

filter_loader Software Guide
EDM04-28

EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Protection Against Harmful Interference
When present on equipment this manual pertains to, the statement "This device complies with part 15 of the FCC
rules" specifies the equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the Federal Communications Commission [FCC] Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment.
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will
be required to correct the interference at their own expense.

Extra Components and Materials
The product that this manual pertains to may include extra components and materials that are not essential to its
basic operation, but are necessary to ensure compliance to the product standards required by the United States
Federal Communications Commission, and the European EMC Directive. Modification or removal of these
components and/or materials, is liable to cause non compliance to these standards, and in doing so invalidate the
user’s right to operate this equipment in a Class A industrial environment.

Disclaimer
Whilst every effort has been made to ensure accuracy, neither Endace Technology Limited nor any employee of
the company, shall be liable on any ground whatsoever to any party in respect of decisions or actions they may
make as a result of using this information.
Endace Technology Limited has taken great effort to verify the accuracy of this manual, but nothing herein should
be construed as a warranty and Endace shall not be liable for technical or editorial errors or omissions contained
herein.
In accordance with the Endace Technology Limited policy of continuing development, the information contained
herein is subject to change without notice.

Website

Copyright 2008 Endace Technology Ltd. All rights reserved.

http://www.endace.com

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
Endace Technology Limited.
Endace, the Endace logo, Endace Accelerated, DAG, NinjaBox and NinjaProbe are trademarks or registered
trademarks in New Zealand, or other countries, of Endace Technology Limited. Applied Watch and the Applied
Watch logo are registered trademarks of Applied Watch Technologies LLC in the USA. All other product or
service names are the property of their respective owners. Product and company names used are for identification
purposes only and such use does not imply any agreement between Endace and any named company, or any
sponsorship or endorsement by any named company.
Use of the Endace products described in this document is subject to the Endace Terms of Trade and the Endace
End User License Agreement (EULA).

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 i

Contents
filter_loader software 1

Requirements .. 1

filter_loader operation 3
filter_loader operation example ... 3
filter_loader options ... 4

Options for –m .. 5
Filter rules .. 6

Filter rule example .. 6
Filter rule keywords ... 7
Filter examples .. 8

snort_compiler 11
snort_compiler options .. 11
snort_compiler examples... 12

Example 1 ... 12
Example 2 ... 12
Example 3 ... 13

snort_compiler grammar ... 14
snort_compiler grammar variables .. 15

Example 1 ... 15
Example 2 ... 15
Example 3 ... 15

tcpdump_compiler 17
tcpdump_compiler options ... 17

Perform Self-test .. 17
tcpdump_compiler grammar specifications ... 18

tcpdump_compiler examples ... 20
Example 1 ... 21
Example 2 ... 22
Example 3 ... 23
Example 4 ... 24
Example 5 ... 26

Version History 29

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 1

filter_loader software

The filter_loader, snort_compiler and tcpdump_compiler are command-line applications
are used to program the filtering capabilities of the Co-Processor. Libpcap or the native DAG
API application deals with capturing packets.

A filter rule set can be:

• manually written in the Endace filter format,
• generated from Snort-style rules by the snort_compiler application, or
• generated from tcpdump-style rules by the tcpdump_compiler application.

Requirements
The requirements for using the filter_loader are:

• An DAG card with Co-Processor.
• DAG software (3.3.1 or greater).

Customers with a current support contract can download this from the secure Endace
website: https://www.endace.com/support
Refer to EDM04-01 DAG Software Installation Guide for details on how to install and
compile the DAG software.

.

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 3

filter_loader operation

The filter_loader loads a set of filters (from a text file or standard input) into a Co-Processor
equipped DAG card running IP Filter firmware. The filter set determines what packets are
captured. The packets are captured in ERF.

A filter rule set can be:

• manually written in the Endace filter format,
• generated from Snort-style rules by the Snort Rule Compiler application, or
• generated from tcpdump-style rules by the tcpdump Rule Compiler application.

A DAG card running IP Filter firmware can support up to two filter sets per interface, one
active and one inactive.

When a new filter rule set is loaded, the filter_loader can:

• restart the card and make the new filter set active, or
• load the new filter set in an inactive state and instruct the card to switch between the

active and inactive filter sets after the new set is loaded. This allows the filter set to be
dynamically modified with zero packet loss.

The following shows the size of the filter sets for different card configurations.

Interfaces Hot-Swap Ability SC128
Filters Per Set

SC256
Filters Per Set

Built in
Filters Per Set

1 No 16k 32k 32k
1 Yes 8k 16k 16k
2 No 8k 16k 16k
2 Yes 4k 8k 8k

filter_loader operation example
The following are examples of how to load a filter set into a Co-Processor.

• How to initialize a new rule set for Interface 1:
filter_loader -d0 --initialize --init-ports 2 --init-rulesets 2 --iface 1 -l
ethernet -m color -i test-1-1-ifc-1.rule

• How to load the rule set for interface 0:
filter_loader -d0 --iface 0 -l ethernet -m color -i test-1-1-ifc-0.rule

• How to switch the rule set for both interfaces:
filter_loader -d0 --iface 0 -l ethernet -m color -i test-1-2-ifc-0.rule
filter_loader -d0 --iface 1 -l ethernet -m color -i test-1-2-ifc-1.rule

EDM04-28v1 filter_loader Software Guide

4 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

filter_loader options
The following table explains the filter_loader command line short and long options.

