-
A
endace

accelerated

HDLC Filtering Guide

-

— ~

www.endace.com

Software Interface Specification DAG 3.7T Host API to be used for HDLC and layer 2 filtering Revision 0.1

Table of Content

Lo PUIPOSE. ... 4
1.1 REVISION HISTOMY ...ttt ettt bbb nn s 4
2. INEFOAUCTION ...ttt r et nn et 5
2.1 Overview of the DAG 3.7T HDLC filteringccoceoviiriiiiiiitreseee e 5
2.2 Notes on DAG3.7T SPeCifiC FUNCLIONScoiiiiiiiiiiie e 5
3. Functional Overview of the DAG 3.7T HDLC filteringcccccooviiveiiiieece e 6
TN 10 i 111 1= 5 PPN 6
KT Y -1 £ To] T 1 RSP PRRSRN 6
3.3 TEMPEIALUIE SENSOevveieititerte ettt ettt r et se et e r et b b e ne e n e b ar b e e e 6
3.4 Library and XScale INITAlZALIONcooviiiiiiiiec e 6
3.5 Default behavior of the HDLC Embedded SOftWArE ..o 6
KT =L ot PP SN 7
T A 10T 1o OSSPSR 7
€= Te U T (T oo USROS 7
=] o (o J (=T oo SRR SPSR 7
Extended Filtering EXAMPIES.......cooiiiiiiiiiieieieie ettt st see s 7

4. DAG EMA Library FUNCtion DefinitioNScccoviiiriiiiiiincecnseeseree s 10
4.1 (AQEIMA_TESEL PIOCESSONviuetitestetisteeeteste et sttt bbb st btttk b ettt b ettt s bt e bbbt nr et 10
DIESCIIPLION ...ttt bbbt bbbkt b bbbt b et bbb r e 10
RETUIMN COUES ...ttt sttt ettt sttt st steeRe e s e et et e seeseesbesbeereeneeneennens 10

4.2 0AJEIMA_OPEN_CONMM ...ttt bttt ettt bbbtk b bbbttt bbbt et b et et nb et 11
DIESCIIPLION ...ttt bbb bbbkt b etk b et b bbbttt 11
RETUIMN COUES ...ttt sttt ettt et e st st sbe st e e se e s et et eseesaesbesbeereeneenteneens 11

4.3 dA0EMA_CIOSE_CONMviiitiietit ettt bbbt b e bbbttt 12
DIESCIIPLION ...ttt bbb bbb bbbtk b et bbbt r e 12

] (0] 00T L= ST PSSP 12

4.4 dagema_get ASt BITONciiiiiieeirt bbbt e 13
DIESCIIPLION ...ttt bbb bbbtk bbbt bttt r et 13

] (0] O T L= ST PRSP 13

5. DAG 3.7T Specific Library Function Definitionscccceviveriiieninnie s 14
5.1 d37t_WIIte_SOFIWAIE ... c.iiviiiiiiiiiiiiiecc bbb 14
DIESCIIPLION ...ttt b bbb bbbtk b et b et bbb r et 14

] (0] 00T L= ST 14

5.2 d37t_read _SOTIWAE Ilcceiiiriiieiiieee et 15
DIESCIIPLION ...ttt b bbb bbbtk b et b bbbt r et 15
RETUIMN COUES ...ttt sttt ettt et se et et s besteeseere et e st e seeseesbesbeereeneeneeneens 15

5.3 A371_IEAA VEISION ..ottt bbbt bbbt b e bbb e 16
DIESCIIPLION ...ttt ettt bbbkt bbbt b bbbt bt 16
RETUIMN COUES ...ttt sttt ettt s b et sbe st e e se e b et e st e seeseesbesbeereeneeneenaens 16

5.4 d37t_read TEMPEIALUIE........oiviiieiiteeet ettt ettt bbbttt b e e 17
DIESCIIPLION ...ttt bbb bbbk bbbtk b et b et bbb b e 17
RETUIMN COUES ...ttt sttt ettt st et et sbe st e e se et et et e seesaesbeabeereeneeneeneens 17

6. HDLC filtering Msg FUNCtion DefinitioNSccccvvoviiiiiiieieicse e 18
6.1 NAIC_MSY_SEL DUISE SIZE.....eiieiiieiiciiie e 18
DIESCIIPLION ...ttt bbb bbbt b bbbt b et bbb r et 18

L] (0] 00T [T ST PRUPR 18

6.2 aal_mSg_FlUSh_DUIST_DUFTEEcuiicic s 19
DIESCIIPLION ...ttt bbbtk b bbbtk b ettt ettt r et 19

] (0] 0T L= TP PROP 19

6.3 NAIC_MSY_SEL TIIET ..ot 20
DIESCIIPLION ...tttk bbbkttt b etk b et bbbttt bt 20
RETUIMN COUES ...ttt sttt ettt se et et s be st e e seete et e st e neeseesbesbeereeneeneeneens 21

©2006 id Version 1: 31 March 2006

Software Interface Specification DAG 3.7T Host API to be used for HDLC and layer 2 filtering Revision 0.1

6.4 hdlc_mMSQ_SEt SUDTIITEI ..o 22
DIESCIIPLION ...tttk b bbbt bbbt b etk b et b bbbt r et 22
RETUIN COUBS ...ttt et bbbttt bbbt bbb bt 23

6.5 hdlc_mSg_set filter_BCHIONoviiiiii s 24
DIESCIIPLION ...ttt bbbt bbbt b bbbt b et bttt r et 24
RETUIN COUBS ...ttt bbb bbbtk b et b e bbbt b e 24

6.6 NAIC_MSY_TESEt FIIIEI ..o 25
DIESCIIPLION ...ttt bbbkt b bbbt bbbttt bt 25
RETUIN COUBS ...ttt bbbttt b ettt bbbt b et b e 25

6.7 hdlc_mSg_reset_all_FIlTErS ..o 26
DIESCIIPLION ...ttt bbb bbb bbbtk b et bbbttt bt 26
RETUIN COUBS ...ttt bbb bbbttt b et bbb b et b e 26

7. DAG Sar Function Definitions.............ccovviiiiiiiii 27

Note: All the functions are used the same way as the AAL reassembly. And shared on the host side the same api. 27

7.1 dagSar_gBL SEALSe.eeuiitiieiiit ettt et b b 27
DIESCIIPLION ...ttt bbb bbbtk etk bbbt bbb r e 27
RETUIN COUBS ...ttt bbbt b et b ettt bbbt et b et et nn et 27
DAGS3.7T SPeCifiC RELUIM COUESooveiiiiiiiiiitiieeiiste ettt 27

7.2 dagsar_get INErfaCe_SLALSccciririiiriiii i 28
DIESCIIPLION ...ttt bbbt bbbkt b etk b et bbb bt r e 28
RETUIN COUBS ...ttt bbbt bbbt b et bbb b 28
DAGS3.7T SPeCifiCc RELUIM COUESooveiiitiieiiitiieeist sttt s 28

7.3 agSAr_TESEL STALS.....cueitieiieiteteieit ettt b et b bbbt b et b et b b 29
DIESCIIPLION ...ttt bbb bbbtk bbbt bbb b et 29
RETUIN COUBS ...ttt bbbt bbbttt b et b et b et n et 29
DAGS3.7T SPeCific RELUIM COUESooveiiiviieiiitirieiiste st 29

7.4 dagsar_reset_StAtS_all..........ccooiiiiiiiii s 30
DIESCIIPLION ...ttt bbb bbbkt b et bbb b et 30
RETUIN COUBS ...ttt bbbt bbbttt b et b et et b et et n et 30
DAGS3.7T SPeCifiC RELUIM COUESooveiiiiiiiiiiiirieiisie ettt 30

7.5 dagsar_set_filter _DItMaSK...........cccviiiiiiii s 31
DIESCIIPLION ...ttt bbbt bbb bbbkttt ettt n et 31
EXBMPIES ...t bbb e bbb ettt 32
RETUIN COUBS ...ttt bbbt bbbtk b et b e bbbt et b et 32
DAGS3.7T SPeCifiC RELUIM COUESooveiiieiiiiiiteiieiiste st 32

7.6 dagsar_reset_filter _DItMasK ... 33
DIESCIIPLION ...ttt bbb bbbt b bbbt b bbbttt 33
RETUIN COUBS ...ttt bbbt bbbtk b et b et b et b et 33
DAGS3.7T SPeCIfiC REIUIM COUESc.oveiiiviieiiitirieiisieeee sttt 33

8. Data Structures, Attributes, Defines and ENUMS...........cccoviiiniinniceseese s 34

SR = ST TOP 34

8.2 FIIEEI_ACTION_T...iiitiectiiti ettt bbbt bbbt 34

8.3 FIILEr_OPEIALIONS .. .cviitiiitiitiictist bbbt bbb 34

8.4 dag_fIIEr_IBVEI ... i 35

8.5 [IST_OPEIALIONS T....iiiiiitiiciiitt ettt bbb 35

9. DAta FOIMALS ..ot 36
9.1 GEeNEriC Data FOMMALciitiietiiteieiist ettt bbbt nb b bbb 36
9.2 Multichannel HDLC ERF RECOIU.........coeiiiiiiiriiiei sttt 37

O e U]] TSP 38

10.1 Layer 2 filtering FISU’s, LSSU’s and MSU’s filtering example ... 38

10.2 Set up and close down of card and COMMUNICALIONScoovriiierierine e 45

10.3 Get INformation abOUL CAIdcoviiriiiiiicii ettt 47

10.4 AAL Filtering if needed HDLC just replace the aal_ with hdlc_ in the filter setup 48

L0.5 SEALISTICS .evereeteiteieteit etttk b ettt b ettt b etk b e ekt b e et b e ekt b e et nre e ere s 50

©2006 20 Version 1: 31 March 2006

1. Purpose

This document describes the functionality provided by the HDLC filtering embedded software available for the
DAG3.7T card. Please be aware that this document is subject to change as additional functionality becomes
available. This document may also be altered significantly to describe functionality available on future Endace

DAG Cards.

