

����� �� �� � � � � � �	 �
 � � � ���
 �� � � �� � � � � � �	 �
 � � � ���
 �� � � �� � � � � � �	 �
 � � � ���
 �� � � �� � � � � � �	 �
 � � � ���
 �����

 � � � � � � � �
 �
 � � � � � � � �
 �
 � � � � � � � �
 �
 � � � � � � � �
 � �� � �� ��� � �� ��� � �� ��� � �� � ����

� �	 �� �	 �� �	 �� �	 � ��������� �� �� �� � ����

EDM 04-10: Data Stream Manager Programming Guide

©2006 2 Version 2: August 2006

Published by:

Endace Limited

Building 7

Lambie Drive

PO Box 76802
Manukau City 1702
New Zealand

Phone: +64 9 262 7260

Fax: +64 9 262 7261

support@endace.com

www.endace.com

International Locations

New Zealand
Endace Technology® Ltd

Level 9
85 Alexandra Street

PO Box 19246
Hamilton 2001
New Zealand

Phone: +64 7 839 0540
Fax: +64 7 839 0543

Americas
Endace USA® Ltd

Suite 220
11495 Sunset Hill Road

Reston
Virginia 20190
United States of America

Phone: +1 703 382 0155
Fax: +1 703 382 0155

Europe, Middle East & Africa
Endace Europe® Ltd

Sheraton House
Castle Park

Cambridge CB3 0AX
United Kingdom

Phone: +44 1223 370 176
Fax: +44 1223 370 040

Copyright 2006© Endace Limited. All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.

�
�
�
�
�
��
�
��
	

��
�

EDM 04-10: Data Stream Manager Programming Guide

©2006 Version 2: August 2006

Disclaimer
Whilst every effort has been made to ensure accuracy, neither Endace Limited nor any employee of the company, shall be
liable on any ground whatsoever to any party in respect of decisions or actions they may make as a result of using this
information.

Endace Limited has taken great effort to verify the accuracy of this manual, but assumes no responsibility for any technical
inaccuracies or typographical errors.

In accordance with the Endace Limited policy of continuing development, design and specifications are subject to change
without notice.

EDM 04-10: Data Stream Manager Programming Guide

©2006 4 Version 2: August 2006

EDM 04-10: Data Stream Manager Programming Guide

©2006 i Version 2: August 2006

Table of Contents

Chapter 1: Introduction 1
Overview 1
Packet Filters 2
Load Balancing Algorithms 3
Output Record Format 4
Counters 4
DSM Configuration & Status API 5
DSM Configuration & Status API (cont.) 6

Chapter 2: Card Configuration 7
Overview 7
dagdsm_is_dsm_supported 7
dagdsm_prepare_card 8
dagdsm_bypass_dsm 9
dagdsm_is_card_ethernet 9
dagdsm_is_card_sonet 10
dagdsm_get_port_count 10
dagdsm_get_filter_stream_count 11
dagdsm_is_filter_active 12
dagdsm_activate_filter 13
dagdsm_load_filter 14

Chapter 3: DSM Virtual Configuration 15
Overview 15
Configuration Loading 15
Virtual Filter Hot-Swapping 16
dagdsm_create_configuration 16
dagdsm_load_configuration 17
dagdsm_destroy_configuration 17
dagdsm_get_filter 18
dagdsm_is_etherne 18
dagdsm_is_sonet 19
dagdsm_get_swap_filter 19
dagdsm_do_swap_filter 20
dagdsm_clear_expressions 20
dagdsm_create_partial_expr 21
dagdsm_get_partial_expr_count 21
dagdsm_get_partial_expr 22
dagdsm_get_output_expr_count 22
dagdsm_get_output_expr 23

Chapter4: DSM Virtual Filter Configuration 25
Overview 25
Raw Mode 25
Layer 2 Protocol Types 25
Layer 3 Protocol Types 26
dagdsm_filter_clear 27
dagdsm_filter_copy 28
dagdsm_filter_get_values 28
dagdsm_filter_enable 30
dagdsm_filter_set_early_term_depth 30

EDM 04-10: Data Stream Manager Programming Guide

©2006 ii Version 2: August 2006

Chapter4: DSM Virtual Filter Configuration (cont.) 25
dagdsm_filter_set_raw_mode 31
dagdsm_filter_get_raw_mode 31
dagdsm_filter_set_raw_filter 32
dagdsm_filter_enable_vlan 33
dagdsm_filter_set_vlan_id 34
dagdsm_filter_set_ethertype 34
dagdsm_filter_set_mac_src_address 35
dagdsm_filter_set_mac_dst_address 36
dagdsm_filter_set_hdlc_header 36
dagdsm_filter_set_layer3_type 37
dagdsm_filter_set_ip_protocol 37
dagdsm_filter_set_ip_source 38
dagdsm_filter_set_ip_dest 39
dagdsm_filter_set_ip_hdr_length 39
dagdsm_filter_ip_fragment 40
dagdsm_filter_set_src_port 40
dagdsm_filter_set_dst_port 41
dagdsm_filter_set_tcp_flags 42
dagdsm_filter_set_icmp_code 43
dagdsm_filter_set_icmp_type 43

Chapter 5: Partial Expressions 45
Overview 45
Partial Expression Example 1 45
Partial Expression Example 2 45
dagdsm_expr_set_filter 46
dagdsm_expr_set_interface 46
dagdsm_expr_set_hlb 47
dagdsm_compute_partial_expression 48

Chapter 6: Output Expressions 49
Overview 49
dagdsm_expr_add_partial_expr 50
dagdsm_compute_output_expr_value 50

Chapter 7: Counters 53
Overview 53
dagdsm_latch_and_clear_counters 53
dagdsm_read_filter_counter 53
dagdsm_read_hlb_counter 54
dagdsm_read_drop_counter 54
dagdsm_read_stream_counter 55

Chapter 8: Miscellaneous Functions 57
Overiew 57
dagdsm_get_last_error 57

Chapter 9:Troubleshooting 59
Reporting Problems 59

EDM 04-10: Data Stream Manager Programming Guide

©2006 iii Version 2: August 2006

Appendix A: ERF Record Format 60
Introduction 60
Type 15 DSM Colored PoS HDLC Record 60
Type 16 DSM Ethernet Colored Record 61

Version History 62

EDM 04-10: Data Stream Manager Programming Guide

©2006 iv Version 2: August 2006

EDM 04-10: Data Stream Manager Programming Guide

©2006 1 Version 2: August 2006

Chapter 1:
Introduction
Overview The Data Stream Manager (DSM) is a feature supported on the following

DAG Cards:
• DAG 4.5G2/G4/GF
• DAG 6.2S
• DAG 5.2X
• DAG 8.2X
DSM allows you to drop or route packets to a particular receive stream based
on the packet contents, physical port and the output of two load balancing
algorithms. The DSM logic is implemented in firmware on the DAG card, it
does not require intervention from the host CPU once it is configured.

The diagram below shows the logical flow of packet records in the DSM
module:

 Packets are received from the line and stamped with an ERF (Endace Record
Format) header, then past along to the filter and load balancing block.

• Filter/Load Balancing Block
The filter block applies eight bit-mask filters simultaneously to the start
of the packet, producing a single true/false value for each filter. The load
balancing block applies two algorithms to the packet data, again
producing one true/false Boolean output per algorithm.

Note: Load Balancing (LB) is also known as Hash Load Balancing
(HLB) or simply as steering algorithm

• Lookup Table Block
The lookup table accepts the filter and load balancing outputs. It also
receives the physical port the packet arrived on and calculates a
classification (known as the color) for the packet.

EDM 04-10: Data Stream Manager Programming Guide

©2006 2 Version 2: August 2006

Overview
(cont.)

• Coloriser and Drop Block
The color is then past onto the Coloriser And Drop (CAD) block that
checks if the packet should be dropped, if not the color is inserted into
the ERF record header of the packet and then the packet record is past
along to the packet record multiplexer.

• Packet Record Multiplexer (ERF MUX)
The ERF MUX looks at the color information contained in the packet
record and determines to which receive stream the packet record should
be routed to.

Packet Filters

Prior to packets being presented to the DSM module, they are stamped with a
ERF record header and possibly snapped to a particular length (set by the
snap length card configuration option). This is standard DAG card
behaviour, but should be taken into account when using the DSM firmware as
it could effect filter output.

There are eight 64-byte bitmasked filters inside the DSM module, each are
compared against the packet in parallel. The first byte of the filter is
compared against the first byte of the packet record after the ERF header,
refer to the Endace Extensible Record Format document for more
information on the packet record format. It is important to note that for
Ethernet packets there are two bytes of padding added immediately after the
ERF header, these padding bytes are the first to be compared against the
filter. Each filter outputs a Boolean true or false value that is provided to
the lookup table for further classification.

Filters also have an early termination option, this allows you to specify which
8-byte chunk (known as an element) of the filter contains the last byte to
check. The early termination option is always specified on the last element in
the filter (element 7). Packets that are smaller than the filter, as defined by the
early termination option, always produce a false output regardless of the
packet contents.

The diagram below shows a logical drawing of a filter. Each row represents 8
bytes of the filter (one element). In the diagram, the filter will be applied to
the first 28 bytes (3 elements × 8 bytes + 4 non-masked bytes of element 3) of
the packets rather than the full 64. Packets that are smaller than 28 bytes will
produce a false output.

EDM 04-10: Data Stream Manager Programming Guide

©2006 3 Version 2: August 2006

Packet Filters
(cont.)

The diagram below shows that any non-masked bytes of the filter that occur
in elements after the early termination option are effectively ignored
regardless of the packet length.

Load
Balancing
Algorithms

Two load balancing algorithms are applied to the packet, each resulting in a
Boolean output value, both outputs are provided to the lookup table for
further classification. The first algorithm is a CRC calculation applied to the
expected location of an IPv4 packet's source and destination address within
the packet record. The second algorithm calculates the parity, across the
expected location of an IPv4 packet's source and destination addresses.

