file, and therofiles.c source code for the details.

5.3. Return Codes

All functions return a code of thetringprep_rc enumerated type:

Stringprep_rsSTRINGPREP_OK = Buccessful operation. This value is guaranteed to always be zero, the
remaining ones are only guaranteed to hold non-zero values, for logical comparison purposes.

Stringprep_rcSTRINGPREP_CONTAINS_UNASSIGNEring contain unassigned Unicode code points, which is
forbidden by the profile.

Stringprep_r6STRINGPREP_CONTAINS_PROHIBITEString contain code points prohibited by the profile.

Stringprep_rcSTRINGPREP_BIDI_BOTH_L_AND_RAIString contain code points with conflicting bidirection
category.

Stringprep_rcSTRINGPREP_BIDI_LEADTRAIL_NOT_RALLeading and trailing character in string not of proper
bidirectional category.

15

Chapter 5. Stringprep Functions

Stringprep_rSTRINGPREP_BIDI_CONTAINS_PROHIBITEDContains prohibited code points detected by
bidirectional code.

Stringprep_rSTRINGPREP_TOO_SMALL_BUFFBRIffer handed to function was too small. This usually
indicate a problem in the calling application.

Stringprep_rsSTRINGPREP_PROFILE_ERRORhe stringprep profile was inconsistent. This usually indicate an
internal error in the library.

Stringprep_rsSTRINGPREP_FLAG_ERROFRhe supplied flag conflicted with profile. This usually indicate a
problem in the calling application.

Stringprep_rcSTRINGPREP_UNKNOWN_PROFITEe supplied profile name was not known to the library.

Stringprep_rcSTRINGPREP_NFKC_FAILED'he Unicode NFKC operation failed. This usually indicate an
internal error in the library.

Stringprep_rcSTRINGPREP_MALLOC_ERRORemalloc was out of memory. This is usually a fatal error.

5.4. Control Flags

Stringprep_profile_flagSTRINGPREP_NO_NFKDisable the NFKC normalization, as well as selecting the
non-NFKC case folding tables. Usually the profile specifies BIDI and NFKC settings, and applications should
not override it unless in special situations.

Stringprep_profile_flagSTRINGPREP_NO_BIDIDisable the BIDI step. Usually the profile specifies BIDI and
NFKC settings, and applications should not override it unless in special situations.

Stringprep_profile_flagSTRINGPREP_NO_UNASSIGNEWake the library return with an error if string contains
unassigned characters according to profile.

5.5. Core Functions

int stringprep_4i (uint32_t *ucs4 , size_t *len , size_tmaxucs4len , Stringprep_profile_flagdags
const Stringprep_profile profile) ucs4 : input/output array with string to prepare.

len : on input, length of input array with Unicode code points, on exit, length of output array with Unicode code
points.

maxucs4len : maximum length of input/output array.

16

Chapter 5. Stringprep Functions

flags : stringprep profile flags, or 0.

profile : pointer to stringprep profile to use.

Prepare the input UCS-4 string according to the stringprep profile, and write back the result to the input string.

The input is not required to be zero terminatecsé [len] = 0). The output will not be zero terminated unless
ucs4 [len 1= 0. Instead, sestringprep_4zi() if your input is zero terminated or if you want the output to be.

Since the stringprep operation can expand the stnnagucs4len indicate how large the buffer holding the
string is. This function will not read or write to code points outside that size.

Theflags are one of Stringprep_profile_flags, or 0.

Theprofile contain the instructions to perform. Your application can define new profiles, possibly re-using the
generic stringprep tables that always will be part of the library, or use one of the currently supported profiles.

Return valueReturnsSTRINGPREP _OKff successful, or an error code.

int stringprep_4zi (uint32_t *ucs4 , size_tmaxucsdlen , Stringprep_profile_flagags , const
Stringprep_profile orofile) ucs4 : input/output array with zero terminated string to prepare.

maxucsdlen : maximum length of input/output array.

flags : stringprep profile flags, or O.

profile : pointer to stringprep profile to use.

Prepare the input zero terminated UCS-4 string according to the stringprep profile, and write back the result to
the input string.

Since the stringprep operation can expand the stnragucs4len indicate how large the buffer holding the
string is. This function will not read or write to code points outside that size.

Theflags are one of Stringprep_profile_flags, or 0.

Theprofile contain the instructions to perform. Your application can define new profiles, possibly re-using the
generic stringprep tables that always will be part of the library, or use one of the currently supported profiles.

Return valueReturnsSTRINGPREP_OKff successful, or an error code.

17

Chapter 5. Stringprep Functions

int stringprep (char *in , size_tmaxlen , Stringprep_profile_flagags , const Stringprep_profile *
profile) in :input/ouput array with string to prepare.

maxlen : maximum length of input/output array.

flags : stringprep profile flags, or 0.

profile : pointer to stringprep profile to use.

Prepare the input zero terminated UTF-8 string according to the stringprep profile, and write back the result to
the input string.

Note that you must convert strings entered in the systems locale into UTF-8 before using this function, see
stringprep_locale_to_utf8()

Since the stringprep operation can expand the striraglen indicate how large the buffer holding the string is.
This function will not read or write to characters outside that size.

Theflags are one of Stringprep_profile_flags, or 0.

Theprofile contain the instructions to perform. Your application can define new profiles, possibly re-using the
generic stringprep tables that always will be part of the library, or use one of the currently supported profiles.

Return valueReturnsSTRINGPREP_OKff successful, or an error code.

int stringprep_profile (const char %in , char ** out , const char *profile , Stringprep_profile_flags
flags)in :input array with UTF-8 string to prepare.

out : output variable with pointer to newly allocate string.

profile : name of stringprep profile to use.

flags : stringprep profile flags, or O.

Prepare the input zero terminated UTF-8 string according to the stringprep profile, and return the result in a
newly allocated variable.

Note that you must convert strings entered in the systems locale into UTF-8 before using this function, see
stringprep_locale_to_utf8()

The outpubut variable must be deallocated by the caller.

