
prooftrees
Version v0.9 (SVN Rev: 10525)

Clea F. Rees∗

2024/10/24

Abstract

prooftrees is a LATEX 2ε package, based on forest, designed to support the typesetting of logical tableaux —

‘proof trees’ or ‘truth trees’ — in styles sometimes used in teaching introductory logic courses, especially

those aimed at students without a strong background in mathematics. One textbook which uses proofs of

this kind is Hodges (1991). Like forest, prooftrees supports memoize out-of-the-box.

Note that this package requires version 2.1 (2016/12/04) of forest (Živanović 2016). It will not

work with versions prior to 2.1.

I would like to thank Živanović both for developing forest and for considerable patience in answering my questions,
addressing my confusions and correcting my mistakes. The many remaining errors are, of course, entirely my
own. This package’s deficiencies would be considerably greater and more numerous were it not for his assistance.

∗Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42/
prooftrees

S ↔ ¬T, T ↔ ¬R L S ↔ R

1.
2.
3.

4.
5.

6.
7.

8.
9.
10.

S ↔ ¬T ✓
T ↔ ¬R ✓

¬(S ↔ R) ✓

S
¬T

T
¬R
⊗

5, 6

¬T
¬¬R ✓

¬S
R
⊗

4, 8

S
¬R
R
⊗

9, 10

¬S
¬¬T ✓

T
¬R

¬S
R
⊗

7, 9

S
¬R
⊗

4, 8

¬T
¬¬R ✓

T
⊗

6, 8

pr.
pr.
¬ conc.

1 ↔ E
1 ↔ E

2 ↔ E
2 ↔ E

3 ¬↔ E; 5 ¬¬ E
3 ¬↔ E
7 ¬¬ E

(∃x)((∀y)(Py ⇒ (x = y)) · Px) L1
(∃x)(∀y)(Py ⇔ (x = y))

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.

12.
13.

(∃x)((∀y)(Py ⇒ (x = y)) · Px) ✓d
∼(∃x)(∀y)(Py ⇔ (x = y)) \d
(∀y)(Py ⇒ (d = y)) · Pd ✓

(∀y)(Py ⇒ (d = y)) \c
Pd

∼(∀y)(Py ⇔ (d = y)) ✓c
∼(Pc ⇔ (d = c)) ✓

Pc
d ̸= c

Pc ⇒ (d = c) ✓

∼Pc
⊗

8, 12

d = c
d ̸= d

⊗
13

∼Pc
d = c
Pc
⊗

8, 10

pr.
¬ conc.
1 ∃ E
3 · E
3 · E
2 ∼∃ E
6 ∼∀ E

7 ∼ ⇔ E
7 ∼ ⇔ E
5, 9 =
4 ∀ E

11 ⇒ E
9, 12 =

— 1 of 46 —

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

1 Raison d’être

Contents

1 Raison d’être 2

2 Assumptions & Limitations 6

3 Typesetting a Proof Tree 6

4 Loading the Package 15

5 Invocation 15

6 Proof Tree Anatomy 15

7 Options 16
7.1 Global Options . 16
7.2 Local Options . 21

8 Macros 24

9 Memoization 25

10 Compatibility 26

11 Version History 26
11.1 0.9 . 26
11.2 0.8 . 26
11.3 0.7 . 26
11.4 0.6 . 26
11.5 0.5 . 26
11.6 0.41 . 26
11.7 0.4 . 27
11.8 0.3 . 27

A Implementation 29

1 Raison d’être

Suppose that we wish to typeset a typical proof tree demonstrating the following entailment

{P ∨ (Q ∨ ¬R), P → ¬R, Q → ¬R} ¬R

We start by typesetting the tree using forest’s default settings (box 1) and find our solution has several
advantages: the proof is specified concisely and the code reflects the structure of the tree. It is relatively
straightforward to specify a proof using forest’s bracket notation, and the spacing of nodes and branches is
automatically calculated.

Despite this, the results are not quite what we might have hoped for in a proof tree. The assumptions should
certainly be grouped more closely together and no edges (lines) should be drawn between them because these
are not steps in the proof — they do not represent inferences. Preferably, edges should start from a common
point in the case of branching inferences, rather than there being a gap.

Moreover, proof trees are often compacted so that non-branching inferences are grouped together, like as-
sumptions, without explicitly drawn edges. Although explicit edges to represent non-branching inferences are
useful when introducing students to proof trees, more complex proofs grow unwieldy and the more compact
presentation becomes essential.

Furthermore, it is useful to have the option of annotating proof trees by numbering the lines of the proof on
the left and entering the justification for each line on the right.

— 2 of 46 —

1 Raison d’être

forest is a powerful and flexible package capable of all this and, indeed, a good deal more. It is not enormously
difficult to customise particular trees to meet most of our desiderata. However, it is difficult to get things
perfectly aligned even in simple cases, requires the insertion of ‘phantom’ nodes and management of several
sub-trees in parallel (one for line numbers, one for the proof and one for the justifications). The process
requires a good deal of manual intervention, trial-and-error and hard-coding of things it would be better to
have LATEX 2ε manage for us, such as keeping count of lines and line references.

prooftrees aims to make it as easy to specify proof trees as it was to specify our initial tree using forest’s default
settings. The package supports a small number of options which can be configured to customise the output.
The code for a prooftrees proof tree is shown in box 2, together with the output obtained using the default
settings.

More extensive configuration can be achieved by utilising forest (Živanović 2016) and/or TikZ (Tantau 2015)
directly. A sample of supported proof tree styles are shown in box 3. The package is not intended for the
typesetting of proof trees which differ significantly in structure.

1 forest: default settings

\begin{forest}
[$P \vee (Q \vee \lnot R)$

[$P \lif \lnot R$
[$Q \lif \lnot R$

[$\lnot\lnot R$
[P

[$\lnot P$]
[$\lnot R$]

]
[$Q \vee \lnot R$

[Q
[$\lnot Q$]
[$\lnot R$]

]
[$\lnot R$]

]
]

]
]

]
\end{forest}

P ∨ (Q ∨ ¬R)

P → ¬R

Q → ¬R

¬¬R

P

¬P ¬R

Q ∨ ¬R

Q

¬Q ¬R

¬R

— 3 of 46 —

1 Raison d’être

2 prooftrees: default settings

\begin{tableau}
{

to prove={\{P \vee (Q \vee \lnot R), P \lif
\lnot R, Q \lif \lnot R\} \sststile{}{} \lnot
R}

}
[P \vee (Q \vee \lnot R), just=Ass, checked

[P \lif \lnot R, just=Ass, checked
[Q \lif \lnot R, just=Ass, checked,

name=last premise
[\lnot\lnot R, just={\lnot Conc},

name=not conc
[P, just={\vee Elim:!uuuu}

[\lnot P, close={:!u,!c}]
[\lnot R, close={:not conc,!c},

just={\lif Elim:!uuuu}]]
[Q \vee \lnot R

[Q, move by=1
[\lnot Q, close={:!u,!c}]
[\lnot R, close={:not conc,!c},

just={\lif Elim:last premise}]]
[\lnot R, close={:not conc,!c},

move by=1, just={\vee Elim:!u}]]]]]]
\end{tableau}

{P ∨ (Q ∨ ¬R), P → ¬R, Q → ¬R} ¬R

1.
2.
3.
4.

5.

6.
7.

8.

P ∨ (Q ∨ ¬R) ✓
P → ¬R ✓
Q → ¬R ✓

¬¬R

P

¬P
⊗

5, 6

¬R
⊗

4, 6

Q ∨ ¬R

Q

¬Q
⊗

7, 8

¬R
⊗

4, 8

¬R
⊗
4, 7

Ass
Ass
Ass
¬ Conc

1 ∨ Elim

2 → Elim
5 ∨ Elim

3 → Elim

— 4 of 46 —

3 prooftrees: sample output

{P ∨ (Q ∨ ¬R), P → ¬R, Q → ¬R} ¬R

1.
2.
3.
4.

5.

6.
7.

8.

P ∨ (Q ∨ ¬R) ✓
P → ¬R ✓
Q → ¬R ✓

¬¬R

P

¬P
⊗

5, 6

¬R
⊗

4, 6

Q ∨ ¬R ✓

Q

¬Q
⊗

7, 8

¬R
⊗

4, 8

¬R
⊗
4, 7

Ass
Ass
Ass
Neg conc

1 ∨ Elim

2 → Elim
5 ∨ Elim

3 → Elim

1)
2)
3)
4)

5)

6)
7)

8)

P ∨ (Q ∨ ∼R) ✓
P ⊃ ∼R ✓
Q ⊃ ∼R ✓

∼∼R

P

∼P
∗

5, 6

∼R
∗

4, 6

Q ∨ ∼R ✓

Q

∼Q
∗

7, 8

∼R
∗

4, 8

∼R
∗

4, 7

Ass
Ass
Ass
Neg conc

1 ∨ Elim

2 ⊃ Elim
5 ∨ Elim

3 ⊃ Elim

✔ P ∨ (Q ∨ ¬R)
✔ P → ¬R
✔ Q → ¬R

¬¬R

P

¬P
✘

¬R
✘

✔ Q ∨ ¬R

Q

¬Q
✘

¬R
✘

¬R
✘

Ass
Ass
Ass
Neg conc

∨ Elim

→ Elim

∨ Elim

→ Elim

{P ∨ (Q ∨ ¬R), P → ¬R, Q → ¬R} ∴ ¬R

1.
2.
3.
4.

5.

6.

7.
8.

P ∨ (Q ∨ ¬R) ✓
P → ¬R ✓
Q → ¬R ✓

¬¬R

P

¬P
×

5, 8

¬R
×

4, 8

Q ∨ ¬R ✓

Q

¬Q
×

6, 7

¬R
×
4, 7

¬R
×

4, 6

Ass
Ass
Ass
Neg conc

1 ∨ Elim

5 ∨ Elim

3 → Elim
2 → Elim

(∃x)(Lx ∨ Mx) (∃x)Lx ∨ (∃x)Mx

1.
2.
3.
4.
5.
6.
7.

8.

(∃x)(Lx ∨ Mx) ✓a
¬((∃x)Lx ∨ (∃x)Mx) ✓

La ∨ Ma ✓
¬(∃x)Lx \a
¬(∃x)Mx \a

¬La
¬Ma

La
⊗
6,8

Ma
⊗
7,8

Ass
Neg Conc
1 ∃ E
2 ¬∨ E

4 ¬∃ E
5 ¬∃ E

3 ∨ E

Either Alice saw nobody
or she didn’t see nobody.

Alice saw nobody. \Jones
Alice didn’t see Jones.

Alice didn’t see nobody.
Alice saw somebody. ✓Jones

Alice saw Jones.

∨ E
∀ E
∨ E
¬¬ E
∃ E

— 5 of 46 —

3 Typesetting a Proof Tree

2 Assumptions & Limitations

prooftrees makes certain assumptions about the nature of the proof system, L, on which proofs are based.

• All derivation rules yield equal numbers of wff s on all branches.

wff

wff wff

wff

wff
wff

wff
wff

wff

wff wff
wff

wff

wff
wff

wff
✔ ✔ ✘ ✘

If L fails to satisfy this condition, prooftrees is likely to violate the requirements of affected derivation
rules by splitting branches ‘mid-inference’.

• No derivation rule yields wff s on more than two branches.

• All derivation rules proceed in a downwards direction at an angle of -90° i.e. from north to south.

• Any justifications are set on the far right of the proof tree.

• Any line numbers are set on the far left of the proof tree.