1.1 Revision History

©2006

Rev. Date of Change Description of Change Revision Originator
0.1 20/03/06 Initial version based on the AAL/SAR API documentation|Vladimir
from Cassandra
0.2 17/07/06 Changes in HDLC Filtering interface due work with[\Vladimir
AAL(ATM) filtering in mixed mode image
0.2 31/07/06 Fixed examples \Vladimir
30 Version 1: 31 March 2006

2. Introduction

2.1 Overview of the DAG 3.7T HDLC filtering

The DAG3.7T HDLC filtering software is designed to allow filtering on HDLC packets and Layer 2 filtering on
the 3.7T card without involving the host in processing. The filter will receive HDLC traffic from the lines, this

traffic is then either sent to the host unchanged or dropped, depending on the configuration used. Depending
on the firmware and setup non HDLC (frame relay packets) or for similar protocols is used as well.

All the filtering and DAG3.7T specific functions are using the same SAR API functionality from the host side .
With exception of the specific AAL functions. The information in this document will repeat parts of the SAR API
documentation, but that is for easy use and independent use of the document.

2.2 Notes on DAG3.7T specific functions

Function definitions are described in later chapters of this document. Functions which begin with the prefix
d37t are available from the DAG3.7T specific library. These functions will be similar, where possible, across
different embedded software for the 3.7T, for example, functions for receiving the Software ID will be similar for
AAL reassembly, and for IMA, and for HDLC

Function definitions beginning with the prefix ema are available from the embedded messaging library. These
are similar, where possible, over different Endace DAG cards, and different forms of embedded software.

Functions beginning with the prefix dagsar are available from the SAR library. These functions will be similar
across different DAG cards.

Functions beginning with the prefix hdlc_msg are also available from the dagsar library, but are specific to the
Endace DAG 3.7T card. this functions are used and for HDLC due the similar functionalities.

However, while consistency has been a central part of the design philosophy, it is important to consult the
relevant documentation to identify any differences.

©2006 40 Version 1: 31 March 2006

3. Functional Overview of the DAG 3.7T HDLC filtering

3.1 Software ID

The DAG3.7T Software ID feature provides a mechanism to store and retrieve persistent customer-specific
identification data on the board. The data is physically stored in EEPROM or Flash ROM medium, and as
such, persists after the board is powered down.

Functions are provided to read and write the data. The d37t_write_software_id() function provides some
protection, by requiring a 32-bit key to be used to enable write-access to the ID.

The DAG3.7T provides 128 bytes of storage for the Software ID. These can be used to implement a custom 1D
on the board for tracking purposes, bit-fields to enable or disable software features in the application, or any
other custom use for the application developer.

3.2 Version ID

The DAG 3.7T Version ID feature allows the type of embedded software and the version of the embedded
software to be queried. The type can be AAL, IMA, HDLC and version numbers can be used to determine
which features are available.

3.3 Temperature Sensor

The DAGS3.7T board is equipped with an LM63 temperature sensor attached to the XScale processor. The
d37t_read_temperature() function allows the application to sample the current temperature reading from the
board.

3.4 Library and XScale Initialization

The XScale processor is started and data is routed through the XScale to the host. First, to route the data
correctly, use the dag_set_mux() function in the 3.7t specific library. The XScale can then be started by calling
the dagema_reset_processor() function. dagema_open_conn() will initialize communications with the board,
and set up a system to maintain it. dagema_close_conn() is used to end communications, and free the
associated resources.

Note: this presumes that you have the correct firmware and hdlc embedded software loadded into the DAG3.7T
card.(using dagrom, or the API).

3.5 Default behavior of the HDLC Embedded Software

After the XScale processor is running the DAG3.7T will start with out any filters enabled. And all traffic passing
through.

Data is returned to the card in bursts. By default the burst size is one Mibyte, this can be changed by using the
aal_msg_set_burst_size() function. Altering this size can make significant differences to the throughput of the
HDLC filter, depending on the traffic, increasing the size introduces higher latency. When the burst size is
changed, during filtering, the current packet of data will be sent at the previous bust size. All further bursts will
be sent at the new size. If the traffic source is to be stopped (for example if the card is to be disconnected) then
the aal_msg_flush_burst_buffer() function can be used to force any remaining part of the block to be sent to
the host. This two functions are depreciated and may be not supported in future releases. The flushing will be
done automatically if no new data for transmition is presented.

©2006 50 Version 1: 31 March 2006

The software is expecting messages from the host for controlling functions(set up filters , read software id, ..)
described later in this document. The delay for a one message (command) to take the appropriate action can
be up to one packet processing from the whole message arrived into the HDLC module. The total delay
depends on the host and traffic.

3.6 Statistics

The DAG 3.7T HDLC filterer can provide statistics on the number of packets dropped by the filters. The
number of packets is only available on a per card basis on this card. Both values are available via the
dagsar_get_stats() function, by giving different statistic requested values.

The values will be reset via the dagsar_reset_stats_all() function, and by the dagsar_reset_stats() function,
when the particular statistic is specified. The dagsar_reset_stats_all() function should be called at the
beginning of a user program to reset all counters. For further information on which statistics are currently
available consult the function definitions.

3.7 Filtering
All filtering is performed on HDLC packets, prior to any other processing.
3.7.1 General Filtering

Bit masks can be applied to the HDLC header and depending if there is a match, the packet can then be
discarded. The user has to provide two values to set the filter: a bit mask and a match value. To each ATM
header (4 bytes, HEC is removed) the system calculates the logical AND with the bit mask. The result is
compared with the match value. If they are equal, the result of the match is decided by the value of the action
argument, which can take two values: sar_accept or sar_reject. If the values do not match, then the opposite
result is taken. Note this filter is very simple and we advise to use the extended filtering

3.7.2 Extended Filtering

The extended filter module is able to perform simple comparison operations on any contiguous four bytes of
data in the atm cell.

There are two types of filters available. The first is an operational filter which applies a mask to 4 bytes of data,
and compares the result to an expected value using a defined filter comparison operator. This is similar to the
general SAR filtering described above with the extensions of being able to use other logical operators, and
being able to apply the filter operator

The logical operator is determined after the data and bit mask values have been logically AND’d together. In
general filtering, this is a simple equal operator, where the result must be equal to the match value for the filter
to be true. In extended filtering, this can also be: not equal, greater than, less than etc. For a full list of the
available operators refer to the function definition.

The second type is a history filter, which applies a mask to 4 bytes of data (using an AND operator) and
compares it to the masked value from the last time the filter run. If the result is a match, the filter is true and
action is taken. If they do not match then the opposite to action is taken.

It is possible to have up to 32 different filters configured at any one time. This limit includes the one possible
general filter entry.

©2006 60 Version 1: 31 March 2006

3.7.3 Extended Filtering Examples

Extended Filtering also allows multiple filters to be linked together in a tree structure. This allows multiple levels
of filters to be constructed by adding subfilters to filters. If for example, a filter structure is created with filters

_Q_p

Filter 3

such as this:
Filter 1 —Q—) Filter 2
Filter 2.1
Filter 2.2

In the above example,

If Filter 1 is true, then action is taken.

If Filter 1 and 2 are false, there is no need to evaluate Subfilters 2.1 and 2.2 so Filter 3 is evaluated. If it is true
action is taken, otherwise the opposite of action is taken.

If Filter 1 is false, and Filter 2 is true then Subfilters 2.1 and 2.2 are evaluated. If they are both true action is

taken. If either or both of Filters 2.1 and 2.2 are false the opposite of action is taken.

