X Toolkit Intrinsics — C Language Interface
X Window System

X Version 11, Release 6.4

First Revision - April, 1994

Joel McCormack

Digital Equipment Corporation
Western Software Laboratory

Paul Asente

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group
MIT X Consortium

version 6 edited by Donna Coarse

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, ygarson obtaining a cgpof this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, cgpmodify and distribute this documentation forygourpose and without fee is hereby granted,
provided that the alve cpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein fgpanpose. lis provided “as is’'without express or implied
warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Hayree€hiik

and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)

Mary Larson (Digital UEG) Mark Manasse (Digital SRC)

Jim Gettys (Digital SRC) Leo Tggiari (Digital SDT)

Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also desemention. Althoughthe X11 Intrinsics present an
entirely different programming style, theorrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smoley Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 tootk&imple widgets were by the al@pas well as
by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)

Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11 Intrinsics.

Thanks go to Al Mento of Digitad UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of BeyKeleextenstely reviewing early
drafts of it.

Finally, a ecial thanks to Mii& Chow, whose extense performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March 1988

Xi

The current design of the Intrinsics has benefited greatly from the inpwetdlsgedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals hae cedicated significant time to suggesting im@raents to the Intrin-

sics:

Steve Rtschlke (Stellar) C.Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (A&T) Jim Fulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Exas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dw (HP) GlennWidener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988

From Release 3 to Release 4jesal nav members joined the design tealVe geatly appreciate
the thoughtful comments, suggestions, lepgliscussions, and in some cases implementation
code contributed by each of the following:

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Comerse (MIT) Clive Feather (1XI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. This has been an educational processyfof man

us, and Bill and Frang'tutelage has carried us througVania Jolobof of the OSF also contrib-

uted to the internationalization additions. The implementation efforts of Bill, Gabe Beged-Do
and especially Donna Cearse for this release are also gratefully acknowledged.

Ralph R. Swick
December 1989

and
July 1991

Xii

The Release 6 Intrinsics is a result of the collabezadforts of participants in the X Consor-
tium’s intrinsics working group. A few individuals contributed substantial design proposals, par-
ticipated in lengti discussions, reviewed final specifications, and in most cases, were also
responsible for sections of the implementation. yTtiesene recognition and thanks for their

major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)
Vania Jolobaf (OSF) KalebKeithley (X Consortium)
Courtngy Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people dedmamks for their contributions:

Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Gypts&ith Edwards, Clie
FeatherStephen Gildea, Dan Helle®teve Humphrey, David Kaelbling, Jaime Lau, Rob Lem-

bree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGildeVill Walker, and Mike Wexer.

| am especially grateful to tew of my lleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithlg for leadership in the implementation and the specification work.

Donna Comerse
X Consortium
April 1994

Xiii

About This Manual

X Toolkit Intrinsics — C Languge Interfaceis intended to be read by both application program-
mers who will use one or more of the mavidget sets built with the Intrinsics and by widget
programmers who will use the Intrinsics to build widgets for one of the widget sets. Not all the
information in this manual, hower, gpplies to both audiences. That is, because the application
programmer is likely to use only a number of the Intrinsics functions in writing an application and
because the widget programmer is likely to useynmagre, if not all, of the Intrinsics functions

in building a widget, an attempt has been made to highlight those areas of information that are
deemed to be of special interest for the application program(hés assumed the widget pro-
grammer will hae © be familiar with all the information.) Therefore, all entries in the table of
contents that are printed fild indicate the information that should be of special interest to an
application programmer.

It is also assumed that, as application programmers become more familiar with the concepts dis-
cussed in this manual, thwiill find it more comwvenient to implement portions of their applica-

tions as special-purpose or custom widgets. It is possible, nonetheless, to use widgets without
knowing hav to build them.

Conventions Used in this Manual
This document uses the following eentions:

. Global symbols are printed ithis special bnt. These can be either function names, sym-
bols defined in include files, data types, or structure names. Arguments to functions, proce-
dures, or macros are printeditalics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
General discussion of the function, ifyas required, follows the arguments.

. To diminate ary ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiewr, in the case of multiple arguments, the wepacify The explanations for all
arguments that are returned to you start with the wetminsor, in the case of multiple
arguments, the wonetturn.

Xiv

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network wingosystem, specifically the X WindoSystem. Thdntrinsics
and a widget set malkup an X Dolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and applicationvéronments. Theéntrinsics are a layer on top of Xlib, the C Library
X Interface. Thg extend the fundamental abstractions provided by the X Wir8gstem while

still remaining independent of wiparticular user interface polior gyle.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and compaosing user interface components, known as widgets. This allows program-
mers to extend a widget set inmneays, either by deriving mewidgets from existing ones (sub-
classing) or by writing entirely mewidgets following the established a@ntions.

When the Intrinsics were first coneed, the root of the object hierarcivas a widget class

named Core. In Release 4 of the Intrinsics, three nonwidget superclasses were age€drabo
These superclasses are described in Chapter 12. The name of thewlasth@ooot of the

Intrinsics class hierarghs Object. Theremainder of this specification refers uniformlyiial-
getsandCoreas if thegy were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12 describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific refer-
ence towidgetactually means “widgetor ‘‘object”

1.2. Languages

The Intrinsics are intended to be used far pogramming purposes. Programmers writing wid-
gets will be using most of the facilities provided by the Intrinsics to construct user interface com-
ponents from the simple, such as buttons and scrollbars, to the complex, such as control panels
and property sheets. Application programmers will use a much smaller subset of the Intrinsics
procedures in combination with one or more sets of widgets to construct and present complete
user interfaces on an X displayhe Intrinsics programming interfaces primarily intended for
application use are designed to be callable from most procedural programming languages. There-
fore, most arguments are passed by reference rather thatuby \Whdnterfaces primarily

intended for widget programmers are expected to be used principally from the C language. In
these cases, the usual C programming@aions apply In this specification, the teralient

refers to ap module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the headeXfll#8ntrinsic.h >
and <X11/StringDefs.h>, or their eqwalent, and thg may also include X11/Xatoms.h> and
<X11/Shell.r>. In addition, widget implementations should includéld/IntrinsicP.h > instead
of <X11/Intrinsic.h >.

X Toolkit Intrinsics X11 Release 6.4

The applications must also include the additional header files for each widget clasy/that the
to use (for example, X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). Ona ROSIX-based sys-
tem, the Intrinsics object library file is namidalXt.a and is usually referenced as —IXt when
linking the application.

1.3. Pmocedures and Macros

All functions defined in this specification except those specifiedviaky be implemented as C
macros with aguments. Gpplications may us&tundef’ to remaove a nacro definition and

ensure that the actual function is referencedy srch macro will expand to a single expression
that has the same precedence as a function call and/ghsttes each of its arguments exactly
once, fully protected by parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do natehfunction equialents and that may expand
their arguments in a manner other than that describas:aktiCheckSubclass XtNew,
XtNumber, XtOffsetOf, XtOffset, and XtSetArg.

1.4. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X windav and its associated input and display semantics and which is dynamically allo-
cated and contains state information. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointeegbdard input, and others change their dis-
play in response to input and camdke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and
which contains the operations allable on widgets of that class. Logicallywidget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physj@iljdget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, “constantheans the class structure is initialized at compile time avet ne
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is crdaseflijther informa-

tion, see Section 2.5.

