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Foreword

This manual documents the release 4.02 of the OCaml system. It is organized as follows.
e Part[[] “An introduction to OCaml”, gives an overview of the language.
e Part “The OCaml language”, is the reference description of the language.

e Part “The OCaml tools”, documents the compilers, toplevel system, and programming
utilities.

o Part “The OCaml library”, describes the modules provided in the standard library.

e Part “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

OCaml runs on several operating systems. The parts of this manual that are specific to one
operating system are presented as shown below:

Unix:
This is material specific to the Unix family of operating systems, including Linux and
MacOS X.

Windows:
This is material specific to Microsoft Windows (2000, XP, Vista, Seven).

License

The OCaml system is copyright (©) 1996-2014 Institut National de Recherche en Informatique et
en Automatique (INRIA). INRIA holds all ownership rights to the OCaml system.

The OCaml system is open source and can be freely redistributed. See the file LICENSE in the
distribution for licensing information.

The present documentation is copyright (C) 2014 Institut National de Recherche en Informatique
et en Automatique (INRIA). The OCaml documentation and user’s manual may be reproduced and
distributed in whole or in part, subject to the following conditions:

e The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.



10 Foreword

e Any translation or derivative work of the OCaml documentation and user’s manual must be
approved by the authors in writing before distribution.

e If you distribute the OCaml documentation and user’s manual in part, instructions for ob-
taining the complete version of this manual must be included, and a means for obtaining a
complete version provided.

e Small portions may be reproduced as illustrations for reviews or quotes in other works without
this permission notice if proper citation is given.

Availability

The complete OCaml distribution can be accessed via the Web site http://caml.inria.fr/. This
Web site contains a lot of additional information on OCaml.


http://caml.inria.fr/

Part 1

An introduction to OCaml
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Chapter 1

The core language

This part of the manual is a tutorial introduction to the OCaml language. A good familiarity with
programming in a conventional languages (say, Pascal or C) is assumed, but no prior exposure to
functional languages is required. The present chapter introduces the core language. Chapter [2|deals
with the module system, chapter [3| with the object-oriented features, chapter |4 with extensions to
the core language (labeled arguments and polymorphic variants), and chapter 5| gives some advanced
examples.

1.1 Basics

For this overview of OCaml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the 0OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types OCaml phrases terminated by ;; in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

# 142%3;;

- : int =7

# let pi = 4.0 *. atan 1.0;;

val pi : float = 3.14159265358979312

# let square x = X *. X;;
val square : float -> float = <fun>

# square (sin pi) +. square (cos pi);;
- : float = 1.

The OCaml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

13
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# 1.0 x 2;;
Error: This expression has type float but an expression was expected of type
int

Recursive functions are defined with the let rec binding:

# let rec fib n =
# if n < 2 then n else fib (n-1) + fib (n-2);;
val fib : int -> int = <fun>

# f£ib 10;;
- : int = 556

1.2 Data types

In addition to integers and floating-point numbers, OCaml offers the usual basic data types:
booleans, characters, and character strings.

# (1 < 2) = false;;

- : bool = false
# 'a';;
- : char = 'a'

# "Hello world";;
- : string = "Hello world"

Predefined data structures include tuples, arrays, and lists. General mechanisms for defining
your own data structures are also provided. They will be covered in more details later; for now, we
concentrate on lists. Lists are either given in extension as a bracketed list of semicolon-separated
elements, or built from the empty list [1 (pronounce “nil”) by adding elements in front using the

: (“cons”) operator.

# let 1 = ["is"; "a"; "tale"; "told"; "etc."];;

val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

# "Life" :: 1;;

- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other OCaml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in OCaml. Similarly, there is no
explicit handling of pointers: the OCaml compiler silently introduces pointers where necessary.

As with most OCaml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have the exact same shape as list expressions, with identifier representing
unspecified parts of the list. As an example, here is insertion sort on a list:

# let rec sort 1lst =

# match 1st with

# 0 -> 1

# | head :: tail -> insert head (sort tail)
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# and insert elt 1lst =
# match lst with

# [0 -> [elt]

# | head :: tail -> if elt <= head then elt :: 1st else head :: insert elt tail
#55

val sort : 'a list -> 'a list = <fun>

val insert : 'a -> 'a list -> 'a list = <fun>

# sort 1;;

- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, 'a list -> 'a list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type 'a is a type variable, and stands for
any given type. The reason why sort can apply to lists of any type is that the comparisons (=,
<=, etc.) are polymorphic in OCaml: they operate between any two values of the same type. This
makes sort itself polymorphic over all list types.

# sort [6;2;5;3];;

- : int list = [2; 3; 5; 6]

# sort [3.14; 2.718]1;;

- : float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list con-
taining the same elements as the input list, in ascending order. There is actually no way in OCaml
to modify in-place a list once it is built: we say that lists are immutable data structures. Most
OCaml data structures are immutable, but a few (most notably arrays) are mutable, meaning that
they can be modified in-place at any time.

1.3 Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can
be passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

# let deriv f dx = function x -> (f (x +. dx) -. f x) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>

# let sin' = deriv sin 1le-6;;

val sin' : float -> float = <fun>

# sin' pi;;

- : float = -1.00000000013961143
Even function composition is definable:

# let compose f g = function x -> £ (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

# let cos2 = compose square cos;;
val cos2 : float -> float = <fun>



16

Functions that take other functions as arguments are called “functionals”, or “higher-order
functions”. Functionals are especially useful to provide iterators or similar generic operations over
a data structure. For instance, the standard OCaml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

# List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

# let rec map £ 1 =

# match 1 with

# 0 -> [

# | hd :: t1 -> f hd :: map f tl;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

# type ratio = {num: int; denom: int};;
type ratio = { num : int; denom : int; }

# let add_ratio rl1 r2 =

# {num = ri1.num * r2.denom + r2.num * rl.denom;

# denom = rl.denom * r2.denom};;
val add_ratio : ratio -> ratio -> ratio = <fun>

# add_ratio {num=1; denom=3} {num=2; denom=5};;
- : ratio = {num = 11; denom = 15}

The declaration of a variant type lists all possible shapes for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):

# type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

# type sign = Positive | Negative;;
type sign = Positive | Negative

# let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>
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To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

# let add_num nl n2 =

# match (nl, n2) with

# (Int i1, Int i2) ->

# (* Check for overflow of integer addition *)
# if sign_int il = sign_int i2 && sign_int (il + i2) <> sign_int il
# then Float(float il +. float i2)

# else Int(il + i2)

# | (Int il, Float f2) -> Float(float il +. £2)

# | (Float f1, Int i2) -> Float(fl +. float i2)

# | (Float f1, Float f2) -> Float(f1 +. f2)

# | (Error, _) -> Error

# |

(_, Error) -> Error;;
val add_num : number -> number -> number = <fun>

# add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

# type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
type 'a btree = Empty | Node of 'a * 'a btree * 'a btree

This definition reads as follow: a binary tree containing values of type 'a (an arbitrary type) is
either empty, or is a node containing one value of type 'a and two subtrees containing also values
of type 'a, that is, two 'a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

# let rec member x btree =

# match btree with

# Empty -> false

# | Node(y, left, right) ->

# if x = y then true else
#

if x < y then member x left else member x right;;
val member : 'a -> 'a btree -> bool = <fun>

# let rec insert x btree =
# match btree with
Empty -> Node(x, Empty, Empty)
| Node(y, left, right) ->
if x <= y then Node(y, insert x left, right)

else Node(y, left, insert x right);;
val insert : 'a -> 'a btree -> 'a btree = <fun>

#
#
#
#
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1.5 Imperative features

Though all examples so far were written in purely applicative style, OCaml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either given in extension between [| and |] brackets, or
allocated and initialized with the Array.create function, then filled up later by assignments. For
instance, the function below sums two vectors (represented as float arrays) componentwise.

# let add_vect vl v2 =

# let len = min (Array.length v1) (Array.length v2) in
# let res = Array.create len 0.0 in

# for i =0 to len - 1 do
#

#

#

res. (i) <- vi.(1) +. v2.(1)
done;
res;;
Warning 3: deprecated: Array.create
val add_vect : float array -> float array -> float array = <fun>

# add_vect [| 1.0; 2.0 [] [l 3.0; 4.0 11;;
- : float array = [[4.; 6.]]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

# type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

# let translate p dx dy =
# p.x <-p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>

# let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0.; y = 0.}

# translate mypoint 1.0 2.0;;
- : unit = ()

# mypoint;;
- : mutable_point = {x = 1.; y = 2.}

OCaml has no built-in notion of variable — identifiers whose current value can be changed by
assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells (or
one-element arrays), with operators ! to fetch the current contents of the reference and := to assign
the contents. Variables can then be emulated by let-binding a reference. For instance, here is an
in-place insertion sort over arrays:

# let insertion_sort a =

# for i = 1 to Array.length a - 1 do
# let val_i = a.(i) in

# let j = ref i in
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# while !j > 0 && val_i < a.(!j - 1) do
# a.(13) <= a.(1j - 1);

# joi=1'j-1

# done;

# a.(!j) <- val_i

# done;;

val insertion_sort : 'a array -> unit = <fun>

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

# let current_rand = ref O;;
val current_rand : int ref = {contents = O}

# let random () =
# current_rand := !current_rand * 25713 + 1345;

# lcurrent_rand;;
val random : unit -> int = <fun>

Again, there is nothing magical with references: they are implemented as a single-field mutable
record, as follows.

# type 'a ref = { mutable contents: 'a };;
type 'a ref = { mutable contents : 'a; }

# let (! ) r = r.contents;;

val ( ! ) : 'a ref -> 'a = <fun>
# let ( := ) r newval = r.contents <- newval;;
val ( := ) : 'a ref -> 'a -> unit = <fun>

In some special cases, you may need to store a polymorphic function in a data structure, keeping
its polymorphism. Without user-provided type annotations, this is not allowed, as polymorphism

is only introduced on a global level. However, you can give explicitly polymorphic types to record
fields.

# type idref = { mutable id: 'a. 'a -> 'a };;
type idref = { mutable id : 'a. 'a -> 'a; }

# let r = {id = fun x -> x};;
val r : idref = {id = <fun>}

# let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>

# r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()

#gr;;

called id

called id

- : int * bool = (1, true)
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1.6 Exceptions

OCaml provides exceptions for signalling and handling exceptional conditions. Exceptions can
also be used as a general-purpose non-local control structure. Exceptions are declared with the
exception construct, and signalled with the raise operator. For instance, the function below for
taking the head of a list uses an exception to signal the case where an empty list is given.

# exception Empty_list;;
exception Empty_list

# let head 1 =
# match 1 with

# [1 -> raise Empty_list
# | hd :: t1l -> hd;;

val head : 'a list -> 'a = <fun>
# head [1;2];;

- : int =1

# head []1;;

Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:

# List.assoc 1 [(0, "zero"); (1, "one")];;
- : string = "one"

# List.assoc 2 [(0, "zero"); (1, "one")];;
Exception: Not_found.

Exceptions can be trapped with the try...with construct:

# let name_of_binary_digit digit =

#  try

# List.assoc digit [0, "zero"; 1, "one"]
# with Not_found ->

# "not a binary digit";;

val name_of_binary_digit : int -> string = <fun>

# name_of_binary_digit O;;
- : string = "zero"

# name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part is actually a regular pattern-matching on the exception value. Thus, several
exceptions can be caught by one try...with construct. Also, finalization can be performed by
trapping all exceptions, performing the finalization, then raising again the exception:
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# let temporarily_set_reference ref newval funct =
# let oldval = !ref in
#  try

# ref := newval;
# let res = funct () in
# ref := oldval;
# res

# with x ->

# ref := oldval;

# raise x;;

val temporarily_set_reference : 'a ref -> 'a -> (unit -> 'b) -> 'b = <fun>

1.7 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of OCaml
for symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:

# type expression =

Const of float
| Var of string
| Sum of expression * expression (x el + e2 %)
| Diff of expression * expression (x el - e2 %)
|
|

Prod of expression * expression (x el * e2 %)
Quot of expression * expression (* el / e2 x)

H OH H OH OHF H H

’

type expression =

Const of float

Var of string

Sum of expression * expression

Prod of expression * expression

/
/
| Diff of expression * expression
/
| Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list.

# exception Unbound_variable of string;;
exception Unbound_variable of string

# let rec eval env exp =
# match exp with

# Const ¢ > ¢

# | Var v —>

# (try List.assoc v env with Not_found -> raise (Unbound_variable v))
# | Sum(f, g) -> eval env f +. eval env g

# | Diff(f, g) -> eval env f -. eval env g
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# | Prod(f, g) -> eval env f *. eval env g
# | Quot(f, g) -> eval env f /. eval env g;;
val eval : (string * float) list -> expression -> float = <fun>

# eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

# let rec deriv exp dv =

# match exp with

# Const ¢ -> Const 0.0

# | Var v => if v = dv then Const 1.0 else Const 0.0

# | Sum(f, g) -> Sum(deriv f dv, deriv g dv)

# | Diff(f, g) -> Diff(deriv f dv, deriv g dv)

# | Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))

# | Quot(f, g) -> Quot(Diff (Prod(deriv f dv, g), Prod(f, deriv g dv)),
# Prod(g, g))

#55

val deriv : expression -> string -> expression = <fun>

# deriv (Quot(Const 1.0, Var "x")) "x";;

- : expression =

Quot (Diff (Prod (Const 0., Var "x"), Prod (Const 1., Comnst 1.)),
Prod (Var "x", Var "x"))

1.8 Pretty-printing and parsing

As shown in the examples above, the internal representation (also called abstract syntaz) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the
case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
precedence and print parentheses around an operator only if its precedence is less than the current
precedence

# let print_expr exp =

#  (x Local function definitions *)

# let open_paren prec op_prec =

# if prec > op_prec then print_string "(" in

# let close_paren prec op_prec =

# if prec > op_prec then print_string ")" in

# let rec print prec exp = (* prec is the current precedence *)
# match exp with

# Const c¢ -> print_float c
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| Var v -> print_string v
| Sum(f, g) —>
open_paren prec O;
print O f; print_string " + "; print 0 g;
close_paren prec O
| Diff(f, g) —>
open_paren prec O;
print O f; print_string " - "; print 1 g;
close_paren prec 0O
| Prod(f, g) —>
open_paren prec 2;
print 2 f; print_string " * "; print 2 g;
close_paren prec 2
| Quot(f, g —->
open_paren prec 2;
print 2 f; print_string " / "; print 3 g;
close_paren prec 2
in print O exp;;
val print_expr : expression —> unit = <fun>

H OH HF OH HF OH OH H OH HHFH HHFH K HH

# let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Const 1.)

# print_expr e; print_newline ();;

2. *x x + 1.

- : unit = ()

# print_expr (deriv e "x"); print_newline ();;
2. 1. + 0. *xx + 0.

- : unit = ()

1.9 Standalone OCaml programs

All examples given so far were executed under the interactive system. OCaml code can also be com-
piled separately and executed non-interactively using the batch compilers ocamlc and ocamlopt.
The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must call printing functions ex-
plicitly to produce some output. Here is a sample standalone program to print Fibonacci numbers:

(* File fib.ml *)
let rec fib n =
if n < 2 then 1 else fib (n-1) + fib (n-2);;
let main () =
let arg = int_of_string Sys.argv.(l) in
print_int (fib arg);
print_newline ();
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exit 0;;
main ();;

Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus
the first command-line parameter. The program above is compiled and executed with the following
shell commands:

$ ocamlc -o fib fib.ml
$ ./fib 10

89

$ ./fib 20

10946

More complex standalone OCaml programs are typically composed of multiple source files, and
can link with precompiled libraries. Chapters [8] and explain how to use the batch compilers
ocamlc and ocamlopt. Recompilation of multi-file OCaml projects can be automated using the
ocamlbuild compilation manager, documented in chapter
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The module system

This chapter introduces the module system of OCaml.

2.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme
for these definitions. This avoids running out of names or accidentally confusing names. Such a
package is called a structure and is introduced by the struct...end construct, which contains an
arbitrary sequence of definitions. The structure is usually given a name with the module binding.
Here is for instance a structure packaging together a type of priority queues and their operations:

# module PrioQueue =

if lprio <= rprio
then Node(lprio, lelt, remove_top left, right)

# struct

# type priority = int

# type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue
# let empty = Empty

# let rec insert queue prio elt =

# match queue with

# Empty -> Node(prio, elt, Empty, Empty)

# | Node(p, e, left, right) ->

# if prio <=p

# then Node(prio, elt, insert right p e, left)

# else Node(p, e, insert right prio elt, left)

# exception Queue_is_empty

# let rec remove_top = function

# Empty -> raise Queue_is_empty

# | Node(prio, elt, left, Empty) -> left

# | Node(prio, elt, Empty, right) -> right

# | Node(prio, elt, (Node(lprio, lelt, _, _) as left),

# (Node(rprio, relt, _, _) as right)) ->
#

#
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# else Node(rprio, relt, left, remove_top right)
# let extract = function
# Empty -> raise Queue_is_empty
# | Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)
# end;;
module PrioQueue :
sig

type priority = int
type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue

val empty : 'a queue

val insert : 'a queue -> priority -> 'a -> 'a queue

exception Queue_is_empty

val remove_top : 'a queue -> 'a queue

val extract : 'a queue -> priority * 'a * 'a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue.insert is the function insert defined
inside the structure PrioQueue and PrioQueue.queue is the type queue defined in PrioQueue.

# PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string Prio(ueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

2.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

# module type PRIOQUEUE =

# sig
# type priority = int (* still concrete *)
# type 'a queue (* now abstract *)
# val empty : 'a queue
# val insert : 'a queue -> int -> 'a -> 'a queue
# val extract : 'a queue -> int * 'a * 'a queue
# exception Queue_is_empty
# end;;
module type PRIOQUEUE =
sig

type priority = int
type 'a queue
val empty : 'a queue
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val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception (ueue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

# module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE

# AbstractPrioQueue.remove_top;;
Error: Unbound value AbstractPrio(lueue.remove_top

# AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;
An alternate syntax is provided for the above:

module PrioQueue : PRIOQUEUE = struct ... end;;

2.3 Functors

Functors are “functions” from structures to structures. They are used to express parameterized
structures: a structure A parameterized by a structure B is simply a functor F' with a formal
parameter B (along with the expected signature for B) which returns the actual structure A itself.
The functor F' can then be applied to one or several implementations B; ... B, of B, yielding the
corresponding structures Ay ... A,.

For instance, here is a structure implementing sets as sorted lists, parameterized by a structure
providing the type of the set elements and an ordering function over this type (used to keep the
sets sorted):

# type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

# module type ORDERED_TYPE =

# sig

# type t

# val compare: t -> t -> comparison
# end;;

module type URDERED_TYPE = sig type t val compare : t -> t -> comparison end

# module Set =

# functor (Elt: ORDERED_TYPE) ->
# struct

# type element = Elt.t



[\]
oo

# type set = element list
# let empty = []
# let rec add x s =
# match s with
# 0 -> [x]
# | hd::t1 —>
# match Elt.compare x hd with
# Equal -> s (x x is already in s *)
# | Less ->x :: 8 (* x is smaller than all elements of s *)
# | Greater -> hd :: add x tl
# let rec member x s =
# match s with
# [1 -> false
# | hd::t1 ->
# match Elt.compare x hd with
# Equal -> true (* x belongs to s *)
# | Less -> false (* x is smaller than all elements of s *)
# | Greater -> member x tl
# end;;
module Set :

functor (Elt : ORDERED_TYPE) ->

sig

type element = Elt.t

type set = element list

val empty : 'a list

val add : Elt.t -> EIt.t list -> Elt.t list

val member : Elt.t -> EIt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

# module OrderedString =
# struct

# type t = string
# let compare x y = if x = y then Equal else if x < y then Less else Greater
# end;;
module OrderedString :
sig type t = string val compare : 'a -> 'a -> comparison end

# module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t
type set = element list
val empty : 'a list
val add : OrderedString.t —-> OrderedString.t list —-> OrderedString.t list
val member : OrderedString.t -> OrderedString.t list -> bool
end
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# StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

2.4 Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to
another, more efficient representation of sets without breaking their code. This can be achieved by
restricting Set by a suitable functor signature:

# module type SETFUNCTOR =

#  functor (Elt: ORDERED_TYPE) ->

# sig

# type element = Elt.t (* concrete *)
# type set (* abstract *)
# val empty : set

# val add : element -> set -> set

# val member : element -> set -> bool

# end;;

module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool

end

# module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

# module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
type set = AbstractSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

# AbstractStringSet.add '"gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

# module type SET =
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# sig
# type element
# type set
# val empty : set
# val add : element -> set -> set
# val member : element -> set -> bool
# end;;
module type SET =
sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

# module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (E1t : ORDERED_TYPE) -> SET

# module WrongStringSet = WrongSet (OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
type set = WrongSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set —-> bool
end

# WrongStringSet.add "gee" WrongStringSet.empty;;
Error: This expression has type string but an expression was expected of type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in
the signature SET be declared equal to E1lt.t; unfortunately, this is impossible above since SET
is defined in a context where E1t does not exist. To overcome this difficulty, OCaml provides a
with type construct over signatures that allows enriching a signature with extra type equalities:

# module AbstractSet2 =
# (Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet2 :
functor (E1t : ORDERED_TYPE) ->
sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
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end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet2(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.

# module NoCaseString =
# struct
# type t = string
# let compare sl s2 =
# OrderedString.compare (String.lowercase sl1) (String.lowercase s2)
# end; ;
module NoCaseString :
sig type t = string val compare : string -> string —-> comparison end

# module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
type set = AbstractSet(NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

# NoCaseStringSet.add "FO0" AbstractStringSet.empty;;
Error: This expression has type
AbstractStringSet.set = AbstractSet (OrderedString).set
but an expression was expected of type
NoCaseStringSet.set = AbstractSet (NoCaseString).set

Note that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), they are built upon different orderings
of that type, and different invariants need to be maintained by the operations (being strictly
increasing for the standard ordering and for the case-insensitive ordering). Applying operations
from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or
build lists that violate the invariants of NoCaseStringSet.

2.5 Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-
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cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In OCaml, compilation units are special cases of structures and signatures, and the relationship
between the units can be explained easily in terms of the module system. A compilation unit A
comprises two files:

e the implementation file A.ml, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

e the interface file A.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

These two files together define a structure named A as if the following definition was entered at
top-level:

module A: sig (* contents of file A.mli *) end
= struct (* contents of file A.ml *) end;;

The files that define the compilation units can be compiled separately using the ocamlc -c
command (the —c option means “compile only, do not try to link”); this produces compiled interface
files (with extension .cmi) and compiled object code files (with extension .cmo). When all units
have been compiled, their .cmo files are linked together using the ocamlc command. For instance,
the following commands compile and link a program composed of two compilation units Aux and
Main:

$ ocamlc -c Aux.mli # produces aux.cmi
$ ocamlc -c Aux.ml # produces aux.cmo
$ ocamlc -c Main.mli # produces main.cmi
$ ocamlc -c Main.ml # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of Aux.mli *) end

= struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end

= struct (* contents of Main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in Main.ml and
Main.mli can refer to definition in Aux.ml, using the Aux.ident notation, provided these definitions
are exported in Aux.mli.

The order in which the .cmo files are given to ocamlc during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Note that only top-level structures can be mapped to separately-compiled files, but neither
functors nor module types. However, all module-class objects can appear as components of a
structure, so the solution is to put the functor or module type inside a structure, which can then
be mapped to a file.



Chapter 3

Objects in OCaml

(Chapter written by Jérome Vouillon, Didier Rémy and Jacques Garrigue)

This chapter gives an overview of the object-oriented features of OCaml. Note that the relation
between object, class and type in OCaml is very different from that in mainstream object-oriented
languages like Java or C++4, so that you should not assume that similar keywords mean the same
thing.

3.1 Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The
initial value of the instance variable is 0. The variable x is declared mutable, so the method move
can change its value.

# class point =
# object
# val mutable x = 0
# method get_x = x
# method move d = x <- x + d
# end;;
class point :
object val mutable x : int method get_x : int method move : int -> unit end

We now create a new point p, instance of the point class.

# let p = new point;;
val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the
methods of class point along with their types.

We now invoke some methods to p:

# pHget_x;;
- :int =0
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# p#move 3;;
- : unit = ()
# pHget_x;;
- : int = 3

The evaluation of the body of a class only takes place at object creation time. Therefore, in the
following example, the instance variable x is initialized to different values for two different objects.

# let x0 = ref O;;
val x0 : int ref = {contents = O}

# class point =

# object

# val mutable x = incr x0; !x0
# method get_x = x

# method move d = x <- x + d

# end;;

class point :
object val mutable x : int method get_x : int method move : int -> unit end

# new point#get_x;;
- : int =1

# new point#get_x;;
- :int = 2

The class point can also be abstracted over the initial values of the x coordinate.

# class point = fun x_init ->
# object
# val mutable x = x_init
# method get_x = x
# method move d = x <- x + d
# end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

Like in function definitions, the definition above can be abbreviated as:

# class point x_init =
# object
# val mutable x = x_init
# method get_x = x
# method move d = x <- x + d
# end;;
class point :
int ->

object val mutable x : int method get_x : int method move : int -> unit end
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An instance of the class point is now a function that expects an initial parameter to create a point
object:

# new point;;
- : int -> point = <fun>
# let p = new point 7;;

val p : point = <obj>

The parameter x_init is, of course, visible in the whole body of the definition, including methods.
For instance, the method get_offset in the class below returns the position of the object relative
to its initial position.

# class point x_init =
# object
# val mutable x = x_init
# method get_x = x
# method get_offset = x - x_init
# method move d = x <- x + d
# end;;
class point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end

Expressions can be evaluated and bound before defining the object body of the class. This is useful
to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a
grid, as follows:

# class adjusted_point x_init =
# let origin = (x_init / 10) * 10 in

# object
# val mutable x = origin
# method get_x = x
# method get_offset = x - origin
# method move d = x <- x + d
# end;;
class adjusted_point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int —-> unit
end
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(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same
effect could here be obtained by calling the definition of class point with the value of the origin.

# class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternate solution would have been to define the adjustment in a special allocation function:

# let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

However, the former pattern is generally more appropriate, since the code for adjustment is part
of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors
can be defined this way to build objects of the same class but with different initialization patterns;
an alternative is to use initializers, as described below in section

3.2 Immediate objects

There is another, more direct way to create an object: create it without going through a class.
The syntax is exactly the same as for class expressions, but the result is a single object rather
than a class. All the constructs described in the rest of this section also apply to immediate objects.

val mutable x = 0
method get_x = x
method move d = x <- x + d
end;;
val p : < get_x : int; move : int -> unit > = <obj>
# pHget_x;;
- : int =0
# p#move 3;;
- : unit = ()
# pHget_x;;
- : int = 3

Unlike classes, which cannot be defined inside an expression, immediate objects can appear
anywhere, using variables from their environment.

# let minmax x y =
# if x < y then object method min = x method max = y end

# else object method min = y method max = x end;;
val minmax : 'a -> 'a -> < max : 'a; min : 'a > = <fun>

Immediate objects have two weaknesses compared to classes: their types are not abbreviated,
and you cannot inherit from them. But these two weaknesses can be advantages in some situations,
as we will see in sections [3.3] and B.10
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3.3 Reference to self

A method or an initializer can send messages to self (that is, the current object). For that, self
must be explicitly bound, here to the variable s (s could be any identifier, even though we will
often choose the name self.)

# class printable_point x_init =
# object (s)
# val mutable x = x_init
# method get_x = x
# method move d = x <- x + d
# method print = print_int s#get_x
# end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

# let p = new printable_point 7;;
val p : printable_point = <obj>

# p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class
printable_point is inherited, the variable s will be correctly bound to the object of the subclass.

A common problem with self is that, as its type may be extended in subclasses, you cannot fix
it in advance. Here is a simple example.

# let ints = ref [];;

val ints : '_a list ref {contents = []}

# class my_int =
# object (self)

# method n =1

# method register = ints := self :: !ints

# end;;

Error: This expression has type < n : int; register : 'b; .. > as 'a

but an expression was expected of type 'a
Self type cannot escape its class

You can ignore the first two lines of the error message. What matters is the last one: putting self
into an external reference would make it impossible to extend it through inheritance. We will see
in section a workaround to this problem. Note however that, since immediate objects are not
extensible, the problem does not occur with them.
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# let my_int =
# object (self)

# method n = 1
# method register = ints := self :: !ints
# end;;

val my_int : < n : int; register : unit > = <obj>

3.4 Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible
to evaluate an expression immediately after the object has been built. Such code is written as an
anonymous hidden method called an initializer. Therefore, it can access self and the instance
variables.

# class printable_point x_init =
# let origin = (x_init / 10) * 10 in
# object (self)
# val mutable x = origin
# method get_x = x
# method move d = x <- x + d
# method print = print_int self#get_x
# initializer print_string "new point at "; self#print; print_newline ()
# end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

# let p = new printable_point 17;;
new point at 10
val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Ini-
tializers are particularly useful to enforce invariants. Another example can be seen in section

3.5 Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This
method will be provided later in subclasses. A class containing virtual methods must be flagged
virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines
type abbreviations (treating virtual methods as other methods.)
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class virtual abstract_point x_init =
object (self)
method virtual get_x : int
method get_offset = self#get_x - x_init
method virtual move : int -> unit
end;;
class virtual abstract_point :
int ->
object
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit
end

#
#
#
#
#
#

# class point x_init =
# object
# inherit abstract_point x_init
# val mutable x = x_init
# method get_x = x
# method move d = x <- x + d
# end;;
class point :
int ->
object
val mutable x : int
method get_offset : int
method get_x : int
method move : int -> unit
end

Instance variables can also be declared as virtual, with the same effect as with methods.

# class virtual abstract_point2 =

# object

# val mutable virtual x : int
# method move d = x <- x + d
# end;;

class virtual abstract_point2 :
object val mutable virtual x : int method move : int -> unit end

class point2 x_init =
object
inherit abstract_point2
val mutable x = x_init
method get_offset = x - x_init
end;;
class point2 :
int ->
object
val mutable x : int

#
#
#
#
#
#
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method get_offset : int
method move : int -> unit
end

3.6 Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked
from other methods of the same object.

# class restricted_point x_init =
# object (self)
# val mutable x = x_init
# method get_x = x
# method private move d = x <- x + d
# method bump = self#move 1
# end;;
class restricted_point :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method private move : int —-> unit
end

# let p = new restricted_point O;;
val p : restricted_point = <obj>

# p#move 10;;
Error: This expression has type restricted_point
It has no method move

# p#bump; ;
- : unit = ()

Note that this is not the same thing as private and protected methods in Java or C++4, which can
be called from other objects of the same class. This is a direct consequence of the independence
between types and classes in OCaml: two unrelated classes may produce objects of the same type,
and there is no way at the type level to ensure that an object comes from a specific class. However
a possible encoding of friend methods is given in section

Private methods are inherited (they are by default visible in subclasses), unless they are hidden
by signature matching, as described below.

Private methods can be made public in a subclass.

# class point_again x =

# object (self)

# inherit restricted_point x
# method virtual move

# end; ;
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class point_again :

int ->

object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit

end

The annotation virtual here is only used to mention a method without providing its definition.
Since we didn’t add the private annotation, this makes the method public, keeping the original
definition.

An alternative definition is

# class point_again x =
# object (self : < move : _; ..>)
# inherit restricted_point x
# end;;
class point_again :
int ->
object
val mutable x : int
method bump : unit
method get_x : int
method move : int -> unit
end

The constraint on self’s type is requiring a public move method, and this is sufficient to override
private.

One could think that a private method should remain private in a subclass. However, since the
method is visible in a subclass, it is always possible to pick its code and define a method of the
same name that runs that code, so yet another (heavier) solution would be:

# class point_again x =

# object
# inherit restricted_point x as super
# method move = super#move
# end;;
class point_again :
int ->
object

val mutable x : int

method bump : unit

method get_x : int

method move : int -> unit
end

Of course, private methods can also be virtual. Then, the keywords must appear in this order
method private virtual.
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3.7 Class interfaces

Class interfaces are inferred from class definitions. They may also be defined directly and used to
restrict the type of a class. Like class declarations, they also define a new type abbreviation.

# class type restricted_point_type =

# object

# method get_x : int
# method bump : unit
# end;;

class type restricted_point_type =
object method bump : unit method get_x : int end

# fun (x : restricted_point_type) -> x;;
- : restricted_point_type —> restricted_point_type = <fun>

In addition to program documentation, class interfaces can be used to constrain the type of a
class. Both concrete instance variables and concrete private methods can be hidden by a class type
constraint. Public methods and virtual members, however, cannot.

# class restricted_point' x = (restricted_point x : restricted_point_type);;
class restricted_point' : int -> restricted_point_type

Or, equivalently:

# class restricted_point' = (restricted_point : int -> restricted_point_type);;
class restricted_point' : int -> restricted_point_type

The interface of a class can also be specified in a module signature, and used to restrict the inferred
signature of a module.

# module type POINT = sig

# class restricted_point' : int ->
# object

# method get_x : int

# method bump : unit

# end

# end;;

module type POINT =

sig
class restricted_point'
int -> object method bump : unit method get_x : int end
end

# module Point : POINT = struct

# class restricted_point' = restricted_point
# end;;

module Point : POINT
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3.8 Inheritance

We illustrate inheritance by defining a class of colored points that inherits from the class of points.
This class has all instance variables and all methods of class point, plus a new instance variable c
and a new method color.

# class colored_point x (c : string) =
# object
# inherit point x
# val ¢ = ¢
# method color = c
# end;;
class colored_point :
int ->
string ->
object

val ¢ : string

val mutable x : int

method color : string

method get_offset : int

method get_x : int

method move : int -> unit
end

# let p' = new colored_point 5 "red";;
val p' : colored_point = <obj>

# p'#get_x, p'#color;;
- : int * string = (5, "red")

A point and a colored point have incompatible types, since a point has no method color. However,
the function get_x below is a generic function applying method get_x to any object p that has
this method (and possibly some others, which are represented by an ellipsis in the type). Thus, it
applies to both points and colored points.

# let get_succ_x p = p#Hget_x + 1;;
val get_succ_x : < get_x : int; .. > -> int = <fun>

# get_succ_x p + get_succ_x p';;
- : int = 8

Methods need not be declared previously, as shown by the example:

# let set_x p = p#set_x;;
val set_x : < set_x : 'a; .. > -> 'a = <fun>

# let incr p = set_x p (get_succ_x p);;
val incr : < get_x : int; set_x : int -> 'a; .. > -> 'a = <fun>
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3.9 Multiple inheritance

Multiple inheritance is allowed. Only the last definition of a method is kept: the redefinition in a
subclass of a method that was visible in the parent class overrides the definition in the parent class.
Previous definitions of a method can be reused by binding the related ancestor. Below, super is
bound to the ancestor printable_point. The name super is a pseudo value identifier that can
only be used to invoke a super-class method, as in super#print.

# class printable_colored_point y ¢ =
# object (self)
# val ¢ = ¢
# method color = ¢
# inherit printable_point y as super
# method print =
# print_string "(";
# super#print;
# print_string ", ";
# print_string (self#color);
# print_string ")"
# end;;
class printable_colored_point :
int ->
string ->
object

val ¢ : string
val mutable x : int
method color : string
method get_x : int
method move : int -> unit
method print : unit

end

# let p' = new printable_colored_point 17 "red";;
new point at (10, red)

val p' : printable_colored_point = <obj>

# p'#print;;

(10, red)- : unit = ()

A private method that has been hidden in the parent class is no longer visible, and is thus not
overridden. Since initializers are treated as private methods, all initializers along the class hierarchy
are evaluated, in the order they are introduced.

3.10 Parameterized classes

Reference cells can be implemented as objects. The naive definition fails to typecheck:

# class ref x_init =
# object
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val mutable x = x_init

method get = x

method set y = x <- y
_end;;
Error: Some type variables are unbound in this type:
class ref :

#
#
#
#

'a =>
object
val mutable x : 'a
method get : 'a
method set : 'a -> unit
end

The method get has type 'a where 'a is unbound

The reason is that at least one of the methods has a polymorphic type (here, the type of the value
stored in the reference cell), thus either the class should be parametric, or the method type should
be constrained to a monomorphic type. A monomorphic instance of the class could be defined by:

# class ref (x_init:int) =
# object
# val mutable x = x_init
# method get = x
# method set y = x <- y
# end;;
class ref :
int ->

object val mutable x : int method get : int method set : int -> unit end

Note that since immediate objects do not define a class type, they have no such restriction.

# let new_ref x_init =

# object

# val mutable x = x_init

# method get = x

# method set y = x <- y

# end;;

val new_ref : 'a -> < get : 'a; set : 'a -> unit > = <fun>

On the other hand, a class for polymorphic references must explicitly list the type parameters in
its declaration. Class type parameters are listed between [ and ]. The type parameters must also
be bound somewhere in the class body by a type constraint.

# class ['al ref x_init =

# object

# val mutable x = (x_init : 'a)
# method get = x

# method set y = x <- y

# end;;

class ['a] ref :
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!

'a -> object val mutable x : 'a method get : 'a method set : 'a -> unit end

# let r = new ref 1 in r#set 2; (r#get);;
- : int = 2

The type parameter in the declaration may actually be constrained in the body of the class def-
inition. In the class type, the actual value of the type parameter is displayed in the constraint
clause.

# class ['al] ref_succ (x_init:'a) =

# object
# val mutable x = x_init + 1
# method get = x
# method set y = x <- y
# end;;
class ['a] ref_succ :
'a =>
object

constraint 'a = int

val mutable x : int

method get : int

method set : int -> unit
end

Let us consider a more complex example: define a circle, whose center may be any kind of point. We
put an additional type constraint in method move, since no free variables must remain unaccounted
for by the class type parameters.

# class ['a] circle (c : 'a) =
# object
# val mutable center = c
# method center = center
# method set_center c = center <- ¢
# method move = (center#move : int -> unit)
# end; ;
class ['a] circle :
ra ->
object
constraint 'a = < move : int -> unit; .. >
val mutable center : 'a

!

method center : 'a

method move : int -> unit
method set_center : 'a -> unit
end

An alternate definition of circle, using a constraint clause in the class definition, is shown below
The type #point used below in the constraint clause is an abbreviation produced by the definition
of class point. This abbreviation unifies with the type of any object belonging to a subclass of class
point. It actually expands to < get_x : int; move : int -> unit; .. >. This leads to the
following alternate definition of circle, which has slightly stronger constraints on its argument, as
we now expect center to have a method get_x.



Chapter 3. Objects in OCaml 47

# class ['a]l circle (c : 'a) =

# object

# constraint 'a = #point

# val mutable center = c

# method center = center

# method set_center c = center <- c
# method move = center#move

#

end;;
class ['a] circle :
'a =>
object
constraint 'a = #point
val mutable center : 'a

method center : '

method move : int -> unit
method set_center : 'a -> unit
end

a

The class colored_circle is a specialized version of class circle that requires the type of the
center to unify with #colored_point, and adds a method color. Note that when specializing a
parameterized class, the instance of type parameter must always be explicitly given. It is again
written between [ and ].

# class ['al colored_circle c =
# object
# constraint 'a = #colored_point
# inherit ['a] circle c
# method color = center#color
# end;;
class ['a] colored_circle :
'a =>
object
constraint 'a = #colored_point
val mutable center : 'a
method center : 'a

method color : string

method move : int -> unit

method set_center : 'a -> unit
end

3.11 Polymorphic methods

While parameterized classes may be polymorphic in their contents, they are not enough to allow
polymorphism of method use.
A classical example is defining an iterator.

# List.fold_left;;
-: ('a->'b-> 'a) -> 'a -> 'b list -> 'a = <fun>
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# class ['a]l intlist (1 : int list) =

# object

# method empty = (1 = [])

# method fold f (accu : 'a) = List.fold_left f accu 1l
# end;;

class ['al intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

At first look, we seem to have a polymorphic iterator, however this does not work in practice.

# let 1 = new intlist [1; 2; 3];;
val 1 : '_a intlist = <obj>

# 1#fold (fun x y —> x+y) 0;;

- : int =6

#1;;

- : int intlist = <obj>

# 1#fold (fun s x -> s ~ string_of_int x ~ " ") "";;

Error: This expression has type int but an expression was expected of type

string

Our iterator works, as shows its first use for summation. However, since objects themselves are not
polymorphic (only their constructors are), using the fold method fixes its type for this individual
object. Our next attempt to use it as a string iterator fails.

The problem here is that quantification was wrongly located: it is not the class we want to be
polymorphic, but the fold method. This can be achieved by giving an explicitly polymorphic type
in the method definition.

fun f accu -> List.fold_left f accu l
end;;
class intlist :
int list ->
object method empty : bool method fold : ('a -> int -> 'a) -> 'a -> 'a end

# class intlist (1 : int list) =

# object

# method empty = (1 = [])

# method fold : 'a. ('a -> int -> 'a) -> 'a -> 'a =
#

#

# let 1 = new intlist [1; 2; 3];;
val 1 : intlist = <obj>

# 1#fold (fun x y —-> x+y) 0;;

- : int = 6

# 1#fold (fun s x > s ~ string_of_int x =~ " ") "";;
- : string = "1 23"

As you can see in the class type shown by the compiler, while polymorphic method types must be
fully explicit in class definitions (appearing immediately after the method name), quantified type
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variables can be left implicit in class descriptions. Why require types to be explicit? The problem
is that (int -> int -> int) -> int -> int would also be a valid type for fold, and it happens
to be incompatible with the polymorphic type we gave (automatic instantiation only works for
toplevel types variables, not for inner quantifiers, where it becomes an undecidable problem.) So
the compiler cannot choose between those two types, and must be helped.

However, the type can be completely omitted in the class definition if it is already known,
through inheritance or type constraints on self. Here is an example of method overriding.

# class intlist_rev 1 =

# object

# inherit intlist 1

# method fold f accu = List.fold_left f accu (List.rev 1)
# end;;

The following idiom separates description and definition.

# class type ['al] iterator =
# object method fold : ('b -> 'a -> 'b) -> 'b -> 'b end;;

# class intlist 1 =

# object (self : int #iterator)

# method empty = (1 = [])

# method fold f accu = List.fold_left f accu 1
# end; ;

Note here the (self : int #iterator) idiom, which ensures that this object implements the
interface iterator.

Polymorphic methods are called in exactly the same way as normal methods, but you should
be aware of some limitations of type inference. Namely, a polymorphic method can only be called
if its type is known at the call site. Otherwise, the method will be assumed to be monomorphic,
and given an incompatible type.

# let sum 1lst = lst#fold (fun x y -> x+y) 0;;
val sum : < fold : (int -> int -> int) -> int -> 'a; .. > -> 'a = <fun>

# sum 1;;
Error: This expression has type intlist
but an expression was expected of type
< fold : (int -> int -> int) -> int -> 'a; .. >
Types for method fold are incompatible

The workaround is easy: you should put a type constraint on the parameter.

# let sum (lst : _ #iterator) = lst#fold (fun x y -> x+y) 0;;
val sum : int #iterator -> int = <fun>

Of course the constraint may also be an explicit method type. Only occurences of quantified
variables are required.

# let sum 1lst =
# (st : < fold : 'a. ('a => _ => 'a) -> 'a -> 'a; .. >)#fold (+) 0;;
val sum : < fold : 'a. ('a -> int -> 'a) -> 'a -> 'a; .. > -> int = <fun>



50

Another use of polymorphic methods is to allow some form of implicit subtyping in method
arguments. We have already seen in section how some functions may be polymorphic in the
class of their argument. This can be extended to methods.

# class type pointO = object method get_x : int end;;
class type point0 = object method get_x : int end

# class distance_point x =

# object
# inherit point x
# method distance : 'a. (#pointO as 'a) -> int =
# fun other -> abs (other#get_x - x)
# end;;
class distance_point :
int ->
object

val mutable x : int
method distance : #point0O -> int
method get_offset : int
method get_x : int
method move : int -> unit
end

# let p = new distance_point 3 in

# (p#distance (new point 8), p#distance (new colored_point 1 "blue"));;

- : int * int = (5, 2)

Note here the special syntax (#pointO as 'a) we have to use to quantify the extensible part
of #point0. As for the variable binder, it can be omitted in class specifications. If you want
polymorphism inside object field it must be quantified independently.

# class multi_poly =

# object
# method m1 : 'a. (< nl : 'b. 'b -> 'b; .. > as 'a) -> _ =
# fun o -> o#nl true, o#nl "hello"
# method m2 : 'a 'b. (< n2 : 'b -> bool; .. > as 'a) -> 'b -> _ =
# fun o x -> o#n2 x
# end;;
class multi_poly :
object
method m1 : < nl : 'b. 'b => 'b; .. > -> bool * string
method m2 : < n2 : 'b -> bool; .. > -> 'b =-> bool
end

In method m1, o must be an object with at least a method n1, itself polymorphic. In method m2,
the argument of n2 and x must have the same type, which is quantified at the same level as 'a.

3.12 Using coercions

Subtyping is never implicit. There are, however, two ways to perform subtyping. The most general
construction is fully explicit: both the domain and the codomain of the type coercion must be
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given.

We have seen that points and colored points have incompatible types. For instance, they cannot
be mixed in the same list. However, a colored point can be coerced to a point, hiding its color
method:

# let colored_point_to_point cp = (cp : colored_point :> point);;
val colored_point_to_point : colored_point -> point = <fun>

# let p = new point 3 and q = new colored_point 4 "blue";;
val p : point = <obj>
val q : colored_point = <obj>

# let 1 = [p; (colored_point_to_point q)];;
val 1 : point list = [<obj>; <obj>]

An object of type t can be seen as an object of type t' only if t is a subtype of t'. For instance,
a point cannot be seen as a colored point.

# (p : point :> colored_point);;
Error: Type point = < get_offset : int; get_x : int; move : int -> unit >
is not a subtype of
colored_point =
< color : string; get_offset : int; get_x : int;
move : int -> unit >

Indeed, narrowing coercions without runtime checks would be unsafe. Runtime type checks might
raise exceptions, and they would require the presence of type information at runtime, which is
not the case in the OCaml system. For these reasons, there is no such operation available in the
language.

Be aware that subtyping and inheritance are not related. Inheritance is a syntactic relation
between classes while subtyping is a semantic relation between types. For instance, the class of
colored points could have been defined directly, without inheriting from the class of points; the
type of colored points would remain unchanged and thus still be a subtype of points.

The domain of a coercion can often be omitted. For instance, one can define:

# let to_point cp = (cp :> point);;
val to_point : #point -> point = <fun>

In this case, the function colored_point_to_point is an instance of the function to_point. This is
not always true, however. The fully explicit coercion is more precise and is sometimes unavoidable.
Consider, for example, the following class:

# class cO = object method m = {< >} method n = 0 end;;

class cO : object ('a) method m : 'a method n : int end

The object type cO is an abbreviation for <m : 'a; n : int> as 'a. Consider now the type
declaration:

# class type cl = object method m : cl end;;

class type cl1 = object method m : c1 end
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The object type c1 is an abbreviation for the type <m : 'a> as 'a. The coercion from an object
of type c0 to an object of type c1 is correct:

# fun (x:c0) -> (x : c0 :> cl);;
- : c0 -> c1 = <fun>

However, the domain of the coercion cannot always be omitted. In that case, the solution is to use
the explicit form. Sometimes, a change in the class-type definition can also solve the problem

# class type c2 = object ('a) method m : 'a end;;
class type c2 = object ('a) method m : 'a end

# fun (x:c0) -> (x :> c2);;
- : ¢c0 -> ¢c2 = <fun>

While class types c1 and c2 are different, both object types c1 and c2 expand to the same object
type (same method names and types). Yet, when the domain of a coercion is left implicit and its
co-domain is an abbreviation of a known class type, then the class type, rather than the object
type, is used to derive the coercion function. This allows leaving the domain implicit in most cases
when coercing form a subclass to its superclass. The type of a coercion can always be seen as
below:

# let to_cl x = (x :> cl);;
val to_cl : <m : #cl; .. > -> cl1 = <fun>

# let to_c2 x = (x > c2);;
val to_c2 : #c2 -> c2 = <fun>

Note the difference between these two coercions: in the case of to_c2, the type
#c2 = <m : 'a; .. > as 'a is polymorphically recursive (according to the explicit re-
cursion in the class type of c2); hence the success of applying this coercion to an object of
class c0. On the other hand, in the first case, c1 was only expanded and unrolled twice to
obtain <m : <m : cl; .. >; .. > (remember #c1 = < m : cl; .. >), without introducing
recursion. You may also note that the type of to_c2 is #c2 -> c2 while the type of to_c1 is
more general than #c1 -> c1. This is not always true, since there are class types for which some
instances of #c are not subtypes of ¢, as explained in section Yet, for parameterless classes
the coercion (_ :> c¢) is always more general than (_ : #c :> c).

A common problem may occur when one tries to define a coercion to a class ¢ while defining
class c. The problem is due to the type abbreviation not being completely defined yet, and so its
subtypes are not clearly known. Then, a coercion (_ :> c¢) or (_ : #c :> c) is taken to be the
identity function, as in

# function x —> (x :> 'a);;
- : 'a -> 'a = <fun>

As a consequence, if the coercion is applied to self, as in the following example, the type of self is
unified with the closed type c (a closed object type is an object type without ellipsis). This would
constrain the type of self be closed and is thus rejected. Indeed, the type of self cannot be closed:
this would prevent any further extension of the class. Therefore, a type error is generated when
the unification of this type with another type would result in a closed object type.
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# class ¢ = object method m = 1 end

# and d = object (self)

# inherit c

# method n = 2

# method as_c = (self :> c)

# end;;

Error: This expression cannot be coerced to type ¢ = < m : int >; it has type

<as_c : c¢c; m : int; n : int; .. >
but is here used with type c
Self type cannot escape its class

However, the most common instance of this problem, coercing self to its current class, is detected
as a special case by the type checker, and properly typed.

# class c = object (self) method m = (self :> c) end;;
class ¢ : object method m : ¢ end

This allows the following idiom, keeping a list of all objects belonging to a class or its subclasses:

# let all_c = ref [1;;
val all_c : '_a list ref = {contents = []}

# class ¢ (m : int) =
# object (self)

# method m = m
# initializer all_c := (self :> c) :: tall_c
# end;;

class ¢ : int -> object method m : int end
This idiom can in turn be used to retrieve an object whose type has been weakened:

# let rec lookup_obj obj = function [] -> raise Not_found

# | obj' :: 1 >
# if (obj :> < >) = (obj' :> < >) then obj' else lookup_obj obj 1 ;;
val lookup_obj : < .. > => (< .. > as 'a) list -> 'a = <fun>

# let lookup_c obj = lookup_obj obj 'all_c;;
val lookup_c : < .. > -> < m : int > = <fun>

The type < m : int > we see here is just the expansion of c, due to the use of a reference; we have
succeeded in getting back an object of type c.

The previous coercion problem can often be avoided by first defining the abbreviation, using a
class type:

# class type c' = object method m : int end;;
class type c' = object method m : int end
# class ¢ : c¢' = object method m = 1 end

# and d = object (self)
# inherit c
# method n = 2
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# method as_c = (self :> c¢')
# end;;
class ¢ : c'

and d : object method as_c : c'

method m : int method n : int end

It is also possible to use a virtual class. Inheriting from this class simultaneously forces all methods
of ¢ to have the same type as the methods of c'.

# class virtual c¢' = object method virtual m : int end;;
class virtual c' : object method virtual m : int end

# class ¢ = object (self) inherit c¢' method m = 1 end;;
class ¢ : object method m : int end

One could think of defining the type abbreviation directly:
# type c' = <m : int>;;

However, the abbreviation #c' cannot be defined directly in a similar way. It can only be defined
by a class or a class-type definition. This is because a #-abbreviation carries an implicit anonymous
variable .. that cannot be explicitly named. The closer you get to it is:

# type 'a c'_class = 'a constraint 'a = <m : int; .. >;;

with an extra type variable capturing the open object type.

3.13 Functional objects

It is possible to write a version of class point without assignments on the instance variables.
The override construct {< ... >} returns a copy of “self” (that is, the current object), possibly
changing the value of some instance variables.

# class functional_point y
# object

# val x = y

# method get_x = x

# x +d >}
#

method move d = {< x
end;;
class functional_point :
int ->
object ('a) val x : int method get_x : int method move : int -> 'a end

# let p = new functional_point 7;;
val p : functional_point = <obj>

# pHget_x;;

- :int =7

# (p#move 3)#get_x;;

- : int = 10

# pHget_x;;

- :int =7
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Note that the type abbreviation functional_point is recursive, which can be seen in the class
type of functional_point: the type of self is 'a and 'a appears inside the type of the method
move.

The above definition of functional_point is not equivalent to the following:

# class bad_functional_point y =
# object
# val x = y
# method get_x = x
# method move d = new bad_functional_point (x+d)
# end;;
class bad_functional_point :
int ->
object

val x : int

method get_x : int

method move : int -> bad_functional_point
end

While objects of either class will behave the same, objects of their subclasses will be different. In a
subclass of bad_functional_point, the method move will keep returning an object of the parent
class. On the contrary, in a subclass of functional_point, the method move will return an object
of the subclass.