To take this concept further, subfilters can be added to subfilters, for example:

Filter 1

— >

Filter 2 —Q—) Filter 3
Filter 2.1 —Q—) Filter 2.1.1
Filter 2.2

With this example, in order for Subfilter 2.1 to be true, either of Subfilters 2.1 or 2.1.1 needs to be true and if
both of them are false then the entire Filter 2 Subfilter tree is false and Filter 3 would then be applied.

Although this system allows a large amount of flexibility, it should be noted that adding many filters places
additional load on the system. Therefore, it is not efficient to add many filters, unless doing so causes the
majority of ATM cells to be dropped.

©2006

70

Version 1: 31 March 2006

4. DAG EMA Library Function Definitions

4.1 dagema_reset_processor

int dagema_reset_processor
int dagfd

4.1.1 Description
The dagema_reset_processor() function resets and starts the XScale.

dagfd The file descriptor for the DAG card as returned from dag_open().

41.2 Return Codes

Code Description
0 Function was successful.
-1 Function was unsuccessful. Use the
dagema_get_last_error() function for further error
codes.

©2006 80 Version 1: 31 March 2006

4.2 dagema_open_conn

int dagema_open_conn
int dagfd

4.2.1 Description

The dagema_open_conn() function opens the connection to the XScale, and starts the communications
monitoring for the card. This function may only be called by a single application at a time.

dagfd The file descriptor for the DAG card as returned from dag_open().

4.2.2 Return Codes

Code Description
0 Function was successful.
-1 Function was unsuccessful. Use the
dagema_get_last_error() function for further error
codes.

©2006 90 Version 1: 31 March 2006

4.3 dagema_close_conn

int dagema_close_conn
int dagfd

4.3.1 Description

The dagema_close_conn() function closes the communications with the XScale. This function should be
called after all communications with the card are complete.

dagfd The file descriptor for the DAG card as returned from dag_open().

4.3.2 Return Codes

Code Description
0 Function was successful.
-1 Function was unsuccessful. Use the
dagema_get_last_error() function for further error
codes.

©2006 100 Version 1: 31 March 2006

4.4 dagema_get_last_error

int dagema_get_last_error
int dagfd

4.4.1 Description

The dagema_get_last_error() function retrieves errno from the DAG ema library. This function can be used to
retrieve further information from the library after a function call returns -1. Standard errno numbers are used to
differentiate various errors.

dagfd The file descriptor for the DAG card as returned from dag_open().

4.4.2 Return Codes

Code Description
10 Last value or errno

©2006 110 Version 1: 31 March 2006

5. DAG 3.7T Specific Library Function Definitions

5.1 d37t_write_software_id

int d37t_write_software_id

int dagfd
int32_t num_bytes
uint8_t *datap
uint32_t key

5.1.1 Description

The d37t_write_software_id() function writes a new software ID into the EEPROM attached to the DAG3.7T's
XScale processor. The key field is a simple security feature to prevent accidental access to the EEPROM,; if
the key does not match a specific value in the embedded software on the XScale then the XScale will freeze
and a restart will be required.

The length of the ID must be at least 1 byte and no more than 128 bytes. (On the Rev B and Rev C DAG3.7T
boards the EEPROM can store up to 128 bytes of data).

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

num_bytes The number of bytes to write into the EEPROM. Between 1 and 128 inclusive. If the
number is less than 128 then the remaining space is filled with 0.

datap Points to a byte array containing the data to write to the EEPROM.

key The write-enable key. This must be specified to enable write-access to the EEPROM. If
the key is incorrect then EEPROM will not be written to and the XScale will lock up.

5.1.2 Return Codes

Code Description
0 Function was successful.
-1 invalid number of bytes specified
-2 Firmware error writing to the EEPROM.
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 120 Version 1: 31 March 2006

5.2 d37t_read_software_id

int d37t_read_software_id

int

int32_t
uint8_t

dagfd
num_bytes

*datap

5.2.1 Description

The d37t_read_software_id() function reads the software ID from the EEPROM attached to the DAG3.7T's
XScale processor. The num_bytes field specifies how many bytes to read from the EEPROM. The contents
are stored in the byte array pointed to by datap.

The length of the ID must be at least 1 byte and no more than 128 bytes. (On the Rev B and Rev C DAG3.7T
boards the EEPROM can store up to 128 bytes of data).

dagfd

num_bytes

datap

The file descriptor for the DAG card as returned from dag_open(). This card also should

have been initialized via dagema_open_conn().

The number of bytes to read from the EEPROM. Between 1 and 128 inclusive.

Points to a byte array to be used to return the contents of the EEPROM.

5.2.2 Return Codes

Code
0
-1
-2
-3
-6
-7

©2006

Description

Function was successful.

invalid number of bytes specified
Firmware error reading to the EEPROM.

Timeout communicating with the XScale.

Message not transmitted
Message not responded to correctly

130

Version 1: 31 March 2006

5.3 d37t_read_version

int d37t_read_version

int dagfd
uint32_t *version
uint32_t *type

5.3.1 Description

The d37t_read_version() function reads the version and type from the program running in the DAG3.7T's
XScale processor.

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

version The version number of the program currently running on the scale processor.

type Type of software running on the XScale processor. For the HDLC filtering this value will be
equal to the defined variable HDLC (numerical value 3).

5.3.2 Return Codes

Code Description
0 Function was successful.
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 140 Version 1: 31 March 2006

5.4 d37t_read _temperature

int d37t_read_temperature

int dagfd
int32_t sensor_id
int *temperature

5.4.1 Description

The d37t_read_temperature() function reads the current temperature from the LM63 temperature sensor
device attached to the DAG3.7T's XScale processor.

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

sensor_id Specifies which temperature sensor to read. Rev B and Rev C DAG3.7T boards only have
one so set this to 0. (O=default).

temperature Points to a integer to store the temperature reading in.

5.4.2 Return Codes

Code Description
0 Function was successful.
-1 Invalid sensor ID.
-2 Firmware error reading the temperature sensor.
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly
©2006 150 Version 1: 31 March 2006

6. HDLC filtering Msg Function Definitions

Note: These API functions are relevant to the HDLC filtering. The functionality is similar to the AAL(ATM) filtering.

6.1 hdlc_msg_set_burst_size

int aal_msg_set_burst_size
uint32_t dagfd

uint32_t size

6.1.1 Description

The aal_msg_set_burst_size() is a DAG3.7T HDLC filtering module specific function that allows the amount of
data that is written to the host at a time to be set. The burst size will not be altered in the block which is filling
currently. All subsequent blocks will be at the size specified if the function is successful.

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

size The size of the burst to be sent in bytes. This can range between 72 and 10485760
(10MiB) and must be a multiple of 8 bytes.

6.1.2 Return Codes

Code Description
0 Function was successful.
-2 Size argument was out of range.
-3 Timeout communicating with the XScale.
-4 Size argument was not a multiple of 8 bytes.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 160 Version 1: 31 March 2006

6.2 aal_msg_flush_burst_buffer

uint32_t aal_msg flush_burst_buffer

uint32_t

dagfd

6.2.1 Description

The aal_msg_flush_burst_buffer() function send any unfinished bursts of data to the host, regardless of the
burst's size. This function can be used if the card is to be disconnected from the traffic source and all data is
required at the host. This function should not be used when further data is expected. If the latency of the data
is not suitable for an application the recommended solution is to reduce the burst size with the
aal_msg_set_burst_size() function rather than using this function.

dagfd

The file descriptor for the DAG card as returned from dag_open(). This card also should

have been initialized via dagema_open_conn().

6.2.2 Return Codes

Code
0
-1
-2
-3
-6
-7

©2006

Description

Function was successful.

No data is available at the Reassembler to send
No memory has been allocated to send
Timeout communicating with the XScale.
Message not transmitted

Message not responded to correctly

170

Version 1: 31 March 2006

6.3 hdlc_msg_set_filter

uint32_t hdlc_msg_set_filter

uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t

dagfd
offset

mask

value
operation
filter level
level_conft
history

priority

6.3.1 Description

The hdlc_msg_set_filter() function sets a filter according to the settings given. For an overview of the filter
operation, consult the overview section at the beginning of this document. A maximum of 256 filters and
subfilters can be configured at any time.

dagfd

offset

mask

value

operation

filter_level

level _conf

©2006

The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

The offset refers to the start location of the four bytes to be filtered on for this filter. The
offset in measured in bytes and starts from the very beginning of the ERF that the ATM cell
is contained in. Therefore an offset of zero would filter on the section of the timestamp of
the ATM ERF. An offset of 20 corresponds to the ATM header. The offset must specify 4
bytes which will fall inside the ATM ERF, therefore no values greater than 68 will be valid.

This is the 32 bit value used by the filter in the mask calculation. This involves performing
a logical AND between this mask value and the data located in the ATM ERF at offset.

This is the value that the result of ANDing the data in the ATM ERF at offset with the mask
value is compared to. This will determine whether the filter is true or false. In the case of a
history filter this value is not used. Instead the value that was calculated in the previous
application of this filter is used.