The distribution of the declarations and code forwa welget class among a public .h file for
application programmer use, ayate .h file for widget programmer use, and the implementation
.c file is described in Section 1.6. The predefined widget classes adhere to thesgorsn

A widget instance is composed ofatarts:
. A data structure which contains instance-specific values.
. A class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border widths) is cus-
tomizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

X Toolkit Intrinsics X11 Release 6.4

1.4.1. Coe Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined®@gréd®@assPartand CorePart
structures.

1.4.1.1. CoeClassPart Structure
All widget classes contain the fields defined in @weClassPartstructure.

' typedef struct {

-

WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;

XtWidgetClassProc class_part_initialize;

XtEnum class_inited;

XtInitProc initialize;

XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;

Cardinal num_actions;
XtResourcelList resources;
Cardinal num_resources;
XrmClass xrm_class;

Boolean compress_motion;
XtEnum compress x@osure;
Boolean compress_entenea
Boolean visible_interest;
XtWidgetProc destrg
XtWidgetProc resize;
XtExposeProcgose;
XtSetValuesFunc setalues;
XtArgsFunc set_alues_hook;
XtAlmostProc set_alues almost;
XtArgsProc get_alues_hook;
XtAcceptFocusProc accept_focus;
XtVersionType ersion;

XtPointer callback_pvite;

String tm_table;
XtGeometryHandler query_geometry;
XtStringProc display_accelerator;
XtPointer etension;

} CoreClassPart;

See Section 1.6
See Chapter 9
See Section 1.6
See Section 1.6

See Section 1.6
See Section 1.6

See Section 2.5
See Section 2.5
See Section 2.6

See Chapter 10
See Chapter 10

See Chapter 9

See Chapter 9
Rdte to resource manager

See Section 7.9

Se&ection 7.9

See Section 7.9
See Section 7.10

SeeSection 2.8
See Chapter 6

Se&ection 7.10

Se&ection 9.7
SeBection 9.7
Segection 9.7
SeBection 9.7

See Section 7.3

Seé&ection 1.6

Prvate to callbacks
See Chapter 10

See Chapter 6

See Chapter 10

Se&ection 1.6

All widget classes hae the Core class fields as their first component. The prototyyicddet-
Classand CoreWidgetClassare defined with only this set of fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CoreClassPart core_class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class types.
The single occurrences of the class record and pointer for creating instances of Core are
In IntrinsicP.h :

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

In Intrinsic.h :

extern WidgetClass widgetClass, coreWidgetClass;

The opaque typew/idget and WidgetClassand the opaque variableidgetClassare defined

for generic actions on widgets. In order to m#ilese types opaque and ensure that the compiler
does not allev applications to access pate data, the Intrinsics use incomplete structure defini-
tions in Intrinsic.h :

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CoePart Structure
All widget instances contain the fields defined in @wePart structure.

X Toolkit Intrinsics

typedef struct _CorePart {

Widget self;

WidgetClass widget_class;
Widget parent;

Boolean being_destyed,;

XtCallbackList destrg_callbacks;

XtPointer constraints;
Position x;

Position y;

Dimension width;
Dimension height;
Dimension border_width;
Boolean managed,;
Boolean sensiE;
Boolean ancestor_sensgij
XtTranslations accelerators;
Pixel border_pirl;
Pixmap border_pixmap;
WidgetList popup_list;
Cardinal num_popups;
String name;

Screen *screen;
Colormap colormap;
Window window;

Cardinal depth;

Pixel background_p#;

Pixmap background_pixmap;

Boolean visible;

Boolean mapped_when_managed;

} CorePart;

Described below
See Section 1.6
See Section 2.5
SeeSection 2.8
Se&ection 2.8
See Section 3.6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 3
See Section 7.7
See Section 7.7
See Chapter 10
SeeSection 2.6
See Section 2.6
See Chapter 5
See Chapter 5
See Chapter 9
See Section 2.6
See Section 2.6
SeeSection 2.6
See Section 2.6
SeeSection 2.6
See Section 2.6
See Section 7.10
See Chapter 3

X11 Release 6.4

All widget instances hae the Core fields as their first component. The prototypical Wdget

is defined with only this set of fields.

typedef struct {
CorePart core;

} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to ma& these types opaque and ensure that the compiler does moggliications to
access pviate data, the Intrinsics use incomplete structure definitiohgtiimsic.h .

typedef struct _WidgetRec *Widget, *CoreWidget;

X Toolkit Intrinsics

1.4.1.3. Coe Resources

X11 Release 6.4

The resource names, classes, and representation types specifiecbie@lassReaesource list

are

Name

Class Representation

XtNaccelerators
XtNbackground

XtNbackgroundPixmap

XtNborderColor
XtNborderPixmap
XtNcolormap
XtNdepth

XtCAccelerators XtRAcceleratorTable

XtCBackground XtRPixel
XtCPixmap XtRPixmap
XtCBorderColor XtRPixel
XtCPixmap XtRPixmap
XtCColormap XtRColormap
XtCDepth XtRInt

XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean

XtNscreen
XtNtranslations

XtRScreen
XtRranslationTable

XtCScreen
XtCTanslations

Additional resources are defined for all widgets viadhgctClassRecandrectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

1.4.1.4. CoePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists,
and by the initialize procedures, are

Field Detault Value

self Addresf the widget structure (may not be changed).
widget_class widget_clasargument taXtCreateWidget (may not be changed).
parent parentargument toXtCreateWidget (may not be changed).

being_destrged
destry_callbacks
constraints

X

y

width

height
border_width
managed
sensitve
ancestor_sensit
accelerators
border_pixel
border_pixmap
popup_list
num_popups
name

Rarent'sbeing_destroyedalue.
NULL
NULL

False

True

logical AND of parent'ssensitiveandancestor_sensitivealues.
NULL

XtDefaultForeground

XtUnspecifiedPixmap

NULL
0

nameargument taXtCreateWidget (may not be changed).

X Toolkit Intrinsics X11 Release 6.4

screen Paent'sscreentop-level widget gets screen from display specifier
(may not be changed).

colormap Rrent'scolormapvalue.

window NULL

depth Rrent'sdepth top-level widget gets root winde depth.

background_pixel XtDefaultBackground

background_pixmap XtUnspecifiedPixmap

visible True

mapped_when_man- True

aged

XtUnspecifiedPixmapis a symbolic constant guaranteed to be unequalteadia Pixmap id,
None, and ParentRelative.

1.4.2. CompositéNidgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by t@ompositeClassPartand CompositePart structures.

1.4.2.1. CompositeClassit Structure
In addition to the Core class fields, widgets of the Composite clasdheafollowing class fields.

typedef struct {
XtGeometryHandler geometry _manager; See Chapter 6
XtWidgetProc change _managed,; See Chapter 3
XtWidgetProc insert_child,; See Chapter 3
XtWidgetProc delete_child; See Chapter 3
XtPointer etension; Se&ection 1.6

} CompositeClassPart;

The extension record defined fGompositeClassPartwith record_typeequal toNULLQ UARK
is CompositeClassExtensionRec

typedef struct {
XtPointer next_etension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Se&ection 1.6.12
Cardinal record_size; See Section 1.6.12
Boolean accepts_objects; See Section 2.5.2
Boolean allovs_change_managed_set; Seetion 3.4.3

} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes¥mthe Composite class fields immediately following the Core class fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are
In IntrinsicP.h :

extern CompositeClassRec compositeClassRec;

In Intrinsic.h :

extern WidgetClass compositeWidgetClass;

The opaque type€ompositeWidgetand CompositeWidgetClassand the opaque variable
compositeWidgetClassare defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant fo€tmapositeClassExtensiorversion
identifier isXtCompositeExtensionVersion(see Section 1.6.12)ntrinsic.h uses an incom-

plete structure definition to ensure that the compiler catches attempts to acebssiata.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.2.2. CompositeBrt Structure

In addition to the Core instance fields, widgets of the Composite chasdhkeollowing instance
fields defined in th€ompositePart structure.

typedef struct {
WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets va the Composite instance fields immediately following the Core instance
fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access pviate data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2.3. CompositdResources

The resource names, classes, and representation types that are specifiedmptsiteClass-
Recresource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList

XtNinsertPosition XtClnsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

1.4.2.4. CompositeBrt Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are

Field Defuult Value
children NULL
num_children 0
num_slots 0

insert_position Interndlinction to insert at end

Thechildren, num_childrenandinsert_positiorfields are declared as resources; XtNinsertPosi-
tion is a settable resource, XtNchildren and XtNnumChildren may be read blyesnt but
should only be modified by the composite widget class procedures.