18

Chapter 5. Stringprep Functions

Theflags are one of Stringprep_profile_flags, or 0.

Theprofile specifies the name of the stringprep profile to use. It must be one of the internally supported
stringprep profiles.

Return valueReturnsSTRINGPREP _OKff successful, or an error code.

5.6. Stringprep Profile Macros

int stringprep_nameprep_no_unassigned (char *in , int maxlen) in : input/ouput array with string to
prepare.

maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the nameprep profile. The AllowUnassigned flag is false, use
stringprep_nameprep for true AllowUnassigned. Returns 0 iff successful, or an error code.

int stringprep_iscsi (char *in , intmaxlen) in : input/ouput array with string to prepare.
maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the draft iISCSI stringprep profile. Returns 0 iff successful, or an
error code.

int stringprep_kerberos5 (char *in , intmaxlen) in : input/ouput array with string to prepare.
maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the draft Kerberos5 stringprep profile. Returns 0 iff successful, or an
error code.

int stringprep_plain (char *in , intmaxlen) in : input/ouput array with string to prepare.
maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the draft SASL ANONYMOUS profile. Returns 0 iff successful, or
an error code.

int stringprep_xmpp_nodeprep (char *in , int maxlen) in : input/ouput array with string to prepare.

maxlen : maximum length of input/output array.

19

Chapter 5. Stringprep Functions

Prepare the input UTF-8 string according to the draft XMPP node identifier profile. Returns 0 iff successful, or
an error code.

int stringprep_xmpp_resourceprep (char *in , int maxlen) in : input/ouput array with string to prepare.

maxlen : maximum length of input/output array.

Prepare the input UTF-8 string according to the draft XMPP resource identifier profile. Returns 0 iff successful,
or an error code.

20

Chapter 6. Punycode Functions

Punycode is a simple and efficient transfer encoding syntax designed for use with Internationalized Domain
Names in Applications. It uniquely and reversibly transforms a Unicode string into an ASCII string. ASCII
characters in the Unicode string are represented literally, and non-ASCII characters are represented by ASCII
characters that are allowed in host name labels (letters, digits, and hyphens). A general algorithm called
Bootstring allows a string of basic code points to uniquely represent any string of code points drawn from a
larger set. Punycode is an instance of Bootstring that uses particular parameter values, appropriate for IDNA.

6.1. Header filepunycode.h

To use the functions explained in this chapter, you need to include theifiyeode.h using:

#include <punycode.h >

6.2. Return Codes

All functions return a code of theunycode_status ~ enumerated type:

Punycode_statuBUNYCODE_SUCCESS =Smuccessful operation. This value is guaranteed to always be zero,
the remaining ones are only guaranteed to hold non-zero values, for logical comparison purposes.

Punycode_statuBUNYCODE_BAD_INPUMput is invalid.
Punycode_statuBUNYCODE_BIG_OUTPWutput would exceed the space provided.

Punycode_statuBUNYCODE_OVERFL@WguUt needs wider integers to process.

6.3. Unicode Code Point Type

The punycode function uses a special type to denote Unicode code points. It is guaranteed to always be a 32 bit
unsigned integer.

uint32_tpunycode_uint A unsigned integer that hold Unicode code points.

21

Chapter 6. Punycode Functions

6.4. Core Functions

Note that the current implementation will fail if theput_length exceed 4294967295 (the size of
punycode_uint). This restriction may be removed in the future. Meanwhile applications are encouraged to not
depend on this problem, and useeof to initialize input_length andoutput_length

The functions provided are the following two entry points:

int punycode_encode (Size_tinput_length , const punycode_uint fhput , const unsigned char []
case_flags , size_t*output_length , char [Joutput) input_length : The number of code points in
theinput array and the number of flags in these_flags array.

input : An array of code points. They are presumed to be Unicode code points, but that is not strictly
REQUIRED. The array contains code points, not code units. UTF-16 uses code units D800 through DFFF to
refer to code points 10000..10FFFF. The code points D800..DFFF do not occur in any valid Unicode string. The
code points that can occur in Unicode strings (0..D7FF and E000..10FFFF) are also called Unicode scalar values.

case_flags : A NULLpointer or an array of boolean values parallel toitipait array. Nonzero (true,

flagged) suggests that the corresponding Unicode character be forced to uppercase after being decoded (if
possible), and zero (false, unflagged) suggests that it be forced to lowercase (if possible). ASCII code points
(0..7F) are encoded literally, except that ASCII letters are forced to uppercase or lowercase according to the
corresponding case flags.cise flags is aNULL pointer then ASCII letters are left as they are, and other
code points are treated as unflagged.

output_length : The caller passes in the maximum number of ASCII code points that it can receive. On
successful return it will contain the number of ASCII code points actually output.

output : An array of ASCII code points. It is *not* null-terminated; it will contain zeros if and only if the
input contains zeros. (Of course the caller can leave room for a terminator and add one if needed.)

Converts a sequence of code points (presumed to be Unicode code points) to Punycode.

Return valueThe return value can be any of the punycode_status values defined above except

punycode_bad_input . If not punycode_success ,thenoutput_size andoutput might contain
garbage.
int punycode_decode (size_tinput_length , const char [jnput , size_t *output_length

punycode_uint [putput , unsigned char [tase_flags) input_length : The number of ASCII code
points in theinput array.

input : An array of ASCII code points (0..7F).

output_length : The caller passes in the maximum number of code points that it can receive iotahe
array (which is also the maximum number of flags that it can receive intcetiee flags array, if
case_flags is not aNULL pointer). On successful return it will contain the number of code points actually

22

Chapter 6. Punycode Functions

output (which is also the number of flags actually output, if case_flags is not a null pointer). The decoder will
never need to output more code points than the number of ASCII code points in the input, because of the way the
encoding is defined. The number of code points output cannot exceed the maximum possible value of a
punycode_uint, even if the suppliedtput_length is greater than that.

output : An array of code points like the input argumentpofiycode_encode() (see above).

case_flags : A NULLpointer (if the flags are not needed by the caller) or an array of boolean values parallel

to theoutput array. Nonzero (true, flagged) suggests that the corresponding Unicode character be forced to
uppercase by the caller (if possible), and zero (false, unflagged) suggests that it be forced to lowercase (if
possible). ASCII code points (0..7F) are output already in the proper case, but their flags will be set appropriately
so that applying the flags would be harmless.