This the operation used on an operational filter to compare the data at offset to the value
argument. This filter can be equal, not equal, greater than or equal, less than or equal,
greater than, less than, AND, OR or XOR. The enumeration filter_operations_t specifies
the numerical values that correspond to these operations. The operation is not used on a
history filter, as a history filter will always perform an equal operation between the data at
offset ANDed with the mask and the previous data ANDed with the mask.

A filter can be set at the Board level, where the filter will be applied to all data coming in to
the board (DAG_FILTER_LEVEL_BOARD), or the filter can be set at the connection level
(DAG_FILTER_LEVEL_CHANNEL), where only data arriving with the specified connection
number will be have the filter applied, or the filter can be at the Physical line level (
DAG_FILTER_LEVEL_LINE), where only data arriving on the specified physical
connection will have the filter applied. To specify which connection or line to filter on use
the level_conf argument.

This the the indication of which physical port (1-15) or connection (0-511) to filter on. This
argument is only valid when the filter level is set to either

DAG_FILTER_LEVEL CHANNEL or DAG_FILTER_LEVEL_LINE during filter initialisation.
At all other times this argument should be set to zero.

180 Version 1: 31 March 2006

history

priority

6.3.2

©2006

This is a boolean value which determines if this filter will be a history or an operational
filter. A value of true (1) will cause this to become a history filter.

The priority allows a heirachy of filters to be set up. When adding filters, they will be added
in the priority order given. Therefore, to add a filter that should only be evaluated, if other
filters have already been evaluated, add the filter with a lower priority number.

Return Codes

Code
0
10

-2

-3

-6
-7

Description

Function was unsuccessful.

The unique filter identifier number. This can be used to
reference the filter in future calls to delete the filter.

The filter was unable to be allocated. This can be due to
being out of memory or attempting to add more than 32
filters.

Timeout communicating with the XScale.

Message not transmitted

Message not responded to correctly

190 Version 1: 31 March 2006

6.4 hdlc_msg_set_subfilter

uint32_t hdlc_msg_set_subfilter

uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t

dagfd
offset

mask

value
operation
filter level
level_conft
history
priority

parent_id

list_operations_t list_operation

6.4.1 Description

The hdlc_msg_set_subfilter() function sets a filter according to the settings given, in a subfilter list below the
parent filter specified. The subfilter list is created with the option of being an AND or OR list. For an overview
of the subfilter operation, consult the overview section at the beginning of this document. A maximum of 32
filters and subfilters can be configured at any time.

dagfd

offset

mask

value

operation

filter_level

level _conf

©2006

The file descriptor for the DAG card as returned from dag_open(). The card should have
been initialized via dagema_open_conn().

The offset refers to the start location of the four bytes to be filtered at. The offset is
measured in bytes, and starts from the very beginning of the ERF that the ATM cell is
contained in. Therefore, an offset of zero would start filtering at the ERF timestamp. An
offset of 20 corresponds to the start of the ATM header. The offset must specify 4 bytes
which will fall inside the ATM ERF, therefore no values greater than 68 will be valid.

This is the 32 bit value used by the filter in the mask calculation. This involves performing
a logical AND between this mask value and the data located in the ATM ERF at offset.

This is the value that is the result of AND’ing the data in the ATM ERF at offset with the
mask value is compared to. This will determine whether the filter is true or false. In the
case of a history filter this value is not used. Instead, the value that was calculated in the
previous application of this filter is used.

This the operation used on an operational filter to compare the data at offset to the value
argument. This filter can be equal, not equal, greater than or equal, less than or equal,
greater than, less than, AND, OR or XOR. The enumeration filter_operations_t specifies
the numerical values that correspond to these operations. The operation is not used on a
history filter, as a history filter will always perform an equal operation between the data at
offset AND’d with the mask and the previous data AND’d with the mask.

A filter can be set at the Board level, where the filter will be applied to all data coming in to
the board (DAG_FILTER_LEVEL_BOARD), or the filter can be set at the connection level
(DAG_FILTER_LEVEL_CHANNEL), where only data arriving with the specified connection
number will be have the filter applied. To specify which level to filter on use the level_conf
argument.

This determines connection (0-511) to filter on. This argument is only valid when the filter

level is set to DAG_FILTER_LEVEL_CHANNEL during filter initialisation. At all other
times this argument should be set to zero.

200 Version 1: 31 March 2006

history

priority

parent_id

list_operation

6.4.2

©2006

This is a boolean value which determines if this filter will be a history or an operational
filter. A value of true (1) will cause this to become a history filter.

The priority allows a hierarchy of filters to be set up. When adding filters, they will be
added in the priority order given. Therefore, to add a filter that should only be evaluated
only when the other filters have already been evaluated, add the filter with a lower priority
number then the other filters.

This is the identifier of the filter that will be used as the starting point of this subfilter.

The list_operation specifies if the filter to be created should be in an AND or OR list with
the parent filter.

Return Codes

Code
0
10

-2

-3

-6
-7

Description

Function was unsuccessful.

The unique filter identifier number. This can be used to
reference the filter in future calls to delete the filter.

The filter was unable to be allocated. This can be due to
being out of memory or attempting to add more than 32
filters.

Timeout communicating with the XScale.

Message not transmitted

Message not responded to correctly

210 Version 1: 31 March 2006

6.5 hdlc_msg_set_filter_action

int hdlc_msg _set_filter_action
uint32_t dagfd

uint32_t action

6.5.1 Description

The hdlc_msg_set_filter_action() function sets the action that will be taken on HDLC packets which positively
match any filters which are in place. Conversely the opposite of the action will be taken on any HDLC packets
which do not match the filters. This is a global action that occurs on the results of all set filters.

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

action The action to be taken when an HDLC packet matches the filter value. The opposite action
is performed on those HDLC packets which do not match the filter value after the bit mask
has been applied.

The possible values for the action of the filter are:
sar_accept (0) Any packets which are the same as the match value after processing the bitmask should
be accepted. Any packets which are not the same as the match value after filter
processing will be discarded immediately
sar_reject (1) Any packets which are the same as the match value after processing the bitmask should

be rejected. Any packets which are not the same as the match value after filter processing
will be sent to the Memory hole for transferring to the HOST..

6.5.2 Return Codes

Code Description
0 Function was successful.
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 220 Version 1: 31 March 2006

6.6 hdlc_msg_reset_filter

uint32_t hdlc_msg_reset_filter
uint32_t dagfd
uint32_t filter_ id

6.6.1 Description

The hdlc_msg_reset filter() function allows a single filter to be deleted from the list of filters, without effecting
any other filters. This function should not be used when attempting to delete a filter created with the more
general dagsar_set_filter_bitmask() function.

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

filter_id The unique identifier of the filter to be deleted as returned by the hdlc_msg_set_filter()
function.

6.6.2 Return Codes

Code Description
0 Function was successful.
-2 Filter could not be deleted.
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 230 Version 1: 31 March 2006

6.7 hdlc_msg_reset_all_filters

int hdlc_msg_reset_all_filters
uint32_t dagfd

6.7.1 Description

The hdlc_msg_reset_all_filters() function removes all filters set, including those set with the more general
dagsar_set_filter_bitmask() function.

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

6.7.2 Return Codes

Code Description
0 Function was successful.
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 240 Version 1: 31 March 2006

7. DAG Sar Function Definitions

Note: All the functions are used the same way as the AAL reassembly. And shared on the host side the same
api.

7.1 dagsar_get_stats
uint32_t dagsar_get_stats
uint32_t dagfd
stats_t statistic
7.1.1 Description
The dagsar_get_stats() function retrieves the internally held value that corresponds to the requested statistic.

This is the total number of cells which fit the criteria for the statistic since the last restart or reset. The possible
statistics currently available for the DAG3.7T are defined by the enumeration stats_t.

The arguments to the function are described below:

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

statistic The statistic which should be returned
The currently available options for the statistic are:
dropped_cells This value is not used in the HDLC filtering.

filtered_cells This is the number of packets not returned to the host due to a filter that has determined
the packet should be dropped.

7.1.2 Return Codes

Code Description

Any Value of the statistic

7.1.3 DAG3.7T Specific Return Codes

Code Description
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 250 Version 1: 31 March 2006

7.2 dagsar_get_interface_stats

uint32_t dagsar_get_interface_stats
uint32_t dagfd
uint32_t iface

uint32_t statistic
7.2.1 Description
The dagsar_get_interface_stats() function, when used on the DAG3.7T is functionally the same as the
dagsar_get_stats() function, due to the DAG3.7T not having specified interfaces. This function retrieves the
internally held value that corresponds to the requested statistic. This is the total number of cells which fit the

criteria for the statistic since the last restart or reset. The possible statistics currently available for the DAG3.7T
are defined by the enumeration stats_t.