1.4.3. ConstraintWidgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6). Con-
straint widgets maintain additional state data for each child; for example, client-defined con-
straints on the child’geometry The additional data used by constraint widgets are defined by the
ConstraintClassPart and ConstraintPart structures.

X Toolkit Intrinsics X11 Release 6.4

1.4.3.1. ConstraintClassBrt Structure

In addition to the Core and Composite class fields, widgets of the Constraint vladwtfal-
lowing class fields.

typedef struct {

XtResourcelList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
Cardinal constraint_size; See Section 3.6
XtInitProc initialize; See Section 3.6
XtWidgetProc destryg SeeSection 3.6
XtSetValuesFunc setalues; Se&ection 9.7.2
XtPointer extension; Se&ection 1.6

} ConstraintClassPart;

The extension record defined fGonstraintClassPart with record_typeequal toNULLQ UARK
is ConstraintClassExtensionRec

typedef struct {
XtPointer next_gtension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Se&ection 1.6.12
Cardinal record_size; See Section 1.6.12
XtArgsProc get_alues_hook; SeBection 9.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes athe Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are
In IntrinsicP.h :

extern ConstraintClassRec constraintClassRec;

In Intrinsic.h :

10

X Toolkit Intrinsics X11 Release 6.4

extern WidgetClass constraintwidgetClass;

The opaque type€onstraintWidget and ConstraintWidgetClass and the opaque variabt®n-
straintWidgetClass are defined for generic operations on widgets whose class is Constraint or a
subclass of Constraint. The symbolic constant forGbastraintClassExtensionversion identi-

fier is XtConstraintExtensionVersion (see Section 1.6.12)ntrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to aceatssdatia.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

1.4.3.2. ConstraintRart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint etabeha
following unused instance fields defined in ®enstraintPart structure

typedef struct {
int empty;
} ConstraintPart;

Constraint widgets @ the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access pviate data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3.3. ConstraintResources

The constraintClassReccore_classandconstraint_class resourcédiglds are NULL, and the
num_resourceBelds are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

11

X Toolkit Intrinsics X11 Release 6.4

1.5. Implementation-SpecificTypes

To increase the portability of widget and application source code between different system envi-
ronments, the Intrinsics defineveral types whose precise representation is explicitly dependent
upon, and chosen pgach individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzeatue. Unles&xplicitly stated, clients
should not assume that the nonzero value is equal to the symbolicTvakie

Cardinal An unsigned integer datum with a minimum range of [0..2716-1].
Dimension An unsigned integer datum with a minimum range of [0..2°16-1].
Position A signed integer datum with a minimum range of [-2715..2715-1].

XtPointer A datum large enough to contain the largest of a char*, int*, function postrtea-
ture pointeror long \alue. Apointer to ag type or function, or a long value may
be cowerted to anXtPointer and back again and the result will compare equal to
the original wlue. INANSI C environments it is expected théPointer will be
defined as void*.

XtArgVal A datum large enough to contain AtPointer, Cardinal , Dimension, or Posi-
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct valoas, which
are the symbolic valuekr ue andFalse. The symbolic valueIRUE andFALSE
are also defined to be equalTioue and False, respectiely.

In addition to these specific types, the precise order of the fields within the structure declarations
for ary of the instance part recor@bjectPart, RectObjPart, CorePart, CompositePart,

ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShellPart is implementation-
defined. Thesstructures may also @ additional private fields internal to the implementation.

The ObjectPart, RectObjPart, and CorePart structures must be defined so that emember

with the same name appears at the same off€@bjectRec, RectObjRec, and CoreRec (Wid-
getReg. Noother relations between the offsets of &mo fields may be assumed.

1.6. Widget Classing

Thewidget_clasdield of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not imple-
ment directly callable procedures; ratiteey implement procedures, called methods, that are
available through their widget class structure. These methodsvakeihby generic procedures

that ewelop common actions around the methods implemented by the widget class. Such proce-
dures are applicable to all widgets of that class and also to widgets whose classes are subclasses
of that class.

All widget classes are a subclass of Core and can be subclassed fauthetassing reduces the
amount of code and declarations necessary t@asw widget class that is similar to an exist-

ing class.For example, you do not va o describe eery resource your widget uses in AtRe-
sourcelist. Instead, you describe only the resources your widget has that its superclass does not.
Subclasses usually inherit nyaof their superclasses’ procedures (for example, the expose proce-
dure or geometry handler).

Subclassing, hower, can be taken too faif you create a subclass that inherits none of the pro-
cedures of its superclass, you should consider whether yeuti@sen the most appropriate
superclass.

12

X Toolkit Intrinsics X11 Release 6.4

To make good use of subclassing, widget declarations and namingyaions are highly styl-
ized. Awidget consists of three files:

A public .h file, used by client widgets or applications.
A private .h file, used by widgets whose classes are subclasses of the widget class.
A .c file, which implements the widget.

1.6.1. Wdget Naming Corventions

The Intrinsics provide a vehicle by which programmers can creatvitigets and ayanize a
collection of widgets into an applicatiofo ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide-
lines should be followed when writingweavidgets:

Use the X library naming ceentions that are applicablé-or example, a record compo-

nent name is all lowercase and uses underscores (_) for compound words (for example,
background_pixmap). ype and procedure names start with uppercase and use capitaliza-
tion for compound words (for examplargList or XtSetValues).

A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscofi@ let the compiler catch spelling errors, each

resource name shouldyeaa gmbolic identifier prefixed with “XtN'. For example, the
background_pixmafield has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string “backgroundPixmiapgviany predefined names are listed in
<X11/StringDefs.h>. Beforeyou irvent a n&v name, you should makaure there is not
already a name that you can use.

A resource class string starts with a capital letter and uses capitalization for compound
names (for example,“BorderWidth' Eachresource class string shouldveaa ymbolic
identifier prefixed with “XtC’ (for example, XtCBorder\Wdth). Mary predefined classes
are listed in X11/StringDefs.h>.

A resource representation string is spelled identically to the type name (for example,

“ TranslationTablej. Eachrepresentation string shouldveaa ymbolic identifier prefixed
with “XtR’’ (for example, XtRranslation@able). Mary predefined representation types are
listed in <X11/StringDefs.h>.

New widget classes start with a capital and use uppercase for compotasl WBven a
new class name AbcXyz, you should derisveaal names:

- Additional widget instance structure part name AbcXyzPart.

- Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
- Widget instance structure pointer type name AbcXyzWidget.

- Additional class structure part name AbcXyzClassPart.

- Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
- Class structure pointer type name AbcXyzWidgetClass.

- Class structure variable abcXyzClassRec.

- Class structure pointer variable abcXyzWidgetClass.

Action proceduresvailable to translation specifications should fallthe same naming
corventions as procedures. That is,tteart with a capital letteand compound names
use uppercase (for example, “Highlighlahd “NotifyClient”).

13

X Toolkit Intrinsics X11 Release 6.4

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros, as global
symbols, or as a mixture of thedw The(implicit) type of the identifier isString. The pointer
value itself is not significant; clients must not assume that inequalitycoitiewntifiers implies
inequality of the resource name, class, or representation string. Clients should also note that
although global symbols permit savings in literal storage in some environmentasthitro-

duce the possibility of multiple definition conflicts when applications attempt to use indepen-
dently deeloped widgets simultaneously.