Converts Punycode to a sequence of code points (presumed to be Unicode code points).

Return valueThe return value can be any of the punycode_status values defined above. If not
punycode_success |, thenoutput_length , output , andcase_flags might contain garbage.

23

Chapter 7. IDNA Functions

Until now, there has been no standard method for domain names to use characters outside the ASCII repertoire.
The IDNA document defines internationalized domain names (IDNs) and a mechanism called IDNA for

handling them in a standard fashion. IDNs use characters drawn from a large repertoire (Unicode), but IDNA
allows the non-ASCII characters to be represented using only the ASCII characters already allowed in so-called
host names today. This backward-compatible representation is required in existing protocols like DNS, so that
IDNs can be introduced with no changes to the existing infrastructure. IDNA is only meant for processing
domain names, not free text.

7.1. Header fileidna.h

To use the functions explained in this chapter, you need to include thérfilé using:

#include <idna.h >

7.2. Return Codes

All functions return a exit code:

Idna_rcIDNA_SUCCESS = Buccessful operation. This value is guaranteed to always be zero, the remaining
ones are only guaranteed to hold non-zero values, for logical comparison purposes.

Idna_rcIDNA_STRINGPREP_ERRORTrror during string preparation.
Idna_rcIDNA_PUNYCODE_ERRCRror during punycode operation.

Idna_rcIDNA_CONTAINS_NON_LDor IDNA_USE_STD3 ASCIl_RULES, indicate that the string contains
non-LDH ASCII characters.

Idna_rcIDNA_CONTAINS_MINUSFor IDNA_USE_STD3_ASCII_RULES, indicate that the string contains a
leading or trailing hyphen-minus (U+002D).

Idna_rcIDNA_INVALID_LENGTH The final output string is not within the (inclusive) range 1 to 63 characters.
Idna_rcIDNA_NO_ACE_PREFIXThe string does not contain the ACE prefix (for ToUnicode).

Idna_rcIDNA_ROUNDTRIP_VERIFY_ERRORhe ToASCII operation on output string does not equal the input.

24

Chapter 7. IDNA Functions

Idna_rcIDNA_CONTAINS_ACE_PREFIXThe input contains the ACE prefix (for TOASCII).
Idna_rcIDNA_ICONV_ERRORCould not convert string in locale encoding.

Idna_rcIDNA_MALLOC_ERRORould not allocate buffer (this is typically a fatal error).

7.3. Control Flags

The IDNAflags parameter can take on the following values, or a bit-wise inclusive or of any subset of the
parameters:

Idna_flagaDNA_ALLOW_UNASSIGNEBIlow unassigned Unicode code points.

Idna_flagaDNA_USE_STD3_ASCII_RULES Check output to make sure it is a STD3 conforming host name.

7.4. Prefix String

#definelDNA_ACE_PREFIX String with the official IDNA prefixxn-- .

7.5. Core Functions

The idea behind the IDNA function names are as followsidhe to_ascii_4i and

idna_to_unicode_44i functions are the core IDNA primitives. Theindicate that the function takes UCS-4
strings (i.e., Unicode code points encoded in a 32-bit unsigned integer type) of the specified length. The
indicate that the data is written “inline” into the buffer. This means the caller is responsible for allocating (and
deallocating) the string, and providing the library with the allocated length of the string. The output length is
written in the output length variable. The remaining functions all contair tihdicator, which means the strings
are zero terminated. All output strings are allocated by the library, and must be deallocated by the cadler. The
indicator again means that the string is UCS-4,&heeans the strings are UTF-8 and thimdicator means the
strings are encoded in the encoding used by the current locale.

The functions provided are the following entry points:

int idna_to_ascii_4i (const uint32_t %in , size_tinlen , char *out , intflags)in : input array with
unicode code points.

inlen :length of input array with unicode code points.

out : output zero terminated string that must have room for at least 63 characters plus the terminating zero.

25

Chapter 7. IDNA Functions

flags :IDNAflags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

The ToASCII operation takes a sequence of Unicode code points that make up one label and transforms it into a
sequence of code points in the ASCII range (0..7F). If TOASCII succeeds, the original sequence and the resulting
sequence are equivalent labels.

It is important to note that the TOASCII operation can fail. TOASCII fails if any step of it fails. If any step of the
ToASCII operation fails on any label in a domain name, that domain name MUST NOT be used as an
internationalized domain name. The method for deadling with this failure is application-specific.

The inputs to TOASCII are a sequence of code points, the AllowUnassigned flag, and the UseSTD3ASCIIRules
flag. The output of TOASCII is either a sequence of ASCII code points or a failure condition.

ToASCII never alters a sequence of code points that are all in the ASCII range to begin with (although it could
fail). Applying the ToASCII operation multiple times has exactly the same effect as applying it just once.

Return valueReturns 0 on success, or an error code.

intidna_to_unicode_44i (const uint32_t %in , size_tinlen , uint32_t *out , size_t *outlen ,int
flags) in :input array with unicode code points.

inlen :length of input array with unicode code points.

out : output array with unicode code points.

outlen :on input, maximum size of output array with unicode code points, on exit, actual size of output array
with unicode code points.

flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

The ToUnicode operation takes a sequence of Unicode code points that make up one label and returns a
sequence of Unicode code points. If the input sequence is a label in ACE form, then the result is an equivalent
internationalized label that is not in ACE form, otherwise the original sequence is returned unaltered.

ToUnicode never fails. If any step fails, then the original input sequence is returned immediately in that step.

The ToUnicode output never contains more code points than its input. Note that the number of octets needed to
represent a sequence of code points depends on the particular character encoding used.