For a random collection of packet data, both algorithms give an
approximately 50:50 split of true and false outputs. The load balancing
algorithms are fully implemented in firmware and are not user configurable.

 Lookup Table
The lookup table accepts the outputs from the filters, load balancing
algorithm and the physical port number of the packet, to generate either a
target stream number for the packet or a drop indication. The lookup table is
fully user programmable, allowing for complex expressions to be constructed.

The DSM API provides a two stage implementation of the lookup table
construction. The first stage involves creating one or more partial
expressions, each parameter of the expression(or the inverse of the parameter)
is logically OR'ed together to produce the partial expression. In the second
stag, stream output expressions are constructed, containing one or more
partial expressions, each partial expression (or the inverse of the partial
expression) is AND'ed together.

Stream0 = (Filter0 OR Filter2 OR NOT Interface0) AND (Steering0 OR Filter6)

Partial Expression Partial Expression

Output Stream Expression

EDM 04-10: Data Stream Manager Programming Guide

©2006 4 Version 2: August 2006

Load
Balancing
Algorithms
(cont.)

Packet records can be routed to only one stream, if more than one output
expression returns a Boolean true value for a set of input parameters, the
stream with the highest priority (lowest stream number) will receive the
packet record.

For example if the output stream expressions were the same for both stream 0
and stream 2, packet records that are accepted by the expression will only be
routed to stream 0.

Output
Record
Format

Packets that are sent though the DSM are marked with a color value, this
value encodes the outputs of the eight filters and two load balancing
algorithms, as well as the target receive stream.

Refer to Appendix A for the format of ERF record header including the color
field.

Counters The DSM module maintains a minimum of thirteen counters, each counter is
32-bits and wraps back to zero on overflow.

Type Count Description

Filter 8 Each filter has a counter indicating how many
times the filter has output a true result.

Load Balancing 2 Both of the load balancing algorithms have a
counter indicating how many true results have
been generated

Drop 1 Counts the number of packets that have been
dropped.

Stream n* Each receive stream has a counter indicating
the number of packet records that have been
routed to that stream.

Note:* The number of receive stream counters depends on the number of
receive streams available on the card, currently this is 2.

EDM 04-10: Data Stream Manager Programming Guide

©2006 5 Version 2: August 2006

DSM
Configuration
& Status API

Dependencies
Because the DSM Configuration and Status API (shortened to DSM API for
the remainder of this document) reads and writes configuration information
directly from the DAG card it requires the DAG driver to be running and it
expects the DAG API library to be present. The diagram below shows the
logical layering of the various libraries required by the DSM API.

 Structure
The DSM API is divided into six logical sections, all the sections are
contained within a single library file.

Name Description

Card Provides the functionality to query the card status and
current configuration. Functions are also provided to
update the configuration in raw mode, bypassing the
constructs generated by the other sections

Configuration Provides the general interface for constructing and
querying a virtual DSM configuration. Within this section
is a function to download the virtual configuration to the
card.

Filters Contains the functions to create and modify filters.

Partial
Expressions

Contains functions to create partial expression. Multiple
partial expressions are combined to construct a stream
output expression.

Stream Output
Expressions

Contains functions to create stream output expressions,
these expressions are used to generate the classification
lookup table.

Counters Provides an interface to the DSM counters.

EDM 04-10: Data Stream Manager Programming Guide

©2006 6 Version 2: August 2006

DSM
Configuration
& Status API
(cont.)

Typical Usage
The following steps are typically taken to configure the card:

• Step 1: Configure the card to capture traffic using the DAG
Configuration and Status API or the command line dagconfig program.

• Step 2: Query the card to determine the following:
 - if DSM is supported
 - the number of physical ports.
 - if the card is Ethernet or SONET (PoS).
 - the number of possible receive streams.
• Step 4: Prepare the card for DSM filtering using dagdsm_prepare_card

which will configure the non-DSM modules on the card to be compatible
with the DSM module.

• Step 3: Create an empty virtual configuration and populate it with the
initial filter and expression settings.

• Step 4: Download the virtual configuration to the card. Optionally take
the DSM module out of bypass to enable the filtering (by default bypass
is enabled).

• Step 5: Enable packet reception.
• Step 6: If filters need to be changed while the packets are being received

use the hot-swap option to ensure no packet misclassification. The
lookup table can be changed at any time without packet
misclassification.

• Step 7: When finished configuring the card the virtual configuration
should be destroyed, this does not effect the current card configuration.

 Multiple Threads
The DSM API library is not thread safe, users are required to wrap function
calls, were appropriate, with their own thread safe mechanism (for example
semaphores or mutexes).

EDM 04-10: Data Stream Manager Programming Guide

©2006 7 Version 2: August 2006

Chapter 2:
Card Configuration
Overview This section of the API contains functionality to query the configuration of a

DAG card. Some of the functionality is duplicated by the DAG Configuration
and Status API, either API can be used.

Additionally there is functionality to directly interface with the DSM filters,
this provides a raw interface to the underlying firmware on the card. It is not
recommended to mix the raw filter functions with the virtual configuration
functions contained in the virtual filter section.

 dagdsm_is_dsm_supported

Purpose Returns whether the DSM functionality is supported by the card.

Declared In dagdsm.h

Prototype int dagdsm_is_dsm_supported (int dagfd)

Parameters � dagfd
DAG file descriptor provided by dag_open

Returns 0 if the DAG card can support DSM but the wrong firmware is loaded into
it, 1 if DSM is supported and -1 if an error occurred. Call
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)
• ENOENT (function not supported by the card)

Comments This function should be called before any other in the DSM API library, it
simply performs a sanity check to verify that DSM is supported by the
DAG card in its current configuration.

Possible causes for this function to fail are:

• DSM firmware is not loaded into the FPGA, refer to the DAG card
manual fro more information.

• The DAG card doesn't support DSM.

EDM 04-10: Data Stream Manager Programming Guide

©2006 8 Version 2: August 2006

 dagdsm_prepare_card

Purpose Prepares the DAG card for DSM operation.

Declared In dagdsm.h

Prototype int dagdsm_prepare_card (int dagfd)

Parameters � dagfd
DAG file descriptor provided by dag_open.

Returns 0 if the card was configured successfully otherwise -1 if an error occurred.
Call dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (function not supported by the card)

Comments This function configures the non-DSM modules on the DAG card to support
DSM filtering. This function should be called to configure the DAG card prior
to taking the DSM module out of bypass mode.

This function performs the following actions:

• Enables packet record steering, based on the DSM classification (by
default packet records are routed to receive stream 0 only, regardless of
the DSM classification)

• Enables packet record dropping per stream (by default if a single receive
stream buffer is full, all receive streams will drop packet records)

• Updates the expected size of the packet record CRC field in the DSM to
match the current card configuration.

EDM 04-10: Data Stream Manager Programming Guide

©2006 9 Version 2: August 2006

 dagdsm_bypass_dsm

Purpose Enables/disables the DSM bypass option.

Declared In dagdsm.h

Prototype int dagdsm_bypass_dsm (int dagfd, uint32_t bypass)

Parameters � dagfd
DAG file descriptor provided by dag_open.

� bypass
A zero value disables bypass mode, a non-zero value enables the DSM bypass mode.

Returns Returns 0 if the bypass mode was enabled/disabled successfully, otherwise -1 is
returned. Call dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (DSM function not supported by the card or incorrect firmware loaded)

Comments When the card is in DSM bypass mode, all packet records bypass the DSM module
and are presented to the host directly. Bypass should be disabled for normal DSM
functionality.

When the card initially powers up or is reset, bypass mode is enabled.

 dagdsm_is_card_ethernet

Purpose Indicates if the card is configured for Ethernet.

Declared In dagdsm.h

Prototype int dagdsm_is_card_ethernet (int dagfd)

Parameters � dagfd
DAG file descriptor provided by dag_open.

Returns 0 if the card is not configured for Ethernet, 1 if configured for Ethernet and -1 if an
error occurred. Call dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (DSM function not supported by the card)

Comments This function duplicates functionality provided by the DAG Configuration and
Status API, however it is included in this library for completeness.

EDM 04-10: Data Stream Manager Programming Guide

©2006 10 Version 2: August 2006

 dagdsm_is_card_sonet

Purpose Indicates if the card is configured for sonet (PoS).

Declared In dagdsm.h

Prototype int dagdsm_is_card_sonet (int dagfd)

Parameters � dagfd
DAG file descriptor provided by dag_open.

Returns 0 if the card is not configured for SONET, 1 if configured for SONET and -1 if an
error occurred. Call dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (DSM function not supported by the card)

Comments This function duplicates functionality provided by the DAG Configuration and
Status API, however it is included in this library for completeness.

 dagdsm_get_port_count

Purpose Returns the number of physical ports on the card.

Declared In dagdsm.h

Prototype int dagdsm_get_port_count (int dagfd)

Parameters � dagfd
DAG file descriptor provided by dag_open.

Returns A positive value indicates the number of physical ports (interfaces) on the card, -1 is
returned if an error occurred. Call dagdsm_get_last_error to retrieve the error
code.

Possible error codes:

• EBADF (bad file descriptor)

Comments This function duplicates functionality provided by the DAG Config API, however it
is included in this library for completeness.

EDM 04-10: Data Stream Manager Programming Guide

©2006 11 Version 2: August 2006

 dagdsm_get_filter_stream_count

Purpose Returns the number of receive streams available on the card.

Declared In dagdsm.h

Prototype int dagdsm_get_filter_stream_count (int dagfd)

Parameters � dagfd
DAG file descriptor provided by dag_open

Returns A positive value indicates the number of receive streams (filter streams) available, -1
is returned if an error occurred. Call dagdsm_get_last_error to retrieve the error
code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (DSM function not supported by the card or incorrect firmware loaded)

Comments This function duplicates functionality provided by the DAG API, however it is
included in this library for completeness.

Refer to the DAG Programming Guide for more information on receive streams.

EDM 04-10: Data Stream Manager Programming Guide

©2006 12 Version 2: August 2006

 dagdsm_is_filter_active

Purpose Gets the activation status of a DSM filter.