1.6.2. Wdget Subclassing in Public .h Files
The public .h file for a widget class is imported by clients and contains
. A reference to the public .h file for the superclass.

. Symbolic identifiers for the names and classes of therasources that this widget adds to
its superclass. The definitions shouldda &ngle space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes.

. Type declarations for gmew resource data types defined by the class.

. The class record pointer variable used to create widget instances.

. The C type that corresponds to widget instances of this class.

. Entry points for ne class methods.

For example, the following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */

#define XtNjustify "justify"

#define XtNforeground "foreground"
#define XtNlabel "label"

#define XtNfont "font"

#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

[* C Widget type definition */
typedef struct _LabelRec *LabelWidget;
/* New class method entry points */
extern void LabelSe@Ext();
/* Widget w */
[* String text */

extern String LabelGe&x();
/* Widget w */

#endif LABEL_H

14

X Toolkit Intrinsics X11 Release 6.4

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned thatyttalready may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget clésa. example, the public .h file for the Constraint
widget class iConstraint.h.

1.6.3. Wdget Subclassing in Pwate .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and
contains

. A reference to the public .h file for the class.
. A reference to the prite .h file for the superclass.

. Symbolic identifiers for aynew resource representation types defined by the class. The
definitions should ha a ingle space between the definition name and the value and no
trailing space or comment.

. A structure part definition for the wdields that the widget instance adds to its superclass’s
widget structure.

. The complete widget instance structure definition for this widget.

. A structure part definition for the wdields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

. The complete constraint structure definition if the widget class is a subclass of Constraint.

. Type definitions for annew procedure types used by class methods declared in the widget
class part.

. A structure part definition for the wdields that this widget class adds to its superclass’s
widget class structure.

. The complete widget class structure definition for this widget.
. The complete widget class extension structure definition for this widgey, if an
. The symbolic constant identifying the class extension versiony.if an

. The name of the global class structure variable containing the generic class structure for
this class.

. An inherit constant for each weprocedure in the widget class part structure.
For example, the following is the psite .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */

typedef struct {
/* Settable resources */

15

X Toolkit Intrinsics X11 Release 6.4

Pixel foreground;

XFontStruct *font;

String label, [* text to display */

XtJustify justify;

Dimension internal_width; [* # pixels horizontal border */
Dimension internal_height; [* # pixels vertical border */

/* Data derved from resources */
GC normal_GC;
GC gray_GC,;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension label_height;
Cardinal label_len;
Boolean display_sensig;
} L abelPart;

/* Full instance record declaration */
typedef struct _LabelRec {
CorePart core;
LabelPart label;
} L abelRec;

/* Types for Label class methods */
typedef void (*LabelSe@xtProc)();
/* Widget w */
[* String text */

typedef String (*LabelGe8xtProc)();
[* Widget w */

/* New fields for the Label widget class record */
typedef struct {
LabelSetE&xtProc set_text;
LabelGetExtProc get_text;
XtPointer extension;
} L abelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {
CoreClassPart core_class;
LabelClassPart label_class;
} L abelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

16

X Toolkit Intrinsics X11 Release 6.4

#define LabellnheritSeé€ki((LabelSet€xtProc) Xtinherit)
#define LabellnheritGeekt((LabelGetExtProc) Xtinherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name ofatee.lpri
file is the first nine characters of the widget class followed by a capikrexample, the prate
.h file for the Constraint widget class@®nstrainP.h.

1.6.4. Wdget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con-
tains the following parts:

. Class information (for examplsuperclassclass_namgwidget sizeclass_initialize and
class_initedl.

. Data constants (for examplesourcesandnum_resourcesactionsandnum_actiongsvisi-
ble_interestcompress_motigrcompress_exposurand versior).

. Widget operations (for examplijtialize, realize, destroy resize expose set_values
accept_focusand ary new perations specific to the widget).

Thesuperclasdield points to the superclass global class record, declared in the superukiss pri
.h file. For direct subclasses of the generic core widgeperclasshould be initialized to the
address of thevidgetClassRecstructure. Theuperclass is used for class chaining operations
and for inheriting or ereloping a superclassgerations (see Sections 1.6.7, 1.6.9, and 1.6.10).

Theclass_namdield contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string “LabeMore than one widget class can share the
same text class name. This string must be permanently allocated prior to or durkegtiiere

of the class initialization procedure and must not be subsequently deallocated.

Thewidget_sizdield is the size of the corresponding widget instance structure (not the size of the
class structure).

Theversionfield indicates the toolkit implementation version number and is used for runtime
consisteng checking of the X Toolkit and widgets in an applicatidiidget writers must set it to
the implementation-defined symbolic valdé/ersion in the widget class structure initialization.
Those widget writers who belie that their widget binaries are compatible with other implemen-
tations of the Intrinsics can put the special vaftiéersionDontCheck in theversionfield to
disable version checking for those widgets. If a widget needs to compile altemoale for dif-
ferent revisions of the Intrinsics interface definition, it may use the syKiBglecificationRe-
lease as cescribed in Chapter 13. Use XtVersion allows the Intrinsics implementation to rec-
ognize widget binaries that were compiled with older implementations.

Theexensionfield is for future upward compatibilityf the widget programmer adds fields to

class parts, all subclass structure layouts change, requiring complete recompilaitbow

clients to aoid recompilation, an extension field at the end of each class part can point to a record
that contains gnadditional class information required.

All other fields are described in their respeetiections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget.
The resources table is described in Chapter 9.

17

X Toolkit Intrinsics

/* Resources specific to Label */

static XtResource resources[] ={

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,

XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

}

/* Forward declarations of procedures */
static void Classlnitialize();

static void Initialize();
static void Realize();
static void Setéxt();
static void Getéxt();

/* Class record constant */

LabelClassRec labelClassRec = {

{

[* core_class fields */

[* superclass

[* class_name

[* widget_size

[* class_initialize

[* class_part_initialize
[* class_inited

[* initialize

[* initialize_hook

* realize

[* actions

/* num_actions

[* resources

/* num_resources

[* xrm_class

[* compress_motion
[* compress_gposure
[* compress_enterlea
[* visible_interest

[* destrgy

[* resize

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

18

X11 Release 6.4

(WidgetClass)&coreClassRec,

"Label",
sizeof(LabelRec),
Classlinitialize,
NULL,

False,

Initialize,

NULL,

Realize,

NULL,

0,

resources,
XtNumber(resources),
NULLQ UARK,
True,

True,

True,

False,

NULL,

Resize,

X Toolkit Intrinsics X11 Release 6.4

[* expose * Redisplay,
[* set_\alues */ SetValues,
/* set_\alues_hook * NULL,
/* set values_almost */ XtInheritSetValuesAlmost,
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
[* version */ XtVersion,
[* callback_ofsets */ NULL,
[*tm_table * NULL,
[* query_geometry */ XtInheritQueryGeometry
[* display_accelerator */ NULL,
/* extension */ NULL

3

{

/* Label_class fields */

/* get_text */ GetText,
[* set_tet */ Set’lext,
/* extension */ NULL

}

2

/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void LabelSet&xt(w, text)

Widget w;
String text;

{
Label WidgetClass Iwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(WabelWidgetClass, NULL);
*(lwc->label_class.set_text)(viext)

}

[* Private procedures */

1.6.5. Wdget Class and Superclass Look Up
To dbtain the class of a widget, u¥¢Class.

WidgetClass XtClass()
Widgetw;

w Specifies the widget. Must be of class Object graaibclass thereof.

The XtClass function returns a pointer to the widgetlass structure.

19

X Toolkit Intrinsics X11 Release 6.4

To dbtain the superclass of a widget, u@Superclass

WidgetClass XtSuperclasg(
Widgetw;

w Specifies the widget. Must be of class Object graaibclass thereof.