Functional update is often used in conjunction with binary methods as illustrated in section

b.21

3.14 Cloning objects

Objects can also be cloned, whether they are functional or imperative. The library function Oo . copy
makes a shallow copy of an object. That is, it returns a new object that has the same methods
and instance variables as its argument. The instance variables are copied but their contents are
shared. Assigning a new value to an instance variable of the copy (using a method call) will not
affect instance variables of the original, and conversely. A deeper assignment (for example if the
instance variable is a reference cell) will of course affect both the original and the copy.

The type of Oo.copy is the following:

# 0o.copy;;
- : (< .. >as 'a) -> 'a = <fun>

The keyword as in that type binds the type variable 'a to the object type < .. >. Therefore,
Oo.copy takes an object with any methods (represented by the ellipsis), and returns an object
of the same type. The type of 0o.copy is different from type < .. > -> < .. > as each ellipsis
represents a different set of methods. Ellipsis actually behaves as a type variable.

# let p = new point 5;;
val p : point = <obj>

# let q = Oo.copy p;;
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val q : point = <obj>

# qg#tmove 7; (p#get_x, qiftget_x);;
- : int * int = (5, 12)

In fact, Oo.copy p will behave as p#copy assuming that a public method copy with body {< >}
has been defined in the class of p.

Objects can be compared using the generic comparison functions = and <>. Two objects are
equal if and only if they are physically equal. In particular, an object and its copy are not equal.

# let q = Oo.copy p;;
val q : point = <obj>

#p=4d, P =rp;;

- : bool * bool = (false, true)

Other generic comparisons such as (<, <=, ...) can also be used on objects. The relation < defines an

unspecified but strict ordering on objects. The ordering relationship between two objects is fixed

once for all after the two objects have been created and it is not affected by mutation of fields.
Cloning and override have a non empty intersection. They are interchangeable when used within

an object and without overriding any field:

# class copy =

# object
# method copy = {< >}
# end;;

class copy : object ('a) method copy : 'a end

# class copy =

# object (self)

# method copy = 0o.copy self

# end;;

class copy : object ('a) method copy : 'a end

Only the override can be used to actually override fields, and only the Oo.copy primitive can be
used externally.
Cloning can also be used to provide facilities for saving and restoring the state of objects.

# class backup =
# object (self : 'mytype)
# val mutable copy = None
# method save = copy <- Some {< copy = None >}
# method restore = match copy with Some x -> x | None -> self
# end;;
class backup :
object ('a)
val mutable copy : 'a option
method restore : 'a

method save : unit
end
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The above definition will only backup one level. The backup facility can be added to any class by
using multiple inheritance.

# class ['al backup_ref x = object inherit ['al ref x inherit backup end;;
class ['al backup_ref :

ra ->
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method get : 'a
method restore : 'b
method save : unit
method set : 'a -> unit
end

# let rec get pn = if n = 0 then p # get else get (p # restore) (n-1);;
val get : (< get : 'b; restore : 'a; .. > as 'a) -> int -> 'b = <fun>

# let p = new backup_ref 0 in

# p # save; p # set 1; p # save; p # set 2;

# [get p O; get p 1; get p 2; get p 3; get p 4];;
- : int list = [2; 1; 1; 1; 1]

We can define a variant of backup that retains all copies. (We also add a method clear to manually
erase all copies.)

# class backup =
# object (self : 'mytype)
# val mutable copy = None
# method save = copy <- Some {< >}
# method restore = match copy with Some x -> x | None -> self
# method clear = copy <- None
# end;;
class backup :
object ('a)
val mutable copy : 'a option
method clear : unit
method restore : 'a
method save : unit
end

# class ['al backup_ref x = object inherit ['a] ref x inherit backup end;;
class ['al backup_ref :
'a =>
object ('b)
val mutable copy : 'b option
val mutable x : 'a
method clear : unit
method get : 'a
method restore : 'b



58

method save : unit
method set : 'a -> unit
end

# let p = new backup_ref 0 in

# p # save; p # set 1; p # save; p # set 2;

# [get p O; get p 1; get p 2; get p 3; get p 4];;
- : int list = [2; 1; 0; 0; 0]

3.15 Recursive classes

Recursive classes can be used to define objects whose types are mutually recursive.

# class window =
# object
# val mutable top_widget = (None : widget option)
# method top_widget = top_widget
# end
# and widget (w : window) =
# object
# val window = w
# method window = window
# end;;
class window :
object
val mutable top_widget : widget option
method top_widget : widget option
end
and widget : window -> object val window : window method window : window end

Although their types are mutually recursive, the classes widget and window are themselves inde-
pendent.

3.16 Binary methods

A binary method is a method which takes an argument of the same type as self. The class
comparable below is a template for classes with a binary method leq of type 'a -> bool
where the type variable 'a is bound to the type of self. Therefore, #comparable expands to

< leq : 'a -> bool; .. > as 'a. We see here that the binder as also allows writing recursive
types.

# class virtual comparable =

# object (_ : 'a)

# method virtual leq : 'a -> bool

# end;;

class virtual comparable : object ('a) method virtual leq : 'a -> bool end
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We then define a subclass money of comparable. The class money simply wraps floats as comparable
objects. We will extend it below with more operations. We have to use a type constraint on the
class parameter x because the primitive <= is a polymorphic function in OCaml. The inherit
clause ensures that the type of objects of this class is an instance of #comparable.

# class money (x : float) =
# object

# inherit comparable
# val repr = x
# method value = repr
# method leq p = repr <= p#value
# end;;
class money :
float ->
object ('a)
val repr : float
method leq : 'a —> bool
method value : float
end

Note that the type money is not a subtype of type comparable, as the self type appears in con-
travariant position in the type of method leq. Indeed, an object m of class money has a method
leq that expects an argument of type money since it accesses its value method. Considering m of
type comparable would allow a call to method leq on m with an argument that does not have a
method value, which would be an error.

Similarly, the type money2 below is not a subtype of type money.

# class money2 x =

# object
# inherit money x
# method times k = {< repr = k *. repr >}
# end;;
class money2 :
float ->
object ('a)

val repr : float
method leq : 'a —> bool
method times : float -> 'a
method value : float

end

It is however possible to define functions that manipulate objects of type either money or money2:
the function min will return the minimum of any two objects whose type unifies with #comparable.
The type of min is not the same as #comparable -> #comparable -> #comparable, as the ab-
breviation #comparable hides a type variable (an ellipsis). Each occurrence of this abbreviation
generates a new variable.

# let min (x : #comparable) y =

# if x#leq y then x else y;;
val min : (#comparable as 'a) -> 'a -> 'a = <fun>
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This function can be applied to objects of type money or money?2.

+H+

(min (new money 1.3) (new money 3.1))#value;;
: float = 1.3

=+

(min (new money2 5.0) (new money2 3.14))#value;;
: float = 3.14

More examples of binary methods can be found in sections and

Note the use of override for method times. Writing new money2 (k *. repr) instead of
{< repr = k *. repr >} would not behave well with inheritance: in a subclass money3 of money?2
the times method would return an object of class money2 but not of class money3 as would be
expected.

The class money could naturally carry another binary method. Here is a direct definition:

# class money x =

# object (self : 'a)

# val repr = x

# method value = repr

# method print = print_float repr
#

#

#

#

method times k = {< repr = k *. x >}
method leq (p : 'a) = repr <= p#value
method plus (p : 'a) = {< repr = x +. p#value >}
end;;
class money :
float ->
object ('a)
val repr : float
method leq : 'a —> bool
method plus : 'a -> 'a
method print : unit
method times : float -> 'a
method value : float
end

3.17 Friends

The above class money reveals a problem that often occurs with binary methods. In order to interact
with other objects of the same class, the representation of money objects must be revealed, using a
method such as value. If we remove all binary methods (here plus and leq), the representation
can easily be hidden inside objects by removing the method value as well. However, this is not
possible as soon as some binary method requires access to the representation of objects of the same
class (other than self).

# class safe_money x =

# object (self : 'a)

# val repr = x

# method print = print_float repr
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# method times k = {< repr = k *. x >}
# end;;
class safe_money :
float ->
object ('a)
val repr : float
method print : unit
method times : float -> 'a
end

Here, the representation of the object is known only to a particular object. To make it available to
other objects of the same class, we are forced to make it available to the whole world. However we
can easily restrict the visibility of the representation using the module system.

# module type MONEY =
sig
type t
class ¢ : float —>
object ('a)
val repr : t
method value : t
method print : unit
method times : float -> 'a
method leq : 'a -> bool
method plus : 'a -> 'a
end
end;;

#

#

#

#

#

#

#

#

#

#

#

#

# module Euro : MONEY =

# struct

# type t = float

# class ¢ x =

# object (self : 'a)
# val repr = x
# method value = repr
# method print = print_float repr
# method times k = {< repr = k *. x >}
# method leq (p : 'a) = repr <= p#value
# method plus (p : 'a) = {< repr = x +. p#value >}
# end

# end;;

Another example of friend functions may be found in section These examples occur when
a group of objects (here objects of the same class) and functions should see each others internal
representation, while their representation should be hidden from the outside. The solution is always
to define all friends in the same module, give access to the representation and use a signature
constraint to make the representation abstract outside the module.
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Chapter 4

Labels and variants

(Chapter written by Jacques Garrigue)

This chapter gives an overview of the new features in OCaml 3: labels, and polymorphic variants.

4.1 Labels

If you have a look at modules ending in Labels in the standard library, you will see that function
types have annotations you did not have in the functions you defined yourself.

+H+

ListLabels.map;;
- : f:('a -> 'b) -> 'a list -> 'b list = <fun>

+H+

Stringlabels.sub; ;
- : string -> pos:int -> len:int -> string = <fun>

Such annotations of the form name: are called labels. They are meant to document the code,
allow more checking, and give more flexibility to function application. You can give such names to
arguments in your programs, by prefixing them with a tilde ~.

# let £ "x "y =x - y;;
val f : x:int -> y:int -> int = <fun>
# let x =3 and y = 2 in £ "x 7y;;

- : int =1

When you want to use distinct names for the variable and the label appearing in the type, you
can use a naming label of the form “name:. This also applies when the argument is not a variable.

# let £ "x:x1 "y:yl = x1 - yi;;
val f : x:int -> y:int -> int = <fun>

# £ "x:3 Ty:2;;

- : int =1

63
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Labels obey the same rules as other identifiers in OCaml, that is you cannot use a reserved
keyword (like in or to) as label.

Formal parameters and arguments are matched according to their respective labelsﬂ the absence
of label being interpreted as the empty label. This allows commuting arguments in applications.
One can also partially apply a function on any argument, creating a new function of the remaining
parameters.

# let £ "x "y =x - y;;
val £ : x:int -> y:int -> int = <fun>

# £ "y:2 "x:3;;
- : int =1

=+

ListLabels.fold_left;;
- : f:('a->'b -> 'a) -> init:'a -> 'b list -> 'a = <fun>

# ListLabels.fold_left [1;2;3] ~init:0 ~“f:( + );;
- : int = 6

+H+

ListLabels.fold_left "init:0;;
- : f:(int -> 'a -> int) -> 'a list -> int = <fun>

If several arguments of a function bear the same label (or no label), they will not commute
among themselves, and order matters. But they can still commute with other arguments.

# let hline "x:x1 "x:x2 7y = (x1, %2, y);;

val hline : x:'a -> x:'b -> y:'c -> 'a * 'b ¥ 'c = <fun>
# hline "x:3 "y:2 "x:5;;

- : int * int * int = (3, 5, 2)

As an exception to the above parameter matching rules, if an application is total (omitting all
optional arguments), labels may be omitted. In practice, many applications are total, so that labels
can often be omitted.

#f 3 2;;
- :int =1
# ListLabels.map succ [1;2;3];;

: int list = [2; 3; 4]

But beware that functions like ListLabels.fold_left whose result type is a type variable will
never be considered as totally applied.

# ListLabels.fold_left ( + ) 0 [1;2;3];;
Error: This expression has type int -> int -> int
but an expression was expected of type 'a list

When a function is passed as an argument to a higher-order function, labels must match in
both types. Neither adding nor removing labels are allowed.

IThis correspond to the commuting label mode of Objective Caml 3.00 through 3.02, with some additional flexi-
bility on total applications. The so-called classic mode (-nolabels options) is now deprecated for normal use.
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# let h g =g "x:3 "y:2;;
val h : (x:int -> y:int -> 'a) -> 'a = <fun>
# h f;;
- :int =1
#h (+);;
Error: This expression has type int -> int -> int
but an expression was expected of type x:int -> y:int -> 'a

Note that when you don’t need an argument, you can still use a wildcard pattern, but you must
prefix it with the label.

# h (fun "x:_ "y -> y+1);;
- : int = 3

4.1.1 Optional arguments

An interesting feature of labeled arguments is that they can be made optional. For optional
parameters, the question mark ? replaces the tilde ~ of non-optional ones, and the label is also
prefixed by ? in the function type. Default values may be given for such optional parameters.

# let bump 7(step = 1) x = x + step;;
val bump : ?step:int -> int -> int = <fun>

# bump 2;;
- : int = 3
# bump “step:3 2;;
- : int = 5

A function taking some optional arguments must also take at least one non-optional argument.
The criterion for deciding whether an optional argument has been omitted is the non-labeled
application of an argument appearing after this optional argument in the function type. Note that
if that argument is labeled, you will only be able to eliminate optional arguments through the
special case for total applications.

# let test 7(x =0) ?(y=0) ) ?7(z=0) O = (x, y, 2);;
val test : 7x:int -> ?y:int -> unit -> 7z:int -> unit -> int ¥ int * int =
<fun>

# test O;;
- : ?z:int -> unit -> int * int * int = <fun>
# test "x:2 () "z:3 O;;

: int * int * int = (2, 0, 3)

Optional parameters may also commute with non-optional or unlabeled ones, as long as they are
applied simultaneously. By nature, optional arguments do not commute with unlabeled arguments
applied independently.
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# test "y:2 "x:3 O O;3;;
- : int * int * int = (3, 2, 0)

+H+

test O O "z:1 "y:2 "x:3;;

- : int * int * int = (3, 2, 1)

(test O Q) "z:1;;

Error: This expression has type int * int * int
This is not a function; it cannot be applied.

HH+

Here (test () () is already (0,0,0) and cannot be further applied.

Optional arguments are actually implemented as option types. If you do not give a default
value, you have access to their internal representation, type 'a option = None | Some of ‘'a.
You can then provide different behaviors when an argument is present or not.

# let bump 7step x =
# match step with

# | None -> x * 2
# | Some y > x +y
%55

val bump : ?step:int -> int -> int = <fun>

It may also be useful to relay an optional argument from a function call to another. This can
be done by prefixing the applied argument with ?. This question mark disables the wrapping of
optional argument in an option type.

# let test2 7x 7y () = test 7x 7y O O;;
val test2 : ?x:int -> 7y:int -> unit -> int * int * int = <fun>

# test2 7?x:None;;
- : ?y:int -> unit -> int * int * int = <fun>

4.1.2 Labels and type inference

While they provide an increased comfort for writing function applications, labels and optional
arguments have the pitfall that they cannot be inferred as completely as the rest of the language.
You can see it in the following two examples.

# let h' g =g "y:2 "x:3;;
val h' : (y:int -> x:int -> 'a) -> 'a = <fun>

#h' £
Error: This expression has type x:int -> y:int -> int

but an expression was expected of type y:int -> x:int -> '

a

# let bump_it bump x =
# bump “step:2 x;;
val bump_it : (step:int -> 'a -> 'b) -> 'a -> 'b = <fun>

# bump_it bump 1;;
Error: This expression has type 7step:int -> int -> int
but an expression was expected of type step:int -> 'a -> 'b
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The first case is simple: g is passed “y and then “x, but £ expects “x and then ~y. This is correctly
handled if we know the type of g to be x:int -> y:int -> int in advance, but otherwise this
causes the above type clash. The simplest workaround is to apply formal parameters in a standard
order.

The second example is more subtle: while we intended the argument bump to be of type
?step:int -> int -> int, it is inferred as step:int -> int -> 'a. These two types being
incompatible (internally normal and optional arguments are different), a type error occurs when
applying bump_it to the real bump.

We will not try here to explain in detail how type inference works. One must just understand
that there is not enough information in the above program to deduce the correct type of g or bump.
That is, there is no way to know whether an argument is optional or not, or which is the correct
order, by looking only at how a function is applied. The strategy used by the compiler is to assume
that there are no optional arguments, and that applications are done in the right order.

The right way to solve this problem for optional parameters is to add a type annotation to the
argument bump.

# let bump_it (bump : ?step:int -> int -> int) x =

# bump “step:2 x;;

val bump_it : (?step:int -> int -> int) -> int -> int = <fun>
# bump_it bump 1;;

- : int = 3

In practice, such problems appear mostly when using objects whose methods have optional argu-
ments, so that writing the type of object arguments is often a good idea.

Normally the compiler generates a type error if you attempt to pass to a function a parameter
whose type is different from the expected one. However, in the specific case where the expected
type is a non-labeled function type, and the argument is a function expecting optional parameters,
the compiler will attempt to transform the argument to have it match the expected type, by passing
None for all optional parameters.

# let twice f (x : int) = £(f x);;
val twice : (int -> int) -> int -> int = <fun>

# twice bump 2;;
- : int = 8

This transformation is coherent with the intended semantics, including side-effects. That is, if
the application of optional parameters shall produce side-effects, these are delayed until the received
function is really applied to an argument.

4.1.3 Suggestions for labeling

Like for names, choosing labels for functions is not an easy task. A good labeling is a labeling
which

e makes programs more readable,

e is easy to remember,
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e when possible, allows useful partial applications.

We explain here the rules we applied when labeling OCaml libraries.

To speak in an “object-oriented” way, one can consider that each function has a main argument,
its object, and other arguments related with its action, the parameters. To permit the combination
of functions through functionals in commuting label mode, the object will not be labeled. Its role
is clear from the function itself. The parameters are labeled with names reminding of their nature
or their role. The best labels combine nature and role. When this is not possible the role is to be
preferred, since the nature will often be given by the type itself. Obscure abbreviations should be
avoided.

ListLabels.map : f:('a -> 'b) -> 'a list -> 'b list
UnixLabels.write : file_descr -> buf:bytes -> pos:int -> len:int -> unit

When there are several objects of same nature and role, they are all left unlabeled.
ListLabels.iter2 : f:('a -> 'b => 'c) -> 'a list -> 'b list -> unit
When there is no preferable object, all arguments are labeled.

BytesLabels.blit
src:bytes -> src_pos:int -> dst:bytes -> dst_pos:int -> len:int -> unit

However, when there is only one argument, it is often left unlabeled.
BytesLabels.create : int -> bytes

This principle also applies to functions of several arguments whose return type is a type variable,
as long as the role of each argument is not ambiguous. Labeling such functions may lead to
awkward error messages when one attempts to omit labels in an application, as we have seen with
ListLabels.fold_left.

Here are some of the label names you will find throughout the libraries.

Label | Meaning

f: a function to be applied

pos: a position in a string, array or byte sequence
len: a length

buf: | a byte sequence or string used as buffer

src: the source of an operation

dst: the destination of an operation

init: | the initial value for an iterator

cmp: a comparison function, e.g. Pervasives.compare
mode: | an operation mode or a flag list

All these are only suggestions, but keep in mind that the choice of labels is essential for read-
ability. Bizarre choices will make the program harder to maintain.

In the ideal, the right function name with right labels should be enough to understand the
function’s meaning. Since one can get this information with OCamlBrowser or the ocaml toplevel,
the documentation is only used when a more detailed specification is needed.
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4.2 Polymorphic variants

Variants as presented in section are a powerful tool to build data structures and algorithms.
However they sometimes lack flexibility when used in modular programming. This is due to the
fact every constructor reserves a name to be used with a unique type. One cannot use the same
name in another type, or consider a value of some type to belong to some other type with more
constructors.

With polymorphic variants, this original assumption is removed. That is, a variant tag does
not belong to any type in particular, the type system will just check that it is an admissible value
according to its use. You need not define a type before using a variant tag. A variant type will be
inferred independently for each of its uses.

Basic use

In programs, polymorphic variants work like usual ones. You just have to prefix their names with
a backquote character ~

# ["0On; "0ff];;
- : [> "0ff | On ] list = [ 0On; ~0ff]

# ~Number 1;;
- : [> “Number of int ] = ~Number 1

# let £ = function "On -> 1 | “0ff -> O | “Number n -> n;;
val f : [< “Number of int | “Off | “On ] -> int = <fun>

# List.map £ ["On; ~0£ffl;;
- : int list = [1; 0]

[>°0ff| 0n] list means that to match this list, you should at least be able to match ~0ff and
“On, without argument. [<*0On| 0ff| Number of int] means that £ may be applied to ~0ff, ~0On
(both without argument), or ~Number n where n is an integer. The > and < inside the variant types
show that they may still be refined, either by defining more tags or by allowing less. As such, they
contain an implicit type variable. Because each of the variant types appears only once in the whole
type, their implicit type variables are not shown.

The above variant types were polymorphic, allowing further refinement. When writing type an-
notations, one will most often describe fixed variant types, that is types that cannot be refined. This
is also the case for type abbreviations. Such types do not contain < or >, but just an enumeration
of the tags and their associated types, just like in a normal datatype definition.

# type 'a vlist = [Nil | “Cons of 'a * 'a vlist];;
type 'a vlist = [ “Cons of 'a * 'a vlist | "Nil ]

# let rec map £ : 'a vlist -> 'b vlist = function
# | “Nil -> °"Nil

# | “Cons(a, 1) -> “Cons(f a, map f 1)

#55

val map : ('a -> 'b) -> 'a vlist -> 'b vlist = <fun>
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Advanced use

Type-checking polymorphic variants is a subtle thing, and some expressions may result in more
complex type information.

# let f = function A -> "C | "B -> "D | x -> x;;
val £ : ([> A | B | C| D] as 'a) -> 'a = <fun>
# f "E;;

-:[>"A] 'B|] |  D| E]="E

Here we are seeing two phenomena. First, since this matching is open (the last case catches any
tag), we obtain the type [> “A | “B] rather than [< “A | “B] in a closed matching. Then, since
x is returned as is, input and return types are identical. The notation as 'a denotes such type
sharing. If we apply f to yet another tag “E, it gets added to the list.

# let f1 = function A x > x =1 | "B -> true | “C -> false
# let f2 = function A x -> x = "a" | B -> true ;;

val f1 : [< A of int | "B | “C ] -> bool = <fun>

val f2 : [< A of string | "B ] -> bool = <fun>

# let £ x = f1 x && f2 x;;
val f : [< A of string & int | B ] -> bool = <fun>

Here £1 and £2 both accept the variant tags ~A and B, but the argument of “A is int for £1 and
string for £2. In f’s type ~C, only accepted by f1, disappears, but both argument types appear
for A as int & string. This means that if we pass the variant tag ~A to £, its argument should
be both int and string. Since there is no such value, £ cannot be applied to ~A, and ~B is the only
accepted input.

Even if a value has a fixed variant type, one can still give it a larger type through coercions.
Coercions are normally written with both the source type and the destination type, but in simple
cases the source type may be omitted.

# type 'a wlist = ['Nil | “Cons of 'a * 'a wlist | “Smoc of 'a wlist * 'al;;
type 'a wlist = [ “Cons of 'a * 'a wlist | "Nil | “Snoc of 'a wlist * 'a ]

# let wlist_of_vlist 1 = (1 : 'a vlist :> 'a wlist);;
val wlist_of_vlist : 'a vlist -> 'a wlist = <fun>

# let open_vlist 1 = (1 : 'a vlist :> [> 'a vlist]);;
val open_vlist : 'a vlist -> [> 'a vlist ] = <fun>

# fun x > (x :> [TA|BI"C]);;
-:[<A| B|] ¢c]l]->1["A]| B| C] = <fun>

You may also selectively coerce values through pattern matching.

# let split_cases = function

# | "Nil | “Cons _ as x -> A x
# | ~Snoc as x > B x

#

val split_cases :
[< “Cons of 'a | "Nil | “Snoc of 'b ] ->
[> A of [> Cons of 'a | "Nil ] | "B of [> “Snoc of 'b ] ] = <fun>



Chapter 4. Labels and variants 71

When an or-pattern composed of variant tags is wrapped inside an alias-pattern, the alias is given
a type containing only the tags enumerated in the or-pattern. This allows for many useful idioms,

like incremental definition of functions.

# let num x “Num x

# let evall eval (CNum x) = x

# let rec eval x evall eval x ;;

val num : 'a -> [> “Num of 'a ] <fun>

val evall : 'a -> [< “Num of 'b ] -> 'b = <fun>
val eval : [< "Num of 'a ] -> 'a = <fun>

# let
# let
# |
# |
# let
val plus :
val eval2 :
val eval :

plus x y = “Plus(x,y)

eval2 eval = function
“Plus(x,y) -> eval x + eval y
as x —> evall eval x

rec eval x eval2 eval x ;;

'a -> 'b -> [> “Plus of 'a * 'b ]
('a -> int) -> [< “Num of int |
([< “Num of int |

“Num _

“Plus

“Plus of 'a * 'a ] as

<fun>

of 'a ¥ 'a ] -> int <fun>

'a) -> int <fun>

To make this even more comfortable, you may use type definitions as abbreviations for or-

patterns.

Such abbreviations may be used alone,

# let £
# | #myvariant -> "myvariant"

# | “Tag3 -> "Tag3";;

val f : [< “Tagl of int | “Tag2 of bool | “Tag3 ]

function

or combined with with aliases.
# let gl = function “Tagl _ -> "Tagl" | ~Tag2
val g1 : [< "Tagl of 'a | “Tag2 of 'b ] -> string

# let g = function

# | #myvariant as x -> gl x

# | “Tag3 -> "Tag3";;

val g : [< "Tagl of int | “Tag2 of bool | “Tag3 ]

4.2.1 Weaknesses of polymorphic variants

After seeing the power of polymorphic variants, one
language variants, rather than replacing them.

That is, if you have defined type myvariant
then the pattern #myvariant is equivalent to writing (" Tagl (_

[Tagl of int | “Tag2 of bool],
int) | “Tag2(_ : bool)).

-> string = <fun>

_> |ITag2"; ;
<fun>

-> string = <fun>

may wonder why they were added to core

The answer is twofold. One first aspect is that while being pretty efficient, the lack of static type
information allows for less optimizations, and makes polymorphic variants slightly heavier than core
language ones. However noticeable differences would only appear on huge data structures.

More important is the fact that polymorphic variants, while being type-safe, result in a weaker
type discipline. That is, core language variants do actually much more than ensuring type-safety,
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they also check that you use only declared constructors, that all constructors present in a data-
structure are compatible, and they enforce typing constraints to their parameters.

For this reason, you must be more careful about making types explicit when you use polymorphic
variants. When you write a library, this is easy since you can describe exact types in interfaces,
but for simple programs you are probably better off with core language variants.

Beware also that some idioms make trivial errors very hard to find. For instance, the following
code is probably wrong but the compiler has no way to see it.

°B “Cl ;;

# type abc = | |
‘B | C1]

A
type abc = [ "A |
# let £ = function
# | “As -> "A"

# | #abc -> "other" ;;
val £ : [< A | "4s | "B | *C ] -> string = <fun>

# let £ : abc -> string = f ;;
val £ : abc -> string = <fun>

You can avoid such risks by annotating the definition itself.

# let £ : abc —-> string = function

# | ﬂ > "An

# | #abc -> "other" ;;

Error: This pattern matches values of type [? “As ]
but a pattern was expected which matches values of type abc
The second variant type does not allow tag(s) “As



Chapter 5

Advanced examples with classes and
modules

(Chapter written by Didier Rémy)

In this chapter, we show some larger examples using objects, classes and modules. We review
many of the object features simultaneously on the example of a bank account. We show how modules
taken from the standard library can be expressed as classes. Lastly, we describe a programming
pattern know of as virtual types through the example of window managers.

5.1 Extended example: bank accounts

In this section, we illustrate most aspects of Object and inheritance by refining, debugging, and
specializing the following initial naive definition of a simple bank account. (We reuse the module
Euro defined at the end of chapter [3])

# let euro = new Euro.c;;
val euro : float -> Euro.c = <fun>

# let zero = euro O.;;
val zero : Euro.c = <obj>

# let neg x = x#times (-1.);;
val neg : < times : float -> 'a; .. > -> 'a = <fun>

# class account =
# object
# val mutable balance = zero
# method balance = balance
# method deposit x = balance <- balance # plus x
# method withdraw x =
# if x#leq balance then (balance <- balance # plus (neg x); x) else zero
# end;;
class account :
object

73
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val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

# let c = new account in c # deposit (euro 100.); c # withdraw (euro 50.);;
- : Euro.c = <obj>

We now refine this definition with a method to compute interest.

# class account_with_interests =
# object (self)
# inherit account
# method private interest = self # deposit (self # balance # times 0.03)
# end;;
class account_with_interests :
object
val mutable balance : Euro.c
method balance : Euro.c
method deposit : Euro.c -> unit
method private interest : unit
method withdraw : Euro.c -> Euro.c
end

We make the method interest private, since clearly it should not be called freely from the outside.
Here, it is only made accessible to subclasses that will manage monthly or yearly updates of the
account.

We should soon fix a bug in the current definition: the deposit method can be used for with-
drawing money by depositing negative amounts. We can fix this directly:

# class safe_account =

# object
# inherit account
# method deposit x = if zero#leq x then balance <- balance#plus x
# end;;
class safe_account :
object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

However, the bug might be fixed more safely by the following definition:

# class safe_account =

# object

# inherit account as unsafe
# method deposit x =
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# if zero#leq x then unsafe # deposit x
# else raise (Invalid_argument "deposit")
# end;;
class safe_account :

object

val mutable balance : Euro.c

method balance : Euro.c

method deposit : Euro.c -> unit

method withdraw : Euro.c -> Euro.c
end

In particular, this does not require the knowledge of the implementation of the method deposit.
To keep track of operations, we extend the class with a mutable field history and a private
method trace to add an operation in the log. Then each method to be traced is redefined.

# type 'a operation = Deposit of 'a | Retrieval of 'a;;
type 'a operation = Deposit of 'a | Retrieval of 'a

# class account_with_history =
# object (self)

# inherit safe_account as super
# val mutable history = []
# method private trace x = history <- x :: history
# method deposit x = self#trace (Deposit x); super#deposit x
# method withdraw x = self#trace (Retrieval x); super#withdraw x
# method history = List.rev history
# end;;
class account_with_history :
object

val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c —-> unit
method history : Euro.c operation list
method private trace : Euro.c operation —> unit
method withdraw : Euro.c -> Euro.c
end

One may wish to open an account and simultaneously deposit some initial amount. Although the
initial implementation did not address this requirement, it can be achieved by using an initializer.

# class account_with_deposit x =

# object
# inherit account_with_history
# initializer balance <- x
# end;;
class account_with_deposit :
Euro.c ->
object

val mutable balance : Euro.c
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val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c

end

A better alternative is:

# class account_with_deposit x =
# object (self)

# inherit account_with_history
# initializer self#deposit x
# end; ;

class account_with_deposit :

Euro.c —->

object
val mutable balance : Euro.c
val mutable history : Euro.c operation list
method balance : Euro.c
method deposit : Euro.c -> unit
method history : Euro.c operation list
method private trace : Euro.c operation -> unit
method withdraw : Euro.c —-> Euro.c

end

Indeed, the latter is safer since the call to deposit will automatically benefit from safety checks
and from the trace. Let’s test it:

# let ccp = new account_with_deposit (euro 100.) in
# let _balance = ccp#withdraw (euro 50.) in
# ccp#history;;

- : Euro.c operation list = [Deposit <obj>; Retrieval <obj>]

Closing an account can be done with the following polymorphic function:

# let close c = c#withdraw c#balance;;
val close : < balance : 'a; withdraw : 'a -> 'b; .. > -> 'b = <fun>

Of course, this applies to all sorts of accounts.
Finally, we gather several versions of the account into a module Account abstracted over some
currency.

# let today () = (01,01,2000) (* an approximation *)
# module Account (M:MONEY) =

# struct

# type m = M.c

# let m = new M.c

# let zero = m O.
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class bank =
object (self)
val mutable balance = zero
method balance = balance
val mutable history = []
method private trace x = history <- x::history
method deposit x =
self#trace (Deposit x);
if zero#leq x then balance <- balance # plus x
else raise (Invalid_argument "deposit")
method withdraw x =
if x#leq balance then

(balance <- balance # plus (neg x); self#trace (Retrieval x); x)

else zero
method history = List.rev history
end
class type client_view =
object
method deposit : m -> unit
method history : m operation list
method withdraw : m -> m
method balance : m
end
class virtual check_client x =
let y = if (m 100.)#leq x then x
else raise (Failure "Insufficient initial deposit") in
object (self) initializer self#deposit y end
module Client (B : sig class bank : client_view end) =
struct
class account x : client_view =
object
inherit B.bank
inherit check_client x
end
let discount x =
let ¢ = new account x in
if today() < (1998,10,30) then c # deposit (m 100.); c
end

end;;

7

This shows the use of modules to group several class definitions that can in fact be thought of as
a single unit. This unit would be provided by a bank for both internal and external uses. This is
implemented as a functor that abstracts over the currency so that the same code can be used to
provide accounts in different currencies.

The class bank is the real implementation of the bank account (it could have been inlined).

This is the one that will be used for further extensions, refinements, etc. Conversely, the client will
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only be given the client view.

# module Euro_account = Account (Euro);;
# module Client = Euro_account.Client (Euro_account);;

# new Client.account (new Euro.c 100.);;

Hence, the clients do not have direct access to the balance, nor the history of their own accounts.
Their only way to change their balance is to deposit or withdraw money. It is important to give
the clients a class and not just the ability to create accounts (such as the promotional discount
account), so that they can personalize their account. For instance, a client may refine the deposit
and withdraw methods so as to do his own financial bookkeeping, automatically. On the other
hand, the function discount is given as such, with no possibility for further personalization.

It is important to provide the client’s view as a functor Client so that client accounts can still
be built after a possible specialization of the bank. The functor Client may remain unchanged
and be passed the new definition to initialize a client’s view of the extended account.

# module Investment_account (M : MONEY) =

# struct

# type m = M.c

# module A = Account (M)

# class bank =

# object

# inherit A.bank as super

# method deposit x =

# if (new M.c 1000.)#leq x then
# print_string "Would you like to invest?";
# super#deposit x

# end

# module Client = A.Client

# end;;

The functor Client may also be redefined when some new features of the account can be given to
the client.

# module Internet_account (M : MONEY) =
# struct

# type m = M.c

# module A = Account (M)

# class bank =

# object

# inherit A.bank

# method mail s = print_string s
# end

# class type client_view =

# object

# method deposit : m -> unit
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# method history : m operation list
# method withdraw : m -> m

# method balance : m

# method mail : string -> unit

# end

# module Client (B : sig class bank : client_view end) =
# struct

# class account x : client_view =

# object

# inherit B.bank

# inherit A.check_client x

# end

# end

#

end;;

5.2 Simple modules as classes

One may wonder whether it is possible to treat primitive types such as integers and strings as
objects. Although this is usually uninteresting for integers or strings, there may be some situations
where this is desirable. The class money above is such an example. We show here how to do it for
strings.

5.2.1 Strings
A naive definition of strings as objects could be:

class ostring s =
object
method get n = String.get s n
method print = print_string s
method copy = new ostring (String.copy s)
end;;
Warning 3: deprecated: String.copy
class ostring :
string ->
object
method copy : ostring
method get : int -> char
method print : unit
end

#
#
#
#
#
#

However, the method copy returns an object of the class ostring, and not an object of the current
class. Hence, if the class is further extended, the method copy will only return an object of the
parent class.

# class sub_string s =
# object
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# inherit ostring s
# method sub start len = new sub_string (String.sub s start len)
# end;;
class sub_string :
string ->
object
method copy : ostring
method get : int -> char
method print : unit
method sub : int -> int -> sub_string
end

As seen in section the solution is to use functional update instead. We need to create an
instance variable containing the representation s of the string.

# class better_string s =

# object

# val repr = s

# method get n = String.get repr n

# method print = print_string repr

# method copy = {< repr = String.copy repr >}

# method sub start len = {< repr = String.sub s start len >}
# end;;

Warning 3: deprecated: String.copy
class better_string :
string ->
object ('a)
val repr : string
method copy : 'a
method get : int -> char
method print : unit
method sub : int -> int -> 'a
end

As shown in the inferred type, the methods copy and sub now return objects of the same type as
the one of the class.

Another difficulty is the implementation of the method concat. In order to concatenate a string
with another string of the same class, one must be able to access the instance variable externally.
Thus, a method repr returning s must be defined. Here is the correct definition of strings:

# class ostring s =

# object (self : 'mytype)

# val repr = s

# method repr = repr

# method get n = String.get repr n

# method print = print_string repr

# method copy = {< repr = String.copy repr >}

# method sub start len = {< repr = String.sub s start len >}
# method concat (t : 'mytype) = {< repr = repr " t#repr >}
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# end;;
Warning 3: deprecated: String.copy
class ostring :
string ->
object ('a)
val repr : string
method concat : '
method copy : 'a
method get : int -> char
method print : unit
method repr : string
method sub : int -> int -> 'a
end

a->"'a

Another constructor of the class string can be defined to return a new string of a given length:

# class cstring n = ostring (String.make n ' ');;
class cstring : int -> ostring

Here, exposing the representation of strings is probably harmless. We do could also hide the
representation of strings as we hid the currency in the class money of section [3.17}

Stacks

There is sometimes an alternative between using modules or classes for parametric data types.
Indeed, there are situations when the two approaches are quite similar. For instance, a stack can
be straightforwardly implemented as a class:

# exception Empty;;

exception Empty

# class ['a] stack =

# object

# val mutable 1 = ([] : 'a list)
# method push x = 1 <- x::1
# method pop = match 1 with [] -> raise Empty | a::1' -> 1 <= 1'; a
# method clear = 1 <- []
# method length = List.length 1
# end; ;
class ['al] stack :
object
val mutable 1 : 'a list
method clear : unit
method length : int
method pop : 'a
method push : 'a -> unit
end

However, writing a method for iterating over a stack is more problematic. A method fold would
have type ('b => 'a => 'b) -> 'b -> 'b. Here 'ais the parameter of the stack. The parameter
'p is not related to the class 'a stack but to the argument that will be passed to the method
fold. A naive approach is to make 'b an extra parameter of class stack:
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# class ['a, 'b] stack2 =

# object
# inherit ['a] stack
# method fold f (x : 'b) = List.fold_left f x 1
# end;;
class ['a, 'b] stack2 :
object
val mutable 1 : 'a list

method clear : unit
method fold : ('b -=> 'a -=> 'b) => 'b => 'b
method length : int
method pop : 'a
method push : 'a -> unit
end

However, the method fold of a given object can only be applied to functions that all have the same
type:

# let s = new stack2;;
val s : ('_a, '_b) stack2 = <obj>

# s#tfold ( + ) 0;;

- : int = 0

# 85,

- : (int, int) stack2 = <obj>

A better solution is to use polymorphic methods, which were introduced in OCaml version 3.05.
Polymorphic methods makes it possible to treat the type variable 'b in the type of fold as univer-
sally quantified, giving fold the polymorphic type Forall 'b. ('b -> 'a -> 'b) -> 'b -> 'b.
An explicit type declaration on the method fold is required, since the type checker cannot infer
the polymorphic type by itself.

# class ['a] stack3 =
# object
# inherit ['a] stack
# method fold : 'b. ('b -> 'a -> 'b) -> 'b > 'b
# = fun f x -> List.fold_left f x 1
# end;;
class ['a] stack3 :
object
val mutable 1 : 'a list

method clear : unit
method fold : ('b -> 'a -> 'b) -> 'b -> 'b
method length : int
method pop : 'a
method push : 'a -> unit
end
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5.2.2 Hashtbl

A simplified version of object-oriented hash tables should have the following class type.

# class type ['a, 'b] hash_table =

# object

# method find : 'a -> 'b

# method add : 'a -> 'b -> unit
# end;;

class type ['a, 'b] hash_table =
object method add : 'a -> 'b -> unit method find : 'a -> 'b end

A simple implementation, which is quite reasonable for small hash tables is to use an association
list:

# class ['a, 'b] small_hashtbl : ['a, 'b] hash_table =

# object

# val mutable table = []

# method find key = List.assoc key table

# method add key valeur = table <- (key, valeur) :: table
# end;;

class ['a, 'b] small_hashtbl : ['a, 'b] hash_table

A better implementation, and one that scales up better, is to use a true hash table... whose
elements are small hash tables!

# class ['a, 'b] hashtbl size : ['a, 'b] hash_table =

# object (self)

# val table = Array.init size (fun i -> new small_hashtbl)
# method private hash key =

# (Hashtbl.hash key) mod (Array.length table)

# method find key = table.(self#hash key) # find key

# method add key = table. (self#hash key) # add key

# end;;

class ['a, 'b] hashtbl : int -> ['a, 'b] hash_table

5.2.3 Sets

Implementing sets leads to another difficulty. Indeed, the method union needs to be able to access
the internal representation of another object of the same class.

This is another instance of friend functions as seen in section Indeed, this is the same
mechanism used in the module Set in the absence of objects.

In the object-oriented version of sets, we only need to add an additional method tag to return
the representation of a set. Since sets are parametric in the type of elements, the method tag has a
parametric type 'a tag, concrete within the module definition but abstract in its signature. From
outside, it will then be guaranteed that two objects with a method tag of the same type will share
the same representation.
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# module type SET =
sig
type 'a tag
class ['al ¢

object ('b)
method is_empty : bool
method mem : 'a -> bool
method add : 'a -> 'b
method union : 'b -> 'b

method iter : ('a -> unit) -> unit
method tag : 'a tag
end
end;;

module Set : SET =
struct
let rec merge 11 12 =
match 11 with

] ->12
| h1 :: t1 ->
match 12 with
0 ->11
| h2 :: t2 ->

if hl < h2 then hl :: merge t1 12
else if hl > h2 then h2 :: merge 11 t2
else merge t1 12
type 'a tag = 'a list
class ['a] ¢ =
object (_ : 'b)
val repr = ([] : 'a list)
method is_empty = (repr = [])
method mem x = List.exists (( = ) x) repr
method add x = {< repr = merge [x] repr >}

method union (s : 'b) = {< repr = merge repr st#tag >}
method iter (f : 'a -> unit) = List.iter f repr
method tag = repr

end

H OH HF H O H HF H OH HF H HH HHH HHHHHH KT HH OHHHH KT HHHEH HEHH

end;;

5.3 The subject/observer pattern

The following example, known as the subject/observer pattern, is often presented in the literature
as a difficult inheritance problem with inter-connected classes. The general pattern amounts to the
definition a pair of two classes that recursively interact with one another.
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The class observer has a distinguished method notify that requires two arguments, a subject
and an event to execute an action.

# class virtual ['subject, 'event] observer =

# object
# method virtual notify : 'subject -> 'event -> unit
# end;;
class virtual ['subject, 'event] observer :
object method virtual notify : 'subject -> 'event -> unit end

The class subject remembers a list of observers in an instance variable, and has a distinguished
method notify_observers to broadcast the message notify to all observers with a particular
event e.

# class ['observer, 'event] subject =
# object (self)
# val mutable observers = ([]:'observer list)
# method add_observer obs = observers <- (obs :: observers)
# method notify_observers (e : 'event) =
# List.iter (fun x -> x#notify self e) observers
# end;;
class ['a, 'event] subject
object ('b)
constraint 'a = < notify : 'b -> 'event -> unit; .. >
val mutable observers : 'a list
method add_observer : 'a -> unit
method notify_observers : 'event -> unit
end

The difficulty usually lies in defining instances of the pattern above by inheritance. This can be
done in a natural and obvious manner in OCaml, as shown on the following example manipulating
windows.

# type event = Raise | Resize | Move;;
type event = Raise | Resize | Move

# let string_of_event = function
# Raise -> "Raise" | Resize -> "Resize" | Move -> "Move";;
val string_of_event : event -> string = <fun>

# let count = ref O;;
val count : int ref = {contents = 0}

# class ['observer] window_subject =
# let id = count := succ !count; !count in
object (self)
inherit ['observer, event] subject

method identity = id

#

#

# val mutable position = 0

#

# method move x = position <- position + x; self#notify_observers Move
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# method draw = Printf.printf "{Position = %d}\n" position;
# end;;
class ['al window_subject
object ('b)

constraint 'a = < notify : 'b -> event -> unit; .. >

val mutable observers : 'a list

val mutable position : int

method add_observer : 'a —> unit

method draw : unit

method identity : int

method move : int -> unit

method notify_observers : event -> unit
end

# class ['subject] window_observer =

# object
# inherit ['subject, event] observer
# method notify s e = s#draw
# end;;
class ['a] window_observer :
object
constraint 'a = < draw : unit; .. >
method notify : 'a -> event -> unit
end

As can be expected, the type of window is recursive.

# let window = new window_subject;;
val window : < notify : 'a -> event -> unit;
<obj>

> window_subject as 'a =

However, the two classes of window_subject and window_observer are not mutually recursive.

# let window_observer = new window_observer;;
val window_observer : < draw : unit; _.. > window_observer = <obj>

# window#add_observer window_observer;;
- : unit = ()
# window#move 1;;

{Position = 1}
- : unit = ()

Classes window_observer and window_subject can still be extended by inheritance. For in-
stance, one may enrich the subject with new behaviors and refine the behavior of the observer.

# class ['observer] richer_window_subject =

# object (self)

# inherit ['observer] window_subject

# val mutable size = 1

# method resize x = size <- size + x; self#notify_observers Resize
#

val mutable top = false
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# method raise =
# method draw =
# end;;
class ['al richer_window_subject
object ('b)
constraint 'a =
val mutable observers :
mutable position :
val mutable size : int
val mutable top : bool
method add_observer :
method draw : unit
method identity :
method move : int -> unit
method notify_observers : event -> unit

< notify :
'a list

val int

'a -> unit

int

method raise : unit
method resize : int -> unit
end

# class ['subject] richer_window_observer =
# object

'b -> event -> unit;

top <- true; self#notify_observers Raise
Printf.printf "{Position =

%d; Size = %d}\n"

position size;

# inherit ['subject] window_observer as super
# method notify s e = if e <> Raise then s#raise; super#notify s e
# end; ;
class ['al] richer_window_observer :
object
constraint 'a = < draw : unit; raise : unit; >
method notify : 'a -> event -> unit
end
We can also create a different kind of observer:
# class ['subject] trace_observer =
# object
# inherit ['subject, event] observer
# method notify s e =
# Printf.printf
# "<Window %d <== ¥%s>\n" s#identity (string_of_event e)
# end;;
class ['a] trace_observer :
object
constraint 'a = < identity : int; .. >

!

method notify : 'a -> event -> unit

end
and attach several observers to the same object:

# let window =
val window :
< notify :

new richer_window_subject;;

'a -> event -> unit; _

> richer_window_subject as

1 =

<obj>
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# window#add_observer (new richer_window_observer);;
- : unit = ()

# window#add_observer (new trace_observer);;
:unit = ()

# window#move 1; window#resize 2;;

<Window 1 <== Move>

<Window 1 <==

{Position = 1; Size = 1}
1 .

{Position = 1; Size 1}
<Window 1 <== Resize>
<Window 1 <== Raise>
{Position = 1; Size = 3}
{Position = 1; Size = 3}

- : unit = ()
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Chapter 6

The OCaml language

Foreword

This document is intended as a reference manual for the OCaml language. It lists the language
constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial
introduction to the language: there is not a single example. A good working knowledge of OCaml
is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive
meaning, without further definition. As a consequence, the typing rules have been left out, by lack
of the mathematical framework required to express them, while they are definitely part of a full
formal definition of the language.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter
font (1ike this). Non-terminal symbols are set in italic font (like that). Square brackets [...]
denote optional components. Curly brackets {...} denotes zero, one or several repetitions of
the enclosed components. Curly brackets with a trailing plus sign {...}" denote one or several
repetitions of the enclosed components. Parentheses (. ..) denote grouping.

6.1 Lexical conventions

Blanks

The following characters are considered as blanks: space, horizontal tabulation, carriage return,
line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals and
keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (*, with no intervening blanks, and terminated
by the characters *), with no intervening blanks. Comments are treated as blank characters.
Comments do not occur inside string or character literals. Nested comments are handled correctly.

91
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Identifiers
ident == (letter | _) {letter |0...9|_| "'}
capitalized-ident ::= (A...Z) {letter |0...9|_|"'}
lowercase-ident == (a...z|_) {Ietter |0...9|_|"}
letter == A...Z|a...z

Identifiers are sequences of letters, digits, _ (the underscore character), and ' (the single quote),
starting with a letter or an underscore. Letters contain at least the 52 lowercase and uppercase
letters from the ASCII set. The current implementation also recognizes as letters some characters
from the ISO 8859-1 set (characters 192-214 and 216-222 as uppercase letters; characters 223-246
and 248-255 as lowercase letters). This feature is deprecated and should be avoided for future
compatibility.

All characters in an identifier are meaningful. The current implementation accepts identifiers
up to 16000000 characters in length.

In many places, OCaml makes a distinction between capitalized identifiers and identifiers that
begin with a lowercase letter. The underscore character is considered a lowercase letter for this
purpose.

Integer literals

integer-literal
X)(0...9|A...F|la...f){0...9|A...F|a...f|_}

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By
default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

Prefix | Radix

0x, 0X | hexadecimal (radix 16)
0o, 00 | octal (radix 8)

Ob, OB | binary (radix 2)

(The initial 0 is the digit zero; the 0 for octal is the letter O.) The interpretation of integer literals
that fall outside the range of representable integer values is undefined.

For convenience and readability, underscore characters (_) are accepted (and ignored) within
integer literals.

Floating-point literals

float-literal := [-] (0...9){0...9|_}[. {0...9|_} [(e|E)[+]-](0...9){0...9]| _}]

Floating-point decimals consist in an integer part, a decimal part and an exponent part. The
integer part is a sequence of one or more digits, optionally preceded by a minus sign. The decimal
part is a decimal point followed by zero, one or more digits. The exponent part is the character
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e or E followed by an optional + or - sign, followed by one or more digits. The decimal part or
the exponent part can be omitted but not both, to avoid ambiguity with integer literals. The
interpretation of floating-point literals that fall outside the range of representable floating-point

values is undefined.
For convenience and readability, underscore characters (_) are accepted (and ignored) within
floating-point literals.

Character literals

char-literal ::= ' regular-char '
' escape-sequence '

(\I"! Inlt\blrlspace)

—I \0..90..90..9

A. £)(0...9|A...F|a...f)

escape-sequence

-9)
\x (0...9

Character literals are delimited by ' (single quote) characters. The two single quotes enclose
either one character different from ' and \, or one of the escape sequences below:

Sequence | Character denoted

\\ backslash (\)

\" double quote (")

\! single quote (")

\n linefeed (LF)

\r carriage return (CR)

\t horizontal tabulation (TAB)

\b backspace (BS)

\ space space (SPC)

\ddd the character with ASCII code ddd in decimal

\xhh the character with ASCII code hh in hexadecimal
String literals

string-literal = " {string-character} "

= regular-string-char
| escape-sequence
|\ newline {space | tab}

string-character

String literals are delimited by " (double quote) characters. The two double quotes enclose a
sequence of either characters different from " and \, or escape sequences from the table given above
for character literals.

To allow splitting long string literals across lines, the sequence \newline spaces-or-tabs (a back-
slash at the end of a line followed by any number of spaces and horizontal tabulations at the
beginning of the next line) is ignored inside string literals.

The current implementation places practically no restrictions on the length of string literals.
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Naming labels

To avoid ambiguities, naming labels in expressions cannot just be defined syntactically as the
sequence of the three tokens ~, ident and :, and have to be defined at the lexical level.

label-name ::= lowercase-ident
label ::= =~ label-name :
optlabel ::= 7 label-name :

Naming labels come in two flavours: label for normal arguments and optlabel for optional ones.
They are simply distinguished by their first character, either ~ or 7.

Despite label and optlabel being lexical entities in expressions, their expansions ~ label-name :
and 7 label-name : will be used in grammars, for the sake of readability. Note also that inside
type expressions, this expansion can be taken literally, i.e. there are really 3 tokens, with optional
blanks between them.

Prefix and infix symbols

infix-symbol = (=|<|>|@|~|||&|+|-|*]|/]|$|%) {operator-char}
prefix-symbol ::= ! {operator-char}
| (7| ~) {operator-char}™
operator-char == ' |$|%|&|*x|+|-|.|/|:|<|=|>|7]@|" |||~
Sequences of “operator characters”, such as <=> or !!, are read as a single token from the

infix-symbol or prefix-symbol class. These symbols are parsed as prefix and infix operators inside
expressions, but otherwise behave like normal identifiers.

