25-May-1996, by Ingolf Bayer

I have developed my own Database-Module with VB. This Database-Moduel I have ported to Delphi. I work with Delphi FT5-EEP because in Germany the FT6 and the Final-Version are not shipped.

I am not a Delphi-Freak and this DB-Object is my first work in Delphi. The port from VB To Delphi isn’t complete yet (Sorry). If you would have the complete and tested DB-Object then you should send me a line in 2-3 Months. The Exception-Handling isn’t coded.

The port is intended for Performance-Comparissons to VB, and to get Impressions of Delphi. Use at your own risk. The Unit works on all DBMS (Access too).

These Functions are implemented:

Database-Object

OpenDatabase

ExecuteSQL	(Not implemented Yet)

Close

Dynaset-Object

CreateDynaset

CreateInsertDynaset	(Very fast Bulk-Insert not implemented Yet)

Close

PrepareDynaset

ExecuteDynaset

MoveFirst

MoveNext

MovePrevious

MoveLast

AddNew

Update

Fields-Property

Random	(Fast and Random-Access on the primary Index not implemented yet)

How to use:

Example 1:

In this Example a PreparedDynaset is used. This is the fastest way to get random Records from a Database. In this case the Field f001 is the primary Index of the table “customer_table”. The Sql-Script is designed for Database-Independent use:

db.DL		The XDB-Unit stores the actual Delimiter of the DBMS in this Field.

db.Owner	The XDB-Unit stores the Owner of the current Database in this Field.

�

Figure � SEQ Figure * ARABIC �1� - Example #1

Expample 2:

�

Figure � SEQ Figure * ARABIC �2� - Example #2

Our conception of Record-Locking:

We write Database-Independent Software. Many DBMS support only Page-Locking. In our Application we have many small tables with a record length < 200. On such tables the Page-Locking is a very bad thing.

Given this background, we don’t use any locking. On unimportant tables the user who modified the record at last is the winner. Changes from other Users are lost!

On important tables we have one field (Type Integer 4Byte) in the table. On every Update the XDB-Unit increments this field, and checks it before the record is written to the DBMS. So the XDB_Unit can detect changes from other Users. We called this Field “Timestamp” but it isn’t really a Timestamp-Field because many DBMS (like Access) don’t support Timestamp-Fields. It is simply an Integer-Field. If you use such a field you should code this as the last Parameter of your CreateDynaset-Command. Then the XDB-Unit will work for you on that field.

I hope this is useful for you

Let me know if you have made anything better in this unit!

greetings from Germany,

Ingolf Bayer

uses	XDB;

var

dyn:	XDB_Dynaset;

db:	XDB_Database;

e:		String;

p:		Array[0..255] of Char;

begin			{ Open the Database. The first parmater is the Connect String. (Optional) }

db := XDB_Database.OpenDatabase(‘’,0);

e := ‘Select * from ‘ + db.Owner + db.DL + ‘customer_table’ + db.DL +

	‘ WHERE ‘ +db.DL + ‘f001’ + db.DL + ‘= ?’;	{ Make an SQL-Statement }

StrPCopy(p, e);	{ Convert it to Null-Terminated String}

{

| Create the Dynaset with Primary-Index ‘f001’

| and one Parameter of Type SQL_CHAR

}

dyn := db.PrepareDynaset(SQL_CHAR, 0, 0, p , 0,’f001’,0,’’);

dyn.ExecuteDynaset(‘4711’, ‘’, ‘’);	{Read record with Parameter-Value ‘4711’ }

If dyn.EOF Then	{Record not found}

else Begin	{The record which field ‘f001’ has the value ‘4711’ is readed}

Display_Field1.Text := dyn.Fields[’f001’];

Display_Field2.Text := dyn.Fields[’customer_name’];

Display_Field3.Text := dyn.Fields[’city’];

{ If you move a value into the dynaset the XDB-Unit notice a Change on

| this field. The Update-Method writes only such fields that changed!

| This improve performance.

}

dyn.Fields[’city’] := ‘Chicago’;

dyn.Update;

end;

dyn.close;

db.close;

end.

var

dyn:	XDB_Dynaset;

db:	XDB_Database;

e: 	String;

p:	Array[0..255] of Char;

begin			{ Open the Database The first parmater is the Connect String. (Optional) }

db := XDB_Database.OpenDatabase(‘’,0);

e := ‘Select * from ‘ + db.Owner + db.DL + ‘customer_table’ + db.DL;	{ SQL Statement }

StrPCopy(p, e);		{ Convert it to Null-Terminated String}

{ Create the Dynaset with Primary-Index ‘f001’ and ScrollMode=1

| ScrollMode:

|	0 = Only forward Scrolling (MoveNext)

|	1 = Forward and Backward-Scrolling.

| 		Only the Primary-Key is written to a Temp-File. On every move the

|		 record is read from the Database. The Dynaset is always actual.

|		This Mode is the most usefull Mode!

|	2 = Forward and Backward-Scrolling.

|		The hole Record is written to a Temp-File. The Dynaset doesn’t detect any

|		changes from other User’s. This Mode is only usefull for short record-

|		length because the temp-file blow up on large tables.

| The Dynaset is in every mode updateable

}

dyn := db.CreateDynaset(p , 0,’f001’,1,’’);

{

| The first record is read automatic. If no records found the AddNew-Method

| is appeared automatic

}

While Not dyn.EOF Do Begin

Display_Field1.Text := dyn.Fields[’f001’];

Display_Field2.Text := dyn.Fields[’customer_name’];

Display_Field3.Text := dyn.Fields[’city’];

{

| If you move a value into the dynaset the XDB-Unit notice an Change on this

| field. The Update-Method writes only such fields who has changed! This

| improve performance A t t e n t i o n ! Iif you will make an update on that

| dynaset you should specify the Primary-Index (In thie Case f001) at the

| CreateDynaset-Method. If you don’t specify the Primary-Index-Field the

| Update-Method make the changes on every Row in that table!!!!!!!

}

dyn.Fields[’city’] := ‘Chicago’;

dyn.Fields[’tel’] := ‘001 - 23442233’;

dyn.Update;

dyn.MoveNext;

end;

dyn.close;

db.close;

end.