The inputs to ToUnicode are a sequence of code points, the AllowUnassigned flag, and the
UseSTD3ASCIIRules flag. The output of ToUnicode is always a sequence of Unicode code points.

26

Chapter 7. IDNA Functions

Return valueReturns error condition, but it must only be used for debugging purposes. The output buffer is
always guaranteed to contain the correct data according to the specification (sans malloc induced errors). NB!
This means that you normally ignore the return code from this function, as checking it means breaking the
standard.

7.6. Simplified TOASCII Interface

int idna_to_ascii_4z (const uint32_t input , char ** output ,intflags)input :zero terminated input
Unicode string.

output : pointer to newly allocated output string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCIl_RULES.

Convert UCS-4 domain name to ASCII string. The domain name may contain several labels, separated by dots.
The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

intidna_to_ascii_8z (const char input , char ** output , intflags)input :zero terminated input
UTF-8 string.

output : pointer to newly allocated output string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCIl_RULES.

Convert UTF-8 domain name to ASCII string. The domain name may contain several labels, separated by dots.
The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_ascii_lz (const char input , char ** output , intflags)input :zero terminated input
UTF-8 string.

output : pointer to newly allocated output string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCIl_RULES.

Convert domain name in the locale’s encoding to ASCII string. The domain name may contain several labels,
separated by dots. The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

27

Chapter 7. IDNA Functions

7.7. Simplified ToUnicode Interface

int idna_to_unicode_4z4z (const uint32_t input , uint32_t ** output , intflags) input
zero-terminated Unicode string.

output : pointer to newly allocated output Unicode string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3 ASCIl_RULES.

Convert possibly ACE encoded domain name in UCS-4 format into a UCS-4 string. The domain name may
contain several labels, separated by dots. The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_unicode_8z4z (const char input , uint32_t ** output , intflags)input :zero-terminated
UTF-8 string.

output : pointer to newly allocated output Unicode string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

Convert possibly ACE encoded domain name in UTF-8 format into a UCS-4 string. The domain name may
contain several labels, separated by dots. The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_unicode_8z8z (const char input , char ** output , intflags)input :zero-terminated
UTF-8 string.

output : pointer to newly allocated output UTF-8 string.
flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCIl_RULES.

Convert possibly ACE encoded domain name in UTF-8 format into a UTF-8 string. The domain name may
contain several labels, separated by dots. The output buffer must be deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_unicode_8zlz (const char *input , char ** output , intflags)input :zero-terminated
UTF-8 string.

output : pointer to newly allocated output string encoded in the current locale’s character set.

28

Chapter 7. IDNA Functions

flags :IDNAflags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

Convert possibly ACE encoded domain name in UTF-8 format into a string encoded in the current locale’s
character set. The domain name may contain several labels, separated by dots. The output buffer must be
deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

int idna_to_unicode_lzlz (const char input , char ** output , intflags)input :zero-terminated
string encoded in the current locale’s character set.

output : pointer to newly allocated output string encoded in the current locale’s character set.

flags :IDNA flags, e.g. IDNA_ALLOW_UNASSIGNED or IDNA_USE_STD3_ASCII_RULES.

Convert possibly ACE encoded domain name in the locale’s character set into a string encoded in the current
locale’s character set. The domain name may contain several labels, separated by dots. The output buffer must be
deallocated by the caller.

Return valueReturns IDNA_SUCCESS on success, or error code.

29

Chapter 8. Examples

This chapter contains example code which illustrate how ‘Libidn’ can be used when writing your own
application.

8.1. Example 1

This example demonstrates how the stringprep functions are used.

/* example.c Example code showing how to use stringprep().
* Copyright (C) 2002, 2003 Simon Josefsson

* This file is part of GNU Libidn.

* GNU Libidn is free software; you can redistribute it and/or

* modify it under the terms of the GNU Lesser General Public

* License as published by the Free Software Foundation; either

* version 2.1 of the License, or (at your option) any later version.

* GNU Libidn is distributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.

* You should have received a copy of the GNU Lesser General Public
* License along with GNU Libidn; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stringprep.h>

* Compiling using libtool and pkg-config is recommended:

* $ libtool cc -0 example example.c ‘pkg-config --cflags --libs libidn'
* $.Jexample

* Input string encoded as ‘ISO-8859-1" a

* Before locale2utf8 (length 2): aa Oa

* Before stringprep (length 3): ¢2 aa Oa

* After stringprep (length 2): 61 Oa

*$

*/

int
main (int argc, char *argv(])
{

char buf[BUFSIZ];

char *p;

int rc;
size t i

printf ("Input string encoded as ‘%s’: ", stringprep_locale_charset ());
fflush (stdout);
fgets (buf, BUFSIZ, stdin);

printf ("Before locale2utf8 (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)
printf ("%02x ", buf[i] & OxFF);

printf ("\n");
p = stringprep_locale_to_utf8 (buf);
it (p)
{
strcpy (buf, p);
free (p);
}
else

printf ("Could not convert string to UTF-8, continuing anyway...\n");

printf ("Before stringprep (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)

printf ("%02x ", buf[i] & OxFF);
printf ("\n");

rc = stringprep (buf, BUFSIZ, 0, stringprep_nameprep);
if (rc = STRINGPREP_OK)
printf ("Stringprep failed with rc %d...\n", rc);
else
{
printf ("After stringprep (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)

printf ("%02x ", buf[i] & OXFF);

printf ("\n");
}

return O;

8.2. Example 2

This example demonstrates how the punycode functions are used.

/* example2.c Example code showing how to use punycode.

Copyright (C) 2002, 2003 Simon Josefsson
Copyright (C) 2002 Adam M. Costello

This file is part of GNU Libidn.

GNU Libidn is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

Chapter 8. Examples

31

Chapter 8. Examples

* GNU Libidn is distributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.

* You should have received a copy of the GNU Lesser General Public
* License along with GNU Libidn; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

* This file is derived from RFC 3492 written by Adam M. Costello.