Declared In dagdsm.h

Prototype int dagdsm_is_filter_active (int dagfd, uint32_t filter)

Parameters � dagfd
DAG file descriptor provided by dag_open
� filter
The number of the physical filter on the card, filter numbers start at 0 and go through
to 7.

Returns 0 if the filter is not active, 1 if active and -1 if an error occurred. Call
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (DSM function not supported by the card or incorrect firmware loaded)

• EINVAL (invalid argument)

Comments This function returns the state of a particular filter on the card. There are eight filters
in total.

It is important to note that the filter numbers supplied to this function directly match
the filter numbers on the card, this is not necessarily the case when using the filter
numbers in a virtual configuration, i.e. the virtual configuration filter numbers may
not match the filter numbers on the card. The following example is erroneous, it
assumes both the virtual configuration filter number and card filter number are the
same.
const uint32_t filter = 1;

config_h = dagdsm_create_configuration(dagfd);

filter_h = dagdsm_get_filter(config_h, filter);

dagdsm_filter_enable_filter(filter_h, 1);

dagdsm_load_configuration(config_h);

/* the following assertion is not correct and may fail */

assert (dagdsm_is_filter_active(dagfd, filter) == 1);

EDM 04-10: Data Stream Manager Programming Guide

©2006 13 Version 2: August 2006

 dagdsm_activate_filter

Purpose Activates a DSM filter.

Declared In dagdsm.h

Prototype int dagdsm_activate_filter (int dagfd, uint32_t filter, uint32_t
activate)

Parameters � dagfd
DAG file descriptor provided by dag_open.

� filter
The number of the physical filter on the card, filter numbers start at 0 and go through
to 7.

� activate
A non-zero value activates the filter, a zero value deactivates the filter.

Returns 0 if the filter was activated/deactivated and -1 if an error occurred. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (DSM function not supported by the card or incorrect firmware loaded)

• EINVAL (invalid argument)

Comments This function activates or deactivates a particular filter on the card. As with the
dagdsm_is_filter_active function, this function works directly with the filters on
the card, refer to the comments in section 3.1.8 for more information.

This function differs from dagdsm_enable_filter in that dagdsm_enable_filter
enables a virtual filter in the configuration, it doesn't directly change hardware
settings. The two functions should not be intermixed.

Deactivated filters always supply an output of false to the lookup table, regardless of
the contents or length of the packet being compared.

EDM 04-10: Data Stream Manager Programming Guide

©2006 14 Version 2: August 2006

 dagdsm_load_filter

Purpose Loads a filter directly to the card

Declared In dagdsm.h

Prototype int dagdsm_load_filter(int dagfd, uint32_t filter, uint32_t
term_depth, uint8_t * value, uint8_t * mask, uint32_t size)

Parameters � dagfd
DAG file descriptor provided by dag_open.

� filter
The number of the filter.

� term_depth

The element (8-byte chunk) that the filter can early terminate on.

� value
Array of comparand bytes that are loaded into the filter. This value can be NULL
if the size argument is also 0.

� mask
Array of mask bytes that are loaded into the filter. This value can be NULL if the
size argument is also 0.

� size
The size of both the value and mask buffers in bytes.

Returns 0 if the filter was updated otherwise -1 for an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (DSM function not supported by the card or incorrect firmware
loaded)

• EINVAL (invalid argument)

Comments As with the dagdsm_activate_filter and dagdsm_is_filter_active
functions, the filter argument refers to the hardware filter number not the virtual
filter number specified in a virtual configuration.

The term_depth argument refers to the element that should have the early
termination option set, refer to section 2.1.1 for more information. If all 64 bytes
of the filter should be used, set term_depth to the DSM_NO_EARLY constant.

The zeroth byte of the value and mask array corresponds to the first byte of the
packet record after the ERF header. If the size argument is less than the actual
size of the filter in the firmware (64 bytes), the remaining bytes are padded with
zeros in both the value and mask arrays.

Warning For Ethernet packets there are two bytes of padding immediately
after the ERF header, the first two bytes of the filter are compared with
these padding bytes.

Internally this function deactivates the filter before loading the new values,
afterwards if the filter was previously activated it will be reactivated prior to the
function returning.

Calling this function with a size of 0, will write zero values into all the mask
and comparand bytes, effectively clearing the filter.

EDM 04-10: Data Stream Manager Programming Guide

©2006 15 Version 2: August 2006

Chapter 3:
DSM Virtual Configuration

Overview Functions contained in this section of the API provides the ability to create and
maintain a virtual DSM configuration. Changes made to the virtual configuration
will not be reflected on the card until either the dagdsm_load_configuration
or dagdsm_do_swap_filter functions are called.

Configuration
Loading

Because the process of loading the virtual configuration into the card is not
instantaneous, packets that are received during this process may be
misclassified or dropped. If misclassified or dropped packets are
unacceptable, consider putting the DSM module in bypass mode while the
configuration is being updated.

The following table illustrates the situations where incorrect or dropped
packets could occur, the actual probability of either situation is dependant on
the previous value of the filters in the DSM and the new values being loaded
into them.

Description
Possible

Misclassified
Packets

Possible
Dropped
Packets

First Configuration Load
The first time a configuration is loaded into
the card after boot-up (or after loading the
Firmware).

Yes Yes

Changed Filter Configuration
If one or more filters in the virtual
configuration are changed and then the new
configuration is download to the card.

Yes Yes

Changed Lookup Table (Expressions)
Configuration
If the lookup table has changed (by updating
the partial and/or output stream expressions)
and then the updated virtual connection is
downloaded to the card.

No No

Hot-Swapping a Filter
See below for a description of 'hot-swapping No No

EDM 04-10: Data Stream Manager Programming Guide

©2006 16 Version 2: August 2006

Virtual Filter
Hot-Swapping

Hot-swapping is the process where one of the filters is replaced by a new
filter without any packets being misclassified or dropped. It works by
reserving one of the filters in the card as a swap filter, when asked to hot-
swap, the API loads the new filter values into the reserved filter and enables
it, the lookup table is then updated to reflect the position of the new filter, this
occurs atomically on a packet boundary thereby ensuring no
misclassification, finally the old filter is disabled.

This process works on the assumption that the virtual configuration has been
loaded into the DAG card prior to using the hot-swap functions.

The following code snippet demonstrates the process of hot-swapping, it
assumes a virtual configuration has already been created and loaded into the
card.

 DsmFilterH swap_filter_h;

DsmFilterH org_filter_h;

const uint32_t filter_num = 0;

...

/* get a handle to the swap filter */

swap_filter_h = dagdsm_get_swap_filter (config_h);

/* copy the current filter and update the ethertype */

org_filter_h = dagdsm_get_filter (config_h, filter_num);

dagdsm_filter_copy (swap_filter_h, org_filter_h);

dagdsm_filter_set_ethertype (swap_filter_h, 0x0800, 0xFFFF);

/* perform the hot-swap */

dagdsm_do_swap_filter (config_h, filter_num);

 dagdsm_create_configuration

Purpose Creates a new blank virtual configuration.

Declared In dagdsm.h

Prototype DsmConfigH dagdsm_create_configuration (int dagfd)

Parameters � dagfd
DAG file descriptor provided by dag_open.

Returns A handle to the new configuration or NULL to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EBADF (bad file descriptor)

• ENOENT (DSM function not supported by the card or incorrect firmware
loaded)

• ENOMEM (memory allocation error)

Comments This function creates a new virtual configuration and returns a handle to it,
more than one virtual configuration can be created per card.

The following is the default settings when a new configuration is created:

• All filters are disabled.

EDM 04-10: Data Stream Manager Programming Guide

©2006 17 Version 2: August 2006

• The layer 2 protocol of the filter is set to match the DAG card settings.
• The layer 3 protocol is set to IPv4 and all filter fields are cleared.
• Raw mode for the filters is disabled.

• The filter early termination option is set to DSM_NO_EARLYTERM.
• All partial and output stream expressions are empty (this will drop all

packets).
The virtual configuration should be destroyed by calling
dagdsm_destroy_configuration once you have finished with it.

 dagdsm_load_configuration

Purpose Loads a virtual connection into the DAG card.

Declared In dagdsm.h

Prototype int dagdsm_load_configuration (DsmConfigH config_h)

Parameters � config_h

Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns 0 if the configuration was loaded successifully, -1 is returned to indicate an
error. Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)
• ENOMEM (memory allocation error)

Comments This function accepts a virtual configuration handle and loads the filters and
lookup table from the virtual configuration into the card.

Warning: Because this process is not instantaneous packets received
during the process may be misclassified or dropped, refer Configuration
Loading earlier in this chapter for more information.

 dagdsm_destroy_configuration

Purpose Destroys an existing virtual configuration.

Declared In dagdsm.h

Prototype int dagdsm_destroy_configuration (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns 0 if the configuration was destroyed otherwise -1 is returned to indicate an
error. Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:
• EINVAL (invalid argument)

Comments This function destroys a virtual configuration, this has no effect on the actual
configuration loaded into the card. Once this function returns the virtual
configuration handle should be discarded, continuing to use it will result in
unpredictable behaviour.

EDM 04-10: Data Stream Manager Programming Guide

©2006 18 Version 2: August 2006

 dagdsm_get_filter

Purpose Returns a handle to a virtual filter.

Declared In dagdsm.h

Prototype int dagdsm_get_filter (DsmConfigH config_h, uint32_t filter)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

� filter
The number of the filter, this should be a value in the range of 0 to 6.

Returns A handle to the virtual filter, NULL is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function returns a handle to one of the seven virtual filters of a virtual
configuration.

Warning: The filter number is not necessarily related to the actual filter
number on the card as used in the dagdsm_is_filter_active,
dagdsm_activate_filter and dagdsm_load_filter functions.

 dagdsm_is_etherne

Purpose Indicates whether the virtual configuration is for Ethernet or not.