Short
Optio

n

Long
Option

Explanation

-d --device Followed by device name of the DAG card to configure, such as d0.
-l --linktype Followed by the type of link being monitored. Valid options are 'ethernet',

'pos4chdlc' and 'pos4ppp'.
-m --mapping Where to place the packet classification in the received packets. Valid values

are:
'color', 'colour' 'rxerror', 'lcntr', 'flags', 'hdlcheader' (PoS links only), and
'padoffset' (Ethernet links only). Also 'padoffset0', 'hdlcheader0', and 'colour0'.
For further details, see Options for –m (page 2a).
Mapping that end with 0 send all ERF records to receive stream 0. For
example dag 0:0

-i --infile Followed by an input file name which contains Snort-like rules, one per line.

 --initialise
--initialize

If this flag is present then the Co-Processor is initialized before filters are
loaded.
If this flag is not present, then the filters will be hot-swapped with the
supplied filters.

 --init-ports
--init-ifaces

Followed by the number of interfaces. This value is used to configure the Co-
Processor by dividing the filters into sets that apply to each interface.
The default is 1.
This option can only be specified when the –-initialise flag is present.

 --init-rulesets Followed by the number of rulesets per interface. This value is used to
configure the Co-Processor by dividing the filters into rulesets that apply to
each interface.
The default is 1.
This option can only be specified when the –-initialise flag is present.

-p --port
--iface

Followed by the identifier for the interface that the rules should apply to, such
as 0 or 1.
If no interface is specified then the filters are applied to all interfaces, unless
the filters file specifies per-filter interfaces with the 'iface' command.

-s --snap Followed by the number of bytes to be captured from the payload of the
packet. This option sets a default snap-length for filters which do not
explicitly contain a snap-length.
If this option is not present then filters which do not explicitly contain a snap-
length will capture entire packets.

-h,
-?

--usage,
--help

If this flag is present the filter_loader displays a help message and then
exits.

 --version Display version information.

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 5

Options for –m
The --mapping option to filter loader determines what ERF format is used for capture to the
host.

The effect of the --mapping option is shown in the following table.

Name Effect on ERF Record ERF Type[s]
Received

Link Force
Stream0

rxerror The RX error bit is set for packets that
would be dropped.

TYPE_ETH
TYPE_HDLC_POS

Both No

color
colour
lcntr

The 16-bit color [14-bit classification
and 2-bit destination stream field] is
written into the color field of the ERF
record.

TYPE_COLOR_ETH
TYPE_COLOR_HDLC_PO
S

Both No

padoffset The color is written into the pad and
offset bytes of the Ethernet ERF record.

TYPE_ETH Eth No

hdlcheader The color is written into the first two
bytes of the four-byte HDLC header.

TYPE_HDLC_POS PoS No

color0
colour0

As for 'color', but all packets are sent to
stream 0. This includes those packets
that would normally have been
dropped, which have a destination
stream of 0.

TYPE_COLOR_ETH
TYPE_COLOR_HDLC_PO
S

Both Yes

padoffset0 As for 'padoffset', but all packets are
sent to stream 0. This includes those
packets that would normally have been
dropped, which will have a destination
stream of 0.

TYPE_ETH Eth Yes

hdlcheader0 As for 'hdlcheader', but all packets are
sent to stream 0. This includes those
packets that would normally have been
dropped, which have a destination
stream of 0.

TYPE_HDLC_POS PoS Yes

For further details on ERF types, see EDM11-01 ERF types.

EDM04-28v1 filter_loader Software Guide

6 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Filter rules
Filter rules are one-line specifications used to describe characteristics of packets considered to
be a "match", together with an action to take for matching packets. Two actions currently
supported are:

accept a packet. Accepted packets are passed to the host computer where they can be received using
libpcap [2] or the native DAG API and further processed in software.

reject a packet. Dropped packets are not sent to the host, saving valuable CPU cycles for analyzing the
packets that are of most interest.

Filters rules can be grouped together into sets. Filter rule sets are loaded into the Co-
Processor in the order they are presented, and the ultimate filter should be a catch-all accept
or reject filter. IP Filter supports filtering on:

• Ingress interface
• Protocol [ICMP, IGRP, RawIP/TCP or UDP]
• Source and destination IP addresses
• TCP and UDP source and destination port numbers
• TCP flags

Each bit in the IP address, port number, and TCP flags fields in the filter rules can take values
"0", "1" or "-" (wildcard). The classification of the packet is an integer in the range 0 to 16383
which is written into the ERF records. For details on which ERF type is received see Options
for –m (page).

To retrieve the classification, these bytes are considered as a single 16-bit quantity in network
byte order, with the classification being the most significant 14 bits. The least significant 2
bits encode the memory buffer into which the packet was steered, as shown below:

1 = buffer zero 3 = both buffers
2 = buffer two 0 = neither buffer

Filter rule example

Note: The above example has been wrapped onto several lines for best presentation. In

the filter set each rule must be on a single line.