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:

and as assert asr begin class
constraint do done downto else end
exception  external false for fun function
functor if in include inherit initializer
land lazy let lor 1sl lsr

1xor match method mod module mutable

new object of open or private

rec sig struct then to true

try type val virtual when while

with
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The following character sequences are also keywords:

1= # & && ! ( ) * + s -
-. -> . - : - = :> 5 M <
<= = > >] >} ? L [< > Ll ]
- ) { {< | 1] I } -

Note that the following identifiers are keywords of the Camlp4 extensions and should be avoided
for compatibility reasons.

parser value $ $3$ $: <: << >> ?7?

Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence
can be decomposed into two tokens in several different ways, the decomposition retained is the one
with the longest first token.

Line number directives

linenum-directive = #{0...9}"
| #{0...9}" " {string-character} "

Preprocessors that generate OCaml source code can insert line number directives in their output
so that error messages produced by the compiler contain line numbers and file names referring to
the source file before preprocessing, instead of after preprocessing. A line number directive is
composed of a # (sharp sign), followed by a positive integer (the source line number), optionally
followed by a character string (the source file name). Line number directives are treated as blanks
during lexical analysis.

6.2 Values

This section describes the kinds of values that are manipulated by OCaml programs.

6.2.1 Base values
Integer numbers

Integer values are integer numbers from —23° to 230 — 1, that is —1073741824 to 1073741823. The
implementation may support a wider range of integer values: on 64-bit platforms, the current
implementation supports integers ranging from —262 to 262 — 1.

Floating-point numbers

Floating-point values are numbers in floating-point representation. The current implementation
uses double-precision floating-point numbers conforming to the IEEE 754 standard, with 53 bits of
mantissa and an exponent ranging from —1022 to 1023.
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Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between
0 and 127 are interpreted following the ASCII standard. The current implementation interprets
character codes between 128 and 255 following the ISO 8859-1 standard.

Character strings

String values are finite sequences of characters. The current implementation supports strings con-
taining up to 22* — 5 characters (16777211 characters); on 64-bit platforms, the limit is 2°7 — 9.

6.2.2 Tuples

Tuples of values are written (vy , ..., v, ), standing for the n-tuple of values v| to v,. The current
implementation supports tuple of up to 222 — 1 elements (4194303 elements).

6.2.3 Records

Record values are labeled tuples of values. The record value written { field; =vq ;... ; field, =v, }
associates the value v; to the record field field;, for ¢ = 1...n. The current implementation supports
records with up to 222 — 1 fields (4194303 fields).

6.2.4 Arrays

Arrays are finite, variable-sized sequences of values of the same type. The current implementation
supports arrays containing up to 2?2 — 1 elements (4194303 elements) unless the elements are
floating-point numbers (2097151 elements in this case); on 64-bit platforms, the limit is 2°4 — 1 for
all arrays.

6.2.5 Variant values

Variant values are either a constant constructor, or a non-constant constructor applied to a number
of values. The former case is written constr; the latter case is written constr (vy ,... ,v, ), where
the v; are said to be the arguments of the non-constant constructor constr. The parentheses may
be omitted if there is only one argument.

The following constants are treated like built-in constant constructors:

Constant | Constructor
false the boolean false
true the boolean true
O the “unit” value
(] the empty list

The current implementation limits each variant type to have at most 246 non-constant con-

230

structors and — 1 constant constructors.
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6.2.6 Polymorphic variants

Polymorphic variants are an alternate form of variant values, not belonging explicitly to a predefined
variant type, and following specific typing rules. They can be either constant, written = tag-name,
or non-constant, written ~ tag-name (v ).

6.2.7 Functions

Functional values are mappings from values to values.

6.2.8 Objects

Objects are composed of a hidden internal state which is a record of instance variables, and a set
of methods for accessing and modifying these variables. The structure of an object is described by
the toplevel class that created it.

6.3 Names

Identifiers are used to give names to several classes of language objects and refer to these objects
by name later:

e value names (syntactic class value-name),
e value constructors and exception constructors (class constr-name),
e labels (label-name, defined in section [6.1]),
e polymorphic variant tags (tag-name),

e type constructors (typeconstr-name),

e record fields (field-name),

e class names (class-name),

e method names (method-name),

e instance variable names (inst-var-name),
e module names (module-name),

e module type names (modtype-name).

These eleven name spaces are distinguished both by the context and by the capitalization of the
identifier: whether the first letter of the identifier is in lowercase (written lowercase-ident below)
or in uppercase (written capitalized-ident). Underscore is considered a lowercase letter for this
purpose.
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Naming objects

value-name

operator-name

infix-op

constr-name
tag-name
typeconstr-name
field-name
module-name
modtype-name
class-name
inst-var-name

method-name

As shown above, prefix and infix symbols as well as some keywords can be used as value names,
provided they are written between parentheses. The capitalization rules are summarized in the

table below.

lowercase-ident
( operator-name )

prefix-symbol | infix-op

infix-symbol

* [+ -[- =l t=]<|>]or Il |&]ea]:=
mod | land | lor | 1xor | 1sl | 1sr | asr

capitalized-ident
capitalized-ident
lowercase-ident
lowercase-ident
capitalized-ident
ident
lowercase-ident
lowercase-ident

lowercase-ident

Name space Case of first letter
Values lowercase
Constructors uppercase
Labels lowercase
Polymorphic variant tags | uppercase
Exceptions uppercase
Type constructors lowercase
Record fields lowercase
Classes lowercase
Instance variables lowercase
Methods lowercase
Modules uppercase
Module types any

Note on polymorphic variant tags: the current implementation accepts lowercase variant tags in
addition to capitalized variant tags, but we suggest you avoid lowercase variant tags for portability
and compatibility with future OCaml versions.
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Referring to named objects
value-path

constr

typeconstr

field

modtype-path

class-path

classtype-path

module-path
extended-module-path

extended-module-name
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module-path .| value-name
module-path .| constr-name

extended-module-path .] typeconstr-name

[

[

[

[module-path .] field-name
[extended-module-path .] modtype-name
[module-path .] class-name

[extended-module-path .] class-name
module-name {. module-name}
extended-module-name {. extended-module-name}

module-name { ( extended-module-path ) }

A named object can be referred to either by its name (following the usual static scoping rules
for names) or by an access path prefix . name, where prefix designates a module and name is

the name of an object defined in that module. The first component of the path, prefix, is either
a simple module name or an access path name; . names ..., in case the defining module is itself
nested inside other modules. For referring to type constructors, module types, or class types, the
prefix can also contain simple functor applications (as in the syntactic class extended-module-path
above) in case the defining module is the result of a functor application.

Label names, tag names, method names and instance variable names need not be qualified: the
former three are global labels, while the latter are local to a class.
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6.4 Type expressions

typexpr = ' ident

( typexpr )

[[?] label-name :] typexpr => typexpr
typexpr {* typexpr}™

typeconstr

typexpr typeconstr

( typexpr {, typexpr} ) typeconstr
typexpr as ' ident
polymorphic-variant-type

<[..]>

< method-type {; method-type} [; | ; ..] >
# class-path

typexpr # class-path

( typexpr {, typexpr} ) # class-path

poly-typexpr = typexpr
| {'ident}* . typexpr

method-type ::= method-name : poly-typexpr

The table below shows the relative precedences and associativity of operators and non-closed
type constructions. The constructions with higher precedences come first.

Operator Associativity
Type constructor application | —

# _

* _

-> right

as -

Type expressions denote types in definitions of data types as well as in type constraints over
patterns and expressions.

Type variables

The type expression ' ident stands for the type variable named ident. The type expression _ stands
for an anonymous type variable. In data type definitions, type variables are names for the data type
parameters. In type constraints, they represent unspecified types that can be instantiated by any
type to satisfy the type constraint. In general the scope of a named type variable is the whole top-
level phrase where it appears, and it can only be generalized when leaving this scope. Anonymous
variables have no such restriction. In the following cases, the scope of named type variables is
restricted to the type expression where they appear: 1) for universal (explicitly polymorphic) type
variables; 2) for type variables that only appear in public method specifications (as those variables
will be made universal, as described in section ; 3) for variables used as aliases, when the type



Chapter 6. The OCaml language 101

they are aliased to would be invalid in the scope of the enclosing definition (i.e. when it contains
free universal type variables, or locally defined types.)

Parenthesized types

The type expression ( typexpr ) denotes the same type as typexpr.

Function types

The type expression typexpr, —> typexpr, denotes the type of functions mapping arguments of
type typexpr; to results of type typexprsy.

label-name : typexpr, —> typexpry denotes the same function type, but the argument is labeled
label.

? label-name : typexpr, -> typexpr, denotes the type of functions mapping an optional labeled
argument of type typexpr; to results of type typexpr,. That is, the physical type of the function
will be typexpr; option -> typexpr,.

Tuple types

The type expression typexpr; *...* typexpr,, denotes the type of tuples whose elements belong to
types typexpry,...typexpr,, respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.
The type expression typexpr typeconstr, where typeconstr is a type constructor with one pa-
rameter, denotes the application of the unary type constructor typeconstr to the type typexpr.
The type expression (typexpr, ..., typexpr, ) typeconstr, where typeconstr is a type construc-
tor with n parameters, denotes the application of the n-ary type constructor typeconstr to the
types typexpr; through typexpr,,.

Aliased and recursive types

The type expression typexpr as ' ident denotes the same type as typexpr, and also binds the
type variable ident to type typexpr both in typexpr and in other types. In general the scope of
an alias is the same as for a named type variable, and covers the whole enclosing definition. If
the type variable ident actually occurs in typexpr, a recursive type is created. Recursive types for
which there exists a recursive path that does not contain an object or polymorphic variant type
constructor are rejected, except when the -rectypes mode is selected.

If ' ident denotes an explicit polymorphic variable, and typexpr denotes either an object or
polymorphic variant type, the row variable of typexpr is captured by ' ident, and quantified upon.
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Polymorphic variant types

:= [ tag-spec-first {| tag-spec} ]
| [> [tag-spec] {| tag-spec} ]
| [<[l] tag-spec-full {| tag-spec-full} [> {* tag-name}™] ]

polymorphic-variant-type

tag-spec-first = =~ tag-name [of typexpr]
| [typexpr] | tag-spec
tag-spec = " tag-name [of typexpr]
| typexpr
tag-spec-full ::= =~ tag-name [of [&] typexpr {& typexpr}]
| typexpr

Polymorphic variant types describe the values a polymorphic variant may take.

The first case is an exact variant type: all possible tags are known, with their associated types,
and they can all be present. Its structure is fully known.

The second case is an open variant type, describing a polymorphic variant value: it gives the
list of all tags the value could take, with their associated types. This type is still compatible with a
variant type containing more tags. A special case is the unknown type, which does not define any
tag, and is compatible with any variant type.

The third case is a closed variant type. It gives information about all the possible tags and
their associated types, and which tags are known to potentially appear in values. The exact variant
type (first case) is just an abbreviation for a closed variant type where all possible tags are also
potentially present.

In all three cases, tags may be either specified directly in the ~ tag-name [of typexpr] form,
or indirectly through a type expression, which must expand to an exact variant type, whose tag
specifications are inserted in its place.

Full specifications of variant tags are only used for non-exact closed types. They can be under-
stood as a conjunctive type for the argument: it is intended to have all the types enumerated in
the specification.

Such conjunctive constraints may be unsatisfiable. In such a case the corresponding tag may
not be used in a value of this type. This does not mean that the whole type is not valid: one can
still use other available tags. Conjunctive constraints are mainly intended as output from the type
checker. When they are used in source programs, unsolvable constraints may cause early failures.

Object types

An object type < [method-type {; method-type}| > is a record of method types.

Each method may have an explicit polymorphic type: {' ident}* . typexpr. Explicit poly-
morphic variables have a local scope, and an explicit polymorphic type can only be unified to an
equivalent one, where only the order and names of polymorphic variables may change.

The type < {method-type ;} .. > is the type of an object whose method names and types
are described by method-type;, ..., method-type,, and possibly some other methods represented
by the ellipsis. This ellipsis actually is a special kind of type variable (called row variable in the
literature) that stands for any number of extra method types.



Chapter 6. The OCaml language 103

#-types

The type # class-path is a special kind of abbreviation. This abbreviation unifies with the type of
any object belonging to a subclass of class class-path. It is handled in a special way as it usually
hides a type variable (an ellipsis, representing the methods that may be added in a subclass).
In particular, it vanishes when the ellipsis gets instantiated. Each type expression # class-path
defines a new type variable, so type # class-path —> # class-path is usually not the same as type
(# class-path as ' ident) => ' ident.

Use of #-types to abbreviate polymorphic variant types is deprecated. If ¢ is an exact variant
type then #t translates to [<t ], and #t [> ~ tag;... ~ tag, ] translates to [<t >~ tag,... ~ tagy ]

Variant and record types

There are no type expressions describing (defined) variant types nor record types, since those are
always named, i.e. defined before use and referred to by name. Type definitions are described in
section [6.8.1]

6.5 Constants

constant := integer-literal
| float-literal

| char-literal

| string-literal
| constr

| false

| true

| O

| begin end

| []

| O]

|

© tag-name

The syntactic class of constants comprises literals from the four base types (integers, floating-
point numbers, characters, character strings), and constant constructors from both normal and
polymorphic variants, as well as the special constants false, true, ( ), [ 1, and [| |], which
behave like constant constructors, and begin end, which is equivalent to ().
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6.6 Patterns

pattern ::= value-name
| _
| constant
| pattern as value-name
| ( pattern)
| ( pattern : typexpr )
| pattern | pattern
| constr pattern
| ° tag-name pattern
| # typeconstr
| pattern {, pattern}™t
| { field = pattern {; field = pattern} [;] }
| [ pattern {; pattern} [;] ]
| pattern :: pattern
| [ pattern {; pattern} [;] |]

The table below shows the relative precedences and associativity of operators and non-closed
pattern constructions. The constructions with higher precedences come first.

Operator Associativity

. (see section [7.4) -
lazy (see section ) -
Constructor application, Tag application | right
right

b

| left

as -

Patterns are templates that allow selecting data structures of a given shape, and binding iden-
tifiers to components of the data structure. This selection operation is called pattern matching;
its outcome is either “this value does not match this pattern”, or “this value matches this pattern,
resulting in the following bindings of names to values”.

Variable patterns

A pattern that consists in a value name matches any value, binding the name to the value. The
pattern _ also matches any value, but does not bind any name.

Patterns are linear: a variable cannot be bound several times by a given pattern. In particular,
there is no way to test for equality between two parts of a data structure using only a pattern (but
when guards can be used for this purpose).

Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.
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Alias patterns

The pattern pattern, as value-name matches the same values as pattern;. If the matching against
pattern; is successful, the name value-name is bound to the matched value, in addition to the
bindings performed by the matching against pattern,.

Parenthesized patterns

The pattern ( pattern; ) matches the same values as pattern;. A type constraint can appear in a
parenthesized pattern, as in ( pattern; : typexpr ). This constraint forces the type of pattern; to
be compatible with typexpr.

“Or” patterns

The pattern pattern; | pattern, represents the logical “or” of the two patterns pattern; and
pattern,. A value matches pattern; | patterny if it matches pattern; or pattern,. The two sub-
patterns pattern; and pattern, must bind exactly the same identifiers to values having the same
types. Matching is performed from left to right. More precisely, in case some value v matches
pattern; | pattern,, the bindings performed are those of pattern; when v matches pattern;. Oth-
erwise, value v matches pattern, whose bindings are performed.

Variant patterns

The pattern constr ( pattern; , ..., pattern, ) matches all variants whose constructor is equal to
constr, and whose arguments match pattern, ... pattern,. It is a type error if n is not the number
of arguments expected by the constructor.

The pattern constr _ matches all variants whose constructor is constr.

The pattern pattern; :: pattern, matches non-empty lists whose heads match pattern;, and
whose tails match pattern,.

The pattern [ pattern; ;...; pattern, ] matches lists of length n whose elements match
pattern; ... pattern,, respectively. This pattern behaves like pattern, ::...:: pattern, :: [].

Polymorphic variant patterns

The pattern ~ tag-name pattern; matches all polymorphic variants whose tag is equal to tag-name,
and whose argument matches pattern,.

Polymorphic variant abbreviation patterns

If the type [('a,'b,...)] typeconstr = [ ~ tag-name; typexpr; |...| ~ tag-name,, typexpr,, ]
is defined, then the pattern # typeconstr is a shorthand for the following or-pattern:
( ~ tag-name; (_ : typexpr; ) |...| "~ tag-name, (_ : typexpr, )). It matches all values of type

[< typeconstr ].
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Tuple patterns

The pattern pattern; ,..., pattern, matches n-tuples whose components match the patterns
pattern; through pattern,. That is, the pattern matches the tuple values (v1,...,v,) such that
pattern, matches v; for i =1,...,n.

Record patterns

The pattern { field; = pattern; ;...; field, = pattern, } matches records that define at least
the fields field; through field,,, and such that the value associated to field; matches the pattern
pattern;, for i = 1,...,n. The record value can define more fields than field; ... field,; the values

associated to these extra fields are not taken into account for matching.

Array patterns

The pattern [| pattern; ;...; pattern, |] matches arrays of length n such that the i-th array
element matches the pattern pattern;, for i =1,...,n.
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6.7 Expressions

expr

value-path

constant

(expr)

begin expr end

(expr : typexpr )

expr {, expr}™t

constr expr

© tag-name expr

expr :: expr

[ expr {; expr} [;]]

[I expr {; expr} [;] I]

{ field = expr {; field = expr} [;] }
{ expr with field = expr {; field = expr} [;] }
expr {argument}™

prefix-symbol expr

- expr

-. expr

expr infix-op expr

expr . field

expr . field <- expr

expr . ( expr)

expr . ( expr ) <- expr

expr . [ expr ]

expr . [ expr ] <- expr

if expr then expr [else expr]
while expr do expr done

for value-name = expr (to | downto) expr do expr done
expr ; expr

match expr with pattern-matching
function pattern-matching

fun multiple-matching

try expr with pattern-matching
let [rec] let-binding {and let-binding} in expr
new class-path

object class-body end

expr # method-name
inst-var-name

inst-var-name <- expr

( expr :> typexpr )

(expr : typexpr :> typexpr )

{< [inst-var-name = expr {; inst-var-name = expr} [;]] >}
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argument

pattern-matching
multiple-matching

let-binding

parameter

= expr
| ~ label-name
| ~ label-name : expr
| 7 label-name
| ? label-name : expr

= [|] pattern [when expr| -> expr {| pattern [when expr| -> expr}
= {parameter}" [when expr] -> expr

1= pattern = expr
| value-name {parameter} [: typexpr] [:> typexpr| = expr

pattern

~ label-name

~ (label-name [: typexpr] )
pattern

? label-name

? ( label-name [: typexpr]| [= expr] )

pattern

( pattern [: typexpr| [= expr] )

? label-name :

|
|
| = label-name :
|
!
|
| 7 label-name :

The table below shows the relative precedences and associativity of operators and non-closed
constructions. The constructions with higher precedence come first. For infix and prefix symbols,

we write “x..

.7 to mean “any symbol starting with *”.

Construction or operator Associativity
prefix-symbol -

.C .[  .{ (see section -
# —
function application, constructor application, tag application, assert (see , lazy (see left
- -. (prefix) —
*%, 1sl 1lsr asr right
L /... Y/ mod land lor 1lxor left

- left

HH right
Q.. T right
=.. <.. > & $.. I= left
& & right
or || right
<- = right
if -
; right
let match fun function try -
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6.7.1 Basic expressions
Constants

An expression consisting in a constant evaluates to this constant.

Value paths

An expression consisting in an access path evaluates to the value bound to this path in the cur-
rent evaluation environment. The path can be either a value name or an access path to a value
component of a module.

Parenthesized expressions

The expressions ( expr ) and begin expr end have the same value as expr. The two constructs are
semantically equivalent, but it is good style to use begin...end inside control structures:

if ... then begin ... ; ... end else begin ... ; ... end

and (...) for the other grouping situations.

Parenthesized expressions can contain a type constraint, as in ( expr : typexpr ). This
constraint forces the type of expr to be compatible with typexpr.

Parenthesized expressions can also contain coercions ( expr [: typexpr| :> typexpr ) (see
subsection [6.7.6] below).

Function application

Function application is denoted by juxtaposition of (possibly labeled) expressions. The expression
expr argument, ...argument,, evaluates the expression expr and those appearing in argument; to
argument,. The expression expr must evaluate to a functional value f, which is then applied to

the values of argument,, ..., argument,,.
The order in which the expressions expr, argument,...,argument,, are evaluated is not spec-
ified.

Arguments and parameters are matched according to their respective labels. Argument order
is irrelevant, except among arguments with the same label, or no label.

If a parameter is specified as optional (label prefixed by ?) in the type of expr, the corresponding
argument will be automatically wrapped with the constructor Some, except if the argument itself
is also prefixed by 7, in which case it is passed as is. If a non-labeled argument is passed, and its
corresponding parameter is preceded by one or several optional parameters, then these parameters
are defaulted, i.e. the value None will be passed for them. All other missing parameters (without
corresponding argument), both optional and non-optional, will be kept, and the result of the
function will still be a function of these missing parameters to the body of f.

As a special case, if the function has a known arity, all the arguments are unlabeled, and their
number matches the number of non-optional parameters, then labels are ignored and non-optional
parameters are matched in their definition order. Optional arguments are defaulted.

In all cases but exact match of order and labels, without optional parameters, the function
type should be known at the application point. This can be ensured by adding a type constraint.
Principality of the derivation can be checked in the -principal mode.
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Function definition

Two syntactic forms are provided to define functions. The first form is introduced by the keyword
function:

function pattern; -> expr

| pattern, -> expr,

This expression evaluates to a functional value with one argument. When this function is applied
to a value v, this value is matched against each pattern pattern; to pattern,. If one of these
matchings succeeds, that is, if the value v matches the pattern pattern; for some 4, then the
expression expr; associated to the selected pattern is evaluated, and its value becomes the value
of the function application. The evaluation of expr; takes place in an environment enriched by the
bindings performed during the matching.

If several patterns match the argument v, the one that occurs first in the function definition is
selected. If none of the patterns matches the argument, the exception Match_failure is raised.

The other form of function definition is introduced by the keyword fun:
fun parameter, ... parameter,, —> expr
This expression is equivalent to:
fun parameter; ->...fun parameter,, -> expr

The parameter patterns ~ lab and ~( lab [: typ] ) are shorthands for respectively ~ lab : lab
and ~ lab : (lab [: typ] ), and similarly for their optional counterparts.
A function of the form fun ? lab : ( pattern = expr, ) -> expr is equivalent to

fun 7 Jab : ident -> let pattern = match ident with Some ident —> ident | None -> expr( in expr

where ident is a fresh variable, except that it is unspecified when expr, is evaluated.
After these two transformations, expressions are of the form

fun [label;| pattern, => ... fun [label,| pattern, -> expr
If we ignore labels, which will only be meaningful at function application, this is equivalent to
function pattern; ->...function pattern, -> expr

That is, the fun expression above evaluates to a curried function with n arguments: after applying
this function n times to the values vi...v,, the values will be matched in parallel against the
patterns pattern, ... pattern,. If the matching succeeds, the function returns the value of expr in
an environment enriched by the bindings performed during the matchings. If the matching fails,
the exception Match_failure is raised.
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Guards in pattern-matchings

The cases of a pattern matching (in the function, fun, match and try constructs) can include
guard expressions, which are arbitrary boolean expressions that must evaluate to true for the
match case to be selected. Guards occur just before the -> token and are introduced by the when
keyword:

function pattern; [when cond;] -> expr;
|

| pattern,, [when cond,| -> expr,

Matching proceeds as described before, except that if the value matches some pattern pattern;
which has a guard cond;, then the expression cond; is evaluated (in an environment enriched by
the bindings performed during matching). If cond; evaluates to true, then expr; is evaluated and
its value returned as the result of the matching, as usual. But if cond; evaluates to false, the
matching is resumed against the patterns following pattern,.

Local definitions

The let and let rec constructs bind value names locally. The construct
let pattern; = expr; and...and pattern, = expr, in expr

evaluates expr; ...expr,, in some unspecified order and matches their values against the patterns
pattern, ... pattern,,. If the matchings succeed, expr is evaluated in the environment enriched by
the bindings performed during matching, and the value of expr is returned as the value of the whole
let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

let ident = fun parameter, ... parameter,, —> expr
in a let expression, one may instead write

let ident parameter, ... parameter,, = expr

Recursive definitions of names are introduced by let rec:
let rec pattern; = expry and...and pattern, = expr, in expr

The only difference with the 1let construct described above is that the bindings of names to values
performed by the pattern-matching are considered already performed when the expressions expr;
to expr,, are evaluated. That is, the expressions expr; to expr,, can reference identifiers that are
bound by one of the patterns pattern,, ..., pattern,, and expect them to have the same value as
in expr, the body of the 1let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expr; to
expr,, are function definitions (fun... or function...), and the patterns pattern, ... pattern,, are
just value names, as in:

ns

let rec namej = fun...and...and name, = fun...in expr

This defines namej ...name, as mutually recursive functions local to expr.
The behavior of other forms of let rec definitions is implementation-dependent. The current
implementation also supports a certain class of recursive definitions of non-functional values, as

explained in section
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6.7.2 Control structures
Sequence

The expression expr; ; expr, evaluates expr; first, then expry, and returns the value of expr,.

Conditional

The expression if expr; then expr, else exprs evaluates to the value of expr, if expr; evaluates
to the boolean true, and to the value of exprs if expr, evaluates to the boolean false.
The else exprs part can be omitted, in which case it defaults to else (.

Case expression

The expression
match expr
with pattern; -> expr;
I

| pattern, -> expr,

matches the value of expr against the patterns pattern; to pattern,. If the matching against
pattern; succeeds, the associated expression expr; is evaluated, and its value becomes the value of
the whole match expression. The evaluation of expr; takes place in an environment enriched by
the bindings performed during matching. If several patterns match the value of expr, the one that
occurs first in the match expression is selected. If none of the patterns match the value of expr,
the exception Match_failure is raised.

Boolean operators

The expression expr; && expry evaluates to true if both expr; and expr, evaluate to true; oth-
erwise, it evaluates to false. The first component, expr;, is evaluated first. The second com-
ponent, expry, is not evaluated if the first component evaluates to false. Hence, the expression
expr, && expr, behaves exactly as

if expr; then expr, else false.

The expression expr; || expr, evaluates to true if one of the expressions expr; and expr,
evaluates to true; otherwise, it evaluates to false. The first component, expry, is evaluated first.
The second component, expr,, is not evaluated if the first component evaluates to true. Hence,
the expression expr; || expr, behaves exactly as

if expr; then true else expr,.

The boolean operators & and or are deprecated synonyms for (respectively) && and | |.
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Loops

The expression while expr; do expry done repeatedly evaluates expr, while expr; evaluates to
true. The loop condition expr; is evaluated and tested at the beginning of each iteration. The
whole while...done expression evaluates to the unit value ().

The expression for name = expr; to expr, do exprs done first evaluates the expressions expr;
and expr, (the boundaries) into integer values n and p. Then, the loop body exprs is repeatedly
evaluated in an environment where name is successively bound to the values n, n+1, ..., p — 1,
p. The loop body is never evaluated if n > p.

The expression for name = expr; downto expry do exprs done evaluates similarly, except that
name is successively bound to the valuesn, n — 1, ..., p+ 1, p. The loop body is never evaluated
if n <p.

In both cases, the whole for expression evaluates to the unit value ().

Exception handling

The expression
try  expr
with pattern; -> expr
I

| pattern, -> expr,

evaluates the expression expr and returns its value if the evaluation of expr does not raise any
exception. If the evaluation of expr raises an exception, the exception value is matched against the
patterns pattern; to pattern,,. If the matching against pattern; succeeds, the associated expression
expr; is evaluated, and its value becomes the value of the whole try expression. The evaluation of
expr; takes place in an environment enriched by the bindings performed during matching. If several
patterns match the value of expr, the one that occurs first in the try expression is selected. If none
of the patterns matches the value of expr, the exception value is raised again, thereby transparently
“passing through” the try construct.

6.7.3 Operations on data structures
Products

The expression expr; , ..., expr, evaluates to the n-tuple of the values of expressions expr; to
expr,,. The evaluation order of the subexpressions is not specified.

Variants

The expression constr expr evaluates to the unary variant value whose constructor is constr, and
whose argument is the value of expr. Similarly, the expression constr ( expr; ,..., expr, )
evaluates to the n-ary variant value whose constructor is constr and whose arguments are the
values of expry,...,expr,,.

The expression constr ( expry,...,expr, ) evaluates to the variant value whose constructor is
constr, and whose arguments are the values of expr; ... expr,,.

For lists, some syntactic sugar is provided. The expression expr; :: expr, stands for the con-
structor ( :: ) applied to the arguments ( expr, , exprsy ), and therefore evaluates to the list whose
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head is the value of expr; and whose tail is the value of expr,. The expression [ expr; ;... ; expr,, ]
is equivalent to expry ::...:: expr, :: [], and therefore evaluates to the list whose elements are
the values of expr; to expr,,.

Polymorphic variants

The expression ~ tag-name expr evaluates to the polymorphic variant value whose tag is tag-name,
and whose argument is the value of expr.

Records

The expression { field; = expr; ;...; field, = expr, } evaluates to the record value {field; =
v1;...; field, = vy} where v; is the value of expr; for i = 1,...,n. The fields field; to field,, must
all belong to the same record type; each field of this record type must appear exactly once in the
record expression, though they can appear in any order. The order in which expr; to expr,, are
evaluated is not specified.

The expression { expr with field; = expr; ;...; field, = expr, } builds a fresh record with
fields field; ... field,, equal to expr; ...expr,, and all other fields having the same value as in the
record expr. In other terms, it returns a shallow copy of the record expr, except for the fields
field; ... field,,, which are initialized to expr ...expr,,.

The expression expr; . field evaluates expr; to a record value, and returns the value associated
to field in this record value.

The expression expr; . field <- expr, evaluates expr; to a record value, which is then modified
in-place by replacing the value associated to field in this record by the value of expr,. This operation
is permitted only if field has been declared mutable in the definition of the record type. The whole
expression expr; . field <- expry evaluates to the unit value ().

Arrays

The expression [| expr; ;...; expr, |] evaluates to a n-element array, whose elements are ini-
tialized with the values of expr; to expr,, respectively. The order in which these expressions are
evaluated is unspecified.

The expression expr; . ( expr, ) returns the value of element number expr, in the array denoted
by expr;. The first element has number 0; the last element has number n — 1, where n is the size
of the array. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr; . ( expry ) <- exprs modifies in-place the array denoted by expr,, replac-
ing element number expr, by the value of expr;. The exception Invalid_argument is raised if the
access is out of bounds. The value of the whole expression is ().

Strings

The expression expr; . [ expry ] returns the value of character number expr, in the string denoted
by expr;. The first character has number 0; the last character has number n — 1, where n is the
length of the string. The exception Invalid_argument is raised if the access is out of bounds.

The expression expr; .[ expr, 1 <- exprs modifies in-place the string denoted by expry,
replacing character number expr, by the value of expr;. The exception Invalid_argument is
raised if the access is out of bounds. The value of the whole expression is ().
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Note: this possibility is offered only for backward compatibility with older versions of OCaml
and will be removed in a future version. New code should use byte sequences and the Bytes.set
function.

6.7.4 Operators

Symbols from the class infix-symbol, as well as the keywords *, +, -, —., = = < > or, ||, &, &&,
:=, mod, land, lor, 1xor, 1sl, 1sr, and asr can appear in infix position (between two expressions).
Symbols from the class prefix-symbol, as well as the keywords - and -. can appear in prefix position
(in front of an expression).

Infix and prefix symbols do not have a fixed meaning: they are simply interpreted as
applications of functions bound to the names corresponding to the symbols. The expression
prefix-symbol expr is interpreted as the application ( prefix-symbol ) expr. Similarly, the
expression expr; infix-symbol expr, is interpreted as the application ( infix-symbol ) expr, expr,.

The table below lists the symbols defined in the initial environment and their initial meaning.
(See the description of the core library module Pervasives in chapter [20| for more details). Their
meaning may be changed at any time using let ( infix-op ) name; names =. ..

Note: the operators &&, ||, and - are handled specially and it is not advisable to change their
meaning.

The keywords - and -. can appear both as infix and prefix operators. When they appear as
prefix operators, they are interpreted respectively as the functions (*-) and (7-.).
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Operator Initial meaning

+ Integer addition.

- (infix) Integer subtraction.

- - (prefix) Integer negation.

* Integer multiplication.

/ Integer division. Raise Division_by_zero if second argument is zero.
mod Integer modulus. Raise Division_by_zero if second argument is zero.
land Bitwise logical “and” on integers.

lor Bitwise logical “or” on integers.

1lxor Bitwise logical “exclusive or” on integers.

1sl Bitwise logical shift left on integers.

lsr Bitwise logical shift right on integers.

asr Bitwise arithmetic shift right on integers.

+. Floating-point addition.

-. (infix) Floating-point subtraction.

~-.  -. (prefix) | Floating-point negation.

*, Floating-point multiplication.

/. Floating-point division.

** Floating-point exponentiation.

List concatenation.

String concatenation.

! Dereferencing (return the current contents of a reference).

1= Reference assignment (update the reference given as first argument with
the value of the second argument).

= Structural equality test.

<> Structural inequality test.

== Physical equality test.

I= Physical inequality test.

< Test “less than”.

<= Test “less than or equal”.

> Test “greater than”.

>= Test “greater than or equal”.
&& & Boolean conjunction.

| or Boolean disjunction.

6.7.5 Objects
Object creation

When class-path evaluates to a class body, new class-path evaluates to a new object containing the
instance variables and methods of this class.

When class-path evaluates to a class function, new class-path evaluates to a function expecting
the same number of arguments and returning a new object of this class.
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Immediate object creation

Creating directly an object through the object class-body end construct is operationally equivalent
to defining locally a class class-name = object class-body end —see sections and following
for the syntax of class-body— and immediately creating a single object from it by new class-name.

The typing of immediate objects is slightly different from explicitly defining a class in two
respects. First, the inferred object type may contain free type variables. Second, since the class
body of an immediate object will never be extended, its self type can be unified with a closed object

type.

Method invocation

The expression expr # method-name invokes the method method-name of the object denoted by
expr.

If method-name is a polymorphic method, its type should be known at the invocation site. This
is true for instance if expr is the name of a fresh object (let ident = new class-path...) or if there
is a type constraint. Principality of the derivation can be checked in the -principal mode.

Accessing and modifying instance variables

The instance variables of a class are visible only in the body of the methods defined in the same class
or a class that inherits from the class defining the instance variables. The expression inst-var-name
evaluates to the value of the given instance variable. The expression inst-var-name <- expr assigns
the value of expr to the instance variable inst-var-name, which must be mutable. The whole
expression inst-var-name <- expr evaluates to ().

Object duplication

An object can be duplicated using the library function Oo. copy (see section. Inside a method,
the expression {< inst-var-name = expr {; inst-var-name = expr} >} returns a copy of self with
the given instance variables replaced by the values of the associated expressions; other instance
variables have the same value in the returned object as in self.

6.7.6 Coercions

Expressions whose type contains object or polymorphic variant types can be explicitly coerced
(weakened) to a supertype. The expression ( expr :> typexpr ) coerces the expression expr to
type typexpr. The expression ( expr : typexpr; :> typexpry ) coerces the expression expr from
type typexpr; to type typexprs.

The former operator will sometimes fail to coerce an expression expr from a type typ, to a type
typ, even if type typ; is a subtype of type typsy: in the current implementation it only expands two
levels of type abbreviations containing objects and/or polymorphic variants, keeping only recursion
when it is explicit in the class type (for objects). As an exception to the above algorithm, if both the
inferred type of expr and typ are ground (i.e. do not contain type variables), the former operator
behaves as the latter one, taking the inferred type of expr as typ;. In case of failure with the former
operator, the latter one should be used.
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It is only possible to coerce an expression expr from type typ; to type typ,, if the type of expr
is an instance of typ; (like for a type annotation), and typ; is a subtype of typy. The type of the
coerced expression is an instance of typ,. If the types contain variables, they may be instantiated
by the subtyping algorithm, but this is only done after determining whether typ, is a potential
subtype of typy. This means that typing may fail during this latter unification step, even if some
instance of typ, is a subtype of some instance of typy. In the following paragraphs we describe the
subtyping relation used.

Object types

A fixed object type admits as subtype any object type that includes all its methods. The types of
the methods shall be subtypes of those in the supertype. Namely,

<mety : typ; ;... ; met, : typ, >
is a supertype of

<mety : typh; ... ; mety : typ); mety i1z typh ;... 5 Metyim: typh 5. 2] >

which may contain an ellipsis . . if every typ; is a supertype of the corresponding typ!.

A monomorphic method type can be a supertype of a polymorphic method type. Namely, if
typ is an instance of typ’, then 'a;... 'a, . typ’ is a subtype of typ.

Inside a class definition, newly defined types are not available for subtyping, as the type abbre-
viations are not yet completely defined. There is an exception for coercing self to the (exact) type
of its class: this is allowed if the type of self does not appear in a contravariant position in the
class type, i.e. if there are no binary methods.

Polymorphic variant types

A polymorphic variant type typ is a subtype of another polymorphic variant type typ’ if the upper
bound of typ (i.e. the maximum set of constructors that may appear in an instance of typ) is
included in the lower bound of typ’, and the types of arguments for the constructors of typ are
subtypes of those in typ’. Namely,

[[<] > Cioftyp; | ... | - Cy of typ, ]
which may be a shrinkable type, is a subtype of

[[>] " Crof typil... | - Cyof typ),| = Cpyr0f typ), 1| ... |~ Crymof typ, ]

which may be an extensible type, if every typ; is a subtype of typ}.

Variance

Other types do not introduce new subtyping, but they may propagate the subtyping of their
arguments. For instance, typ, * typ, is a subtype of typ!* typ), when typ, and typ, are respectively
subtypes of typ} and typ,. For function types, the relation is more subtle: typ; => typ, is a subtype
of typ) => typ} if typ; is a supertype of typ] and typ, is a subtype of typ,. For this reason, function
types are covariant in their second argument (like tuples), but contravariant in their first argument.
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Mutable types, like array or ref are neither covariant nor contravariant, they are nonvariant, that
is they do not propagate subtyping.

For user-defined types, the variance is automatically inferred: a parameter is covariant if it
has only covariant occurrences, contravariant if it has only contravariant occurrences, variance-free
if it has no occurrences, and nonvariant otherwise. A variance-free parameter may change freely
through subtyping, it does not have to be a subtype or a supertype. For abstract and private types,
the variance must be given explicitly (see section , otherwise the default is nonvariant. This
is also the case for constrained arguments in type definitions.

6.8 Type and exception definitions

6.8.1 Type definitions

Type definitions bind type constructors to data types: either variant types, record types, type
abbreviations, or abstract data types. They also bind the value constructors and record fields
associated with the definition.

type-definition ::= type typedef {and typedef}
typedef = [type-params] typeconstr-name type-information
type-information := [type-equation] [type-representation] {type-constraint}
type-equation := = typexpr
type-representation ::= = [|] constr-decl {| constr-decl}

| ={ field-decl {; field-decl} [;] }

type-params = type-param
| (type-param {, type-param} )
type-param ::= [variance] ' ident
variance = +
| -
constr-decl = (constr-name | ()) [of typexpr {* typexpr}|
field-decl ::= [mutable] field-name : poly-typexpr
type-constraint ::= constraint ' ident = typexpr

Type definitions are introduced by the type keyword, and consist in one or several simple
definitions, possibly mutually recursive, separated by the and keyword. Each simple definition
defines one type constructor.

A simple definition consists in a lowercase identifier, possibly preceded by one or several type
parameters, and followed by an optional type equation, then an optional type representation, and
then a constraint clause. The identifier is the name of the type constructor being defined.

The optional type parameters are either one type variable ' ident, for type constructors with
one parameter, or a list of type variables (' identq, ..., "' ident, ), for type constructors with several
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parameters. Each type parameter may be prefixed by a variance constraint + (resp. -) indicating
that the parameter is covariant (resp. contravariant). These type parameters can appear in the type
expressions of the right-hand side of the definition, optionally restricted by a variance constraint ;
i.e. a covariant parameter may only appear on the right side of a functional arrow (more precisely,
follow the left branch of an even number of arrows), and a contravariant parameter only the left
side (left branch of an odd number of arrows). If the type has a representation or an equation,
and the parameter is free (i.e. not bound via a type constraint to a constructed type), its variance
constraint is checked but subtyping etc. will use the inferred variance of the parameter, which may
be less restrictive; otherwise (i.e. for abstract types or non-free parameters), the variance must be
given explicitly, and the parameter is invariant if no variance is given.

The optional type equation = typexpr makes the defined type equivalent to the type expression
typexpr: one can be substituted for the other during typing. If no type equation is given, a new
type is generated: the defined type is incompatible with any other type.

The optional type representation describes the data structure representing the defined type, by
giving the list of associated constructors (if it is a variant type) or associated fields (if it is a record
type). If no type representation is given, nothing is assumed on the structure of the type besides
what is stated in the optional type equation.

The type representation = [|] constr-decl {| constr-decl} describes a variant type. The construc-
tor declarations constr-decly, ..., constr-decl,, describe the constructors associated to this variant
type. The constructor declaration constr-name of typexpr; *...* typexpr, declares the name
constr-name as a non-constant constructor, whose arguments have types typexpr; ...typexpr,,.
The constructor declaration constr-name declares the name constr-name as a constant constructor.
Constructor names must be capitalized.

The type representation = { field-decl {; field-decl} [;] } describes a record type. The field
declarations field-decly, . . ., field-decl,, describe the fields associated to this record type. The field
declaration field-name : poly-typexpr declares field-name as a field whose argument has type
poly-typexpr. The field declaration mutable field-name : poly-typexpr behaves similarly; in addi-
tion, it allows physical modification of this field. Immutable fields are covariant, mutable fields are
non-variant. Both mutable and immutable fields may have a explicitly polymorphic types. The
polymorphism of the contents is statically checked whenever a record value is created or modified.
Extracted values may have their types instantiated.

The two components of a type definition, the optional equation and the optional representation,
can be combined independently, giving rise to four typical situations:

Abstract type: no equation, no representation.
When appearing in a module signature, this definition specifies nothing on the type con-
structor, besides its number of parameters: its representation is hidden and it is assumed
incompatible with any other type.

Type abbreviation: an equation, no representation.
This defines the type constructor as an abbreviation for the type expression on the right of
the = sign.

New variant type or record type: no equation, a representation.
This generates a new type constructor and defines associated constructors or fields, through
which values of that type can be directly built or inspected.
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Re-exported variant type or record type: an equation, a representation.
In this case, the type constructor is defined as an abbreviation for the type expression given
in the equation, but in addition the constructors or fields given in the representation remain
attached to the defined type constructor. The type expression in the equation part must agree
with the representation: it must be of the same kind (record or variant) and have exactly the
same constructors or fields, in the same order, with the same arguments.

The type variables appearing as type parameters can optionally be prefixed by + or - to indicate
that the type constructor is covariant or contravariant with respect to this parameter. This variance
information is used to decide subtyping relations when checking the validity of :> coercions (see
section .

For instance, type +'a t declares t as an abstract type that is covariant in its parameter; this
means that if the type 7 is a subtype of the type o, then 7 t is a subtype of ¢ t. Similarly,
type -'a t declares that the abstract type t is contravariant in its parameter: if 7 is a subtype of
o, then o t is a subtype of 7 t. If no + or - variance annotation is given, the type constructor is
assumed non-variant in the corresponding parameter. For instance, the abstract type declaration
type 'a t means that 7 t is neither a subtype nor a supertype of o t if 7 is subtype of o.

The variance indicated by the + and - annotations on parameters are required only for abstract
types. For abbreviations, variant types or record types, the variance properties of the type construc-
tor are inferred from its definition, and the variance annotations are only checked for conformance
with the definition.

The construct constraint ' ident = typexpr allows the specification of type parameters. Any
actual type argument corresponding to the type parameter ident has to be an instance of typexpr
(more precisely, ident and typexpr are unified). Type variables of typexpr can appear in the type
equation and the type declaration.

6.8.2 Exception definitions
exception-definition ::= exception constr-name [of typexpr {* typexpr}]

| exception constr-name = constr

Exception definitions add new constructors to the built-in variant type exn of exception values.
The constructors are declared as for a definition of a variant type.

The form exception constr-name [of typexpr {* typexpr}] generates a new exception, distinct
from all other exceptions in the system. The form exception constr-name = constr gives an
alternate name to an existing exception.

6.9 Classes
Classes are defined using a small language, similar to the module language.

6.9.1 Class types

Class types are the class-level equivalent of type expressions: they specify the general shape and
type properties of classes.
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class-type ::= [[?] label-name :] typexpr -> class-type
| class-body-type

class-body-type ::= object [( typexpr )] {class-field-spec} end
| [[ typexpr {, typexpr} 1] classtype-path

class-field-spec ::= inherit class-body-type
| val [mutable| [virtual] inst-var-name : typexpr
| val virtual mutable inst-var-name : typexpr
| method [private| [virtual] method-name : poly-typexpr
| method virtual private method-name : poly-typexpr
| comnstraint typexpr = typexpr

Simple class expressions

The expression classtype-path is equivalent to the class type bound to the name classtype-path.
Similarly, the expression [ typexpr; , ...typexpr, 1 classtype-path is equivalent to the parametric
class type bound to the name classtype-path, in which type parameters have been instantiated to
respectively typexpry, ...typexpr,,.

Class function type

The class type expression typexpr -> class-type is the type of class functions (functions from
values to classes) that take as argument a value of type typexpr and return as result a class of type
class-type.

Class body type

The class type expression object [( typexpr )] {class-field-spec} end is the type of a class body. It
specifies its instance variables and methods. In this type, typexpr is matched against the self type,
therefore providing a name for the self type.

A class body will match a class body type if it provides definitions for all the components
specified in the class body type, and these definitions meet the type requirements given in the
class body type. Furthermore, all methods either virtual or public present in the class body must
also be present in the class body type (on the other hand, some instance variables and concrete
private methods may be omitted). A virtual method will match a concrete method, which makes
it possible to forget its implementation. An immutable instance variable will match a mutable
instance variable.

Inheritance

The inheritance construct inherit class-body-type provides for inclusion of methods and instance
variables from other class types. The instance variable and method types from class-body-type are
added into the current class type.
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Instance variable specification

A specification of an instance variable is written val [mutable] [virtual] inst-var-name : typexpr,
where inst-var-name is the name of the instance variable and typexpr its expected type. The
flag mutable indicates whether this instance variable can be physically modified. The flag virtual
indicates that this instance variable is not initialized. It can be initialized later through inheritance.

An instance variable specification will hide any previous specification of an instance variable of
the same name.

Method specification

The specification of a method is written method [private] method-name : poly-typexpr, where
method-name is the name of the method and poly-typexpr its expected type, possibly polymorphic.
The flag private indicates that the method cannot be accessed from outside the object.

The polymorphism may be left implicit in public method specifications: any type variable which
is not bound to a class parameter and does not appear elsewhere inside the class specification will be
assumed to be universal, and made polymorphic in the resulting method type. Writing an explicit
polymorphic type will disable this behaviour.

If several specifications are present for the same method, they must have compatible types. Any
non-private specification of a method forces it to be public.

Virtual method specification

A virtual method specification is written method [private] virtual method-name : poly-typexpr,
where method-name is the name of the method and poly-typexpr its expected type.

Constraints on type parameters

The construct constraint typexpr; = typexpr, forces the two type expressions to be equal. This
is typically used to specify type parameters: in this way, they can be bound to specific type
expressions.

6.9.2 Class expressions

Class expressions are the class-level equivalent of value expressions: they evaluate to classes, thus
providing implementations for the specifications expressed in class types.

class-expr ::= class-path

| [ typexpr {, typexpr} 1 class-path

| (class-expr )

| (class-expr : class-type )

| class-expr {argument}™

| fun {parameter}t -> class-expr

| let [rec] let-binding {and let-binding} in class-expr
| object class-body end
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class-field ::= inherit class-expr [as lowercase-ident]
| val [mutable] inst-var-name [: typexpr| = expr
| val [mutable] virtual inst-var-name : typexpr
| val virtual mutable inst-var-name : typexpr
| method [private] method-name {parameter} [: typexpr| = expr
| method [private| method-name : poly-typexpr = expr
| method [private] virtual method-name : poly-typexpr
| method virtual private method-name : poly-typexpr
| comstraint typexpr = typexpr
| initializer expr

Simple class expressions

The expression class-path evaluates to the class bound to the name class-path. Similarly, the ex-
pression [ typexpry , ...typexpr, 1 class-path evaluates to the parametric class bound to the name
class-path, in which type parameters have been instantiated respectively to typexpry, ... typexpr,,.

The expression ( class-expr ) evaluates to the same module as class-expr.

The expression ( class-expr : class-type ) checks that class-type matches the type of class-expr
(that is, that the implementation class-expr meets the type specification class-type). The whole
expression evaluates to the same class as class-expr, except that all components not specified in
class-type are hidden and can no longer be accessed.

Class application

Class application is denoted by juxtaposition of (possibly labeled) expressions. It denotes the
class whose constructor is the first expression applied to the given arguments. The arguments
are evaluated as for expression application, but the constructor itself will only be evaluated when
objects are created. In particular, side-effects caused by the application of the constructor will only
occur at object creation time.

Class function

The expression fun [[?] label-name :| pattern -> class-expr evaluates to a function from values
to classes. When this function is applied to a value v, this value is matched against the pattern
pattern and the result is the result of the evaluation of class-expr in the extended environment.
Conversion from functions with default values to functions with patterns only works identically
for class functions as for normal functions.
The expression

fun parameter ... parameter,, —> class-expr
is a short form for

fun parameter; —>...fun parameter, -> expr
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Local definitions

The let and let rec constructs bind value names locally, as for the core language expressions.

If a local definition occurs at the very beginning of a class definition, it will be evaluated when
the class is created (just as if the definition was outside of the class). Otherwise, it will be evaluated
when the object constructor is called.

Class body
class-body ::= [( pattern [: typexpr] )] {class-field}

The expression object class-body end denotes a class body. This is the prototype for an object :
it lists the instance variables and methods of an objet of this class.

A class body is a class value: it is not evaluated at once. Rather, its components are evaluated
each time an object is created.

In a class body, the pattern ( pattern [: typexpr| ) is matched against self, therefore providing
a binding for self and self type. Self can only be used in method and initializers.

Self type cannot be a closed object type, so that the class remains extensible.

Since OCaml 4.01, it is an error if the same method or instance variable name is defined several
times in the same class body.

Inheritance

The inheritance construct inherit class-expr allows reusing methods and instance variables from
other classes. The class expression class-expr must evaluate to a class body. The instance variables,
methods and initializers from this class body are added into the current class. The addition of a
method will override any previously defined method of the same name.

An ancestor can be bound by appending as lowercase-ident to the inheritance construct.
lowercase-ident is not a true variable and can only be used to select a method, i.e. in an ex-
pression lowercase-ident # method-name. This gives access to the method method-name as it was
defined in the parent class even if it is redefined in the current class. The scope of this ancestor
binding is limited to the current class. The ancestor method may be called from a subclass but
only indirectly.

Instance variable definition

The definition val [mutable| inst-var-name = expr adds an instance variable inst-var-name whose
initial value is the value of expression expr. The flag mutable allows physical modification of this
variable by methods.

An instance variable can only be used in the methods and initializers that follow its definition.

Since version 3.10, redefinitions of a visible instance variable with the same name do not create
a new variable, but are merged, using the last value for initialization. They must have identical
types and mutability. However, if an instance variable is hidden by omitting it from an interface,
it will be kept distinct from other instance variables with the same name.
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Virtual instance variable definition

A variable specification is written val [mutable] virtual inst-var-name : typexpr. It specifies
whether the variable is modifiable, and gives its type.
Virtual instance variables were added in version 3.10.

Method definition

A method definition is written method method-name = expr. The definition of a method overrides
any previous definition of this method. The method will be public (that is, not private) if any of
the definition states so.

A private method, method private method-name = expr, is a method that can only be invoked
on self (from other methods of the same object, defined in this class or one of its subclasses).
This invocation is performed using the expression value-name # method-name, where value-name
is directly bound to self at the beginning of the class definition. Private methods do not appear
in object types. A method may have both public and private definitions, but as soon as there is a
public one, all subsequent definitions will be made public.

Methods may have an explicitly polymorphic type, allowing them to be used polymorphically
in programs (even for the same object). The explicit declaration may be done in one of three ways:
(1) by giving an explicit polymorphic type in the method definition, immediately after the method
name, i.e. method [private] method-name : {' ident}t . typexpr = expr; (2) by a forward
declaration of the explicit polymorphic type through a virtual method definition; (3) by importing
such a declaration through inheritance and/or constraining the type of self.

Some special expressions are available in method bodies for manipulating instance variables and
duplicating self:

expr =
| inst-var-name <- expr
| {< [inst-var-name = expr {; inst-var-name = expr} [;]] >}

The expression inst-var-name <- expr modifies in-place the current object by replacing the
value associated to inst-var-name by the value of expr. Of course, this instance variable must have
been declared mutable.