The arguments to the function are described below:

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

iface Specifies the interface. In the case of the DAG3.7T card, this should always be zero.
statistic The statistic which should be returned
The currently available options for the statistic are:
dropped_cells This is the number of cells not returned to the host, either due to the cells arriving on a
Virtual Connection that is deactivated; or arriving on unconfigured Virtual Connections

while in the Scanning mode.

filtered_cells This is the number of cells not returned to the host due to a filter that has determined the
cell should be rejected.

7.2.2 Return Codes

Code Description

Any Value of the statistic

7.2.3 DAGS3.7T Specific Return Codes

Code Description
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 260 Version 1: 31 March 2006

7.3 dagsar_reset_stats

uint32_t dagsar_reset_stats
uint32_t dagfd

stats_t statistic

7.3.1 Description

The dagsar_reset_stats() function allows a single statistic to be reset to zero without affecting any other
statistics, which will continue counting from their current position.

dagfd The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

statistic The statistic which should be returned
The currently available options for the statistic are:
dropped_cells This is the number of cells not returned to the host, either due to the cells arriving on a
Virtual Connection that is deactivated; or arriving on unconfigured Virtual Connections

while in the Scanning mode.

filtered_cells This is the number of cells not returned to the host due to a filter that has determined the
cell should be rejected.

7.3.2 Return Codes

Code Description
0 Function was successful
10 Function was unsuccessful

7.3.3 DAGS3.7T Specific Return Codes

Code Description
-2 Statistic is not recognised.
-3 Timeout communicating with the XScale.
-6 Message not transmitted
-7 Message not responded to correctly

©2006 270 Version 1: 31 March 2006

7.4 dagsar_reset_stats_all

uint32_t dagsar_reset_stats

7.4.1

uint32_t dagfd

Description

The dagsar_reset_stats_all() function will reset all statistics to zero. It is recommended to call this function at

the start of a program that will be using the statistics to put all statistics into a known state.

dagfd

7.4.2

7.4.3

©2006

have been initialized via dagema_open_conn().

Return Codes

Code

DAG3.7T Specific Return Codes

Code
-2
-3
-6
-7

Description
Function was successful

Function was unsuccessful

Description
A Statistic was unable to be identified.

Timeout communicating with the XScale.

Message not transmitted
Message not responded to correctly

280

The file descriptor for the DAG card as returned from dag_open(). This card also should

Version 1: 31 March 2006

7.5 dagsar_set_filter_bitmask

uint32_t dagsar_set_filter_bitmask

uint32_t
uint32_t
uint32_t
uint32_t

dagfd
iface
bitmask

match

filter action_t filter action

7.5.1 Description

The dagsar_set_filter_bitmask() function sets the values of the bitmask, match value and action to be taken
for a filter on the DAG 3.7T card. These values define the filter on the DAG 3.7T. Any HDLC packets received
will have the 32 bits of the HDLC packet header logically AND’d with the bitmask value supplied. The result of
this calculation is then compared with the match value, if they are identical, the action defined be filter_action is
then taken. The possible filter actions are:

sar_accept

sar_reject

Any ATM cells which are the same as the match value after processing the bitmask should
be accepted. This will involve passing them onto the Virtual Connections list to determine
what reassembly action should be taken. Any ATM cells which are not the same as the
match value after filter processing will be discarded immediately

Any ATM cells which are the same as the match value after processing the bitmask should
be rejected regardless of the Virtual Connection status of the ATM cell.. Any ATM cells
which are not the same as the match value after filter processing will be processed by the
reassembler normally.

The arguments to the dagsar_set_filter_bitmask() are:

dagfd

iface

bitmask

match

filter_action

©2006

The file descriptor for the DAG card as returned from dag_open(). This card also should
have been initialized via dagema_open_conn().

Specifies the interface. In the case of the DAG3.7T card, this should always be zero.

This is the 32 bit value used by the filter in the mask calculation. This involves performing
a logical AND between this value and the ATM header (32 bits not including the HEC).

The value which the calculation will need to match for the action specified by filter_action to
occur. This argument is unused for the DAG3.7T card and should be left at the default.

The action to be taken when an ATM cell matches the filter value. The contrary to this

action is then performed on those ATM cells which do not match the filter value after the
bit mask has been applied.

290 Version 1: 31 March 2006

7.5.2 Examples

Action: ACCEPT

HDLC header: 11001011 11001000 11100111 00100010 0xCBC8E722
Bitmask: 11111111 00000000 00001111 0O0OOOOOO OxFFO000FO00
Logical AND: 11001011 00000000 00000111 00000000 OxCBOOO700
Match value: 11110111 00000000 00000111 00000000 0OxF7000700
(does not match -> packet rejected)
Action: REJECT
HDLC header: 11001011 11001000 11100111 00100010 OxCBC8E722
Bitmask: 11111111 00000000 00001111 00000000 OxFFOOOFOO
Logical AND: 11001011 00000000 00000111 00000000 OxCBOOO700
Match value: 11110111 00000000 00000111 00000000 0OxF7000700
(does not match -> packet accepted)
Action: ACCEPT
HDLC header: 11001011 11001000 11100111 00100010 OxCBC8E722
Bitmask: 11111111 00000000 00001111 00000000 OxFFOOOFOO
Logical AND: 11001011 00000000 00000111 00000000 OxCBOOO700
Match value: 11001011 00000000 00000111 00000000 0OxCB0O0O0700
(match -> packet accepted)
Action: REJECT
HDLC header: 11001011 11001000 11100111 00100010 OxCBC8E722
Bitmask: 11111111 00000000 00001111 00000000 OxFFOOOFOO
Logical AND: 11001011 00000000 00000111 00000000 OxCBOOO700
Match value: 11001011 00000000 00000111 00000000 0OxCB0O0O0700
(match -> packet rejected)
7.5.3 Return Codes
Code Description
0 Function was successful
10 Function was unsuccessful

7.5.4 DAGS3.7T Specific Return Codes

Code Description

-1 Filter could not be set

The filter was unable to be allocated. This can be due to
being out of memory or attempting to add more than 32

-2 filters.

-3 Timeout communicating with the XScale.
-6 Message not transmitted

-7 Message not responded to correctly

©2006 300

Version 1: 31 March 2006

7.6 dagsar_reset_filter_bitmask

uint32_t dagsar_reset_filter_bitmask

7.6.1

uint32_t dagfd

uint32_t iface

Description

The dagsar_reset_filter_bitmask() function resets the filter on the board so that no further packets are

rejected based on the previous filter values.

dagfd

iface

7.6.2

7.6.3

©2006

have been initialized via dagema_open_conn().

DAGS3.7T card, this should always be zero.

Return Codes

Code
0

10

DAG3.7T Specific Return Codes

Code
-1
-2
-3
-6
-7

Description
Function was successful

Function was unsuccessful

Description
There is no identifiable filter on the card.
Filter could not be deleted.

Timeout communicating with the XScale.

Message not transmitted
Message not responded to correctly

310

The file descriptor for the DAG card as returned from dag_open(). This card also should

Specifies the interface of the virtual connection to be activated. In the case of the

Version 1: 31 March 2006

8. Data Structures, Attributes, Defines and Enums

8.1 stats_t
The stats_t enumeration is defined in the dagsarapi.h file and is in the form

typedef enum
{
dropped_cells,
filtered_cells
}stats_t;

This defines the currently available statistics that can be received from the DAG3.7T HDLC filter. A definition of
what these statistics represent can be found in the dagsar function definition section with the information for the
function dagsar_get_stats().

8.2 filter_action_t
The filter_action_t enumeration is defined in the dagsarapi.h file and is in the form

typedef enum
{
sar_accept,
sar_reject
}filter_action_t;

This defines the action which can be taken with a cell which is identified as fitting the set filter requirements.
These actions can be set using the dagsar_set_filter_bitmask() function.

8.3 filter_operations_t
The filter_operations_t structure is defined in the aal_config_msg.h file and is in the form

typedef enum
{

DAG_EQ = O, /* 0 equal */

DAG_NEQ, /* 1 not equal */

DAG_LE, /* 2 less than or equal */

DAG_GE, /* 3 greater than or equal */

DAG_LT, /* 4 less than */

DAG_GT, /* 5 greater than */

DAG_AND, /* 6 bitwise and */

DAG_OR, /* 7 bitwise or */

DAG_XOR, /* 8 bitwise exclusive-or */
DAG_NUM_FILTER_OPERATIONS /* this has to be the last in list */

}connection_info_ t;

This defines the actions which can be used in extended filtering to compare the masked data value with the
match value. This is only for an operational filter, the History filter always compares the masked data value
with the previous masked data value, and if they are equal, then action is taken.

©2006 320 Version 1: 31 March 2006

8.4 dag_filter_level _t
The dag_filter_level_t structure is defined in the aal_config_msg.h file and is in the form

typedef enum

DAG_FILTER_LEVEL_BOARD = O,
DAG_FILTER_LEVEL_CHANNEL,

DAG_NUM_FILTER _LEVELS /* this has to be the last in list */

IDAG_Filter_level_t;

This defines the level on which a filter is to be set.