Declared In dagdsm.h

Prototype int dagdsm_is_ethernet (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns 0 if the virtual configuration is not configured for Ethernet, 1 if Ethernet is
configured and -1 if an error occurred. Call dagdsm_get_last_error to
retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

EDM 04-10: Data Stream Manager Programming Guide

©2006 19 Version 2: August 2006

 dagdsm_is_sonet

Purpose Indicates whether the virtual configuration is for sonet or not.

Declared In dagdsm.h

Prototype int dagdsm_is_sonet (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns 0 if the virtual configuration is not configured for SONET (PoS), 1 if
Sonet (PoS) is configured and -1 if an error occurred. Call
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

 dagdsm_get_swap_filter

Purpose Returns a handle to the virtual swap filter.

Declared In dagdsm.h

Prototype DsmFilterH dagdsm_get_swap_filter (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns A handle to the virtual swap filter, NULL is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function doesn't clear the swap filter, therefore it is recommended that the
swap filter is explicitly cleared (using dagdsm_filter_clear) prior to setting
any values.

EDM 04-10: Data Stream Manager Programming Guide

©2006 20 Version 2: August 2006

 dagdsm_do_swap_filter

Purpose Swaps the specified filter on the card with the virtual swap filter.

Declared In dagdsm.h

Prototype int dagdsm_do_swap_filter (DsmConfigH config_h, uint32_t filter)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

� filter

The number of the virtual filter to swap out, this argument should be
in the range of 0 to 6.

Returns 0 is returned to indicate success, -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

• ENOMEM (memory allocation error)

Comments This function performs an atomic filter swap, the virtual swap filter should
have been configured prior to performing the swap.

This function assumes, but doesn't check, that the virtual configuration has
already been downloaded to the card, unpredictable DSM behaviour will
occur it the current virtual configuration hasn't been downloaded to the card.

Warning: The filter argument supplied to this function is the virtual
configuration filter number and is not necessarily related to the actual
filter number on the card as used in the dagdsm_is_filter_active,
dagdsm_activate_filter and dagdsm_load_filter functions.

 dagdsm_clear_expressions

Purpose Destroys all partial expressions and resets the stream output expressions.

Declared In dagdsm.h

Prototype int dagdsm_clear_expressions (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns 0 is returned to indicate success, -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function destroys all the partial expressions, any partial expression
handles stored by the caller are no longer valid and should be discarded. Using
partial expression handles after calling this function will result in
unpredictable behaviour.

All output expressions for the streams are cleared. Cleared or empty stream
output expressions, result in all packets being dropped for that stream.

EDM 04-10: Data Stream Manager Programming Guide

©2006 21 Version 2: August 2006

 dagdsm_create_partial_expr

Purpose Creates a new partial expression.

Declared In dagdsm.h

Prototype DsmPartialExpH dagdsm_create_partial_expr (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns A handle to the new partial expression, NULL is returned to indicate an error.
Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

• ENOMEM (memory allocation error)

Comments The handle returned by this function can be past to any of the functions in the
partial expression section.

Partial expressions exist until dagdsm_clear_expressions is called. If lots of
partial expressions are continuously being created, consider calling
dagdsm_clear_expressions periodically to reduce memory usage.

 dagdsm_get_partial_expr_count

Purpose Returns the number of partial expressions currently created.

Declared In dagdsm.h

Prototype int dagdsm_get_partial_expr_count (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns A positive number is returned indicating the number of partial expressions, -1
is returned to indicate an error. Use dagdsm_get_last_error to retrieve the
error code.

Possible error codes:

• EINVAL (invalid argument)

Comments Returns the number of partial expressions created with
dagdsm_create_partial_expr since the last call to
dagdsm_clear_expressions.

EDM 04-10: Data Stream Manager Programming Guide

©2006 22 Version 2: August 2006

 dagdsm_get_partial_expr

Purpose Returns a handle to a partial expression.

Declared In dagdsm.h

Prototype int dagdsm_get_partial_expr (DsmConfigH config_h, uint32_t
index)

Parameters � config_h
Handle to a virtual configuration returned by

dagdsm_create_configuration.
� index

The index of the partial expression to retreive.

Returns A handle to the partial expression at the given index, NULL is returned to
indicate an error. Use dagdsm_get_last_error to retrieve the error code.

• Possible error codes:
EINVAL (invalid argument)

Comments The order of the partial expressions is not guaranteed, the first partial
expression created might not be the expression at index 0. To iterate over all
partial expressions start at index 0 and iterate up to the number of partial
expressions as returned by dagdsm_get_partial_expr_count.

 dagdsm_get_output_expr_count

Purpose Returns the number of possible stream output expressions.

Declared In dagdsm.h

Prototype int dagdsm_get_output_expr_count (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns A positive number is returned indicating the number of possible output
expressions, -1 is returned to indicate an error. Use dagdsm_get_last_error
to retrieve the error code.

• Possible error codes:
EINVAL (invalid argument)

Comments There is one output expression per stream, therefore the returned value is also
the number of possible receive streams. This function is equivalent to
dagdsm_get_filter_stream_count for a given DAG card.

This function returns the number of output expressions, however the actual
expression numbers are even, therefore the following code snippet is
incorrect:
count = dagdsm_get_output_expr_count(config_h);

for (i=0; i<count; i++)

expr_h = dagdsm_get_output_expr(i);

instead do:

count = dagdsm_get_output_expr_count(config_h);

for (i=0; i<count; i++)

expr_h = dagdsm_get_output_expr(i * 2);

EDM 04-10: Data Stream Manager Programming Guide

©2006 23 Version 2: August 2006

 dagdsm_get_output_expr

Purpose Returns the handle to an output stream expression.

Declared In dagdsm.h

Prototype DsmOutputExpH dagdsm_get_output_expression (DsmConfigH config_h,
uint32_t rx_stream)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

� rx_stream

The stream number to get the output expression for, this refers to the receive
streams therefore all stream numbers should even.

Returns A handle to the output expression for the given stream, NULL is returned to
indicate an error. Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments Stream output expressions are not created or destroyed they are valid while the
virtual configuration is valid.

DAG card convention is that all receive streams have even numbers starting at
0 and all transmit streams have odd numbers starting at 1. The DSM API
maintains that convention and stream 0 refers to the first receive stream and
stream 2 refers to the second and so forth. Therefore it is an error to supply an
odd number for the rx_stream argument.

EDM 04-10: Data Stream Manager Programming Guide

©2006 24 Version 2: August 2006

EDM 04-10: Data Stream Manager Programming Guide

©2006 25 Version 2: August 2006

Chapter4:
DSM Virtual Filter Configuration

Overview The functions contained in this section are used to construct the virtual filters
for loading into to the DAG card. Internally the library maintains the type of
packets expected by each filter, for example Ethernet frames encapsulating
IPv4/TCP packets. The type of the packet can be user defined down to the
layer 2 protocol which is defined by the DAG card.

It is important to note that although specific fields of a packet can be specified
in a filter, they may not correspond to the actual fields in the packet. This is
because the API makes assumptions about where data fields are located inside
the packet, these assumptions may be incorrect if things like IP options or
MPLS shims are present, offsetting the location of the fields inside the packet.

Raw Mode

Each filter can be put in raw mode, this enables the caller to specify a raw
array or comparands and masks to be loaded into the filter. The zeroth entry of
the user supplied raw arrays correspond to the zeroth byte of the filter, this is
compared against the first byte of a packet record after the ERF header.

Layer 2 Protocol
Types

As mentioned above the layer 2 protocol is defined by the actual DAG card
that is being configured, therefore it cannot be changed. The layer 2 protocol
type can be queried by calling dagdsm_is_ethernet or dagdsm_is_sonet.
The following table illustrates which functions are available for which layer 2
protocol modes.

Layer 2 Protocol Type
Function

SONET (PoS) Ethernet

dagdsm_filter_set_hdlc_header �

dagdsm_filter_set_ethertype �

dagdsm_filter_set_mac_src_address �

dagdsm_filter_set_mac_dst_address �

dagdsm_filter_enable_vlan �

dagdsm_filter_set_vlan_id �*

 Note:* only valid if the VLAN option has been enabled by calling
dagdsm_filter_enable_vlan

EDM 04-10: Data Stream Manager Programming Guide

©2006 26 Version 2: August 2006

Layer 3 Protocol
Types

The layer 3 protocol type of the packet should be defined prior to setting any
of the data fields contained within the actual protocol. For example it is an
error to call dagdsm_set_ip_source on a virtual filter without first calling
dagdsm_filter_set_layer3_type with an IPv4 argument . By default when
a virtual configuration is created all the filters are cleared and therefore no
protocol types are defined (except the layer 2 protocol which is set by the
DAG card).

The following table demonstrates which functions can be called for a
particular configuration of layer 3 & 4 types.

Layer 3 Protocol Type
Function

IPv4

dagdsm_filter_set_ip_source �

dagdsm_filter_set_ip_dest �

dagdsm_filter_ip_fragment �

dagdsm_filter_set_ip_hdr_length �

dagdsm_filter_set_ip_protocol �

 TCP UDP ICMP

dagdsm_filter_set_src_port � �

dagdsm_filter_set_dst_port � �

dagdsm_filter_set_tcp_flags �

dagdsm_filter_set_icmp_code �

dagdsm_filter_set_icmp_type �

 The following example illustrates how a typical IPv4 filter would be
constructed, error checking has been removed for brevity.

Configuring a Filter for IPv4/TCP

const uint32_t filter = 0;

DsmConfigH config_h;

DsmFilterH filter_h;

struct in_addr addr;

struct in_addr mask;

/* create the new configuration */

...