The XtSuperclassfunction returns a pointer to the widgesiperclass class structure.

1.6.6. Wdget Subclass Verification
To check the subclass to which a widget belongs Xit&Subclass

Boolean XtlsSubclasa(widget_clask
Widgetw;,
WidgetClassvidget_class

w Specifies the widget or object instance whose class is to beechelglustbe of
class Object or ansubclass thereof.

widget_class Specifies the widget class for which to test. MustljectClassor ary subclass
thereof.

The XtlsSubclassfunction returnsTr ue if the class of the specified widget is equal to or is a
subclass of the specified class. The widgeaéiss can be gmumber of subclasses down the

chain and need not be an immediate subclass of the specified class. Composite widgets that need
to restrict the class of the items ylemntain can us&tlsSubclassto find out if a widget belongs

to the desired class of objects.

To test if a gven widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equalent to XtisSubclassfor each of the built-in classes. These proce-
dures areXtlsObject, XtIsRectObj, XtlsWidget, XtlIsComposite, XtlsConstraint , Xtls-

Shell, XtlsOverrideShell, XtiswMShell , XtisVendorShell, XtlsTransientShell, XtlsTo-
pLevelShell, XtisApplicationShell, and XtisSessionShell

All these macros and functionsveathe same argument description.

Boolean Xtlsclass> (w)
Widgetw;

w Specifies the widget or object instance whose class is to beechelgkustbe of
class Object or gnsubclass thereof.

These procedures may be faster than caMitigSubclassdirectly for the built-in classes.

To check a widges dass and to generate a debugging error messag&iQbeckSubclass
defined in X11/IntrinsicP.h >:

20

X Toolkit Intrinsics X11 Release 6.4

void XtCheckSubclass(, widget _classmessge)
Widgetw;,
WidgetClassvidget_class
Stringmessge

w Specifies the widget or object whose class is to be eldedWlustbe of class
Object or ag subclass thereof.

widget_class Specifies the widget class for which to test. MusbhjectClassor ary subclass
thereof.

messge Specifies the message to be used.

The XtCheckSubclassmacro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widgedéiss can be gmumber of subclasses down the

chain and need not be an immediate subclass of the specified class. If the specifiesl dadget’

is not a subclass{tCheckSubclassconstructs an error message from the supplied message, the
widget's ectual class, and the expected class and galisrorMsg . XtCheckSubclassshould

be used at the entry point of exported routines to ensure that the client has passed in a valid wid-
get class for the exported operation.

XtCheckSubclassis only executed when the module has been compiled with the compiler sym-
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Supeclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their cor-
responding fields in their superclass structuk®gh a linked field, the Intrinsics access the

field’s value only after accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called upward superclass chain-
ing). Theself-contained fields are

In all widget classes: class_name
class_initialize
widget_size
realize
visible_interest
resize
expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set_values_almost
tm_table
version
allocate
deallocate

In Composite widget classes: geometry _manger

change_manged
insert_child

21

X Toolkit Intrinsics X11 Release 6.4

delete_child
accepts_objects
allows_change_mamgad_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_maruger

With downward superclass chaining, theotation of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on down
the class chain to that widgetlass structure. These superclass-to-subclass fields are

class_part_initialize
get_values_hook
initialize
initialize_hook
set_values
set_values_hook
resources

In addition, for subclasses of Constraint, the following fields ofabestraintClassPart and
ConstraintClassExtensionRecstructures are chained from the Constraint class down to the sub-
class:

resources

initialize

set_values

get_values_hook

With upward superclass chaining, theacation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the Core,
RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

For subclasses of Constraint, the following field@bnstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

1.6.8. Clasdnitialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some casegefhowe
a dass may need to register type wenters or perform other sorts of once-only runtime initializa-
tion.

Because the C language does nethaitialization procedures that arevoked automatically

when a program starts up, a widget class can declare a class_initialize procedure that will be auto-
matically called exactly once by the Intrinsids class initialization procedure pointer is of type
XtProc:

22

X Toolkit Intrinsics X11 Release 6.4

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initializefield.

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class,
but for subclasses as well, and are done in the sldas’s part initialization procedure, a pointer

to which is stored in thelass_part_initializdield. Theclass_part_initialize procedure pointer is

of type XtWidgetClassProc.

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClassvidget_class

widget_class Points to the class structure for the class being initialized.

During class initialization, the class part initialization procedures for the class and all its super-
classes are called in superclass-to-subclass order on the class record. These proveduees ha
responsibility of doing andynamic initializations necessary to their clagsirt of the record.

The most common is the resolution of@nherited methods defined in the claBsr example, if

a widget class C has superclasses Core, Composite, A, and B, the class record for C first is passed
to Core § dass_part_initialize procedure. This resolveyg iaumerited Core methods and com-

piles the textual representations of the resource list and action table that are defined in the class
record. Neat, Composites dass_part_initialize procedure is called to initialize the composite part
of C's dass record. Finall{the class_part_initialize procedures for A, B, and C, in that cader
called. for further information, see Section 1.6.9. Classes that do not defimewrdass fields

or that need no extra processing for them can specify NULL ioléiss_part_initializdield.

All widget classes, whether théavea dass initialization procedure or not, must start with their
class_initedield False.

The first time a widget of a class is creatéti;reateWidget ensures that the widget class and
all superclasses are initialized, in superclass-to-subclass lbydiecking eaclelass_initedield
and, if it isFalse, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then selag® initedield to a nonzero value.

After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void Classinitialize()

{
XtSetTypeCouerter(XtRString, XtRJustifyCvtStringToJustify,

NULL, 0, XtCacheNone, NULL);

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class grsaclass is createdlo initialize a
widget class without creating awidgets, usextinitializeWidgetClass.

23

X Toolkit Intrinsics X11 Release 6.4

void XtInitializeWidgetClassgbject _clasy
WidgetClas®bject_class

object_class Specifies the object class to initialize. MaydigectClassor ary subclass
thereof.

If the specified widget class is already initializ&dinitializeWidgetClass returns immediately.

If the class initialization procedure registers typeveders, these type coerters are not\ail-
able until the first object of the class or subclass is creat&tnitializeWidgetClass is called
(see Section 9.6).

1.6.10. Inheritanceof Superclass Operations

A widget class is free to useyaof its superclass’slf-contained operations rather than imple-
menting its own code. The most frequently inherited operations are

expose
realize
insert_child
delete_child
geometry_manager
set_values_almost
To inherit an operatioryz specify the constanXtinherit Xyzin your class record.

Every class that declares annprocedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are vee inherited. Vilget classes that do nothing beyond what their super-
class does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclassvalue for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal valu&inherit cast to the appropriate type Xtin-

herit is a procedure that issues an error message if it is actually called.

For example,CompositeP.hcontains these definitions:

#define XtinheritGeometryManager ((XtGeometryHandler) _Xtinherit)
#define XtinheritChangeManaged ((XtWidgetProc) _Xtinherit)
#define XtinheritinsertChild ((XtArgsProc) _Xtinherit)

#define XtinheritDeleteChild ((XtWidgetProc) _Xtinherit)

Composites dass_part_initialize procedure begins as follows:

static void CompositeClassPartInitialize(widgetClass)
WidgetClass widgetClass;

{
CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;

CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;

if (wc->composite_class.geometry_manager == XtinheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

24

X Toolkit Intrinsics X11 Release 6.4

}

if (wc->composite_class.change _managed == XtinheritChangeManaged) {
wc->composite_class.change_managed = super->composite_class.change_managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare apreserved value it wishes for the inheritance constant foridietds. Theollowing
inheritance constants are defined:

For Object:
XtinheritAllocate
XtInheritDeallocate

For Core:
XtInheritRealize
XtInheritResize
XtInheritExpose
XtInheritSetValuesAlmost
XtinheritAcceptFocus
XtInheritQueryGeometry
XtInheritTranslations
XtinheritDisplayAccelerator

For Composite:
XtInheritGeometryManager
XtinheritChangeManaged
XtInheritinsertChild
XtInheritDeleteChild

For Shell:
XtInheritRootGeometryManager

1.6.11. Irvocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not cheenexample, a wid-
get’s expose procedure might call its superclasgfmseand then perform a little more work on
its ovn. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclasiisert_childand then calling{tManageChild to add
the child to the managed set.