• Justifications can refer only to earlier lines in the proof. prooftrees can typeset proofs if L violates
this condition, but the cross-referencing system explained in section 7.2 cannot be used for affected
justifications.

prooftrees does not support the automatic breaking of proof trees across pages. Proof trees can be manually
broken by using line no shift with an appropriate value for parts after the first (section 7.1). However,
horizontal alignment across page breaks will not be consistent in this case.

In addition, prooftrees almost certainly relies on additional assumptions not articulated above and certainly
depends on a feature of forest which its author classifies as experimental (do dynamics).

3 Typesetting a Proof Tree

After loading prooftrees in the document preamble:

% in document's preamble
\usepackage{prooftrees}

the prooftree environment is available for typesetting proof trees. This takes an argument used to specify a
⟨tree preamble⟩, with the body of the environment consisting of a ⟨tree specification⟩ in forest’s notation. The
⟨tree preamble⟩ can be as simple as an empty argument — {} — or much more complex.

Customisation options and further details concerning loading and invocation are explained in section 4, section 5,
section 6, section 7 and section 8. In this section, we begin by looking at a simple example using the default
settings.

Suppose that we wish to typeset the proof tree for

(∃x)((∀y)(Py → x = y) ∧ Px) (∃x)(∀y)(Py ↔ x = y)

and we would like to typeset the entailment established by our proof at the top of the tree. Then we should
begin like this:

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
\end{tableau}

— 6 of 46 —

3 Typesetting a Proof Tree

4 Nested structure of proof tree

(∃x)((∀y)(Py → x = y) ∧ Px) (∃x)(∀y)(Py ↔ x = y)

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.

12.
13.

(∃x)((∀y)(Py → x = y) ∧ Px) ✓a
¬(∃x)(∀y)(Py ↔ x = y) \a
(∀y)(Py → a = y) ∧ Pa ✓

(∀y)(Py → a = y) \b
Pa

¬(∀y)(Py ↔ a = y) ✓b
¬(Pb ↔ a = b) ✓

Pb
a ̸= b

Pb → a = b ✓

¬Pb
⊗

8, 12

a = b
a ̸= a

⊗
13

¬Pb
a = b
Pb
⊗

8, 10

Pr.
Conc. neg.
1 ∃ E
3 ∧ E
3 ∧ E
2 ¬∃ E
6 ¬∀ E

7 ↔ E
8 ↔ E
5, 9 = E
4 ∀ E

11 → E
9, 12 = E

13
1212

11
10

9 9
8 8

7
6

5
4

3
2

1

That is all the preamble we want, so we move onto consider the ⟨tree specification⟩. forest uses square brackets
to specify trees’ structures. To typeset a proof, think of it as consisting of nested trees, trunks upwards, and
work from the outside in and the trunks down (box 4).

Starting with the outermost tree 12 and the topmost trunk, we replace the with square brackets and
enter the first wff inside, adding just=Pr. for the justification on the right and checked=a so that the line
will be marked as discharged with a substituted for x. We also use forest’s name to label the line for ease of
reference later. (Technically, it is the node rather than the line which is named, but, for our purposes, this
doesn’t matter. forest will create a name if we don’t specify one, but it will not necessarily be one we would
have chosen for ease of use!)

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr
]

\end{tableau}

We can refer to this line later as pr.

We then consider the next tree 12 . Its goes inside that for 12 , so the square brackets containing the next
wff go inside those we used for 12 . Again, we add the justification with just, but we use subs=a rather than
checked=a as we want to mark substitution of a for x without discharging the line. Again, we use name so

— 7 of 46 —

3 Typesetting a Proof Tree

that we can refer to the line later as neg conc.

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
]

]
\end{tableau}

Turning to tree 12 , we again note that its is nested within the previous two, so the square brackets for its
wff need to be nested within those for the previous wff s. This time, we want to mark the line as discharged
without substitution, so we simply use checked without a value. Since the justification for this line includes
mathematics, we need to ensure that the relevant part of the justification is surrounded by $. . . $ or \(. . . \).
This justification also refers to an earlier line in the proof. We could write this as just=1 $\exists\elim$,
but instead we use the name we assigned earlier with the referencing feature provided by prooftrees. To
do this, we put the reference, pr after the rest of the justification, separating the two parts by a colon
i.e. $\exists\elim$:pr and allow prooftrees to figure out the correct number.

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr
]

]
]

\end{tableau}

Continuing in the same way, we surround each of the wff s for 12 , 12 , 12 and 12 within square brackets nested
within those surrounding the previous wff since each of the trees is nested within the previous one. Where
necessary, we use name to label lines we wish to refer to later, but we also use forest’s relative naming system when
this seems easier. For example, in the next line we add, we specify the justification as just=$\land\elim$:!u.
! tells forest that the reference specifies a relationship between the current line and the referenced one,
rather than referring to the other line by name. !u refers to the current line’s parent line — in this case,
{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr. !uu refers to the current
line’s parent line’s parent line and so on.

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u
]

]
]

]

— 8 of 46 —

3 Typesetting a Proof Tree

]
]

]
\end{tableau}

Reaching 12 , things get a little more complex since we now have not one, but two nested within 12 . This
means that we need two sets of square brackets for 12 — one for each of its two trees. Again, both of these
should be nested within the square brackets for 12 but neither should be nested within the other because the
trees for the two branches at 12 are distinct.

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
]
[\lnot Pb
]

]
]

]
]

]
]

]
\end{tableau}

At this point, we need to work separately or in parallel on each of our two branches since each constitutes its
own tree. Turning to trees 12 , each needs to be nested within the relevant tree 12 , since each is nested
within the applicable branch’s tree. Hence, we nest square brackets for each of the wff s at 12 within the
previous set.

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
]

]
[\lnot Pb
[{a = b}
]

— 9 of 46 —

3 Typesetting a Proof Tree

]
]

]
]

]
]

]
]

\end{tableau}

We only have one tree 12 as there is no corresponding tree in the left-hand branch. This isn’t a problem: we
just need to ensure that we nest it within the appropriate tree 12 . There are two additional complications
here. The first is that the justification contains a comma, so we need to surround the argument we give just
with curly brackets. That is, we must write just={5,9 $=\elim$} or just={$=\elim$:{simple,!u}}. The
second is that we wish to close this branch with an indication of the line numbers containing inconsistent wff s.
We can use close={8,10} for this or we can use the same referencing system we used to reference lines when
specifying justifications and write close={:to Pb or not to Pb,!c}. In either case, we again surrounding
the argument with curly brackets to protect the comma. !c refers to the current line — something useful in
many close annotations, but not helpful in specifying non-circular justifications.

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
]

]
[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]
]

]
]

]
]

]
\end{tableau}

This completes the main right-hand branch of the tree and we can focus solely on the remaining left-hand one.
Tree 12 is straightforward — we just need to nest it within the left-hand tree 12 .

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

— 10 of 46 —

3 Typesetting a Proof Tree

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
[{Pb \lif a = b}, checked, just=$\forall\elim$:mark%, move by=1
]

]
]
[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]
]

]
]

]
]

]
\end{tableau}

At this point, the main left-hand branch itself branches, so we have two trees 12 . Treating this in the same
way as the earlier branch at 12 , we use two sets of square brackets nested within those for tree 12 , but
with neither nested within the other. Since we also want to mark the leftmost branch as closed, we add
close={:to Pb or not to Pb,!c} in the same way as before.
\begin{tableau}

{
to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(

Py \liff x = y)}
}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
[{Pb \lif a = b}, checked, just=4 $\forall\elim$

[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!u
]
[{a = b}
]

]
]
]
[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]

— 11 of 46 —

3 Typesetting a Proof Tree

]
]

]
]

]
]

\end{tableau}

We complete our initial specification by nesting 12 within the appropriate tree 12 , again marking closure
appropriately.

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
[{Pb \lif a = b}, checked, just=4 $\forall\elim$

[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!u
]
[{a = b}

[a \neq a, close={:!c}, just={$=\elim$:{!uuu,!u}}
]

]
]

]
]
[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]
]

]
]

]
]

]
\end{tableau}

Compiling our code, we find that the line numbering is not quite right:

— 12 of 46 —

3 Typesetting a Proof Tree

(∃x)((∀y)(Py → x = y) ∧ Px) (∃x)(∀y)(Py ↔ x = y)

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.

11.
12.

(∃x)((∀y)(Py → x = y) ∧ Px) ✓a
¬(∃x)(∀y)(Py ↔ x = y) \a
(∀y)(Py → a = y) ∧ Pa ✓

(∀y)(Py → a = y) \b
Pa

¬(∀y)(Py ↔ a = y) ✓b
¬(Pb ↔ a = b) ✓

Pb
a ̸= b

Pb → a = b ✓

¬Pb
⊗

8, 11

a = b
a ̸= a

⊗
12

¬Pb
a = b
Pb
⊗

8, 10

Pr.
Conc. neg.
1 ∃ E
3 ∧ E
3 ∧ E
2 ¬∃ E
6 ¬∀ E

7 ↔ E
8 ↔ E
4 ∀ E; 5, 9 = E

10 → E
9, 11 = E

prooftrees warns us about this:

Package prooftrees Warning: Merging conflicting justifications for line 10! Please examine the output
carefully and use "move by" to move lines later in the proof if required. Details of how to do this

are included in the documentation.

We would like line 10 in the left-hand branch to be moved down by one line, so we add move by=1 to the
relevant line of our proof. That is, we replace the line

[{Pb \lif a = b}, checked, just=4 $\forall\elim$

by

[{Pb \lif a = b}, checked, just=$\forall\elim$:mark, move by=1

giving us the following code:

\begin{tableau}
{

to prove={(\exists x)((\forall y)(Py \lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}

}
[{(\exists x)((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr

[{\lnot (\exists x)(\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple

[{\lnot (\forall y)(Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\forall\elim$:!u

[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!u
[{Pb \lif a = b}, checked, just=$\forall\elim$:mark, move by=1

[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!u
]
[{a = b}

[a \neq a, close={:!c}, just={$=\elim$:{!uuu,!u}}
]

]
]

]
]

— 13 of 46 —

3 Typesetting a Proof Tree

[\lnot Pb
[{a = b}

[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
]

]
]

]
]

]
]

]
]

]
\end{tableau}

which produces our desired result:

(∃x)((∀y)(Py → x = y) ∧ Px) (∃x)(∀y)(Py ↔ x = y)

1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.

12.
13.

(∃x)((∀y)(Py → x = y) ∧ Px) ✓a
¬(∃x)(∀y)(Py ↔ x = y) \a
(∀y)(Py → a = y) ∧ Pa ✓

(∀y)(Py → a = y) \b
Pa

¬(∀y)(Py ↔ a = y) ✓b
¬(Pb ↔ a = b) ✓

Pb
a ̸= b

Pb → a = b ✓

¬Pb
⊗

8, 12

a = b
a ̸= a

⊗
13

¬Pb
a = b
Pb
⊗

8, 10

Pr.
Conc. neg.
1 ∃ E
3 ∧ E
3 ∧ E
2 ¬∃ E
6 ¬∀ E

7 ↔ E
8 ↔ E
5, 9 = E
4 ∀ E

11 → E
9, 12 = E

— 14 of 46 —

6 Proof Tree Anatomy

4 Loading the Package

To load the package simply add the following to your document’s preamble.

\usepackage{prooftrees}

prooftrees will load forest automatically.

The only option currently supported is tableaux. If this option is specified, the prooftree
environment will be called tableau instead.

Example: \usepackage[tableaux]prooftrees

would cause the tableau environment to be defined rather than prooftree.

Any other options given will be passed to forest.
Example: \usepackage[debug]prooftrees

would enable forest’s debugging.

If one or more of forest’s libraries are to be loaded, it is recommended that these be loaded
separately and their defaults applied, if applicable, within a local TEX group so that they do not
interfere with prooftrees’s environment.