/* get a handle to the filter */

filter_h = dagdsm_get_filter (config_h, filter);

/* ensure raw mode is disabled */

dagdsm_filter_set_raw_mode (filter_h, 0);

/* clear the filter contents */

dagdsm_filter_clear (filter_h);

EDM 04-10: Data Stream Manager Programming Guide

©2006 27 Version 2: August 2006

/* enable the filter */

dagdsm_filter_enable (filter_h, 1);

/* configure for IPv4 */

dagdsm_set_layer3_type (filter_h, kIPv4);

/* set a source and destination filter */

inet_aton(“192.168.0.0”, &addr);

inet_aton(“255.255.0.0”, &mask);

dagdsm_filter_set_ip_source(filter_h, &addr, &mask);

/* set the layer 4 type to TCP */

dagdsm_filter_set_ip_protocol(filter_h, IPPROTO_TCP);

/* set the destination TCP port to filter on */

dagdsm_filter_set_dst_port(80, 0xFFFF);

...

 dagdsm_filter_clear

Purpose Clears the contents of a virtual filter.

Declared In dagdsm.h

Prototype int dagdsm_filter_clear (DsmFilterH filter_h)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.

Returns 0 if the filter was cleared, -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments When a filter is cleared the filter is modified in the following ways:

All filter fields are cleared (masks and values are set to zero)

• Layer 2 protocol type is unchanged.
• Layer 3 protocol type is set to kIPv4.
• Layer 4 protocol type is set to zero.
• Raw mode is disabled.
• The filter enabled/disabled state is unchanged.

A cleared filter is equivalent to the filter state when a virtual configuration is
first created.

This function clears the layer 4 protocols/types, meaning that the functions to
set the layer 4 data fields (TCP ports, ICMP types, etc) will return error codes.

EDM 04-10: Data Stream Manager Programming Guide

©2006 28 Version 2: August 2006

 dagdsm_filter_copy

Purpose Copies the contents of one virtual filter to another virtual filter.

Declared In dagdsm.h

Prototype int dagdsm_filter_copy (DsmFilterH dst_filter_h, DsmFilterH
src_filter_h)

Parameters � dst_filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter, this is the destination filter that is copied over.
� src_filter_h

Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter, this is the source filter.

Returns 0 if the filter was copied otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function copies all the filter fields and protocol types from one filter to
another.

It is possible to copy virtual filters from two different virtual configurations,
however both filters must have the same layer 2 type (either Sonet/PoS or
Ethernet).

The filter enabled/disabled state and raw mode state are also copied by this
function.

 dagdsm_filter_get_values

Purpose Copies the raw filter data to user supplied buffer.

Declared In dagdsm.h

Prototype int dagdsm_filter_get_values (DsmFilterH filter_h, uint8_t *
value, uint8_t * mask, uint32_t max_size)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.

� value

Pointer to an array that will receive the comparand part of the filter.

� mask

Pointer to an array that will receive the mask part of the filter.
� max_size

The maximum number of bytes that can be copied into both the value and
mask arrays.

Returns A positive number indicating how many bytes were copied into both arrays, -
1 is returned to indicate an error. Use dagdsm_get_last_error to retrieve the
error code.

Possible error codes:

• EINVAL (invalid argument)

EDM 04-10: Data Stream Manager Programming Guide

©2006 29 Version 2: August 2006

Comments This function copies all the filter values, up to the size of the filter or
max_size depending on which one has the smallest value. The bytes copied
into the two arrays are the same as what would be downloaded to the card if
dagdsm_load_configuration was called.

The following example simply shows what you would expect to read back. It
is assumed that the virtual configuration is for a Sonet card configuration.
Error checking has been removed for brevity.

DsmConfigH config_h;

DsmFilterH filter_h;

uint8_t values[4];

uint8_t mask[4];

/* initialise the virtual configuration and get a filter
handle*/

...

assert (dagdsm_is_sonet(config_h) == 1);

/* clear and set the hdlc header filter */

dagdsm_filter_clear (filter_h);

dagdsm_filter_set_hdlc_hdr (filter_h, 0xFF030021, 0xFFFF00FF);

/* read the filter data */

dagdsm_filter_get_values (filter_h, values, mask, 4);

/* check the comparand values are correct */

assert(values[0] == 0xFF);

assert(values[1] == 0x03);

assert(values[2] == 0x00);

assert(values[3] == 0x21);

/* check the mask values are correct */

assert(mask[0] == 0xFF);

assert(mask[1] == 0xFF);

assert(mask[2] == 0x00);

assert(mask[3] == 0xFF);

EDM 04-10: Data Stream Manager Programming Guide

©2006 30 Version 2: August 2006

 dagdsm_filter_enable

Purpose Enables/disables a virtual filter.

Declared In dagdsm.h

Prototype int dagdsm_filter_enable (DsmFilterH filter_h, uint32_t enable)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� enable

A non-zero value enables the filter, zero disables the filter.

Returns 0 if the virtual filter was enabled/disabled, -1 is returned to indicate an error.
Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function does NOT enable or disable the filter on the actual card, it
simply sets the state of the filter in the virtual configuration. The state will not
be reflected on the DAG card until dagdsm_load_configuration is called.

Disabled filters can still be used in partial expressions, however their output
will always be false.

Disabling a filter still allows you to modify any of the filter fields using the
virtual filter functions contained in this section.

 dagdsm_filter_set_early_term_depth

Purpose Sets the first element that has the early termination option set.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_early_term_depth (DsmFilterH filter_h,
uint32_t element)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.

� element
The element number to set the early termination option on, if no early
termination is required set this parameter to DSM_NO_EARLYTERM.

Returns 0 if the early termination option was set, -1 is returned to indicate an error.
Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments For a detailed description of the early termination option refer to Packet Filters
earlier in this Guide.

If the element argument is larger than the last possible element in the filter, it
is clipped to the last possible value.

EDM 04-10: Data Stream Manager Programming Guide

©2006 31 Version 2: August 2006

 dagdsm_filter_set_raw_mode

Purpose Sets or resets the raw mode of the filter.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_raw_mode (DsmFilterH filter_h, uint32_t
enable)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� enable

A non-zero value enables raw mode and zero disables raw mode

Returns 0 if raw mode was set, -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments When in raw mode the contents of the filter is set by the
dagdsm_filter_set_raw_filter function, this allows for custom filters to be
created.

 dagdsm_filter_get_raw_mode

Purpose Gets the status of raw mode for a filter.

Declared In dagdsm.h

Prototype int dagdsm_filter_get_raw_mode (DsmFilterH filter_h)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.

Returns 1 if raw mode is set, 0 if not set and -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

EDM 04-10: Data Stream Manager Programming Guide

©2006 32 Version 2: August 2006

 dagdsm_filter_set_raw_filter

Purpose Sets the raw comparand and mask bytes of the virtual filter.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_raw_bytes (DsmFilterH filter_h, const
uint8_t * value, const uint8_t * mask, uint32_t size)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.

� value

Array that contains the raw bytes to load into the comparand part of the filter.
The array must contain at least size number of bytes.
� mask

Array that contains the raw bytes to load into the mask part of the filter. The
array must contain at least size number of bytes.
� size

The number of bytes in both the value and mask arrays that should be copied
into the filter. Currently the maximum filter size is 64 bytes.

Returns 0 if the filter values were set otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function will fail if raw mode hasn't been enabled (by calling
dagdsm_filter_set_raw_mode).

If the size argument is less than the actual size of the filter in firmware (64
bytes), the remaining bytes are padded with zeros in both the value and mask
arrays. If the size is larger than the actual size it is trimmed.

The zeroth byte of the value and mask arrays, when loaded into the DAG card,
is compared against the first byte after the ERF header. For Ethernet frames
the DAG card inserts two bytes of padding after the ERF record, refer to
Appendix A for more information.

EDM 04-10: Data Stream Manager Programming Guide

©2006 33 Version 2: August 2006

 dagdsm_filter_enable_vlan

Purpose Enables the VLAN option for filters on Ethernet cards.

Declared In dagdsm.h

Prototype int dagdsm_filter_enable_vlan (DsmFilterH filter_h, uint32_t
enable)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.

� enable
A non-zero value enables the VLAN option, a zero value disables the VLAN
option.

Returns 0 if the filter was updated otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function will failed (with a EINVAL error code) if the DAG card is not
configured for Ethernet.

This option is for IEEE 802.1Q tag-based VLAN only, the following diagram
illustrates the VLAN format expected by the filter.

If VLAN is enabled the filter is adjusted to filter out Ethernet frames that have a
length/type field of 0x8100 (this is the TPID field as per IEEE 802.1Q /
802.1P). All other data fields for the higher level protocols are automatically
offset to the correct position.

If an Ethernet type/length filter field has been specified (by calling
dagdsm_filter_set_ethertype) it is offset by four bytes to immediately
after the VLAN header.

DA SA Length/Typ Data

DA SA Data TPI TCI Length/Typ

Priorit C V

Standard Frame

VLAN tagged Frame

EDM 04-10: Data Stream Manager Programming Guide

©2006 34 Version 2: August 2006

 dagdsm_filter_set_vlan_id

Purpose Sets the VLAN ID to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_vlan_id (DsmFilterH filter_h, uint16_t id,
uint16_t mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� id

The 12-bit VLAN ID to filter on.
� mask

The 12-bit mask of the id.

Returns 0 if the filter values were set otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

• Possible error codes:
EINVAL (invalid argument)

Comments This function will fail with an EINVAL error code if the virtual configuration is
not Ethernet with VLAN enabled.

The id and mask parameters should be in host byte order, internally the DSM
API converts the value to network byte order.

 dagdsm_filter_set_ethertype

Purpose Sets the ethertype of the Ethernet frame to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_ethertype (DsmFilterH filter_h, uint16_t
ethertype, uint16_t mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� ethertype

The Ethertype to filter on.
� mask

The mask to use for the Ethertype.

Returns 0 if the filter values were set otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

• Possible error codes:
EINVAL (invalid argument)

Comments This function will fail with an EINVAL error code if the virtual configuration is
not configured for Ethernet. The Ethertype and mask parameters should be in
host byte order, internally the DSM API converts the value to network byte
order. This function doesn't have an effect on the type of the higher level
protocol, for example calling this function with a Ethertype argument of
0x0800(the IPv4 protocol ethertype) is not equivalent to calling
dagdsm_filter_set_layer3_type with the kIPv4 parameter.