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 7

Filter rule keywords

Keyword Description

accept Sets the filter to capture all packets that match the following filter.
all Sets the filter to look at all Layer 3 protocol field (IPv4).
blue Sets the filter to steer packets to receive stream 2.

One of two receive streams used with packet steering. Accessed through the DAG API as
receive stream 2.
For example, for a DAG card identified as dag0, the blue memory buffer containing the
blue packets can be referred to as dag0:2 when using the standard DAG utilities.
It is possible to have a packet sent to both memory buffers by including both the red and
blue keywords.
When a memory buffer is not specified for an accept rule, packets matching the rule will be
sent to the red memory buffer, receive stream 0.
See also red.

dst-ip A 32 bit binary representation of the destination IP address. An 8 bit representation for each
part of the IP address. Can be either "0", "1" or "-" (wildcard).
Examples:
192.168.0.1 = 11000000101010000000000000000001
192.168.0.0/28 = 1100000010101000000000000000----

dst-port 16 bit binary representation of the destination port. Can be either "0", "1" or "-" (wildcard).
icmp Sets the filter to look for icmp packets when processing this filter.
iface <num> Sets the filter to look at packets that match the selected interface.

If an interface is specified for any filter, an interface must be specified for all filters.
The Filter Loader will either:
• apply all filters to the interface given by the command-line option --iface, or
• apply the filters to the interfaces specified on a per-filter basis.
To minimize potential for confusion, the Filter Loader reports an error if these two modes of
operation are mixed, such as attempting to load a filter file in which some filters have per-
filter interfaces and others do not.
If a default reject filter is used, it must be included for each interface.

igrp Sets the filter to look for igrp packets when processing this filter.
ip Sets the filter to capture IPv4 packets. For Ethernet or cHDLC the value will be 0x0800 and

for PPP the value will be 0x0021.
ip-proto Sets the filter to look for the specified Layer 3 protocol field (IPv4 header protocol)
l2-proto Sets the filter to look for the specified layer 2 protocol field (Ether type, PPP or cHDLC

protocols).
non-ip Sets the filter to look for all layer 2 protocol fields.
red Sets the filter to steer packets to receive stream 0.

One of two receive streams used with packet steering. Accessed through the DAG API as
receive stream 0.
For example, for a DAG card identified as dag0, the red memory buffer containing the red
packets can be referred to as dag0:0 when using the standard DAG utilities.
It is possible to have a packet sent to both memory buffers by including both the red and
blue keywords.
When a memory buffer is not specified for an accept rule, packets matching the rule will be
sent to the red memory buffer, receive stream 0.
See also blue.

reject Discards any packets that match the rest of the filter.
To have a default reject filter in place, you must included one for each interface.

src-ip A 32 bit binary representation of the source IP address. An 8 bit representation for each part
of the IP address. Can be either "0", "1" or "-" (wildcard).
Example: 192.168.0.2 = 11000000101010000000000000000010

src-port 16 bit binary representation of the source port. Can be either "0", "1" or "-" (wildcard).
tcp Sets the filter to look for tcp packets (Layer 3 (IPv4) protocol).

EDM04-28v1 filter_loader Software Guide

8 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

tcp-flags Sets which tcp-flags the filter needs to look at when processing this filter. Can be either "0",
"1" or "-" (wildcard).
The tcp-flags are from (left to right):
• C, CWR
• E, ECE, ECN-Echo
• U, URG – Urgent pointer valid flag
• A, ACK - Acknowledgment number valid flag.
• P, PSH - Push flag.
• R, RST - Reset connection flag.
• S, SYN - Synchronize sequence numbers flag.
• F, FIN - End of data flag.
Note: If the tcp-flags field is not present for a TCP rule, then it is considered to be all
"wildcard" entries. The tcp-flags field may be present for non-TCP rules, in which case it is
ignored.

udp Sets the filter to look for udp packets when processing this filter.
Note: Filters rules are evaluated in from the top of the filter rule set to the bottom.

Missing tokens are assumed to be wildcards.
The first matching filter is the one selected.

Note: Layer 2 protocol field is Ether type in most networks.
Layer 3 protocol field is IPv4 protocol type.

Filter examples
Note: The following examples have been wrapped onto several lines for best presentation.

In the filter rule set each rule must be on a single line.

Example 1

The following filter rule set captures TCP packets with:

• a source IP address of 192.168.0.1 sent from any source port
• to the destination IP address 192.168.0.2 on port 80,
• all other packets are rejected.

1 accept tcp src-ip {11000000101010000000000000000001}
 src-port {----------------}
 dst-ip {11000000101010000000000000000010}
 dst-port {0000000001010000}
2 reject all src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}

Example 2

The following filter rule set captures TCP packets with:

• a source IP address in the subnet 192.168.0.0/16 and any port
• to the IP address 192.168.0.2 on ports 80 or 81,
• all other packets are rejected

1 accept tcp src-ip {1100000010101000----------------}
 src-port {----------------}
 dst-ip {11000000101010000000000000000010}
 dst-port {000000000101000-}
2 reject all src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 9

Example 3

The following filter rule set captures TCP packets with:

• a source IP address in the subnet 192.168.0.0/16 and any source port
• to the IP address 192.168.1.2 on ports 80 or 81, except for packets to or from the IP

address 192.168.1.1,
• all other packets are rejected

The filters are evaluated in order. In the following example, packets with a source IP address
of 192.168.1.1 for the first filter, or destination IP address of 192.168.1.1 for the second filter,
are discarded before reaching the third filter.