5 Invocation

\begin{prooftree}{⟨tree preamble⟩}⟨tree specification⟩\end{prooftree}prooftree
environment

The ⟨tree preamble⟩ is used to specify any non-default options which should be applied to the
tree. It may contain any code valid in the preamble of a regular forest tree, in addition to
setting prooftree options. The preamble may be empty, but the argument is required1. The ⟨tree
specification⟩ specifies the tree in the bracket notation parsed by forest.
Users of forest should note that the environments prooftree and forest differ in

important ways.

• prooftree’s argument is mandatory.

• The tree’s preamble cannot be given in the body of the environment.

• \end{prooftree} must follow the ⟨tree specification⟩ immediately.

\begin{tableau}{⟨tree preamble⟩}⟨tree specification⟩\end{tableau}tableau
environment

A substitute for prooftree, defined instead of prooftree if the package option tableaux is
specified or a \prooftree macro is already defined when prooftrees is loaded. See section 4 for
details and section 10 for this option’s raison d’être.

6 Proof Tree Anatomy

The following diagram provides an overview of the configuration and anatomy of a prooftrees
proof tree. Detailed documentation is provided in section 7 and section 8.

1Failure to specify a required argument does not always yield a compilation error in the case of environments.
However, failure to specify required arguments to environments often fails to achieve the best consequences, even
when it does not result in compilation failures, and will, therefore, be avoided by the prudent.

— 15 of 46 —

7 Options

Theorem/Entailment

Line Numbers

Justifications

wffs

• specified with to prove
• format controlled by proof statement format
• named proof statement

• content & location automatic
• existence controlled by line numbering
• global format controlled by line no format & \linenumberstyle
• local format controlled by highlight line no & line no options
• named line no n for proof line n

• location automatic
• existence controlled implicitly or with
justifications
• content specified with just
• cross-references supported
• global format controlled by just format &
just refs left
• local format controlled by highlight just &
just options
• named just n for proof line n

• from ⟨tree specification⟩
• global format controlled by
wff format
• local format controlled by
highlight wff & wff options
• highlight line and line
options control the format of
the current wff ’s proof line

Anatomy & Ontology
• forest trees consist of (TikZ) nodes
• prooftrees places wff s, line numbers, justi-
fications & proof statements into nodes
• the content & location of each node de-
pends on its type: line number, wff , justific-
ation or proof statement
• the proof’s structure & appearance is
determined by the ⟨tree preamble⟩ & ⟨tree
specification⟩
• node content, existence & location is con-
trolled by one or both of these, depending
on the node type

Meaning & Reference
• nodes for the proof statement, justifications & line num-
bers are given standard names for ease of reference
• the proof statement node is the root
• wff nodes may be named as required
• a cross-referencing system supports annotations in justific-
ations and closures

Discharge & Substitution
• location & annotation content controlled by checked and subs within the ⟨tree
specification⟩
• discharge & substitution symbols controlled by check with & subs with
• check right & subs right control relative location

proof statement

1.
2.
3.

4.
5.

6.

7.
8.
9.
10.

wff ✓
wff ✓a
wff \a,b

wff
wff

wff

wff
⊗

n, m

wff
⊗

n, m

wff
wff

wff

wff
wff
⊗

n, m

wff
wff
wff
⊗

n, m

wff

wff
⊗

n, m

justification
justification
justification

justification
justification

justification

justification
justification
justification
justification

Closure
• closure symbol & optional annotation
• location & annotation content controlled by close
within the ⟨tree specification⟩
• annotations support cross-references
• closure symbol controlled by close with and close
with format
• global annotation format controlled by close format
& close sep

7 Options

Most configuration uses the standard key/value interface provided by TikZ and extended by
forest. These are divided into those which determine the overall appearance of the proof as a
whole and those with more local effects.

7.1 Global Options

The following options affect the global style of the tree and should typically be set in the tree’s
preamble if non-default values are desired. The default values for the document can be set outside
the prooftree environment using \forestset{⟨settings⟩}. If only proof trees will be typeset, a
default style can be configured using forest’s default preamble.

— 16 of 46 —

7 Options 7.1 Global Options

= true|falseauto move
not auto move

Forest boolean register Default: true

Determines whether prooftrees will move lines automatically, where possible, to avoid combining
different justifications when different branches are treated differently. The default is to avoid
conflicts automatically where possible. Turning this off permits finer-grained control of what gets
moved using move by. The following are equivalent to the default setting:

auto move
auto move=true

Either of the following will turn auto move off:

not auto move
auto move=false

= true|falseline numbering
not line numbering
Forest boolean register Default: true

This determines whether lines should be numbered. The default is to number lines. The following
are equivalent to the default setting:

line numbering
line numbering=true

Either of the following will turn line numbering off:

not line numbering
line numbering=false

= true|falsejustifications
not justifications
Forest boolean register This determines whether justifications for lines of the proof should be typeset to the right of

the tree. It is rarely necessary to set this option explicitly as it will be automatically enabled
if required. The only exception concerns a proof for which a line should be moved but no
justifications are specified. In this case either of the following should be used to activate the
option:

justifications
justifications=true

This is not necessary if just is used for any line of the proof.

= true|falsesingle branches
not single branches

Forest boolean register Default: false

This determines whether inference steps which do not result in at least two branches should draw
and explicit branch. The default is to not draw single branches explicitly. The following are
equivalent to the default setting:

not single branches
single branches=false

Either of the following will turn line numbering off:

single branches
single branches=true

— 17 of 46 —

7 Options 7.1 Global Options

= ⟨dimension⟩line no width
Forest dimension register

The maximum width of line numbers. By default, this is set to the width of the formatted line
number 99.

Example: line no width=20pt

= ⟨dimension⟩just sep
Forest dimension register

Default: 1.5em

Amount by which to shift justifications away from the tree. A larger value will shift the
justifications further to the right, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the justifications further, please set just sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: just sep=.5em

= ⟨dimension⟩line no sep
Forest dimension register

Default: 1.5em

Amount by which to shift line numbers away from the tree. A larger value will shift the line
numbers further to the left, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the line numbers further, please set line no sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: line no sep=5pt

= ⟨dimension⟩close sep
Forest dimension register

Default: .75\baselineskip

Distance between the symbol marking branch closure and any following annotation. If the format
of such annotations is changed with close format, this dimension may require adjustment.

Example: close sep=\baselineskip

= ⟨dimension⟩proof tree inner proof
width

Forest dimension register Default: 0pt

= ⟨dimension⟩proof tree inner proof
midpoint

Forest dimension register Default: 0pt

= ⟨integer⟩line no shift
Forest count register

Default: 0

This value increments or decrements the number used for the first line of the proof. By default,
line numbering starts at 1.

Example: line no shift=3

would begin numbering the lines at 4.

Start line numbering from 0 rather than 1. The following are equivalent:zero start
Forest style

zero start
line no shift=-1

— 18 of 46 —

7 Options 7.1 Global Options

= ⟨wff ⟩to prove
Forest style

Statement of theorem or entailment to be typeset above the proof. In many cases, it will be
necessary to enclose the statement in curly brackets.

Example: to prove={\sststile{}{} P \lif P}

By default, the content is expected to be suitable for typesetting in maths mode and should not,
therefore, be enclosed by dollar signs or equivalent.

= ⟨symbol⟩check with
Forest toks register

Default: \ensuremath{\checkmark} (✓)

Symbol with which to mark discharged lines.

Example: check with={\text{\ding{52}}}

Within the tree, checked is used to identify discharged lines.

= true|falsecheck right
not check right

Forest boolean register Default: true

Determines whether the symbol indicating that a line is discharged should be placed to the right
of the wff . The alternative is, unsurprisingly, to place it to the left of the wff . The following are
equivalent to the default setting:

check right
check right=true

Set check right=false. The following are equivalent ways to place the markers to the left:check left
Forest style

check right=false
not check right
check left

= ⟨symbol⟩close with
Forest toks register

Default: \ensuremath{\otimes} (⊗)

Symbol with which to close branches.

Example: close with={\ensuremath{\ast}}

Within the tree, close is used to identify closed branches.

= ⟨key-value list⟩close with format
Forest keylist register

Additional TikZ keys to apply to the closure symbol. Empty by default.

Example: close with format={red, font=}

To replace a previously set value, rather than adding to it, use close with format' rather than
close with format.

= ⟨key-value list⟩close format
Forest keylist register

Default: font=\scriptsize

Additional TikZ keys to apply to any annotation following closure of a branch.

Example: close format={font=\footnotesize\sffamily, text=gray!75}

To replace the default value of close format, rather than adding to it, use close format'
rather than close format.

— 19 of 46 —

7 Options 7.1 Global Options

Example: close format'={text=red}

will produce red annotations in the default font size, whereas

Example: close format={text=red}

will produce red annotations in \scriptsize.

= ⟨symbol⟩subs with
Forest toks register

Default: \ensuremath{\backslash} (\)

Symbol to indicate variable substitution.

Example: \text{:}

Within the tree, subs is used to indicate variable substitution.

= true|falsesubs right
not subs right

Forest boolean register Default: true

Determines whether variable substitution should be indicated to the right of the wff . The
alternative is, again, to place it to the left of the wff . The following are equivalent to the default
setting:

subs right
subs right=true

Set subs right=false. The following are equivalent ways to place the annotations to the left:subs left
Forest style

subs right=false
not subs right
subs left

= true|falsejust refs left
not just refs left
Forest boolean register Default: true

Determines whether line number references should be placed to the left of justifications. The
alternative is to place them to the right of justifications. The following are equivalent to the
default setting:

just refs left
just refs left=true

Set just refs left=false. The following are equivalent ways to place the references to thejust refs right
Forest style right:

just refs left=false
not just refs left
just refs right

Note that this setting only affects the placement of line numbers specified using the cross-referencing
system explained in section 7.2. Hard-coded line numbers in justifications will be typeset as is.

= ⟨key-value list⟩just format
Forest keylist register

Additional TikZ keys to apply to line justifications. Empty by default.

Example: just format={red, font=}

To replace a previously set value, rather than adding to it, use just format' rather than just
format.

— 20 of 46 —

7 Options 7.2 Local Options

= ⟨key-value list⟩line no format
Forest keylist register

Additional TikZ keys to apply to line numbers. Empty by default.

Example: line no format={align=right, text=gray}

To replace a previously set value, rather than adding to it, use line no format' rather than
line no format. To change the way the number itself is formatted — to eliminate the dot, for
example, or to put the number in brackets — redefine \linenumberstyle (see section 8).

= ⟨key-value list⟩wff format
Forest keylist register

Additional TikZ keys to apply to wff s. Empty by default.

Example: wff format={draw=orange}

To replace a previously set value, rather than adding to it, use wff format' rather than wff
format.

= ⟨key-value list⟩proof statement format
Forest keylist register

Additional TikZ keys to apply to the proof statement. Empty by default.

Example: proof statement format={text=gray, draw=gray}

To replace a previously set value, rather than adding to it, use proof statement format' rather
than proof statement format.

= ⟨key-value list⟩highlight format
Forest autowrapped toks register

Default: draw=gray, rounded corners

Additional TikZ keys to apply to highlighted wff s.

Example: highlight format={text=red}

To apply highlighting, use the highlight wff, highlight just, highlight line no and/or
highlight line keys (see section 7.2).

= ⟨punctuation⟩merge delimiter
Forest toks register

Default: \text{; } (;)

Punctuation to separate distinct justifications for a single proof line. Note that prooftrees will
issue a warning if it detects different justifications for a single proof line and will suggest using
move by to avoid the need for merging justifications. In general, justifications ought not be
merged because it is then less clear to which wff (s) each justification applies. Moreover, later
references to the proof line will be similarly ambiguous. That is, merge delimiter ought almost
never be necessary because it is almost always better to restructure the proof to avoid ambiguity.