* Disclaimer and license: Regarding this entire document or any

* portion of it (including the pseudocode and C code), the author

* makes no guarantees and is not responsible for any damage resulting
* from its use. The author grants irrevocable permission to anyone

* to use, modify, and distribute it in any way that does not diminish

* the rights of anyone else to use, modify, and distribute it,

* provided that redistributed derivative works do not contain

* misleading author or version information. Derivative works need

* not be licensed under similar terms.

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <punycode.h>

/* For testing, we'll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a */
/* command-line option. */

enum
{
unicode_max_length = 256,
ace_max_length = 256

k

static void

usage (char **argv)

{
fprintf (stderr,
"
"%s -e reads code points and writes a Punycode string.\n"
"%s -d reads a Punycode string and writes code points.\n"
"
“Input and output are plain text in the native character set.\n"
"Code points are in the form u+hex separated by whitespace.\n"
"Although the specification allows Punycode strings to contain\n®
"any characters from the ASCII repertoire, this test code\n"
"supports only the printable characters, and needs the Punycode\n"

32

Chapter 8. Examples

"string to be followed by a newline.\n"
"The case of the u in u+hex is the force-to-uppercase flag.\n",
argv[0], argv[O]);
exit (EXIT_FAILURE);
}

static void
fail (const char *msg)
{
fputs (msg, stderr);
exit (EXIT_FAILURE);
}

static const char too_big[] =
"input or output is too large, recompile with larger limits\n";

static const char invalid_input[] = "invalid input\n”;
static const char overflow[] = "arithmetic overflow\n";
static const char io_error[] = "I/O error\n”;

/* The following string is used to convert printable */
[* characters between ASCII and the native charset: */

static const char print_asciif] = "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"

/* at sign */
"ABCDEFGHIJKLMNO"
"PQRSTUVWXYZ[*_" ™abcdefghijklmno" "pgrstuvwxyz{|}~\n";

int
main (int argc, char **argv)
{
enum punycode_status status;
int r;
size_t input_length, output_length, j;
unsigned char case_flags[unicode_max_length];

if (argc = 2)
usage (argv);

if (argv[1][O] != '-)
usage (argv);

if (argv[1][2] != 0)
usage (argv);

if (argv[1][1] == 'e’)
{
uint32_t input[unicode_max_length];
unsigned long codept;
char outputface_max_length + 1], uplus[3];
int c;

/* Read the input code points: */
input_length = O;
for ()

r = scanf ("%2s%lIx", uplus, &codept);
if (ferror (stdin))

" N'H#E%& ()*+,-./" "01234567

33

Chapter 8. Examples
fail (io_error);
if (r == EOF || r == 0)

break;

if (r = 2 || uplus[l] != '+ || codept > (uint32_t) - 1)

{
fail (invalid_input);
}
if (input_length == unicode_max_length)
fail (too_big);

if (uplus[0] == 'u’)

case_flags[input_length] = 0;
else if (uplus[0] == 'U)
case_flags[input_length] = 1;

else
fail (invalid_input);

inputfinput_length++] = codept;

/* Encode: */

output_length = ace_max_length;

status = punycode_encode (input_length, input, case_flags,
&output_length, output);

if (status == punycode_bad_input)
fail (invalid_input);

if (status == punycode_big_output)

fail (too_big);
if (status == punycode_overflow)
fail (overflow);
assert (status == punycode_success);

[* Convert to native charset and output: */
for (j = 0; j < output_length; ++j)

¢ = output[j];
assert (c >= 0 && c <= 127);
if (print_ascii[c] == 0)
fail (invalid_input);
output[j] = print_ascii[c];

output[j] = 0;
r = puts (output);
if (r == EOF)
fail (io_error);
return EXIT_SUCCESS;
}

if (argv[1][1] == 'd)
{
char inputface_max_length + 2], *p, *pp;
uint32_t output[unicode_max_length];

34

/* Read the Punycode input string and convert to ASCII:

fgets (input, ace_max_length + 2, stdin);
if (ferror (stdin))
fail (io_error);
if (feof (stdin))
fail (invalid_input);
input_length = strlen (input) - 1;
if (inputfinput_length] = "\n’)
fail (too_big);
inputfinput_length] = 0;

for (p = input; *p != 0; ++p)

{
pp = strchr (print_ascii, *p);
if (pp == 0)
fail (invalid_input);
*p = pp - print_ascii;

}

/* Decode: */

output_length = unicode_max_length;

*

status = punycode_decode (input_length, input, &output_length,

output, case_flags);

if (status == punycode_bad_input)
fail (invalid_input);

if (status == punycode_big_output)

fail (too_big);
if (status == punycode_overflow)
fail (overflow);
assert (status == punycode_success);

[* Output the result: */
for (j = 0; j < output_length; ++j)
r = printf ("%s+%041X\n",
case_flags[j] ? "U" : "u", (unsigned long) output[j]);

if (r < 0)
fail (io_error);

return EXIT_SUCCESS;
}

usage (argv);

return EXIT_SUCCESS; /* not reached, but quiets compiler warning */

Chapter 8. Examples

35

Chapter 8. Examples

8.3. Example 3

This example demonstrates how the library is used to convert internationalized domain names into ASCI|
compatible names.

/* example3.c Example ToASCII() code showing how to use Libidn.
* Copyright (C) 2002, 2003 Simon Josefsson

* This file is part of GNU Libidn.

* GNU Libidn is free software; you can redistribute it and/or

* modify it under the terms of the GNU Lesser General Public

* License as published by the Free Software Foundation; either

* version 2.1 of the License, or (at your option) any later version.

* GNU Libidn is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.