The expression {< inst-var-name; = expry ; ... ; inst-var-name, = expr,, >} evaluates to a copy
of the current object in which the values of instance variables inst-var-nameyj, ..., inst-var-name,,
have been replaced by the values of the corresponding expressions expry, ..., expr,,.

Virtual method definition

A method specification is written method [private| virtual method-name : poly-typexpr. It
specifies whether the method is public or private, and gives its type. If the method is intended to
be polymorphic, the type must be explicitly polymorphic.

Constraints on type parameters

The construct constraint typexpr; = typexpr, forces the two type expressions to be equals.
This is typically used to specify type parameters: in that way they can be bound to specific type
expressions.
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Initializers

A class initializer initializer expr specifies an expression that will be evaluated whenever an
object is created from the class, once all its instance variables have been initialized.

6.9.3 Class definitions

class-definition ::= class class-binding {and class-binding}
class-binding ::= [virtual] [[ type-parameters ]| class-name {parameter} [: class-type]
= class-expr
type-parameters = ' ident {, ' ident}

A class definition class class-binding {and class-binding} is recursive. Each class-binding
defines a class-name that can be used in the whole expression except for inheritance. It can also
be used for inheritance, but only in the definitions that follow its own.

A class binding binds the class name class-name to the value of expression class-expr. It also
binds the class type class-name to the type of the class, and defines two type abbreviations :
class-name and # class-name. The first one is the type of objects of this class, while the second is
more general as it unifies with the type of any object belonging to a subclass (see section .

Virtual class
A class must be flagged virtual if one of its methods is virtual (that is, appears in the class type,
but is not actually defined). Objects cannot be created from a virtual class.

Type parameters

The class type parameters correspond to the ones of the class type and of the two type abbreviations
defined by the class binding. They must be bound to actual types in the class definition using type
constraints. So that the abbreviations are well-formed, type variables of the inferred type of the
class must either be type parameters or be bound in the constraint clause.

6.9.4 Class specifications
class-specification ::= class class-spec {and class-spec}
class-spec = [virtual] [[ type-parameters ]| class-name : class-type

This is the counterpart in signatures of class definitions. A class specification matches a class
definition if they have the same type parameters and their types match.

6.9.5 Class type definitions
classtype-definition ::= class type classtype-def {and classtype-def}

classtype-def = [virtual] [[ type-parameters 1] class-name = class-body-type
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A class type definition class class-name = class-body-type defines an abbreviation class-name
for the class body type class-body-type. As for class definitions, two type abbreviations class-name
and # class-name are also defined. The definition can be parameterized by some type parameters.
If any method in the class type body is virtual, the definition must be flagged virtual.

Two class type definitions match if they have the same type parameters and they expand to
matching types.

6.10 Module types (module specifications)

Module types are the module-level equivalent of type expressions: they specify the general shape
and type properties of modules.

module-type := modtype-path
| sig {specification [;;]|} end
| functor ( module-name : module-type ) => module-type
| module-type with mod-constraint {and mod-constraint}

|

( module-type )

mod-constraint ::= type [type-params| typeconstr type-equation
| module module-path = extended-module-path

specification := val value-name : typexpr

| external value-name : typexpr = external-declaration
| type-definition

| exception constr-decl

| class-specification

| classtype-definition

| module module-name : module-type

| module module-name {( module-name : module-type )} : module-type
| module type modtype-name

| module type modtype-name = module-type

| open module-path

| include module-type

6.10.1 Simple module types

The expression modtype-path is equivalent to the module type bound to the name modtype-path.
The expression ( module-type ) denotes the same type as module-type.

6.10.2 Signatures

Signatures are type specifications for structures. Signatures sig...end are collections of type
specifications for value names, type names, exceptions, module names and module type names.
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A structure will match a signature if the structure provides definitions (implementations) for all
the names specified in the signature (and possibly more), and these definitions meet the type
requirements given in the signature.

An optional ; ; is allowed after each specification in a signature. It serves as a syntactic separator
with no semantic meaning.

Value specifications

A specification of a value component in a signature is written val value-name : typexpr, where
value-name is the name of the value and typexpr its expected type.

The form external value-name : typexpr = external-declaration is similar, except that
it requires in addition the name to be implemented as the external function specified in
external-declaration (see chapter [19)).

Type specifications

A specification of one or several type components in a signature is written type typedef {and typedef}
and consists of a sequence of mutually recursive definitions of type names.

Each type definition in the signature specifies an optional type equation = typexpr and an
optional type representation = constr-decl. .. or = { field-decl .. .}. The implementation of the type
name in a matching structure must be compatible with the type expression specified in the equation
(if given), and have the specified representation (if given). Conversely, users of that signature will
be able to rely on the type equation or type representation, if given. More precisely, we have the
following four situations:

Abstract type: no equation, no representation.

Names that are defined as abstract types in a signature can be implemented in a matching
structure by any kind of type definition (provided it has the same number of type param-
eters). The exact implementation of the type will be hidden to the users of the structure.
In particular, if the type is implemented as a variant type or record type, the associated
constructors and fields will not be accessible to the users; if the type is implemented as an
abbreviation, the type equality between the type name and the right-hand side of the abbre-
viation will be hidden from the users of the structure. Users of the structure consider that
type as incompatible with any other type: a fresh type has been generated.

Type abbreviation: an equation = typexpr, no representation.
The type name must be implemented by a type compatible with typexpr. All users of the
structure know that the type name is compatible with typexpr.

New variant type or record type: no equation, a representation.
The type name must be implemented by a variant type or record type with exactly the
constructors or fields specified. All users of the structure have access to the constructors
or fields, and can use them to create or inspect values of that type. However, users of the
structure consider that type as incompatible with any other type: a fresh type has been
generated.
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Re-exported variant type or record type: an equation, a representation.
This case combines the previous two: the representation of the type is made visible to all
users, and no fresh type is generated.

Exception specification

The specification exception constr-decl in a signature requires the matching structure to provide
an exception with the name and arguments specified in the definition, and makes the exception
available to all users of the structure.

Class specifications

A specification of one or several classes in a signature is written class class-spec {and class-spec}
and consists of a sequence of mutually recursive definitions of class names.
Class specifications are described more precisely in section [6.9.4]

Class type specifications

A specification of one or several classe types in a signature is written class type classtype-def
{and classtype-def} and consists of a sequence of mutually recursive definitions of class type names.
Class type specifications are described more precisely in section [6.9.5]

Module specifications

A specification of a module component in a signature is written module module-name : module-type,
where module-name is the name of the module component and module-type its expected type.
Modules can be nested arbitrarily; in particular, functors can appear as components of structures
and functor types as components of signatures.

For specifying a module component that is a functor, one may write

module module-name ( name; : module-type; ) ... ( name, : module-type, ) : module-type
instead of

module module-name : functor ( name; : module-type; ) =>...-> module-type

Module type specifications

A module type component of a signature can be specified either as a manifest module type or as
an abstract module type.

An abstract module type specification module type modtype-name allows the name
modtype-name to be implemented by any module type in a matching signature, but hides the
implementation of the module type to all users of the signature.

A manifest module type specification module type modtype-name = module-type requires the
name modtype-name to be implemented by the module type module-type in a matching signature,
but makes the equality between modtype-name and module-type apparent to all users of the
signature.
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Opening a module path

The expression open module-path in a signature does not specify any components. It simply
affects the parsing of the following items of the signature, allowing components of the module
denoted by module-path to be referred to by their simple names name instead of path accesses
module-path . name. The scope of the open stops at the end of the signature expression.

Including a signature

The expression include module-type in a signature performs textual inclusion of the components
of the signature denoted by module-type. It behaves as if the components of the included signature
were copied at the location of the include. The module-type argument must refer to a module
type that is a signature, not a functor type.

6.10.3 Functor types

The module type expression functor ( module-name : module-type; ) -> module-type, is the
type of functors (functions from modules to modules) that take as argument a module of type
module-type; and return as result a module of type module-type,;. The module type module-type,
can use the name module-name to refer to type components of the actual argument of the functor.
No restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

6.10.4 The with operator

Assuming module-type denotes a signature, the expression module-type with mod-constraint
{and mod-constraint} denotes the same signature where type equations have been added to some
of the type specifications, as described by the constraints following the with keyword. The con-
straint type [type-parameters| typeconstr = typexpr adds the type equation = typexpr to the
specification of the type component named typeconstr of the constrained signature. The con-
straint module module-path = extended-module-path adds type equations to all type components
of the sub-structure denoted by module-path, making them equivalent to the corresponding type
components of the structure denoted by extended-module-path.
For instance, if the module type name S is bound to the signature

sig type t module M: (sig type u end) end
then S with type t=int denotes the signature
sig type t=int module M: (sig type u end) end
and S with module M = N denotes the signature
sig type t module M: (sig type u=N.u end) end
A functor taking two arguments of type S that share their t component is written
functor (A: S) (B: S with type t = A.t)

Constraints are added left to right. After each constraint has been applied, the resulting signa-
ture must be a subtype of the signature before the constraint was applied. Thus, the with operator
can only add information on the type components of a signature, but never remove information.
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6.11 Module expressions (module implementations)

Module expressions are the module-level equivalent of value expressions: they evaluate to modules,
thus providing implementations for the specifications expressed in module types.

module-expr ::= module-path
| struct [module-items| end
| functor ( module-name : module-type ) => module-expr
| module-expr ( module-expr )
| ( module-expr )
|

( module-expr : module-type )
module-items ::= [; ;] (definition | expr) {[; ;] definition | ; ; expr} [; ;]

definition ::= 1let [rec] let-binding {and let-binding}
| external value-name : typexpr = external-declaration
| type-definition
| exception-definition
| class-definition
| classtype-definition
| module module-name {( module-name : module-type )} [: module-type]
= module-expr
| module type modtype-name = module-type
| open module-path
| include module-expr

6.11.1 Simple module expressions

The expression module-path evaluates to the module bound to the name module-path.

The expression ( module-expr ) evaluates to the same module as module-expr.

The expression ( module-expr : module-type ) checks that the type of module-expr is a
subtype of module-type, that is, that all components specified in module-type are implemented
in module-expr, and their implementation meets the requirements given in module-type. In other
terms, it checks that the implementation module-expr meets the type specification module-type.
The whole expression evaluates to the same module as module-expr, except that all components
not specified in module-type are hidden and can no longer be accessed.

6.11.2 Structures

Structures struct...end are collections of definitions for value names, type names, exceptions,
module names and module type names. The definitions are evaluated in the order in which they
appear in the structure. The scopes of the bindings performed by the definitions extend to the end
of the structure. As a consequence, a definition may refer to names bound by earlier definitions in
the same structure.

For compatibility with toplevel phrases (chapter @, an optional ;; is allowed after each defini-
tion in a structure. The ;; has no semantic meaning. Also for compatibility, expr is allowed as a
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component of a structure, meaning let _ = expr, i.e. evaluate expr for its side-effects. In this case,
the ;; of the previous component (if any) is not optional.
Value definitions

A value definition let [rec] let-binding {and let-binding} bind value names in the same way as
a let...in... expression (see section [6.7.1)). The value names appearing in the left-hand sides of
the bindings are bound to the corresponding values in the right-hand sides.

A value definition external value-name : typexpr = external-declaration implements
value-name as the external function specified in external-declaration (see chapter [L9).
Type definitions
A definition of one or several type components is written type typedef {and typedef} and consists
of a sequence of mutually recursive definitions of type names.

Exception definitions

Exceptions are defined with the syntax exception constr-decl or exception constr-name = constr.

Class definitions

A definition of one or several classes is written class class-binding {and class-binding} and consists
of a sequence of mutually recursive definitions of class names. Class definitions are described more
precisely in section [6.9.3]
Class type definitions

A definition of one or several classes is written class type classtype-def {and classtype-def} and
consists of a sequence of mutually recursive definitions of class type names. Class type definitions
are described more precisely in section [6.9.5

Module definitions

The basic form for defining a module component is module module-name = module-expr, which
evaluates module-expr and binds the result to the name module-name.
One can write

module module-name : module-type = module-expr
instead of
module module-name = ( module-expr : module-type ).
Another derived form is
module module-name ( name; : module-type; ) ... ( name, : module-type,, ) = module-expr
which is equivalent to

module module-name = functor ( name; : module-type; ) =>...-> module-expr
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Module type definitions

A definition for a module type is written module type modtype-name = module-type. It binds the
name modtype-name to the module type denoted by the expression module-type.

Opening a module path

The expression open module-path in a structure does not define any components nor perform any
bindings. It simply affects the parsing of the following items of the structure, allowing components
of the module denoted by module-path to be referred to by their simple names name instead of path
accesses module-path . name. The scope of the open stops at the end of the structure expression.

Including the components of another structure

The expression include module-expr in a structure re-exports in the current structure all defini-
tions of the structure denoted by module-expr. For instance, if the identifier S is bound to the
module

struct type t = int let x = 2 end
the module expression
struct include S let y = (x + 1 : t) end
is equivalent to the module expression
struct type t = S.t let x = S.x let y=(x+ 1 : t) end

The difference between open and include is that open simply provides short names for the
components of the opened structure, without defining any components of the current structure,
while include also adds definitions for the components of the included structure.

6.11.3 Functors
Functor definition

The expression functor ( module-name : module-type ) -> module-expr evaluates to a functor
that takes as argument modules of the type module-type,, binds module-name to these modules,
evaluates module-expr in the extended environment, and returns the resulting modules as results.
No restrictions are placed on the type of the functor argument; in particular, a functor may take
another functor as argument (“higher-order” functor).

Functor application

The expression module-expr; ( module-expry ) evaluates module-expr; to a functor and
module-expry to a module, and applies the former to the latter. The type of module-expr, must
match the type expected for the arguments of the functor module-expr; .
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6.12 Compilation units

unit-interface ::= {specification [; ;]}

unit-implementation ::= [module-items]

Compilation units bridge the module system and the separate compilation system. A compila-
tion unit is composed of two parts: an interface and an implementation. The interface contains a
sequence of specifications, just as the inside of a sig...end signature expression. The implementa-
tion contains a sequence of definitions and expressions, just as the inside of a struct...end module
expression. A compilation unit also has a name unit-name, derived from the names of the files con-
taining the interface and the implementation (see chapter [§] for more details). A compilation unit
behaves roughly as the module definition

module unit-name : sig unit-interface end = struct unit-implementation end

A compilation unit can refer to other compilation units by their names, as if they were regular
modules. For instance, if U is a compilation unit that defines a type t, other compilation units can
refer to that type under the name U.t; they can also refer to U as a whole structure. Except for
names of other compilation units, a unit interface or unit implementation must not have any other
free variables. In other terms, the type-checking and compilation of an interface or implementation
proceeds in the initial environment

name; : sig specification; end...name,, : sig specification,, end

where name ... name, are the names of the other compilation units available in the search path
(see chapter |8 for more details) and specification, ... specification,, are their respective interfaces.
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Chapter 7

Language extensions

This chapter describes language extensions and convenience features that are implemented in
OCaml, but not described in the OCaml reference manual.

7.1 Integer literals for types int32, int64 and nativeint

(Introduced in Objective Caml 3.07)

constant = ..
| int32-literal
| int64-literal
| nativeint-literal
int32-literal ::= integer-literal 1
int64-literal ::= integer-literal L
nativeint-literal ::= integer-literal n

An integer literal can be followed by one of the letters 1, L or n to indicate that this integer has
type int32, int64 or nativeint respectively, instead of the default type int for integer literals.
The library modules Int32[21.14], Int64[21.15] and Nativeint|21.22] provide operations on these
integer types.

7.2 Streams and stream parsers

(Removed in Objective Caml 3.03)

The syntax for streams and stream parsers is no longer part of the OCaml language, but available
through a Camlp4 syntax extension. See the Camlp4 reference manual for more information.
Support for basic operations on streams is still available through the Stream[21.34] module of the
standard library. OCaml programs that use the stream parser syntax should be compiled with
the -pp camlp4o option to ocamlc and ocamlopt. For interactive use, run ocaml and issue the
#load "dynlink.cma";; command, followed by the #load "camlp4o.cma";; command.
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7.3 Recursive definitions of values

(Introduced in Objective Caml 1.00)

As mentioned in section the let rec binding construct, in addition to the definition of
recursive functions, also supports a certain class of recursive definitions of non-functional values,
such as

let rec namej =1 :: names and names = 2 :: name; in expr

which binds name; to the cyclic list 1::2::1::2::..., and names to the cyclic list
2::1::2::1::...Informally, the class of accepted definitions consists of those definitions where
the defined names occur only inside function bodies or as argument to a data constructor.

More precisely, consider the expression:

let rec name; = expr; and...and name, = expr, in expr

It will be accepted if each one of expr;...expr, is statically constructive with respect to
namej ...name,, is not immediately linked to any of name;...name,, and is not an array
constructor whose arguments have abstract type.

An expression e is said to be statically constructive with respect to the variables name ... name,,
if at least one of the following conditions is true:

e ¢ has no free occurrence of any of name ... name,,
e ¢ is a variable

e has the form fun...->...

e has the form function...->...

e has the form lazy (...)

e ¢ has one of the following forms, where each one of expr; ...expr,, is statically construc-
tive with respect to name; ... name,, and expr, is statically constructive with respect to
namey ...namey, Xnamej ...xXNamey,:

let [rec| xname; = expr; and...and xname,, = expr,, in expr,

— let module...in expr,

— constr (expry , ..., expr,, )

— ° tag-name ( expry , ..., expr,, )

— [l expry ;...; expr,, |]

— { field) = expry ; ...; field,, = expr,, }

— { expry with fieldy = expry ;...; field,, = expr,, } where expr; is not immediately

linked to name; ...name,
— (expry, ..., expr,, )

— expry ;...; €xpr,,
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An expression e is said to be immediately linked to the variable name in the following cases:
e e is name
e e has the form expr; ;... ; expr,, where expr,, is immediately linked to name

e e has the form let [rec] xname; = expr; and...and xname,, = expr,, in expr, where expr,
is immediately linked to name or to one of the xname; such that expr; is immediately linked
to name.

7.4 Range patterns
(Introduced in Objective Caml 1.00)

pattern = ...
| char-literal .. char-literal

In patterns, OCaml recognizes the form 'c ' .. 'd ' as shorthand for the pattern
! I 'Cl' I 'CQ' || |Cn| I 'd!

where c1, ¢, ..., ¢, are the characters that occur between c and d in the ASCII character set. For
instance, the pattern '0'..'9"' matches all characters that are digits.

7.5 Assertion checking
(Introduced in Objective Caml 1.06)

expr =
| assert expr

OCaml supports the assert construct to check debugging assertions. The expression
assert expr evaluates the expression expr and returns () if expr evaluates to true. If it evaluates
to false the exception Assert_failure is raised with the source file name and the location of
expr as arguments. Assertion checking can be turned off with the -noassert compiler option. In
this case, expr is not evaluated at all.

As a special case, assert_ false is reduced to raise (Assert_failure ...), which gives it
a polymorphic type. This means that it can be used in place of any expression (for example as
a branch of any pattern-matching). It also means that the assert, false “assertions” cannot be
turned off by the -noassert option.

7.6 Lazy evaluation

7.6.1 Lazy expressions

(Introduced in Objective Caml 1.06)
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expr =
| lazy expr

The expression lazy expr returns a value v of type Lazy.t that encapsulates the computation
of expr. The argument expr is not evaluated at this point in the program. Instead, its evaluation
will be performed the first time the function Lazy.force is applied to the value v, returning the
actual value of expr. Subsequent applications of Lazy.force to v do not evaluate expr again.
Applications of Lazy.force may be implicit through pattern matching (see below).

7.6.2 Lazy patterns
(Introduced in Objective Caml 3.11)

pattern = ...
| lazy pattern

The pattern lazy pattern matches a value v of type Lazy.t, provided pattern matches the
result of forcing v with Lazy.force. A successful match of a pattern containing lazy sub-patterns
forces the corresponding parts of the value being matched, even those that imply no test such
as lazy value-name or lazy _. Matching a value with a pattern-matching where some patterns
contain lazy sub-patterns may imply forcing parts of the value, even when the pattern selected in
the end has no lazy sub-pattern.

For more information, see the description of module Lazy in the standard library ( section.

7.7 Local modules

(Introduced in Objective Caml 2.00)

expr =
| let module module-name {( module-name : module-type )} [: module-type]
= module-expr in expr

The expression let module module-name = module-expr in expr locally binds the module
expression module-expr to the identifier module-name during the evaluation of the expression
expr. It then returns the value of expr. For example:

let remove_duplicates comparison_fun string list =
let module StringSet =
Set.Make(struct type t = string
let compare = comparison_fun end) in
StringSet.elements
(List.fold_right StringSet.add string_list StringSet.empty)
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7.8 Recursive modules

(Introduced in Objective Caml 3.07)

definition = ...
| module rec module-name : module-type = module-expr
{and module-name : module-type = module-expr}
specification 1= ...
| module rec module-name : module-type {and module-name : module-type}
Recursive module definitions, introduced by the module rec ...and ... construction, gener-

alize regular module definitions module module-name = module-expr and module specifications
module module-name : module-type by allowing the defining module-expr and the module-type to
refer recursively to the module identifiers being defined. A typical example of a recursive module
definition is:

module rec A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int
end
= struct
type t = Leaf of string | Node of ASet.t
let compare tl1 t2 =
match (t1, t2) with
(Leaf s1, Leaf s2) -> Pervasives.compare sl s2
| (Leaf _, Node _) -> 1
| (Node _, Leaf _) -> -1
| (Node nl, Node n2) -> ASet.compare nl n2
end
and ASet : Set.S with type elt = A.t
= Set.Make(A)

It can be given the following specification:

module rec A : sig
type t = Leaf of string | Node of ASet.t
val compare: t -> t -> int
end
and ASet : Set.S with type elt = A.t

This is an experimental extension of OCaml: the class of recursive definitions accepted, as well
as its dynamic semantics are not final and subject to change in future releases.

Currently, the compiler requires that all dependency cycles between the recursively-defined
module identifiers go through at least one “safe” module. A module is “safe” if all value definitions
that it contains have function types typexpr; -> typexpry. Evaluation of a recursive module
definition proceeds by building initial values for the safe modules involved, binding all (functional)
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values to fun _ -> raiseUndefined_recursive_module. The defining module expressions are then
evaluated, and the initial values for the safe modules are replaced by the values thus computed. If
a function component of a safe module is applied during this computation (which corresponds to
an ill-founded recursive definition), the Undefined_recursive_module exception is raised.

Note that, in the specification case, the module-types must be parenthesized if they use the
with mod-constraint construct.

7.9 Private types

Private type declarations in module signatures, of the form type t = private ..., enable libraries
to reveal some, but not all aspects of the implementation of a type to clients of the library. In this
respect, they strike a middle ground between abstract type declarations, where no information is
revealed on the type implementation, and data type definitions and type abbreviations, where all
aspects of the type implementation are publicized. Private type declarations come in three flavors:
for variant and record types (section , for type abbreviations (section, and for row types

(section [7.9.3)).

7.9.1 Private variant and record types

(Introduced in Objective Caml 3.07)

type-representation = ...
| =private [|] constr-decl {| constr-decl}
| =private { field-decl {; field-decl} [;] }

Values of a variant or record type declared private can be de-structured normally in pattern-
matching or via the expr . field notation for record accesses. However, values of these types cannot
be constructed directly by constructor application or record construction. Moreover, assignment
on a mutable field of a private record type is not allowed.

The typical use of private types is in the export signature of a module, to ensure that construc-
tion of values of the private type always go through the functions provided by the module, while
still allowing pattern-matching outside the defining module. For example:

module M : sig

type t = private A | B of int
val a : t
val b : int -> t

end

= struct

type t = A | B of int
let a = A
let bn = assert (n > 0); Bn

end

Here, the private declaration ensures that in any value of type M.t, the argument to the B
constructor is always a positive integer.
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With respect to the variance of their parameters, private types are handled like abstract types.
That is, if a private type has parameters, their variance is the one explicitly given by prefixing the
parameter by a ‘+’ or a ‘-’, it is invariant otherwise.

7.9.2 Private type abbreviations
(Introduced in Objective Caml 3.11)

type-equation = ...
| =private typexpr

Unlike a regular type abbreviation, a private type abbreviation declares a type that is distinct
from its implementation type typexpr. However, coercions from the type to typexpr are permitted.
Moreover, the compiler “knows” the implementation type and can take advantage of this knowledge
to perform type-directed optimizations. For ambiguity reasons, typexpr cannot be an object or
polymorphic variant type, but a similar behaviour can be obtained through private row types.

The following example uses a private type abbreviation to define a module of nonnegative
integers:

module N : sig

type t = private int
val of_int: int -> t
val to_int: t -> int

end

= struct

type t = int
let of_int n = assert (n >=0); n
let to_int n

end

n

The type N.t is incompatible with int, ensuring that nonnegative integers and regular integers
are not confused. However, if x has type N.t, the coercion (x :> int) is legal and returns the
underlying integer, just like N.to_int x. Deep coercions are also supported: if 1 has typeN.t list,
the coercion (1 :> int list) returns the list of underlying integers, like List.map N.to_int 1
but without copying the list 1.

Note that the coercion ( expr :> typexpr ) is actually an abbreviated form, and will only
work in presence of private abbreviations if neither the type of expr nor typexpr contain any
type variables. If they do, you must use the full form ( expr : typexpr; :> typexpr, ) where
typexpr; is the expected type of expr. Concretely, this would be (x : N.t :> int) and
(1 : N.t list :> int 1list) for the above examples.

7.9.3 Private row types
(Introduced in Objective Caml 3.09)

type-equation 1= ...
| =private typexpr
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Private row types are type abbreviations where part of the structure of the type is left abstract.
Concretely typexpr in the above should denote either an object type or a polymorphic variant
type, with some possibility of refinement left. If the private declaration is used in an interface, the
corresponding implementation may either provide a ground instance, or a refined private type.

module M : sig type ¢ = private < x : int; .. > val o : c end =
struct
class ¢ = object method x = 3 method y = 2 end
let o = new ¢
end

This declaration does more than hiding the y method, it also makes the type ¢ incompatible
with any other closed object type, meaning that only o will be of type c. In that respect it behaves
similarly to private record types. But private row types are more flexible with respect to incremental
refinement. This feature can be used in combination with functors.

module F(X : sig type c¢c = private < x : int; .. > end) =
struct
let get_x (o : X.c) = o#x
end
module G(X : sig type ¢ = private < x : int; y : int; .. > end) =
struct

include F(X)
let get_y (o : X.c)
end

o#y

Polymorphic variant types can be refined in two ways, either to allow the addition of new
constructors, or to allow the disparition of declared constructors. The second case corresponds to
private variant types (one cannot create a value of the private type), while the first case requires
default cases in pattern-matching to handle addition.

type t = [ "A of int | "B of bool ]
type u = private [< t > “A ]
type v = private [> t ]

With type u, it is possible to create values of the form (TA n), but not ("B b). With type v,
construction is not restricted but pattern-matching must have a default case.

Similarly to abstract types, the variance of type parameters is not inferred, and must be given
explicitly.

7.10 Local opens

(Introduced in OCaml 3.12)

| let open module-path in expr
| module-path . ( expr )
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The expressions let open module-path in expr and module-path . ( expr ) are strictly equiv-
alent. They locally open the module referred to by the module path module-path in the scope of
the expression expr.

Restricting opening to the scope of a single expression instead of a whole structure allows one
to benefit from shorter syntax to refer to components of the opened module, without polluting the
global scope. Also, this can make the code easier to read (the open statement is closer to where it
is used) and to refactor (because the code fragment is more self-contained).

7.11 Record notations
(Introduced in OCaml 3.12)

pattern = ...
| { field [= pattern| {; field [= pattern|} [; _] [;] }

expr = ...
| { field [= expr] {; field [= expr]} [;] }
| { exprwith field [= expr| {; field [= expr|} [;] }

In a record pattern or a record construction expression, a single identifier id stands for id = id,
and a qualified identifier module-path . id stands for module-path . id = id. For example, assuming
the record type

type point = { x: float; y: float }
has been declared, the following expressions are equivalent:
letx=1landy=2in{x=x;y=y 1%}

let x =1 and y =2 in { x; y }
let x=1andy=2in {x=x; y }

Likewise, the following functions are equivalent:

fun {x = x; y=y} > x +y
fun {x; y} > x +y

Optionally, a record pattern can be terminated by ; _ to convey the fact that not all fields of
the record type are listed in the record pattern and that it is intentional. By default, the compiler
ignores the ; _ annotation. If warning 9 is turned on, the compiler will warn when a record pattern
fails to list all fields of the corresponding record type and is not terminated by ; _. Continuing the
point example above,

fun {x} > x + 1
will warn if warning 9 is on, while
fun {x; _} > x + 1

will not warn. This warning can help spot program points where record patterns may need to be
modified after new fields are added to a record type.
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7.12 Explicit polymorphic type annotations
(Introduced in OCaml 3.12)

let-binding ::=
| value-name : poly-typexpr = expr

Polymorphic type annotations in let-definitions behave in a way similar to polymorphic meth-
ods: they explicitly require the defined value to be polymorphic, and allow one to use this poly-
morphism in recursive occurrences (when using let rec). Note however that this is a normal
polymorphic type, unifiable with any instance of itself.

There are two possible applications of this feature. One is polymorphic recursion:

type 'a t = Leaf of 'a | Node of ('a * 'a) t
let rec depth : 'a. 'at -> 'b = function
Leaf _ > 1
| Node x -> 1 + depth x

Note that 'b is not explicitly polymorphic here, and it will actually be unified with int.
The other application is to ensure that some definition is sufficiently polymorphic.

# let id : 'a. 'a -> 'a = fun x -> x+1 ;;
Error: This definition has type int -> int which is less general than
'a. 'a -> 'a

7.13 Locally abstract types
(Introduced in OCaml 3.12)

parameter = ...
| (type typeconstr-name )

The expression fun ( type typeconstr-name ) -> expr introduces a type constructor named
typeconstr-name which is considered abstract in the scope of the sub-expression, but then replaced
by a fresh type variable. Note that contrary to what the syntax could suggest, the expression
fun ( type typeconstr-name ) -> expr itself does not suspend the evaluation of expr as a regular
abstraction would. The syntax has been chosen to fit nicely in the context of function declarations,
where it is generally used. It is possible to freely mix regular function parameters with pseudo type
parameters, as in:

let £ = fun (type t) (foo : t list) -> ...
and even use the alternative syntax for declaring functions:
let £ (type t) (foo : t list) = ...

This construction is useful because the type constructor it introduces can be used in places
where a type variable is not allowed. For instance, one can use it to define an exception in a local
module within a polymorphic function.
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let £ (type t) O =
let module M = struct exception E of t end in
(fun x -> M.E x), (function M.E x -> Some x | _ -> None)

Here is another example:

let sort_uniq (type s) (cmp : s -> s -> int) =
let module S = Set.Make(struct type t = s let compare = cmp end) in
fun 1 >
S.elements (List.fold_right S.add 1 S.empty)

It is also extremely useful for first-class modules and GADTs.

Polymorphic syntax (Introduced in OCaml 4.00)

let-binding = ...
| value-name : type {typeconstr-name}™ . typexpr = expr

class-field = ...
method |[private| method-name : type {typeconstr-name}™ . typexpr = expr
p ype by Y
method! |private| method-name : type {typeconstr-name}™ . typexpr = expr
| [p ] ype 1typ ypexp p

The (type typeconstr-name ) syntax construction by itself does not make polymorphic the
type variable it introduces, but it can be combined with explicit polymorphic annotations where
needed. The above rule is provided as syntactic sugar to make this easier:

let rec £ : type t1 t2. t1 * t2 list -> ti
is automatically expanded into

let rec £ : 't1 't2. 'tl1 * 't2 list -> 'tl1 =
fun (type t1) (type t2) -> (... : t1l * t2 list -> t1)

The same feature is provided for method definitions. The method! form combines this extension
with the “explicit overriding” extension described in section
7.14 First-class modules

(Introduced in OCaml 3.12; pattern syntax and package type inference introduced in 4.00; structural
comparison of package types introduced in 4.02.)
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typexpr = ..
| (module package-type )
module-expr = ...
| (val expr [: package-type] )

expr = ...
| (module module-expr [: package-type] )
pattern = ...
| (module module-name [: package-type] )
package-type ::= modtype-path
| modtype-path with package-constraint {and package-constraint}
package-constraint ::= type typeconstr = typexpr

Modules are typically thought of as static components. This extension makes it possible to pack
a module as a first-class value, which can later be dynamically unpacked into a module.

The expression ( module module-expr : package-type ) converts the module (structure or func-
tor) denoted by module expression module-expr to a value of the core language that encapsulates
this module. The type of this core language value is ( module package-type ). The package-type
annotation can be omitted if it can be inferred from the context.

Conversely, the module expression ( val expr : package-type ) evaluates the core language
expression expr to a value, which must have type module package-type, and extracts the module
that was encapsulated in this value. Again package-type can be omitted if the type of expr is
known.

The pattern ( module module-name : package-type ) matches a package with type
package-type and binds it to module-name. It is not allowed in toplevel let bindings. Again
package-type can be omitted if it can be inferred from the enclosing pattern.

The package-type syntactic class appearing in the ( module package-type ) type expression and
in the annotated forms represents a subset of module types. This subset consists of named module
types with optional constraints of a limited form: only non-parametrized types can be specified.

For type-checking purposes (and starting from OCaml 4.02), package types are compared using
the structural comparison of module types.

In general, the module expression ( val expr : package-type ) cannot be used in the body of
a functor, because this could cause unsoundness in conjunction with applicative functors. Since
OCaml 4.02, this is relaxed in two ways: if package-type does not contain nominal type decla-
rations (i.e. types that are created with a proper identity), then this expression can be used
anywhere, and even if it contains such types it can be used inside the body of a generative functor,
described in section It can also be used anywhere in the context of a local module binding
let module module-name = ( val expr; : package-type ) in exprs.

Basic example A typical use of first-class modules is to select at run-time among several
implementations of a signature. Each implementation is a structure that we can encapsulate as a
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first-class module, then store in a data structure such as a hash table:

module type DEVICE = sig ... end
let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17

module SVG = struct ... end
let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)
module PDF = struct ... end
let _ = Hashtbl.add devices "PDF" (module PDF: DEVICE)

We can then select one implementation based on command-line arguments, for instance:

module Device =
(val (try Hashtbl.find devices (parse_cmdline())
with Not_found -> eprintf "Unknown device %s\n"; exit 2)
: DEVICE)

Alternatively, the selection can be performed within a function:

let draw_using_device device_name picture =
let module Device =
(val (Hashtbl.find_devices device_name) : DEVICE)
in
Device.draw picture

Advanced examples With first-class modules, it is possible to parametrize some code over the
implementation of a module without using a functor.

let sort (type s) (module Set : Set.S with type elt = s) 1 =
Set.elements (List.fold_right Set.add 1 Set.empty)
val sort : (module Set.S with type elt = 'a) -> 'a list -> 'a list

To use this function, one can wrap the Set.Make functor:

let make_set (type s) cmp =
let module S = Set.Make(struct

type t = s
let compare = cmp
end) in

(module S : Set.S with type elt = s)
val make_set : ('a -> 'a —-> int) -> (module Set.S with type elt = 'a)

7.15 Recovering the type of a module

(Introduced in OCaml 3.12)
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module-type =
| module type of module-expr

The construction module type of module-expr expands to the module type (signature or functor
type) inferred for the module expression module-expr. To make this module type reusable in many
situations, it is intentionally not strengthened: abstract types and datatypes are not explicitly
related with the types of the original module. For the same reason, module aliases in the inferred
type are expanded.

A typical use, in conjunction with the signature-level include construct, is to extend the
signature of an existing structure. In that case, one wants to keep the types equal to types in the
original module. This can done using the following idiom.

module type MYHASH = sig
include module type of struct include Hashtbl end
val replace: ('a, 'b) t -> 'a -> 'b -> unit

end

The signature MYHASH then contains all the fields of the signature of the module Hashtbl (with
strengthened type definitions), plus the new field replace. An implementation of this signature
can be obtained easily by using the include construct again, but this time at the structure level:

module MyHash : MYHASH = struct

include Hashtbl

let replace t k v = remove t k; add t k v
end

Another application where the absence of strengthening comes handy, is to provide an alterna-
tive implementation for an existing module.

module MySet : module type of Set = struct

end

This idiom guarantees that Myset is compatible with Set, but allows it to represent sets inter-
nally in a different way.

7.16 Substituting inside a signature

(Introduced in OCaml 3.12)

mod-constraint = ..
| type [type-params| typeconstr-name := typexpr
| module module-name := extended-module-path

“Destructive” substitution (with... :=...) behaves essentially like normal signature constraints
(with... =...), but it additionally removes the redefined type or module from the signature. There
are a number of restrictions: one can only remove types and modules at the outermost level (not
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inside submodules), and in the case of with type the definition must be another type constructor
with the same type parameters.
A natural application of destructive substitution is merging two signatures sharing a type name.

module type Printable = sig

type t
val print : Format.formatter -> t -> unit

end
module type Comparable = sig
type t
val compare : t -> t -> int
end

module type PrintableComparable = sig
include Printable
include Comparable with type t =t
end

One can also use this to completely remove a field:

# module type S = Comparable with type t := int;;
module type S = sig val compare : int -> int -> int end

or to rename one:

# module type S = sig

# type u

# include Comparable with type t :=u
# end;;

module type S = sig type u val compare : u -> u -> int end
Note that you can also remove manifest types, by substituting with the same type.

# module type ComparableInt = Comparable with type t = int ;;
module type Comparablelnt = sig type t = int val compare : t -> t -> int end

# module type Comparelnt = ComparableInt with type t := int ;;
module type Comparelnt = sig val compare : int -> int -> int end

7.17 Type-level module aliases
(Introduced in OCaml 4.02)

specification 1= ...
| module module-name = module-path

The above specification, inside a signature, only matches a module definition equal to
module-path. Conversely, a type-level module alias can be matched by itself, or by any supertype
of the type of the module it references.

There are several restrictions on module-path:
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1. it should be of the form My.M;...M,, (i.e. without functor applications);

2. inside the body of a functor, My should not be one of the functor parameters;

3. inside a recursive module definition, My should not be one of the recursively defined modules.

Such specifications are also inferred. Namely, when P is a path satisfying the above constraints,
# module N = P

has type

module N = P

Type-level module aliases are used when checking module path equalities. That is, in a context
where module name N is known to be an alias for P, not only these two module paths check as
equal, but F' (N) and F (P) are also recognized as equal. In the default compilation mode, this is
the only difference with the previous approach of module aliases having just the same module type
as the module they reference.

When the compiler flag -no-alias-deps is enabled, type-level module aliases are also exploited
to avoid introducing dependencies between compilation units. Namely, a module alias referring
to a module inside another compilation unit does not introduce a link-time dependency on that
compilation unit, as long as it is not dereferenced; it still introduces a compile-time dependency
if the interface needs to be read, i.e. if the module is a submodule of the compilation unit, or if
some type components are referred to. Additionally, accessing a module alias introduces a link-time
dependency on the compilation unit containing the module referenced by the alias, rather than the
compilation unit containing the alias. Note that these differences in link-time behavior may be
incompatible with the previous behavior, as some compilation units might not be extracted from
libraries, and their side-effects ignored.

These weakened dependencies make possible to use module aliases in place of the -pack mech-
anism. Suppose that you have a library Mylib composed of modules A and B. Using -pack, one
would issue the command line

ocamlc -pack a.cmo b.cmo -o mylib.cmo

and as a result obtain a Mylib compilation unit, containing physically A and B as submodules,
and with no dependencies on their respective compilation units. Here is a concrete example of a
possible alternative approach:

1. Rename the files containing A and B to Mylib_A and Mylib_B.

2. Create a packing interface Mylib.ml, containing the following lines.

module A
module B

Mylib_A
Mylib_B

3. Compile Mylib.ml using -no-alias-deps, and the other files using -no-alias-deps and
-open Mylib (the last one is equivalent to adding the line open! Mylib at the top of each
file).
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ocamlc -c¢ -no-alias-deps Mylib.ml
ocamlc -c¢ -no-alias-deps -open Mylib Mylib_*.mli Mylib_*.ml

4. Finally, create a library containing all the compilation units, and export all the compiled
interfaces.

ocamlc -a Mylib*.cmo -o Mylib.cma

This approach lets you access A and B directly inside the library, and as Mylib.A and Mylib.B from
outside. It also has the advantage that Mylib is no longer monolithic: if you use Mylib.A, only
Mylib_A will be linked in, not Mylib_B.

7.18 Explicit overriding in class definitions

(Introduced in OCaml 3.12)

class-field
inherit! class-expr [as lowercase-ident]

val! [mutable]| inst-var-name [: typexpr| = expr

method! [private| method-name {parameter} [: typexpr| = expr
method! [private] method-name : poly-typexpr = expr

The keywords inherit!, val! and method! have the same semantics as inherit, val and
method, but they additionally require the definition they introduce to be an overriding. Namely,
method! requires method-name to be already defined in this class, val! requires inst-var-name to
be already defined in this class, and inherit! requires class-expr to override some definitions. If
no such overriding occurs, an error is signaled.

As a side-effect, these 3 keywords avoid the warnings 7 (method override) and 13 (instance
variable override). Note that warning 7 is disabled by default.

7.19 Overriding in open statements

(Introduced in OCaml 4.01)

definition == ..
| open! module-path
specification 1= ...
| open! module-path
expr =

| let open! module-path in expr

Since OCaml 4.01, open statements shadowing an existing identifier (which is later used) trigger
the warning 44. Adding a ! character after the open keyword indicates that such a shadowing is
intentional and should not trigger the warning.
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7.20 Generalized algebraic datatypes
(Introduced in OCaml 4.00)

constr-decl = ...
| constr-name : [typexpr {* typexpr} ->| typexpr

type-param = .
| [variance] _

Generalized algebraic datatypes, or GADTSs, extend usual sum types in two ways: constraints on
type parameters may change depending on the value constructor, and some type variables may be
existentially quantified. Adding constraints is done by giving an explicit return type (the rightmost
typexpr in the above syntax), where type parameters are instantiated. This return type must use
the same type constructor as the type being defined, and have the same number of parameters.
Variables are made existential when they appear inside a constructor’s argument, but not in its
return type.

Since the use of a return type often eliminates the need to name type parameters in the left-hand
side of a type definition, one can replace them with anonymous types _ in that case.

The constraints associated to each constructor can be recovered through pattern-matching.
Namely, if the type of the scrutinee of a pattern-matching contains a locally abstract type, this
type can be refined according to the constructor used. These extra constraints are only valid inside
the corresponding branch of the pattern-matching. If a constructor has some existential variables,
fresh locally abstract types are generated, and they must not escape the scope of this branch.

Here is a concrete example:

type _ term =
| Int : int -> int term
| Add : (int -> int -> int) term
| App : ('b -> 'a) term * 'b term -> 'a term

let rec eval : type a. a term -> a = function
| Int n ->n (x a = int *)
| Add -> (fun x y => x+y) (x a = int -> int -> int *)
| App(f,x) -> (eval f) (eval x)
(* eval called at types (b->a) and b for fresh b *)

let two = eval (App (App (Add, Int 1), Int 1))
val two : int = 2

Type inference for GADTs is notoriously hard. This is due to the fact some types may become
ambiguous when escaping from a branch. For instance, in the Int case above, n could have either
type int or a, and they are not equivalent outside of that branch. As a first approximation, type
inference will always work if a pattern-matching is annotated with types containing no free type
variables (both on the scrutinee and the return type). This is the case in the above example, thanks
to the type annotation containing only locally abstract types.
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In practice, type inference is a bit more clever than that: type annotations do not need to be
immediately on the pattern-matching, and the types do not have to be always closed. As a result,
it is usually enough to only annotate functions, as in the example above. Type annotations are
propagated in two ways: for the scrutinee, they follow the flow of type inference, in a way similar to
polymorphic methods; for the return type, they follow the structure of the program, they are split
on functions, propagated to all branches of a pattern matching, and go through tuples, records, and
sum types. Moreover, the notion of ambiguity used is stronger: a type is only seen as ambiguous if
it was mixed with incompatible types (equated by constraints), without type annotations between
them. For instance, the following program types correctly.

let rec sum : type a. a term -> _ = fun x >
let y =
match x with
| Int n => n

| Addd >0
| App(f,x) -> sum f + sum x
iny +1
val sum : 'a term -> int = <fun>

Here the return type int is never mixed with a, so it is seen as non-ambiguous, and can be
inferred. When using such partial type annotations we strongly suggest specifying the -principal
mode, to check that inference is principal.

The exhaustiveness check is aware of GADT constraints, and can automatically infer that some
cases cannot happen. For instance, the following pattern matching is correctly seen as exhaustive
(the Add case cannot happen).

let get_int : int term -> int = function
| Int n ->n
| App(_,_) -> 0

Advanced examples The term type we have defined above is an indezed type, where a type
parameter reflects a property of the value contents. Another use of GADTs is singleton types, where
a GADT value represents exactly one type. This value can be used as runtime representation for
this type, and a function receiving it can have a polytypic behavior.

Here is an example of a polymorphic function that takes the runtime representation of some
type t and a value of the same type, then pretty-prints the value as a string:

type _ typ =
| Int : int typ
| String : string typ
| Pair : 'a typ * 'b typ -> ('a * 'b) typ

let rec to_string: type t. t typ -> t -> string =
fun t x >
match t with
| Int -> string of_int x
| String -> Printf.sprintf "%S" x
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| Pair(t1l,t2) —>
let (x1, x2) = x in
Printf.sprintf "(%s,%s)" (to_string tl1 x1) (to_string t2 x2)

Another frequent application of GADTSs is equality witnesses.
type (_,_) eq = Eq : ('a,'a) eq

let cast : type a b. (a,b) eq -> a -> b = fun Eq x -> x

Here type eq has only one constructor, and by matching on it one adds a local constraint
allowing the conversion between a and b. By building such equality witnesses, one can make equal
types which are syntactically different.

Here is an example using both singleton types and equality witnesses to implement dynamic
types.

let rec eq_type : type a b. a typ -> b typ -> (a,b) eq option =
fun a b ->
match a, b with
| Int, Int -> Some Eq
| String, String -> Some Eq
| Pair(al,a2), Pair(b1,b2) —>
begin match eq_type al bl, eq_type a2 b2 with
| Some Eq, Some Eq -> Some Eq
| _ -> None
end
| _ -> None

type dyn = Dyn : 'a typ * 'a -> dyn

let get_dyn : type a. a typ -> dyn -> a option =
fun a (Dyn(b,x)) ->
match eq_type a b with
| None -> None
| Some Eq -> Some x

7.21 Syntax for Bigarray access
(Introduced in Objective Caml 3.00)

expr = ...
| expr .{expr{, expr} %
| expr .{expr{, expr} } <- expr

This extension provides syntactic sugar for getting and setting elements in the arrays provided

by the Bigarray[28.1] library.
The short expressions are translated into calls to functions of the Bigarray module as described

in the following table.
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expression translation

exprg .{ expry } Bigarray.Arrayl.get expr, expr;

expry .{ expr; } <- expr Bigarray.Arrayl.set expr, expry expr

expry .{ expr, , expry } Bigarray.Array2.get exprgy expry expry

expry .{ expr; , expry } <- expr Bigarray.Array2.set expry expr; expro expr

expry .{ expr, , expry , exprs } Bigarray.Array3.get expr, expry exprg exprs

expry .{ expr; , expry , exprg } <- expr | Bigarray.Array3.set expr, expr; expr, €xprs expr

exprg .{ expr; ,..., expr, } Bigarray.Genarray.get expry [| expry , ..., expr, |]
expry .{ expr; , ..., expr, } <- expr Bigarray.Genarray.set exprg [| expr, , ..., expr, |] expr

The last two entries are valid for any n > 3.

7.22 Attributes

(Introduced in OCaml 4.02)

Attributes are “decorations” of the syntax tree which are mostly ignored by the type-checker
but can be used by external tools. An attribute is made of an identifier and a payload, which can
be a structure, a type expression (prefixed with :) or a pattern (prefixed with ?) optionally followed
by a when clause:

attr-id ::= lowercase-ident
| capitalized-ident
| attr-id . attr-id
attr-payload [module-items]

: typexpr
? pattern [when expr]

The first form of attributes is attached with a postfix notation on “algebraic” categories:
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attribute = [@ attr-id attr-payload ]

expr = ..
| expr attribute

typexpr = ..
| typexpr attribute
pattern = ...
| pattern attribute

module-expr = ...
| module-expr attribute

module-type = ...
| module-type attribute

class-expr = ..
| class-expr attribute

class-type = ...
| class-type attribute

This form of attributes can also be inserted after the = tag-name in polymorphic variant type
expressions (tag-spec-first, tag-spec, tag-spec-full) or after the method-name in method-type.

The same syntactic form is also used to attach attributes to labels and constructors in type
declarations:

field-decl ::= [mutable] field-name {attribute} : poly-typexpr
constr-decl = (constr-name | () {attribute} [of typexpr {* typexpr}]

The second form of attributes are attached to “blocks” such as type declarations, class fields,
etc:
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item-attribute ::= [@Q attr-id attr-payload ]

typedef = ..
| typedef item-attribute

exception-definition ::= exception constr-name {attribute} [of typexpr {* typexpr}]
| exception constr-name = constr

module-items ::= [; ;] (definition | expr {item-attribute}) {[; ;] definition | ; ; expr {item-attribute}} [;

class-binding = ...
| class-binding item-attribute

class-spec = ...
| class-spec item-attribute

classtype-def = ..
| classtype-def item-attribute

definition ::= let [rec] let-binding {and let-binding}
| external value-name : typexpr = external-declaration {item-attribute}
| type-definition
| exception-definition {item-attribute}
| class-definition
| classtype-definition
| module module-name {( module-name : module-type )} [: module-type]
= module-expr {item-attribute}
module type modtype-name = module-type {item-attribute}
open module-path {item-attribute}
include module-expr {item-attribute}
module rec module-name : module-type =
module-expr {item-attribute}
{and module-name : module-type = module-expr
{item-attribute}}

specification = val value-name : typexpr {item-attribute}

external value-name : typexpr = external-declaration {item-attribute}
type-definition

exception constr-decl {item-attribute}

class-specification

classtype-definition

module module-name : module-type {item-attribute}

module module-name { ( module-name : module-type )} : module-type {item-attribt
module type modtype-name {item-attribute}

module type modtype-name = module-type {item-attribute}

open module-path {item-attribute}

include module-type {item-attribute}

class-field-spec = ...
| class-field-spec item-attribute
class-field := ..

| class-field item-attribute



160

A third form of attributes appears as stand-alone structure or signature items in the module or
class sub-languages. They are not attached to any specific node in the syntax tree:

floating-attribute ::= [@Q@@ attr-id attr-payload ]

definition = ..
| floating-attribute

specification = ...
| floating-attribute

class-field-spec = ...
| floating-attribute

class-field := ...
| floating-attribute

(Note: contrary to what the grammar above describes, item-attributes cannot be attached to
these floating attributes in class-field-spec and class-field.)

It is also possible to specify attributes on expressions using an infix syntax. This applies to all
expressions starting with one or two keywords: assert, begin, for, fun, function, if, lazy, let,
let module, let open, match, new, object, try, while. Those expressions supports adding one
or several attributes just after those initial keyword(s). For instance:

let [@foo] [@bar x] x = 2 in x + 1 === (let x = 2 in x + 1) [@foo] [@bar x]
begin[@foo] ... end === (begin ... end) [@foo]

7.22.1 Built-in attributes

Some attributes are understood by the type-checker:

e “ocaml.warning” or “warning”’, with a string literal payload. This can be used as floating
attributes in a signature/structure/object/object type. The string is parsed and has the
same effect as the -w command-line option, in the scope between the attribute and the end
of the current signature/structure/object/object type. The attribute can also be used on an
expression, in which case its scope is limited to that expression. Note that it is not well-
defined which scope is used for a specific warning. This is implementation dependant and
can change between versions. For instance, warnings triggerd by the “ppwarning” attribute
(see below) are issued using the global warning configuration.

e “ocaml.warnerror” or “warnerror”, with a string literal payload. Same as “ocaml.warning”,
for the -warn-error command-line option.

e “ocaml.deprecated” or “deprecated”. Can be applied to most kind of items in signatures or
structures. When the element is later referenced, a warning (3) is triggered. If the payload
of the attribute is a string literal, the warning message includes this text.
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e “ocaml.ppwarning” or “ppwarning”, in any context, with a string literal payload. The text
is reported as warning (22) by the compiler (currently, the warning location is the location
of the string payload). This is mostly useful for preprocessors which need to communicate
warnings to the user. This could also be used to mark explicitly some code location for further
inspection.

module X = struct
[@@warning "+9"] (* locally enable warning 9 in this structure *)

end
let x = begin[@warning "+9] ... end in ....

type t = A | B
[@@deprecated "Please use type 's' instead.]

let £ x =
assert (x >= 0) [@ppwarning "TODO: remove this later"];

7.23 Extension nodes

(Introduced in OCaml 4.02)

Extension nodes are generic placeholders in the syntax tree. They are rejected by the type-
checker and are intended to be “expanded” by external tools such as -ppx rewriters.