1 reject tcp src-ip {11000000101010000000000100000001}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}
2 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000100000001}
 dst-port {----------------}
3 accept tcp src-ip {1100000010101000----------------}
 src-port {----------------}
 dst-ip {11000000101010000000000100000010}
 dst-port {000000000101000-}
4 reject all src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}

Example 4

The following TCP flags filter rule set captures TCP packets from:

• any source to any destination that have the SYN flag set.
• all other packets are rejected

1 accept tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}
 tcp-flags {------1-}
2 reject all src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}
 tcp-flags {--------}

EDM04-28v1 filter_loader Software Guide

10 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Example 5

The following filter rule set captures TCP packets

• from 192.168.0.1 to 192.168.0.2 on interface 0 with a destination IP address of
192.168.0.2 on port 80

• and TCP packets from 192.168.0.3 to 192.168.0.4 on interface 1 with a destination IP
address of 192.168.0.4 on port 80

• all other packets are rejected
1 accept tcp src-ip {11000000101010000000000000000001}
 src-port {----------------}
 dst-ip {11000000101010000000000000000010}
 dst-port {0000000001010000}
 iface 0
2 accept tcp src-ip {11000000101010000000000000000011}
 src-port {----------------}
 dst-ip {11000000101010000000000000000100}
 dst-port {0000000001010000}
 iface 1
3 reject all iface 0
4 reject all iface 1

Example 6

The following filter rule set sends all TCP packets to

• the red receive stream, receive stream 0, and
• all UDP packets to the blue receive stream, receive stream 2.
• all other packets are rejected

1 accept red tcp
2 accept blue udp
3 reject all

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 11

snort_compiler

The snort_compiler application forms part of the IP Filter system.

Snort is an Open Source Network Intrusion Detection System [IDS] controlled by a set of
pattern/action rules residing in a configuration file of a specific format.

The Snort Rule Compiler takes rules from a text file or passed in via standard input and
produces a set of filters that correspond to those rules. This set of filters can then be loaded
into a Coprocessor-equipped DAG card running Endace firmware by the Filter Loader
application.

Rules are specified using a Snort-like syntax that specifies the protocol [ICMP, IP, TCP or
UDP], source/destination IP addresses and source destination ports for TCP and UDP.

The actual filter lines produced by the Snort Rule Compiler are written one per line. The
examples in this chapter of information are wrapped for printing purposes.

snort_compiler options
The following explains the short and long options recognized by snort_compiler.

Short
Option

Long
Option

Explanation

-i --infile Followed by an input file name which contains Snort-like rules, one per line. If
this option is not present the rules are read from standard input.

-o --outfile Followed by name of output file to be written with filters, one per line. If this
option is not present the output filters are written to standard output.
If the specified file exists, it will be overwritten, otherwise it will be created.

-a --accept If this flag is present the default filter added to the end of the output will accept
all packets.

-r --reject If this flag is present the default filter added to the end of the output will reject
all packets.
This is the default.

-s --snap Note: This option is Obsolete - Do not use.
Followed by the number of bytes to be captured from the payload of the packet.
This option sets a default snap-length for filters created from the rules which do
not explicitly contain a snap-length.
If this option is not present then rules which do not explicitly contain a snap-
length will produce filters that capture entire packets.

-h, -? --help If this flag is present the Snort Rule Compiler displays a help message and then
exits.

EDM04-28v1 filter_loader Software Guide

12 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

snort_compiler examples
Using user-defined rules from a compiler, Snort examines all packets going through a
specific network that it is set up to monitor and alerts when it finds specific pre-defined
patterns that could be malicious.

The Snort rules can range from the simple and less simple through to more complex ones.

Example 1
The following Snort rule results in the output from the Snort Rule Compiler. The Snort Rule
Compiler expresses both destination ports by using a "wildcard" entry in the destination
port.

The second filter is present because a default filter is always added to accept or reject packets
that do not match any other rules. Unless the command-line flag --accept is given, the
default filter will reject packets.

Rule:
accept tcp 192.168.1.1 any -> 192.168.1.2 80:81

Output:
Filter file created by snort_compiler at Tue Mar 16 16:47:49 2004.
 2 accept tcp src-ip {11000000101010000000000100000001}
 src-port {----------------}
 dst-ip {11000000101010000000000100000010}
 dst-port {000000000101000-}
0 reject ip src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}

Example 2
In the following Snort rule, the Snort Rule Compiler was able to combine the 192.168.1.1 and
192.168.3.1 source IP addresses into a single filter with a "wildcard" entry.