* You should have received a copy of the GNU Lesser General Public
* License along with GNU Libidn; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stringprep.h> /* stringprep_locale_charset() */
#include <idna.h> /* idna_to_ascii_lz() */

/*
* Compiling using libtool and pkg-config is recommended:

* $ libtool cc -0 example3 example3.c ‘pkg-config --cflags --libs libidn’

* $.Jexample3

* Input domain encoded as ‘ISO-8859-1": www.rdksmorgas 2 example

* Read string (length 23): 77 77 77 2e 72 e4 6b 73 6d f6 72 67 e5 73 aa 2e 65 78 61 6d 70 6¢c 65

* ACE label (length 33): 'www.xn--rksmrgsa-0zap8p.example’

* 77 77 77 2e 78 6e 2d 2d 72 6b 73 6d 72 67 73 61 2d 30 7a 61 70 38 70 2e 65 78 61 6d 70 6¢c 65
*$

*

int
main (int argc, char *argv(])
{

char buf[BUFSIZ];

char *p;

int rc;

size_t i

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());

fflush (stdout);
fgets (buf, BUFSIZ, stdin);

36

Chapter 8. Examples

buf[strlen (buf) - 1] = "\0’;

printf
for (i

("Read string (length %d): ", strlen (buf));
= 0; i < strlen (buf); i++)

printf ("%02x ", buf[i] & OxFF);

printf

rc =
if (rc

{

QUR

idna_to_ascii_lz (buf, &p, 0);
1= IDNA_SUCCESS)

printf ("ToASCII() failed... %d\n", rc);
exit (1);

}

printf
for (i

("ACE label (length %d): '%s\n", strlen (p), p);
= 0; i < strlen (p); i++)

printf ("%02x ", pli] & OXFF);

printf

QUR

free (p);

return O;

8.4. Example 4

This example demonstrates how the library is used to convert ASCIl compatible names to internationalized

domain

names.

/* exampled4.c Example ToUnicode() code showing how to use Libidn.
* Copyright (C) 2002, 2003 Simon Josefsson

* This

file is part of GNU Libidn.

* GNU Libidn is free software; you can redistribute it and/or

* modify it under the terms of the GNU Lesser General Public

* License as published by the Free Software Foundation; either

* version 2.1 of the License, or (at your option) any later version.

* GNU Libidn is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.

* You

should have received a copy of the GNU Lesser General Public

* License along with GNU Libidn; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
<stringprep.h> /* stringprep_locale_charset() */

37

Chapter 8. Examples
#include <idna.h> /* idna_to_unicode_lzlz() */

/*
* Compiling using libtool and pkg-config is recommended:

* $ libtool cc -0 example4 exampled.c ‘pkg-config --cflags --libs libidn'

* $.Jexample4

* Input domain encoded as ‘ISO-8859-1": www.xn--rksmrgsa-0zap8p.example

* Read string (length 33): 77 77 77 2e 78 6e 2d 2d 72 6b 73 6d 72 67 73 61 2d 30 7a 61 70 38 70 2e 65 78
* ACE label (length 23): ‘www.raksmorgasa.example’

* 77 77 77 2e 72 e4 6b 73 6d f6 72 67 e5 73 61 2e 65 78 61 6d 70 6¢c 65

*$

*/

int
main (int argc, char *argv(])
{

char buf[BUFSIZ];

char *p;

int rc;

size_t i

printf ("Input domain encoded as ‘%s’: ", stringprep_locale_charset ());
fflush (stdout);

fgets (buf, BUFSIZ, stdin);

buf[strlen (buf) - 1] = "\0’;

printf ("Read string (length %d): ", strlen (buf));
for (i = 0; i < strlen (buf); i++)

printf ("%02x ", buf[i] & OxFF);
printf ("\n");

rc = idna_to_unicode_lzlz (buf, &p, 0);
if (rc '= IDNA_SUCCESS)

{
printf ("ToUnicode() failed... %d\n", rc);

exit (1);
}

printf ("ACE label (length %d): '%s'\n", strlen (p), p);
for (i = 0; i < strlen (p); i++)
printf ("%02x ", p[i] & OxFF);
printf ("\n");
free (p);

return O;

38

Chapter 9. Invoking idn

9.1. Name

GNU Libidn (idn) — Internationalized Domain Names command line tool

9.2. Description

idn allows internationalized string preparatiatringprep), encoding and decoding of punycode data, and
IDNA ToASCII/ToUnicode operations to be performed on the command line.

If strings are specified on the command line, they are used as input and the computed output is printed to
standard outpuitdout . If no strings are specified on the command line, the program read data, line by line,
from the standard inputdin , and print the computed output to standard output. What processing is performed
(e.g., TOASCII, or Punycode encode) is indicated by options. If any errors are encountered, the execution of the
applications is aborted.

9.3. Options

idn recognizes these commands:

-h, --help Print help and exit

-V, --version Print version and exit

-s, --stringprep Prepare string according to nameprep profile
-d, --punycode-decode Decode Punycode

-e, --punycode-encode Encode Punycode

-a, --idna-to-ascii Convert to ACE according to IDNA (default)
-u, --idna-to-unicode Convert from ACE according to IDNA

--allow-unassigned Toggle IDNA AllowUnassigned flag (default=off)
--usestd3asciirules Toggle IDNA UseSTD3ASCIIRules flag (default=0ff)
-p, --profile=STRING Use specified stringprep profile instead

Valid stringprep profiles are 'Nameprep’, 'KRBprep’, 'Nodeprep’,
'Resourceprep’, ’plain’, 'trace’, 'SASLprep’, and 'ISCSlprep’.

--debug Print debugging information (default=off)

39

Chapter 9. Invoking idn

--quiet Silent operation (default=0ff)

9.4. Environment Variables

The CHARSETenvironment variable can be used to override what character set to be used for decoding
incoming data (i.e., on the command line or on the standard input stream), and to encode data to the standard
output. If your system is set up correctly, however, the application will guess which character set is used
automatically. Example usage:

$ CHARSET=IS0O-8859-1 idn --punycode-encode

9.5. Examples

Standard usage, reading input from standard input;

jas@latte:~$ idn

libidn 0.3.5

Copyright 2002, 2003 Simon Josefsson.

GNU Libidn comes with NO WARRANTY, to the extent permitted by law.
You may redistribute copies of GNU Libidn under the terms of

the GNU Lesser General Public License. For more information

about these matters, see the file named COPYING.LIB.