7.2 Local Options

The following options affect the local structure or appearance of the tree and should typically be
passed as options to the relevant node(s) within the tree.

Indicate that a line is not an inference. When single branches is false, as it is with the defaultgrouped
not grouped

Forest boolean option
settings, this key is applied automatically and need not be given in the specification of the tree.
When single branches is true, however, this key must be specified for any line which ought not
be treated as an inference.

Example: grouped

Mark a complex wff as resolved, discharging the line.checked
Forest style

Example: checked

= ⟨name⟩checked
Forest style

— 21 of 46 —

7 Options 7.2 Local Options

Existential elimination, discharge by substituting ⟨name⟩.
Example: checked=a

Close branch.close
Forest style

Example: close

= ⟨annotation⟩close
Forest style

= ⟨annotation prefix⟩:⟨references⟩
Close branch with annotation. In the simplest case, ⟨annotation⟩ contains no colon and is typeset
simply as it is. Any required references to other lines of the proof are assumed to be given
explicitly.

Example: close={12,14}

If ⟨annotation⟩ includes a colon, prooftrees assumes that it is of the form ⟨annotation
prefix⟩:⟨references⟩. In this case, the material prior to the colon should include material to be
typeset before the line numbers and the material following the colon should consist of one or
more references to other lines in the proof. In typical cases, no prefix will be required so that the
colon will be the first character. In case there is a prefix, prooftrees will insert a space prior to the
line numbers. ⟨references⟩ may consist of either forest names (e.g. given by name= ⟨name label⟩
and then used as ⟨name label⟩) or forest relative node names (e.g. ⟨nodewalk⟩) or a mixture.

Example: close={:negated conclusion}

where name=negated conclusion was used to label an earlier proof line negated conclusion.
If multiple references are given, they should be separated by commas and either ⟨references⟩ or
the entire ⟨annotation⟩ must be enclosed in curly brackets, as is usual for TikZ and forest values
containing commas.

Example: close={:!c,!uuu}

= ⟨name⟩/⟨names⟩subs
Forest style

Universal instantiation, instantiate with ⟨name⟩ or ⟨names⟩.
Example: subs={a,b}

= ⟨justification⟩just
Forest autowrapped toks option

= ⟨justification prefix/suffix⟩:⟨references⟩
Justification for inference. This is typeset in text mode. Hence, mathematical expressions must
be enclosed suitably in dollar signs or equivalent. In the simplest case, ⟨justification⟩ contains
no colon and is typeset simply as it is. Any required references to other lines of the proof are
assumed to be given explicitly.

Example: just=3 \lorD

If ⟨justification⟩ includes a colon, prooftrees assumes that it is of the form ⟨justification
prefix/suffix⟩:⟨references⟩. In this case, the material prior to the colon should include ma-
terial to be typeset before or after the line numbers and the material following the colon should
consist of one or more references to other lines in the proof. Whether the material prior to the
colon is interpreted as a ⟨justification prefix⟩ or a ⟨justification suffix⟩ depends on the value of
just refs left. ⟨references⟩ may consist of either forest names (e.g. given by name= ⟨name
label⟩ and then used as ⟨name label⟩) or forest relative node names (e.g. ⟨nodewalk⟩) or a mixture.
If multiple references are given, they should be separated by commas and ⟨references⟩ must be
enclosed in curly brackets. If just refs left is true, as it is by default, then the appropriate
line number(s) will be typeset before the ⟨justification suffix⟩.
Example: just=$\lnot\exists$\elim:{!uu,!u}

If just refs left is false, then the appropriate line number(s) will be typeset after the
⟨justification prefix⟩.

— 22 of 46 —

7 Options 7.2 Local Options

Example: just=From:bertha

= ⟨positive integer⟩move by
Forest style

Move the content of the current line ⟨positive integer⟩ lines later in the proof. If the current line
has a justification and the content is moved, the justification will be moved with the line. Later
lines in the same branch will be moved appropriately, along with their justifications.

Example: move by=3

Note that, in many cases, prooftrees will automatically move lines later in the proof. It does this
when it detects a condition in which it expects conflicting justifications may be required for a
line while initially parsing the tree. Essentially, prooftrees tries to detect cases in which a branch
is followed closely by asymmetry in the structure of the branches. This happens, for example,
when the first branch’s first wff is followed by a single wff , while the second branch’s first wff is
followed by another branch. Diagrammatically:

wff

wff
wff

wff

wff wff

wff

wff
wff
wff

wff

wff wff

In this case, prooftrees tries to adjust the tree by moving lines appropriately if required.

However, this detection is merely structural — prooftrees does not examine the content of
the wff s or justifications for this purpose. Nor does it look for slightly more distant structural
asymmetries, conflicting justifications in the absence of structural asymmetry or potential conflicts
with justifications for lines in other, more distant parallel branches. Although it is not that
difficult to detect the need to move lines in a greater proportion of cases, the problem lies in
providing general rules for deciding how to resolve such conflicts. (Indeed, some such conflicts
might be better left unresolved e.g. to fit a proof on a single Beamer slide.) In these cases, a
human must tell prooftrees if something should be moved, what should be moved and how far it
should be moved.

Because simple cases are automatically detected, it is best to typeset the proof before deciding
whether or where to use this option since prooftrees will assume that this option specifies movements
which are required in addition to those it automatically detects. Attempting to move a line ‘too
far’ is not advisable. prooftrees tries to simply ignore such instructions, but the results are likely
to be unpredictable.

Not moving a line far enough — or failing to move a line at all — may result in the content of
one justification being combined with that of another. This happens if just is specified more
than once for the same proof line with differing content. prooftrees does examine the content of
justifications for this purpose. When conflicting justifications are detected for the same proof line,
the justifications are merged and a warning issued suggesting the use of move by.

Highlight wff .highlight wff
not hightlight wff

Forest boolean option Example: highlight wff

Highlight justification.highlight just
not hightlight just

Forest boolean option

— 23 of 46 —

8 Macros

Example: highlight just

Highlight line number.highlight line no
not highlight line no

Forest boolean option Example: highlight line no

Highlight proof line.highlight line
not highlight line

Forest boolean option Example: highlight line

= ⟨key-value list⟩line no options
Forest autowrapped toks option

Additional TikZ keys to apply to the line number for this line.

Example: line no options={blue}

= ⟨key-value list⟩just options
Forest autowrapped toks option

Additional TikZ keys to apply to the justification for this line.

Example: just options={draw, font=\bfseries}

= ⟨key-value list⟩wff options
Forest autowrapped toks option

Additional TikZ keys to apply to the wff for this line.

Example: wff options={magenta, draw}

Note that this key is provided primarily for symmetry as it is faster to simply give the options
directly to forest to pass on to TikZ. Unless wff format is set to a non-default value, the following
are equivalent:

wff options={magenta, draw}
magenta, draw

= ⟨key-value list⟩line options
Forest autowrapped toks option

Additional TikZ keys to apply to this proof line.

Example: line options={draw, rounded corners}

= ⟨text⟩line no override
Forest style

Substitute ⟨text⟩ for the programmatically-assigned line number. ⟨text⟩ will be wrapped by
\linenumberstyle, so should not be anything which would not make sense in that context.

Example: line no override={n}

no line no
Forest style

Do not typeset a line number for this line. Intended for use in trees where line numbering is
activated, but some particular line should not have its number typeset. Note that the number for
the line is still assigned and the node which would otherwise contain that number is still typeset.
If the next line is automatically numbered, the line numbering will, therefore, ‘jump’, skipping
the omitted number.

Example: no line no

8 Macros

{⟨number⟩}\linenumberstyle
macro

This macro is responsible for formatting the line numbers. The default definition is

\newcommand*\linenumberstyle[1]{#1.}

It may be redefined with \renewcommand* in the usual way. For example, if for some reason you
would like bold line numbers, try

— 24 of 46 —

9 Memoization

\renewcommand*\linenumberstyle[1]{\textbf{#1.}}

9 Memoization

Tableaux created by prooftrees cannot, in general, be externalised with TikZ’s external library.
Since pgf/TikZ, in general, and prooftrees, in particular, can be rather slow to compile, this is
a serious issue. If you only have a two or three small tableaux, the compilation time will be
negligible. But if you have large, complex proofs or many smaller ones, compilation time will
quickly become excessive.

Version 0.9 does not cure the disease, but it does offer an extremely effective remedy for the
condition. While it does not make prooftrees any faster, it supports the memoize package developed
by forest’s author, Sašo Živanović (2023). Memoization is faster, more secure, more robust and
easier to use than TikZ’s externalisation.

It is faster. It does not require separate compilations for each memoized object, so it is compar-
atively fast even when memoizing.

It is more secure. It requires only restricted shell-escape, which almost all TEX installations
enable by default, so it is considerably more secure and can be utilised even where shell-escape
is disabled.

It is more robust. It can successfully memoize code which defeats all ordinary mortals’ attempts
to externalize with the older TikZ library.

It is easier to use. It requires less configuration and less intervention. For example, it detects
problematic code and aborts memoization automatically in many cases in which TikZ’s
external would either cause a compilation error or silently produce nonsense output, forcing
the user to manually disable the process for relevant code.

There is always a ‘but’, but this is a pretty small ‘but’ as ‘but’s go.

But installation requires slightly more work. To reap the full benefits, you want to use
either the perl or the python ‘extraction’ method. There is a third method, which does
not require any special installation, but this lacks several of the advantages explained above
and is not recommended.

If you use TEX Live, you have perl already, but you may need to install a couple of libraries.
python is not a prerequisite for TEX Live but, if you happen to have it installed, you will
probably only need an additional library to use this method.

See Memoize (Živanović 2023) for further details.

Once you have the prerequisites setup, all you need do is load memoize before prooftrees.
\usepackage[extraction method=perl]{memoize}% or python
\usepackage{prooftrees}

After a single compilation, your document will have expanded to include extra pages. At this
point, it will look pretty weird. After the next compilation, your document will return to its
normal self, the only difference being the speed with which it does so as all your memoized
tableaux will simply be included, as opposed to recompiled. Only when you alter the code for a
tableau, delete the generated files, disable memoization or explicitly request it will the proof be
recompiled.

Memoization is compatible with both prooftrees’s cross-referencing system and LATEX 2ε’s cross-
references, but the latter require an additional compilation. In general, if a document element
takes n compilations to stabilise, it will take n + 1 compilations to complete the memoization
process. See Memoize (Živanović 2023) for details.

— 25 of 46 —

11 Version History

10 Compatibility

Versions of prooftrees prior to 0.5 are incompatible with bussproofs, which also defines a prooftree
environment. Version 0.6 is compatible with bussproofs provided

either bussproofs is loaded before prooftrees
or prooftrees is loaded with option tableaux (see section 4).

In either case, prooftrees will not define a prooftree environment, but will instead define tableau.
This allows you to use tableau for prooftrees trees and prooftree for bussproofs trees.

11 Version History

11.1 0.9

Add support for memoize and utilise for documentation.

Use \NewDocumentEnvironment, removing direct dependency on environ.

11.2 0.8

Add previously unnoticed dependency on amstext. Attempt to fix straying closure symbols evident
in documentation and a TEX SE question2

Documentation now loads enumitem, since it depended on it already anyway and specifies doc2
in options for ltxdoc as the code is incompatible with the current version.