Extension nodes share the same notion of identifier and payload as attributes

The first form of extension node is used for “algebraic” categories:
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extension

expr

typexpr

pattern

module-expr

module-type

class-expr

class-type

A second form of extension node can be used in structures and signatures, both in the module

and object languages:

item-extension

definition

specification

class-field-spec

class-field

An infix form is available for extension nodes as expressions, when the payload is a single
expression. This form applies to all expressions starting with one or two keywords: the percent
sign and then and extension identifier follow immediately the initial keyword(s).

[% attr-id attr-payload ]
;;(tensjon
extension
;)'(tension
extension
;).(tension
extension

extension

(%% attr-id attr-payload ]
;'tem—extension
;"t'em—extension
;'.tiem—extension

item-extension

Examples:
let¥%foo x = 2 in x + 1 === [%foo let x = 2 in x + 1]
begin)foo ... end === [}foo begin ... end]

When this form is used together with the infix syntax for attributes, the attributes are considered

to apply to the payload:
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begin)foo[@bar] ... end === [Yfoo (let x = 2 in x + 1) [@bar]]

7.24 Quoted strings

(Introduced in OCaml 4.02)

Quoted strings provide a different lexical syntax to write string literals in OCaml code. This
can be used to embed pieces of foreign syntax fragments in OCaml code, to be interpret by a —-ppx
filter or just a library.

string-literal = ...
| { quoted-string-id |........ | quoted-string-id }

quoted-string-id == {a..z|_}

The opening delimiter has the form {id| where id is a (possibly empty) sequence of lowercase
letters and underscores. The corresponding closing delimiter is |id} (with the same identifier).
Unlike regular OCaml string literals, quoted strings do not interpret any character in a special way.

Example:

String.length {|\"[|} (* returns 2 *)
String.length {fool\"|foo} (% returns 2 *)

7.25 Exception cases in pattern matching

(Introduced in OCaml 4.02)
A new form of exception patterns is allowed, only as a toplevel pattern under a match...with
pattern-matching (other occurrences are rejected by the type-checker).

pattern =
| exception pattern

“value

Cases with such a toplevel pattern are called “exception cases”, as opposed to regular
cases”. Exception cases are applied when the evaluation of the matched expression raises an
exception. The exception value is then matched against all the exception cases and re-raised if
none of them accept the exception (as for a try..with block). Since the bodies of all exception
and value cases is outside the scope of the exception handler, they are all considered to be in
tail-position: if the match...with block itself is in tail position in the current function, any function
call in tail position in one of the case bodies results in an actual tail call.

It is an error if all cases are exception cases in a given pattern matching.
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7.26 Extensible variant types
(Introduced in OCaml 4.02)

type-representation ::=

specification = ...
| type [type-params]| typeconstr type-extension-spec
definition = ...
| type [type-params| typeconstr type-extension-def
type-extension-spec ::= += [private] [|]| constr-decl {| constr-decl}
type-extension-def ::= += [private]| [l] constr-def {| constr-def}
constr-def ::= constr-decl

| constr-name = constr

Extensible variant types are variant types which can be extended with new variant constructors.
Extensible variant types are defined using ... New variant constructors are added using +=.

type attr = ..
type attr += Str of string

type attr +=
| Int of int
| Float of float

Pattern matching on an extensible variant type requires a default case to handle unknown
variant constructors:

let to_string = function

Str s -> s

Int i -> string_of_int i

Float f -> string_of_float £
-> "?II

A preexisting example of an extensible variant type is the built-in exn type used for exceptions.
Indeed, exception constructors can be declared using the type extension syntax:

type exn += Exc of int

Extensible variant constructors can be rebound to a different name. This allows exporting
variants from another module.

type Expr.attr += Str = Expr.Str

Extensible variant constructors can be declared private. As with regular variants, this prevents
them from being constructed directly by constructor application while still allowing them to be de-
structured in pattern-matching.
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7.27 Generative functors
(Introduced in OCaml 4.02)
module-expr

functor () -> module-expr
module-expr ()

definition

module module-name { ( module-name : module-type ) | ()} [: module-type]
= module-expr

module-type = ...
| functor () -> module-type

specification = ...
| module module-name {( module-name : module-type ) | ()} : module-type

A generative functor takes a unit () argument. In order to use it, one must necessarily apply
it to this unit argument, ensuring that all type components in the result of the functor behave
in a generative way, i.e. they are different from types obtained by other applications of the same
functor. This is equivalent to taking an argument of signature sig end, and always applying to
struct end, but not to some defined module (in the latter case, applying twice to the same module
would return identical types).

As a side-effect of this generativity, one is allowed to unpack first-class modules in the body of
generative functors.
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Chapter 8

Batch compilation (ocamlc)

This chapter describes the OCaml batch compiler ocamlc, which compiles OCaml source files to
bytecode object files and links these object files to produce standalone bytecode executable files.
These executable files are then run by the bytecode interpreter ocamlrun.

8.1 Overview of the compiler

The ocamlc command has a command-line interface similar to the one of most C compilers. It
accepts several types of arguments and processes them sequentially:

e Arguments ending in .mli are taken to be source files for compilation unit interfaces. Inter-
faces specify the names exported by compilation units: they declare value names with their
types, define public data types, declare abstract data types, and so on. From the file z.ml11,
the ocamlc compiler produces a compiled interface in the file x.cmi.

e Arguments ending in .ml are taken to be source files for compilation unit implementations.
Implementations provide definitions for the names exported by the unit, and also contain
expressions to be evaluated for their side-effects. From the file z.ml, the ocamlc compiler
produces compiled object bytecode in the file z. cmo.

If the interface file z.m1i exists, the implementation x.ml is checked against the corresponding
compiled interface z.cmi, which is assumed to exist. If no interface z.mli is provided, the
compilation of z.ml produces a compiled interface file z.cmi in addition to the compiled
object code file z.cmo. The file z.cmi produced corresponds to an interface that exports
everything that is defined in the implementation z.ml.

e Arguments ending in .cmo are taken to be compiled object bytecode. These files are linked
together, along with the object files obtained by compiling .ml arguments (if any), and the
OCaml standard library, to produce a standalone executable program. The order in which
.cmo and .ml arguments are presented on the command line is relevant: compilation units
are initialized in that order at run-time, and it is a link-time error to use a component of a
unit before having initialized it. Hence, a given z.cmo file must come before all .cmo files
that refer to the unit z.
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e Arguments ending in .cma are taken to be libraries of object bytecode. A library of object
bytecode packs in a single file a set of object bytecode files (.cmo files). Libraries are built
with ocamlc -a (see the description of the —a option below). The object files contained in the
library are linked as regular .cmo files (see above), in the order specified when the .cma file
was built. The only difference is that if an object file contained in a library is not referenced
anywhere in the program, then it is not linked in.

e Arguments ending in .c are passed to the C compiler, which generates a .o object file (.obj
under Windows). This object file is linked with the program if the —custom flag is set (see
the description of -custom below).

e Arguments ending in .o or .a (.obj or .1lib under Windows) are assumed to be C object
files and libraries. They are passed to the C linker when linking in —custom mode (see the
description of -custom below).

e Arguments ending in .so (.d11 under Windows) are assumed to be C shared libraries (DLLs).
During linking, they are searched for external C functions referenced from the OCaml code,
and their names are written in the generated bytecode executable. The run-time system
ocamlrun then loads them dynamically at program start-up time.

The output of the linking phase is a file containing compiled bytecode that can be executed by
the OCaml bytecode interpreter: the command named ocamlrun. If a.out is the name of the file
produced by the linking phase, the command

ocamlrun a.out arg; args ... arg,

executes the compiled code contained in a.out, passing it as arguments the character strings
arg; to arg,,. (See chapter [10|for more details.)
On most systems, the file produced by the linking phase can be run directly, as in:

./a.out arg,; argy ... arg,

The produced file has the executable bit set, and it manages to launch the bytecode interpreter
by itself.

8.2 Options

The following command-line options are recognized by ocamlc. The options -pack, -a, -c and
-output-obj are mutually exclusive.

-a  Build a library (.cma file) with the object files (. cmo files) given on the command line, instead
of linking them into an executable file. The name of the library must be set with the —o option.

If ~custom, -cclib or -ccopt options are passed on the command line, these options are
stored in the resulting .cma library. Then, linking with this library automatically adds back
the —custom, -cclib and -ccopt options as if they had been provided on the command line,
unless the -noautolink option is given.
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—absname
Force error messages to show absolute paths for file names.

-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc). The in-
formation for file src.ml is put into file src.annot. In case of a type error, dump all the
information inferred by the type-checker before the error. The src.annot file can be used
with the emacs commands given in emacs/caml-types.el to display types and other anno-
tations interactively.

-bin-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc) in binary
format. The information for file src.ml is put into file src.cmt. In case of a type error, dump
all the information inferred by the type-checker before the error. The *.cmt files produced by
-bin-annot contain more information and are much more compact than the files produced
by -annot.

-c  Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

-cc ccomp
Use ccomp as the C linker when linking in “custom runtime” mode (see the -custom option)
and as the C compiler for compiling .c source files.

-cclib -llibname
Pass the -1libname option to the C linker when linking in “custom runtime” mode (see the
-custom option). This causes the given C library to be linked with the program.

—-ccopt option
Pass the given option to the C compiler and linker. When linking in “custom runtime” mode,
for instance, ~ccopt -Ldir causes the C linker to search for C libraries in directory dir. (See
the —custom option.)

—-compat-32
Check that the generated bytecode executable can run on 32-bit platforms and signal an error
if it cannot. This is useful when compiling bytecode on a 64-bit machine.

-config
Print the version number of ocamlc and a detailed summary of its configuration, then exit.

-custom
Link in “custom runtime” mode. In the default linking mode, the linker produces bytecode
that is intended to be executed with the shared runtime system, ocamlrun. In the custom
runtime mode, the linker produces an output file that contains both the runtime system and
the bytecode for the program. The resulting file is larger, but it can be executed directly, even
if the ocamlrun command is not installed. Moreover, the “custom runtime” mode enables
static linking of OCaml code with user-defined C functions, as described in chapter
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Unix:

Never use the strip command on executables produced by ocamlc -custom,
this would remove the bytecode part of the executable.

-d11ib -1libname

Arrange for the C shared library dlllibname.so (dlllibname.dll under Windows) to be
loaded dynamically by the run-time system ocamlrun at program start-up time.

-dllpath dir

Adds the directory dir to the run-time search path for shared C libraries. At link-time, shared
libraries are searched in the standard search path (the one corresponding to the -I option).
The -d1lpath option simply stores dir in the produced executable file, where ocamlrun can
find it and use it as described in section

-for-pack udent

g

This option is accepted for compatibility with ocamlopt; it does nothing.

Add debugging information while compiling and linking. This option is required in order
to be able to debug the program with ocamldebug (see chapter , and to produce stack
backtraces when the program terminates on an uncaught exception (see section [10.2)).

Cause the compiler to print all defined names (with their inferred types or their definitions)
when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are
produced. This can be useful to check the types inferred by the compiler. Also, since the
output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file)
for a file: just redirect the standard output of the compiler to a .mli file, and edit that file
to remove all declarations of unexported names.

-1 directory

Add the given directory to the list of directories searched for compiled interface files
(.cmi), compiled object code files (.cmo), libraries (.cma), and C libraries specified with
-cclib -1xxx. By default, the current directory is searched first, then the standard library
directory. Directories added with -I are searched after the current directory, in the order in
which they were given on the command line, but before the standard library directory. See
also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

-impl filename

Compile the file filename as an implementation file, even if its extension is not .ml.

-intf filename

Compile the file filename as an interface file, even if its extension is not .mli.

-intf-suffix string

Recognize file names ending with string as interface files (instead of the default .mli).
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-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters
can be given in any order. This is the default.

-linkall
Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced
modules are not linked in. When building a library (option -a), setting the ~1inkall option
forces all subsequent links of programs involving that library to link all the modules contained
in the library.

-make-runtime
Build a custom runtime system (in the file specified by option -o) incorporating the C object
files and libraries given on the command line. This custom runtime system can be used later
to execute bytecode executables produced with the ocamlc -use-runtime runtime-name
option. See section for more information.

-no-alias-deps
Do not record dependencies for module aliases. See section for more information.

-no-app-funct
Deactivates the applicative behaviour of functors. With this option, each functor application
generates new types in its result and applying the same functor twice to the same argument
yields two incompatible structures.

-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled
because it is typed specially. This flag has no effect when linking already-compiled files.

-noautolink
When linking .cma libraries, ignore -custom, -cclib and -ccopt options potentially con-
tained in the libraries (if these options were given when building the libraries). This can be
useful if a library contains incorrect specifications of C libraries or C options; in this case,
during linking, set -noautolink and pass the correct C libraries and options on the command
line.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-nostdlib
Do not include the standard library directory in the list of directories searched for compiled
interface files (.cmi), compiled object code files (.cmo), libraries (.cma), and C libraries
specified with —cclib -1xxx. See also option -I.

-o exec-file
Specify the name of the output file produced by the compiler. The default output name is
a.out under Unix and camlprog.exe under Windows. If the —a option is given, specify the
name of the library produced. If the —pack option is given, specify the name of the packed
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object file produced. If the —output-obj option is given, specify the name of the output file
produced. If the —c option is given, specify the name of the object file produced for the next
source file that appears on the command line.

-open Module
Opens the given module before processing the interface or implementation files. If several
-open options are given, they are processed in order, just as if the statements open! Modulel; ;
. open! ModuleN;; were added at the top of each file.

—output-obj
Cause the linker to produce a C object file instead of a bytecode executable file. This is
useful to wrap OCaml code as a C library, callable from any C program. See chapter
section The name of the output object file must be set with the -o option. This
option can also be used to produce a C source file (. c extension) or a compiled shared /dynamic
library (.so extension, .d11l under Windows).

-pack
Build a bytecode object file (.cmo file) and its associated compiled interface (.cmi) that
combines the object files given on the command line, making them appear as sub-modules of
the output .cmo file. The name of the output .cmo file must be given with the -o option.
For instance,

ocamlc -pack -o p.cmo a.cmo b.cmo c.cmo

generates compiled files p.cmo and p.cmi describing a compilation unit having three sub-
modules A, B and C, corresponding to the contents of the object files a.cmo, b.cmo and c.cmo.
These contents can be referenced as P.A, P.B and P.C in the remainder of the program.

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The
output of command is redirected to an intermediate file, which is compiled. If there are no
compilation errors, the intermediate file is deleted afterwards.

-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The format
of the input and ouput of the preprocessor are not yet documented.

-principal
Check information path during type-checking, to make sure that all types are derived in
a principal way. When using labelled arguments and/or polymorphic methods, this flag is
required to ensure future versions of the compiler will be able to infer types correctly, even
if internal algorithms change. All programs accepted in -principal mode are also accepted
in the default mode with equivalent types, but different binary signatures, and this may slow
down type checking; yet it is a good idea to use it once before publishing source code.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported. Note that once you have created
an interface using this flag, you must use it again for all dependencies.
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-runtime-variant suffiz
Add the suffiz string to the name of the runtime library used by the program. Currently, only
one such suffix is supported: d, and only if the OCaml compiler was configured with option
-with-debug-runtime. This suffix gives the debug version of the runtime, which is useful for
debugging pointer problems in low-level code such as C stubs.

-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only.
This will become the default in a future version of OCaml.

-short-paths
When a type is visible under several module-paths, use the shortest one when printing the
type’s name in inferred interfaces and error and warning messages.

-strict-sequence
Force the left-hand part of each sequence to have type unit.

-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use
this flag to detect and fix such invalid formats, as they will be rejected by future OCaml
versions.

-thread
Compile or link multithreaded programs, in combination with the system threads library
described in chapter

-unsafe
Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs).
Programs compiled with -unsafe are therefore slightly faster, but unsafe: anything can
happen if the program accesses an array or string outside of its bounds.

-unsafe-string
Identify the types string and bytes, thereby making strings writable. For reasons of back-
ward compatibility, this is the default setting for the moment, but this will change in a future
version of OCaml.

—use-runtime runtime-name
Generate a bytecode executable file that can be executed on the custom runtime system
runtime-name, built earlier with ocamlc -make-runtime runtime-name. See section
for more information.

-v  Print the version number of the compiler and the location of the standard library directory,
then exit.

-verbose
Print all external commands before they are executed, in particular invocations of the C
compiler and linker in —custom mode. Useful to debug C library problems.
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-vmthread
Compile or link multithreaded programs, in combination with the VM-level threads library
described in chapter

-version or -vnum
Print the version number of the compiler in short form (e.g. 3.11.0), then exit.

-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each
warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning
is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal).
If a warning is enabled, it is displayed normally by the compiler whenever the source code
triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying
it.

The warning-list argument is a sequence of warning specifiers, with no separators between
them. A warning specifier is one of the following:

+num
Enable warning number num.

-num
Disable warning number num.

Qnum
Enable and mark as fatal warning number num.

+numl..num2
Enable warnings in the given range.

-numl..num2
Disable warnings in the given range.

@numl..num2
Enable and mark as fatal warnings in the given range.

+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

~letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

Qletter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be
uppercase or lowercase.

uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.

lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.
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Warning numbers and letters which are out of the range of warnings that are currently defined
are ignored. The warning are as follows.

_ W N =

© W N o O«

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30

Suspicious-looking start-of-comment mark.
Suspicious-looking end-of-comment mark.
Deprecated feature.

Fragile pattern matching: matching that will remain complete even if additional con-
structors are added to one of the variant types matched.

Partially applied function: expression whose result has function type and is ignored.
Label omitted in function application.

Method overridden.

Partial match: missing cases in pattern-matching.

Missing fields in a record pattern.

Expression on the left-hand side of a sequence that doesn’t have type unit (and that is
not a function, see warning number 5).

Redundant case in a pattern matching (unused match case).

Redundant sub-pattern in a pattern-matching.

Instance variable overridden.

Illegal backslash escape in a string constant.

Private method made public implicitly.

Unerasable optional argument.

Undeclared virtual method.

Non-principal type.

Type without principality.

Unused function argument.

Non-returning statement.

Proprocessor warning.

Useless record with clause.

Bad module name: the source file name is not a valid OCaml module name.
Pattern-matching with all clauses guarded. Exhaustiveness cannot be checked.

Suspicious unused variable: unused variable that is bound with let or as, and doesn’t
start with an underscore (_) character.

Innocuous unused variable: unused variable that is not bound with let nor as, and
doesn’t start with an underscore (_) character.

Wildcard pattern given as argument to a constant constructor.
Unescaped end-of-line in a string constant (non-portable code).

Two labels or constructors of the same name are defined in two mutually recursive types.
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A module is linked twice in the same executable.
Unused value declaration.

Unused open statement.

Unused type declaration.

Unused for-loop index.

Unused ancestor variable.

Unused constructor.

Unused extension constructor.

Unused rec flag.

Constructor or label name used out of scope.
Ambiguous constructor or label name.
Disambiguated constructor or label name.
Nonoptional label applied as optional.

Open statement shadows an already defined identifier.
Open statement shadows an already defined label or constructor.
Illegal environment variable.

Illegal attribute payload.

Implicit elimination of optional arguments.
Absent cmi file when looking up module alias.
All warnings.

Set of warnings 1, 2.

Synonym for warning 3.

Synonym for warning 4.

Synonym for warning 5.

Set of warnings 32, 33, 34, 35, 36, 37, 38, 39.
Synonym for warning 6.

Synonym for warning 7.

Synonym for warning 8.

Synonym for warning 9.

Synonym for warning 10.

Set of warnings 11, 12.

Synonym for warning 13.

Set of warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30.
Synonym for warning 26.

Synonym for warning 27.
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The default setting is -w +a-4-6-7-9-27-29-32..39-41..42-44-45. It is displayed by
ocamlc -help. Note that warnings 5 and 10 are not always triggered, depending on the
internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop
with an error when one of these warnings is emitted. The warning-list has the same meaning
as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as
fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign
both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error
in production code, because this can break your build when future versions of OCaml add
some new warnings.

The default setting is -warn-error -a (all warnings are non-fatal).

-warn-help
Show the description of all available warning numbers.

-where
Print the location of the standard library, then exit.

- file

Process file as a file name, even if it starts with a dash (=) character.

-help or —-help
Display a short usage summary and exit.

8.3 Modules and the file system

This short section is intended to clarify the relationship between the names of the modules corre-
sponding to compilation units and the names of the files that contain their compiled interface and
compiled implementation.

The compiler always derives the module name by taking the capitalized base name of the source
file (.m1 or .mli file). That is, it strips the leading directory name, if any, as well as the .m1 or
.mli suffix; then, it set the first letter to uppercase, in order to comply with the requirement that
module names must be capitalized. For instance, compiling the file mylib/misc.ml provides an
implementation for the module named Misc. Other compilation units may refer to components
defined in mylib/misc.ml under the names Misc.name; they can also do open Misc, then use
unqualified names name.

The .cmi and .cmo files produced by the compiler have the same base name as the source file.
Hence, the compiled files always have their base name equal (modulo capitalization of the first
letter) to the name of the module they describe (for .cmi files) or implement (for .cmo files).

When the compiler encounters a reference to a free module identifier Mod, it looks in the search
path for a file named Mod. cmi or mod. cmi and loads the compiled interface contained in that file. As
a consequence, renaming .cmi files is not advised: the name of a .cmi file must always correspond
to the name of the compilation unit it implements. It is admissible to move them to another
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directory, if their base name is preserved, and the correct -I options are given to the compiler. The
compiler will flag an error if it loads a .cmi file that has been renamed.

Compiled bytecode files (.cmo files), on the other hand, can be freely renamed once created.
That’s because the linker never attempts to find by itself the .cmo file that implements a module
with a given name: it relies instead on the user providing the list of .cmo files by hand.

8.4

Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename

The named file could not be found in the current directory, nor in the directories of the search
path. The filename is either a compiled interface file (.cmi file), or a compiled bytecode file
(.cmo file). If filename has the format mod.cmi, this means you are trying to compile a
file that references identifiers from module mod, but you have not yet compiled an interface
for module mod. Fix: compile mod.mli or mod.ml first, to create the compiled interface
mod.cmi.

If filename has the format mod.cmo, this means you are trying to link a bytecode object file
that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: add the correct -I options to the command line.

Corrupted compiled interface filename

This

The compiler produces this error when it tries to read a compiled interface file (. cmi file) that
has the wrong structure. This means something went wrong when this .cmi file was written:
the disk was full, the compiler was interrupted in the middle of the file creation, and so on.
This error can also appear if a .cmi file is modified after its creation by the compiler. Fix:
remove the corrupted .cmi file, and rebuild it.

expression has type t;, but is used with type &

This is by far the most common type error in programs. Type #; is the type inferred for the
expression (the part of the program that is displayed in the error message), by looking at the
expression itself. Type to is the type expected by the context of the expression; it is deduced
by looking at how the value of this expression is used in the rest of the program. If the two
types t; and t, are not compatible, then the error above is produced.

In some cases, it is hard to understand why the two types #; and ¢y are incompatible. For
instance, the compiler can report that “expression of type foo cannot be used with type foo”,
and it really seems that the two types foo are compatible. This is not always true. Two
type constructors can have the same name, but actually represent different types. This can
happen if a type constructor is redefined. Example:

type foo = A | B

let f = function A -> 0 | B -> 1
type foo = C | D

fC
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This result in the error message “expression C of type foo cannot be used with type foo”.

The type of this expression, ¢, contains type variables that cannot be generalized
Type variables ('a, 'b, ...) in a type ¢ can be in either of two states: generalized (which
means that the type ¢ is valid for all possible instantiations of the variables) and not gener-
alized (which means that the type ¢ is valid only for one instantiation of the variables). In a
let binding let name = expr, the type-checker normally generalizes as many type variables
as possible in the type of ezpr. However, this leads to unsoundness (a well-typed program
can crash) in conjunction with polymorphic mutable data structures. To avoid this, general-
ization is performed at let bindings only if the bound expression expr belongs to the class of
“syntactic values”, which includes constants, identifiers, functions, tuples of syntactic values,
etc. In all other cases (for instance, ezpr is a function application), a polymorphic mutable
could have been created and generalization is therefore turned off for all variables occurring
in contravariant or non-variant branches of the type. For instance, if the type of a non-value
is 'a list the variable is generalizable (1ist is a covariant type constructor), but not in
'a list -> 'a list (the left branch of -> is contravariant) or 'a ref (ref is non-variant).

Non-generalized type variables in a type cause no difficulties inside a given structure or
compilation unit (the contents of a .ml file, or an interactive session), but they cannot be
allowed inside signatures nor in compiled interfaces (.cmi file), because they could be used
inconsistently later. Therefore, the compiler flags an error when a structure or compilation
unit defines a value name whose type contains non-generalized type variables. There are two
ways to fix this error:

e Add a type constraint or a .m1i file to give a monomorphic type (without type variables)
to name. For instance, instead of writing

let sort_int_list = Sort.list (<)
(* inferred type 'a list -> 'a list, with 'a not generalized *)

write

let sort_int_list (Sort.list (<) : int 1list -> int list);;

e If you really need name to have a polymorphic type, turn its defining expression into a
function by adding an extra parameter. For instance, instead of writing

let map_length = List.map Array.length
(*x inferred type 'a array list -> int list, with 'a not generalized *)

write

let map_length 1lv = List.map Array.length 1lv

Reference to undefined global mod
This error appears when trying to link an incomplete or incorrectly ordered set of files. Either
you have forgotten to provide an implementation for the compilation unit named mod on the
command line (typically, the file named mod. cmo, or a library containing that file). Fix: add
the missing .ml or .cmo file to the command line. Or, you have provided an implementation
for the module named mod, but it comes too late on the command line: the implementation
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of mod must come before all bytecode object files that reference mod. Fix: change the order
of .m1 and .cmo files on the command line.

Of course, you will always encounter this error if you have mutually recursive functions across
modules. That is, function Mod1.f calls function Mod2.g, and function Mod2.g calls function
Mod1.f. In this case, no matter what permutations you perform on the command line, the
program will be rejected at link-time. Fixes:

e Put f and g in the same module.

e Parameterize one function by the other. That is, instead of having

modl.ml: let £ x = . Mod2.g ...
mod2.ml: let gy = . Modl.f

define

modl.ml: let fgx=...8g ...

mod2.ml: let rec gy = ... Modl.f g ...

and link mod1.cmo before mod?2.cmo.

e Use a reference to hold one of the two functions, as in :

modl.ml: let forward_g =
ref ((fun x -> failwith "forward_g") : <type>)
let £ x = ... lforward_g ...
mod2.ml: let gy = . Modl.f
let _ = Modl.forward_ g := g

The external function f is not available
This error appears when trying to link code that calls external functions written in C. As
explained in chapter such code must be linked with C libraries that implement the required
f C function. If the C libraries in question are not shared libraries (DLLs), the code must be
linked in “custom runtime” mode. Fix: add the required C libraries to the command line,
and possibly the —custom option.
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The toplevel system (ocaml)

This chapter describes the toplevel system for OCaml, that permits interactive use of the OCaml
system through a read-eval-print loop. In this mode, the system repeatedly reads OCaml phrases
from the input, then typechecks, compile and evaluate them, then prints the inferred type and
result value, if any. The system prints a # (sharp) prompt before reading each phrase.

Input to the toplevel can span several lines. It is terminated by ;; (a double-semicolon). The
toplevel input consists in one or several toplevel phrases, with the following syntax:

{definition}* ;;

expr ;;
# ident [directive-argument]| ; ;

toplevel-input

string-literal
integer-literal
value-path

true | false

directive-argument

A phrase can consist of a definition, like those found in implementations of compilation units
or in struct...end module expressions. The definition can bind value names, type names, an
exception, a module name, or a module type name. The toplevel system performs the bindings,
then prints the types and values (if any) for the names thus defined.

A phrase may also consist in a value expression (section [6.7)). It is simply evaluated without
performing any bindings, and its value is printed.

Finally, a phrase can also consist in a toplevel directive, starting with # (the sharp sign). These
directives control the behavior of the toplevel; they are listed below in section

Unix:
The toplevel system is started by the command ocaml, as follows:

ocaml options objects # interactive mode
ocaml options objects scriptfile # script mode

options are described below. objects are filenames ending in .cmo or .cma; they are loaded
into the interpreter immediately after options are set. scriptfile is any file name not ending
in .cmo or .cma.
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If no scriptfile is given on the command line, the toplevel system enters interactive mode:
phrases are read on standard input, results are printed on standard output, errors on stan-
dard error. End-of-file on standard input terminates ocaml (see also the #quit directive in

section [9.2)).

On start-up (before the first phrase is read), if the file .ocamlinit exists in the current
directory, its contents are read as a sequence of OCaml phrases and executed as per the #use
directive described in section The evaluation outcode for each phrase are not displayed.
If the current directory does not contain an .ocamlinit file, but the user’s home directory
(environment variable HOME) does, the latter is read and executed as described below.

The toplevel system does not perform line editing, but it can easily be used in conjunc-
tion with an external line editor such as ledit, ocaml2 or rlwrap (see the Caml Hump
http://caml.inria.fr/humps/index_framed_caml.html). Another option is to use ocaml
under Gnu Emacs, which gives the full editing power of Emacs (command run-caml from
library inf-caml).

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted

by pressing ctrl-C (or, more precisely, by sending the INTR signal to the ocaml process).
The toplevel then immediately returns to the # prompt.

If scriptfile is given on the command-line to ocaml, the toplevel system enters script mode:
the contents of the file are read as a sequence of OCaml phrases and executed, as per the
#use directive (section . The outcome of the evaluation is not printed. On reaching the
end of file, the ocaml command exits immediately. No commands are read from standard
input. Sys.argv is transformed, ignoring all OCaml parameters, and starting with the script
file name in Sys.argv. (0).

In script mode, the first line of the script is ignored if it starts with #!. Thus, it should be
possible to make the script itself executable and put as first line #! /usr/local/bin/ocaml,
thus calling the toplevel system automatically when the script is run. However, ocaml itself
is a #! script on most installations of OCaml, and Unix kernels usually do not handle nested
#! scripts. A better solution is to put the following as the first line of the script:

#!/usr/local/bin/ocamlrun /usr/local/bin/ocaml

Windows:
In addition to the text-only command ocaml.exe, which works exactly as under Unix (see
above), a graphical user interface for the toplevel is available under the name ocamlwin.exe.
It should be launched from the Windows file manager or program manager. This interface
provides a text window in which commands can be entered and edited, and the toplevel
responses are printed.

9.1 Options

The following command-line options are recognized by the ocaml command.

—absname
Force error messages to show absolute paths for file names.
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-1 directory
Add the given directory to the list of directories searched for source and compiled files. By
default, the current directory is searched first, then the standard library directory. Directories
added with I are searched after the current directory, in the order in which they were given
on the command line, but before the standard library directory.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

Directories can also be added to the list once the toplevel is running with the #directory

directive (section [9.2]).

-init file
Load the given file instead of the default initialization file. The default file is .ocamlinit in
the current directory if it exists, otherwise .ocamlinit in the user’s home directory.

-labels
Labels are not ignored in types, labels may be used in applications, and labelled parameters
can be given in any order. This is the default.

-no—app—funct
Deactivates the applicative behaviour of functors. With this option, each functor application
generates new types in its result and applying the same functor twice to the same argument
yields two incompatible structures.

-noassert
Do not compile assertion checks. Note that the special form assert false is always compiled
because it is typed specially.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

—noprompt
Do not display any prompt when waiting for input.

-nopromptcont
Do not display the secondary prompt when waiting for continuation lines in multi-line inputs.
This should be used e.g. when running ocaml in an emacs window.

-nostdlib
Do not include the standard library directory in the list of directories searched for source and
compiled files.

-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The format
of the input and ouput of the preprocessor are not yet documented.
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-principal
Check information paths during type-checking, to make sure that all types are derived in
a principal way. When using labelled arguments and/or polymorphic methods, this flag is
required to ensure future versions of the compiler will be able to infer types correctly, even
if internal algorithms change. All programs accepted in -principal mode are also accepted
in the default mode with equivalent types, but different binary signatures, and this may slow
down type checking; yet it is a good idea to use it once before publishing source code.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

-safe-string
Enforce the separation between types string and bytes, thereby making strings read-only.
This will become the default in a future version of OCaml.

-short-paths
When a type is visible under several module-paths, use the shortest one when printing the
type’s name in inferred interfaces and error and warning messages.

-stdin
Read the standard input as a script file rather than starting an interactive session.

-strict-sequence
Force the left-hand part of each sequence to have type unit.

-strict-formats
Reject invalid formats that were accepted in legacy format implementations. You should use
this flag to detect and fix such invalid formats, as they will be rejected by future OCaml
versions.

-unsafe
See the corresponding option for ocamlc, chapter [§ Turn bound checking off on array and
string accesses (the v.(i) and s.[i] constructs). Programs compiled with -unsafe are
therefore slightly faster, but unsafe: anything can happen if the program accesses an array
or string outside of its bounds.

-unsafe-string
Identify the types string and bytes, thereby making strings writable. For reasons of back-
ward compatibility, this is the default setting for the moment, but this will change in a future
version of OCaml.

-version
Print version string and exit.

-vnum
Print short version number and exit.
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-w warning-list
Enable or disable warnings according to the argument warning-list. See section for the
syntax of the argument.

-warn-error warning-list
Mark as fatal the warnings enabled by the argument warning-list. See section for the
syntax of the argument.

-warn-help
Show the description of all available warning numbers.

- file

Use file as a script file name, even when it starts with a hyphen (-).

-help or —-help
Display a short usage summary and exit.

Unix:
The following environment variables are also consulted:

LC_CTYPE
If set to iso_8859_1, accented characters (from the ISO Latin-1 character set) in string
and character literals are printed as is; otherwise, they are printed as decimal escape
sequences (\ddd).

TERM
When printing error messages, the toplevel system attempts to underline visually the
location of the error. It consults the TERM variable to determines the type of output
terminal and look up its capabilities in the terminal database.

HOME
Directory where the .ocamlinit file is searched.

9.2 Toplevel directives

The following directives control the toplevel behavior, load files in memory, and trace program
execution.

Note: all directives start with a # (sharp) symbol. This # must be typed before the directive,
and must not be confused with the # prompt displayed by the interactive loop. For instance, typing
#quit;; will exit the toplevel loop, but typing quit;; will result in an “unbound value quit” error.

#quit; ;
Exit the toplevel loop and terminate the ocaml command.
#labels bool; ;

Ignore labels in function types if argument is false, or switch back to default behaviour
(commuting style) if argument is true.
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#principal bool;;
If the argument is true, check information paths during type-checking, to make sure that
all types are derived in a principal way. If the argument is false, do not check information
paths.

#rectypes;;
Allow arbitrary recursive types during type-checking. Note: once enabled, this option cannot
be disabled because that would lead to unsoundness of the type system.

#warnings "warning-list"; ;
Enable or disable warnings according to the argument.

#warn_error "warning-list";;
Treat as errors the warnings enabled by the argument and as normal warnings the warnings
disabled by the argument.

#directory "dir-name";;
Add the given directory to the list of directories searched for source and compiled files.

#remove_directory "dir-name";;
Remove the given directory from the list of directories searched for source and compiled files.
Do nothing if the list does not contain the given directory.

#cd "dir-name"; ;
Change the current working directory.

#load "file-name";;
Load in memory a bytecode object file (.cmo file) or library file (.cma file) produced by the
batch compiler ocamlc.

#load_rec "file-name"; ;
Load in memory a bytecode object file (.cmo file) or library file (.cma file) produced by the
batch compiler ocamlc. When loading an object file that depends on other modules which
have not been loaded yet, the .cmo files for these modules are searched and loaded as well,
recursively. The loading order is not specified.

#use "file-name"; ;
Read, compile and execute source phrases from the given file. This is textual inclusion:
phrases are processed just as if they were typed on standard input. The reading of the file
stops at the first error encountered.

#mod_use "file-name"; ;
Similar to #use but also wrap the code into a top-level module of the same name as capitalized
file name without extensions, following semantics of the compiler.

#install_printer printer-name; ;
This directive registers the function named printer-name (a value path) as a printer for values
whose types match the argument type of the function. That is, the toplevel loop will call
printer-name when it has such a value to print.
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The printing function printer-name should have type Format.formatter ->t -> unit, where
t is the type for the values to be printed, and should output its textual representation for the
value of type t on the given formatter, using the functions provided by the Format library. For
backward compatibility, printer-name can also have type t-> unit and should then output
on the standard formatter, but this usage is deprecated.

#remove_printer printer-name; ;
Remove the named function from the table of toplevel printers.

#trace function-name; ;
After executing this directive, all calls to the function named function-name will be “traced”.
That is, the argument and the result are displayed for each call, as well as the exceptions
escaping out of the function, raised either by the function itself or by another function it calls.
If the function is curried, each argument is printed as it is passed to the function.

#untrace function-name;;
Stop tracing the given function.

#untrace_all;;
Stop tracing all functions traced so far.

#print_depth n;;
Limit the printing of values to a maximal depth of n. The parts of values whose depth exceeds
n are printed as ... (ellipsis).

#print_length n;;
Limit the number of value nodes printed to at most n. Remaining parts of values are printed
as ... (ellipsis).

#show_val walue-path; ;
#show_type typeconstr; ;
#show_module module-path; ;
#show_module_type modtype-path; ;
#show_class class-path;;
#show_class_type class-path;;
Print the signature of the corresponding component.

#show ident; ;
Print the signatures of components with name ident in all the above categories.

9.3 The toplevel and the module system

Toplevel phrases can refer to identifiers defined in compilation units with the same mechanisms
as for separately compiled units: either by using qualified names (Modulename.localname), or by
using the open construct and unqualified names (see section .

However, before referencing another compilation unit, an implementation of that unit must be
present in memory. At start-up, the toplevel system contains implementations for all the modules in
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the the standard library. Implementations for user modules can be entered with the #load directive
described above. Referencing a unit for which no implementation has been provided results in the
error Reference to undefined global ~...'.

Note that entering open Mod merely accesses the compiled interface (.cmi file) for Mod, but
does not load the implementation of Mod, and does not cause any error if no implementation of Mod
has been loaded. The error “reference to undefined global Mod” will occur only when executing a
value or module definition that refers to Mod.

9.4 Common errors
This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path.

If filename has the format mod.cmi, this means you have referenced the compilation unit
mod, but its compiled interface could not be found. Fix: compile mod.mli or mod.ml first,
to create the compiled interface mod. cmi.

If filename has the format mod. cmo, this means you are trying to load with #load a bytecode
object file that does not exist yet. Fix: compile mod.ml first.

If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: use the #directory directive to add the correct
directories to the search path.

This expression has type t;, but is used with type
See section R4l

Reference to undefined global mod
You have neglected to load in memory an implementation for a module with #load. See
section [9.3] above.

9.5 Building custom toplevel systems: ocamlmktop

The ocamlmktop command builds OCaml toplevels that contain user code preloaded at start-up.
The ocamlmktop command takes as argument a set of .cmo and .cma files, and links them with
the object files that implement the OCaml toplevel. The typical use is:

ocamlmktop -o mytoplevel foo.cmo bar.cmo gee.cmo

This creates the bytecode file mytoplevel, containing the OCaml toplevel system, plus the code
from the three .cmo files. This toplevel is directly executable and is started by:

./mytoplevel

This enters a regular toplevel loop, except that the code from foo.cmo, bar.cmo and gee.cmo
is already loaded in memory, just as if you had typed:
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#load "foo.cmo";;
#load "bar.cmo";;
#load "gee.cmo";;

on entrance to the toplevel. The modules Foo, Bar and Gee are not opened, though; you still
have to do

open Foo;;

yourself, if this is what you wish.

9.6 Options
The following command-line options are recognized by ocamlmktop.

-cclib libname
Pass the -1libname option to the C linker when linking in “custom runtime” mode. See the
corresponding option for ocamlc, in chapter

—-ccopt option
Pass the given option to the C compiler and linker, when linking in “custom runtime” mode.
See the corresponding option for ocamlc, in chapter

-custom
Link in “custom runtime” mode. See the corresponding option for ocamlc, in chapter

-1 directory
Add the given directory to the list of directories searched for compiled object code files (. cmo
and .cma).

-o exec-file
Specify the name of the toplevel file produced by the linker. The default is a.out.
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Chapter 10

The runtime system (ocamlrun)

The ocamlrun command executes bytecode files produced by the linking phase of the ocamlc
command.

10.1 Overview

The ocamlrun command comprises three main parts: the bytecode interpreter, that actually ex-
ecutes bytecode files; the memory allocator and garbage collector; and a set of C functions that
implement primitive operations such as input/output.

The usage for ocamlrun is:

ocamlrun options bytecode-executable arg, ... arg,

The first non-option argument is taken to be the name of the file containing the executable
bytecode. (That file is searched in the executable path as well as in the current directory.) The
remaining arguments are passed to the OCaml program, in the string array Sys.argv. Element 0 of
this array is the name of the bytecode executable file; elements 1 to n are the remaining arguments
arg, to arg,,.

As mentioned in chapter [§] the bytecode executable files produced by the ocamlc command are
self-executable, and manage to launch the ocamlrun command on themselves automatically. That
is, assuming a.out is a bytecode executable file,

a.out arg; ... arg,
works exactly as
ocamlrun a.out arg; ... arg,

Notice that it is not possible to pass options to ocamlrun when invoking a.out directly.

Windows:
Under several versions of Windows, bytecode executable files are self-executable only if their
name ends in .exe. It is recommended to always give .exe names to bytecode executables,
e.g. compile with ocamlc -o myprog.exe ... rather than ocamlc -o myprog ....
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10.2 Options
The following command-line options are recognized by ocamlrun.

-b  When the program aborts due to an uncaught exception, print a detailed “back trace” of the
execution, showing where the exception was raised and which function calls were outstanding
at this point. The back trace is printed only if the bytecode executable contains debugging
information, i.e. was compiled and linked with the -g option to ocamlc set. This is equivalent
to setting the b flag in the 0CAMLRUNPARAM environment variable (see below).

-I dir
Search the directory dir for dynamically-loaded libraries, in addition to the standard search
path (see section [10.3)).

-p  Print the names of the primitives known to this version of ocamlrun and exit.

-v  Direct the memory manager to print some progress messages on standard error. This is
equivalent to setting v=63 in the OCAMLRUNPARAM environment variable (see below).

-version
Print version string and exit.

-vnum
Print short version number and exit.

The following environment variables are also consulted:

CAML_LD_LIBRARY_PATH
Additional directories to search for dynamically-loaded libraries (see section [10.3]).

OCAMLLIB
The directory containing the OCaml standard library. (If OCAMLLIB is not set, CAMLLIB will
be used instead.) Used to locate the 1d.conf configuration file for dynamic loading (see
section [10.3)). If not set, default to the library directory specified when compiling OCaml.

OCAMLRUNPARAM
Set the runtime system options and garbage collection parameters. (If OCAMLRUNPARAM is
not set, CAMLRUNPARAM will be used instead.) This variable must be a sequence of parameter
specifications. A parameter specification is an option letter followed by an = sign, a decimal
number (or an hexadecimal number prefixed by 0x), and an optional multiplier. The options
are documented below; the last six correspond to the fields of the control record documented

in section 2T.111

b (backtrace) Trigger the printing of a stack backtrace when an uncaught exception aborts
the program. This option takes no argument.

p  (parser trace) Turn on debugging support for ocamlyacc-generated parsers. When this
option is on, the pushdown automaton that executes the parsers prints a trace of its
actions. This option takes no argument.
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R

h

The multiplier is k, M, or G, for multiplication by

(randomize) Turn on randomization of all hash tables by default (see section [21.13]).
This option takes no argument.

The initial size of the major heap (in words).

(allocation_policy) The policy used for allocating in the OCaml heap. Possible values
are 0 for the next-fit policy, and 1 for the first-fit policy. Next-fit is usually faster, but
first-fit is better for avoiding fragmentation and the associated heap compactions.
minor_heap_size) Size of the minor heap. (in words)

major_heap_increment) Default size increment for the major heap. (in words)

(

(

(space_overhead) The major GC speed setting.
(max_overhead) The heap compaction trigger setting.
(

stack_limit) The limit (in words) of the stack size.

(verbose) What GC messages to print to stderr. This is a sum of values selected from
the following:
1 (= 0x001)
Start of major GC cycle.
2 (= 0x002)
Minor collection and major GC slice.
4 (= 0x004)
Growing and shrinking of the heap.
8 (= 0x008)
Resizing of stacks and memory manager tables.
16 (= 0x010)
Heap compaction.
32 (= 0x020)
Change of GC parameters.
64 (= 0x040)
Computation of major GC slice size.
128 (= 0x080)
Calling of finalization functions
256 (= 0x100)
Startup messages (loading the bytecode executable file, resolving shared libraries).
210, 220

230

, and respectively. For example,

on a 32-bit machine, under bash the command

export OCAMLRUNPARAM='b,s=256k,v=0x015"

tells a subsequent ocamlrun to print backtraces for uncaught exceptions, set its initial minor
heap size to 1 megabyte and print a message at the start of each major GC cycle, when the
heap size changes, and when compaction is triggered.

CAMLRUNPARAM
If OCAMLRUNPARAM is not found in the environment, then CAMLRUNPARAM will be used instead.
If CAMLRUNPARAM is not found, then the default values will be used.
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PATH
List of directories searched to find the bytecode executable file.

10.3 Dynamic loading of shared libraries

On platforms that support dynamic loading, ocamlrun can link dynamically with C shared libraries
(DLLs) providing additional C primitives beyond those provided by the standard runtime system.
The names for these libraries are provided at link time as described in section , and recorded
in the bytecode executable file; ocamlrun, then, locates these libraries and resolves references to
their primitives when the bytecode executable program starts.

The ocamlrun command searches shared libraries in the following directories, in the order
indicated:

1. Directories specified on the ocamlrun command line with the -I option.
2. Directories specified in the CAML_LD_LIBRARY_PATH environment variable.

3. Directories specified at link-time via the ~d11path option to ocamlc. (These directories are
recorded in the bytecode executable file.)

4. Directories specified in the file 1d.conf. This file resides in the OCaml standard library
directory, and lists directory names (one per line) to be searched. Typically, it contains
only one line naming the stublibs subdirectory of the OCaml standard library directory.
Users can add there the names of other directories containing frequently-used shared libraries;
however, for consistency of installation, we recommend that shared libraries are installed
directly in the system stublibs directory, rather than adding lines to the 1d.conf file.

5. Default directories searched by the system dynamic loader. Under Unix, these generally
include /1ib and /usr/lib, plus the directories listed in the file /etc/1d.so.conf and the
environment variable LD_LIBRARY_PATH. Under Windows, these include the Windows system
directories, plus the directories listed in the PATH environment variable.

10.4 Common errors
This section describes and explains the most frequently encountered error messages.

filename: no such file or directory
If filename is the name of a self-executable bytecode file, this means that either that file does
not exist, or that it failed to run the ocamlrun bytecode interpreter on itself. The second
possibility indicates that OCaml has not been properly installed on your system.

Cannot exec ocamlrun
(When launching a self-executable bytecode file.) The ocamlrun could not be found in the
executable path. Check that OCaml has been properly installed on your system.

Cannot find the bytecode file
The file that ocamlrun is trying to execute (e.g. the file given as first non-option argument
to ocamlrun) either does not exist, or is not a valid executable bytecode file.
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Truncated bytecode file
The file that ocamlrun is trying to execute is not a valid executable bytecode file. Probably
it has been truncated or mangled since created. Erase and rebuild it.

Uncaught exception

The program being executed contains a “stray” exception. That is, it raises an exception at
some point, and this exception is never caught. This causes immediate termination of the
program. The name of the exception is printed, along with its string, byte sequence, and
integer arguments (arguments of more complex types are not correctly printed). To locate
the context of the uncaught exception, compile the program with the -g option and either
run it again under the ocamldebug debugger (see chapter , or run it with ocamlrun -b or
with the OCAMLRUNPARAM environment variable set to b=1.

Out of memory
The program being executed requires more memory than available. Either the program builds
excessively large data structures; or the program contains too many nested function calls, and
the stack overflows. In some cases, your program is perfectly correct, it just requires more
memory than your machine provides. In other cases, the “out of memory” message reveals an
error in your program: non-terminating recursive function, allocation of an excessively large
array, string or byte sequence, attempts to build an infinite list or other data structure, ...

To help you diagnose this error, run your program with the -v option to ocamlrun,
or with the OCAMLRUNPARAM environment variable set to v=63. If it displays lots of
“Growing stack...” messages, this is probably a looping recursive function. If it displays
lots of “Growing heap...” messages, with the heap size growing slowly, this is probably
an attempt to construct a data structure with too many (infinitely many?) cells. If it
displays few “Growing heap...” messages, but with a huge increment in the heap size, this
is probably an attempt to build an excessively large array, string or byte sequence.
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Chapter 11

Native-code compilation (ocamlopt)

This chapter describes the OCaml high-performance native-code compiler ocamlopt, which com-
piles OCaml source files to native code object files and link these object files to produce standalone
executables.

The native-code compiler is only available on certain platforms. It produces code that runs faster
than the bytecode produced by ocamlc, at the cost of increased compilation time and executable
code size. Compatibility with the bytecode compiler is extremely high: the same source code should
run identically when compiled with ocamlc and ocamlopt.

It is not possible to mix native-code object files produced by ocamlopt with bytecode object
files produced by ocamlc: a program must be compiled entirely with ocamlopt or entirely with
ocamlc. Native-code object files produced by ocamlopt cannot be loaded in the toplevel system
ocaml.

11.1 Overview of the compiler

The ocamlopt command has a command-line interface very close to that of ocamlc. It accepts the
same types of arguments, and processes them sequentially:

e Arguments ending in .mli are taken to be source files for compilation unit interfaces. In-
terfaces specify the names exported by compilation units: they declare value names with
their types, define public data types, declare abstract data types, and so on. From the file
xz.m1i, the ocamlopt compiler produces a compiled interface in the file x.cmi. The interface
produced is identical to that produced by the bytecode compiler ocamlc.

e Arguments ending in .ml are taken to be source files for compilation unit implementations.
Implementations provide definitions for the names exported by the unit, and also contain
expressions to be evaluated for their side-effects. From the file z.m1, the ocamlopt compiler
produces two files: z.o0, containing native object code, and z.cmx, containing extra informa-
tion for linking and optimization of the clients of the unit. The compiled implementation
should always be referred to under the name z.cmx (when given a .o or .obj file, ocamlopt
assumes that it contains code compiled from C, not from OCaml).

The implementation is checked against the interface file z.m1i (if it exists) as described in
the manual for ocamlc (chapter [g).
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Arguments ending in .cmx are taken to be compiled object code. These files are linked
together, along with the object files obtained by compiling .ml arguments (if any), and the
OCaml standard library, to produce a native-code executable program. The order in which
.cmx and .ml arguments are presented on the command line is relevant: compilation units
are initialized in that order at run-time, and it is a link-time error to use a component of a
unit before having initialized it. Hence, a given z.cmx file must come before all .cmx files
that refer to the unit z.

Arguments ending in .cmxa are taken to be libraries of object code. Such a library packs in
two files (lib.cmxa and lib.a/.1ib) a set of object files (.cmx and .o/.obj files). Libraries
are build with ocamlopt -a (see the description of the -a option below). The object files
contained in the library are linked as regular .cmx files (see above), in the order specified
when the library was built. The only difference is that if an object file contained in a library
is not referenced anywhere in the program, then it is not linked in.

Arguments ending in .c are passed to the C compiler, which generates a .0/.obj object file.
This object file is linked with the program.

Arguments ending in .o, .a or .so (.obj, .1lib and .d11 under Windows) are assumed to
be C object files and libraries. They are linked with the program.

The output of the linking phase is a regular Unix or Windows executable file. It does not need

ocamlrun to run.

11.2 Options

The following command-line options are recognized by ocamlopt. The options —-pack, -a, -shared,
-c and -output-obj are mutually exclusive.

-a  Build a library (.cmxa and .a/.1ib files) with the object files (.cmx and .o/ .obj files) given

on the command line, instead of linking them into an executable file. The name of the library
must be set with the -o option.
If —~cclib or -ccopt options are passed on the command line, these options are stored in
the resulting .cmxa library. Then, linking with this library automatically adds back the
-cclib and -ccopt options as if they had been provided on the command line, unless the
-noautolink option is given.

—absname
Force error messages to show absolute paths for file names.

-annot

Dump detailed information about the compilation (types, bindings, tail-calls, etc). The in-
formation for file src.ml is put into file src.annot. In case of a type error, dump all the
information inferred by the type-checker before the error. The src.annot file can be used
with the emacs commands given in emacs/caml-types.el to display types and other anno-
tations interactively.
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-bin-annot
Dump detailed information about the compilation (types, bindings, tail-calls, etc) in binary
format. The information for file src.ml is put into file src.cmt. In case of a type error, dump
all the information inferred by the type-checker before the error. The *.cmt files produced by
-bin-annot contain more information and are much more compact than the files produced
by -annot.

-c¢  Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

-cc ccomp
Use ccomp as the C linker called to build the final executable and as the C compiler for
compiling .c source files.

-cclib -1libname
Pass the -1libname option to the linker. This causes the given C library to be linked with
the program.