EDM 04-10: Data Stream Manager Programming Guide

©2006 35 Version 2: August 2006

 dagdsm_filter_set_mac_src_address

Purpose Sets the source MAC address in the Ethernet header to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_mac_src_address (DsmFilterH filter_h,
uint8_t src[6] uint8_t mask[6])

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� src

The source MAC address to filter on.
� mask

The mask to use for the MAC address.

Returns 0 if the filter values were set otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function will fail with an EINVAL error code if the virtual configuration
is not configured for Ethernet.

The MAC addresses bytes should be in network byte order (from most
significant to least significant), for example to set a MAC address filter of
12:××:56:78:×A:BC the following code should be used.

uint8_t addr[6] = { 0x12, 0x00, 0x56, 0x78, 0x0A, 0xBC };

uint8_t mask[6] = { 0xFF, 0x00, 0xFF, 0xFF, 0x0F, 0xFF };

dagdsm_filter_set_mac_src_address (filter_h, addr, mask);

EDM 04-10: Data Stream Manager Programming Guide

©2006 36 Version 2: August 2006

 dagdsm_filter_set_mac_dst_address

Purpose Sets the destination MAC address in the Ethernet header to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_mac_dst_address (DsmFilterH filter_h,
uint8_t dst[6] uint8_t mask[6])

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� dst

The destination MAC address to filter on.
� mask

The mask to use for the MAC address.

Returns 0 if the filter values were set otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function will fail with an EINVAL error code if the virtual configuration is
not configured for Ethernet.

Refer to the comments in previous section for more information on the usage
of this function.

 dagdsm_filter_set_hdlc_header

Purpose Sets the PoS HDLC/PPP 32-bit header to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_hdlc_header (DsmFilterH filter_h, uint32_t
hdlc_hdr, uint32_t mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� hdlc_hdr

The 32-bit HDLC/PPP PoS header to filter on.
� mask

The mask to use for HDLC/PPP header.

Returns 0 if the filter values were set otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function will fail with an EINVAL error code if the virtual configuration is
not configured for Sonet(PoS).

The hdlc_hdr argument should be in host byte order, internally the DSM API
converts the parameter in network byte order.

EDM 04-10: Data Stream Manager Programming Guide

©2006 37 Version 2: August 2006

 dagdsm_filter_set_layer3_type

Purpose Sets the layer 3 protocol type to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_layer3_type (DsmFilterH filter_h,
layer3_type_t type)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� type
The layer 3 protocol type to filter on, currently the only valid value is kIPv4.

Returns 0 if the filter values were set otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This setting effects how the filter is constructed and how the higher level
protocol data fields are used. Currently the only possible layer 3 protocol type
is Internet Protocol version 4 (kIPv4).

Setting the layer 3 type doesn't change the actual filter bits, it just allows the
IPv4 fields to be set.

 dagdsm_filter_set_ip_protocol

Purpose Sets the IP protocol to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_ip_protocol (DsmFilterH filter_h, uint8_t
type)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� protocol

The 8-bit number that defines the IP protocol to filter on.

Returns 0 if the filter IP protocol were set otherwise -1 is returned to indicate an error.
Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function sets the protocol field of an IPv4 packet in the filter, there is no
mask associated with this value so for a filter to hit on a packet, all eight bits
of the protocol must match.

If the IP protocol number for either TCP(6), UDP(11) or ICMP(1) is specified
in the protocol argument, additional protocol data fields can be configured,
refer to table 3-3 for more information on possible function calls.

EDM 04-10: Data Stream Manager Programming Guide

©2006 38 Version 2: August 2006

 dagdsm_filter_set_ip_source

Purpose Sets the IPv4 source address to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_ip_source (DsmFilterH filter_h, struct
in_addr *src, struct in_addr * mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� src

Source address value to filter on.
� mask

Source address mask.

Returns 0 if the filter was updated otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function updates the bits in the virtual filter to filter out packets with the
correct source IP address.

In the following example, packets with an IP source address of 192.168.×.×
(where × refers to 'don't care' values) return a true output.

DsmFilterH filter_h;

struct in_addr addr;

struct in_addr mask;

/* create the new configuration and get a handle to the filter*/

...

/* set a source and destination filter */

addr.s_addr = inet_addr(“192.168.0.0”);

mask.s_addr = inet_addr(“255.255.0.0”);

dagdsm_filter_set_ip_source(filter_h, &addr, &mask);

EDM 04-10: Data Stream Manager Programming Guide

©2006 39 Version 2: August 2006

 dagdsm_filter_set_ip_dest

Purpose Sets the IPv4 destination address to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_ip_dest (DsmFilterH filter_h, struct
in_addr *dst, struct in_addr * mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.

� dst

Destination address value to filter on.
� mask

Destination address mask.

Returns 0 if the filter was updated otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments See the comments in previous section for more information.

 dagdsm_filter_set_ip_hdr_length

Purpose Sets the IP header length to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_ip_hdr_length (DsmFilterH filter_h,
uint8_t ihl)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� ihl

The IP header length in 32-bit words to filter on, only the lower 4 bits of the
value are used.

Returns 0 if the filter was updated, otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function updates the IP header length in the filter and adjusts any layer 4
filter fields to the correct offset. The minimum header length allowed is 5
words (40 bytes). There is no mask associated with this value so an exact
value in the packet is required for a filter hit.

EDM 04-10: Data Stream Manager Programming Guide

©2006 40 Version 2: August 2006

 dagdsm_filter_ip_fragment

Purpose Updates the filter to reject IPv4 fragments.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_ip_fragment (DsmFilterH filter_h, uint32_t
enable)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� enable
A non-zero value will enable the IPv4 fragment rejection option in the filter. A
zero value disables the option.

Returns 0 if the filter was updated otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function adds an entry in the filter to return false for IPv4 packets that
have either the More bit set in the flags or the Fragment Offset field is not 0
in the packet header.

The following is the equation describing the filter output if IP fragment
filtering is enabled:
filter output = (NOT more) AND (fragment offset = 0)

 dagdsm_filter_set_src_port

Purpose Sets the source port to filter on for TCP and UDP filters.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_src_port (DsmFilterH filter_h, uint16_t
port, uint16_t mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.

� port

The port number to filter on, this value should NOT be converted to network
byte order, internally the library maintains the correct byte ordering of values.
� mask

The mask value to use for the port, as with the port argument the mask should
be in host byte order.

Returns 0 if the filter was updated otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

EDM 04-10: Data Stream Manager Programming Guide

©2006 41 Version 2: August 2006

Comments If the filter hasn't been configured for TCP or UDP (by calling
dagdsm_filter_set_ip_protocol with a protocol argument of either 6
(TCP) or 17 (UDP)) this function will fail with a EINVAL error code.

The port and mask parameters should be in host byte order, internally the
DSM API converts the value to network byte order.

In the following code snippet, UDP packets with a source port address of 80
(HTTP) will result in a true filter output, all other packets will result in a false
output. Error checking has been omitted for brevity.

dagdsm_filter_set_ip_protocol (filter_h, 17);

dagdsm_filter_set_src_port (filter_h, 80, 0xFFFF);

 dagdsm_filter_set_dst_port

Purpose Sets the destination port to filter on for TCP and UDP filters.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_dst_port (DsmFilterH filter_h, uint16_t
port, uint16_t mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� port

The port number to filter on, this value should not be converted to network
byte order, internally the library maintains the correct byte ordering of values.
� mask

The mask value to use for the port, as with the port argument the mask should
be in host byte order.

Returns 0 if the filter was updated otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments If the filter hasn't been configured for TCP or UDP (by calling
dagdsm_filter_set_ip_protocol with a protocol argument of either 6
(TCP) or 17 (UDP)) this function will fail with an EINVAL error code.

The port and mask parameters should be in host byte order, internally the
DSM API converts the value to network byte order.

Refer to the comments in previous section for more information.

EDM 04-10: Data Stream Manager Programming Guide

©2006 42 Version 2: August 2006

 dagdsm_filter_set_tcp_flags

Purpose Sets the TCP flags to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_tcp_flags (DsmFilterH filter_h, uint8_t
flags, uint8_t mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� flags

The flags to filter on, only the lower 6 bits of the value are used.
� mask

The mask to apply to the flags, only the lower 6 bits of the mask are used.

Returns 0 if the filter was updated, otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments If the filter hasn't been configured for TCP (by calling
dagdsm_filter_set_ip_protocol with a protocol parameter of 6 (TCP))
this function will fail with an EINVAL error code.

In the following example all IPv4/TCP packets that have the RST (reset
connection) and PSH (push function) TCP flags set, will result in a true filter
output, all other packets will result in a false filter output. Error checking has
been omitted for brevity.

dagdsm_filter_set_ip_protocol (filter_h, 6);

dagdsm_filter_set_tcp_flags (filter_h, 0x0C, 0x0C);

EDM 04-10: Data Stream Manager Programming Guide

©2006 43 Version 2: August 2006

 dagdsm_filter_set_icmp_code

Purpose Sets the ICMP code to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_icmp_code (DsmFilterH filter_h, uint8_t
code, uint8_t mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� code

The ICMP code to filter on.
� mask

The mask to apply to the code.

Returns 0 if the filter was updated, otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments If the filter hasn't been configured for ICMP (by calling
dagdsm_filter_set_ip_protocol, with a protocol parameter of 1 (ICMP))
this function will fail with a EINVAL error code.

In the following example all IPv4/ICMP packets that have a code of 0x12, will
result in a true filter output, all other packets will result in a false filter
output. Error checking has been omitted for brevity.

dagdsm_filter_set_ip_protocol (filter_h, 1);

dagdsm_filter_set_tcp_flags (filter_h, 0x12, 0xFF);

 dagdsm_filter_set_icmp_type

Purpose Sets the ICMP type to filter on.

Declared In dagdsm.h

Prototype int dagdsm_filter_set_icmp_type (DsmFilterH filter_h, uint8_t
type, uint8_t mask)

Parameters � filter_h
Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� type

The ICMP type to filter on.
� mask

The mask to apply to the type.