11.3 0.7

Implement auto move. See section 7.1. The main point of this option is to allow automatic
moves to be switched off if one teaches students to first apply all available non-branching rules
for the tableau as a whole, as opposed to all non-branching rules for the sub-tree. The automatic
algorithm is consistent with the latter, but not former, approach. The algorithm favours compact
trees, which are more likely to fit on beamer slides. Switching the algorithm off permits users to
specify exactly how things should or should not be moved. Thanks to Peter Smith for prompting
this.

Fix bug reported at tex.stackexchange.com/q/479263/39222.

11.4 0.6

Add compatibility option for use with bussproofs. See section 4. Thanks to Peter Smith for
suggesting this.

11.5 0.5

Significant re-implementation leveraging the new argument processing facilities in forest 2.1. This
significantly improves performance as the code is executed much faster than the previous pgfmath
implementation.

11.6 0.41

Update for compatibility with forest 2.1.
2https://tex.stackexchange.com/q/619314/.

— 26 of 46 —

https://tex.stackexchange.com/q/479263/39222
https://tex.stackexchange.com/q/619314/

References 11.7 0.4

11.7 0.4

Bug fix release:

• line no shift was broken;

• in some cases, an edge was drawn where no edge belonged.

11.8 0.3

First CTAN release.

References

Hodges, Wilfred (1991). Logic: An Introduction to Elementary Logic. Penguin.
Tantau, Till (2015). The TikZ and PGF Packages. Manual for Version 3.0.1a. 3.0.1a. 29th Aug.

2015. url: http://sourceforge.net/projects/pgf.
Živanović, Sašo (2016). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.0.2.

4th Mar. 2016. url: http://spj.ff.uni-lj.si/zivanovic/.
— (2023). Memoize. 1.0.0. 10th Oct. 2023. url: https://www.ctan.org/pkg/memoize.

— 27 of 46 —

http://sourceforge.net/projects/pgf
http://spj.ff.uni-lj.si/zivanovic/
https://www.ctan.org/pkg/memoize

Index

Features are sorted by kind. Page references are given for both definitions and comments on use.

Forest autowrapped toks options
just, 7, 10, 17, 22, 23
just options, 16, 24
line no options, 16, 24
line options, 16, 24
wff options, 16, 24

Forest autowrapped toks registers
highlight format, 21

Forest boolean options
grouped, 21
highlight just, 16, 21, 23
highlight line, 16, 21, 24
highlight line no, 16, 21, 24
highlight wff, 16, 21, 23
line numbering, 24
not grouped, 21
not highlight line, 24
not highlight line no, 24
not hightlight just, 23
not hightlight wff, 23

Forest boolean registers
auto move, 17, 26
check right, 16, 19
just refs left, 16, 20, 22
justifications, 17
line numbering, 17
not auto move, 17
not check right, 19
not just refs left, 20
not justifications, 17
not line numbering, 17
not single branches, 17
not subs right, 20
single branches, 17, 21
subs right, 16, 20

Forest count registers
line no shift, 6, 18, 27

Forest dimension registers
close sep, 16, 18
just sep, 18
line no sep, 18
line no width, 18
proof tree inner proof midpoint, 18
proof tree inner proof width, 18

Forest keylist registers
close format, 16, 18, 19
close format', 19
close with format, 16, 19
close with format', 19
just format, 16, 20
just format', 20

line no format, 16, 21
line no format', 21
proof statement format, 16, 21
proof statement format', 21
wff format, 16, 21, 24
wff format', 21

Forest styles
check left, 19
checked, 8, 16, 19, 21
close, 16, 19, 22
just refs right, 20
line no override, 24
move by, 17, 21, 23
no line no, 24
subs, 16, 20, 22
subs left, 20
to prove, 19
zero start, 18

Forest toks registers
check with, 16, 19
close with, 16, 19
merge delimiter, 21
subs with, 16, 20

environments
prooftree, 15
tableau, 15

macros
\linenumberstyle, 24
\linenumberstyle, 24

package options
tableaux, 15

packages
external, 25
forest, 1, 15
memoize, 1, 25
pgf, 25
prooftrees, 1, 15

— 28 of 46 —

A Implementation

A Implementation

1 %% Copyright 2016-2024 Clea F. Rees
2 %%
3 %% This work may be distributed and/or modified under the
4 %% conditions of the LaTeX Project Public License, either version 1.3c
5 %% of this license or (at your option) any later version.
6 %% The latest version of this license is in
7 %% https://www.latex-project.org/lppl.txt
8 %% and version 1.3c or later is part of all distributions of LaTeX
9 %% version 2008-05-04 or later.

10 %%
11 %% This work has the LPPL maintenance status `maintained'.
12 %%
13 %% The Current Maintainer of this work is Clea F. Rees.
14 %%
15 %% This file may only be distributed together with a copy of the package
16 %% prooftrees.
17 %%
18 %% This work consists of all files listed in manifest.txt.
19 %%
20 %%%
21 \NeedsTeXFormat{LaTeX2e}
22 \RequirePackage{svn-prov}
23 \ProvidesPackageSVN{$Id: prooftrees.sty 10522 2024-10-23 16:31:08Z cfrees $}[v0.9 \revinfo]
24 % define \prooftrees@enw to hold the name of the environment
25 % default is to name the environment prooftree, this ensures backwards compatibility
26 \newcommand*\prooftrees@enw{prooftree}
27 % allow users to change the name to tableau using tableaux
28 \DeclareOption{tableaux}{\renewcommand*\prooftrees@enw{tableau}}
29 % just in case
30 \DeclareOption{tableau}{\renewcommand*\prooftrees@enw{tableau}}
31 \DeclareOption*{\PassOptionsToPackage{\CurrentOption}{forest}}
32 % if \prooftree is not yet defined, set the name to prooftree; otherwise, use tableau to avoid

conflict with bussproofs (which uses 'prooftree' rather than 'bussproof' as one might expect)
33 \ifcsname prooftree\endcsname
34 \renewcommand*\prooftrees@enw{tableau}%
35 \else
36 \renewcommand*\prooftrees@enw{prooftree}%
37 \fi
38 % \ifundef\prooftree{\renewcommand*\prooftrees@enw{prooftree}}{\renewcommand*\prooftrees@enw{tableau

}}
39 % let users override the default prooftree in case they need to load bussproofs later
40 \ProcessOptions
41 \RequirePackage{forest}[2016/12/04]
42 \RequirePackage{amssymb,amstext}
43 \newcommand*\linenumberstyle[1]{#1.}
44 % currently, keys starting 'proof tree' and macros starting 'prooftree' or 'prooftree@' are intended

for internal use only
45 % this does not apply to the environment prooftree
46 % other keys and macros are intended for use in documents
47 % in particular, the style 'proof tree' is **NOT** intended to be used directly by the user and its

direct use is **ABSOLUTELY NOT SUPPORTED IN ANY WAY, SHAPE OR FORM**; it is intended only for
implicit use when the prooftree environment calls it

48 \forestset{% don't use @ in register/option names - the documentation is lying when it says non-
alphanumerics will be converted to underscores when forming pgfmath functions ;)

49 declare boolean register={line numbering},% line numbers
50 line numbering,% default is for line numbers
51 declare boolean register={justifications},% line justifications
52 not justifications,% default is for no line justifications (b/c there's no point in enabling this

if the user doesn't specify any content)

— 29 of 46 —

A Implementation

53 declare boolean register={single branches},% single branches: explicitly drawn branches and a
normal level distance between lone children and their parents

54 not single branches,% default is for lone children to be grouped with their parents
55 declare boolean register={auto move},% ble mae'n bosibl, symud pethau'n awtomatig
56 auto move,% default: symud yn awtomatig
57 declare dimen register={line no width},% default will be set to the width of 99 wrapped in the line

numbering style
58 line no width'=0pt,% fallback default is 0pt
59 declare dimen register={just sep},% amount by which to shift justifications away from the main tree
60 just sep'=1.5em,% default is 1.5em
61 declare dimen register={just dist},% distance of justifications from centre of inner tree;

overrides just sep
62 just dist'=0pt,
63 declare dimen register={line no sep},% amount by which to shift line numbers away from the main

tree
64 line no sep'=1.5em,
65 declare dimen register={line no dist},% distance of line nos. from centre of inner tree; overrides

line no sep
66 line no dist'=0pt,
67 declare dimen register={close sep},% distance between closure symbols and any following annotation
68 close sep'=.75\baselineskip,
69 declare dimen register={proof tree line no x},
70 proof tree line no x'=0pt,
71 declare dimen register={proof tree justification x},
72 proof tree justification x'=0pt,
73 declare dimen register={proof tree inner proof width},
74 proof tree inner proof width'=0pt,
75 declare dimen register={proof tree inner proof midpoint},
76 proof tree inner proof midpoint'=0pt,
77 declare count register={proof tree rhif lefelau},% count the levels in the proof tree
78 proof tree rhif lefelau'=0,
79 declare count register={proof tree lcount},% count the line numbers (on the left)
80 proof tree lcount'=0,
81 declare count register={proof tree jcount},% count the justifications (on the right)
82 proof tree jcount'=0,
83 declare count register={line no shift},% adjustment for line numbering
84 line no shift'=0,
85 declare count register={proof tree aros},
86 proof tree aros'=0,
87 declare toks register={check with},
88 check with={\ensuremath{\checkmark}},
89 declare boolean register={check right},
90 check right,
91 check left/.style={not check right},
92 declare toks register={subs with},
93 subs with={\ensuremath{\backslash}},
94 declare boolean register={subs right},
95 subs right,
96 subs left/.style={not subs right},
97 declare toks register={close with},
98 close with={\ensuremath{\otimes}},
99 declare keylist register={close format},

100 close format={font=\scriptsize},
101 declare keylist register={close with format},
102 close with format={},
103 declare toks register={merge delimiter},
104 merge delimiter={\text{; }},
105 declare boolean register={just refs left},
106 just refs left,
107 just refs right/.style={not just refs left},
108 declare keylist register={just format},

— 30 of 46 —

A Implementation

109 just format={},
110 declare keylist register={line no format},
111 line no format={},
112 declare autowrapped toks register={highlight format},
113 highlight format={draw=gray, rounded corners},
114 declare keylist register={proof statement format},
115 proof statement format={},
116 declare keylist register={wff format},
117 wff format={},
118 declare boolean={proof tree justification}{0},
119 declare boolean={proof tree line number}{0},
120 declare boolean={grouped}{0},
121 declare boolean={proof tree phantom}{0},
122 declare boolean={highlight wff}{0},
123 declare boolean={highlight just}{0},
124 declare boolean={highlight line no}{0},
125 declare boolean={highlight line}{0},
126 Autoforward={highlight line}{highlight just, highlight wff, highlight line no},
127 declare boolean={proof tree toing}{0},
128 declare boolean={proof tree toing with}{0},
129 declare boolean={proof tree rhiant cymysg}{0},
130 declare boolean={proof tree rhifo}{1},
131 declare boolean={proof tree arweinydd}{0},
132 declare autowrapped toks={just}{},
133 declare toks={proof tree rhestr rhifau llinellau}{},
134 declare toks={proof tree close}{},
135 declare toks={proof tree rhestr rhifau llinellau cau}{},
136 declare autowrapped toks={just options}{},
137 declare autowrapped toks={line no options}{},
138 declare autowrapped toks={wff options}{},
139 declare autowrapped toks={line options}{},
140 Autoforward={line options}{just options={#1}, line no options={#1}, wff options={#1}},
141 declare count={proof tree toing by}{0},
142 declare count={proof tree cadw toing by}{0},
143 declare count={proof tree toooing}{0},
144 declare count={proof tree proof line no}{0},
145 % keylists for internal storage
146 declare keylist={proof tree jrefs}{},
147 declare keylist={proof tree crefs}{},
148 % keylists for use in stages
149 declare keylist={proof tree ffurf}{},
150 declare keylist={proof tree symud awto}{},
151 declare keylist={proof tree creu nodiadau}{},
152 declare keylist={proof tree nodiadau}{},
153 % > not documented yet, I think
154 % > now indicates use of process when it is the first token, preceding a list of instructions as

opposed to pgfmath stuff
155 define long step={proof tree symud}{}{%
156 root,sort by={>{O}{level},>{_O<}{1}{n children}},sort'=descendants
157 },
158 define long step={proof tree cywiro symud}{}{%
159 root,if line numbering={n=2}{n=1},sort by={>{O}{level},>{_O<}{1}{n children}},sort'=descendants
160 },
161 define long step={proof tree camau}{}{% updated version of defn. from saso's code (forest2-saso-

ptsz.tex) & http://chat.stackexchange.com/transcript/message/28321501#28321501
162 root,sort by={>{O}{y},>{Ow1+d}{x}{-##1}},sort'={filter={descendants}{>{OO!&}{proof tree rhifo}{

proof tree phantom}}}% angen +d - gweler http://chat.stackexchange.com/transcript/message
/28607212#28607212