Rule:
accept tcp [192.168.1.1,192.168.2.1,192.168.3.1] any -> 192.168.1.2 80

Output:
Filter file created by snort_compiler at Wed Mar 17 11:51:27 2004.
2 accept tcp src-ip {1100000010101000000000-100000001}
 src-port {----------------}
 dst-ip {11000000101010000000000100000010}
 dst-port {0000000001010000}
2 accept tcp src-ip {11000000101010000000001000000001}
 src-port {----------------}
 dst-ip {11000000101010000000000100000010}
 dst-port {0000000001010000}
0 reject ip src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 13

Example 3
The following Snort rule output can be read as "accept the headers and first 50 bytes of
payload for all TCP traffic destined for host 192.168.1.24 on ports 80 to 90 inclusive that does
not have a source IP address from the subnets 10.0.0.0/8 and 127.0.0.0/16".

The output expands to 58 filters with one default rule plus nineteen source IP addresses
combined with three destination port numbers. The last seven filters for the rule output are
shown in below.

The Snort Rule Compiler encoded the eleven destination port numbers as three entries
covering ports 80–87 with three "wildcard" bits, 88–89 with one "wildcard" bit, and 90.

Rule:
accept tcp ![10.0.0.0/8,127.0.0.0/16] any -> 192.168.1.24/32 80:90

Output:
2 accept tcp src-ip {0111111101----------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000100011000}
 dst-port {0000000001010---}
2 accept tcp src-ip {0111111101----------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000100011000}
 dst-port {000000000101100-}
2 accept tcp src-ip {0111111101----------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000100011000}
 dst-port {0000000001011010}
2 accept tcp src-ip {011111111-----------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000100011000}
 dst-port {0000000001010---}
2 accept tcp src-ip {011111111-----------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000100011000}
 dst-port {000000000101100-}
2 accept tcp src-ip {011111111-----------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000100011000}
 dst-port {0000000001011010}
0 reject ip src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------}

EDM04-28v1 filter_loader Software Guide

14 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

snort_compiler grammar
A formal specification for the snort_compiler grammar is:

• Pipe character (|) indicates choice
• Speech marks (") indicate literal data
• Braces ({}) indicate optional elements
• em-dash (--) indicates a range
• Literal exclamation marks (!) used in a rule indicate a logical negation

rule ::= keyword protocol source direction target
snaplength {body}

keyword ::= "accept" | "reject"
protocol ::= "tcp" | "udp" | "ip" | "icmp"
direction ::= "->" | "<>"
snaplength ::= 0—65535
source ::= source_ip source_port
target ::= target_ip target_port
source_ip ::= ip_address
target_ip ::= ip_address
ip_address ::= {"!"} ip_set
ip_set ::= single_ip_address | "["single_ip_address ","

ip_set"]"
single_ip_address ::= octet "." octet "." octet "." octet { "/" mask }
octet ::= 0—255
mask ::= 1—32
source port ::= {"!"} port_range
target_port ::= {"!"} port_range
port_range ::= single_port | ":" single_port | single_port ":" |

single_port ":" single_port
single_port ::= 1—65535
Body ::= "(" ASCII_text")"

At this stage the body of the rule is optional, and if present has no effect.

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 15

snort_compiler grammar variables
Snort grammar supports the use of variables for IP addresses and ports. Variables are
defined before they are used.

variable_definition ::= "var" variable_name (ip_variable | port_variable)
ip_variable :: = {"!"} ip_address
port_variable :: = {"!"} port_range

Once defined an IP address variable can be used by prepending its name with a dollar sign
"$" wherever an IP address is expected. A port variable can be used wherever a port is
expected, including in a subsequent variable definition.

Example 1
The following Snort grammar variable example is used to assign a meaningful name to a port
number, which helps make the rule intention clear.

var SSH_PORT 22
accept tcp 192.168.0.0/16 any -> 192.168.0.1/32 $SSH_PORT

Example 2
The following Snort grammar variable example shows all external IP addresses are defined
by taking the complement, logical negation, of the easily defined internal IP address space.

var INTERNAL_NETWORK 192.168.0.0/16
var EXTERNAL_NETWORK !$INTERNAL_NETWORK

reject tcp $EXTERNAL_NETWORK any -> $INTERNAL_NETWORK 22

Example 3
The following Snort grammar variable example is used to make the rules both independent
of specific IP addresses and more readable.

Set up some variables.
var MY_HOST 192.168.1.24
var NOT_MY_HOST !192.168.1.24
var INTERNAL_NETWORK 192.168.0.0/16
var EXTERNAL_NETWORK !$INTERNAL_NETWORK
var SSH_PORT 22
var PROXY_PORTS 80:81

Test rules to exercise the parser.
accept ip $INTERNAL_NETWORK any -> $MY_HOST any
accept icmp $INTERNAL_NETWORK any -> $MY_HOST any
accept tcp $INTERNAL_NETWORK any -> $MY_HOST any
accept udp $INTERNAL_NETWORK any -> $MY_HOST any
reject ip $INTERNAL_NETWORK any -> $MY_HOST any
reject icmp $INTERNAL_NETWORK any -> $MY_HOST any
reject tcp $INTERNAL_NETWORK any -> $MY_HOST any
reject udp $INTERNAL_NETWORK any -> $MY_HOST any
Port numbers and negations.
accept ip $INTERNAL_NETWORK $SSH_PORT -> $MY_HOST $PROXY_PORTS
accept ip $INTERNAL_NETWORK !$SSH_PORT -> $MY_HOST $PROXY_PORTS
accept ip $INTERNAL_NETWORK $SSH_PORT -> $MY_HOST !$PROXY_PORTS

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 17

tcpdump_compiler

The tcpdump_compiler application forms part of the IP Filter system.