—-ccopt option
Pass the given option to the C compiler and linker. For instance, ~ccopt -Ldir causes the C
linker to search for C libraries in directory dir.

—-compact
Optimize the produced code for space rather than for time. This results in slightly smaller
but slightly slower programs. The default is to optimize for speed.

-config
Print the version number of ocamlopt and a detailed summary of its configuration, then exit.

-for-pack module-path
Generate an object file (.cmx and .o/.obj files) that can later be included as a sub-module
(with the given access path) of a compilation unit constructed with -pack. For instance,
ocamlopt -for-pack P -c A.ml will generate a.cmx and a.o files that can later be used
with ocamlopt -pack -o P.cmx a.cmx.

-g  Add debugging information while compiling and linking. This option is required in order
to produce stack backtraces when the program terminates on an uncaught exception (see
section [10.2)).

-i  Cause the compiler to print all defined names (with their inferred types or their definitions)
when compiling an implementation (.ml file). No compiled files (.cmo and .cmi files) are
produced. This can be useful to check the types inferred by the compiler. Also, since the
output follows the syntax of interfaces, it can help in writing an explicit interface (.mli file)
for a file: just redirect the standard output of the compiler to a .mli file, and edit that file
to remove all declarations of unexported names.

-1 directory
Add the given directory to the list of directories searched for compiled interface files (.cmi),
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compiled object code files (.cmx), and libraries (.cmxa). By default, the current directory is
searched first, then the standard library directory. Directories added with -I are searched
after the current directory, in the order in which they were given on the command line, but
before the standard library directory. See also option -nostdlib.

If the given directory starts with +, it is taken relative to the standard library directory. For
instance, -I +labltk adds the subdirectory labltk of the standard library to the search
path.

-impl filename

Compile the file filename as an implementation file, even if its extension is not .ml.

—-inline n

Set aggressiveness of inlining to n, where n is a positive integer. Specifying -inline 0
prevents all functions from being inlined, except those whose body is smaller than the call
site. Thus, inlining causes no expansion in code size. The default aggressiveness, —~inline 1,
allows slightly larger functions to be inlined, resulting in a slight expansion in code size.
Higher values for the -inline option cause larger and larger functions to become candidate
for inlining, but can result in a serious increase in code size.

-intf filename

Compile the file filename as an interface file, even if its extension is not .mli.

—intf-suffix string

Recognize file names ending with string as interface files (instead of the default .mli).

-labels

Labels are not ignored in types, labels may be used in applications, and labelled parameters
can be given in any order. This is the default.

-linkall

Force all modules contained in libraries to be linked in. If this flag is not given, unreferenced
modules are not linked in. When building a library (-a flag), setting the -~1inkall flag forces
all subsequent links of programs involving that library to link all the modules contained in
the library.

-no—app—funct

Deactivates the applicative behaviour of functors. With this option, each functor application
generates new types in its result and applying the same functor twice to the same argument
yields two incompatible structures.

-noassert

Do not compile assertion checks. Note that the special form assert false is always compiled
because it is typed specially. This flag has no effect when linking already-compiled files.

-noautolink

When linking .cmxa libraries, ignore -cclib and -ccopt options potentially contained in
the libraries (if these options were given when building the libraries). This can be useful
if a library contains incorrect specifications of C libraries or C options; in this case, during
linking, set -noautolink and pass the correct C libraries and options on the command line.



Chapter 11. Native-code compilation (ocamlopt) 203

-nodynlink
Allow the compiler to use some optimizations that are valid only for code that is never
dynlinked.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-nostdlib
Do not automatically add the standard library directory the list of directories searched for
compiled interface files (.cmi), compiled object code files (.cmx), and libraries (.cmxa). See
also option -I.

-0 exec-file
Specify the name of the output file produced by the linker. The default output name is a.out
under Unix and camlprog.exe under Windows. If the —a option is given, specify the name of
the library produced. If the —pack option is given, specify the name of the packed object file
produced. If the —output-obj option is given, specify the name of the output file produced.
If the -shared option is given, specify the name of plugin file produced.

—output-obj
Cause the linker to produce a C object file instead of an executable file. This is useful to wrap
OCaml code as a C library, callable from any C program. See chapter [19] section The
name of the output object file must be set with the -o option. This option can also be used
to produce a compiled shared/dynamic library (.so extension, .d11 under Windows).

-p  Generate extra code to write profile information when the program is executed. The profile
information can then be examined with the analysis program gprof. (See chapter for
more information on profiling.) The -p option must be given both at compile-time and at
link-time. Linking object files not compiled with -p is possible, but results in less precise
profiling.

Unix:

See the Unix manual page for gprof(1) for more information about the pro-
files.

Full support for gprof is only available for certain platforms (currently: Intel x86 32

and 64 bits under Linux, BSD and MacOS X). On other platforms, the -p option will

result in a less precise profile (no call graph information, only a time profile).
Windows:

The -p option does not work under Windows.

-pack
Build an object file (.cmx and .o/.obj files) and its associated compiled interface (.cmi)
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that combines the .cmx object files given on the command line, making them appear as sub-
modules of the output .cmx file. The name of the output .cmx file must be given with the -o
option. For instance,

ocamlopt -pack -o P.cmx A.cmx B.cmx C.cmx

generates compiled files P.cmx, P.o and P.cmi describing a compilation unit having three
sub-modules A, B and C, corresponding to the contents of the object files A.cmx, B.cmx and
C.cmx. These contents can be referenced as P.A, P.B and P.C in the remainder of the program.

The .cmx object files being combined must have been compiled with the appropriate
-for-pack option. In the example above, A.cmx, B.cmx and C.cmx must have been compiled
with ocamlopt -for-pack P.

Multiple levels of packing can be achieved by combining -pack with -for-pack. Consider
the following example:

ocamlopt -for-pack P.Q -c A.ml

ocamlopt -pack -o Q.cmx -for-pack P A.cmx
ocamlopt -for-pack P -c B.ml

ocamlopt -pack -o P.cmx Q.cmx B.cmx

The resulting P.cmx object file has sub-modules P.Q, P.Q.A and P.B.

-pp command
Cause the compiler to call the given command as a preprocessor for each source file. The
output of command is redirected to an intermediate file, which is compiled. If there are no
compilation errors, the intermediate file is deleted afterwards.

-ppx command
After parsing, pipe the abstract syntax tree through the preprocessor command. The format
of the input and ouput of the preprocessor are not yet documented.

-principal
Check information path during type-checking, to make sure that all types are derived in a
principal way. All programs accepted in —~principal mode are also accepted in default mode
with equivalent types, but different binary signatures.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported. Note that once you have created
an interface using this flag, you must use it again for all dependencies.

-runtime-variant suffix
Add the suffiz string to the name of the runtime library used by the program. Currently, only
one such suffix is supported: d, and only if the OCaml compiler was configured with option
-with-debug-runtime. This suffix gives the debug version of the runtime, which is useful for
debugging pointer problems in low-level code such as C stubs.



Chapter 11. Native-code compilation (ocamlopt) 205

-S  Keep the assembly code produced during the compilation. The assembly code for the source
file z.ml is saved in the file z.s.
-shared

Build a plugin (usually .cmxs) that can be dynamically loaded with the Dynlink module. The
name of the plugin must be set with the —o option. A plugin can include a number of OCaml
modules and libraries, and extra native objects (.o, .obj, .a, .1ib files). Building native
plugins is only supported for some operating system. Under some systems (currently, only
Linux AMD 64), all the OCaml code linked in a plugin must have been compiled without the
-nodynlink flag. Some constraints might also apply to the way the extra native objects have
been compiled (under Linux AMD 64, they must contain only position-independent code).

-safe-string

Enforce the separation between types string and bytes, thereby making strings read-only.
This will become the default in a future version of OCaml.

-short-paths

When a type is visible under several module-paths, use the shortest one when printing the
type’s name in inferred interfaces and error and warning messages.

-strict-sequence

Force the left-hand part of each sequence to have type unit.

-strict-formats

Reject invalid formats that were accepted in legacy format implementations. You should use
this flag to detect and fix such invalid formats, as they will be rejected by future OCaml
versions.

—-thread

Compile or link multithreaded programs, in combination with the system threads library
described in chapter

-unsafe

Turn bound checking off for array and string accesses (the v.(i) and s.[i] constructs).
Programs compiled with —unsafe are therefore faster, but unsafe: anything can happen if the
program accesses an array or string outside of its bounds. Additionally, turn off the check for
zero divisor in integer division and modulus operations. With —-unsafe, an integer division
(or modulus) by zero can halt the program or continue with an unspecified result instead of
raising a Division_by_zero exception.

-unsafe-string

Identify the types string and bytes, thereby making strings writable. For reasons of back-
ward compatibility, this is the default setting for the moment, but this will change in a future
version of OCaml.

Print the version number of the compiler and the location of the standard library directory,
then exit.
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-verbose
Print all external commands before they are executed, in particular invocations of the assem-
bler, C compiler, and linker.

-version or -vnum
Print the version number of the compiler in short form (e.g. 3.11.0), then exit.

-w warning-list
Enable, disable, or mark as fatal the warnings specified by the argument warning-list. Each
warning can be enabled or disabled, and each warning can be fatal or non-fatal. If a warning
is disabled, it isn’t displayed and doesn’t affect compilation in any way (even if it is fatal).
If a warning is enabled, it is displayed normally by the compiler whenever the source code
triggers it. If it is enabled and fatal, the compiler will also stop with an error after displaying
it.

The warning-list argument is a sequence of warning specifiers, with no separators between
them. A warning specifier is one of the following:

+num
Enable warning number num.

-num
Disable warning number num.

Qnum
Enable and mark as fatal warning number num.

+numl..num2
Enable warnings in the given range.

-numl..num2
Disable warnings in the given range.

@numl..num2
Enable and mark as fatal warnings in the given range.

+letter
Enable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

~letter
Disable the set of warnings corresponding to letter. The letter may be uppercase or
lowercase.

Qletter
Enable and mark as fatal the set of warnings corresponding to letter. The letter may be
uppercase or lowercase.

uppercase-letter
Enable the set of warnings corresponding to uppercase-letter.

lowercase-letter
Disable the set of warnings corresponding to lowercase-letter.
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Warning numbers and letters which are out of the range of warnings that are currently defined
are ignored. The warning are as follows.

_ W N =

© W N o O«

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30

Suspicious-looking start-of-comment mark.
Suspicious-looking end-of-comment mark.
Deprecated feature.

Fragile pattern matching: matching that will remain complete even if additional con-
structors are added to one of the variant types matched.

Partially applied function: expression whose result has function type and is ignored.
Label omitted in function application.

Method overridden.

Partial match: missing cases in pattern-matching.

Missing fields in a record pattern.

Expression on the left-hand side of a sequence that doesn’t have type unit (and that is
not a function, see warning number 5).

Redundant case in a pattern matching (unused match case).

Redundant sub-pattern in a pattern-matching.

Instance variable overridden.

Illegal backslash escape in a string constant.

Private method made public implicitly.

Unerasable optional argument.

Undeclared virtual method.

Non-principal type.

Type without principality.

Unused function argument.

Non-returning statement.

Proprocessor warning.

Useless record with clause.

Bad module name: the source file name is not a valid OCaml module name.
Pattern-matching with all clauses guarded. Exhaustiveness cannot be checked.

Suspicious unused variable: unused variable that is bound with let or as, and doesn’t
start with an underscore (_) character.

Innocuous unused variable: unused variable that is not bound with let nor as, and
doesn’t start with an underscore (_) character.

Wildcard pattern given as argument to a constant constructor.
Unescaped end-of-line in a string constant (non-portable code).

Two labels or constructors of the same name are defined in two mutually recursive types.
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A module is linked twice in the same executable.
Unused value declaration.

Unused open statement.

Unused type declaration.

Unused for-loop index.

Unused ancestor variable.

Unused constructor.

Unused extension constructor.

Unused rec flag.

Constructor or label name used out of scope.
Ambiguous constructor or label name.
Disambiguated constructor or label name.
Nonoptional label applied as optional.

Open statement shadows an already defined identifier.
Open statement shadows an already defined label or constructor.
Illegal environment variable.

Illegal attribute payload.

Implicit elimination of optional arguments.
Absent cmi file when looking up module alias.
All warnings.

Set of warnings 1, 2.

Synonym for warning 3.

Synonym for warning 4.

Synonym for warning 5.

Set of warnings 32, 33, 34, 35, 36, 37, 38, 39.
Synonym for warning 6.

Synonym for warning 7.

Synonym for warning 8.

Synonym for warning 9.

Synonym for warning 10.

Set of warnings 11, 12.

Synonym for warning 13.

Set of warnings 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30.
Synonym for warning 26.

Synonym for warning 27.
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The default setting is -w +a-4-6-7-9-27-29-32..39-41..42-44-45. It is displayed by
ocamlopt -help. Note that warnings 5 and 10 are not always triggered, depending on the
internals of the type checker.

-warn-error warning-list
Mark as fatal the warnings specified in the argument warning-list. The compiler will stop
with an error when one of these warnings is emitted. The warning-list has the same meaning
as for the -w option: a + sign (or an uppercase letter) marks the corresponding warnings as
fatal, a - sign (or a lowercase letter) turns them back into non-fatal warnings, and a @ sign
both enables and marks as fatal the corresponding warnings.

Note: it is not recommended to use warning sets (i.e. letters) as arguments to -warn-error
in production code, because this can break your build when future versions of OCaml add
some new warnings.

The default setting is -warn-error -a (all warnings are non-fatal).

-warn-help
Show the description of all available warning numbers.

-where
Print the location of the standard library, then exit.

- file

Process file as a file name, even if it starts with a dash (-) character.

-help or —-help
Display a short usage summary and exit.

Options for the IA32 architecture The IA32 code generator (Intel Pentium, AMD Athlon)
supports the following additional option:

-ffast-math
Use the TA32 instructions to compute trigonometric and exponential functions, instead of
calling the corresponding library routines. The functions affected are: atan, atan2, cos, log,
logl0, sin, sqrt and tan. The resulting code runs faster, but the range of supported argu-
ments and the precision of the result can be reduced. In particular, trigonometric operations
cos, sin, tan have their range reduced to [—264,264].

Options for the AMDG64 architecture The AMDG64 code generator (64-bit versions of Intel
Pentium and AMD Athlon) supports the following additional options:

-fPIC
Generate position-independent machine code. This is the default.

-fno-PIC
Generate position-dependent machine code.
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Options for the Sparc architecture The Sparc code generator supports the following addi-
tional options:

-march=v8
Generate SPARC version 8 code.

-march=v9
Generate SPARC version 9 code.

The default is to generate code for SPARC version 7, which runs on all SPARC processors.

11.3 Common errors

The error messages are almost identical to those of ocamlc. See section [8.4

11.4 Running executables produced by ocamlopt

Executables generated by ocamlopt are native, stand-alone executable files that can be invoked
directly. They do not depend on the ocamlrun bytecode runtime system nor on dynamically-loaded
C/OCaml stub libraries.

During execution of an ocamlopt-generated executable, the following environment variables are
also consulted:

OCAMLRUNPARAM
Same usage as in ocamlrun (see section |10.2)), except that option 1 is ignored (the operating
system’s stack size limit is used instead).

CAMLRUNPARAM
If OCAMLRUNPARAM is not found in the environment, then CAMLRUNPARAM will be used instead.
If CAMLRUNPARAM is not found, then the default values will be used.

11.5 Compatibility with the bytecode compiler

This section lists the known incompatibilities between the bytecode compiler and the native-code
compiler. Except on those points, the two compilers should generate code that behave identically.

e Signals are detected only when the program performs an allocation in the heap. That is, if
a signal is delivered while in a piece of code that does not allocate, its handler will not be
called until the next heap allocation.

e Stack overflow, typically caused by excessively deep recursion, is handled in one of the fol-
lowing ways, depending on the platform used:

— By raising a Stack_overflow exception, like the bytecode compiler does. (IA32/Linux,
AMD64 /Linux, PowerPC/MacOSX, MS Windows 32-bit ports).

— By aborting the program on a “segmentation fault” signal. (All other Unix systems.)
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— By terminating the program silently. (MS Windows 64 bits).

e On IA32 processors only (Intel and AMD x86 processors in 32-bit mode), some intermedi-
ate results in floating-point computations are kept in extended precision rather than being
rounded to double precision like the bytecode compiler always does. Floating-point results
can therefore differ slightly between bytecode and native code.
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Chapter 12

Lexer and parser generators
(ocamllex, ocamlyacc)

This chapter describes two program generators: ocamllex, that produces a lexical analyzer from a
set of regular expressions with associated semantic actions, and ocamlyacc, that produces a parser
from a grammar with associated semantic actions.

These program generators are very close to the well-known lex and yacc commands that can
be found in most C programming environments. This chapter assumes a working knowledge of lex
and yacc: while it describes the input syntax for ocamllex and ocamlyacc and the main differences
with 1lex and yacc, it does not explain the basics of writing a lexer or parser description in lex and
yacc. Readers unfamiliar with lex and yacc are referred to “Compilers: principles, techniques,
and tools” by Aho, Sethi and Ullman (Addison-Wesley, 1986), or “Lex & Yacc”, by Levine, Mason
and Brown (O’Reilly, 1992).

12.1 Overview of ocamllex

The ocamllex command produces a lexical analyzer from a set of regular expressions with attached
semantic actions, in the style of lex. Assuming the input file is lezer.mll, executing

ocamllex lexer.mll

produces OCaml code for a lexical analyzer in file lexer.m1. This file defines one lexing func-
tion per entry point in the lexer definition. These functions have the same names as the entry
points. Lexing functions take as argument a lexer buffer, and return the semantic attribute of the
corresponding entry point.

Lexer buffers are an abstract data type implemented in the standard library module Lexing.
The functions Lexing.from_channel, Lexing.from_string and Lexing.from_function create
lexer buffers that read from an input channel, a character string, or any reading function, respec-
tively. (See the description of module Lexing in chapter [21])

When used in conjunction with a parser generated by ocamlyacc, the semantic actions compute
a value belonging to the type token defined by the generated parsing module. (See the description
of ocamlyacc below.)
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12.1.1 Options

The following command-line options are recognized by ocamllex.

-ml Output code that does not use OCaml’s built-in automata interpreter. Instead, the automaton
is encoded by OCaml functions. This option mainly is useful for debugging ocamllex, using
it for production lexers is not recommended.

-0 output-file
Specify the name of the output file produced by ocamllex. The default is the input file name
with its extension replaced by .ml.

-q Quiet mode. ocamllex normally outputs informational messages to standard output. They
are suppressed if option -q is used.

-V or -version
Print version string and exit.

-vnum
Print short version number and exit.

—-help or —-help
Display a short usage summary and exit.

12.2 Syntax of lexer definitions

The format of lexer definitions is as follows:

{ header }
let ident = regexp ...
[refill { refill-handler }]
rule entrypoint [arg,... arg,] =
parse regexp { action }
|
| regexp { action }
and entrypoint Larg,... arg,]l =
parse ...
and ...
{ trailer }

Comments are delimited by (* and *), as in OCaml. The parse keyword, can be replaced by
the shortest keyword, with the semantic consequences explained below.
Refill handlers are a recent (optional) feature introduced in 4.02, documented below in subsec-

tion 12.2.7]
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12.2.1 Header and trailer

The header and trailer sections are arbitrary OCaml text enclosed in curly braces. Either or both
can be omitted. If present, the header text is copied as is at the beginning of the output file and
the trailer text at the end. Typically, the header section contains the open directives required by
the actions, and possibly some auxiliary functions used in the actions.

12.2.2 Naming regular expressions

Between the header and the entry points, one can give names to frequently-occurring regular
expressions. This is written let ident = regexp. In regular expressions that follow this declaration,
the identifier ident can be used as shorthand for regexp.

12.2.3 Entry points

The names of the entry points must be valid identifiers for OCaml values (starting with a lowercase
letter). Similarily, the arguments arg; ... arg, must be valid identifiers for OCaml. Each entry
point becomes an OCaml function that takes n 4+ 1 arguments, the extra implicit last argument
being of type Lexing.lexbuf. Characters are read from the Lexing.lexbuf argument and matched
against the regular expressions provided in the rule, until a prefix of the input matches one of the
rule. The corresponding action is then evaluated and returned as the result of the function.

If several regular expressions match a prefix of the input, the “longest match” rule applies: the
regular expression that matches the longest prefix of the input is selected. In case of tie, the regular
expression that occurs earlier in the rule is selected.

However, if lexer rules are introduced with the shortest keyword in place of the parse keyword,
then the “shortest match” rule applies: the shortest prefix of the input is selected. In case of tie,
the regular expression that occurs earlier in the rule is still selected. This feature is not intended for
use in ordinary lexical analyzers, it may facilitate the use of ocamllex as a simple text processing
tool.

12.2.4 Regular expressions

The regular expressions are in the style of lex, with a more OCaml-like syntax.
regexp =

' regular-char | escape-sequence '
A character constant, with the same syntax as OCaml character constants. Match the denoted
character.

(underscore) Match any character.

eof Match the end of the lexer input.
Note: On some systems, with interactive input, an end-of-file may be followed by more
characters. However, ocamllex will not correctly handle regular expressions that contain eof
followed by something else.
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" {string-character} "
A string constant, with the same syntax as OCaml string constants. Match the corresponding
sequence of characters.

[ character-set ]
Match any single character belonging to the given character set. Valid character sets are:
single character constants 'c '; ranges of characters 'c; ' - 'co ' (all characters between ¢;
and ¢y, inclusive); and the union of two or more character sets, denoted by concatenation.

[ ~ character-set ]
Match any single character not belonging to the given character set.

regexp, # regexpo
(difference of character sets) Regular expressions regexp; and regexp, must be character sets
defined with [...] (or a a single character expression or underscore _). Match the difference
of the two specified character sets.

regexp
(repetition) Match the concatenation of zero or more strings that match regexp.

regexp +
(strict repetition) Match the concatenation of one or more strings that match regexp.

regexp ?
(option) Match the empty string, or a string matching regexp.

regexp, | regexpy
(alternative) Match any string that matches regexp; or regexpsy

regexp; regexp,
(concatenation) Match the concatenation of two strings, the first matching regexp;, the second
matching regexps.

( regexp )
Match the same strings as regexp.

ident
Reference the regular expression bound to ident by an earlier let ident = regexp definition.

regexp as ident
Bind the substring matched by regexp to identifier ident.

Concerning the precedences of operators, # has the highest precedence, followed by *, + and 7,
then concatenation, then | (alternation), then as.

12.2.5 Actions

The actions are arbitrary OCaml expressions. They are evaluated in a context where the identifiers
defined by using the as construct are bound to subparts of the matched string. Additionally,
lexbuf is bound to the current lexer buffer. Some typical uses for lexbuf, in conjunction with the
operations on lexer buffers provided by the Lexing standard library module, are listed below.
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Lexing.lexeme lexbuf
Return the matched string.

Lexing.lexeme_char lexbuf n
Return the n'® character in the matched string. The first character corresponds to n = 0.

Lexing.lexeme_start lexbuf
Return the absolute position in the input text of the beginning of the matched string (i.e. the
offset of the first character of the matched string). The first character read from the input
text has offset 0.

Lexing.lexeme_end lexbuf
Return the absolute position in the input text of the end of the matched string (i.e. the offset
of the first character after the matched string). The first character read from the input text
has offset 0.

entrypoint [expi... exp,] lexbuf
(Where entrypoint is the name of another entry point in the same lexer definition.) Recursively
call the lexer on the given entry point. Notice that lexbuf is the last argument. Useful for
lexing nested comments, for example.

12.2.6 Variables in regular expressions

The as construct is similar to “groups” as provided by numerous regular expression packages. The
type of these variables can be string, char, string option or char option.

We first consider the case of linear patterns, that is the case when all as bound variables are
distinct. In regexp as ident, the type of ident normally is string (or string option) except
when regexp is a character constant, an underscore, a string constant of length one, a character set
specification, or an alternation of those. Then, the type of ident is char (or char option). Option
types are introduced when overall rule matching does not imply matching of the bound sub-pattern.
This is in particular the case of ( regexp as ident ) 7 and of regexp, | ( regexp, as ident ).

There is no linearity restriction over as bound variables. When a variable is bound more than
once, the previous rules are to be extended as follows:

e A variable is a char variable when all its occurrences bind char occurrences in the previous
sense.

e A variable is an option variable when the overall expression can be matched without binding
this variable.

For instance, in ('a' as x) | ( 'a' (_ as x) ) the variable x is of type char, whereas in
("ab" as x) | ( 'a' (_ as x) 7 ) the variable x is of type string option.

In some cases, a successful match may not yield a unique set of bindings. For instance the
matching of aba by the regular expression (('a'|"ab") as x) (("ba"|'a') as y) may result
in binding either x to "ab" and y to "a", or x to "a" and y to "ba". The automata produced
ocamllex on such ambiguous regular expressions will select one of the possible resulting sets of
bindings. The selected set of bindings is purposely left unspecified.
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12.2.7 Refill handlers

By default, when ocamllex reaches the end of its lexing buffer, it will silently call the refill_buff
function of lexbuf structure and continue lexing. It is sometimes useful to be able to take control
of refilling action; typically, if you use a library for asynchronous computation, you may want to
wrap the refilling action in a delaying function to avoid blocking synchronous operations.

Since OCaml 4.02, it is possible to specify a refill-handler, a function that will be called when
refill happens. It is passed the continuation of the lexing, on which it has total control. The OCaml
expression used as refill action should have a type that is an instance of

(Lexing.lexbuf -> 'a) -> Lexing.lexbuf -> 'a

where the first argument is the continuation which captures the processing ocamllex would
usually perform (refilling the buffer, then calling the lexing function again), and the result type
that instantiates [a] should unify with the result type of all lexing rules.

As an example, consider the following lexer that is parametrized over an arbitrary monad:

{
type token = EOL | INT of int | PLUS

module Make (M : sig
type 'a t
val return: 'a -> 'a t
val bind: 'at -> ('a-> 'bt) > 'b t
val fail : string -> 'a t

(* Set up lexbuf *)
val on_refill : Lexing.lexbuf -> unit t
end)
= struct

let refill_handler k lexbuf arg =
M.bind (M.on_refill lexbuf) (fun () -> k lexbuf arg)

refill {refill_handler}

rule token = parse
[ [ " "\t']
{ token lexbuf }
| "\n'
{ M.return EOL }
| ['0'-'9']+ as i
{ M.return (INT (int_of_string i)) }
|
{ M.return PLUS }
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{ M.fail "unexpected character" }

12.2.8 Reserved identifiers

All identifiers starting with __ocaml_lex are reserved for use by ocamllex; do not use any such
identifier in your programs.

12.3 Overview of ocamlyacc

The ocamlyacc command produces a parser from a context-free grammar specification with at-
tached semantic actions, in the style of yacc. Assuming the input file is grammar.mly, executing

ocamlyacc options grammar.mly

produces OCaml code for a parser in the file grammar.ml, and its interface in file grammar.mli.

The generated module defines one parsing function per entry point in the grammar. These
functions have the same names as the entry points. Parsing functions take as arguments a lexical
analyzer (a function from lexer buffers to tokens) and a lexer buffer, and return the semantic
attribute of the corresponding entry point. Lexical analyzer functions are usually generated from a
lexer specification by the ocamllex program. Lexer buffers are an abstract data type implemented
in the standard library module Lexing. Tokens are values from the concrete type token, defined
in the interface file grammar.mli produced by ocamlyacc.

12.4 Syntax of grammar definitions

Grammar definitions have the following format:

hi

header

ht
declarations
Toth
rules
Ioth

trailer

Comments are enclosed between /* and */ (as in C) in the “declarations” and “rules” sections,
and between (x and *) (as in OCaml) in the “header” and “trailer” sections.
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12.4.1 Header and trailer

The header and the trailer sections are OCaml code that is copied as is into file grammar.m1l. Both
sections are optional. The header goes at the beginning of the output file; it usually contains open
directives and auxiliary functions required by the semantic actions of the rules. The trailer goes at
the end of the output file.

12.4.2 Declarations

Declarations are given one per line. They all start with a % sign.

Jitoken constr ... constr
Declare the given symbols constr . .. constr as tokens (terminal symbols). These symbols are
added as constant constructors for the token concrete type.

%token < typexpr > constr ... constr

Declare the given symbols constr ... constr as tokens with an attached attribute of the given
type. These symbols are added as constructors with arguments of the given type for the
token concrete type. The typexpr part is an arbitrary OCaml type expression, except that
all type constructor names must be fully qualified (e.g. Modname.typename) for all types
except standard built-in types, even if the proper open directives (e.g. open Modname) were
given in the header section. That’s because the header is copied only to the .ml output file,
but not to the .mli output file, while the typexpr part of a %token declaration is copied to
both.

%start symbol...symbol
Declare the given symbols as entry points for the grammar. For each entry point, a parsing
function with the same name is defined in the output module. Non-terminals that are not
declared as entry points have no such parsing function. Start symbols must be given a type
with the %type directive below.

htype < typexpr > symbol . .. symbol
Specify the type of the semantic attributes for the given symbols. This is mandatory for start
symbols only. Other nonterminal symbols need not be given types by hand: these types will
be inferred when running the output files through the OCaml compiler (unless the -s option
is in effect). The typexpr part is an arbitrary OCaml type expression, except that all type
constructor names must be fully qualified, as explained above for %token.

%left symbol...symbol

%right symbol...symbol

Jnonassoc symbol . ..symbol

Associate precedences and associativities to the given symbols. All symbols on the same line
are given the same precedence. They have higher precedence than symbols declared before
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in a %left, %right or %nonassoc line. They have lower precedence than symbols declared
after in a %left, %right or %nonassoc line. The symbols are declared to associate to the
left (%left), to the right (%right), or to be non-associative (%nonassoc). The symbols are
usually tokens. They can also be dummy nonterminals, for use with the %prec directive inside
the rules.

The precedence declarations are used in the following way to resolve reduce/reduce and
shift /reduce conflicts:

e Tokens and rules have precedences. By default, the precedence of a rule is the precedence
of its rightmost terminal. You can override this default by using the %prec directive in
the rule.

e A reduce/reduce conflict is resolved in favor of the first rule (in the order given by the
source file), and ocamlyacc outputs a warning.

e A shift/reduce conflict is resolved by comparing the precedence of the rule to be reduced
with the precedence of the token to be shifted. If the precedence of the rule is higher,
then the rule will be reduced; if the precedence of the token is higher, then the token
will be shifted.

e A shift/reduce conflict between a rule and a token with the same precedence will be
resolved using the associativity: if the token is left-associative, then the parser will
reduce; if the token is right-associative, then the parser will shift. If the token is non-
associative, then the parser will declare a syntax error.

e When a shift /reduce conflict cannot be resolved using the above method, then ocamlyacc
will output a warning and the parser will always shift.

12.4.3 Rules
The syntax for rules is as usual:

nonterminal :
symbol ... symbol { semantic-action }
|

| symbol ... symbol { semantic-action }

Rules can also contain the %prec symbol directive in the right-hand side part, to override the
default precedence and associativity of the rule with the precedence and associativity of the given
symbol.

Semantic actions are arbitrary OCaml expressions, that are evaluated to produce the semantic
attribute attached to the defined nonterminal. The semantic actions can access the semantic
attributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute
for the first (leftmost) symbol, $2 is the attribute for the second symbol, etc.

The rules may contain the special symbol error to indicate resynchronization points, as in
yacc.

Actions occurring in the middle of rules are not supported.

Nonterminal symbols are like regular OCaml symbols, except that they cannot end with '
(single quote).
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12.4.4 Error handling

Error recovery is supported as follows: when the parser reaches an error state (no grammar rules can
apply), it calls a function named parse_error with the string "syntax error" as argument. The
default parse_error function does nothing and returns, thus initiating error recovery (see below).
The user can define a customized parse_error function in the header section of the grammar file.

The parser also enters error recovery mode if one of the grammar actions raises the
Parsing.Parse_error exception.

In error recovery mode, the parser discards states from the stack until it reaches a place where
the error token can be shifted. It then discards tokens from the input until it finds three suc-
cessive tokens that can be accepted, and starts processing with the first of these. If no state
can be uncovered where the error token can be shifted, then the parser aborts by raising the
Parsing.Parse_error exception.

Refer to documentation on yacc for more details and guidance in how to use error recovery.

12.5 Options

The ocamlyacc command recognizes the following options:

-bprefix
Name the output files prefiz.ml, prefix.mli, prefix.output, instead of the default naming
convention.

-q This option has no effect.

-v  Generate a description of the parsing tables and a report on conflicts resulting from ambigu-
ities in the grammar. The description is put in file grammar. output.

-version
Print version string and exit.

-vnum
Print short version number and exit.

- Read the grammar specification from standard input. The default output file names are
stdin.ml and stdin.mli.

-- file

Process file as the grammar specification, even if its name starts with a dash (-) character.
This option must be the last on the command line.

At run-time, the ocamlyacc-generated parser can be debugged by setting the p option in the
OCAMLRUNPARAM environment variable (see section [10.2). This causes the pushdown automaton exe-
cuting the parser to print a trace of its action (tokens shifted, rules reduced, etc). The trace mentions
rule numbers and state numbers that can be interpreted by looking at the file grammar. output
generated by ocamlyacc -v.
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12.6 A complete example
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The all-time favorite: a desk calculator. This program reads arithmetic expressions on standard

input, one per line, and prints their values. Here is the grammar definition:

/* File parser.mly */

Ytoken <int> INT

%token PLUS MINUS TIMES DIV
%token LPAREN RPAREN

%token EOL
%left PLUS MINUS
%left TIMES DIV
Y%nonassoc UMINUS
%start main
%type <int> main
Wt
main:

expr EOL

INT

/* lowest precedence */
/* medium precedence */
/* highest precedence */
/* the entry point */

LPAREN expr RPAREN

|

| expr PLUS expr
| expr MINUS expr
| expr TIMES expr
| expr DIV expr

|

MINUS expr Y%prec UMINUS

3

{
{
{
{
{
{
{

$1

©“

<+

N N %

$3 }
$3
$3
$3

Here is the definition for the corresponding lexer:

(* File lexer.mll *
{

open Parser
exception Eof

['0'-'9']+ as 1lxm { INT(int_of_string lxm) }

)

(* The type token is defined in parser.mli *)

{ token lexbuf }

}
rule token = parse
"' "\t

I ['\n' ] { EOL }
|
|+ { PLUS }
| = { MINUS }
(- { TIMES }
L/ { DIV }
NG { LPAREN
DR { RPAREN
| eof {

raise Eof }

}
}

(* skip blanks *)
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Here is the main program, that combines the parser with the lexer:

(* File calc.ml *)

let _ =

try
let lexbuf = Lexing.from_channel stdin in
while true do

let result = Parser.main Lexer.token lexbuf in
print_int result; print_newline(); flush stdout

done

with Lexer.Eof ->
exit O

To compile everything, execute:

ocamllex lexer.mll # generates lexer.ml

ocamlyacc parser.mly # generates parser.ml and parser.mli
ocamlc -c parser.mli

ocamlc -c lexer.ml

ocamlc -c parser.ml

ocamlc -c¢ calc.ml

ocamlc -o calc lexer.cmo parser.cmo calc.cmo

12.7 Common errors

ocamllex: transition table overflow, automaton is too big

The deterministic automata generated by ocamllex are limited to at most 32767 transitions.
The message above indicates that your lexer definition is too complex and overflows this
limit. This is commonly caused by lexer definitions that have separate rules for each of the
alphabetic keywords of the language, as in the following example.

rule token = parse
"keywordl"  { KwD1 }
"keyword2"  { KWD2 }

I

| ...

| "keyword100" { KWD100 }

| [IAI_IZI |av_|z|] [IAI_lZI a'=t'z! '0'-'9! v_u] * as id
{ IDENT id}

To keep the generated automata small, rewrite those definitions with only one general “iden-
tifier” rule, followed by a hashtable lookup to separate keywords from identifiers:

{ let keyword_table = Hashtbl.create 53
let _ =

List.iter (fun (kwd, tok) -> Hashtbl.add keyword_table kwd tok)
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[ "keywordl", KWwD1;
"keyword2", KWD2;
"keyword100", KWD100 ]
}
rule token = parse
["A'='Z" 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] *x as id
{ try
Hashtbl.find keyword_table id
with Not_found ->
IDENT id }

ocamllex: Position memory overflow, too many bindings
The deterministic automata generated by ocamllex maintain a table of positions inside the
scanned lexer buffer. The size of this table is limited to at most 255 cells. This error should
not show up in normal situations.
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Chapter 13

Dependency generator (ocamldep)

The ocamldep command scans a set of OCaml source files (.ml and .mli files) for references to
external compilation units, and outputs dependency lines in a format suitable for the make utility.
This ensures that make will compile the source files in the correct order, and recompile those files
that need to when a source file is modified.

The typical usage is:

ocamldep options *.mli *.ml > .depend

where *.m1i *.ml expands to all source files in the current directory and .depend is the file
that should contain the dependencies. (See below for a typical Makefile.)

Dependencies are generated both for compiling with the bytecode compiler ocamlc and with
the native-code compiler ocamlopt.

The ocamlbuild compilation manager (see chapter provide a higher-level, more automated
alternative to the combination of make and ocamldep.

13.1 Options
The following command-line options are recognized by ocamldep.

-1 directory
Add the given directory to the list of directories searched for source files. If a source file
foo.ml mentions an external compilation unit Bar, a dependency on that unit’s interface
bar.cmi is generated only if the source for bar is found in the current directory or in one of
the directories specified with -I. Otherwise, Bar is assumed to be a module from the standard
library, and no dependencies are generated. For programs that span multiple directories, it
is recommended to pass ocamldep the same -I options that are passed to the compiler.

-ml-synonym .ext
Consider the given extension (with leading dot) to be a synonym for .ml.

-mli-synonym .ext
Consider the given extension (with leading dot) to be a synonym for .mli.
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-modules
Output raw dependencies of the form

filename: Modulel Module2 ... ModuleN

where Modulel, ..., ModuleN are the names of the compilation units referenced within the
file filename, but these names are not resolved to source file names. Such raw dependencies
cannot be used by make, but can be post-processed by other tools such as Omake.

-native

Generate dependencies for a pure native-code program (no bytecode version). When an
implementation file (.ml file) has no explicit interface file (.mli file), ocamldep generates
dependencies on the bytecode compiled file (.cmo file) to reflect interface changes. This can
cause unnecessary bytecode recompilations for programs that are compiled to native-code
only. The flag -native causes dependencies on native compiled files (.cmx) to be generated
instead of on .cmo files. (This flag makes no difference if all source files have explicit .mli
interface files.)

-pp command
Cause ocamldep to call the given command as a preprocessor for each source file.

-slash
Under Windows, use a forward slash (/) as the path separator instead of the usual backward
slash (\). Under Unix, this option does nothing.

-version
Print version string and exit.

-vnum
Print short version number and exit.

-help or —-help
Display a short usage summary and exit.

13.2 A typical Makefile

Here is a template Makefile for a OCaml program.

0CAMLC=ocamlc

OCAMLOPT=ocamlopt

OCAMLDEP=ocamldep

INCLUDES= # all relevant -I options here
OCAMLFLAGS=$ (INCLUDES) # add other options for ocamlc here
OCAMLOPTFLAGS=$ (INCLUDES) # add other options for ocamlopt here

# progl should be compiled to bytecode, and is composed of three
# units: modl, mod2 and mod3.
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# The list of object files for progl
PROG1_0BJS=mod1.cmo mod2.cmo mod3.cmo

progl: $(PROG1_0BJS)
$(0CAMLC) -o progl $(OCAMLFLAGS) $(PROG1_0BJS)

# prog2 should be compiled to native-code, and is composed of two
# units: mod4 and modb5.

# The list of object files for prog2
PROG2_0BJS=mod4.cmx mod5.cmx

prog2: $(PROG2_0BJS)
$ (OCAMLOPT) -o prog2 $(0CAMLFLAGS) $(PROG2_0BJS)

# Common rules
.SUFFIXES: .ml .mli .cmo .cmi .cmx

.ml.cmo:
$(0CAMLC) $(OCAMLFLAGS) -c $<

.mli.cmi:
$(0CAMLC) $(OCAMLFLAGS) -c $<

.ml.cmx:
$ (0CAMLOPT) $(OCAMLOPTFLAGS) -c $<

# Clean up

clean:
rm -f progl prog2
rm -f *.cm[iox]

# Dependencies
depend:
$ (OCAMLDEP) $(INCLUDES) *.mli *.ml > .depend

include .depend
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Chapter 14

The browser/editor (ocamlbrowser)

This chapter describes OCamlBrowser, a source and compiled interface browser, written using
LablTk. This is a useful companion to the programmer.
Its functions are:

e navigation through OCaml’s modules (using compiled interfaces).
e source editing, type-checking, and browsing.

e integrated OCaml shell, running as a subprocess.

14.1 Invocation

The browser is started by the command ocamlbrowser, as follows:
ocamlbrowser options

The following command-line options are recognized by ocamlbrowser.

-1 directory
Add the given directory to the list of directories searched for source and compiled files. By
default, only the standard library directory is searched. The standard library can also be
changed by setting the OCAMLLIB environment variable.

-nolabels
Ignore non-optional labels in types. Labels cannot be used in applications, and parameter
order becomes strict.

-oldui
Old multi-window interface. The default is now more like Smalltalk’s class browser.

-rectypes
Allow arbitrary recursive types during type-checking. By default, only recursive types where
the recursion goes through an object type are supported.

-version
Print version string and exit.
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—vnum

Print short version number and exit.

-w warning-list

Enable or disable warnings according to the argument warning-list.

Most options can also be modified inside the application by the Modules - Path editor and

Compiler - Preferences commands. They are inherited when you start a toplevel shell.

14.2 Viewer

This is the first window you get when you start OCamlBrowser. It displays a search window, and
the list of modules in the load path. At the top a row of menus.

File - Open and File - Editor give access to the editor.

File - Shell creates an OCaml subprocess in a shell.

View - Show all defs displays the signature of the currently selected module.
View - Search entry shows/hides the search entry just below the menu bar.

Modules - Path editor changes the load path. Modules - Reset cache rescans the load
path and resets the module cache. Do it if you recompile some interface, or get confused
about what is in the cache.

Modules - Search symbol allows searching a symbol either by its name, like the bottom
line of the viewer, or more interestingly, by its type. Exact type searches for a type with
exactly the same information as the pattern (variables match only variables). Included type
allows giving only partial information: the actual type may take more arguments and return
more results, and variables in the pattern match anything. In both cases, argument and tuple
order is irrelevantE], and unlabeled arguments in the pattern match any label.

The Search entry just below the menu bar allows one to search for an identifier in all
modules (wildcards “?” and “*” allowed). If you choose the type option, the search is done
by type inclusion (¢f. Search Symbol - Included type).

The Close all button is there to dismiss the windows created by the Detach button. By
double-clicking on it you will quit the browser.

14.3 Module browsing

You select a module in the leftmost box by either clicking on it or pressing return when it is selected.
Fast access is available in all boxes pressing the first few letter of the desired name. Double-clicking
/ double-return displays the whole signature for the module.

1To avoid combinatorial explosion of the search space, optional arguments in the actual type are ignored in the
actual if (1) there are too many of them, and (2) they do not appear explicitly in the pattern.
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Defined identifiers inside the module are displayed in a box to the right of the previous one.
If you click on one, this will either display its contents in another box (if this is a sub-module) or
display the signature for this identifier below.

Signatures are clickable. Double clicking with the left mouse button on an identifier in a
signature brings you to its signature. A single click on the right button pops up a menu displaying
the type declaration for the selected identifier. Its title, when selectable, also brings you to its
signature.

At the bottom, a series of buttons, depending on the context.

e Detach copies the currently displayed signature in a new window, to keep it.

e Impl and Intf bring you to the implementation or interface of the currently displayed signa-
ture, if it is available.

Control-S lets you search a string in the signature.

14.4 File editor

You can edit files with it, if you're not yet used to emacs. Otherwise you can use it as a browser,
making occasional corrections.

The Edit menu contains commands for jump (C-g), search (C-s), and sending the current
phrase (or selection if some text is selected) to a sub-shell (M-x). For this last option, you may
choose the shell via a dialog.

Essential functions are in the Compiler menu.

e Preferences opens a dialog to set internals of the editor and type-checker.
e Lex adds colors according to lexical categories.

e Typecheck verifies typing, and memorizes to let one see an expression’s type by double-
clicking on it. This is also valid for interfaces. If an error occurs, the part of the interface
preceding the error is computed.

After typechecking, pressing the right button pops up a menu that gives the type of the
pointed expression and, where applicable, provides some links that can be followed.

e Clear errors dismisses type-checker error messages and warnings.

e Signature shows the signature of the current file (after type checking).

14.5 Shell

When you create a shell, a dialog is presented to you, letting you choose which command you want
to run, and the title of the shell (to choose it in the Editor).
The executed subshell is given the current load path.

e File use a source file or load a bytecode file. You may also import the browser’s path into
the subprocess.
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e History M-p and M-n browse up and down.

e Signal C-c interrupts, and you can also kill the subprocess.



Chapter 15

The documentation generator
(ocamldoc)

This chapter describes OCamldoc, a tool that generates documentation from special comments
embedded in source files. The comments used by OCamldoc are of the form (*x*...*) and follow
the format described in section [5.2

OCamldoc can produce documentation in various formats: HTML, IXTEX, TeXinfo, Unix man
pages, and dot dependency graphs. Moreover, users can add their own custom generators, as
explained in section [I5.3]

In this chapter, we use the word element to refer to any of the following parts of an OCaml
source file: a type declaration, a value, a module, an exception, a module type, a type constructor,
a record field, a class, a class type, a class method, a class value or a class inheritance clause.

15.1 Usage

15.1.1 Invocation

OCamldoc is invoked via the command ocamldoc, as follows:

ocamldoc options sourcefiles

Options for choosing the output format

The following options determine the format for the generated documentation.

-html
Generate documentation in HTML default format. The generated HTML pages are stored in
the current directory, or in the directory specified with the -d option. You can customize the
style of the generated pages by editing the generated style.css file, or by providing your
own style sheet using option -css-style. The file style.css is not generated if it already
exists or if -css-style is used.

-latex
Generate documentation in ATEX default format. The generated ¥TEX document is saved in
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file ocamldoc.out, or in the file specified with the —-o option. The document uses the style
file ocamldoc.sty. This file is generated when using the -latex option, if it does not already
exist. You can change this file to customize the style of your KTEX documentation.

-texi
Generate documentation in TeXinfo default format. The generated IXTEX document is saved
in file ocamldoc.out, or in the file specified with the -o option.

-man
Generate documentation as a set of Unix man pages. The generated pages are stored in the
current directory, or in the directory specified with the -d option.

-dot
Generate a dependency graph for the toplevel modules, in a format suitable for display-
ing and processing by dot. The dot tool is available from http://www.research.att.
com/sw/tools/graphviz/. The textual representation of the graph is written to the file
ocamldoc.out, or to the file specified with the —o option. Use dot ocamldoc.out to display
it.

-g file.cmfo,a,xs]
Dynamically load the given file, which defines a custom documentation generator. See section
This option is supported by the ocamldoc command (to load .cmo and .cma files)
and by its native-code version ocamldoc.opt (to load .cmxs files). If the given file is a simple
one and does not exist in the current directory, then ocamldoc looks for it in the custom
generators default directory, and in the directories specified with optional -i options.

-customdir
Display the custom generators default directory.

-i directory
Add the given directory to the path where to look for custom generators.

General options

-d dir
Generate files in directory dir, rather than the current directory.

~dump file
Dump collected information into file. This information can be read with the -load option in
a subsequent invocation of ocamldoc.

-hide modules
Hide the given complete module names in the generated documentation. modules is a list of
complete module names separated by ’,’, without blanks. For instance: Pervasives,M2.M3.

-inv-merge-ml-mli
Reverse the precedence of implementations and interfaces when merging. All elements in
implementation files are kept, and the -m option indicates which parts of the comments in
interface files are merged with the comments in implementation files.
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-keep-code
Always keep the source code for values, methods and instance variables, when available. The
source code is always kept when a .ml file is given, but is by default discarded when a .mli
is given. This option keeps the source code in all cases.

-load file
Load information from file, which has been produced by ocamldoc -dump. Several -load
options can be given.

-m flags
Specify merge options between interfaces and implementations. (see section|15.1.2{for details).
flags can be one or several of the following characters:

d  merge description

a merge @author
A merge Qversion
1 merge @see

s merge @since

b merge @before

o merge @deprecated
merge @param
merge Oraise
merge @return
merge everything

-no-custom-tags
Do not allow custom Q-tags (see section [15.2.5]).

-no-stop
Keep elements placed after/between the (**/*x) special comment(s) (see section [15.2)).
-o file

Output the generated documentation to file instead of ocamldoc.out. This option is mean-
ingful only in conjunction with the -latex, -texi, or —~dot options.

-pp command
Pipe sources through preprocessor command.

-impl filename
Process the file filename as an implementation file, even if its extension is not .ml.

-intf filename
Process the file filename as an interface file, even if its extension is not .mli.

-text filename
Process the file filename as a text file, even if its extension is not .txt.
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-sort
Sort the list of top-level modules before generating the documentation.

-stars
Remove blank characters until the first asterisk (’*’) in each line of comments.

-t title
Use title as the title for the generated documentation.

-intro file
Use content of file as ocamldoc text to use as introduction (HTML, ITEX and TeXinfo only).
For HTML, the file is used to create the whole index.html file.

-v  Verbose mode. Display progress information.

—-version
Print version string and exit.

-vnum
Print short version number and exit.

-Warn-error
Treat Ocamldoc warnings as errors.

-hide-warnings
Do not print OCamldoc warnings.

-help or —--help
Display a short usage summary and exit.
Type-checking options

OCamldoc calls the OCaml type-checker to obtain type information. The following options impact
the type-checking phase. They have the same meaning as for the ocamlc and ocamlopt commands.

-1 directory
Add directory to the list of directories search for compiled interface files (.cmi files).

-nolabels
Ignore non-optional labels in types.

-rectypes
Allow arbitrary recursive types. (See the -rectypes option to ocamlc.)

Options for generating HTML pages

The following options apply in conjunction with the -html option:

-all-params
Display the complete list of parameters for functions and methods.
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-charset charset
Add information about character encoding being charset (default is iso-8859-1).

-colorize-code
Colorize the OCaml code enclosed in [ ] and {[ 1}, using colors to emphasize keywords,
etc. If the code fragments are not syntactically correct, no color is added.

-css-style filename
Use filename as the Cascading Style Sheet file.

-index-only
Generate only index files.

-short-functors
Use a short form to display functors:

module M : functor (A:Module) -> functor (B:Module2) -> sig .. end
is displayed as:
module M (A:Module) (B:Module2) : sig .. end

Options for generating IATEX files

The following options apply in conjunction with the -latex option:

-latex-value-prefix prefix
Give a prefix to use for the labels of the values in the generated KITEX document. The
default prefix is the empty string. You can also use the options -latex-type-prefix,
-latex-exception-prefix, -latex-module-prefix, -latex-module-type-prefix,
-latex-class-prefix, -latex-class-type-prefix, -latex-attribute-prefix and
-latex-method-prefix.

These options are useful when you have, for example, a type and a value with the same name.
If you do not specify prefixes, INTEX will complain about multiply defined labels.

-latextitle n,style
Associate style number n to the given IXTEX sectioning command style, e.g. section or
subsection. (KTEX only.) This is useful when including the generated document in another
KTEX document, at a given sectioning level. The default association is 1 for section, 2 for
subsection, 3 for subsubsection, 4 for paragraph and 5 for subparagraph.

-noheader
Suppress header in generated documentation.

-notoc
Do not generate a table of contents.

-notrailer
Suppress trailer in generated documentation.
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-sepfiles
Generate one .tex file per toplevel module, instead of the global ocamldoc.out file.

Options for generating TeXinfo files

The following options apply in conjunction with the -texi option:

-esc8
Escape accented characters in Info files.

-info-entry
Specify Info directory entry.

-info-section
Specify section of Info directory.

-noheader
Suppress header in generated documentation.

-noindex
Do not build index for Info files.

-notrailer
Suppress trailer in generated documentation.

Options for generating dot graphs

The following options apply in conjunction with the -dot option:

-dot-colors colors
Specify the colors to use in the generated dot code. When generating module dependencies,
ocamldoc uses different colors for modules, depending on the directories in which they reside.
When generating types dependencies, ocamldoc uses different colors for types, depending on
the modules in which they are defined. colors is a list of color names separated by ’,’, as in
Red,Blue,Green. The available colors are the ones supported by the dot tool.

—-dot-include-all
Include all modules in the dot output, not only modules given on the command line or loaded
with the -load option.

—dot-reduce
Perform a transitive reduction of the dependency graph before outputting the dot code. This
can be useful if there are a lot of transitive dependencies that clutter the graph.

-dot-types
Output dot code describing the type dependency graph instead of the module dependency
graph.
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Options for generating man files

The following options apply in conjunction with the -man option:

-man-mini
Generate man pages only for modules, module types, classes and class types, instead of pages
for all elements.