Type each input string on a line by itself, terminated by a newline character.
raksmorgas

xn--rksmrgs-5waolo

jas@latte:~$

Reading input from command line, and disabling copyright and license information:

jas@latte:~$ idn --quiet raksmorgas blabzergrgd
xn--rksmrgs-5waolo

xn--blbrgrd-fxak7p

jas@latte:~$

Accessing a specific StringPrep profile directly:

40

Chapter 9. Invoking idn

@

jas@latte:~$ idn --quiet --profile=SASLprep --stringprep tef3t
teldta
jas@latte:~$

41

Chapter 10. Emacs API

Included in Libidn arepunycode.el andidna.el that provides an Emacs Lisp API to (a limited set of) the
Libidn API. This section describes the API. Currently the IDNA API always set#eSTD3ASCIIRules flag
and clear thé\llowUnassigned flag, in the future there may be functionality to specify these flags via the API.

10.1. Punycode Emacs API

punycode-program Name of the GNU Libidridn application. The default igin . This variable can be
customized.

punycode-environment List of environment variable definitions prependegtacess-environment . The
default is("CHARSET=UTF-8") . This variable can be customized.

punycode-encode-parameters List of parameters passedponycode-program to invoke punycode
encoding mode. The default({s-quiet" "--punycode-encode") . This variable can be customized.
punycode-decode-parameters Parameters passedpganycode-program to invoke punycode decoding
mode. The default i§--quiet" "--punycode-decode") . This variable can be customized.

punycode-encode string Returns a Punycode encoding of ¢fiegng , after converting the input into UTF-8.

punycode-decode string Returns a possibly multibyte string which is the decoding ofttieg which is a
punycode encoded string.

10.2. IDNA Emacs API

idna-program Name of the GNU Libidridn application. The default igin . This variable can be customized.

idna-environment List of environment variable definitions prependegbtacess-environment . The
default is("CHARSET=UTF-8") . This variable can be customized.

idna-to-ascii-parameters List of parameters passeditina-program to invoke IDNA ToASCII mode.
The default ig"--quiet" "--idna-to-ascii" "--usestd3asciirules") . This variable can be
customized.

idna-to-unicode-parameters Parameters pass@tha-program to invoke IDNA ToUnicode mode. The
default is("--quiet" "--idna-to-unicode" "--usestd3asciirules") . This variable can be
customized.

42

Chapter 10. Emacs API

idna-to-ascii string Returns an ASCII Compatible Encoding (ACE) of the string computed by the IDNA
ToASCII operation on the inputring , after converting the input to UTF-8.

idna-to-unicode string Returns a possibly multibyte string which is the output of the IDNA ToUnicode
operation computed on the inpstting

43

Chapter 11. Acknowledgements

The punycode code was taken from the IETF IDN Punycode specification, by Adam M. Costello.
Some functions (see nfkc.c and toutf8.c) has been borrowed from GLib downloaded from www.gtk.org.

Several people reported bugs, sent patches or suggested improvements, see the file THANKS.

44

Concept Index

A

AlX, seeSection 2.3
Autoconf tests, seBection 3.5

C

command line, se€hapter 9

Compiling your application, seection 3.4
Configure tests, se®ection 3.5
Contributing, se&ection 2.7

D

Debian, se&ection 2.3
Download, se&ection 2.5

E

Examples, se€hapter 8

F

FreeBSD, se&ection 2.3

H

Hacking, se&ection 2.7
HP-UX, seeSection 2.3

idn, seeChapter 9

IDNA Functions, se€hapter 7
Installation, se&ection 2.5
invokingidn, seeChapter 9
IRIX, seeSection 2.3

M

MacOS X, se&ection 2.3
Mandrake, seS&ection 2.3

N

NetBSD, seéection 2.3

O

OpenBSD, seS&ection 2.3

P

Punycode Functions, s&hapter 6

R

RedHat, se&ection 2.3
RedHat Advanced Server, sBection 2.3
Reporting Bugs, seBection 2.6

S

Solaris, se&ection 2.3

Stringprep Functions, sé&ehapter 5
SuSE, se&ection 2.3

SuSE Linux, se&ection 2.3

T

Tru64, seesSection 2.3

U

Utility Functions, seeChapter 4

W

Windows, seeSection 2.3

45

Function and Variable
Index

idna-to-ascii, se€hapter 10
idna-to-unicode, se€hapter 10
idna_to_ascii_4i, se€hapter 7
idna_to_ascii_4z, seehapter 7
idna_to_ascii_8z, segehapter 7
idna_to_ascii_lz, se€hapter 7
idna_to_unicode_44i, s&ehapter 7
idna_to_unicode_4z4z, s€&hapter 7
idna_to_unicode_8z4z, s&hapter 7
idna_to_unicode_8z8z, s&hapter 7
idna_to_unicode_8zlz, s&hapter 7
idna_to_unicode_lzlz, seghapter 7

P

punycode-decode, s&hapter 10
punycode-encode, s&hapter 10
punycode_decode, s&hapter 6
punycode_encode, s€&hapter 6

S

stringprep, se€hapter 5

stringprep_4i, se€hapter 5

stringprep_4zi, se€hapter 5
stringprep_check_version, s8ection 3.3
stringprep_convert, séeghapter 4
stringprep_iscsi, se@hapter 5
stringprep_kerberos5, s€@hapter 5
stringprep_locale_charset, s8bapter 4
stringprep_locale_to_utf8, s&hapter 4
stringprep_nameprep_no_unassigned Gleapter 5
stringprep_plain, se€hapter 5
stringprep_profile, se€hapter 5
stringprep_ucs4_nfkc_normalize, Sekapter 4
stringprep_ucs4_to_utf8, s€&hapter 4
stringprep_unichar_to_utf8, s€hapter 4
stringprep_utf8_nfkc_normalize, s€hapter 4
stringprep_utf8_to_locale, s&hapter 4
stringprep_utf8_to_ucs4, s&hapter 4
stringprep_utf8_to_unichar, s&hapter 4
stringprep_xmpp_nodeprep, S8hapter 5

stringprep_xmpp_resourceprep, S&epter 5

46

Appendix A. Copying The Library

Version 2.1, February 1999

Copyright © 1991, 1999 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

A.l. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public Licenses are intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software—typically
libraries—of the Free Software Foundation and other authors who decide to use it. You can use it too, but we
suggest you first think carefully about whether this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service
if you wish); that you receive source code or can get it if you want it; that you can change the software and use
pieces of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you
to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all
the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link
other code with the library, you must provide complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license,
which gives you legal permission to copy, distribute and/or modify the library.