163 },
164 define long step={proof tree wffs}{}{% coeden brif yn unig ar ôl i greu nodiadau
165 fake=root,if line numbering={n=2}{n=1},tree

— 31 of 46 —

A Implementation

166 },
167 checked/.style={% mark discharge with optional name substituted into existential
168 delay={%
169 if check right={%
170 content+'={\ \forestregister{check with}#1},
171 }{%
172 +content'={\forestregister{check with}#1\ },
173 },
174 },
175 },
176 subs/.style={% mark substitution of name into universal
177 delay={%
178 if subs right={%
179 content+'={\ \forestregister{subs with}#1},
180 }{%
181 +content'={\forestregister{subs with}#1\ },
182 },
183 },
184 },
185 close/.style={% this now uses nodes rather than a label to accommodate annotations; closing must be

done before packing the tree to ensure that sufficient space is allowed for the symbol and any
following annotation; the annotations must be processed before anything is moved to ensure that the
correct line numbers are used later, even if the references are given as relative node names

186 if={%
187 >{__=}{#1}{}%
188 }{}{%
189 temptoksb={},
190 temptoksa={#1},
191 split register={temptoksa}{:}{proof tree close,temptoksb},
192 if temptoksb={}{}{%
193 split register={temptoksb}{,}{proof tree cref},
194 },
195 },
196 delay={%
197 append={% this node holds the closure symbol
198 [\forestregister{close with},
199 not proof tree rhifo,
200 proof tree phantom,
201 grouped,
202 no edge,
203 process keylist register=close with format,
204 before computing xy={% adjust the distance between the closure symbol and any annotation
205 delay={%
206 l'=\baselineskip,% cywiro? fel arall, bydda'r peth byth yn cael ei wneud achos proof

tree phantom? dim yn siwr o gwbl
207 for children={%
208 l/.register=close sep,
209 },
210 },
211 },
212 before drawing tree={%
213 if={>{RR|}{line numbering}{justifications}}{%
214 proof tree proof line no/.option=!parent.proof tree proof line no,
215 }{},
216 },
217 if={%
218 >{__=}{#1}{}%
219 }{}{% don't create a second node if there's no annotation
220 delay={%
221 append={% this node holds the annotation, possibly including cross-references which

will be relative to the node's grandparent

— 32 of 46 —

A Implementation

222 [,
223 not proof tree rhifo,
224 proof tree phantom,
225 grouped,
226 no edge,
227 process keylist register=close format,
228 if={%
229 >{O_=}{!parent,parent.proof tree close}{}%
230 }{}{content/.option=!{parent,parent}.proof tree close},
231 proof tree crefs/.option=!{parent,parent}.proof tree crefs,
232 delay={%
233 !{parent,parent}.proof tree crefs'={},
234 },
235 before drawing tree={%
236 if={>{RR|}{line numbering}{justifications}}{%
237 proof tree proof line no/.option=!{parent,parent}.proof tree proof line no,
238 }{},
239 },
240]%
241 },
242 },
243 },
244]%
245 },
246 },
247 },
248 proof tree line no/.style={% creates the line numbers on the left; note that it *does* matter that

these are part of the tree, even though they do not need to be packed or to have xy computed;
moreover, it matters that each is the child of the previous line number... so it won't do for them to
remain siblings, even though that's fine when they are created.

249 anchor=base west,
250 no edge,
251 proof tree line number,
252 text width/.register=line no width,
253 x'/.register=proof tree line no x,
254 process keylist register=line no format,
255 delay={%
256 proof tree lcount'+=1,
257 tempcounta/.process={RRw2+n}{proof tree lcount}{line no shift}{##1+##2},
258 content/.process={Rw1}{tempcounta}{\linenumberstyle{##1}},% content i.e. the line number
259 name/.expanded={line no \foresteregister{tempcounta}},% name them so they can be moved later
260 typeset node,
261 if proof tree lcount>=3{% the initial location of most line numbers is incorrect and they must

be moved
262 for previous={% move the line number below the previous line number
263 append/.expanded={line no \foresteregister{tempcounta}}
264 },
265 }{},
266 },
267 },
268 proof tree line justification/.style={% creates the justifications on the right but does not yet

specify any content
269 anchor=base west,
270 no edge,
271 proof tree justification,
272 x'/.register=proof tree justification x,
273 process keylist register=just format,
274 delay={%
275 proof tree jcount'+=1,
276 tempcounta/.process={RRw2+n}{proof tree jcount}{line no shift}{##1+##2},
277 name/.expanded={just \foresteregister{tempcounta}},% name them so they can be moved

— 33 of 46 —

A Implementation

278 typeset node,% angen i osgoi broblemau 'da highlight just/line etc.
279 if proof tree jcount>=3{% correct the location as for the line numbers (cf. line no style)
280 for previous={%
281 append/.expanded={just \foresteregister{tempcounta}},
282 },
283 }{},
284 },
285 },
286 zero start/.style={%
287 line no shift'+=-1,
288 },
289 to prove/.style={% sets a proof statement
290 for root={%
291 before typesetting nodes={%
292 content={#1},
293 phantom=false,
294 baseline,
295 if line numbering={anchor=base west}{anchor=base},
296 process keylist register=proof statement format
297 },
298 before computing xy={%
299 delay={%
300 for children={%
301 l=1.5*\baselineskip,
302 },
303 },
304 },
305 },
306 },
307 proof tree/.style={% this style should **NOT** be used directly in a forest environment - see notes

at top of this file
308 for tree={%
309 parent anchor=children,% manual 64
310 child anchor=parent,% manual 64
311 math content,
312 delay={%
313 if just={}{}{% if we've got justifications, make sure nodes are created for them later and

split out cross-references so we identify the correct nodes before anything gets moved, allowing the
use of relative node names

314 justifications,
315 temptoksa={},
316 split option={just}{:}{just,temptoksa},
317 if temptoksa={}{}{%
318 split register={temptoksa}{,}{proof tree jref},
319 },
320 },
321 if content={}{% if there's no proof statement
322 if level=0{}{%
323 shape=coordinate,
324 },
325 }{},
326 },
327 },
328 where level=0{%
329 for children={% no edges from phantom root or proof statement to children
330 before typesetting nodes={%
331 no edge,
332 },
333 },
334 delay={%
335 if content={}{phantom}{},

— 34 of 46 —

A Implementation

336 if line numbering={% create the line numbers if appropriate
337 parent anchor=south west,
338 if line no width={0pt}{%
339 line no width/.pgfmath={width("\noexpand\linenumberstyle{99}")},
340 }{},
341 }{},
342 },
343 proof tree creu nodiadau={% this is processed after computing xy
344 if={>{RR|}{line numbering}{justifications}}{% count proof lines if necessary
345 proof tree rhif lefelau'/.register=line no shift,
346 for proof tree camau={%
347 if level>=1{%
348 if={%
349 >{OO<}{y}{!back.y}%
350 }{%
351 proof tree rhif lefelau'+=1,
352 proof tree proof line no'/.register=proof tree rhif lefelau,
353 }{%
354 proof tree proof line no'/.register=proof tree rhif lefelau
355 },
356 }{},
357 },
358 proof tree inner proof midpoint/.min={>{OOw2+d}{x}{min x}{##1+##2}}{fake=root,descendants},
359 proof tree inner proof width/.max={>{OOw2+d}{x}{max x}{##1+##2}}{fake=root,descendants},
360 proof tree inner proof width-/.register=proof tree inner proof midpoint,
361 proof tree inner proof midpoint+/.process={Rw+d{proof tree inner proof width}{##1/2}},
362 }{},
363 if line numbering={% get the x position of line numbers and adjust the location and alignment

of the proof statement
364 proof tree line no x/.min={>{OOw2+d}{x}{min x}{##1+##2}}{fake=root,descendants},
365 if={%
366 > Rd= {line no dist}{0pt}%
367 }{%
368 proof tree line no x-/.register=line no sep,
369 }{%
370 tempdima/.register=proof tree inner proof width,
371 tempdima:=2,
372 if={%
373 > RR< {line no dist}{tempdima}%
374 }{}{%
375 proof tree line no x/.register=proof tree inner proof midpoint,
376 proof tree line no x-/.register=line no dist,
377 },
378 },
379 proof tree line no x-/.register=line no width,
380 for root={%
381 tempdimc/.option=x,
382 x'+/.register=proof tree line no x,
383 x'-/.option=min x,
384 },
385 prepend={% create line numbers on left
386 [,
387 proof tree line no,
388 % () to group are required here - otherwise, the -1 (or -2 or whatever) is silently

ignored
389 repeat={((proof_tree_rhif_lefelau)-1)-(line_no_shift)}{% most are created in the wrong

place but proof tree line no moves them later
390 delay n={proof_tree_lcount}{
391 append={[, proof tree line no]},
392 },
393 },

— 35 of 46 —

A Implementation

394]%
395 },
396 }{},
397 if justifications={% get the x position of justifications and create the nodes which will

hold the justification content, if required
398 proof tree justification x/.max={>{OOw2+d}{x}{max x}{##1+##2}}{fake=root,descendants},
399 if={%
400 > Rd= {just dist}{0pt}%
401 }{%
402 proof tree justification x+/.register=just sep,
403 }{%
404 tempdima/.register=proof tree inner proof width,
405 tempdima:=2,
406 if={%
407 > RR< {just dist}{tempdima}%
408 }{}{%
409 proof tree justification x/.register=proof tree inner proof midpoint,
410 proof tree justification x+/.register=just dist,
411 },
412 },
413 append={%
414 [,
415 proof tree line justification,
416 repeat={((proof_tree_rhif_lefelau)-1)-(line_no_shift)}{% most are created in the wrong

place but proof tree line justification moves them later
417 delay n={proof_tree_jcount}{%
418 append={[, proof tree line justification]},
419 },
420 }%
421]%
422 },
423 }{},
424 },
425 }{%
426 delay={%
427 if single branches={}{% automatically group lines if not using single branches
428 if n children=1{%
429 for children={%
430 grouped,
431 },
432 }{},
433 },
434 },
435 before typesetting nodes={% apply wff-specific highlighting and additional TikZ keys
436 process keylist register=wff format,
437 if highlight wff={node options/.register=highlight format}{},
438 node options/.option=wff options,
439 },
440 },
441 proof tree ffurf={% processed before proof tree symud auto: adjusts the alignment of lines when

some levels of the tree are grouped together either whenever the number of children is only 1 or by
applying the grouped style to particular nodes when specifying the tree