The tcpdump_compiler takes a single tcpdump rule contained in a text file or passed in via
standard input and produces a set of filters that correspond to that rule.

tcpdump_compiler options
There are a number of options recognized by the tcpdump_compiler.

The tcpdump_compiler performs little optimization on the generated filters, and so the
number of filters created may be greater than strictly necessary.

For example, in some cases it may be possible to combine filters that differ only in a few bit
locations by using "wildcard" entries in those locations. An optimization pass will be
included in a future revision.

The following table explains the short and long options recognized by the tcpdump_compiler.

Short
Option

Long
Option

Explanation

-i --infile Followed by an input file name which contains a single tcpdump-like rule.
If this option is not present the rules are read from standard input.

-o --outfile Followed by name of output file to be written with filters, one per line. If
this option is not present the output filters are written to standard output.
If the specified file exists, it will be overwritten, otherwise it will be created.

-a --accept If this flag is present the default filter added to the end of the output will
accept all packets.

-r --reject If this flag is present the default filter added to the end of the output will
reject all packets.
This is the default.

-s --obfuscate If this flag is present then the IP addresses and port numbers in the input
rule will be obfuscated before the rule is processed. The result of the
obfuscation is written to the file obfuscated_rule_N.txt in the current
working directory, where N is the first positive integer that makes the
filename unique. This enables the obfuscated filters to be compared to an
obfuscated rule for accuracy.

-h
-?

--usage
--help

If this flag is present the tcpdump_compiler displays a help message and
then exits.

Perform Self-test
The tcpdump_compiler comes with a self-test script that can be used to verify the basic
functionality of the binary.

Procedure

To perform the self-test, complete the following steps:

1. Change to the following directory:
dag-<dag_version>/filtering/tcpdump_compiler

2. Run run_tests.sh script in the directory:
run_tests.sh
The following message is displayed indicating all 32 tests succeeded:
End of tests

EDM04-28v1 filter_loader Software Guide

18 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

tcpdump_compiler grammar specifications
A formal specification for the tcpdump_compiler grammar is:

• A pipe character (|) indicates choice
• Speech marks (") indicate literal data
• Braces ({}) indicate optional elements
• em-dash (--) indicates a range
• Literal exclamation mark (!) is used in a rule to indicate a logical negation

Grammar

The following list describes the tcpdump_compiler grammar.
rule ::= "ip" "and" protocol_list | "ip" "and"

protocol_reject_list | rule "or" rule | "(" rule ")"
protocol_reject_list ::= single_protocol_reject | single_protocol_reject "and"

protocol_reject_list | "(" protocol_reject_list ")"
single_protocol_reject ::= "not" "udp" | "not" "tcp" | "not" "igrp" | "("

single_protocol_reject ")"
protocol list ::= protocol_tree | protocol_tree "or" protocol_list | "("

protocol_list ")"
protocol tree ::= "tcp" tcp_tree | "udp" udp_tree | "icmp" icmp_tree |

"ip" "and" protocol_reject_list | "(" protocol_tree ")"
icmp_tree ::= | "and" icmp_tree | "(" icmp_tree ")"
udp_tree ::= | "not" udp_reject_tree | udp_accept_tree | "and"

udp_tree | "(" udp_tree ")"
udp_reject tree ::= udp_expression | udp_expression "and" "not"

udp_reject_tree
udp_accept tree ::= udp expression | udp_expression "or" udp_accept_tree
udp expression ::= udp clause | udp_expression "and" udp_expression | "("

udp_expression ")"
udp clause ::= port_primitive | host_primitive
tcp tree ::= | "not" tcp_reject_tree | tcp_accept_tree | "and"

tcp_tree | "(" tcp_tree ")"
tcp reject tree ::= tcp expression | tcp_expression "and" "not"

tcp_reject_tree
tcp accept tree ::= tcp expression | tcp_expression "or" tcp_accept_tree

tcp expression ::= tcp_clause | "(" tcp_and_expression ")" | "("
tcp_or_expression ")"

tcp_and-expression ::= tcp_expression | tcp_expression "and" tcp_expression|
"(" tcp_or_expression "or"tcp_or_expression ")" | "not"
tcp_clause

tcp_or_expression ::= tcp_expression | tcp_or_expression "or"
tcp_or_expression | "(" tcp_and_expression "and"
tcp_and_expression ")" | "not" tcp_clause

tcp_clause ::= port_primitive | host_primitive | tcp_flags_primitive

qualifiers ::= | "src" | "dst

host_primitive ::= qualifiers host_keyword host_list | qualifiers host
keyword "(" host list "and" host list ")" | " ("
qualifiers host_keyword host_list "and" qualifiers_host
keyword_host list ")"

host keyword ::= | "host" | "net"

host list ::= single_host | single_host "or" host_list | "("
host_list ")"