47

Appendix A. Copying The Library

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the recipients should know that what they have is not the
original version, so that the original author’s reputation will not be affected by problems that might be introduced
by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a
company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent
holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with
the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This
license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different
from the ordinary General Public License. We use this license for certain libraries in order to permit linking
those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the two
is legally speaking a combined work, a derivative of the original library. The ordinary General Public License
therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with the library.

We call this license theesserGeneral Public License because it dhessto protect the user’s freedom than the
ordinary General Public License. It also provides other free software developers Less of an advantage over
competing non-free programs. These disadvantages are the reason we use the ordinary General Public License
for many libraries. However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain
library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the
library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs enables a greater number of people to
use a large body of free software. For example, permission to use the GNU C Library in non-free programs
enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that the user
of a program that is linked with the Library has the freedom and the wherewithal to run that program using a
modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a “work based on the library” and a “work that uses the library”. The former contains code
derived from the library, whereas the latter must be combined with the library in order to run.

1. This License Agreement applies to any software library or other program which contains a notice placed by
the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser
General Public License (also called “this License”). Each licensee is addressed as “you”.

48

Appendix A. Copying The Library

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked
with application programs (which use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these
terms. A “work based on the Library” means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter, translation is included without limitation in
the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running a program using the Library is not restricted, and output from such a program
is covered only if its contents constitute a work based on the Library (independent of the use of the Library
in a tool for writing it). Whether that is true depends on what the Library does and what the program that
uses the Library does.

. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the
Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you changed the files and the
date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third parties under the terms of
this License.

d. If a facility in the modified Library refers to a function or a table of data to be supplied by an application
program that uses the facility, other than as an argument passed when the facility is invoked, then you
must make a good faith effort to ensure that, in the event an application does not supply such function
or table, the facility still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied function
or table used by this function must be optional: if the application does not supply it, the square root
function must still compute square roots.)

49

Appendix A. Copying The Library

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

4. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a
given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

5. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you accompany it with the
complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

6. A program that contains no derivative of any portion of the Library, but is designed to work with the Library
by being compiled or linked with it, is called a “work that uses the Library”. Such a work, in isolation, is not
a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of
the Library (because it contains portions of the Library), rather than a “work that uses the library”. The
executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether this

50

Appendix A. Copying The Library

is true is especially significant if the work can be linked without the Library, or if the work is itself a library.
The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length), then the use of the object file is unrestricted,

regardless of whether it is legally a derivative work. (Executables containing this object code plus portions

of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under
the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they
are linked directly with the Library itself.

. As an exception to the Sections above, you may also combine or link a “work that uses the Library” with the
Library to produce a work containing portions of the Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library
and its use are covered by this License. You must supply a copy of this License. If the work during execution
displays copyright notices, you must include the copyright notice for the Library among them, as well as a
reference directing the user to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with the complete machine-readable
“work that uses the Library”, as object code and/or source code, so that the user can modify the Library
and then relink to produce a modified executable containing the modified Library. (It is understood that
the user who changes the contents of definitions files in the Library will not necessarily be able to
recompile the application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that
(1) uses at run time a copy of the library already present on the user’s computer system, rather than
copying library functions into the executable, and (2) will operate properly with a modified version of
the library, if the user installs one, as long as the modified version is interface-compatible with the
version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

d. If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

e. Verify that the user has already received a copy of these materials or that you have already sent this user
a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the materials to be
distributed need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

51

10.

11.

12.

Appendix A. Copying The Library

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do
not normally accompany the operating system. Such a contradiction means you cannot use both them and
the Library together in an executable that you distribute.

. You may place library facilities that are a work based on the Library side-by-side in a single library together

with other library facilities not covered by this License, and distribute such a combined library, provided that
the separate distribution of the work based on the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the Library, uncombined with
any other library facilities. This must be distributed under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is
void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on
the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

52

Appendix A. Copying The Library

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

13.1f the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

14.The Free Software Foundation may publish revised and/or new versions of the Lesser General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this
License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

15.1If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

16.BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

17.IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

A.2. How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend
making it free software that everyone can redistribute and change. You can do so by permitting redistribution
under these terms (or, alternatively, under the terms of the ordinary General Public License).

53

Appendix A. Copying The Library

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

one line to give the library’s name and an idea of what it does.
Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,
USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library
‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon , 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

54

Appendix B. Copying This Manual

B.1. GNU Free Documentation License

Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written docfresntthe sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

55

Appendix B. Copying This Manual

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s
title, preceding the beginning of the body of the text.

3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

4. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

56

Appendix B. Copying This Manual

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a complete Transparent copy of the
Document, free of added material, which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

.MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled “History” in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J.Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may omit a network location for a work

57

Appendix B. Copying This Manual

that was published at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the section’s title, and preserve
in the section all the substance and tone of each of the contributor acknowledgments and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a uniqgue number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original documents,
forming one section entitled “History”; likewise combine any sections entitled “Acknowledgments”, and
any sections entitled “Dedications”. You must delete all sections entitled “Endorsements.”

58

Appendix B. Copying This Manual

7.COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of
the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is
called an “aggregate”, and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate. Otherwise they must appear on covers around
the whole aggregate.

9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License provided that you
also include the original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

11.FUTURE REVISIONS OF THIS LICENSE

59

Appendix B. Copying This Manual

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

B.2. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (C) year your name

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles , with the
Front-Cover Texts being list , and with the Back-Cover Texts
being list . A copy of the license is included in the section

entitted “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which ones are invariant.
If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts b&ting”;
likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their use
in free software.

60