-man-suffix suffiz
Set the suffix used for generated man filenames. Default is '30’, as in List. 3o.

-man-section section
Set the section number used for generated man filenames. Default is ’3’.

15.1.2 Merging of module information

Information on a module can be extracted either from the .mli or .ml file, or both, depending on
the files given on the command line. When both .ml1i and .ml files are given for the same module,
information extracted from these files is merged according to the following rules:

e Only elements (values, types, classes, ...) declared in the .mli file are kept. In other terms,
definitions from the .ml file that are not exported in the .mli file are not documented.

e Descriptions of elements and descriptions in @-tags are handled as follows. If a description
for the same element or in the same @-tag of the same element is present in both files, then
the description of the .ml file is concatenated to the one in the .mli file, if the corresponding
-m flag is given on the command line. If a description is present in the .ml file and not in the
.mli file, the .ml description is kept. In either case, all the information given in the .mli file
is kept.

15.1.3 Coding rules

The following rules must be respected in order to avoid name clashes resulting in cross-reference
errors:

e In a module, there must not be two modules, two module types or a module and a module
type with the same name. In the default HTML generator, modules ab and AB will be printed
to the same file on case insensitive file systems.

e In a module, there must not be two classes, two class types or a class and a class type with
the same name.

e In a module, there must not be two values, two types, or two exceptions with the same name.
e Values defined in tuple, as in let (x,y,z) = (1,2,3) are not kept by OCamldoc.

e Avoid the following construction:
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open Foo (* which has a module Bar with a value x *)
module Foo =
struct
module Bar =
struct
let x =1
end
end
let dummy = Bar.x

In this case, OCamldoc will associate Bar.x to the x of module Foo defined just above, instead
of to the Bar.x defined in the opened module Foo.

15.2 Syntax of documentation comments

Comments containing documentation material are called special comments and are written between
(x* and *). Special comments must start exactly with (**. Comments beginning with ( and more
than two * are ignored.

15.2.1 Placement of documentation comments

OCamldoc can associate comments to some elements of the language encountered in the source
files. The association is made according to the locations of comments with respect to the language
elements. The locations of comments in .m1i and .ml files are different.

Comments in .mli files

A special comment is associated to an element if it is placed before or after the element.
A special comment before an element is associated to this element if :

e There is no blank line or another special comment between the special comment and the ele-
ment. However, a regular comment can occur between the special comment and the element.

e The special comment is not already associated to the previous element.
e The special comment is not the first one of a toplevel module.

A special comment after an element is associated to this element if there is no blank line or
comment between the special comment and the element.

There are two exceptions: for constructors and record fields in type definitions, the associated
comment can only be placed after the constructor or field definition, without blank lines or other
comments between them. The special comment for a constructor with another constructor following
must be placed before the ’|’ character separating the two constructors.

The following sample interface file foo.m11i illustrates the placement rules for comments in .m1i
files.
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(** The first special comment of the file is the comment associated
with the whole module.*)

(** Special comments can be placed between elements and are kept
by the 0Camldoc tool, but are not associated to any element.
@-tags in these comments are ignored.*)

(st ok sk ok sk ok sk ok sk ok sk ok K ok ok K ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok 3k oK 3 ok 3k ok 3k oK 3k ok 3k ok 3k ok sk ok sk ok sk ok sk ok ok ok sk ok ok ok sk ok sk ok )
(** Comments like the one above, with more than two asterisks,
are ignored. *)

(** The comment for function f. *)
val £ : int -> int -> int
(** The continuation of the comment for function f. *)

(** Comment for exception My_exception, even with a simple comment
between the special comment and the exception.x*)

(x Hello, I'm a simple comment :-) *)

exception My_exception of (int -> int) * int

(** Comment for type weather *)

type weather =

| Rain of int (** The comment for constructor Rain *)
| Sun (*#* The comment for constructor Sun *)

(** Comment for type weather2 *)
type weather2 =
| Rain of int (** The comment for constructor Rain *)
| Sun (** The comment for constructor Sun *)
(*¥x I can continue the comment for type weather2 here
because there is already a comment associated to the last constructor.x*)

(** The comment for type my_record *)

type my_record = {
val foo : int ; (** Comment for field foo *)
val bar : string ; (** Comment for field bar *)

}

(#x Continuation of comment for type my_record *)

(x* Comment for foo *)

val foo : string

(** This comment is associated to foo and not to bar. *)
val bar : string

(*x This comment is associated to bar. *)
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(¥* The comment for class my_class *)
class my_class
object
(x*x A comment to describe inheritance from cl *)
inherit cl

(x* The comment for attribute tutu *)
val mutable tutu : string

(**x The comment for attribute toto. *)
val toto : int

(%% This comment is not attached to titi since
there is a blank line before titi, but is kept
as a comment in the class. *)

val titi : string

(** Comment for method toto *)
method toto : string

(**x Comment for method m *)
method m : float -> int
end

(** The comment for the class type my_class_type *)
class type my_class_type =
object
(x* The comment for variable x. *)
val mutable x : int

(** The commend for method m. *)
method m : int -> int
end

(**x The comment for module Foo *)
module Foo =
struct
(** The comment for x *)
val x : int

(x*x A special comment that is kept but not associated to any element *)
end
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(** The comment for module type my_module_type. *)
module type my_module_type =
sig
(** The comment for value x. *)
val x : int

(** The comment for module M. *)
module M =
struct
(** The comment for value y. *)
val y : int

(x ... %)

end

end

Comments in .ml files

A special comment is associated to an element if it is placed before the element and there is no blank
line between the comment and the element. Meanwhile, there can be a simple comment between the
special comment and the element. There are two exceptions, for constructors and record fields in
type definitions, whose associated comment must be placed after the constructor or field definition,
without blank line between them. The special comment for a constructor with another constructor
following must be placed before the ’|’ character separating the two constructors.

The following example of file toto.ml shows where to place comments in a .ml file.

(*x The first special comment of the file is the comment associated
to the whole module. *)

(** The comment for function f *)
let fxy=x+y

(** This comment is not attached to any element since there is another
special comment just before the next element. *)

(*x Comment for exception My_exception, even with a simple comment
between the special comment and the exception.*)

(* A simple comment. *)

exception My_exception of (int -> int) * int

(** Comment for type weather *)

type weather =

| Rain of int (** The comment for constructor Rain *)
| Sun (** The comment for constructor Sun *)
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(** The comment for type my_record *)

type my_record = {
val foo : int ; (x* Comment for field foo *)
val bar : string ; (** Comment for field bar *)

(** The comment for class my_class *)
class my_class =
object
(xx A comment to describe inheritance from cl *)
inherit cl

(*x The comment for the instance variable tutu *)
val mutable tutu = "tutu"
(** The comment for toto *)
val toto =1
val titi = "titi"
(** Comment for method toto *)
method toto = tutu ~ "!"
(** Comment for method m *)
method m (f : float) = 1
end

(** The comment for class type my_class_type *)
class type my_class_type =
object
(xx The comment for the instance variable x. *)
val mutable x : int
(#* The commend for method m. *)
method m : int -> int
end

(*x The comment for module Foo *)
module Foo =
struct
(** The comment for x *)
val x : int
(** A special comment in the class, but not associated to any element. *)
end

(** The comment for module type my_module_type. *)
module type my_module_type =
sig
(* Comment for value x. *)
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val x : int
(x ... %)

end

15.2.2 The Stop special comment

The special comment (x*/**) tells OCamldoc to discard elements placed after this comment, up
to the end of the current class, class type, module or module type, or up to the next stop comment.
For instance:

class type foo =
object
(** comment for method m *)
method m : string

(k3 /%% )

(x* This method won't appear in the documentation *)
method bar : int
end

(** This value appears in the documentation, since the Stop special comment
in the class does not affect the parent module of the class.*)
val foo : string

(k* /%%)
(** The value bar does not appear in the documentation.x*)
val bar : string

(ks /%)

(** The type t appears since in the documentation since the previous stop comment
toggled off the "no documentation mode". *)
type t = string

The -no-stop option to ocamldoc causes the Stop special comments to be ignored.

15.2.3 Syntax of documentation comments

The inside of documentation comments (**. .. *) consists of free-form text with optional formatting
annotations, followed by optional tags giving more specific information about parameters, version,
authors, ... The tags are distinguished by a leading @ character. Thus, a documentation comment
has the following shape:

(*x The comment begins with a description, which is text formatted
according to the rules described in the next section.
The description continues until the first non-escaped 'Q@' character.
Q@author Mr Smith
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Oparam x description for parameter x

*)

Some elements support only a subset of all @-tags. Tags that are not relevant to the documented
element are simply ignored. For instance, all tags are ignored when documenting type constructors,
record fields, and class inheritance clauses. Similarly, a @param tag on a class instance variable is
ignored.

At last, (**) is the empty documentation comment.

15.2.4 Text formatting

Here is the BNF grammar for the simple markup language used to format text descriptions.
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text

text-element ::=

{{0...9}" text }

{{0...9}" : label text }

{b text }
{i text }
{e text }
{C text }
{L text }
{R text }
{ul Iist }
{ol Iist }
{{: string } text }

[ string ]

{[ string 1}

{v string v}

{% string %}

{! string }

{!modules: string string... }
{!indexlist}

{" text }

{_text }

escaped-string

blank-line

15.2.4.1 List formatting

list

= {text-element}™

format text as a section header; the integer following { in-
dicates the sectioning level.

same, but also associate the name label to the current point.
This point can be referenced by its fully-qualified label in a
{! command, just like any other element.

set text in bold.

set text in italic.

emphasize text.

center text.

left align text.

right align text.

build a list.

build an enumerated list.

put a link to the given address (given as string) on the given
text.

set the given string in source code style.

set the given string in preformatted source code style.

set the given string in verbatim style.

target-specific content (IATEX code by default, see details in
152.17)

insert a cross-reference to an element (see section
for the syntax of cross-references).

insert an index table for the given module names. Used in
HTML only.

insert a table of links to the various indexes (types, values,
modules, ...). Used in HTML only.

set text in superscript.

set text in subscript.

typeset the given string as is; special characters ("{’, ’}’, ’[’,
']’ and ’@’) must be escaped by a ’\’

force a new line.

| {d- text 1}
| {{11 text }}*

A shortcut syntax exists for lists and enumerated lists:

(**x Here is a {b list}
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- item 1
- item 2
- item 3

The list is ended by the blank line.*)
is equivalent to:

(*x Here is a {b list}

{ul {- item 1}

{- item 2}

{- item 3}}

The list is ended by the blank line.*)

The same shortcut is available for enumerated lists, using '+’ instead of ’-’. Note that only one
list can be defined by this shortcut in nested lists.

15.2.4.2 Cross-reference formatting

Cross-references are fully qualified element names, as in the example {!Foo.Bar.t}. This is an
ambiguous reference as it may designate a type name, a value name, a class name, etc. It is possible
to make explicit the intended syntactic class, using {!type:Foo.Bar.t} to designate a type, and
{!val:Foo.Bar.t} a value of the same name.

The list of possible syntactic class is as follows:

tag syntactic class

module: module
modtype: module type
class: class
classtype: class type
val: value
type: type
exception: exception
attribute: attribute
method: class method
section: ocamldoc section
const: variant constructor
recfield: record field

In the case of variant constructors or record field, the constructor or field name should be
preceded by the name of the correspond type — to avoid the ambiguity of several types having the
same constructor names. For example, the constructor Node of the type tree will be referenced
as {!tree.Node} or {!const:tree.Node}, or possibly {!Mod1.Mod2.tree.Node} from outside the
module.
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15.2.4.3 First sentence

In the description of a value, type, exception, module, module type, class or class type, the first
sentence is sometimes used in indexes, or when just a part of the description is needed. The first
sentence is composed of the first characters of the description, until

e the first dot followed by a blank, or

e the first blank line
outside of the following text formatting : {ul list }, {ol list }, [ string 1, {[ string 1}, {v string v},
{% string %}, {! string }, {~ text }, {_ text }.
15.2.4.4 Target-specific formatting

The content inside {%foo: ... %} is target-specific and will only be interpreted by the backend
foo, and ignored by the others. The backends of the distribution are latex, html, texi and man.
If no target is specified (syntax {% ... %}), latex is chosen by default. Custom generators may
support their own target prefix.

15.2.4.5 Recognized HTML tags

The HTML tags <b>..</b> <code>..</code> <i>..</i> <ul>..</ul> <ol>..</0l>,
<1i>..</1i>, <center>..</center> and <h[0-9]>..</h[0-9]> can be used instead of,
respectively, {b,..}, [..], {i..}, {uly. .}, {o1,. .}, {1i ..}, {Cu..} and {[0-9] ..}.
15.2.5 Documentation tags (Q-tags)

Predefined tags

The following table gives the list of predefined @-tags, with their syntax and meaning.
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Q@author string The author of the element. One author per @author tag.
There may be several @author tags for the same element.

@deprecated text The text should describe when the element was deprecated,
what to use as a replacement, and possibly the reason for
deprecation.

@param id text Associate the given description (text) to the given parameter
name id. This tag is used for functions, methods, classes and
functors.

@raise Exc text Explain that the element may raise the exception Exc.

@return text Describe the return value and its possible values. This tag
is used for functions and methods.

@see < URL > text Add a reference to the URL with the given text as comment.

@see 'filename' text Add a reference to the given file name (written between

single quotes), with the given text as comment.
@see "document-name" text | Add a reference to the given document name (written be-
tween double quotes), with the given text as comment.

@since string Indicate when the element was introduced.
@before version text Associate the given description (text) to the given version
in order to document compatibility issues.

@version string The version number for the element.

Custom tags

You can use custom tags in the documentation comments, but they will have no effect if the
generator used does not handle them. To use a custom tag, for example foo, just put @foo with
some text in your comment, as in:

(** My comment to show you a custom tag.
@foo this is the text argument to the [foo] custom tag.

*)
To handle custom tags, you need to define a custom generator, as explained in section [15.3.2

15.3 Custom generators

OCamldoc operates in two steps:

1. analysis of the source files;

2. generation of documentation, through a documentation generator, which is an object of class
Odoc_args.class_generator.

Users can provide their own documentation generator to be used during step 2 instead of the
default generators. All the information retrieved during the analysis step is available through the
Odoc_info module, which gives access to all the types and functions representing the elements
found in the given modules, with their associated description.

The files you can use to define custom generators are installed in the ocamldoc sub-directory
of the OCaml standard library.
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15.3.1 The generator modules

The type of a generator module depends on the kind of generated documentation. Here is the list
of generator module types, with the name of the generator class in the module :

e for HTML : Odoc_html.Html_generator (class html),
e for INTEX : Odoc_latex.Latex_generator (class latex),

for TeXinfo : Odoc_texi.Texi_generator (class texi),

e for man pages : Odoc_man.Man_generator (class man),

for graphviz (dot) : Odoc_dot.Dot_generator (class dot),
e for other kinds : Odoc_gen.Base (class generator).

That is, to define a new generator, one must implement a module with the expected signature,
and with the given generator class, providing the generate method as entry point to make the
generator generates documentation for a given list of modules :

method generate : Odoc_info.Module.t_module list -> unit

This method will be called with the list of analysed and possibly merged Odoc_info.t_module
structures.

It is recommended to inherit from the current generator of the same kind as the one you want to
define. Doing so, it is possible to load various custom generators to combine improvements brought
by each one.

This is done using first class modules (see chapter .

The easiest way to define a custom generator is the following this example, here extending the
current HTML generator. We don’t have to know if this is the original HTML generator defined
in ocamldoc or if it has been extended already by a previously loaded custom generator :

module Generator (G : Odoc_html.Html_generator) =
struct
class html =
object(self)
inherit G.html as html
(x ... %)

method generate module_list =

(x ... %)
O

let _ = Odoc_args.extend_html_generator (module Generator : Odoc_gen.Html_functor);;



254

To know which methods to override and/or which methods are available, have a look at the
different base implementations, depending on the kind of generator you are extending :

e for HTML : odoc_html.ml,

o for IATEX : odoc_latex.ml,

for TeXinfo : lodoc_texi.ml,

e for man pages : odoc_man.ml)

for graphviz (dot) : lodoc_dot .m1.

15.3.2 Handling custom tags
Making a custom generator handle custom tags (see [15.2.5)) is very simple.

For HTML

Here is how to develop a HTML generator handling your custom tags.

The class 0doc_html.Generator.html inherits from the class Odoc_html.info, containing a
field tag_functions which is a list pairs composed of a custom tag (e.g. "foo") and a function
taking a text and returning HTML code (of type string). To handle a new tag bar, extend the
current HTML generator and complete the tag_functions field:

module Generator (G : Odoc_html.Html_generator) =
struct
class html =
object(self)
inherit G.html

(** Return HTML code for the given text of a bar tag. *)
method html_of_bar t = (* your code here *)

initializer
tag_functions <- ("bar", self#html_of_bar) :: tag_functions
end
end
let _ = Odoc_args.extend_html_generator (module Generator : Odoc_gen.Html_functor);;

Another method of the class 0doc_html.info will look for the function associated to a custom
tag and apply it to the text given to the tag. If no function is associated to a custom tag, then the
method prints a warning message on stderr.

For other generators

You can act the same way for other kinds of generators.


http://caml.inria.fr/cgi-bin/viewvc.cgi/ocaml/version/4.02/ocamldoc/odoc_html.ml?view=markup
http://caml.inria.fr/cgi-bin/viewvc.cgi/ocaml/version/4.02/ocamldoc/odoc_latex.ml?view=markup
http://caml.inria.fr/cgi-bin/viewvc.cgi/ocaml/version/4.02/ocamldoc/odoc_texi.ml?view=markup
http://caml.inria.fr/cgi-bin/viewvc.cgi/ocaml/version/4.02/ocamldoc/odoc_man.ml?view=markup
http://caml.inria.fr/cgi-bin/viewvc.cgi/ocaml/version/4.02/ocamldoc/odoc_dot.ml?view=markup
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15.4 Adding command line options

The command line analysis is performed after loading the module containing the documentation
generator, thus allowing command line options to be added to the list of existing ones. Adding an
option can be done with the function

Odoc_args.add_option : string * Arg.spec * string -> unit

Note: Existing command line options can be redefined using this function.

15.4.1 Compilation and usage
Defining a custom generator class in one file

Let custom.ml be the file defining a new generator class. Compilation of custom.ml can be per-
formed by the following command :

ocamlc -I +ocamldoc -c custom.ml
The file custom. cmo is created and can be used this way :
ocamldoc -g custom.cmo other-options source-files
It is important not to give the ~html or any other option selecting a built-in generator to ocamldoc,
which would result in using this generator instead of the one you just loaded.
Defining a custom generator class in several files

It is possible to define a generator class in several modules, which are defined in several files
filey .m1[i], filey .m1[i], ..., file, .m1[i]. A .cma library file must be created, including all these files.
The following commands create the custom. cma file from files file; .m1[i], ..., file,, .m1[i] :

ocamlc -I +ocamldoc -c file;.m1[i]
ocamlc -I +ocamldoc -c filey.ml[i]

ocamlc -I +ocamldoc -c file, .m1[i]
ocamlc -o custom.cma -a file;.cmo file,.cmo ... file,.cmo

Then, the following command uses custom.cma as custom generator:
ocamldoc -g custom.cma other-options source-files

Again, it is important not to give the —html or any other option selecting a built-in generator to
ocamldoc, which would result in using this generator instead of the one you just loaded.
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Chapter 16

The debugger (ocamldebug)

This chapter describes the OCaml source-level replay debugger ocamldebug.

Unix:
The debugger is available on Unix systems that provide BSD sockets.

Windows:
The debugger is available under the Cygwin port of OCaml, but not under the native Win32
ports.

16.1 Compiling for debugging

Before the debugger can be used, the program must be compiled and linked with the -g option: all
.cmo and .cma files that are part of the program should have been created with ocamlc -g, and
they must be linked together with ocamlc -g.

Compiling with —g entails no penalty on the running time of programs: object files and bytecode
executable files are bigger and take longer to produce, but the executable files run at exactly the
same speed as if they had been compiled without -g.

16.2 Invocation

16.2.1 Starting the debugger

The OCaml debugger is invoked by running the program ocamldebug with the name of the bytecode
executable file as first argument:

ocamldebug [options| program [arguments]

The arguments following program are optional, and are passed as command-line arguments to
the program being debugged. (See also the set arguments command.)
The following command-line options are recognized:

-c count
Set the maximum number of simultaneously live checkpoints to count.
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-cd dir
Run the debugger program from the working directory dir, instead of the current directory.
(See also the cd command.)

-emacs
Tell the debugger it is executed under Emacs. (See section [16.10| for information on how to
run the debugger under Emacs.)

-1 directory
Add directory to the list of directories searched for source files and compiled files. (See also
the directory command.)

-s socket
Use socket for communicating with the debugged program. See the description of the com-
mand set socket (section [16.8.6)) for the format of socket.

-version
Print version string and exit.

-vnum
Print short version number and exit.

-help or —-help
Display a short usage summary and exit.

16.2.2 Exiting the debugger

The command quit exits the debugger. You can also exit the debugger by typing an end-of-file
character (usually ctrl-D).

Typing an interrupt character (usually ctrl-C) will not exit the debugger, but will terminate
the action of any debugger command that is in progress and return to the debugger command level.

16.3 Commands

A debugger command is a single line of input. It starts with a command name, which is followed
by arguments depending on this name. Examples:

run
goto 1000
set arguments argl arg?2

A command name can be truncated as long as there is no ambiguity. For instance, go 1000
is understood as goto 1000, since there are no other commands whose name starts with go. For
the most frequently used commands, ambiguous abbreviations are allowed. For instance, r stands
for run even though there are others commands starting with r. You can test the validity of an
abbreviation using the help command.

If the previous command has been successful, a blank line (typing just RET) will repeat it.
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16.3.1 Getting help

The OCaml debugger has a simple on-line help system, which gives a brief description of each
command and variable.

help
Print the list of commands.

help command
Give help about the command command.

help set wariable, help show wvariable
Give help about the variable variable. The list of all debugger variables can be obtained with
help set.

help info topic
Give help about topic. Use help info to get a list of known topics.

16.3.2 Accessing the debugger state

set wvariable value
Set the debugger variable variable to the value value.

show wvariable
Print the value of the debugger variable variable.

info subject
Give information about the given subject. For instance, info breakpoints will print the list
of all breakpoints.

16.4 Executing a program

16.4.1 Events

Events are “interesting” locations in the source code, corresponding to the beginning or end of
evaluation of “interesting” sub-expressions. Events are the unit of single-stepping (stepping goes to
the next or previous event encountered in the program execution). Also, breakpoints can only be
set at events. Thus, events play the role of line numbers in debuggers for conventional languages.

During program execution, a counter is incremented at each event encountered. The value of
this counter is referred as the current time. Thanks to reverse execution, it is possible to jump
back and forth to any time of the execution.

Here is where the debugger events (written i) are located in the source code:

e Following a function application:
(f arg)x

e On entrance to a function:
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fun xyz > ...

e On each case of a pattern-matching definition (function, match...with construct, try...with
construct):

function patl —> X exprl

| ...
| patN -> <1 exprN

e Between subexpressions of a sequence:
exprl; D expr2; < ...; D exprN

e In the two branches of a conditional expression:
if cond then X exprl else D expr2

e At the beginning of each iteration of a loop:

while cond do D body done
for i = a to b do < body done

Exceptions: A function application followed by a function return is replaced by the compiler by a
jump (tail-call optimization). In this case, no event is put after the function application.

16.4.2 Starting the debugged program

The debugger starts executing the debugged program only when needed. This allows setting break-
points or assigning debugger variables before execution starts. There are several ways to start
execution:

run Run the program until a breakpoint is hit, or the program terminates.

goto O
Load the program and stop on the first event.

goto time
Load the program and execute it until the given time. Useful when you already know ap-
proximately at what time the problem appears. Also useful to set breakpoints on function
values that have not been computed at time 0 (see section [16.5]).

The execution of a program is affected by certain information it receives when the debugger
starts it, such as the command-line arguments to the program and its working directory. The
debugger provides commands to specify this information (set arguments and cd). These com-
mands must be used before program execution starts. If you try to change the arguments or the
working directory after starting your program, the debugger will kill the program (after asking for
confirmation).



Chapter 16. The debugger (ocamldebug) 261

16.4.3 Running the program

The following commands execute the program forward or backward, starting at the current time.
The execution will stop either when specified by the command or when a breakpoint is encountered.

run Execute the program forward from current time. Stops at next breakpoint or when the
program terminates.

reverse
Execute the program backward from current time. Mostly useful to go to the last breakpoint
encountered before the current time.

step [count]
Run the program and stop at the next event. With an argument, do it count times. If count
is 0, run until the program terminates or a breakpoint is hit.

backstep [count]
Run the program backward and stop at the previous event. With an argument, do it count
times.

next [count]
Run the program and stop at the next event, skipping over function calls. With an argument,
do it count times.

previous [count]
Run the program backward and stop at the previous event, skipping over function calls. With
an argument, do it count times.

finish
Run the program until the current function returns.

start
Run the program backward and stop at the first event before the current function invocation.

16.4.4 Time travel

You can jump directly to a given time, without stopping on breakpoints, using the goto command.
As you move through the program, the debugger maintains an history of the successive times

you stop at. The last command can be used to revisit these times: each last command moves one

step back through the history. That is useful mainly to undo commands such as step and next.

goto time
Jump to the given time.

last [count]
Go back to the latest time recorded in the execution history. With an argument, do it count
times.

set history size
Set the size of the execution history.
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16.4.5 Killing the program

kill
Kill the program being executed. This command is mainly useful if you wish to recompile
the program without leaving the debugger.

16.5 Breakpoints

A breakpoint causes the program to stop whenever a certain point in the program is reached. It
can be set in several ways using the break command. Breakpoints are assigned numbers when set,
for further reference. The most comfortable way to set breakpoints is through the Emacs interface

(see section [16.10)).

break
Set a breakpoint at the current position in the program execution. The current position must
be on an event (i.e., neither at the beginning, nor at the end of the program).

break function
Set a breakpoint at the beginning of function. This works only when the functional value of
the identifier function has been computed and assigned to the identifier. Hence this command
cannot be used at the very beginning of the program execution, when all identifiers are still
undefined; use goto time to advance execution until the functional value is available.

break @ [module] line
Set a breakpoint in module module (or in the current module if module is not given), at the
first event of line line.

break @ [module] line column
Set a breakpoint in module module (or in the current module if module is not given), at the
event closest to line line, column column.

break @ [module] # character
Set a breakpoint in module module at the event closest to character number character.

break address
Set a breakpoint at the code address address.

delete [breakpoint-numbers]
Delete the specified breakpoints. Without argument, all breakpoints are deleted (after asking
for confirmation).

info breakpoints
Print the list of all breakpoints.

16.6 The call stack

Each time the program performs a function application, it saves the location of the application (the
return address) in a block of data called a stack frame. The frame also contains the local variables
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of the caller function. All the frames are allocated in a region of memory called the call stack. The
command backtrace (or bt) displays parts of the call stack.

At any time, one of the stack frames is “selected” by the debugger; several debugger commands
refer implicitly to the selected frame. In particular, whenever you ask the debugger for the value
of a local variable, the value is found in the selected frame. The commands frame, up and down
select whichever frame you are interested in.

When the program stops, the debugger automatically selects the currently executing frame and
describes it briefly as the frame command does.

frame
Describe the currently selected stack frame.

frame frame-number
Select a stack frame by number and describe it. The frame currently executing when the
program stopped has number 0; its caller has number 1; and so on up the call stack.

backtrace [count], bt [count]
Print the call stack. This is useful to see which sequence of function calls led to the currently
executing frame. With a positive argument, print only the innermost count frames. With a
negative argument, print only the outermost -count frames.

up [count]
Select and display the stack frame just “above” the selected frame, that is, the frame that
called the selected frame. An argument says how many frames to go up.

down [count]
Select and display the stack frame just “below” the selected frame, that is, the frame that
was called by the selected frame. An argument says how many frames to go down.

16.7 Examining variable values

The debugger can print the current value of simple expressions. The expressions can involve

program variables: all the identifiers that are in scope at the selected program point can be accessed.
Expressions that can be printed are a subset of OCaml expressions, as described by the following

grammar:

lowercase-ident

{capitalized-ident .} lowercase-ident

*

simple-expr

|

|

| $ integer
| simple-expr . lowercase-ident

| simple-expr . ( integer )

| simple-expr . [ integer ]

| ! simple-expr

| ( simple-expr )

The first two cases refer to a value identifier, either unqualified or qualified by the path to the
structure that define it. * refers to the result just computed (typically, the value of a function
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application), and is valid only if the selected event is an “after” event (typically, a function appli-
cation). $ integer refer to a previously printed value. The remaining four forms select part of an
expression: respectively, a record field, an array element, a string element, and the current contents
of a reference.

print wariables
Print the values of the given variables. print can be abbreviated as p.

display wvariables
Same as print, but limit the depth of printing to 1. Useful to browse large data structures
without printing them in full. display can be abbreviated as d.

When printing a complex expression, a name of the form $integer is automatically assigned to
its value. Such names are also assigned to parts of the value that cannot be printed because the
maximal printing depth is exceeded. Named values can be printed later on with the commands
p $integer or d $integer. Named values are valid only as long as the program is stopped. They are
forgotten as soon as the program resumes execution.

set print_depth d
Limit the printing of values to a maximal depth of d.

set print_length [
Limit the printing of values to at most [ nodes printed.

16.8 Controlling the debugger

16.8.1 Setting the program name and arguments

set program file
Set the program name to file.

set arguments arguments
Give arguments as command-line arguments for the program.

A shell is used to pass the arguments to the debugged program. You can therefore use
wildcards, shell variables, and file redirections inside the arguments. To debug programs
that read from standard input, it is recommended to redirect their input from a file (using
set arguments < input-file), otherwise input to the program and input to the debugger
are not properly separated, and inputs are not properly replayed when running the program
backwards.

16.8.2 How programs are loaded

The loadingmode variable controls how the program is executed.

set loadingmode direct
The program is run directly by the debugger. This is the default mode.
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set loadingmode runtime
The debugger execute the OCaml runtime ocamlrun on the program. Rarely useful; moreover
it prevents the debugging of programs compiled in “custom runtime” mode.

set loadingmode manual
The user starts manually the program, when asked by the debugger. Allows remote debugging

(see section [16.8.6]).

16.8.3 Search path for files

The debugger searches for source files and compiled interface files in a list of directories, the search
path. The search path initially contains the current directory . and the standard library directory.
The directory command adds directories to the path.

Whenever the search path is modified, the debugger will clear any information it may have
cached about the files.

directory directorynames
Add the given directories to the search path. These directories are added at the front, and
will therefore be searched first.

directory directorynames for modulename
Same as directory directorynames, but the given directories will be searched only when
looking for the source file of a module that has been packed into modulename.

directory
Reset the search path. This requires confirmation.

16.8.4 Working directory

Each time a program is started in the debugger, it inherits its working directory from the current
working directory of the debugger. This working directory is initially whatever it inherited from its
parent process (typically the shell), but you can specify a new working directory in the debugger
with the c¢d command or the -cd command-line option.

cd directory
Set the working directory for ocamldebug to directory.

pwd Print the working directory for ocamldebug.

16.8.5 Turning reverse execution on and off

In some cases, you may want to turn reverse execution off. This speeds up the program execution,
and is also sometimes useful for interactive programs.

Normally, the debugger takes checkpoints of the program state from time to time. That is, it
makes a copy of the current state of the program (using the Unix system call fork). If the variable
checkpoints is set to off, the debugger will not take any checkpoints.

set checkpoints on/off
Select whether the debugger makes checkpoints or not.
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16.8.6 Communication between the debugger and the program

The debugger communicate with the program being debugged through a Unix socket. You may
need to change the socket name, for example if you need to run the debugger on a machine and
your program on another.

set socket socket
Use socket for communication with the program. socket can be either a file name, or an
Internet port specification host:port, where host is a host name or an Internet address in dot
notation, and port is a port number on the host.

On the debugged program side, the socket name is passed through the CAML_DEBUG_SOCKET
environment variable.

16.8.7 Fine-tuning the debugger

Several variables enables to fine-tune the debugger. Reasonable defaults are provided, and you
should normally not have to change them.

set processcount count
Set the maximum number of checkpoints to count. More checkpoints facilitate going far back
in time, but use more memory and create more Unix processes.

As checkpointing is quite expensive, it must not be done too often. On the other hand, backward
execution is faster when checkpoints are taken more often. In particular, backward single-stepping
is more responsive when many checkpoints have been taken just before the current time. To fine-
tune the checkpointing strategy, the debugger does not take checkpoints at the same frequency
for long displacements (e.g. run) and small ones (e.g. step). The two variables bigstep and
smallstep contain the number of events between two checkpoints in each case.

set bigstep count
Set the number of events between two checkpoints for long displacements.

set smallstep count
Set the number of events between two checkpoints for small displacements.

The following commands display information on checkpoints and events:

info checkpoints
Print a list of checkpoints.

info events [module]
Print the list of events in the given module (the current module, by default).
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16.8.8 User-defined printers

Just as in the toplevel system (section , the user can register functions for printing values of
certain types. For technical reasons, the debugger cannot call printing functions that reside in the
program being debugged. The code for the printing functions must therefore be loaded explicitly
in the debugger.

load_printer "file-name"
Load in the debugger the indicated .cmo or .cma object file. The file is loaded in an environ-
ment consisting only of the OCaml standard library plus the definitions provided by object
files previously loaded using load_printer. If this file depends on other object files not yet
loaded, the debugger automatically loads them if it is able to find them in the search path.
The loaded file does not have direct access to the modules of the program being debugged.

install_printer printer-name
Register the function named printer-name (a value path) as a printer for objects whose types
match the argument type of the function. That is, the debugger will call printer-name when it
has such an object to print. The printing function printer-name must use the Format library
module to produce its output, otherwise its output will not be correctly located in the values
printed by the toplevel loop.

The value path printer-name must refer to one of the functions defined by the object files
loaded using load_printer. It cannot reference the functions of the program being debugged.

remove_printer printer-name
Remove the named function from the table of value printers.

16.9 Miscellaneous commands

list [module] [beginning] [end]
List the source of module module, from line number beginning to line number end. By default,
20 lines of the current module are displayed, starting 10 lines before the current position.

source filename
Read debugger commands from the script filename.

16.10 Running the debugger under Emacs

The most user-friendly way to use the debugger is to run it under Emacs. See the file emacs/README
in the distribution for information on how to load the Emacs Lisp files for OCaml support.

The OCaml debugger is started under Emacs by the command M-x camldebug, with argument
the name of the executable file progname to debug. Communication with the debugger takes place
in an Emacs buffer named *camldebug-prognamex. The editing and history facilities of Shell mode
are available for interacting with the debugger.

In addition, Emacs displays the source files containing the current event (the current posi-
tion in the program execution) and highlights the location of the event. This display is updated
synchronously with the debugger action.
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The following bindings for the most common debugger commands are available in the
xcamldebug-prognamex* buffer:
C-c C-s
(command step): execute the program one step forward.
C-c C-k
(command backstep): execute the program one step backward.
C-c C-n
(command next): execute the program one step forward, skipping over function calls.
Middle mouse button
(command display): display named value. $n under mouse cursor (support incremental
browsing of large data structures).
C-c C-p
(command print): print value of identifier at point.
C-c C-d
(command display): display value of identifier at point.
C-c C-r
(command run): execute the program forward to next breakpoint.
C-c C-v
(command reverse): execute the program backward to latest breakpoint.
C-c C-1
(command last): go back one step in the command history.
C-c C-t
(command backtrace): display backtrace of function calls.
C-c C-f
(command finish): run forward till the current function returns.
C-c <
(command up): select the stack frame below the current frame.
C-c >
(command down): select the stack frame above the current frame.

In all buffers in OCaml editing mode, the following debugger commands are also available:
C-x C-a C-b
(command break): set a breakpoint at event closest to point
C-x C-a C-p
(command print): print value of identifier at point
C-x C-a C-d
(command display): display value of identifier at point
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Profiling (ocamlprof)

This chapter describes how the execution of OCaml programs can be profiled, by recording how
many times functions are called, branches of conditionals are taken, ...

17.1 Compiling for profiling

Before profiling an execution, the program must be compiled in profiling mode, using the ocamlcp
front-end to the ocamlc compiler (see chapter or the ocamloptp front-end to the ocamlopt
compiler (see chapter . When compiling modules separately, ocamlcp or ocamloptp must be
used when compiling the modules (production of .cmo or .cmx files), and can also be used (though
this is not strictly necessary) when linking them together.

Note If a module (.ml file) doesn’t have a corresponding interface (.mli file), then compiling
it with ocamlcp will produce object files (.cmi and .cmo) that are not compatible with the ones
produced by ocamlc, which may lead to problems (if the . cmi or . cmo is still around) when switching
between profiling and non-profiling compilations. To avoid this problem, you should always have a
.mli file for each .ml file. The same problem exists with ocamloptp.

Note To make sure your programs can be compiled in profiling mode, avoid using any identifier
that begins with __ocaml_prof.

The amount of profiling information can be controlled through the -P option to ocamlcp or
ocamloptp, followed by one or several letters indicating which parts of the program should be
profiled:

a all options
f function calls : a count point is set at the beginning of each function body
i if ...then ...else ... : count points are set in both then branch and else branch

1 while, for loops: a count point is set at the beginning of the loop body

m match branches: a count point is set at the beginning of the body of each branch
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t try ...with ... branches: a count point is set at the beginning of the body of each branch

For instance, compiling with ocamlcp -P film profiles function calls, if...then...else..., loops
and pattern matching.

Calling ocamlcp or ocamloptp without the -P option defaults to -P fm, meaning that only
function calls and pattern matching are profiled.

Note For compatibility with previous releases, ocamlcp also accepts the -p option, with the
same arguments and behaviour as -P.

The ocamlcp and ocamloptp commands also accept all the options of the corresponding ocamlc
or ocamlopt compiler, except the -pp (preprocessing) option.

17.2 Profiling an execution

Running an executable that has been compiled with ocamlcp or ocamloptp records the execution
counts for the specified parts of the program and saves them in a file called ocamlprof .dump in the
current directory.

If the environment variable OCAMLPROF_DUMP is set when the program exits, its value is used as
the file name instead of ocamlprof .dump.

The dump file is written only if the program terminates normally (by calling exit or by falling
through). It is not written if the program terminates with an uncaught exception.

If a compatible dump file already exists in the current directory, then the profiling information
is accumulated in this dump file. This allows, for instance, the profiling of several executions of a
program on different inputs. Note that dump files produced by byte-code executables (compiled
with ocamlcp) are compatible with the dump files produced by native executables (compiled with
ocamloptp).

17.3 Printing profiling information

The ocamlprof command produces a source listing of the program modules where execution counts
have been inserted as comments. For instance,

ocamlprof foo.ml

prints the source code for the foo module, with comments indicating how many times the
functions in this module have been called. Naturally, this information is accurate only if the source
file has not been modified after it was compiled.

The following options are recognized by ocamlprof:

-f dumplfile
Specifies an alternate dump file of profiling information to be read.

-F string
Specifies an additional string to be output with profiling information. By default, ocamlprof
will annotate programs with comments of the form (* n *) where n is the counter value for
a profiling point. With option -F s, the annotation will be (* sn *).
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-impl filename
Process the file filename as an implementation file, even if its extension is not .ml.

-intf filename
Process the file filename as an interface file, even if its extension is not .mli.

-version
Print version string and exit.

-vnum
Print short version number and exit.

-help or —-help
Display a short usage summary and exit.

17.4 Time profiling

Profiling with ocamlprof only records execution counts, not the actual time spent within each
function. There is currently no way to perform time profiling on bytecode programs generated by
ocamlc.

Native-code programs generated by ocamlopt can be profiled for time and execution counts
using the -p option and the standard Unix profiler gprof. Just add the -p option when compiling
and linking the program:

ocamlopt -o myprog -p other-options files
./myprog
gprof myprog

OCaml function names in the output of gprof have the following format:
Module-name_function-name_unique-number

Other functions shown are either parts of the OCaml run-time system or external C functions
linked with the program.

The output of gprof is described in the Unix manual page for gprof (1). It generally consists
of two parts: a “flat” profile showing the time spent in each function and the number of invocation
of each function, and a “hierarchical” profile based on the call graph. Currently, only the Intel x86
ports of ocamlopt under Linux, BSD and MacOS X support the two profiles. On other platforms,
gprof will report only the “flat” profile with just time information. When reading the output of
gprof, keep in mind that the accumulated times computed by gprof are based on heuristics and
may not be exact.

Note The ocamloptp command also accepts the —p option. In that case, both kinds of profiling
are performed by the program, and you can display the results with the gprof and ocamlprof
commands, respectively.
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Chapter 18

The ocamlbuild compilation manager

(Chapter written by Berke Durak and Nicolas Pouillard)

ocamlbuild is a tool automating the compilation of most OCaml projects with minimal user
input. Its use is not restricted to projects having a simple structure — the extra effort needed
to make it work with the more complex projects is in reasonable proportion with their added
complexity. In practice, one will use a set of small text files, and, if needed, an OCaml compilation
module that can fine-tune the behaviour and define custom rules.

18.1 Features of ocamlbuild
This section is intended to read like a sales brochure or a datasheet.

e Built-in compilation rules for OCaml projects handle all the nasty cases: native and byte-
code, missing .mli files, preprocessor rules, libraries, package (-pack) debugging and profiling
flags, C stubs.

e Plugin mechanism for writing compilation rules and actions in a real programming language,
OCaml itself.

e Automatic inference of dependencies.
e Correct handling of dynamically discovered dependencies.

e Object files and other temporary files are created in a specific directory, leaving your main
directory uncluttered.

e Sanity checks ensure that object files are where they are supposed to be: in the build directory.
e Regular projects are built using a single command with no extra files.
e Parallel compilation to speed up things on multi-core systems.

e Sophisticated display mode to keep your screen free of boring and repetitive compilation mes-
sage while giving you important progress information in a glimpse, and correctly multiplexing
the error messages.
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Tags and flags provide a concise and convenient mechanism for automatic selection of com-
pilation, preprocessing and other options.

Extended shell-like glob patterns, that can be combined using boolean operators, allow you
to concisely define the tags that apply to a given file.

Mechanisms for defining the mutual visibility of subdirectories.

e Cache mechanism avoiding unnecessary compilations where reasonably computable.

18.2 Limitations

Not perfect nor complete yet, but already pretty damn useful.

We were not expecting to write the ultimate compilation tool in a few man-months, however we
believe we have a tool that solves many compilation problems, especially our own, in a satisfactory
way. Hence there are a lot of missing features, incomplete options and hideous bugs lurking in
ocamlbuild, and we hope that the OCaml community will find our first try at ocamlbuild useful
and hopefully help it grow into a tool that satisfies most needs of most users by providing feedback,
bug reports and patches.

The plugin API maybe somewhat lacking in maturity, as it has only been tested by a few
people. We believe a good API can only evolve under pressure from many peers and the courage
to rewrite things cleanly when time is ripe by the developers. Most of the important functions a
user will need are encapsulated in the plugin API, which is the Ocamlbuild_plugin module pack.
We intend to keep that API backwards compatible. It may happen that intricate projects need
features not available in that module — you may then use functions or values directly from the
core ocamlbuild modules. We ask you to report such usage to the authors so that we may make
the necessary changes to the API; you may also want to isolate calls to the non-API parts of the
ocamlbuild library from the rest of your plugin to be able to keep the later when incompatible
changes arise.

The way that ocamlbuild handles the command-line options, the _tags file, the target names,
names of the tags, and so on, are not expected to change in incompatible ways. We intend to keep
a project that compiles without a plugin compilable without modifications in the future.

18.3 Using ocamlbuild

Learn how to use ocamlbuild with short, specific, straight-to-the-point examples.

The amount of time and effort spent on the compilation process of a project should be propor-
tionate to that spent on the project itself. It should be easy to set up a small project, maybe a little
harder for a medium-sized project, and it may take some more time, but not too much, for a big
project. Ideally setting up a big project would be as easy as setting up a small project. However,
as projects grow, modularization techniques start to be used, and the probability of using meta
programming or multiple programming languages increases, thus making the compilation process
more delicate.

ocamlbuild is intended to be very easy to use for projects, large or small, with a simple com-
pilation process: typing ocamlbuild foo.native should be enough to compile the native version



Chapter 18. The ocamlbuild compilation manager 275

of a program whose top module is foo.ml and whose dependencies are in the same directory. As
your project gets more complex, you will gradually start to use command-line options to specify
libraries to link with, then configuration files, ultimately culminating in a custom OCaml plugin
for complex projects with arbitrary dependencies and actions.

18.3.1 Hygiene & where is my code ?

Your code is in the _build directory, but ocamlbuild automatically creates a symbolic link to the
executables it produces in the current directory. ocamlbuild copies the source files and compiles
them in a separate directory which is _build by default.

For ocamlbuild, any file that is not in the build directory is a source file. It is not unreasonable
to think that some users may have bought binary object files they keep in their project directory.
Usually binary files cluttering the project directory are due to previous builds using other systems.
ocamlbuild has so-called “hygiene” rules that state that object files (.cmo, .cmi, or .o files, for
instance) must not appear outside of the build directory. These rules are enforced at startup; any
violations will be reported and ocamlbuild will exit. You must then remove these files by hand or
run, with caution, the script sanitize.sh, which is generated in your source directory. This script
will contain commands to remove them for you.

To disable these checks, you can use the -no-hygiene flag. If you have files that must elude
the hygiene squad, just tag them with precious or not_hygienic.

18.3.2 Hello, world !

Assuming we are in a directory named examplel containing one file hello.ml whose contents are

let _ =
Printf.printf "Hello, %s ! My name is %s\n"
(if Array.length Sys.argv > 1 then Sys.argv. (1) else "stranger")
Sys.argv. (0)

AR

we can compile and link it into a native executable by invoking ocamlbuild hello.native.
Here, hello is the basename of the top-level module and native is an extension used by ocamlbuild
to denote native code executables.

% 1s

hello.ml

% ocamlbuild hello.native

Finished, 4 targets (0 cached) in 00:00:00.

% 1ls -1

total 12

drwxrwx--- 2 linus gallium 4096 2007-01-17 16:24 _build/
-rw-rw———— 1 linus gallium 43 2007-01-17 16:23 hello.ml

lruxrwxrwx 1 linus gallium 19 2007-01-17 16:24 hello.native -> _build/hello.nativex

What’s this funny _build directory 7 Well that’s where ocamlbuild does its dirty work of
compiling. You usually won’t have to look very often into this directory. Source files are copied
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into _build and this is where the compilers will be run. Various cache files are also stored there.
Its contents may look like this:

% 1s -1 _build

total 208

-rw-rw-———— 1 linus gallium 337 2007-01-17 16:24 _digests
-rw-rw——-- 1 linus gallium 191 2007-01-17 16:24 hello.cmi
-rw-rw-———— 1 linus gallium 262 2007-01-17 16:24 hello.cmo
-rw-rw———- 1 linus gallium 225 2007-01-17 16:24 hello.cmx
-rw-rw——-- 1 linus gallium 43 2007-01-17 16:23 hello.ml
-rw-rw———— 1 linus gallium 17 2007-01-17 16:24 hello.ml.depends
-rwxrwx——— 1 linus gallium 173528 2007-01-17 16:24 hello.nativex
-rw-rw———— 1 linus gallium 936 2007-01-17 16:24 hello.o
-rw-rw———- 1 linus gallium 22 2007-01-17 16:24 ocamlc.where

18.3.3 Executing my code

You can execute your code the old-fashioned way (./hello.native). You may also type

ocamlbuild hello.native -- Caesar

and it will compile and then run hello.native with the arguments following --, which should
display:
% ocamlbuild hello.native -- Caesar

Finished, 4 targets (0 cached) in 00:00:00.
Hello, Caesar ! My name is _build/hello.native

18.3.4 The log file, verbosity and debugging

By default, if you run ocamlbuild on a terminal, it will use some ANSI escape sequences to display
a nice, one-line progress indicator. To see what commands ocamlbuild has actually run, you can
check the contents of the _build/_log file. To change the name of the log file or to disable logging,
use the -log <file> or -no-log options. Note that the log file is truncated at each execution of
ocamlbuild.

The log file contains all the external commands that ocamlbuild ran or intended to run along
with the target name and the computed tags. With the -verbose <level> option, ocamlbuild
will also write more or less useful debugging information; a verbosity level of 1 (which can also
be specified using the -verbose switch) prints generally useful information; higher levels produce
much more output.

18.3.5 Cleaning

ocamlbuild may leave a _build directory and symbolic links to executables in that directory (unless
when using -no-links). All of these can be removed safely by hand, or by invoking ocamlbuild with
the -clean flag.
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18.3.6 Where and how to run ocamlbuild?

An important point is that ocamlbuild must be invoked from the root of the project, even if this
project has multiple, nested subdirectories. This is because ocamlbuild likes to store the object
files in a single _build directory. You can change the name of that directory with the -build-dir
option.

ocamlbuild can be either invoked manually from the UNIX or Windows shell, or automatically
from a build script or a Makefile. Unless run with the -no-hygiene option, there is the possibility
that ocamlbuild will prompt the user for a response. By default, on UNIX systems, if ocamlbuild
senses that the standard output is a terminal, it will use a nice progress indicator using ANSI
codes, instrumenting the output of the processes it spawns to have a consistent display. Under
non-UNIX systems, or if the standard output is not a terminal, it will run in classic mode where
it will echo the executed commands on its standard output. This selection can be overridden with
the -classic-display option.

18.3.7 Dependencies

Dependencies are automatically discovered.

Most of the value of ocamlbuild lies in the fact that it often needs no extra information
to compile a project besides the name of the top-level module. ocamlbuild calls ocamldep to
automatically find the dependencies of any modules it wants to compile. These dependencies are
dynamically incorporated in the dependency graph, something make cannot do. For instance, let’s
add a module Greet that implements various ways of greeting people.

% cat greet.ml
type how = Nicely | Badly;;

let greet how who =
match how with Nicely -> Printf.printf "Hello, %s !\n" who
| Badly -> Printf.printf "Oh, here is that %s again.\n" who
% cat hello.ml
open Greet

let _ =
let name =
if Array.length Sys.argv > 1 then
Sys.argv. (1)
else
"stranger"
in
greet
(if name = "Caesar" then Nicely else Badly)
name;

Printf.printf "My name is %s\n" Sys.argv.(0)

A
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Then the module Hello depends on the module Greet and ocamlbuild can figure this out for
himself — we still only have to invoke ocamlbuild hello.native. Needless to say, this works for
any number of modules.

18.3.8 Native and byte-code

If we want to compile byte-code instead of native, we just a target name of hello.byte instead of
hello.native, i.e., we type ocamlbuild hello.byte.

18.3.9 Compile flags

To pass a flag to the compiler, such as the -rectypes option, use the ~cflag option as in:
ocamlbuild -cflag -rectypes hello.native

You can put multiple —~cflag options, they will be passed to the compiler in the same order.
You can also give them in a comma-separated list with the -cflags option (notice the plural):

ocamlbuild -cflags -I,+lablgtk,-rectypes hello.native

These flags apply when compiling, that is, when producing .cmi, .cmo,.cmx and .o files from
.ml or .mli files.

18.3.10 Link flags

Link flags apply when the various object files are collected and linked into one executable. These
will typically be include directories for libraries. They are given using the -1flag and -1flags
options, which work in the same way as the -cflag and -cflags options.

18.3.11 Linking with external libraries
In our third example, we use one Unix system call and functions from the num library:

% cat epoch.ml
let _ =

let s = Num.num_of_string (Printf.sprintf "%.0f" (Unix.gettimeofday ())) in

let ps = Num.mult_num (Num.num_of_string "1000000000000") s in

Printf.printf "%s picoseconds have passed since January 1st, 1970.\n"

(Num.string_of_num ps)

This requires linking with the unix and num modules, which is accomplished by using the -1ib

unix and -1ib num flags, or, alternatively, -1ibs unix,num:

% ocamlbuild -1libs nums,unix epoch.native --
Finished, 4 targets (4 cached) in 00:00:00.
1169051647000000000000 picoseconds have passed since January 1st, 1970.

You may need to add options such as -cflags -I,/usr/local/lib/ocaml/ and -1flags
-I,/usr/local/lib/ocaml/ if the libraries you wish to link with are not in OCaml’s default
search path.
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18.3.12 The _tags files

Finer control over the compiler flags applied to each source file, such as preprocessing, debugging,
profiling and linking options, can be gained using ocamlbuild’s tagging mechanism.

Every source file has a set of tags which tells ocamlbuild what kind of file it is and what to
do with it. A tag is simply a string, usually lowercase, for example ocaml or native. The set of
tags attached to a file is computed by applying the tagging rules to the filename. Tagging rules are
defined in _tags files in any parent directory of a file, up to the main project directory.

Each line in the _tags file is made of a glob pattern (see subsection and a list of tags.
More than one rule can apply to a file and rules are applied in the order in which they appear in a
file. By preceding a tag with a minus sign, one may remove tags from one or more files.