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 19

single host ::= hostname | netname2 | netname3 | "(" single_host ")"

hostname ::= "1--255.0--255.0--255.0--255"

netname2 ::= "1--255.0--255"

netname3 ::= "1--255.0--255.0--255"

port_primitive ::= qualifiers "port" port_list | qualifiers "port" "("
port_list "and" port_list ")" | "(" port_primitive ")"

port_list ::= number | number "or" port_list | "(" port_list ")"

number ::= "0--65535" | "(" "0--65535" ")"

tcp_flags primitive ::= "tcp[13]" "&" number tcp_flags_relop number | "("
tcp_flags_primitive ")"

tcp_flags_relop ::= "=" | "!="

EDM04-28v1 filter_loader Software Guide

20 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

tcpdump_compiler examples
A rule is specified using a tcpdump-like syntax [2] that specifies combinations of:

• Protocol [ICMP, IGRP, Raw/IP, TCP or UDP]
• Source and destination IP addresses
• TCP and UDP source and destination ports
• TCP flags [TCP]

In addition to explicitly specified rules, the compiler adds default rules for each protocol
[ICMP, IGRP, TCP, UDP, IP] according to the following scheme:

1. For each Layer 4 protocol (ICMP, IGRP, TCP and UDP), if any rules were specified
then a default rule will be added that has the opposite 'sense' to those rules. For
example, if TCP rules are given that reject specific packets ("tcp and not port 80") then
a default rule will be added that accepts all other TCP packets.

2. The default rule for each Layer 4 protocol is added to the filters so that it is applied
after all specific filters for that protocol.

3. A final accept/reject rule is added according to the settings given on the command
(if no command-line flag is given, then this final filter will reject all packets.)

4. If the default rule for a Layer 4 protocol has the same sense (accept/reject) as the final
catch-all rule, then it is omitted.

Note: For all tcpdump_compiler examples in the following sections, filter lines are wrapped
to fit on the printed page. The actual filters produced by the tcpdump_compiler are
written one per line.

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 21

Example 1
In the following example, two filters have been created because the port was not qualified
with a src or dst prefix. One catches port 80 in the source port of a TCP packet, the other
catches port 80 in the destination port of a TCP packet.

The third filter is the default TCP filter. Because there was a TCP rule that excluded packets,
the compiler has added a default TCP filter that accepts all other TCP packets.

The final filter is present because a default filter is always added to accept or reject packets
that do not match any other rules. Unless the command-line option --accept is given, the
default filter will reject packets.

Rule:
ip and
(
 tcp and
 (
 not (port 80)
)
)
Output:

Filter file created by ./tcpdump_compiler at Thu Jul 15 08:35:13 2004.
1 reject tcp src-ip {--------------------------------}
 src-port {0000000001010000}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
2 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000000001010000} tcp-flags {--------}
3 accept tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
4 reject ip src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}

EDM04-28v1 filter_loader Software Guide

22 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Example 2
In the following rule, filters have been created to catch both destination and source ports
because the port was not qualified with a src or dst prefix,.

The third filter is the default TCP filter. Because there was a TCP rule that excluded packets,
the compiler has added a default TCP filter that accepts all other TCP packets.

Rule:
ip and
(
 tcp and
 (
 not (port 80 and (tcp[13] & 2 = 0))
)
)

Output:
1 reject tcp src-ip {--------------------------------}
 src-port {0000000001010000}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {------0-}
2 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000000001010000} tcp-flags {------0-}
3 accept tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
4 reject ip src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 23

Example 3
In the following rule, eight filters have been created for each combination of the port and two
hosts, because neither the port nor host was not qualified with a src or dst prefix,

The ninth filter is the default TCP filter. Because there was a TCP rule that excluded packets,
the compiler has added a default TCP filter that accepts all other TCP packets.

Rule:
ip and
(
 tcp and
 (
 not(port 80 and host (127.0.0.1 or 192.168.0.1))
)
)

Output:
Filter file created by ./tcpdump_compiler at Thu Jul 15 08:42:53 2004.
1 reject tcp src-ip {11000000101010000000000000000001}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000000001010000} tcp-flags {--------}
2 reject tcp src-ip {11000000101010000000000000000001}
 src-port {0000000001010000}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
3 reject tcp src-ip {--------------------------------}
 src-port {0000000001010000}
 dst-ip {11000000101010000000000000000001}
 dst-port {----------------} tcp-flags {--------}
4 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000000000001}
 dst-port {0000000001010000} tcp-flags {--------}
5 reject tcp src-ip {01111111000000000000000000000001}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000000001010000} tcp-flags {--------}
6 reject tcp src-ip {01111111000000000000000000000001}
 src-port {0000000001010000}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
7 reject tcp src-ip {--------------------------------}
 src-port {0000000001010000}
 dst-ip {01111111000000000000000000000001}
 dst-port {----------------} tcp-flags {--------}
8 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {01111111000000000000000000000001}
 dst-port {0000000001010000} tcp-flags {--------}
9 accept tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
10 reject ip src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}

EDM04-28v1 filter_loader Software Guide

24 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Example 4
In the following example, filters have been created to catch all combinations of port and host
because neither the port nor host were qualified with a src or dst prefix, filters have been
created to catch all combinations of port and host.

The ninth filter is the default TCP filter. As there is a TCP rule excluding packets, the
compiler added a default TCP filter that accepts all other TCP packets.