8.5 list_operations_t
The list_operations_t structure is defined in the aal_config_msg.h file and is in the form

typedef enum

DAG_OR_LIST = 0,
DAG_AND_LIST

}list operations_t;

This allows subfilter lists to be added in a form where either all of the filters need to be true to pass
(DAG_AND_LIST) or any of the filters need to be true to pass (DAG_OR_LIST).

©2006 330 Version 1: 31 March 2006

9. Data Formats

9.1 Generic Data Format

Data received from the DAG3.7T card HDLC filter is transmitted from the card in Extensible Record Format
(ERF). The Generic ERF Format is as follows:

BYTE3 BYTE2 BYTE1l BYTEO

timestamp

timestamp
type flags rlen
Ictr wlen

(rlen - 16) bytes of record

Timestamp

Type

Flags

Rlen: Record
Length

Lctr: Loss
Counter

Wlen: Wire
Length

©2006

The time of arrival of this cell. Timestamps are in little-endian byte order (Pentium
native). All other fields are big-endian byte order. No byte reordering is done on the
Payload.

This field contains an enumeration of the frame subtype. Valid types for the HDLC
filter on the DAG3.7T card are:
5: TYPE_MC_HDLC

This byte is divided into 2 parts, the interface identifier, and the capture offset.
1-0: capture interface 0-3

2: varying record lengths present

3: truncated record [insufficient buffer space]

4: rx error [link error]

5: 5: ds error [internal error]

7-6: reserved

Total length of the record transferred over PCI bus to storage.

A 16 bit counter, recording the number of packets lost between the DAG card and the
memory hole due to overloading on the PCI bus. The counter starts at zero, and sticks
at Oxffff.

Packet length including some protocol overhead. The exact interpretation of this
quantity depends on the physical medium.

340 Version 1: 31 March 2006

9.2 Multichannel HDLC ERF Record

The Multichannel HDLC ERF record is a fixed length record in the following format.
BYTE3 BYTE2 BYTE1 BYTEO

timestamp

timestamp
type: 5 flags rlen
Ictr wlen

Multichannel Header

HDLC Header(4 usually, but may vary
depending the protocol)

data(rlen —24) if hdlc is 4 bytes

All fields are the same as the Generic Record Format unless listed below.
Flags Capture interface is always zero.

RX Error is set if any MC header Error bit is set.

Multichannel | This header is divided into several bit fields. Some of these fields are not used by the
Header HDLC filter but are described here for continuity.

0-9 Connection number (0-1023) (512 connections are supported by DAG3.7T card)
10-15 Reserved

16-23 Reserved

24 FCS Error

25 Short Record Error (<5 Bytes)

26 Long Record Error (>2047 Bytes)

27 Aborted Frame Error

28 Octet Error. The closing flag wasn’t octet aligned after bit unstuffing.

29 Lost Byte Error. The internal datapath had an unrecoverable error.

30 1st Rec. This is the first record received since this connection was configured.

31 Reserved

ATM Header | This does not include the 8-bit HEC

©2006 350 Version 1: 31 March 2006

10. Examples

This section has sample code demonstrating the use of the API. Please note that all sections are written

separately for clarity, but would not necessarily build or run individually.

10.1 Layer 2 filtering FISU’s, LSSU’s and MSU's filtering example

/* DAG headers. */
#include "dagsarapi.h"
#include "dagapi.h"
#include "dagutil.h"
#include "dagema.h"
#include "dag37t_api.h"
#include "d37t_i2c.h"

#include "dagaal/aal_config_msg.h"

#ifndef WIN32

#define DEFAULT_DEVICE "/dev/dag0"
#else /* WIN32 */

#define DEFAULT_DEVICE "dag0"
#endif /* _WIN32 */

static const char *const kDagaal5demoCvsHeader = "$1d: daghdlcdemo.c,v 1.1 2006/03/02 20:25:12 vladimir Exp $";

static const char *const kRevisionString = "$Revision: 1.1 $";

/* Command line configuration */
typedef struct
t
int argc;
char **argv;
char *device; /* Dag device */
int start_xscale; /* Reset and start xscale */
int reset_all_filters; /* Reset and start xscale */
intuse_drb_comm:; /* dag3.7t communication mode: drb or socket */

uint32_t VCI;

uint32_t VPI;

uint32_t connectionNum;
uint32_t max_size;
uint32_t message;
sar_mode_t sar_mode;
net_mode_t net_mode;
uint32_t swidkey;

} t_config;
t_config config; /* Command line configuration */
int verbose = 0; /* verbose output */

static char dagname[DAGNAME_BUFSIZE];

uint32_t filter_cnt;
uint32_t filters[256];

char *options =
"daghdlcdemo is a demonstration of the Endace AAL reassembler. For full\n
"details of the available functionality consult the SAR API guide.\n"

Il\nll

"Usage: dagaal5demo [-d <dag>] [-x] \n"

" -d <device> ; dag device to capture debug from [dag0]\n"
" [X] ; reset and start the xscale\n"

" -R ; reset all filters \n"

R ERVVRYVY] ; verbose\n"

--verbose ; verbose (same as -v) \n"

©2006 360

Version 1: 31 March 2006

-h,--help,--usage ; this page\n"
-V,--version ; display version information\n"

n\nn

// n

List of message options\n"
-C <connection num> ; Connection Number to configure <16>\n"

-S <max size> ; AAL buffer size to use <65536>\n"
-m <sar mode> ; reassembly type to use <2> 0=ATM 1=AAL2 2=AAL5\n"
-n <net mode> ; net type to use <0> 0=nni 1=uni\n"
-k <swid key> ; net type to use <0> 0=nni 1=uni\n"

Il\nll;

/**

* FUNCTION: scanlnputs(config, argc, argv)
* DESCRIPTION: Read the command line options and fill in the config info.
*INPUTS: config - pointer to the configuration info to fill in

*

*

argc - number of command line tokens
argv - command line token array

* QUTPUTS: config populated with command line options
* RETURNS: none

**/

void

scaninputs (t_config * config, int argc, char **argv)

{

intopt=0;
int dagstream;

config->argc = argc;

config->argv = argv;

config->device = DEFAULT_DEVICE;
config->start_xscale = 0;

config->VCI = 64;

config->VPI = 28;
config->connectionNum = 16;
config->max_size = 1024*64;
config->sar_mode = sar_aal5;
config->net_mode = 0;

while ((opt = getopt (argc, argv, "h?d:vxRV-:c:k:p:C:s:n:m:")) = EOF)
{

©2006

switch (opt)

case '?":

case 'h'":
fprintf (stderr, options);
exit (EXIT_SUCCESS);
break;

case 'v':
verbose++;
break;

case 'X":
config->start_xscale = 1,
break;

case 'R"
config->reset_all_filters = 1;
break;

case 'd"

/* Dag device */
if (-1 == dag_parse_name(optarg, dagname , DAGNAME_BUFSIZE, &dagstream))

370

Version 1: 31 March 2006

©2006

dagutil_panic("dag_parse_name(%s): %s\n", optarg, strerror(errno));

config->device = dagname;
break;

case 'k
/* Key for Software id change */
sscanf(optarg,"%x",&config->swidkey);
printf("Software ID KEY 0x%x\n",config->swidkey);
break;

case 'V"
fprintf (stderr, "dagswid (DAG %s) %s\n", kDagReleaseVersion,
kRevisionString);
exit (EXIT_SUCCESS);
break;

case -
if (strcmp (optarg, "help™) == 0 || strcmp (optarg, "usage") == 0)
{

fprintf (stderr, options);
exit (EXIT_SUCCESS);

else if (strcmp (optarg, "version™) == 0)
fprintf (stderr, "dagmap (DAG %s) %s\n", kDagReleaseVersion,
kRevisionString);
exit (EXIT_SUCCESS);

else if (strcmp (optarg, "verbose") == 0)

verbose++;
break;
}
else
fprintf (stderr, "unknown option '%c"\n", opt);
exit (EXIT_FAILURE);
}

case 'c /* VVCI to message*/
config->VCI = strtol (optarg, NULL, 10);
break;

case 'p": /* VVPI to message*/
config->VPI = strtol (optarg, NULL, 10);
break;

case 'C": /* Connection num to message™*/
config->connectionNum = strtol (optarg, NULL, 10);
break;

case 's /* max size to message*/
config->max_size = strtol (optarg, NULL, 10);
break;

case 'n': /* net mode */
config->net_mode = strtol (optarg, NULL, 10);
break;

case 'm'; /* sar mode */
config->sar_mode = strtol (optarg, NULL, 10);
break;

default:

380

Version 1: 31 March 2006

fprintf (stderr, "unknown option '%c'\n", opt);
exit (EXIT_FAILURE);
}
}
}

unsigned char soft_id[D37T_SOFTWARE_ID_SIZE+1];

int
main(int argc, char **argv)
t
int res;
int addr;
int temperature;
uint32_t version, type;
/I sar_mode_t mode = sar_aalO;
int dagfd,;

printf("\nEndace DAG3.7T HDLC configuration demo\n");
printf(*'(c) 2005 Endace Technology Ltd.\n\n");

memset (&config, 0, sizeof (config));
scanlnputs (&config, argc, argv);

if ((dagfd = dag_open(config.device)) < 0)
{

fprintf (stderr, "dag_open %s: %s\n", config.device,
strerror (errno));
exit(EXIT_FAILURE);

}
if (dag_set_mux(dagfd, DA_DATA_TO_LINE, DA_DATA_TO_IOP, DA_DATA_TO_HOST))

fprintf(stderr, "dag_set_mux failed\n");
exit(EXIT_FAILURE);

}

/* Restart the xScale if required */
if (config.start_xscale)

printf("Restarting xScale ... please wait this may take up to 60 seconds to complete\n™);
if (dagema_reset_processor(dagfd, 0) <0)

printf("Failed to reset XScale (error code %d)\n", dagema_get_last_error());
exit(EXIT_FAILURE);
}
}

/* Open a connection to the EMA */
if ((res = dagema_open_conn(dagfd)) <0)
{

printf("Failed to connect to board (error code %d)\n", dagema_get_last_error());
exit(EXIT_FAILURE);

}

[* Set board debug flags */

d37t_set_debug(dagfd, 0);

[Iread inital software 1D

res = d37t_read_software_id(dagfd, D37T_SOFTWARE_ID_SIZE, soft_id);
if (res)

{

©2006 390 Version 1: 31 March 2006

printf("d37t_read_software_id() failed res=%d\n", res);

}
else
{ .
I* Replace any non-printable characters with spaces for this demo */
for (addr=0; addr<D37T_SOFTWARE_ID_SIZE; addr++)
if (soft_id[addr])
{
if (lisgraph(soft_id[addr]))
soft_id[addr] =",
}
}
/* Null terminate it just in case */
soft_id[D37T_SOFTWARE_ID_SIZE] = 0;
printf("Software ID: \"%s\"\n", soft_id);
}

soft_id[10] =0;

soft_id[11] =0;

[Iwrite new software 1D

res = 0;

if(config.swidkey)
res = d37t_write_software_id(dagfd, 10, soft_id, config.swidkey);
if (res)

printf("d37t_write_software_id() failed res=%d\n", res);
/Ired writen software id

res = d37t_read software_id(dagfd, D37T_SOFTWARE_ID_SIZE, soft_id);
if (res)

printf("d37t_read_software_id() failed res=%d\n", res);
}

else

{

/* Replace any non-printable characters with spaces for this demo */
for (addr=0; addr<D37T_SOFTWARE_ID_SIZE; addr++)

if (soft_id[addr])

if (lisgraph(soft_id[addr]))
soft_id[addr] ="",
}
}

/* Null terminate it just in case */
soft_id[D37T_SOFTWARE_ID_SIZE]=0;

printf("Software ID: \"%s\"\n", soft_id);

res = d37t_read_version(dagfd, &version, &type);
if (res)

printf("d37t_read_version() failed res=%d\n", res);

}

else

{

printf("version = %u type = %u\n", version, type);

©2006 400 Version 1: 31 March 2006

.................. LSSU Filter

.................. MSU Filter

res = d37t_read_temperature(dagfd, 0, &temperature);
if (res)

printf("d37t_read_temperature() failed, res=%d\n", res);
}

else

printf("Temperature: %d Degrees Celcius\n", temperature);

------------------ Reset all Filters --------------------

if(config.reset_all_filters) {

printf("Reset all filters \n");
res = aal_msg_reset_all_filters(dagfd);
if (res<0)

printf("aal_msg_reset_all_filters() failed, res=%d\n", res);
} else

filter_cnt =0;
X

------------------ FISU Filter -------------m-m----

printf("Setup Filter for FISU packets fro MTP layer2\n™);
res = aal_msg_set_filter(dagfd,0,0x000000FC,0x00000000, DAG_EQ, DAG_FILTER_LEVEL_BOARD,0,0,0);
if (res<0)

printf(“aal_msg_set_filter() failed, res=%d\n", res);
} else

filters[filter_cnt++]=res;

printf("Setup Filter for LSSU packets\n™);
res = aal_msg_set_filter(dagfd,0,0x000000FC,0x00000004, DAG_GE, DAG_FILTER_LEVEL_BOARD,0,0,0);
if (res<0)

printf(“aal_msg_set_filter() failed, res=%d\n", res);
} else

filters[filter_cnt++]=res;

I/ sub filter
printf("Setup subfilter for LSSU packets\n™);
res = aal_msg_set_subfilter(dagfd,0,0x000000FC,0x00000008, DAG_LE, DAG_FILTER_LEVEL_BOARD,
0,0,0,filters[filter_cnt-1],DAG_AND_LIST);
if (res<0)

printf(*aal_msg_set_subfilter() failed, res=%d\n", res);
} else

filters[filter_cnt++]=res;

¥

printf("Setup Filter for MSU packets\n");
res = aal_msg_set_filter(dagfd,0,0x000000FC,0x0000000C, DAG_GE, DAG_FILTER_LEVEL_BOARD,0,0,0);
if (res<0)

©2006 410 Version 1: 31 March 2006

printf(“aal_msg_set_filter() failed, res=%d\n", res);
} else

filters[filter_cnt++]=res;

}
I

[* at this point we need to set up an aal5 connection on the required virtual connection*/

/* the default in NNI so this is just done for demonstration purposes */

[this is for AALS not fo hdlc

/fif (0 != dagsar_vci_set_net_mode(dagfd, DAG37T_INTERFACE, config.connectionNum,
/I config.VPI, config.VCI, config.net_mode))

1{

/I printf("set net mode failed\n");

/Il return 1;

I}

Ilelse

1

/I printf("net mode set\n");
I

[*set to reassemble AALS frames */

/fif (0 != dagsar_vci_set_sar_mode(dagfd, DAG37T_INTERFACE, config.connectionNum,
/I config.VPI, config.VVClI, config.sar_mode))

1{

/I printf("set sar mode failed\n");

/Il return 1;

I}

Ilelse

1

/I printf("sar mode set\n");

Iy

/fif (0 != dagsar_set_buffer_size(dagfd, config.max_size))
1

/I printf("set buffer size failed \n");

/Il return 1;

I}

Ilelse

1

/I printf("buffer size altered \n");

I

[* it is possible to check the mode a virtual connection is in. This will verify the

* mode set earlier did set the mode to the correct option

*/

/imode = dagsar_vci_get _sar_mode(dagfd, DAG37T_INTERFACE, config.connectionNum, config.VPI,
config.VCI);

[fif (mode != config.sar_mode)
1 printf(*mode was not returned correctly %d \n", mode);
1 return 1;
I}
/I else

/ printf("mode recognised\n™);
I}

[* start the connection so data can be collected */

©2006 420 Version 1: 31 March 2006

/I if (0 !=dagsar_vci_activate(dagfd, DAG37T_INTERFACE, config.connectionNum,
1 config.VPI, config.VCI))

I {

I printf(“activation failed\n");

I return 1;

I}

Il else

I

1 printf(“activation complete\n™);

I}

dagema_close_conn(dagfd, 0);
dag_close (dagfd);

return EXIT_SUCCESS;

10.2 Set up and close down of card and communications

#include "dagapi.h"

#include "dagutil.h"

#include "dagsarapi.h"

#include "dag_ima_config_api.h"
#include "dagema.h"

int main(int argc, char **argv)
{

int res;

int dagfd;

if ((dagfd = dag_open(config.device)) < 0) {
fprintf (stderr, "dag_open %s: %s\n", config.device,
strerror (errno)):;

exit (0);
}
if (dag_set_mux(dagfd, DA_DATA_TO_LINE, DA_DATA_ TO_IOP, DA_DATA_TO_HOST))
{
fprintf (stderr, "dag_set_mux failed\n");
exit (0);
}

/* Restart the XScale if required */
printf ("Restarting XScale

please wait this may take up to 60 seconds to complete\n");
if (dagema_reset_processor (dagfd, 0) < 0)

{
printf ("Failed to reset XScale (error code %d)\n",
dagema_get_last_error());
exit (0) ;
}

/* Open a connection to the EMA */
if ((res = dagema_open_conn(dagfd)) < 0)

printf ("Failed to connect to board (error code %d)\n",
dagema_get_last_error());
exit (0);

Communicate with the XScale or do some work here....