442 if auto move={%
443 if single branches={%
444 where={%
445 >{O! _O< O &&}{grouped}{2}{level}{proof tree rhifo}%
446 }{%
447 if={%
448 >{_O= _O< &}{1}{!parent.n children}{1}{!parent,parent.n children}%
449 }{%
450 not tempboola,

— 36 of 46 —

A Implementation

451 for root/.process={Ow1}{level}{%
452 for level={##1}{%
453 if={%
454 >{_O< _O= &}{1}{!parent.n children}{1}{n}%
455 }{%
456 tempboola,
457 }{},
458 },
459 },
460 if tempboola={%
461 proof tree toing,
462 }{},
463 }{},
464 }{},
465 }{},
466 where={%
467 >{O _O< O &&}{grouped}{1}{level}{proof tree rhifo}%
468 }{% this searches for certain kinds of structural asymmetry in the tree and attempts to move

lines appropriately in such cases - the algorithm is intended to be relatively conservative (not in
the sense of 'cautious' or 'safe' but in the sense of 'reflection of the overlapping consensus of
reasonable users' / 'what would be rationally agreed behind the prooftrees veil of ignorance';
however, I should have realised I actually had 'the overlapping concensus of reasonable Beamer users'
in mind rather than 'the overlapping consensus of reasonable users', so there is now an option to

turn it off;apologies if this comment previously misclassified you as 'unreasonable'; apologies for
the inconvenience if you are an unreasonable user)

469 not tempboola,
470 for root/.process={Ow1}{level}{%
471 for level={##1}{%
472 if={%
473 >{_O< _O= &}{1}{!parent.n children}{1}{n}%
474 }{%
475 tempboola,
476 }{},
477 },
478 },% Sao: http://chat.stackexchange.com/transcript/message/27874731#27874731, see also http

://chat.stackexchange.com/transcript/message/27874722#27874722
479 if tempboola={%
480 if n children=0{%
481 if={>{OO|}{!parent.proof tree toing}{!parent.proof tree toing with}}{% we're already

moving the parent and the child will move with the parent, so we can just mark this and do nothing
else

482 proof tree toing with,
483 }{%
484 for root/.process={Ow1}{level}{% don't move a terminal node even in case of asymmetry

: instead, create a separate proof line for terminal nodes on this level which are only children, by
moving children with siblings on this level down a proof line, without altering their physical
location

485 % this makes the tree more compact and stops it looking silly
486 for level={##1}{%
487 if={%
488 >{_O< _O= &}{1}{!parent.n children}{1}{n}%
489 }{% this just serves to keep the levels nice for the sub-tree and ensure things

align. We need this because we want to skip a level here to allow room for the terminal node in the
other branch

490 for parent={%
491 if proof tree rhiant cymysg={}{% we mark the parent to avoid increasing the

line number of its descendants more than once
492 proof tree rhiant cymysg,
493 for descendants={%
494 proof tree toing by'+=1,
495 },

— 37 of 46 —

A Implementation

496 },
497 },
498 }{},
499 },
500 },% Sao: http://chat.stackexchange.com/transcript/message/27874731#27874731, see

also http://chat.stackexchange.com/transcript/message/27874722#27874722
501 },
502 no edge,
503 }{%
504 if={%
505 >{_O= _O< &}{1}{!parent.n children}{1}{!parent,parent.n children}%
506 }{% don't try to move if the node has more than 1 child or the grandparent has no more

than that; otherwise, mark the node as one to move - we figure out where to move it later
507 proof tree toing,
508 }{no edge},
509 },
510 }{no edge},
511 }{},
512 }{},
513 },
514 proof tree symud awto={% processed before typesetting nodes: if _this_ could be done during

packing, that would be very nice, even if the previous stuff can't be
515 if auto move={%
516 proof tree aros'=0,
517 for proof tree symud={%
518 if proof tree toing={% this relies on an experimental feature of forest, which is anffodus
519 for nodewalk={fake=parent,fake=sibling,descendants}{do dynamics},
520 delay n={\foresteregister{proof tree aros}}{%
521 tempcounta/.max={>{OOOOw4+n}{level}{proof tree toing by}{proof tree toooing}{proof tree

rhifo}{(##1+##2+##3)*##4}}{parent,sibling,descendants},
522 if tempcounta>=1{%
523 if={%
524 >{Rw1+n OOw2+n >}{tempcounta}{##1+1}{level}{proof tree toing by}{##1+##2}%
525 }{%
526 tempcounta-/.option=level,
527 tempcounta'+=1,
528 move by/.register=tempcounta,
529 }{no edge},
530 }{no edge},
531 },
532 proof tree aros'+=4,
533 }{},
534 },
535 }{},
536 },
537 proof tree nodiadau={% processed after proof tree creu nodiadau and before before drawing tree:

creates annotation content which may include cross-references, applies highlighting and additional
TikZ keys to line numbers, justifications and to wffs where specified for entire proof lines

538 where proof tree crefs={}{}{% resolve cross-refs in closures
539 split option={proof tree crefs}{,}{proof tree rhif llinell cau},
540 if content={}{%
541 content/.option=proof tree rhestr rhifau llinellau cau,
542 }{%
543 content+/.process={_O}{\ }{proof tree rhestr rhifau llinellau cau},
544 },
545 typeset node,
546 },
547 if line numbering={% apply highlighting and additional TikZ keys to line numbers; initial

alignment of numbers with proof lines
548 for proof tree wffs={%
549 if highlight line no={%

— 38 of 46 —

A Implementation

550 for name/.process={Ow1OOOw3}{proof tree proof line no}{line no ##1}{proof tree proof line
no}{line no options}{y}{% from Sao's anti-pgfmath version - rhaid ddweud proof tree proof line no yn
ddwywaith ?! dim yn bosibl i ailddefnyddio'r gyntaf ?!

551 node options/.register=highlight format,
552 ##2,
553 y'=##3,
554 proof tree proof line no'=##1,
555 typeset node,
556 }%
557 }{%
558 if line no options={}{%
559 if proof tree phantom={}{%
560 for name/.process={Ow1OOw2}{proof tree proof line no}{line no ##1}{proof tree proof

line no}{y}{%
561 y'=##2,
562 proof tree proof line no'=##1,
563 }%
564 },
565 }{%
566 for name/.process={Ow1OOOw3}{proof tree proof line no}{line no ##1}{proof tree proof

line no}{line no options}{y}{%
567 ##2,
568 y'=##3,
569 proof tree proof line no'=##1,
570 typeset node,
571 }%
572 },
573 },
574 },
575 }{},
576 if justifications={% initial alignment of justifications with proof lines, addition of content,

resolution of cross-references and application of highlighting and additional TikZ keys
577 for proof tree wffs={%
578 if just={}{%
579 if proof tree phantom={}{%
580 for name/.process={Ow1OOw2}{proof tree proof line no}{just ##1}{proof tree proof line

no}{y}{% from Sao's anti-pgfmath version - rhaid ddweud proof tree proof line no yn ddwywaith ?! dim
yn bosibl i ailddefnyddio'r gyntaf ?!

581 y'=##2,
582 proof tree proof line no'=##1,
583 }%
584 },
585 }{% puts the content of the justifications into the empty justification nodes on the right;

because this is done late, the nodes need to be typeset again
586 if proof tree jrefs={}{}{% resolve cross-refs in justifications
587 split option={proof tree jrefs}{,}{proof tree rhif llinell},
588 if just refs left={%
589 +just/.process={O_}{proof tree rhestr rhifau llinellau}{\ },
590 }{%
591 just+/.process={_O}{\ }{proof tree rhestr rhifau llinellau},
592 },
593 },
594 if highlight just={% apply highlighting and additional TikZ keys to justifications, set

content and merge any conflicting specifications, warning user if appropriate
595 for name/.process={Ow1OOOOw4}{proof tree proof line no}{just ##1}{proof tree proof line

no}{just}{just options}{y}{% from Sao's anti-pgfmath version - rhaid ddweud proof tree proof line no
yn ddwywaith ?! dim yn bosibl i ailddefnyddio'r gyntaf ?!

596 if={%
597 >{O_= O_= |}{content}{}{content}{##2}%
598 }{% gweler isod - o gôd Sao
599 content={##2},

— 39 of 46 —

A Implementation

600 }{%
601 content+'={\foresteregister{merge delimiter}##2},
602 TeX={\PackageWarning{prooftrees}{Merging conflicting justifications for line ##1!

Please examine the output carefully and use "move by" to move lines later in the proof if required.
Details of how to do this are included in the documentation.}},

603 },
604 node options/.register=highlight format,
605 ##3,
606 y'=##4,
607 proof tree proof line no'=##1,
608 typeset node,
609 }% do NOT put a comma here!
610 }{%
611 for name/.process={Ow1OOOOw4}{proof tree proof line no}{just ##1}{proof tree proof line

no}{just}{just options}{y}{% from Sao's anti-pgfmath version - rhaid ddweud proof tree proof line no
yn ddwywaith ?! dim yn bosibl i ailddefnyddio'r gyntaf ?!

612 if={% from Sao's anti-pgfmath version - I appreciate this is faster, but why is it *
required*?!

613 >{O_= O_= |}{content}{}{content}{##2}%
614 }{%
615 content={##2},
616 }{%
617 content+'={\foresteregister{merge delimiter}##2},
618 TeX={\PackageWarning{prooftrees}{Merging conflicting justifications for line ##1!

Please examine the output carefully and use "move by" to move lines later in the proof if required.
Details of how to do this are included in the documentation.}},

619 },
620 ##3,
621 y'=##4,
622 proof tree proof line no'=##1,
623 typeset node,
624 }% do NOT put a comma here!
625 }
626 },
627 },
628 }{},
629 for proof tree wffs={% apply highlighting and TikZ keys which are specified for whole proof

lines to all applicable wffs
630 if proof tree phantom={}{%
631 if highlight line={%
632 for proof tree wffs/.process={OOw2}{proof tree proof line no}{line options}{%
633 if proof tree proof line no={##1}{%
634 node options/.register=highlight format,
635 ##2,
636 }{}%
637 },
638 }{%
639 for proof tree wffs/.process={OOw2}{proof tree proof line no}{line options}{%
640 if proof tree proof line no={##1}{##2}{},
641 },
642 },
643 delay={typeset node},
644 },
645 },
646 },
647 before packing={% initial alignment so we don't get proof line numbers incrementing due to

varying height/depth of nodes, for example - when single branches is true and few nodes are grouped,
this is also a reasonable first approximation

648 for tree={%
649 tier/.process={OOw2+nw1}{level}{proof tree toing by}{##1+##2}{tier ##1},
650 },

— 40 of 46 —

A Implementation

651 for root={% if there's no proof statement, adjust the alignment of the proof relative to the
surrounding text

652 if content={}{%
653 !{n=1}.baseline,
654 }{},
655 },
656 },
657 before computing xy={% adjust distance between levels for grouped nodes after tree is packed
658 for tree={%
659 if={%
660 >{O _O< &}{grouped}{1}{level}%
661 }{% osgoi overlapping nodes, if posibl: cwestiwn https://tex.stackexchange.com/q/456254/
662 not tempboola,
663 tempcounta/.option=level,
664 tempcountb/.option=proof tree toing,
665 tempcountb+/.option=proof tree toooing,
666 for nodewalk={fake=root, descendants}{if={> RO= On> O! O! OOw2+nR= &&&&
667 {tempcounta}{level} {!u.n children}{1} {proof tree arweinydd} {proof tree phantom} {

proof tree toing by} {proof tree toooing}{##1+##2} {tempcountb}
668 }{tempboola}{}},
669 if tempboola={}{l'=\baselineskip},
670 }{},
671 },
672 },
673 before drawing tree={% set final alignment for proof lines which have been moved by effectively

grouping lead nodes and moving their subtrees accordingly - this requires that each line number and
justification be the child of the previous one and that if justifications are used at all, then
justifications exist for all proof lines, even if empty