25

X Toolkit Intrinsics X11 Release 6.4

Note

A class method should not u¥g¢Superclassbut should instead call the class

method of its own specific superclass directly through the superclass record. That is,
it should use its own class pointers qmigt the widgess dass pointers, as the wid-

get's dass may be a subclass of the class whose implementation is being referenced.

This technique is referred to esvelopinghe superclass’gperation.

1.6.12. Clas€xtension Records

It may be necessary at times to add fields to already existing widget class structurks per-

mit this to be done without requiring recompilation of all subclasses, the last field in a class part
structure should be an extension pointéno extension fields for a classVveyet been defined,
subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell classes, sub-
classes can provide values for these fields by settingxigsgsionpointer for the appropriate part

in their class structure to point to a statically declared extension record containing the additional
fields. Settingheextensionfield is n&er mandatory; code that uses fields in the extension record
must alvays check thextensionfield and tak sme appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from exsémgle
sionfield, extension records should be declared as a linked list, and each extension record defini-
tion should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;

2

next_extension Specifies the next record in the list, or NULL.

record_type Specifies the particular structure declaration to which each extension record
instance conforms.

version Specifies a version id symbolic constant supplied by the definer of the struc-
ture.

record_size Specifies the total number of bytes allocated for the extension record.

Therecord_typefield identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list.rédoed_typefield is normally

assigned the result ®frmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with theotaéharacters “XT’ for future standard uses. The

value NULLQ UARK may also be used by the class part owner in extension records attached to its
own dass part extension field to identify the extension record unique to that particular class.

Theversionfield is an owner-defined constant that may be used to identify binary filestbat ha
been compiled with alternate definitions of the remainder of the extension record data structure.
The private header file for a widget class should provide a symbolic constant for subclasses to use
to initialize this field. Theecord_sizdfield value includes the four common header fields and

26

X Toolkit Intrinsics X11 Release 6.4

should normally be initialized witkizeof).

Any value stored in the class part extension field€@ipositeClassPart ConstraintClass-
Part , or ShellClassPartmust point to an extension record conforming to this definition.

The Intrinsics provide a utility function for widget writers to locate a particular class extension
record in a linked list, gen a widget class and the offset of tegensionfield in the class record.

To locate a class extension record, X$8etClassExtension

XtPointer XtGetClassExtensiantjject classbyte offsettype version record_sizé
WidgetClas®bject_class
Cardinalbyte_offset
XrmQuarktype
long version
Cardinalrecord_size

object_class Specifies the object class containing the extension list to be searched.

byte offset Specifies the offset in bytes from the base of the class record of the extension
field to be searched.

type Specifies the record_type of the class extension to be located.
version Specifies the minimum acceptable version of the class extension required for a
match.

record_size Specifies the minimum acceptable length of the class extension record required
for a match, or 0.

The list of extension records at the specified offset in the specified object class will be searched
for a match on the specified type, a version greater than or equal to the specified version, and a
record size greater than or equal the specified record_size if it is noxt&etClassExtension
returns a pointer to a matching extension record or NULL if no match is found. The returned
extension record must not be modified or freed by the caller if the caller is not the extension
owner.

27

X Toolkit Intrinsics X11 Release 6.4

Chapter 2

Widget Instantiation

A hierarcly of widget instances constitutes a widget tree. The shell widget returnsthpy
pCreateShellis the root of the widget tree instance. The widgets with one or more children are
the intermediate nodes of that tree, and the widgets with no childrey kindrare the lezes o

the widget tree With the exception of pop-up children (see Chapter 5), this widget tree instance
defines the associated X Wivdtree.

Widgets can be either composite or priwgti Both kinds of widgets can contain children, but the
Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the ctasapositeWidgetClassare containers for an
arbitrary but widget implementation-defined, collection of children, which may be instantiated by
the composite widget itself, by other clients, or by a combination of the @@mpositavidgets

also contain methods for managing the geometry (layout)yodtald widget. Under unusual cir-
cumstances, a composite widget mayehzero children, but it usually has at least one. By con-
trast, primitive widgets that contain children typically instantiate specific children of known
classes themselves and do not expect external clients to do so.venwdgets also do not ke
general geometry management methods.

In addition, the Intrinsics recuxdy perform mawy operations (for example, realization and
destruction) on composite widgets and all their children. Prienitidgets that hae cildren
must be prepared to perform the recwesiperations themselves on behalf of their children.

A widget tree is manipulated byvaeal Intrinsics functionsFor example, XtRealizeWidget tra-
verses the tree downward and recuatsi realizes all pop-up widgets and children of composite
widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resourceséréhe tree
upward and determine the inheritance of resources from a védgegstors. XtMake-
GeometryRequesttraverses the tree up onevi and calls the geometry manager that is respon-
sible for a widget child geometry.

To facilitate upward tngersal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget thaXtAppCreateShell returns has parentpointer of NULL.

To facilitate downward trzersal of the widget tree, thahildren field of each composite widget is

a pointer to an array of child widgets, which includes all normal children created, not just the sub-
set of children that are managed by the composite wilgsimetry managerPrimitive widgets

that instantiate children are entirely responsible for all operations that require downwashlra
belov themseles. Inaddition, @ery widget has a pointer to an array of pop-up children.

2.1. Initializing the X Toolkit

Before an application can callyamtrinsics function other thaKktSetLanguageProcand
XtToolkitThreadlnitialize , it must initialize the Intrinsics by using

. XtToolkitInitialize , which initializes the Intrinsics internals

28

X Toolkit Intrinsics X11 Release 6.4

. XtCreateApplicationContext, which initializes the per-application state
. XtDisplaylnitialize or XtOpenDisplay, which initializes the per-display state
. XtAppCreateShell, which creates the root of a widget tree

Or an application can call the a@nience procedur&tOpenApplication , which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale mecha-
nism should calXtSetLanguageProcprior to callingXtDisplaylnitialize , XtOpenDisplay,
XtOpenApplication, or XtApplnitialize .

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispatotséndependently of grother instance.

Further an gplication instance may need multiple display connectionswue Walgets on multi-

ple displays. From the applicatieoint of view, multiple display connections usually are

treated together as a single unit for purposes@ftalispatching.To accommodate both require-
ments, the Intrinsics define application contexts, each of which provides the information needed
to distinguish one application instance from anotfiére major component of an application

context is a list of one or more Bisplay pointers for that application. The Intrinsics handle all
display connections within a single application context simultanedwsidling input in a round-

robin fashion. Theapplication context typXtAppContext is opaque to clients.

To initialize the Intrinsics internals, usé&ToolkitInitialize .

void XtToolkitInitialize()

If XtToolkitInitialize was previously called, it returns immediatelyWhen XtToolkitThrea-
dinitialize is called beforeXtToolkitlnitialize , the latter is protected against simultaneous acti-
vation by multiple threads.

To aeate an application context, ugeCreateApplicationContext.

XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Ewery application must lva & least one application context.

To destrgy an gplication context and closeyaremaining display connections in it, useDe-
stroyApplicationContext.

void XtDestroyApplicationContex&pp_context
XtAppContextapp_context

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application crntédf called
from within an @ent dispatch (for example, in a callback procedux¢lestroyApplication-
Context does not destgothe application context until the dispatch is complete.