©2006 430 Version 1: 31 March 2006

/*Finished with the card now clean up */
dagema_close_conn (dagfd, 0);
dag_close (dagfd) ;

return O;

©2006 440 Version 1: 31 March 2006

10.3 Get Information about card

Set up card and communications....

res = d37t_read_software_id(dagfd, D37T_SOFTWARE_ID_SIZE, soft_id);

if (res)
{
printf ("d37t_read_software_id() failed res=%d\n", res);
}
else
{
/* Null terminate it just in case */
soft_1d[D37T_SOFTWARE_ID SIZE] = 0;
printf ("Software ID: \"%s\"\n", soft_id);
}
res = d37t_read_version(dagfd, &version, &type);
if (res)
{
printf ("d37t_read _version() failed res=%d\n", res);
}
else
{
printf ("version = %u type = %u\n", version, type);
}
res = d37t_read_temperature(dagfd, 0, &temperature);
if (res)
{
printf ("d37t_read_temperature() failed, res=%d\n", res);
}
else
{
printf ("Temperature: %d Degrees Celcius\n", temperature);
}

Clean up the card and communications when finished.....

©2006 450 Version 1: 31 March 2006

10.4 AAL Filtering if needed HDLC just replace the aal _with hdlc_ in the filter setup

Set up card and communications....

/* Set up a simple filter via the dagsar api to remove all cells with VCI and
* VPI of zero
*/

if(0!'= dagsar_set_filter_bitmask (dagfd, DAG37T_INTERFACE, OxFFFFFFFO,
0x00000000, sar_reject){
printf("simple filter setting failed\n");
return;

}
Wait for some data to be filtered....

/*reset filter so data is no longer dropped*/

if (0 != dagsar_reset_filter_bitmask(dagfd, DAG37T_INTERFACE)) {
printf("simple filter reset failed\n");
return;

}

/* This time a more elaborate filter is to be added to demonstrate
* the functionality available with the extended filtering module.

*/
/* Any cells that do not fit the filter should be dropped */
if(0 != aal_msg _set_filter_action(dagfd, sar_reject)) {
printf ("action setting failed\n");
return;

}

/*add a filter to remove all cells with connection number 128%*/
mainFilter = aal_msg_set_filter(dagfd, 20, 0x000000FF, 0x00000080, DAG_EQ,
DAG_FILTER_LEVEL_BOARD, 0, false, 10);
if(0 == mainFilter)
{
printf ("setting main filter failed\n");
return;

}

/* add a connection level filter on channel 16 that will remove all cells with
* cids greater than zero*/
connFilter = aal_msg_set_filter(dagfd, 20, 0xFF000000, 0x00000000, DAG_GE,
DAG_FILTER_LEVEL_CHANNEL, 16, 0, 9);
if (0 == connFilter)
{
printf ("setting Connection filter failed \n");
return;

}

/* add a subfilter from the board filter that will remove all cells with the
* first four data bytes all containing the value 0x6A in an AND sub filter *
list */
subFilter = aal_msg_set_subfilter(dagfd, 24, OXFFFFFFFF, Ox6A6A6A6A, DAG_EQ,
DAG_FILTER_LEVEL_BOARD, 0, false, 9, mainFilter, DAG_AND_LIST) ;
if (0 == subFilter)
{
printf ("setting subfilter failed \n");
return;

}
Wait for the filter to process some data....
/* remove the connection level filter */

if(0 !'= aal_msg_reset_filter(dagfd, connFilter)){
printf("single filter removal failed\n");

©2006 460 Version 1: 31 March 2006

return;

}

/* add another connection level filter on channel 17 that will remove all
* cells with cids greater than zero*/
connFilter = aal_msg_set_filter(dagfd, 20, 0xFF000000, 0x00000000, DAG_GE,
DAG_FILTER_LEVEL_CHANNEL, 17, 0, 9);
if (0 == connFilter)
{
printf ("setting Connection filter on connec failed \n");
return;

}

/*remove all filters*/

if(0 !'= aal_msg_reset_all_ filters(dagfd))

{
printf ("failure when attempting to remove all filters\n");
return;

Clean up the card and communications when finished.....

©2006 470 Version 1: 31 March 2006

10.5 Statistics

Set up card and communications....
Set up some deactivated and filtered connections.....

/*reset all statistics in preparation */

if (0 != dagsar_reset_stats_all (dagfd)) {
printf("statistics reset failed\n");
return;

}
wait for some time for statistics to be gathered on received data..

/*get statistics on dropped cells due to deactivated connections*/
NoOfDropped = dagsar_get_stats(dagfd, dropped_cells);

printf ("%d Dropped Cells\n");

/*reset dropped cells statistic for new data */

if (0 != dagsar_reset_stats(dagfd, dropped_cells)) {
printf ("dropped cells statistic reset failed\n");
return;

/*get statistics on filtered cells*/
NoOfDropped = dagsar_get_stats(dagfd, filtered cells);

printf ("%d Filtered Cells\n");

/*reset filtered cells statistic for new data */

if (0 != dagsar_reset_stats(dagfd, filtered_cells)) {
printf("filtered cells statistic reset failed\n");
return;

}

Clean up the card and communications when finished.....

©2006 480 Version 1: 31 March 2006

	1. Purpose
	1.1 Revision History

	2. Introduction
	2.1 Overview of the DAG 3.7T HDLC filtering
	2.2 Notes on DAG3.7T specific functions

	3. Functional Overview of the DAG 3.7T HDLC filtering
	3.1 Software ID
	3.2 Version ID
	3.3 Temperature Sensor
	3.4 Library and XScale Initialization
	3.5 Default behavior of the HDLC Embedded Software
	3.6 Statistics
	3.7 Filtering
	3.7.1 General Filtering
	3.7.2 Extended Filtering
	3.7.3 Extended Filtering Examples

	4. DAG EMA Library Function Definitions
	4.1 dagema_reset_processor
	4.1.1 Description
	4.1.2 Return Codes

	4.2 dagema_open_conn
	4.2.1 Description
	4.2.2 Return Codes

	4.3 dagema_close_conn
	4.3.1 Description
	4.3.2 Return Codes

	4.4 dagema_get_last_error
	4.4.1 Description
	4.4.2 Return Codes

	5. DAG 3.7T Specific Library Function Definitions
	5.1 d37t_write_software_id
	5.1.1 Description
	5.1.2 Return Codes

	5.2 d37t_read_software_id
	5.2.1 Description
	5.2.2 Return Codes

	5.3 d37t_read_version
	5.3.1 Description
	5.3.2 Return Codes

	5.4 d37t_read_temperature
	5.4.1 Description
	5.4.2 Return Codes

	6. HDLC filtering Msg Function Definitions
	6.1 hdlc_msg_set_burst_size
	6.1.1 Description
	6.1.2 Return Codes

	6.2 aal_msg_flush_burst_buffer
	6.2.1 Description
	6.2.2 Return Codes

	6.3 hdlc_msg_set_filter
	6.3.1 Description
	6.3.2 Return Codes

	6.4 hdlc_msg_set_subfilter
	6.4.1 Description
	6.4.2 Return Codes

	6.5 hdlc_msg_set_filter_action
	6.5.1 Description
	6.5.2 Return Codes

	6.6 hdlc_msg_reset_filter
	6.6.1 Description
	6.6.2 Return Codes

	6.7 hdlc_msg_reset_all_filters
	6.7.1 Description
	6.7.2 Return Codes

	7. DAG Sar Function Definitions
	Note: All the functions are used the same way as the AAL reassembly. And shared on the host side the same api.
	7.1 dagsar_get_stats
	7.1.1 Description
	7.1.2 Return Codes
	7.1.3 DAG3.7T Specific Return Codes

	7.2 dagsar_get_interface_stats
	7.2.1 Description
	7.2.2 Return Codes
	7.2.3 DAG3.7T Specific Return Codes

	7.3 dagsar_reset_stats
	7.3.1 Description
	7.3.2 Return Codes
	7.3.3 DAG3.7T Specific Return Codes

	7.4 dagsar_reset_stats_all
	7.4.1 Description
	7.4.2 Return Codes
	7.4.3 DAG3.7T Specific Return Codes

	7.5 dagsar_set_filter_bitmask
	7.5.1 Description
	7.5.2 Examples
	7.5.3 Return Codes
	7.5.4 DAG3.7T Specific Return Codes

	7.6 dagsar_reset_filter_bitmask
	7.6.1 Description
	7.6.2 Return Codes
	7.6.3 DAG3.7T Specific Return Codes

	8. Data Structures, Attributes, Defines and Enums
	8.1 stats_t
	8.2 filter_action_t
	8.3 filter_operations_t
	8.4 dag_filter_level_t
	8.5 list_operations_t

	9. Data Formats
	9.1 Generic Data Format
	9.2 Multichannel HDLC ERF Record

	10. Examples
	10.1 Layer 2 filtering FISU’s, LSSU’s and MSU’s filtering example
	10.2 Set up and close down of card and communications
	10.3 Get Information about card
	10.4 AAL Filtering if needed HDLC just replace the aal_ with hdlc_ in the filter setup
	10.5 Statistics