674 if={>{RR|R!&}{line numbering}{justifications}{single branches}}{% correct the alignment of move
by lines when single branches is false - o fersiwn anti-pgfmath Sao

675 tempdimc'=0pt,% track cumulative adjustments to line numbers and justifications
676 for proof tree cywiro symud={%
677 if proof tree arweinydd={% only examine the lead nodes - their descendants need the same (

cumulative) adjustments
678 tempdima'/.option=y,
679 if line numbering={% if there are line numbers, we use the previous line number's

vertical position
680 for name/.process={Ow1+nw1}{proof tree proof line no}{##1-1}{line no ##1}{% arafach ?
681 tempdimb'/.option=y,
682 }%
683 }{% if not, we use the previous justification's vertical position
684 for name/.process={Ow1+nw1}{proof tree proof line no}{##1-1}{just ##1}{% arafach ?
685 tempdimb'/.option=y,
686 }%
687 },
688 for parent={% the parent (which will be a phantom) gets aligned with the previous line
689 y'/.register=tempdimb,
690 },
691 if tempdimb<={0pt}{% adjust so we align this line below the previous one (assuming we're

going down)
692 tempdimb'-=\baselineskip,
693 }{%
694 tempdimb'+=\baselineskip,
695 },
696 tempdimb'-/.register=tempdima,% how far are we moving?
697 for tree={% adjust this node and all descendants
698 y'+/.register=tempdimb,
699 },
700 tempdimb'-/.register=tempdimc,% deduct any tracked cumulative adjustments to line numbers

and justifications
701 if line numbering={% adjust the line numbers, if any

— 41 of 46 —

A Implementation

702 for name/.process={Ow1}{proof tree proof line no}{line no ##1}{%
703 for tree={%
704 y'+/.register=tempdimb,
705 },
706 }%
707 }{},
708 if justifications={% adjust the justifications, if any
709 for name/.process={Ow1}{proof tree proof line no}{just ##1}{% t. 60 manual 2.1 rc1
710 for tree={%
711 y'+/.register=tempdimb,
712 },
713 }%
714 }{},
715 tempdimc'/.register=tempdimb,% add the adjustment just implemented to the tracked

cumulative adjustments for line numbers and/or justifications
716 }{},
717 },
718 }{},
719 if={%
720 > RR| {auto move}{single branches}%
721 }{}{%
722 where proof tree arweinydd={%
723 for nodewalk={%
724 save append={proof tree walk}{%
725 current,
726 do until={%
727 > O+t_+t=! {content}{}%
728 }{parent}%
729 }%
730 }{},
731 }{},
732 where level>=1{%
733 if grouped={%
734 if in saved nodewalk={current}{proof tree walk}{}{%
735 no edge,
736 },
737 }{},
738 }{},
739 },
740 },
741 },
742 move by/.style={% this implements both the automated moves prooftrees finds necessary and any

additional moves requested by the user - more accurately, it implements initial moves, which may get
corrected later (e.g. to avoid skipping numbers or creating empty proof lines, which we assume aren't
wanted)

743 if={
744 >{_n<}{0}{#1}%
745 }{% only try to move the node if the target line number exceeds the one i.e. the line number is

to be positively incremented
746 proof tree cadw toing by/.option=proof tree toing by,
747 proof tree arweinydd,
748 for tree={%
749 if={%
750 >{_n<}{1}{#1}%
751 }{% track skipped lines for which we won't be creating phantom nodes
752 proof tree toing by+=#1-2,
753 proof tree toooing'+=1,
754 }{},
755 },
756 delay={%
757 replace by={% insert our first phantom

— 42 of 46 —

A Implementation

758 [,
759 if={%
760 >{_n<}{1}{#1}%
761 }{%
762 child anchor=parent,
763 parent anchor=parent,
764 }{%
765 child anchor=children,
766 parent anchor=children,
767 },
768 proof tree phantom,
769 edge path/.option=!last dynamic node.edge path,% Sao ivanovi: http://chat.stackexchange.

com/transcript/message/27990955#27990955
770 edge/.option=!last dynamic node.edge,
771 append,
772 before drawing tree={%
773 if={>{RR|}{line numbering}{justifications}}{%
774 proof tree proof line no/.process={Ow1+n}{!parent.proof tree proof line no}{##1+1},
775 }{},
776 },
777 if={%
778 >{_n<}{1}{#1}%
779 }{% if we are moving by more than 1, we insert a second phantom so that a node with

siblings which is moved a long way will not get a unidirectional edge but an edge which looks similar
to others in the tree (by default, sloping down a line or so and then plummeting straight down

rather than a sharply-angled steep descent)
780 delay={%
781 append={%
782 [,
783 child anchor=parent,
784 parent anchor=parent,
785 proof tree toing by=#1-2+proof_tree_cadw_toing_by,
786 proof tree phantom,
787 edge path/.option=!u.edge path,
788 edge/.option=!u.edge,
789 before drawing tree={%
790 if={>{RR|}{line numbering}{justifications}}{%
791 proof tree proof line no/.process={Ow1+n}{!n=1.proof tree proof line no

}{##1-1},
792 }{},
793 },
794 append=!sibling,
795]%
796 },
797 },
798 }{%
799 if single branches={}{%
800 delay={%
801 for children={%
802 no edge,
803 },
804 },
805 },
806 },
807]%
808 },
809 },
810 }{%
811 TeX/.process={Ow1}{name}{\PackageWarning{prooftrees}{Line not moved! I can only move things

later in the proof. Please see the documentation for details. ##1}},
812 },

— 43 of 46 —

A Implementation

813 },
814 proof tree cref/.style={% get the names of nodes cross-referenced in closure annotations for use

later
815 proof tree crefs+/.option=#1.name,
816 },
817 proof tree rhif llinell cau/.style={% get the proof line numbers of the cross-referenced nodes in

closure annotations, using the list of names created earlier
818 if proof tree rhestr rhifau llinellau cau={}{}{%
819 proof tree rhestr rhifau llinellau cau+={,\,},
820 },
821 proof tree rhestr rhifau llinellau cau+/.option=#1.proof tree proof line no,
822 },
823 proof tree jref/.style={% get the names of nodes cross-referenced in justifications for use later
824 proof tree jrefs+/.option=#1.name,
825 },
826 proof tree rhif llinell/.style={% get the proof line numbers of the cross-referenced nodes in

justifications, using the list of names created earlier
827 if proof tree rhestr rhifau llinellau={}{}{%
828 proof tree rhestr rhifau llinellau+={,\,},
829 },
830 proof tree rhestr rhifau llinellau+/.option=#1.proof tree proof line no,% works according to Sao'

s anti-pgfmath version
831 },
832 line no override/.style={% 2018-02-19 ateb https://tex.stackexchange.com/a/416037/
833 before drawing tree={
834 for name/.process={Ow}{proof tree proof line no}{line no ##1}{
835 content=\linenumberstyle{#1},
836 typeset node,
837 },
838 },
839 },
840 no line no/.style={% 2018-02-19 gweler uchod
841 before drawing tree={
842 for name/.process={Ow}{proof tree proof line no}{line no ##1}{
843 content=,
844 typeset node,
845 },
846 },
847 },
848 proof tree dadfygio/.style={% style for use in debugging moves which displays information about

nodes in the tree
849 before packing={%
850 for tree={%
851 label/.process={OOOw3}{level}{proof tree toing by}{id}{[red,font=\tiny,inner sep=0pt,outer

sep=0pt, anchor=south]below:##1/##2/##3},
852 },
853 },
854 before drawing tree={%
855 for tree={%
856 delay={%
857 tikz+/.process={Ow1}{proof tree proof line no}{\node [anchor=west, font=\tiny, text=blue,

inner sep=0pt] at (.east) {##1}; },
858 },
859 },
860 },
861 },
862 proof tree alino/.style={% debugging / dangos dimension stuff
863 before drawing tree={%
864 tikz+/.process={%
865 RRRRw4{proof tree inner proof midpoint}{line no width}{line no dist}{just dist}
866 {

— 44 of 46 —

A Implementation

867 \begin{scope}[densely dashed]
868 \draw [darkgray] (##1,0) coordinate (a) -- (a |- current bounding box.south);
869 \draw [green] (current bounding box.west) -- ++(##2,0) coordinate (b);
870 \draw [blue] (b) -- ++(##3,0) coordinate (c);
871 \draw [magenta] (c) -- ++(##4,0);
872 \end{scope}
873 }%
874 },
875 },
876 },
877 }
878 % \environbodyname\prooftreebody
879 \bracketset{action character=@}
880 \NewDocumentEnvironment{\prooftrees@enw}{ m +b }{% \forest/\endforest from egreg's answer at http://

tex.stackexchange.com/a/229608/
881 \forest
882 (%
883 stages={% customised definition of stages - we don't use any custom stages, but we do use

several custom keylists, where the processing order of these is critical
884 for root'={% nothing is removed from the standard forest definition - we only change it by

adding to it
885 process keylist register=default preamble,
886 process keylist register=preamble,
887 },
888 process keylist=given options,
889 process keylist=before typesetting nodes,
890 % first two additions: process two custom keylists after before typesetting nodes and before

typesetting nodes
891 process keylist=proof tree ffurf,
892 process keylist=proof tree symud awto,
893 typeset nodes stage,
894 process keylist=before packing,
895 pack stage,
896 process keylist=before computing xy,
897 compute xy stage,
898 % second two additions: process two custom keylists after computing xy and before before

drawing tree
899 process keylist=proof tree creu nodiadau,
900 process keylist=proof tree nodiadau,
901 process keylist=before drawing tree,
902 draw tree stage,
903 },
904)%
905 proof tree,% apply the proof tree style, which sets keylists from both forest's defaults and our

custom additions
906 #1,% insert user's preamble, empty or otherwise - this allows the user both to override our

defaults (e.g. by setting a non-empty proof statement or a custom format for line numbers) and to
customise the tree using forest's facilities in the usual way - BUT customisations of the latter kind
may or may not be effective, may or may not have undesirable - not to say chaotic - consequences,

and may or may not cause compilation failures (structural changes, in particular, should be avoided
completely)

907 [, name=proof statement @#2]%
908 \endforest
909 }{}
910

911 \ExplSyntaxOn
912 \cs_new_protected_nopar:Npn __prooftrees_memoize:n #1
913 {
914 \mmzset{
915 auto = { #1 } { memoize },
916 }

— 45 of 46 —

A Implementation

917 }
918 \cs_generate_variant:Nn __prooftrees_memoize:n { V }
919 \hook_gput_code:nnn { begindocument / before } { . }
920 {% paid â memoize bussproofs prooftree ...
921 \@ifpackageloaded{memoize}{
922 __prooftrees_memoize:V \prooftrees@enw
923 }{}
924 }
925 \ExplSyntaxOff
926

927 \endinput
928 %% end prooftrees.sty

— 46 of 46 —

	1 Raison d'être
	2 Assumptions & Limitations
	3 Typesetting a Proof Tree
	4 Loading the Package
	5 Invocation
	6 Proof Tree Anatomy
	7 Options
	7.1 Global Options
	7.2 Local Options

	8 Macros
	9 Memoization
	10 Compatibility
	11 Version History
	11.1 0.9
	11.2 0.8
	11.3 0.7
	11.4 0.6
	11.5 0.5
	11.6 0.41
	11.7 0.4
	11.8 0.3

	A Implementation