The tenth and eleventh filters are included because of the second clause in the tcpdump rule
that specifically excluded IGRP and TCP packets. This implies that UDP and ICMP packets
should be captured, so accept filters have been created for these protocols.

Rule:
ip and
(
 tcp and not
 (
 port 1234 and host (192.168.0.1 or 192.168.0.2)
)
)
or
(
 ip and not igrp and not tcp
)

Output:
Filter file created by ./tcpdump_compiler at Thu Jul 15 08:44:22 2004.
1 reject tcp src-ip {11000000101010000000000000000010}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000010011010010} tcp-flags {--------}
2 reject tcp src-ip {11000000101010000000000000000010}
 src-port {0000010011010010}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
3 reject tcp src-ip {--------------------------------}
 src-port {0000010011010010}
 dst-ip {11000000101010000000000000000010}
 dst-port {----------------} tcp-flags {--------}
4 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000000000010}
 dst-port {0000010011010010} tcp-flags {--------}
5 reject tcp src-ip {11000000101010000000000000000001}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000010011010010} tcp-flags {--------}
6 reject tcp src-ip {11000000101010000000000000000001}
 src-port {0000010011010010}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
7 reject tcp src-ip {--------------------------------}
 src-port {0000010011010010}
 dst-ip {11000000101010000000000000000001}
 dst-port {----------------} tcp-flags {--------}
8 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {11000000101010000000000000000001}
 dst-port {0000010011010010} tcp-flags {--------}
9 accept tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 25

10 accept udp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
11 accept icmp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
12 reject ip src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}

EDM04-28v1 filter_loader Software Guide

26 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Example 5
The following example is the result of reading "accept all TCP packets except those involving
port 80 and host 127.0.0.80, or port 81 and host 127.0.0.81, and reject all UDP packets except
those involving either port 3128 or port 8080".

In the following example, filters have been created for each combination because neither the
ports nor hosts were qualified with a src or dst prefix.

The ninth filter is the default TCP filter. Because there was a TCP rule that excluded packets,
the compiler has added a default TCP filter that accepts all other TCP packets.

The fourteenth filter is the final catch-all filter. Because there was a UDP rule that included
packets, the usual default UDP filter would have rejected UDP packets not matched by rules
ten through thirteen. However, in this case the final catch-all filter rejects all packets and the
default UDP filter was superfluous.

Rule:
ip and
(
 tcp and
 (
 not (port (80) and host 127.0.0.80)
 and not (port 81 and host (127.0.0.81))
)
 or udp and
 (
 port (3128 or 8080)
)
)

Output:
Filter file created by ./tcpdump_compiler at Thu Jul 15 08:45:21 2004.
1 reject tcp src-ip {01111111000000000000000001010000}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000000001010000} tcp-flags {--------}
2 reject tcp src-ip {01111111000000000000000001010000}
 src-port {0000000001010000}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
3 reject tcp src-ip {--------------------------------}
 src-port {0000000001010000}
 dst-ip {01111111000000000000000001010000}
 dst-port {----------------} tcp-flags {--------}
4 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {01111111000000000000000001010000}
 dst-port {0000000001010000} tcp-flags {--------}
5 reject tcp src-ip {01111111000000000000000001010001}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000000001010001} tcp-flags {--------}
6 reject tcp src-ip {01111111000000000000000001010001}
 src-port {0000000001010001}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
7 reject tcp src-ip {--------------------------------}
 src-port {0000000001010001}
 dst-ip {01111111000000000000000001010001}
 dst-port {----------------} tcp-flags {--------}
8 reject tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {01111111000000000000000001010001}
 dst-port {0000000001010001} tcp-flags {--------}

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 27

9 accept tcp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
10 accept udp src-ip {--------------------------------}
 src-port {0001111110010000}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
11 accept udp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0001111110010000} tcp-flags {--------}
12 accept udp src-ip {--------------------------------}
 src-port {0000110000111000}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}
13 accept udp src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {0000110000111000} tcp-flags {--------}
14 reject ip src-ip {--------------------------------}
 src-port {----------------}
 dst-ip {--------------------------------}
 dst-port {----------------} tcp-flags {--------}

 EDM04-28v1 filter_loader Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 29

Version History

Version Date Reason

1 November 2008 Split from 02-02 Co-Processor IP Filter Software Manual because this
information referenced by two documents now EDM02-02 and EDM 04-
26.

	Protection Against Harmful Interference
	Extra Components and Materials
	Disclaimer
	Website
	Copyright 2008 Endace Technology Ltd. All rights reserved.
	filter_loader software
	Requirements

	filter_loader operation
	filter_loader operation example
	filter_loader options
	Options for –m

	Filter rules
	Filter rule example
	Filter rule keywords
	Filter examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	snort_compiler
	snort_compiler options
	snort_compiler examples
	Example 1
	Example 2
	Example 3

	snort_compiler grammar
	snort_compiler grammar variables
	Example 1
	Example 2
	Example 3

	tcpdump_compiler
	tcpdump_compiler options
	Perform Self-test
	Procedure

	tcpdump_compiler grammar specifications
	Grammar

	tcpdump_compiler examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Version History