Returns 0 if the filter was updated, otherwise -1 is returned to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

EDM 04-10: Data Stream Manager Programming Guide

©2006 44 Version 2: August 2006

Comments If the filter hasn't been configured for ICMP (by calling
dagdsm_filter_set_ip_protocol with a protocol parameter of 1 (ICMP))
this function will fail with an EINVAL error code.

In the following example all IPv4/ICMP packets that are an echo request (type
8), will result in a true filter output, all other packets will produce a false
filter output. Error checking has been omitted for brevity.

dagdsm_filter_set_ip_protocol (filter_h, 1);

dagdsm_filter_set_tcp_flags (filter_h, 8, 0xFF);

EDM 04-10: Data Stream Manager Programming Guide

©2006 45 Version 2: August 2006

Chapter 5:
Partial Expressions

Overview The functions contained in this section are used to construct logical partial
expressions, the expressions are used to generate the lookup table in the DSM
module. Partial expressions are constructed from one or more; filter outputs,
load balancing algorithm outputs or physical port numbers, each of the values
(or the inverse of the values) are OR'ed together to create the partial
expression. The output of a partial expression is a boolean value. If a partial
expression contains no parameters it will always return false.

It is not possible to create a partial expression that contains a parameter and
the inverse of itself. For example if erroneously trying to create a partial
expression with parameters of; Filter0 and not Filter0, the following code
might be used:
partial_h = dagdsm_create_partial_expr (config_h);

dagdsm_expr_set_filter (partial_h, 0, 0);

dagdsm_expr_set_filter (partial_h, 0, 1);

However the actual partial expression that is created will just have a single
parameter of not Filter0, because that was the last value set for filter 0.

Below are example partial expressions and the source code required to
construct them. Both examples assume a virtual configuration has been
created. Error checking has been removed for brevity.

Partial Expression Example 1
output= Filter0 OR NOT Filter1
partial_h = dagdsm_create_partial_expr (config_h);

dagdsm_expr_set_filter (partial_h, 0, 0);

dagdsm_expr_set_filter (partial_h, 1, 1);

Partial Expression Example 2
output = Physical Port0 OR NOT Filter6 OR NOT Steering0 OR
Filter2

partial_h = dagdsm_create_partial_expr (config_h);

dagdsm_expr_set_interface (partial_h, 0, 0);

dagdsm_expr_set_filter (partial_h, 6, 1);

dagdsm_expr_set_hlb (partial_h, 0, 1);

dagdsm_expr_set_filter (partial_h, 2, 0);

EDM 04-10: Data Stream Manager Programming Guide

©2006 46 Version 2: August 2006

 dagdsm_expr_set_filter

Purpose Sets the filter parameter in a partial expression.

Declared In dagdsm.h

Prototype int dagdsm_expr_set_filter (DsmPartialExpH expr_h, uint32_t
filter, uint32_t invert)

Parameters � expr_h
Handle to a partial expression returned by either
dagdsm_create_partial_expr or dagdsm_get_partial_expr.
� filter

The virtual filter number to set in the expression.
� invert

A non-zero value will invert the filter parameter in the expression, zero will
not invert the parameter.

Returns 0 if the partial expression was updated otherwise -1 is returned to indicate an
error. Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

 dagdsm_expr_set_interface

Purpose Sets the physical interface(port) parameter in a partial expression.

Declared In dagdsm.h

Prototype int dagdsm_expr_set_interface (DsmPartialExpH expr_h, uint32_t
iface, uint32_t invert)

Parameters � expr_h
Handle to a partial expression returned by either
dagdsm_create_partial_expr or dagdsm_get_partial_expr.
� iface

The physical interface number to set in the partial expression.
� invert

A non-zero value will invert the interface parameter in the expression, a zero
value will not invert the parameter.

Returns 0 if the partial expression was updated otherwise -1 is returned to indicate an
error. Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function sets the physical port or interface number to add to the partial
expression. The physical interface is recorded by the DAG card when the
packet first arrives at the card, interfaces are number 0 through to n-1 where n
is the number of physical interfaces.

This function will fail (with an error code of EINVAL) if the iface argument is
greater than the number of physical ports on the card.

EDM 04-10: Data Stream Manager Programming Guide

©2006 47 Version 2: August 2006

 dagdsm_expr_set_hlb

Purpose Sets the load balancing (steering) parameter in a partial expression.

Declared In dagdsm.h

Prototype int dagdsm_expr_set_hlb (DsmPartialExpH expr_h, uint32_t hlb,
uint32_t invert)

Parameters � expr_h
Handle to a partial expression returned by either dagdsm_create_partial_expr
or dagdsm_get_partial_expr.
� hlb
The number of the load balancing algorithm to use as a parameter in the
partial expression. The following constants are defined and can be used for
this argument:
 kCRCLoadBalAlgorithm

 kParityLoadBalAlgorithm.
� invert
A non-zero value will invert the load balancing parameter in the expression, a
zero value will not invert the parameter.

Returns 0 if the partial expression was updated otherwise -1 is returned to indicate an
error. Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function sets the load balancing (steering) algorithms that will be used in
a partial expression. Each algorithm will produce on average a 50:50
true/false output, given random packet data. Therefore these algorithms can
be used in a partial expression to split packet records between two different
receive streams.

EDM 04-10: Data Stream Manager Programming Guide

©2006 48 Version 2: August 2006

 dagdsm_compute_partial_expression

Purpose Calculates the output of a partial expression given a complete set of input
parameters.

Declared In dagdsm.h

Prototype int dagdsm_compute_partial_expression (DsmPartialExpH expr_h,
uint32_t filters, uint8_t iface, uint32_t hlb0, uint32_t hlb1)

Parameters � expr_h
Handle to a partial expression returned by either
dagdsm_create_partial_expr or dagdsm_get_partial_expr.
� filters

Bitmasked value that should contain the filters expected to hit, see the
comments below for more information.
� iface

The interface number to check against, only the lower 2 bits of this value are
used.
� hlb0

A non-zero value to indicate the output of the CRC load balancing algorithm
is true, a zero value indicates the output is false.
� hlb1

A non-zero value to indicate the output of the parity load balancing algorithm
is true, a zero value indicates the output is false.

Returns 0 if partial expression evaluates to a false output, 1 if the partial expression
evaluates to a true output and -1 to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function computes the output of a given partial expression, based on the
supplied parameters, this may be useful for checking partial expression
logical, before downloading the configuration to the card.

The filter parameter is a bit-masked value indicating the filter outputs to
compare with the partial expression. The zeroth bit corresponds to filter 0, bit
1 corresponds to filter 1 and so on, a maximum of 7 bits can be set. For
example if 0x00000045 was supplied as the filters argument, it would indicate
that filters 0, 2 & 6 have produced a true output and all the other filters have
produced a false output.

Partial expressions that have no parameters set always return a false output,
regardless of the filters, interface and load balancing input parameters.

EDM 04-10: Data Stream Manager Programming Guide

©2006 49 Version 2: August 2006

Chapter 6:
Output Expressions

Overview Output expressions are constructed of one or more partial expressions (or the
inverse of the partial expression) AND'ed together. A single output expression
corresponds to a single receive stream, output expressions cannot be created or
destroyed. To clear the contents of an output expression call
dagdsm_clear_expressions.

As with the partial expressions, if an output expression has no partial
expression parameters it will always output a false value.

It is possible to create an output expression that will never output a true value
regardless of input parameters, the following example illustrates the situation.
partial expression 0 = filter 0

partial expression 1 = filter 0

output expression = partial expression 0 AND NOT partial
expression 1

The DSM API doesn't check for this situations, it is the user responsibility to
correctly construct the output expressions.

Below are some example stream output expressions and the source code used
to generate them. In each case, error checking has been removed for brevity.

output = expression0 AND expression1

DsmOutputExpH output_h;

DsmPartialExpH partial0_h;

DsmPartialExpH partial1_h;

output_h = dagdsm_get_output_expression (config_h, 0);

dagdsm_expr_add_partial_expr (output_h, partial0_h, 0);

dagdsm_expr_add_partial_expr (output_h, partial1_h, 0);

Stream Output Expression Example 2
output = expression0 AND NOT expression1 AND NOT expression2

DsmOutputExpH output_h;

DsmPartialExpH partial0_h;

DsmPartialExpH partial1_h;

DmsPartialExpH partial2_h;

output_h = dagdsm_get_output_expression (config_h, 0);

dagdsm_expr_add_partial_expr (output_h, partial0_h, 0);

dagdsm_expr_add_partial_expr (output_h, partial1_h, 1);

dagdsm_expr_add_partial_expr (output_h, partial2_h, 1);

EDM 04-10: Data Stream Manager Programming Guide

©2006 50 Version 2: August 2006

 dagdsm_expr_add_partial_expr

Purpose Adds a partial expression to the output expression.

Declared In dagdsm.h

Prototype int dagdsm_expr_set_hlb (DsmOutputExpH expr_h, DsmPartialExpH
partial_h, uint32_t invert)

Parameters � output_h
Handle to an output expression returned by dagdsm_get_output_expression.
� partial_h

Handle to a partial expression returned by either
dagdsm_create_partial_expr or dagdsm_get_partial_expr.
� invert

A non-zero value will invert the output of the partial expression, a zero value
will not invert the partial expression output.

Returns 0 if the output expression was updated otherwise -1 is returned to indicate an
error. Use dagdsm_get_last_error to retrieve the error code.

• Possible error codes:
EINVAL (invalid argument)

Comments This function appends a partial expression (or the inverse of a partial
expression) onto the end of the output expression. The partial expression must
belong to the same virtual configuration that holds the output expression,
unpredictable behaviour will result if expressions are used across different
virtual configurations.

The invert argument allows for the output of the partial expression to be
inverted prior to being AND'ed with the rest of the output expression.

 dagdsm_compute_output_expr_value

Purpose Computes the output value of an output expression, given a fixed set of input
parameters.