Example: the built-in _tags file

<kk/x .ml> or <#x/*.mli> or <**/*.mlpack> or <**/x.ml.depends>: ocaml
<x*/x byte>: ocaml, byte, program

<k*x/*_,odoc>: ocaml, doc

<x*/x .native>: ocaml, native, program

<xx/*.cma>: ocaml, byte, library

<x*/x.cmxa>: ocaml, native, library

<x*/x.cmo>: ocaml, byte

<x*/x.cmi>: ocaml, byte, native

<xx/*,cmx>: ocaml, native

Two special tags made from the path name of the file relative to the toplevel of the project are
automatically defined for each file. For a file foo/bar.ml those tags will be file:foo/bar.ml, and
extension:ml.

If you do not have subdirectories, you can put *.ml instead of **/*.ml.

18.3.13 Glob patterns and expressions

Glob patterns have a syntax similar to those used by UNIX shells to select path names (like
foo_*.ba?). They are used in ocamlbuild to define the files and directories to which tags apply.
Glob expressions are glob patterns enclosed in brackets < and > combined using the standard
boolean operators and, or, not. This allows one to describe sets of path names in more concise
and more readable ways.

Please note that file and directory names are supposed to be made of the following characters:
a,...,z, A ...,Z,0,...,9, _, - and .. This is called the pathname alphabet P.

18.3.14 Subdirectories

If the files of your project are held in one or more subdirectories, ocamlbuild must be made aware
of that fact using the -I or -Is options or by adding an include tag. For instance, assume your
project is made of three subdirectories, foo, bar and baz containing various .ml files, the main file
being foo/main.ml. Then you can either type:

% ocamlbuild -Is foo,bar,baz foo/main.native
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’ Formal syntax ‘ Example Matches ‘ Does not match ‘ Meaning (formal meaning) ‘
u A string of path- | foo.ml foo.ml fo.ml, bar/foo.ml | The exact string u ({u}, where
*
name characters u€ Pr)
*  The wild-card | * €, foo, bar foo/bar, /bar Any string not containing a slash
*
star (P*)
? The joker ? a, b,z /, bar Any one-letter string, excluding
the slash
xx/  The prefix | **/foo.ml foo.ml, foo/bar, /bar The empty string, or any string
bar/foo.ml, ending with a slash (e U P*/)

inter-directory star

bar/baz/foo.ml

/*x*x  The suffix | foo/** foo, foo/bar bar/foo Any string starting with a slash,

inter-directory star or the empty string (e U /P")

/*x/  The infix | bar/**/foo.ml bar/foo.ml, foo.ml Any string starting and ending

inter-directory star bar/baz/foo.ml with a slash (e U /P*/)

[rirg---7,] where | [a-fA-FO-9_.] 3,F, . z, bar Any one-letter string made of

r; is either ¢ or characters from one of the ranges

e —cp (1<i<k) r, (1 <i<mn). (Lr)U---U

The positive char- L(ry))

acter class

[“rire---rg] where | ["a-fA-FO-9_.] | z, bar 3, F, Any one-letter string NOT made

r; is either c or ¢ — of characters from one of the

2 (1 < i < k) ranges 7; (1 < @ < n). (Z*\

The negative char- (L(r1)U---UL(ryn)))

acter class

p1p2 A concatena- | foox foo, foob, foobar fo, bar Any string with a prefix match-

tion of patterns ing p1 and.the corresponding suf-
fix matching ps, ({uv | v €
L(p1),v € L(p2)})

{p1,p2, ok} A | toto.{ml,mli} | toto.ml, toto.mli | toto. Any string matching one of the

union of patterns

patterns p; for 1 < i < k.

(L(p1) U---UL(px))

Table 18.1: Syntax and semantics of glob patterns.

Formal syn- | Fxample Meaning (formal meaning)

tax

<p> <foo.ml> Pathnames matching the pattern p

e1 or eo <x.ml> or <foo/bar.ml> | Pathnames matching at least one of the ex-
pressions e; and es

e1 and es <*.ml> and <foo_x*> Pathnames matching both expressions e; and
e

not e not <*.mli> Pathnames not matching the expression e

true true All pathnames

false false No pathnames

Table 18.2: Syntax and semantics of glob expressions.
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or add the following line in the _tags file
<foo> or <bar> or <baz>: include

and call
% ocamlbuild foo/main.native

There are then two cases. If no other modules named Bar or Baz exist elsewhere in the
project, then you are done. Just use Foo, Foo.Bar and Foo.Baz in your code. Otherwise, you
will need to use the plugin mechanism and define the mutual visibility of the subdirectories using
the Pathname.define_context function.

Note on subdirectory traversal

ocamlbuild used to traverse by default any subdirectory not explicitly excluded. This is no longer
the case. Note that you can still have a fine grained control using your _tags file and the traverse
tag.

There is no longer the true: traverse tag declaration by default. To make ocamlbuild
recursive use one of these:

1. Give the -r flag to ocamlbuild.

2. Have a _tags or myocamlbuild.ml file in your top directory.

18.3.15 Grouping targets with .itarget
You can create a file named foo.itarget containing a list of targets, one per line, such as

main.native
main.byte
stuff.docdir/index.html

Requesting the target foo.otarget will then build every target listed in the file foo.itarget.
Blank lines and lines starting with a sharp (#) are ignored.

18.3.16 Packing subdirectories into modules

OCaml’s -pack option allows you to structure the contents of a module in a subdirectory. For
instance, assume you have a directory foo containing two modules bar.ml and baz.ml. You want
from these to build a module Foo containing Bar and Baz as submodules. In the case where no
modules named Bar or Baz exist outside of Foo, to do this you must write a file foo.mlpack,
preferably sitting in the same directory as the directory Foo and containing the list of modules (one
per line) it must contain:

Bar
Baz

Then when you will request for building foo.cmo the package will be made from bar.cmo and
baz.cmo.
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18.3.17 Making an OCaml library

In a similar way than for packaged modules you can make a library by putting it’s contents in a
file (with the mllib extension). For instance, assume you have a two modules bar.ml and baz.ml.
You want from these to build a library foo.cmx?a containing Bar and Baz modules. To do this
you must write a file foo.m11lib containing the list of modules (one per line) it must contain:

Bar
Baz

Then when you will request for building foo.cma the library will be made from bar.cmo and
baz.cmo.

18.3.18 Making an OCaml toplevel

Making a toplevel is almost the same thing than making a packaged module or a library. Just write
a file with the m1top extension (like foo.mltop) and request for building the toplevel using the top
extension (foo.top in this example).

18.3.19 Preprocessor options and tags

You can specify preprocessor options with -pp followed by the preprocessor string, for instance
ocamlbuild -pp camlp4o.opt -unsafe would run your sources through CamlP4 with the
-unsafe option. Another way is to use the tags file.

’ Tag ‘ Preprocessor command ‘ Remark ‘
pp(cmd...) | cmd... Arbitrary preprocessor commandH
camlp4o camlp4o Original OCaml syntax
camlp4r camlp4r Revised OCaml syntax
camlp4of camlp4of Original OCaml syntax with extensions
camlp4rf camlp4rf Revised OCaml syntax with extensions

18.3.20 Debugging byte code and profiling native code

The preferred way of compiling code suitable for debugging with ocamldebug or profiling native code
with ocamlprof is to use the appropriate target extensions, .d.byte for debugging or .p.native.

Another way is to add use the debug or profile tags. Note that these tags must be applied at
the compilation and linking stages. Hence you must either use -tag debug or -tag profile on
the command line, or add a

true: debug

line to your _tags file. Please note that the byte-code profiler works in a wholly different way
and is not supported by ocamlbuild.



Chapter 18. The ocamlbuild compilation manager 283

18.3.21 Generating documentation using ocamldoc

Write the names of the modules whose interfaces will be documented in a file whose extension is
.odocl, for example foo.odocl, then invoke ocamlbuild on the target foo.docdir/index.html.
This will collect all the documentation from the interfaces (which will be build, if necessary) using
ocamldoc and generate a set of HT'ML files under the directory foo.docdir/, which is actually
a link to _build/foo.docdir/. As for packing subdirectories into modules, the module names
must be written one per line, without extensions and correctly capitalized. Note that generating
documentation in formats other than HTML or from implementations is not supported.

18.3.22 The display line

Provided ocamlbuild runs in a terminal under a POSIX environment, it will display a sophisticated
progress-indicator line that graciously interacts with the output of subcommands. This line looks
like this:

00:00:02 210 (180 ) main.cmx ONbp--il /

Here, 00:00:02 is the elapsed time in hour:minute:second format since ocamlbuild has been
invoked; 210 is the number of external commands, typically calls to the compiler or the like, that
may or may not have been invoked; 180 is the number of external commands that have not been
invoked since their result is already in the build directory; main.cmx is the name of the last target
built; ONbp--il is a short string that describes the tags that have been encountered and the slash
at the end is a frame from a rotating ticker. Hence, the display line has the following structure:

HH:MM:SS JOBS (CACHED) PATHNAME TAGS TICKER

The tag string is made of 8 indicators which each monitor a tag. These tags are ocaml, native,
byte, program, pp, debug, interf and link. Initially, each indicator displays a dash -. If the
current target has the monitored tag, then the indicator displays the corresponding character (see
table in uppercase. Otherwise, it displays that character in lowercase. This allows you to
see the set of tags that have been applied to files in your project during the current invocation of
ocamlbuild.

Hence the tag string ONbp--il means that the current target main.cmx has the tags ocaml and
native, and that the tags ocaml, native, byte, program, interf and link have already been
seen.

18.3.23 ocamllex, ocamlyacc and menhir

ocamlbuild knows how to run the standard lexer and parser generator tools ocamllex and
ocamlyacc when your files have the standard .m11 and .mly extensions. If you want to use menhir
instead of ocamlyacc, you can either launch ocamlbuild with the ~use-menhir option or add a

true: use_menhir

line to your _tags file. Note that there is currently no way of using menhir and ocamlyacc in
the same execution of ocamlbuild.



284

Tag Display character

ocaml

native
byte
program
pp
debug
interf
link

il wii=viiss] fvsiql@)

Table 18.3: Relation between the characters displayed in the tag string and the tags.

18.3.24 Changing the compilers or tools

As ocamlbuild is part of your OCaml distribution, it knows if it can call the native compilers
and tools (ocamlc.opt, ocamlopt.opt...) or not. However you may want ocamlbuild to use
another ocaml compiler for different reasons (such as cross-compiling or using a wrapper such as
ocamlfind). Here is the list of relevant options:

e -ocamlc <command>

e -ocamlopt <command>

e -ocamldep <command>

e -ocamlyacc <command>
e -menhir <command>

e -ocamllex <command>

e -ocamlmktop <command>

e -ocamlrun <command>

18.3.25 Interaction with version control systems

Here are tips for configuring your version control system to ignore the files and directories generated
by ocamlbuild.

The directory _build and any symbolic links pointing into _build should be ignored. To do
this, you must add the following ignore patterns to your version control system’s ignore set:

_build
*.native
*.byte
*.d.native
*.p.byte

For CVS, add the above lines to the . cvsignore file. For Subversion (SVN), type svn propedit
svn:ignore . and add the above lines.
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18.3.26 A shell script for driving it all?

To shell or to make ? Traditionally, makefiles have two major functions. The first one is the
dependency-ordering, rule-matching logic used for compiling. The second one is as a dispatcher
for various actions defined using phony targets with shell script actions. These actions include
cleaning, cleaning really well, archiving, uploading and so on. Their characteristic is that they rely
little or not on the building process — they either need the building to have been completed, or
they don’t need anything. As /bin/sh scripts have been here for three to four decades and are
not going anywhere, why not replace that functionality of makefiles with a shell script 7 We have
thought of three bad reasons:

e Typing make to compile is now an automatism,
e We need to share variable definitions between rules and actions,

e Escaping already way too special-character-sensitive shell code with invisible tabs and back-
slashes is a dangerously fun game.

We also have bad reasons for not using an OCaml script to drive everything:
e Sys.command calls the /bin/sh anyway,
e Shell scripts can execute partial commands or commands with badly formed arguments.
e Shell scripts are more concise for expressing... shell scripts.

Anyway you are of course free to use a makefile or an OCaml script to call ocamlbuild. Here is an
example shell driver script:

#!/bin/sh
set -e

TARGET=epoch
FLAGS="-1ibs unix,nums"
OCAMLBUILD=ocamlbuild

ocb()
{

$0CAMLBUILD $FLAGS $x*
}

rule() {
case $1 in
clean) ocb -clean;;
native) ocb $TARGET.native;;
byte)  ocb $TARGET.byte;;
all) ocb $TARGET.native $TARGET.byte;;
depend) echo "Not needed.";;
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*) echo "Unknown action $1";;
esac;

if [ $# -eq O ]; then
rule all
else
while [ $# -gt 0 ]; do
rule $1;
shift
done
fi

18.4 Appendix: Motivations

This inflammatory appendiz describes the frustration that led us to write ocamlbuild.

Many people have painfully found that the utilities of the make family, namely GNU Make,
BSD Make, and their derivatives, fail to scale to large projects, especially when using multi-stage
compilation rules, such as custom pre-processors, unless dependencies are hand-defined. But as
your project gets larger, more modular, and uses more diverse pre-processing tools, it becomes
increasingly difficult to correctly define dependencies by hand. Hence people tend to use language-
specific tools that attempt to extract dependencies. However another problem then appears: make
was designed with the idea of a static dependency graph. Dependency extracting tools, however,
are typically run by a rule in make itself; this means that make has to reload the dependency
information. This is the origin of the make clean; make depend; make mantra. This approach
tends to work quite well as long as all the files sit in a single directory and there is only one
stage of pre-processing. If there are two or more stages, then dependency extracting tools must
be run two or more times - and this means multiple invocations of make. Also, if one distributes
the modules of a large project into multiple subdirectories, it becomes difficult to distribute the
makefiles themselves, because the language of make was not conceived to be modular; the only two
mechanisms permitted, inclusion of makefile fragments, and invocation of other make instances,
must be skillfully coordinated with phony target names (depend1, depend2...) to insure inclusion
of generated dependencies with multi-stage programming; changes in the structure of the project
must be reflected by hand and the order of variable definitions must be well-thought ahead to avoid
long afternoons spent combinatorially fiddling makefiles until it works but no one understands why.

These problems become especially apparent with OCaml: to ensure type safety and to allow
a small amount of cross-unit optimization when compiling native code, interface and object files
include cryptographical digests of interfaces they are to be linked with. This means that linking is
safer, but that makefile sloppiness leads to messages such as:

Files foo.cmo and bar.cmo
make inconsistent assumptions over interface Bar

The typical reaction is then to issue the mantra make clean; make depend; make and every-
thing compiles just fine... from the beginning. Hence on medium projects, the programmer often
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has to wait for minutes instead of the few seconds that would be taken if make could correctly guess
the small number of files that really had to be recompiled.

It is not surprising that hacking a build tool such as make to include a programming language
while retaining the original syntax and semantics gives an improvised and cumbersome macro
language of dubious expressive power. For example, using GNU make, suppose you have a list
of .mls that you want to convert into a list including both .cmos and .cmis, that is you want
to transform a.ml b.ml c.ml into a.cmi a.cmo b.cmi b.cmo c.cmi c.cmo while preserving the
dependency order which must be hand specified for linking ﬂ Unfortunately $patsubst %.ml,
%h.cmi %.cmo, a.ml b.ml c.ml won’t work since the %-sign in the right-hand of a patsubst gets
substituted only once. You then have to delve into something that is hardly lambda calculus:
an intricate network of foreach, eval, call and defines may get you the job done, unless you
chicken out and opt for an external awk, sed or perl call. People who at this point have not lost
their temper or sanity usually resort to metaprogramming by writing Makefile generators using a
mixture of shell and m4. One such an attempt gave something that is the nightmare of wannabe
package maintainers: it’s called autotools.

Note that it is also difficult to write Makefiles to build object files in a separate directory.
It is not impossible since the language of make is Turing-complete, a proof of which is left as an
exercise. Note that building things in a separate directory is not necessarily a young enthusiast’s
way of giving a different look and feel to his projects — it may be a good way of telling the computer
that foo.mli is generated by ocamlyacc using foo.mly and can thus be removed.

18.5 Appendix: Summary of default rules

The contents of this table give a summary of the most important default rules. To get the most
accurate and up-to-date information, launch ocamlbuild with the ~documentation option.

2By the way, what’s the point of having a declarative language if make can’t sort the dependencies in topological
order for giving them to gcc or whatever ?
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’ Tags \ Dependencies \ Targets
%.itarget %.otarget

ocaml %.mli %.mli.depends %.cmi
byte, debug, ocaml %.mlpack %.cmi %.d.cmo
byte, ocaml %.mlpack %.cmo %.cmi
byte, ocaml %.mli %.ml %.ml.depends %.cmi | %.d.cmo
byte, ocaml %.mli %.ml %.ml.depends %.cmi | %.cmo
native, ocaml, profile %.mlpack %.cmi %.p.cmx %.p.o
native, ocaml %.mlpack %.cmi %.cmx %.0
native, ocaml, profile %.ml %.ml.depends %.cmi %.p.cmx %.p.o
native, ocaml %.ml %.ml.depends %.cmi %.cmx %.0
debug, ocaml %.ml %.ml.depends %.cmi %.d.cmo
ocaml %.ml %.ml.depends %.cmo %.cmi
byte, debug, ocaml, program %.d.cmo %.d.byte
byte, ocaml, program %.cmo %.byte
native, ocaml, profile, program | %.p.cmx %.p.o %.p.native
native, ocaml, program %.cmx %.0 %.native
byte, debug, library, ocaml %.mllib %.d.cma
byte, library, ocaml %.mllib %.cma,
byte, debug, library, ocaml %.d.cmo %.d.cma
byte, library, ocaml %.cmo %.cma

1ib%(libname).clib

1ib%(libname).a
dl1%(libname).so

%(path)/1ib%(libname).clib

%(path)/1ib% (libname).a
% (path)/dl1%(libname).so

library, native, ocaml, profile %.mllib %.p.cmxa %.p.a
library, native, ocaml %.mllib %.cmxa %.a
library, native, ocaml, profile %.p.cmx %.p.o %.p.cmxa %.p.a
library, native, ocaml %.cmx %.0 %.cmxa %.a
%.ml %.ml.depends
%.mli %.mli.depends
ocaml %.mll %.ml
doc, ocaml %.mli %.mli.depends %.odoc
%.odocl %.docdir /index.html
ocaml %.mly %.ml %.mli
%.c %.0

%.ml %.ml.depends

%.inferred.mli




Chapter 19

Interfacing C with OCaml

This chapter describes how user-defined primitives, written in C, can be linked with OCaml code
and called from OCaml functions, and how these C functions can call back to OCaml code.

19.1 Overview and compilation information

19.1.1 Declaring primitives

definition = ...
| external value-name : typexpr = external-declaration

external-declaration ::= string-literal [string-literal [string-literal]|

User primitives are declared in an implementation file or struct. .. end module expression using
the external keyword:

external name : type = C-function-name

This defines the value name name as a function with type type that executes by calling the
given C function. For instance, here is how the input primitive is declared in the standard library
module Pervasives:

external input : in_channel -> bytes -> int -> int -> int
= "input"

Primitives with several arguments are always curried. The C function does not necessarily have
the same name as the ML function.

External functions thus defined can be specified in interface files or sig. .. end signatures either
as regular values

val name : type
thus hiding their implementation as C functions, or explicitly as “manifest” external functions

external name : type = C-function-name

289
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The latter is slightly more efficient, as it allows clients of the module to call directly the C
function instead of going through the corresponding OCaml function. On the other hand, it should
not be used in library modules if they have side-effects at toplevel, as this direct call interferes with
the linker’s algorithm for removing unused modules from libraries at link-time.

The arity (number of arguments) of a primitive is automatically determined from its OCaml type
in the external declaration, by counting the number of function arrows in the type. For instance,
input above has arity 4, and the input C function is called with four arguments. Similarly,

external input2 : in_channel * bytes * int * int -> int = "input2"

has arity 1, and the input2 C function receives one argument (which is a quadruple of OCaml
values).
Type abbreviations are not expanded when determining the arity of a primitive. For instance,

type int_endo = int -> int
external f : int_endo -> int_endo = "f"
external g : (int -> int) -> (int -> int) = "f"

f has arity 1, but g has arity 2. This allows a primitive to return a functional value (as in the
f example above): just remember to name the functional return type in a type abbreviation.

The language accepts external declarations with one or two flag strings in addition to the C
function’s name. These flags are reserved for the implementation of the standard library.

19.1.2 Implementing primitives

User primitives with arity n < 5 are implemented by C functions that take n arguments of type
value, and return a result of type value. The type value is the type of the representations
for OCaml values. It encodes objects of several base types (integers, floating-point numbers,
strings, ...) as well as OCaml data structures. The type value and the associated conversion
functions and macros are described in detail below. For instance, here is the declaration for the C
function implementing the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)

{

When the primitive function is applied in an OCaml program, the C function is called with the
values of the expressions to which the primitive is applied as arguments. The value returned by
the function is passed back to the OCaml program as the result of the function application.

User primitives with arity greater than 5 should be implemented by two C functions. The first
function, to be used in conjunction with the bytecode compiler ocamlc, receives two arguments: a
pointer to an array of OCaml values (the values for the arguments), and an integer which is the
number of arguments provided. The other function, to be used in conjunction with the native-code
compiler ocamlopt, takes its arguments directly. For instance, here are the two C functions for the
7-argument primitive Nat.add_nat:
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CAMLprim value add_nat_native(value natl, value ofsl, value lenl,
value nat2, value ofs2, value len2,
value carry_in)

}
CAMLprim value add_nat_bytecode(value * argv, int argn)
{
return add_nat_native(argv[0], argv[1], argv[2], argv[3],
argv[4], argv[5], argv[6]);

The names of the two C functions must be given in the primitive declaration, as follows:

external name : type =
bytecode-C-function-name native-code-C-function-name

For instance, in the case of add_nat, the declaration is:

external add_nat: nat -> int -> int -> nat -> int -> int -> int -> int
= "add_nat_bytecode" "add_nat_native"

Implementing a user primitive is actually two separate tasks: on the one hand, decoding the
arguments to extract C values from the given OCaml values, and encoding the return value as an
OCaml value; on the other hand, actually computing the result from the arguments. Except for
very simple primitives, it is often preferable to have two distinct C functions to implement these two
tasks. The first function actually implements the primitive, taking native C values as arguments
and returning a native C value. The second function, often called the “stub code”, is a simple
wrapper around the first function that converts its arguments from OCaml values to C values, call
the first function, and convert the returned C value to OCaml value. For instance, here is the stub
code for the input primitive:

CAMLprim value input(value channel, value buffer, value offset, value length)
{
return Val_long(getblock((struct channel *) channel,
&Byte (buffer, Long_val(offset)),
Long_val(length)));

(Here, Val_long, Long_val and so on are conversion macros for the type value, that will be
described later. The CAMLprim macro expands to the required compiler directives to ensure that
the function is exported and accessible from OCaml.) The hard work is performed by the function
getblock, which is declared as:

long getblock(struct channel * channel, char * p, long n)

{
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To write C code that operates on OCaml values, the following include files are provided:

Include file Provides

caml/mlvalues.h | definition of the value type, and conversion macros

caml/alloc.h allocation functions (to create structured OCaml objects)

caml/memory.h miscellaneous memory-related functions and macros (for GC interface,
in-place modification of structures, etc).

caml/fail.h functions for raising exceptions (see section

caml/callback.h | callback from C to OCaml (see section [19.7).

caml/custom.h operations on custom blocks (see section [19.9)).

caml/intext.h operations for writing user-defined serialization and deserialization func-
tions for custom blocks (see section .

caml/threads.h | operations for interfacing in the presence of multiple threads (see sec-
tion (19.10)).

These files reside in the caml/ subdirectory of the OCaml standard library directory, which is
returned by the command ocamlc -where (usually /usr/local/lib/ocaml or /usr/lib/ocaml).

Note: It is recommended to define the macro CAML_NAME_SPACE before including these header
files. If you do not define it, the header files will also define short names (without the caml_ prefix)
for most functions, which usually produce clashes with names defined by other C libraries that you
might use. Including the header files without CAML_NAME_SPACE is only supported for backward
compatibility.

19.1.3 Statically linking C code with OCaml code

The OCaml runtime system comprises three main parts: the bytecode interpreter, the memory
manager, and a set of C functions that implement the primitive operations. Some bytecode in-
structions are provided to call these C functions, designated by their offset in a table of functions
(the table of primitives).

In the default mode, the OCaml linker produces bytecode for the standard runtime system,
with a standard set of primitives. References to primitives that are not in this standard set result
in the “unavailable C primitive” error. (Unless dynamic loading of C libraries is supported — see
section below.)

In the “custom runtime” mode, the OCaml linker scans the object files and determines the set
of required primitives. Then, it builds a suitable runtime system, by calling the native code linker
with:

e the table of the required primitives;

e a library that provides the bytecode interpreter, the memory manager, and the standard
primitives;
e libraries and object code files (.o files) mentioned on the command line for the OCaml linker,

that provide implementations for the user’s primitives.

This builds a runtime system with the required primitives. The OCaml linker generates bytecode for
this custom runtime system. The bytecode is appended to the end of the custom runtime system,
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so that it will be automatically executed when the output file (custom runtime + bytecode) is
launched.
To link in “custom runtime” mode, execute the ocamlc command with:

e the —custom option;
e the names of the desired OCaml object files (.cmo and .cma files) ;

e the names of the C object files and libraries (.o and .a files) that implement the required
primitives. Under Unix and Windows, a library named libname.a (respectively, .1ib) re-
siding in one of the standard library directories can also be specified as ~cclib -1lname.

If you are using the native-code compiler ocamlopt, the -custom flag is not needed, as the
final linking phase of ocamlopt always builds a standalone executable. To build a mixed OCaml/C
executable, execute the ocamlopt command with:

e the names of the desired OCaml native object files (.cmx and .cmxa files);

e the names of the C object files and libraries (.o, .a, .so or .d1l1 files) that implement the
required primitives.

Starting with Objective Caml 3.00, it is possible to record the -custom option as well as the
names of C libraries in an OCaml library file .cma or .cmxa. For instance, consider an OCaml
library mylib.cma, built from the OCaml object files a.cmo and b.cmo, which reference C code in
libmylib.a. If the library is built as follows:

ocamlc -a -o mylib.cma -custom a.cmo b.cmo -cclib -1lmylib
users of the library can simply link with mylib.cma:
ocamlc -o myprog mylib.cma ...

and the system will automatically add the -custom and -cclib -1mylib options, achieving the
same effect as

ocamlc -o myprog -custom a.cmo b.cmo ... -cclib -1mylib

The alternative is of course to build the library without extra options:
ocamlc -a -o mylib.cma a.cmo b.cmo

and then ask users to provide the —custom and -cclib -1mylib options themselves at link-time:
ocamlc -o myprog -custom mylib.cma ... -cclib -1lmylib

The former alternative is more convenient for the final users of the library, however.
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19.1.4 Dynamically linking C code with OCaml code

Starting with Objective Caml 3.03, an alternative to static linking of C code using the —~custom code
is provided. In this mode, the OCaml linker generates a pure bytecode executable (no embedded
custom runtime system) that simply records the names of dynamically-loaded libraries containing
the C code. The standard OCaml runtime system ocamlrun then loads dynamically these libraries,
and resolves references to the required primitives, before executing the bytecode.

This facility is currently supported and known to work well under Linux, MacOS X, and Win-
dows. It is supported, but not fully tested yet, under FreeBSD, Tru64, Solaris and Irix. It is not
supported yet under other Unixes.

To dynamically link C code with OCaml code, the C code must first be compiled into a shared
library (under Unix) or DLL (under Windows). This involves 1- compiling the C files with appro-
priate C compiler flags for producing position-independent code (when required by the operating
system), and 2- building a shared library from the resulting object files. The resulting shared li-
brary or DLL file must be installed in a place where ocamlrun can find it later at program start-up
time (see section [10.3). Finally (step 3), execute the ocamlc command with

e the names of the desired OCaml object files (.cmo and .cma files) ;

e the names of the C shared libraries (.so or .d11 files) that implement the required primitives.
Under Unix and Windows, a library named d11name.so (respectively, .d11) residing in one
of the standard library directories can also be specified as -d11ib -lname.

Do not set the ~custom flag, otherwise you're back to static linking as described in section
The ocamlmklib tool (see section automates steps 2 and 3.

As in the case of static linking, it is possible (and recommended) to record the names of C
libraries in an OCaml .cma library archive. Consider again an OCaml library mylib.cma, built
from the OCaml object files a.cmo and b.cmo, which reference C code in dllmylib.so. If the
library is built as follows:

ocamlc -a -o mylib.cma a.cmo b.cmo -dllib -lmylib
users of the library can simply link with mylib.cma:
ocamlc -o myprog mylib.cma ...

and the system will automatically add the -d11ib -1mylib option, achieving the same effect
as

ocamlc -o myprog a.cmo b.cmo ... —-dllib -lmylib
Using this mechanism, users of the library mylib.cma do not need to known that it references
C code, nor whether this C code must be statically linked (using -custom) or dynamically linked.
19.1.5 Choosing between static linking and dynamic linking

After having described two different ways of linking C code with OCaml code, we now review the
pros and cons of each, to help developers of mixed OCaml/C libraries decide.

The main advantage of dynamic linking is that it preserves the platform-independence of byte-
code executables. That is, the bytecode executable contains no machine code, and can therefore be
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compiled on platform A and executed on other platforms B, C, ..., as long as the required shared
libraries are available on all these platforms. In contrast, executables generated by ocamlc -custom
run only on the platform on which they were created, because they embark a custom-tailored run-
time system specific to that platform. In addition, dynamic linking results in smaller executables.

Another advantage of dynamic linking is that the final users of the library do not need to have
a C compiler, C linker, and C runtime libraries installed on their machines. This is no big deal
under Unix and Cygwin, but many Windows users are reluctant to install Microsoft Visual C just
to be able to do ocamlc -custom.

There are two drawbacks to dynamic linking. The first is that the resulting executable is not
stand-alone: it requires the shared libraries, as well as ocamlrun, to be installed on the machine
executing the code. If you wish to distribute a stand-alone executable, it is better to link it stat-
ically, using ocamlc -custom -ccopt -static or ocamlopt -ccopt -static. Dynamic linking
also raises the “DLL hell” problem: some care must be taken to ensure that the right versions of
the shared libraries are found at start-up time.

The second drawback of dynamic linking is that it complicates the construction of the library.
The C compiler and linker flags to compile to position-independent code and build a shared library
vary wildly between different Unix systems. Also, dynamic linking is not supported on all Unix
systems, requiring a fall-back case to static linking in the Makefile for the library. The ocamlmklib
command (see section tries to hide some of these system dependencies.

In conclusion: dynamic linking is highly recommended under the native Windows port, because
there are no portability problems and it is much more convenient for the end users. Under Unix,
dynamic linking should be considered for mature, frequently used libraries because it enhances
platform-independence of bytecode executables. For new or rarely-used libraries, static linking is
much simpler to set up in a portable way.

19.1.6 Building standalone custom runtime systems

It is sometimes inconvenient to build a custom runtime system each time OCaml code is linked
with C libraries, like ocamlc -custom does. For one thing, the building of the runtime system is
slow on some systems (that have bad linkers or slow remote file systems); for another thing, the
platform-independence of bytecode files is lost, forcing to perform one ocamlc -custom link per
platform of interest.

An alternative to ocamlc -custom is to build separately a custom runtime system integrating
the desired C libraries, then generate “pure” bytecode executables (not containing their own run-
time system) that can run on this custom runtime. This is achieved by the -make-runtime and
-use-runtime flags to ocamlc. For example, to build a custom runtime system integrating the C
parts of the “Unix” and “Threads” libraries, do:

ocamlc -make-runtime -o /home/me/ocamlunixrun unix.cma threads.cma
To generate a bytecode executable that runs on this runtime system, do:

ocamlc -use-runtime /home/me/ocamlunixrun -o myprog \
unix.cma threads.cma your .cmo and .cma files

The bytecode executable myprog can then be launched as usual: myprog args or
/home/me/ocamlunixrun myprog args.
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Notice that the bytecode libraries unix.cma and threads.cma must be given twice: when
building the runtime system (so that ocamlc knows which C primitives are required) and also
when building the bytecode executable (so that the bytecode from unix.cma and threads.cma is
actually linked in).

19.2 The value type

All OCaml objects are represented by the C type value, defined in the include file
caml/mlvalues.h, along with macros to manipulate values of that type. An object of type value
is either:

e an unboxed integer;

e a pointer to a block inside the heap (such as the blocks allocated through one of the
caml_alloc_x functions below);

e a pointer to an object outside the heap (e.g., a pointer to a block allocated by malloc, or to
a C variable).

19.2.1 Integer values

Integer values encode 63-bit signed integers (31-bit on 32-bit architectures). They are unboxed
(unallocated).

19.2.2 Blocks

Blocks in the heap are garbage-collected, and therefore have strict structure constraints. Each
block includes a header containing the size of the block (in words), and the tag of the block. The
tag governs how the contents of the blocks are structured. A tag lower than No_scan_tag indicates
a structured block, containing well-formed values, which is recursively traversed by the garbage
collector. A tag greater than or equal to No_scan_tag indicates a raw block, whose contents are
not scanned by the garbage collector. For the benefit of ad-hoc polymorphic primitives such as
equality and structured input-output, structured and raw blocks are further classified according to
their tags as follows:
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Tag

Contents of the block

0 to No_scan_tag — 1
Closure_tag
String_tag
Double_tag

Double_array_tag

Abstract_tag
Custom_tag

A structured block (an array of OCaml objects). Each field
is a value.

A closure representing a functional value. The first word is
a pointer to a piece of code, the remaining words are value
containing the environment.

A character string or a byte sequence.

A double-precision floating-point number.

An array or record of double-precision floating-point num-
bers.

A block representing an abstract datatype.

A block representing an abstract datatype with user-defined
finalization, comparison, hashing, serialization and deserial-
ization functions atttached.

19.2.3 Pointers outside the heap
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Any word-aligned pointer to an address outside the heap can be safely cast to and from the type
value. This includes pointers returned by malloc, and pointers to C variables (of size at least one
word) obtained with the & operator.

Caution: if a pointer returned by malloc is cast to the type value and returned to OCaml,
explicit deallocation of the pointer using free is potentially dangerous, because the pointer may still
be accessible from the OCaml world. Worse, the memory space deallocated by free can later be
reallocated as part of the OCaml heap; the pointer, formerly pointing outside the OCaml heap, now
points inside the OCaml heap, and this can crash the garbage collector. To avoid these problems,

it is preferable to wrap the pointer in a OCaml block with tag Abstract_tag or Custom_tag.

19.3 Representation of OCaml data types

This section describes how OCaml data types are encoded in the value type.

19.3.1 Atomic types

OCaml type | Encoding

int
char
float
bytes

int32
int64

string

nativeint | Blocks with tag Custom_tag.

Unboxed integer values.

Unboxed integer values (ASCII code).
Blocks with tag Double_tag.

Blocks with tag String_tag.

Blocks with tag String_tag.

Blocks with tag Custom_tag,.

Blocks with tag Custom_tag.

19.3.2 Tuples and records

Tuples are represented by pointers to blocks, with tag 0.
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Records are also represented by zero-tagged blocks. The ordering of labels in the record type
declaration determines the layout of the record fields: the value associated to the label declared
first is stored in field 0 of the block, the value associated to the second label goes in field 1, and so
on.

As an optimization, records whose fields all have static type float are represented as arrays of
floating-point numbers, with tag Double_array_tag. (See the section below on arrays.)

19.3.3 Arrays

Arrays of integers and pointers are represented like tuples, that is, as pointers to blocks tagged 0.
They are accessed with the Field macro for reading and the caml_modify function for writing.

Arrays of floating-point numbers (type float array) have a special, unboxed, more efficient
representation. These arrays are represented by pointers to blocks with tag Double_array_tag.
They should be accessed with the Double_field and Store_double_field macros.

19.3.4 Concrete data types

Constructed terms are represented either by unboxed integers (for constant constructors) or by
blocks whose tag encode the constructor (for non-constant constructors). The constant constructors
and the non-constant constructors for a given concrete type are numbered separately, starting from
0, in the order in which they appear in the concrete type declaration. A constant constructor is
represented by the unboxed integer equal to its constructor number. A non-constant constructor
declared with n arguments is represented by a block of size n, tagged with the constructor number;
the n fields contain its arguments. Example:

Constructed term | Representation

O Val_int(0)

false Val_int(0)

true Val_int (1)

(] Val_int (0)

h::t Block with size = 2 and tag = 0; first field con-
tains h, second field t.

As a convenience, caml/mlvalues.h defines the macros Val_unit, Val_false and Val_true
to refer to (), false and true.
The following example illustrates the assignment of integers and block tags to constructors:

type t =
| A (* First constant constructor -> integer "Val_int(0)" *)
| B of string (* First non-constant constructor -> block with tag O *)
| C (* Second constant constructor -> integer "Val_int(1)" *)
| D of bool (* Second non-constant constructor -> block with tag 1 *)
|

Eof t xt (* Third non-constant constructor -> block with tag 2 *)
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19.3.5 Objects

Objects are represented as blocks with tag Object_tag. The first field of the block refers to the
object’s class and associated method suite, in a format that cannot easily be exploited from C. The
second field contains a unique object ID, used for comparisons. The remaining fields of the object
contain the values of the instance variables of the object. It is unsafe to access directly instance
variables, as the type system provides no guarantee about the instance variables contained by an
object.

One may extract a public method from an object using the C function caml_get_public_method
(declared in <caml/mlvalues.h>.) Since public method tags are hashed in the same way as
variant tags, and methods are functions taking self as first argument, if you want to do the method
call foo#tbar from the C side, you should call:

callback(caml_get_public_method(foo, hash_variant("bar")), foo);

19.3.6 Polymorphic variants

Like constructed terms, polymorphic variant values are represented either as integers (for poly-
morphic variants without argument), or as blocks (for polymorphic variants with an argument).
Unlike constructed terms, variant constructors are not numbered starting from 0, but identi-
fied by a hash value (an OCaml integer), as computed by the C function hash_variant (de-
clared in <caml/mlvalues.h>): the hash value for a variant constructor named, say, VConstr is
hash_variant ("VConstr").

The variant value ~VConstr is represented by hash_variant ("VConstr"). The variant value
“VConstr(v) is represented by a block of size 2 and tag 0, with field number 0 containing
hash_variant ("VConstr") and field number 1 containing v.

Unlike constructed values, polymorphic variant values taking several arguments are not flat-
tened. That is, “VConstr (v, w) is represented by a block of size 2, whose field number 1 contains
the representation of the pair (v, w), rather than a block of size 3 containing v and w in fields 1
and 2.

19.4 Operations on values

19.4.1 Kind tests

e Is_long(w) is true if value v is an immediate integer, false otherwise

e Is_block(w) is true if value v is a pointer to a block, and false if it is an immediate integer.

19.4.2 Operations on integers

e Val_long(lD) returns the value encoding the long int I

Long_val(v) returns the long int encoded in value v.

Val_int (4) returns the value encoding the int .

Int_val(w) returns the int encoded in value v.
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Val_bool(z) returns the OCaml boolean representing the truth value of the C integer .
Bool_val(w) returns 0 if v is the OCaml boolean false, 1 if v is true.

Val_true, Val_false represent the OCaml booleans true and false.

19.4.3 Accessing blocks

Wosize_val (v) returns the size of the block v, in words, excluding the header.
Tag_val(wv) returns the tag of the block v.

Field(v, n) returns the value contained in the n'" field of the structured block v. Fields are
numbered from 0 to Wosize_val(v) — 1.

Store_field(b, n, v) stores the value v in the field number n of value b, which must be a
structured block.

Code_val (v) returns the code part of the closure v.

caml_string_length(v) returns the length (number of bytes) of the string or byte sequence
v.

Byte(v, n) returns the n'" byte of the string or byte sequence v, with type char. Bytes are
numbered from 0 to string_length(v) — 1.

Byte_u(v, n) returns the n'® byte of the string or byte sequence v, with type unsigned char.
Bytes are numbered from 0 to string_length(v) — 1.

String_val(w) returns a pointer to the first byte of the string or byte sequence v, with type
char *. This pointer is a valid C string: there is a null byte after the last byte in the string.
However, OCaml strings and byte sequences can contain embedded null bytes, which will
confuse the usual C functions over strings.

Double_val(v) returns the floating-point number contained in value v, with type double.

Double_field(wv, n) returns the n'" element of the array of floating-point numbers v (a
block tagged Double_array_tag).

Store_double_field(wv, m, d) stores the double precision floating-point number d in the
n'™ element of the array of floating-point numbers v.

Data_custom_val (v) returns a pointer to the data part of the custom block v. This pointer
has type void * and must be cast to the type of the data contained in the custom block.

Int32_val(v) returns the 32-bit integer contained in the int32 v.
Int64_val(v) returns the 64-bit integer contained in the int64 v.

Nativeint_val(v) returns the long integer contained in the nativeint v.

The expressions Field(v, n), Byte(v, n) and Byte_u(v, n) are valid l-values. Hence, they can
be assigned to, resulting in an in-place modification of value v. Assigning directly to Field(v, n)
must be done with care to avoid confusing the garbage collector (see below).
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19.4.4 Allocating blocks

Simple interface

Atom(?) returns an “atom” (zero-sized block) with tag t. Zero-sized blocks are preallocated
outside of the heap. It is incorrect to try and allocate a zero-sized block using the functions
below. For instance, Atom(0) represents the empty array.

caml_alloc(n, t) returns a fresh block of size n with tag ¢. If ¢ is less than No_scan_tag,
then the fields of the block are initialized with a valid value in order to satisfy the GC
constraints.

caml_alloc_tuple(n) returns a fresh block of size n words, with tag 0.

caml_alloc_string(n) returns a byte sequence (or string) value of length n bytes. The
sequence initially contains uninitialized bytes.

caml_copy_string(s) returns a string or byte sequence value containing a copy of the null-
terminated C string s (a char *).

caml_copy_double(d) returns a floating-point value initialized with the double d.

caml_copy_int32(i), caml_copy_int64(7) and caml_copy_nativeint (i) return a value of
OCaml type int32, int64 and nativeint, respectively, initialized with the integer .

caml_alloc_array(f, a) allocates an array of values, calling function fover each element of
the input array a to transform it into a value. The array a is an array of pointers terminated
by the null pointer. The function f receives each pointer as argument, and returns a value.
The zero-tagged block returned by alloc_array(f, a) is filled with the values returned by
the successive calls to f. (This function must not be used to build an array of floating-point
numbers.)

caml_copy_string_array(p) allocates an array of strings or byte sequences, copied from the
pointer to a string array p (a char **). p must be NULL-terminated.

Low-level interface

The following functions are slightly more efficient than caml_alloc, but also much more difficult
to use.

From the standpoint of the allocation functions, blocks are divided according to their size as
zero-sized blocks, small blocks (with size less than or equal to Max_young_wosize), and large blocks
(with size greater than Max_young_wosize). The constant Max_young_wosize is declared in the
include file mlvalues.h. It is guaranteed to be at least 64 (words), so that any block with constant
size less than or equal to 64 can be assumed to be small. For blocks whose size is computed at
run-time, the size must be compared against Max_young_wosize to determine the correct allocation
procedure.

caml_alloc_small(n, ¢) returns a fresh small block of size n < Max_young_wosize words,
with tag t. If this block is a structured block (i.e. if ¢ < No_scan_tag), then the fields



302

of the block (initially containing garbage) must be initialized with legal values (using direct
assignment to the fields of the block) before the next allocation.

e caml_alloc_shr(n, t) returns a fresh block of size n, with tag . The size of the block
can be greater than Max_young_wosize. (It can also be smaller, but in this case it is more
efficient to call caml_alloc_small instead of caml_alloc_shr.) If this block is a structured
block (i.e. if t < No_scan_tag), then the fields of the block (initially containing garbage)
must be initialized with legal values (using the caml_initialize function described below)
before the next allocation.

19.4.5 Raising exceptions

Two functions are provided to raise two standard exceptions:

e caml_failwith(s), where sis a null-terminated C string (with type char *), raises exception
Failure with argument s.

e caml_invalid_argument (s), where s is a null-terminated C string (with type char *), raises
exception Invalid_argument with argument s.

Raising arbitrary exceptions from C is more delicate: the exception identifier is dynamically
allocated by the OCaml program, and therefore must be communicated to the C function using the
registration facility described below in section Once the exception identifier is recovered in
C, the following functions actually raise the exception:

e caml_raise_constant (id) raises the exception id with no argument;
e caml_raise_with_arg(id, v) raises the exception id with the OCaml value v as argument;

e caml_raise_with_args(id, m, v) raises the exception ¢d with the OCaml values v[0], ...,
v[n-1] as arguments;

e caml_raise_with_string(id, s), where sis a null-terminated C string, raises the exception
id with a copy of the C string s as argument.

19.5 Living in harmony with the garbage collector

Unused blocks in the heap are automatically reclaimed by the garbage collector. This requires some
cooperation from C code that manipulates heap-allocated blocks.

19.5.1 Simple interface

All the macros described in this section are declared in the memory.h header file.

Rule 1 A function that has parameters or local variables of type value must begin with a call to
one of the CAMLparam macros and return with CAMLreturn, CAMLreturnO, or CAMLreturnT.
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There are six CAMLparam macros: CAMLparamO to CAMLparam5b, which take zero to five arguments
respectively. If your function has no more than 5 parameters of type value, use the corresponding
macros with these parameters as arguments. If your function has more than 5 parameters of type
value, use CAMLparamb with five of these parameters, and use one or more calls to the CAMLxparam
macros for the remaining parameters (CAMLxparaml to CAMLxparam5).

The macros CAMLreturn, CAMLreturnO, and CAMLreturnT are used to replace the C keyword
return. Every occurrence of return x must be replaced by CAMLreturn (x) if x has type value,
or CAMLreturnT (t, x) (where t is the type of x); every occurrence of return without argument
must be replaced by CAMLreturnO. If your C function is a procedure (i.e. if it returns void), you
must insert CAMLreturnO at the end (to replace C’s implicit return).

Note: some C compilers give bogus warnings about unused variables caml__dummy_xxx at each
use of CAMLparam and CAMLlocal. You should ignore them.
Example:

void foo (value v1, value v2, value v3)

{
CAMLparam3 (v1, v2, v3);

CAMLreturnO;
}

Note: if your function is a primitive with more than 5 arguments for use with the byte-code
runtime, its arguments are not values and must not be declared (they have types value * and
int).

Rule 2 Local variables of type value must be declared with one of the CAML1local macros. Arrays of
values are declared with CAML1ocalN. These macros must be used at the beginning of the function,
not in a nested block.

The macros CAMLlocall to CAMLlocal5 declare and initialize one to five local variables of type
value. The variable names are given as arguments to the macros. CAMLlocalN(z, n) declares and
initializes a local variable of type value [n]. You can use several calls to these macros if you have
more than 5 local variables.

Example:

value bar (value vl, value v2, value v3)

{
CAMLparam3 (v1, v2, v3);
CAMLlocall (result);
result = caml_alloc (3, 0);

CAMLreturn (result);
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Rule 3 Assignments to the fields of structured blocks must be done with the Store_field macro
(for normal blocks) or Store_double_field macro (for arrays and records of floating-point num-
bers). Other assignments must not use Store_field nor Store_double_field.

Store_field (b, n, v) stores the value v in the field number n of value b, which must be a
block (i.e. Is_block(b) must be true).
Example:

value bar (value vl, value v2, value v3)
{
CAMLparam3 (v1, v2, v3);
CAMLlocall (result);
result = caml_alloc (3, 0);
Store_field (result, 0, vl);
Store_field (result, 1, v2);
Store_field (result, 2, v3);
CAMLreturn (result);

Warning:  The first argument of Store_field and Store_double_field must be a variable
declared by CAMLparam* or a parameter declared by CAMLlocal* to ensure that a garbage collection
triggered by the evaluation of the other arguments will not invalidate the first argument after it is
computed.

Rule 4 Global variables containing values must be registered with the garbage collector using the
caml_register_global_root function.

Registration of a global variable v is achieved by calling caml_register_global_root (&v) just
before or just after a valid value is stored in v for the first time. You must not call any of the
OCaml runtime functions or macros between registering and storing the value.

A registered global variable v can be un-registered by calling caml_remove_global_root (&v).

If the contents of the global variable v are seldom modified after registration, better performance
can be achieved by calling caml_register_generational_global_root(&v) to register v (after
its initialization with a valid value, but before any allocation or call to the GC functions), and
caml_remove_generational_global_root (&v) to un-register it. In this case, you must not modify
the value of v directly, but you must use caml_modify_generational_global_root (&v,x) to set
it to x. The garbage collector takes advantage of the guarantee that v is not modified between calls
to caml_modify_generational_global_root to scan it less often. This improves performance if
the modifications of v happen less often than minor collections.

Note: The CAML macros use identifiers (local variables, type identifiers, structure tags) that start
with caml__. Do not use any identifier starting with caml__ in your programs.
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19.5.2 Low-level interface

We now give the GC rules corresponding to the low-level allocation functions caml_alloc_small
and caml_alloc_shr. You can ignore those rules if you stick to the simplified allocation function
caml_alloc.

Rule 5 After a structured block (a block with tag less than No_scan_tag) is allocated with the
low-level functions, all fields of this block must be filled with well-formed values before the next
allocation operation. If the block has been allocated with caml_alloc_small, filling is performed by
direct assignment to the fields of the block:

Field(v, n) = v,;

If the block has been allocated with caml_alloc_shr, filling is performed through the
caml_initialize function:

caml_initialize(&Field(v, n), v,);

The next allocation can trigger a garbage collection. The garbage collector assumes that all
structured blocks contain well-formed values. Newly created blocks contain random data, which
generally do not represent well-formed values.

If you really need to allocate before the fields can receive their final value, first initialize with
a constant value (e.g. Val_unit), then allocate, then modify the fields with the correct value (see
rule 6).

Rule 6 Direct assignment to a field of a block, as in
Field(v, n) = w;

1s safe only if v is a block newly allocated by caml_alloc_small; that is, if no allocation took
place between the allocation of v and the assignment to the field. In all other cases, never assign
directly. If the block has just been allocated by caml_alloc_shr, use caml_initialize to assign a
value to a field for the first time:

caml_initialize(&Field(v, n), w);

Otherwise, you are updating a field that previously contained a well-formed value; then, call the
caml_modify function:

caml_modify(&Field(v, n), w);

To illustrate the rules above, here is a C function that builds and returns a list containing the
two integers given as parameters. First, we write it using the simplified allocation functions:

value alloc_list_int(int i1, int i2)

{
CAMLparamO ();
CAMLlocal2 (result, r);

r = caml_alloc(2, 0); /* Allocate a cons cell */
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Store_field(r, 0, Val_int(i2)); /* car = the integer i2 */
Store_field(r, 1, Val_int(0)); /* cdr = the empty list [] */
result = caml_alloc(2, 0); /* Allocate the other cons cell */
Store_field(result, 0, Val_int(il)); /* car = the integer il */
Store_field(result, 1, r); /* cdr = the first cons cell */

CAMLreturn (result);

Here, the registering of result is not strictly needed, because no allocation takes place after
it gets its value, but it’s easier and safer to simply register all the local variables that have type
value.

Here is the same function written using the low-level allocation functions. We notice that
the cons cells are small blocks and can be allocated with caml_alloc_small, and filled by direct
assignments on their fields.

value alloc_list_int(int il, int i2)

{
CAMLparamO ();
CAMLlocal2 (result, r);
r = caml_alloc_small(2, 0); /* Allocate a cons cell */
Field(r, 0) = Val_int(i2); /* car = the integer i2 */
Field(r, 1) = Val_int(0); /* cdr = the empty list [] */
result = caml_alloc_small(2, 0); /* Allocate the other cons cell */
Field(result, 0) = Val_int(il); /* car = the integer il */
Field(result, 1) = r; /* cdr = the first cons cell */
CAMLreturn (result);

}

In the two examples above, the list is built bottom-up. Here is an alternate way, that proceeds
top-down. It is less efficient, but illustrates the use of caml_modify.

value alloc_list_int(int i1, int i2)

{
CAMLparamO ();
CAMLlocal2 (tail, r);
r = caml_alloc_small(2, 0); /* Allocate a cons cell */
Field(r, 0) = Val_int(il); /* car = the integer il */
Field(r, 1) = Val_int(0); /* A dummy value
tail = caml_alloc_small(2, 0); /* Allocate the other cons cell */
Field(tail, 0) = Val_int(i2); /* car = the integer i2 */
Field(tail, 1) = Val_int(0); /* cdr = the empty list [] */
caml_modify(&Field(r, 1), tail); /* cdr of the result = tail */

CAMLreturn (r);
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It would be incorrect to perform Field(r, 1) = tail directly, because the allocation of tail
has taken place since r was allocated.

19.6 A complete example

This section outlines how the functions from the Unix curses library can be made available to
OCaml programs. First of all, here is the interface curses.mli that declares the curses primitives
and data types:

(* File curses.mli -- declaration of p