29

X Toolkit Intrinsics X11 Release 6.4

To get the application context in which avgh widget was created, usgdWidgetToApplica-
tionContext.

XtAppContext XtWidgetToApplicationContext]
Widgetw;,

w Specifies the widget for which you want the application cantelustbe of class
Object or ag subclass thereof.

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, Xtf8splaylnitialize .

void XtDisplaylnitialize@pp_contextdisplay, application_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Display *display,
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argy,

app_context Specifies the application context.

display Specifies a previously opened display connection. Note that a single dis-
play connection can be in at most one application context.

application_name Specifies the hame of the application instance.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies hw to parse the command line foryaapplication-specific
resources. Theptionsargument is passed as a parametertoParseC-
ommand. For further information, see Section 15.9lib — C Lan-
guage X hterfaceand Section 2.4 of this specification.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the list of command line parameters.

The XtDisplaylnitialize function retriees the language string to be used for the specified display
(see Section 11.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls thexXxiiiParseCommand function to parse

the command line, and performs other per-display initialization. AfterParseCommand has
been calledargc andargv contain only those parameters that were not in the standard option ta-
ble or in the table specified by thptionsargument. Ifthe modifiedargcis not zero, most appli-
cations simply print out the modifiedgv along with a message listing the allble options. On
POSIX-based systems, the application name is usually the final compoaenf@f. If the

30

X Toolkit Intrinsics X11 Release 6.4

synchronous resource Ts ue, XtDisplaylnitialize calls the XlibXSynchronize function to put
Xlib into synchronous mode for this display connection arydotimers currently open in the
application contet. SeeSections 2.3 and 2.4 for details on #mpplication_namegapplica-
tion_classoptions and num_optionarguments.

XtDisplaylnitialize calls XrmSetDatabaseto associate the resource database of the default
screen with the display before returning.

To open a displayinitialize it, and then add it to an application context, XiKepenDisplay.

Display *XtOpenDisplaydpp_contextdisplay_stringapplication_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Stringdisplay_string
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argyv;

app_context Specifies the application context.
display_string Specifies the display string, or NULL.
application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies hw to parse the command line foryaapplication-specific
resources. Theptions argument is passed as a parameféridarseC-
ommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function callsXOpenDisplay with the specifiedlisplay_string If dis-
play_stringis NULL, XtOpenDisplay uses the current value of the —display option specified in
argv. If no display is specified imargv, the users default display is retried from the environ-
ment. OnNPOSIX-based systems, this is the value ofQI&PLAY environment variable.

If this succeedsXtOpenDisplay then callsXtDisplaylnitialize and passes it the opened display
and the value of the —name option specifiedrgv as the application name. If no —name option
is specified andpplication_names non-NULL, application_namés passed tXtDisplayIni-

tialize. If application_namés NULL and if the environment variabRESOURCE_NAME is

set, the value ORESOURCE_NAME is used. Otherwise, the application name is the name used
to invoke the program. On implementations that conform to ANSI C Hosted Environment sup-
port, the application name will lz@g\[0] less aw directory and file type components, that is, the
final component o&rg\V0], if specified. Ifarg0] does not exist or is the empty string, the appli-
cation name is “main”. XtOpenDisplay returns the newly opened display or NULL if it failed.

See Section 7.12 for informatiorgaeding the use oKtOpenDisplay in multiple threads.

31

X Toolkit Intrinsics X11 Release 6.4

To dose a display and reme it from an application context, ud@CloseDisplay.

void XtCloseDisplaydisplay)
Display *display,

display Specifies the display.

The XtCloseDisplay function callsXCloseDisplay with the specifiedlisplayas soon as it is

safe to do so. If called from within amenmt dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications
need only callXtCloseDisplay if they are to continue xecuting after closing the display; other-
wise, thg should call XtDestroyApplicationContext.

See Section 7.12 for informatiorgaeding the use oKtCloseDisplay in multiple threads.

2.2. Establishingthe Locale

Resource databases are specified to be created in the current process locale. During display ini-
tialization prior to creating the per-screen resource database, the Intrinsics will call out to a speci-
fied application procedure to set the locale according to options found on the command line or in
the per-display resource specifications.

The callout procedure provided by the application is of ifie&anguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display *display,
Stringlanguage
XtPointerclient_data

display Passes the display.

language Passes the initial language value obtained from the command line or server per-
display resource specifications.

client_data Passes the additional client data specified in the callt&etLanguageProc

The language procedure allows an application to set the locale to the value of the language
resource determined B¥tDisplaylnitialize . The function returns a melanguage string that

will be subsequently used IXtDisplaylnitialize to establish the path for loading resource files.
The returned string will be copied by the Intrinsics intes meemory.

Initially, no language procedure is set by the Intrinsits.set the language procedure for use by
XtDisplaylnitialize , use XtSetLanguageProc

32

X Toolkit Intrinsics X11 Release 6.4

XtLanguageProc XtSetLanguagePmf contextproc, client_datg
XtAppContextapp_context
XtLanguageProgproc,
XtPointerclient_data

app_context Specifies the application context in which the language procedure is to be used,

or NULL.

proc Specifies the language procedure.

client data Specifies additional client data to be passed to the language procedure when it is
called.

XtSetLanguageProcsets the language procedure that will be called fabDisplaylnitialize

for all subsequent Displays initialized in the specified application xionté app_contexis

NULL, the specified language procedure is registered in all application contexts created by the
calling process, including griuture application contexts that may be createdord€is NULL,

a default language procedure is registerédSetLanguageProcreturns the previously regis-

tered language procedure. If a language procedure has not yet been registered, the return value is
unspecified, but if this return value is used in a subsequent céibeil anguageProg it will

cause the default language procedure to be registered.

The default language procedure does the following:

. Sets the locale according to thevennment. OPANSI C-based systems this is done by
calling setlocald LC_ALL , language). If an error is encountered, a warning message is
issued withXtWarning .

. Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued Xitharning and the locale is set to “C”".

. Calls XSetLocaleMadifiers specifying the empty string.

. Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call tosetlocalg LC_ALL , NULL).

A client wishing to use this mechanism to establish locale can do so by ¢éietl. anguage-
Proc prior to XtDisplaylnitialize , as in he following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

2.3. Loadingthe Resource Database

The XtDisplaylnitialize function first determines the language string to be used for the specified
display It then creates a resource database for the default screen of the display by combining the
following sources in ordewith the entries in the first named source having highest precedence:

. Application command lineafgc, argv).
. Per-host user environment resource file on the local host.
. Per-screen resource specifications from the server.

33

X Toolkit Intrinsics X11 Release 6.4

. Per-display resource specifications from the server or from
the user preference file on the local host.

. Application-specific user resource file on the local host.
. Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either,iaternally
when XtScreenDatabasds called), it is created in the following manner using the sources listed
above in the same order:

. A temporary database, the “server resource database”, is created from the string returned
by XResourceManagerStringor, if XResourceManagerStringreturns NULL, the con-
tents of a resource file in the usamme directory On POSIX-based systems, the usual
name for this user preference resource file is $HOXAEfaults.

. If a language procedure has been XéDisplaylnitialize first searches the command line
for the option “-xnlLanguage”, or for a -xrm option that specifies the xnlLanguage/Xnl-
Language resource, as specified by Section 2.4. If such a resource is found, the value is
assumed to be entirely in XPCS, the X Portable Character Set. If neither option is specified
on the command linetDisplaylnitialize queries the server resource database (which is
assumed to be entirely in XPCS) for the resonaraexnlLanguage classClassXnlLan-
guagewherenameandClassare theapplication_namendapplication_classpecified to
XtDisplaylnitialize . The language procedure is thendked with the resource value if
found, else the empty string. The string returned from the language proceduveel isa
all future references in the Intrinsics that require the per-display language string.

. The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.