Declared In dagdsm.h

Prototype int dagdsm_compute_output_expr_value (DsmOutputExpH expr_h,
Duint32_t filters, uint8_t iface, uint32_t hlb0, uint32_t hlb1)

Parameters � expr_h
Handle to an output expression returned by dagdsm_get_output_expression.
� filters

Bit-masked value that should contain the filter outputs, one bit per filter, see
the comments below for more information.
� iface

The interface number to check against, only the lower 2 bits of this value are
used.
� hlb0

A non-zero value to indicate the output of the CRC load balancing algorithm
is true, a zero value indicates the output is false.
� hlb1

A non-zero value to indicate the output of the parity load balancing algorithm
is true, a zero value indicates the output is false.

EDM 04-10: Data Stream Manager Programming Guide

©2006 51 Version 2: August 2006

Returns 0 if the stream output expression evaluates to a false output, 1 if the stream
output expression evaluates to a true output and -1 to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function computes the output of a given stream output expression, based
on the supplied parameters, this may be useful for checking stream output
expression logic, before downloading the configuration to the card.

The filter parameter is a bit-masked value indicating the filter outputs to
compare with the partial expression. The zeroth bit corresponds to filter 0, bit
1 corresponds to filter 1 and so on, a maximum of 7 bits can be set. For
example if 0x00000045 was supplied as the filters argument, it would indicate
that filters 0, 2 & 6 have a true output and all the other filters have a false
output.

Stream output expressions that have no partial expression parameters, always
return a false output regardless of the filters, interface and load balancing
input parameters.

Warning: The output of this function is not necessarily the value that
will be programmed into the lookup table on the card. This is because
output stream expressions are priority ordered, meaning that if the same
set of input parameters gives hits on more than one stream expression,
the stream expression with the highest priority (lowest stream number)
is programmed into the table.

EDM 04-10: Data Stream Manager Programming Guide

©2006 52 Version 2: August 2006

EDM 04-10: Data Stream Manager Programming Guide

©2006 53 Version 2: August 2006

Chapter 7:
Counters

Overview The functions contained in this section are used to latch and clear all the
counters and read back the latched values. The counters should be latched and
cleared prior to reading the values.

 dagdsm_latch_and_clear_counters

Purpose Latches and clears all the counters inside the card.

Declared In dagdsm.h

Prototype int dagdsm_latch_and_clear_counters (DsmConfigH config_h)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.

Returns 0 if the counters were latched and cleared otherwise -1 to indicate an error.
Use dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

Comments This function latches the counters inside the DAG card and copies the values
into registers accessible from the API. When a counter is read the latched
values are returned.

 dagdsm_read_filter_counter

Purpose Reads the contents of a latched filter counter.

Declared In dagdsm.h

Prototype int dagdsm_read_filter_counter (DsmConfigH config_h, DsmFilterH
filter_h, uint32_t *value_p)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.
� filter_h

Handle to a virtual filter returned by dagdsm_get_filter or
dagdsm_get_swap_filter.
� value_p

Pointer to a 32-bit variable that receives the latched filter count.

Returns 0 if the latched counter value was read otherwise -1 to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

EDM 04-10: Data Stream Manager Programming Guide

©2006 54 Version 2: August 2006

 dagdsm_read_hlb_counter

Purpose Reads the contents of a latched load balancing algorithm counter.

Declared In dagdsm.h

Prototype int dagdsm_read_hlb_counter (DsmConfigH config_h, uint32_t
*hlb0_p, uint32_t *hlb1_p)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.
� hlb0_p

Pointer to a 32-bit variable that receives the latched CRC load balancing
algorithm count. This is an optional output, pass NULL if this counter value is
not required.
� hlb1_p

Pointer to a 32-bit variable that receives the latched parity load balancing
algorithm count. This is an optional output, pass NULL if this counter value is
not required.

Returns 0 if the latched counter value was read otherwise -1 to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

 dagdsm_read_drop_counter

Purpose Reads the contents of the latched drop counter.

Declared In dagdsm.h

Prototype int dagdsm_read_drop_counter (DsmConfigH config_h, uint32_t
*value_p)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.
� value_p

Pointer to a 32-bit variable that receives the latched drop count.

Returns 0 if the latched counter value was read otherwise -1 to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

EDM 04-10: Data Stream Manager Programming Guide

©2006 55 Version 2: August 2006

 dagdsm_read_stream_counter

Purpose Reads the contents of the latched packet counter for a particular receive
stream.

Declared In dagdsm.h

Prototype int dagdsm_read_stream_counter (DsmConfigH config_h, uint32_t
stream, uint32_t *value_p)

Parameters � config_h
Handle to a virtual configuration returned by
dagdsm_create_configuration.
� stream

The receive stream to read the packet count from.
� value_p

Pointer to a 32-bit variable that receives the latched stream packet count.

Returns 0 if the latched counter value was read otherwise -1 to indicate an error. Use
dagdsm_get_last_error to retrieve the error code.

Possible error codes:

• EINVAL (invalid argument)

EDM 04-10: Data Stream Manager Programming Guide

©2006 56 Version 2: August 2006

EDM 04-10: Data Stream Manager Programming Guide

©2006 57 Version 2: August 2006

Chapter 8:
Miscellaneous Functions

Overview This section contains functions that don't fit into one of the other logic
sections.

 dagdsm_get_last_error

Purpose Reads the contents of the latched drop counter.

Declared In dagdsm.h

Prototype int dagdsm_get_last_error (void)

Parameters none

Returns The last error code generated by one of the dagdsm_ functions, refer to the
function in question for possible error codes.

Comments When any of the dagdsm_ functions are called, they internally reset the last
error value to 0, therefore the last error code will not persist across multiple
DSM function calls.

EDM 04-10: Data Stream Manager Programming Guide

©2006 58 Version 2: August 2006

EDM 04-10: Data Stream Manager Programming Guide

©2006 59 Version 2: August 2006

Chapter 9:
Troubleshooting
Reporting
Problems

If you have problems with a DAG card or Endace supplied software which
you are unable to resolve, please contact Endace Customer Support at
support@endace.com.

Supplying as much information as possible enables Endace Customer Support
to be more effective in their response to you. The exact information available
to you for troubleshooting and analysis may be limited by nature of the
problem. However the following items will assist a quick resolution:

• DAG card[s] model and serial number.
• Host PC type and configuration.
• Host PC operating system version
• DAG software version package in use
• Any compiler errors or warnings when building DAG driver or tools
• For Linux and FreeBSD, messages generated when DAG device driver is

loaded. These can be collected from command dmesg, or from log file
/var/log/syslog.

• Output of daginf

• Firmware versions from dagrom –x.
• Physical layer status reported by: dagconfig

• Network link statistics reported by: dagconfig –si

• Extended link statistics reported by: dagconfig –ei
• Network link configuration from the router where available.
• Contents of any scripts in use.
• Complete output of session where error occurred including any error

messages from DAG tools. The typescript Unix utility may be useful
for recording this information.

• A small section of captured packet trace illustrating the problem.

EDM 04-10: Data Stream Manager Programming Guide

©2006 60 Version 2: August 2006

Appendix A:
ERF Record Format
Introduction The following ERF record formats are generated by the DSM module, refer

to the EDM11-01 Endace Extensible Record Format document for more
detailed information.

 Type 15 DSM Colored PoS HDLC Record

timestamp

type: 15 flags rlen

 filters stream wlen

hdlc header

(rlen - 20) bytes of record

Data Format Size Description

timestamp 64 bits The time of arrival of the cell, an ERF 64-bit timestamp,
described in more detail in the EDM11-01 document.

type 8 bits This field contains an enumeration of the frame subtype. For
DSM colored PoS records this value should be 15.

flags 8 bits This byte is divided into 2 parts, the interface identifier, and a
set of 1-bit flags.

rlen 16 bits Record length. Total length of the record transferred over PCI
bus to storage.

hlb1 & hlb0 1 bit each Contains the output of each of the load balancing algorithms.
hlb0 = CRC algorithm output.
hlb1 = Parity algorithm output.

filters 8 bits Each bit represents an output from one of the filters. 1
indicates a true output, 0 indicates a false output. Filter 0
is bit 0 of this field.

stream 6 bits The target receive stream for the packet record.

wlen 16 bits Wire length. The length of the packet that was received from
the line.

hdlc header 32 bits The 32-bit PoS frame HDLC header that was received from the
line.

HLB0

HLB1

EDM 04-10: Data Stream Manager Programming Guide

©2006 61 Version 2: August 2006

 Type 16 DSM Ethernet Colored Record

timestamp

type: 16 flags rlen

 filters stream wlen

offset pad

(rlen - 20) bytes of record

Data Format Size Description

timestamp 64 bits The time of arrival of the cell, an ERF 64-bit timestamp,
described in more detail in the EDM11-01 document.

Type 8 bits This field contains an enumeration of the frame subtype.
For DSM colored Etherent records this value should be 16.

flags 8 bits This byte is divided into 2 parts, the interface identifier,
and a set of 1-bit flags.

rlen 16 bits Record length. Total length of the record transferred over
PCI bus to storage.

hlb1 & hlb0 1 bit each Contains the output of each of the load balancing
algorithms.
hlb0 = CRC algorithm output.
hlb1 = Parity algorithm output.

filters 8 bits Each bit represents an output from one of the filters. 1
indicates a true output, 0 indicates a false output.
Filter 0 is bit 0 of this field.

stream 6 bits The target receive stream for the packet record.

wlen 16 bits Wire length. The length of the packet that was received on
the line.

offset 8 bits This field is currently not implemented, contents can be
disregarded.

pad 8 bits Padding byte so the Ethernet frame is aligned on a 16-bit
boundary.

HLB0

HLB1

EDM 04-10: Data Stream Manager Programming Guide

©2006 62 Version 2: August 2006

 Version History
The version history for this programming guide is shown below.

Version Date Reason

1 February 2006 First release

2 August 2006 Support for DAG 8.2X and DAG 5.2X
Format and layout changes .