. If a language procedure has not been set, the initial database is then queried for the resource
namexnlLanguage classClassXnlLanguage as specified abe. If this database query
fails, the server resource database is queried; if this query also fails, the language is deter-
mined from the environment; on POSIX-based systems, this is done by retrieving the value
of the LANG environment ariable. Ifno language string is found, the empty string is
used. Thidanguage string is 8ead for all future references in the Intrinsics that require the
per-display language string.

. After determining the language string, the usarvironment resource file is then merged
into the initial resource database if the fikéses. Thisfile is user-, host-, and process-spe-
cific and is expected to contain user preferences that avertide those specifications in
the per-display and per-screen resources. On POSIX-based systems, shewisan-
ment resource file name is specified by the value cXKENVIRONMENT environment
variable. Ifthis environment variable does not exist, the gd®rme directory is searched
for a file namedXdefaults-host, wherehostis the host name of the machine on which the
application is running.

. The per-screen resource specifications are then merged into the screen resource database, if
they exist. Thesespecifications are the string returnedXfycreenResourceStringor the
respectre sreen and are owned entirely by the user.

34

X Toolkit Intrinsics X11 Release 6.4

. Next, the server resource database created earlier is merged into the screen resource data-
base. Theerver propertyand corresponding user preference file, are owned and con-
structed entirely by the user.

. The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned
by the user Either the user or the application or both can store resource specifications in
the file. Each should be prepared to find and respect entries made by thdloghidie
name is found by callingirmSetDatabasewith the current screen resource database, after
preserving the original display-associated database, then cétitesolvePathnamewith
the parametersd{splay, NULL, NULL, NULL, path NULL, O, NULL), wherepathis
defined in an operating-system-specific weyn POSIX-based systempathis defined to
be the value of the environment varialléSERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. Thigefault value is constrained in the following manner:

— |If the environment variablEAPPLRESDIR is not defined, the defaulUSERFILE-
SEARCHPATH must contain at least six entries. These entries must contain $HOME as
the directory prefix, plus the following substitutions:

%C,%N, %L or %C,%N, %I, %t, %c
%C,%N, %l

%C,%N

%N, %L or %N, %I, %t, %c
%N, %l

%N

ok wnpE

The order of these six entries within the path must bevas gbove. The order and
use of substitutions within avgn entry are implementation-dependent.

— If XAPPLRESDIR is defined, the defaukUSERFILESEARCHPATH must contain at
least seen entries. Thesentries must contain the following directory prefixes and sub-

stitutions:

1. $XAPPLRESDIR with %C,%N, %L or %C,%N, %I, %t, %c
2. $XAPPLRESDIR with %C, %N, %l

3. $XAPPLRESDIR with %C, %N

4. $XAPPLRESDIR with %N, %L or %N, %l, %t, %c
5. $XAPPLRESDIR with %N, %ol

6. $XAPPLRESDIR with %N

7. $HOME with %N

The order of these gen entries within the path must be as@i above. The order and
use of substitutions within avgn entry are implementation-dependent.

. Last, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in a
system directory when the application is installed. It may contain sitewide customizations
specified by the system manag&he name of the application class resource file is found

35

X Toolkit Intrinsics X11 Release 6.4

by calling XtResolvePathnamewith the parameterslisplay, “app-defaults”, NULL,

NULL, NULL, NULL, 0, NULL). This file is expected to be provided by theveleper of

the application and may be required for the application to function progedimple

application that wants to be assured of having a minimal set of resources in the absence of
its class resource file can declare fallback resource specificationgtjhSetFallback-
Resources Note that the customization substitution string is reédeynamically by
XtResolvePathnameso that the resolved file name of the application class resource file

can be affected by grof the earlier sources for the screen resource databasgheugh

the contents of the class resource fileehawest precedence. After callingtRe-
solvePathname the original display-associated database is restored.

To dbtain the resource database for a particular screerstGseeenDatabase

XrmDatabase XtScreenDatabaszéen
Screen Screen

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabasefunction returns the fully merged resource database as specifias] abo
associated with the specified screen. If the spedfiezbndoes not belong to Risplay initial-
ized by XtDisplaylnitialize , the results are undefined.

To dbtain the default resource database associated with a particular,displdtDatabase.

XrmDatabase XtDatabaghbgplay)
Display *display,

display Specifies the display.

The XtDatabasefunction is equialent to XrmGetDatabase. It returns the database associated
with the specified displapr NULL if a database has not been set.

To ecify a default set of resource values that will be used to initialize the resource database if no
application-specific class resource file is found (the last of the six sources liste}] abe
XtAppSetFallbackResources

void XtAppSetFallbackResourceg(p_contextspecification_list
XtAppContextapp_context
String *specification_list

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry irspecification_lispoints to a string in the format dfrmPutLineResource. Fol-
lowing a call toXtAppSetFallbackResources when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class

36

X Toolkit Intrinsics X11 Release 6.4

resource file according to the ruleseagyi above and if specification_lists not NULL, the resource
specifications irspecification_liswill be merged into the screen resource database in place of the
application-specific class resource fildtAppSetFallbackResourcesis not required to copy
specification_listthe caller must ensure that the contents of the list and of the strings addressed
by the list remain valid until all displays are initialized or uitiRppSetFallbackResourcesis

called agin. Thevalue NULL for specification_listemoves any previous fallback resource spec-
ification for the application cormte Theintended use for fallback resources is to provide a mini-
mal number of resources that will neake application usable (or at least terminate with helpful
diagnostic messages) when some problem exists in finding and loading the application defaults
file.

2.4. Rarsing the Command Line
The XtOpenDisplay function first parses the command line for the following options:

—display Specifiethe display name foXOpenDisplay.
—name Setthe resource name prefix, whicherides the application name passed to
XtOpenDisplay.

—xnllanguage Specifighe initial language string for establishing locale and for finding appli-
cation class resource files.

XtDisplaylnitialize has a table of standard command line options that are passedRar-
seCommandfor adding resources to the resource database, and it takes as a parameter additional
application-specific resource abbigions. Theormat of this table is described in Section 15.9

in Xlib — C Languge X hterface

typedef enum {

XrmoptionNoAIg, /* Value is specified in OptionDescRec.value */
XrmoptionIsAmg, [* Value is the option string itself */
XrmoptionStickyAg, /* Value is characters immediately following option */
XrmoptionSepAg, /* Value is next argument in argv */
XrmoptionResAg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipAg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNAgs, /*Ignore this option and the next */
/* OptionDescRec.value arguments in argv */

XrmoptionSkipLine [*Ignore this option and the rest of argv */

} X rmOptionKind;

typedef struct {
char *option; /* Option name in argv */
char *specifier; /* Resource name (without application name) */
XrmOptionKind agKind; /* Location of the resource value */
XPointer alue; /*Value to provide if XrmoptionNoAg */

} X rmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

37

X Toolkit Intrinsics

Option String

Resource Name

Argument Kind

Resource Value

X11 Release 6.4

—background *pbackground SepAg next argument
-bd *borderColor SepAg next argument
-bg *background SepAg next argument
—borderwidth .border\dth SepAg next argument
—bordercolor *borderColor SepAg next argument
—bw .borderVitith SepAg next argument
—display display SepAyr next argument
—fg *foreground SepAg next argument
-fn *font SepAg next argument
—font *font SepAg next argument
—foreground *forground SepAy next argument
—geometry .geometry Sep@\r next argument
—iconic .conic NoAg “true”

—name .name Sepgr next argument
—reverse reerseMdeo NoAg “on”

-rv reverseMdeo NoAg “on”

+rv reverseMdeo NoAg “off"”
—selectionTmeout .selectionTimeout Sepd\r next argument
—synchronous .synchronous NaAr “on”
+synchronous .synchronous Na@Ar “off"”

—title title